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Preface

Contained within this volume are the peer-reviewed contributions accepted for the 34th
International Conference on Concurrency Theory (CONCUR), held in 2023. CONCUR serves
as an annual scientific forum for researchers, developers, and students working to expand the
field of concurrency theory and its applications. In 2023, the University of Antwerp played
host to CONCUR, arranging it alongside QEST 2023, FORMATS 2023, and FMICS 2023 as
part of CONFEST 2023, which also featured several workshops one day before and one day
after the main conferences.

For CONCUR 2023, we received 98 submissions and accepted 37 for presentation at the
conference. The high standard of many submissions meant the acceptance criteria were
stringent. We are grateful for the hard work of our program committee who produced 378
reviews with the help of 186 external expert reviewers. Their insights guided us in choosing a
diverse set of papers after lively discussions following a rebuttal phase offered to the authors.

We wish to thank the authors for considering the feedback from our reviewers and
submitting their revised work to the CONCUR 2023 proceedings. We are confident that
the selected papers, due to their high quality, will give rise to interesting presentations and
scientifically interesting discussions during the conference.

We are also proud that several well-respected scientists have agreed to deliver invited
talks at the conference: Prof. Ahmed Bouajjani, Paris Diderot University, France, Prof.
Joost-Pieter Katoen, RWTH Aachen, Germany (joint with all conferences), Prof. Nicolas
Markey, University of Rennes, France (joint with FORMATS), Prof. Frans A. Oliehoek, TU
Delft, Netherlands (joint with QEST), Prof. David Parker, Oxford University, UK (joint
with QEST, FORMATS), Prof. Jaco van de Pol, Aarhus University, Denmark (joint with
FORMATS, FMICS), and Prof. Anna Slobodova, Intel, USA (joint with FMICS)

In 2020, CONCUR and the IFIP WG 1.8 on Concurrency Theory initiated the test-of-
time award to honor significant contributions to Concurrency Theory that were published
at CONCUR. This year’s award goes to Vincent Danos and Jean Krivine for their work
“Reversible Communicating Systems,” published in CONCUR 2004.

We address our thanks to the University of Antwerp for its assistance with CONCUR
2023 and CONFEST 2023, as well as to our sponsors, the Research Foundation – Flanders
(FWO) and the Fund for Scientific Research (F.R.S.–FNRS).

Lastly, the proceedings of CONCUR 2023 are freely available through the LIPIcs series. We
are grateful to the authors of the CONCUR 2023 papers, the participants of the conference,
and the student volunteers from the University of Antwerp and the Université libre de
Bruxelles for their contribution to making CONCUR 2023 a success.
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CONCUR Test-Of-Time Award 2023
Bengt Jonsson # Ñ

Department of Information Technology, Uppsala University, Sweden

Marta Kwiatkowska # Ñ

Department of Computer Science, University of Oxford, UK

Igor Walukiewicz # Ñ

CNRS, University of Bordeaux, France

Abstract
This short article recaps the purpose of the CONCUR Test-of-Time Award and presents the paper
that received the Award in 2023.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases CONCUR Test-of-Time Award

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.1

Category Invited Paper

Acknowledgements We thank Javier Esparza (chair of the CONCUR Steering Committee) and
Pedro d’Argenio (chair of the IFIP Working Group 1.8 on Concurrency Theory), and Guillermo A.
Perez and Jean-Francois Raskin (chairs of the CONCUR 2023 Programme Committee) for their
assistance throughout our work as a jury for this year’s award.

1 Introduction

The CONCUR Test-of-Time Award was established in 2020 by the Steering Committee of
the CONCUR conference and by the IFIP Working Group 1.8 on Concurrency Theory. Its
purpose is to recognise important achievements in Concurrency Theory that were published
at CONCUR and have stood the test of time. At its normal pace, starting from 2024, the
CONCUR Test-of-Time Award will be attributed every other year, during the CONCUR
conference, to one or two papers published in the 4-year period from 20 to 17 years earlier.
In the transient period from 2020 to 2023, on the other hand, two such awards are attributed
every year, in order to catch up with papers published in the first fifteen years of the
conference, namely between 1990 and 2004. At CONCUR 2020 two awards were given,
each rewarding two papers published in the period 1990–1995. Similarly, at CONCUR 2021
two awards were given, each rewarding two papers published in the period 1994–1999. At
CONCUR 2022, four awards were given, two for the period 1998–2001 and another two for
2000-2003. We had the honour to serve as members of the fourth CONCUR Test-of-Time
Award Jury. All papers published at CONCUR in the period 2002-2005 were eligible. After
agreeing a shortlist of candidate papers and discussing their relative merits and infuence
on the CONCUR research community and beyond, we selected the paper described below
for the Award, out of a number of excellent candidates. The presentation of the Award will
take place during CONCUR 2023, the 34th edition of the CONCUR conference, which is
co-chaired by Guillermo A. Pérez and Jean-François Raskin, and will be held in Antwerp.

2 The Award Winning Contribution

For the period 2002–2005 the jury has chosen to award the paper:
Vincent Danos and Jean Krivine
Reversible Communicating Systems, published in CONCUR 2004
https://doi.org/10.1007/978-3-540-28644-8_19

© Bengt Jonsson, Marta Kwiatkowska, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY 4.0
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1:2 CONCUR Test-Of-Time Award 2023

This paper represents the first exploration of the reversibility of concurrent computation
within process algebra. The notion of reversible computation expands the conventional
forward computation by incorporating the ability to roll back a computation. The roots
of this concept can be traced back to the 1970s, where it was studied by Landauer and
Bennett in the context of thermodynamics and Turing machines. They established that any
deterministic computation could be simulated by a logically reversible Turing machine.

The challenge in applying reversibility to concurrent systems arises from the fact that
actions are not linearly organized by execution time but are partially ordered by a causal
relationship. The authors put forward the fundamental notion of causally-consistent reversib-
ility capturing the concept that an action can only be undone if all its subsequent effects have
been reversed. The introduced notion has direct applicability to reversibility in distributed
settings.

This paper has since served as a source of inspiration, either directly or indirectly, for
numerous studies on reversible concurrent systems modelled through (higher-order) process
algebras, Petri nets, event structures, as well as reversible logic circuits made of DNA. The
principle of reversibility has a wide range of applications in distributed systems, including
debugging, rollback, and error recovery. These applications will undoubtedly continue to
benefit from the pioneering and elegant formalization introduced by Danos and Krivine.

3 Concluding Remarks

Interview with the award recipients, which provides information on the historical context
that led them to develop their award-winning work and on their research philosophy, has
been conducted by Marta Kwiatkowska with the help of the jury members. The inter-
view is accessible on the award’s webpage https://www.uantwerpen.be/en/conferences/
confest-2023/concur/awards/.

https://www.uantwerpen.be/en/conferences/confest-2023/concur/awards/
https://www.uantwerpen.be/en/conferences/confest-2023/concur/awards/


On Verifying Concurrent Programs Under Weakly
Consistent Models
Ahmed Bouajjani # Ñ

Université Paris Cité, CNRS, IRIF, France

Abstract
Developing correct and performant concurrent systems is a major challenge. When programming an
application using a memory system, a natural expectation would be that each memory update is
immediately visible to all concurrent threads (which corresponds to strong consistency). However, for
performance reasons, only weaker guarantees can be ensured by memory systems, defined by what
sets of updates can be made visible to each thread at any moment, and by the order in which they are
made visible. The conditions on the visibility order guaranteed by a memory system corresponds to
its memory consistency model. Weak consistency models admit complex and unintuitive behaviors,
which makes the task of application programmers extremely hard. It is therefore important to
determine an adequate level of consistency for each given application: a level that is weak enough to
ensure performance, but also strong enough to ensure correctness of the application behaviors. This
leads to the consideration of several important verification problems:

the correctness of an application program running over a weak consistency model;
the robustness of an application program w.r.t. consistency weakening;
the fact that an implementation of a system (memory, storage system) guarantees a given (weak)
consistency model.

The talk gives a broad presentation of these issues and some results in this research area. The
talk is based on several joint works with students and colleagues during the last few years.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Concurrent programs, weakly consistent models

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.2

Category Invited Talk
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Reachability and Bounded Emptiness Problems of
Constraint Automata with Prefix, Suffix and Infix
Jakub Michaliszyn # Ñ

University of Wrocław, Poland

Jan Otop #

University of Wrocław, Poland

Piotr Wieczorek #

University of Wrocław, Poland

Abstract
We study constraint automata, which are finite-state automata over infinite alphabets consisting of
tuples of words. A constraint automaton can compare the words of the consecutive tuples using
Boolean combinations of the relations prefix, suffix, infix and equality.

First, we show that the reachability problem of such automata is PSpace-complete. Second, we
study automata over infinite sequences with Büchi conditions. We show that the problem: given a
constraint automaton, is there a bound B and a sequence of tuples of words of length bounded by
B, which is accepted by the automaton, is also PSpace-complete. These results contribute towards
solving the long-standing open problem of the decidability of the emptiness problem for constraint
automata, in which the words can have arbitrary lengths.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases constraint automata, emptiness problem

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.3

Funding This work was supported by the National Science Centre (NCN), Poland under grant
2020/39/B/ST6/00521.

1 Introduction

Logics and automata over data values, i.e., values from an infinite domain, have applications
in formal verification, automated reasoning, databases and others [7, 6, 4, 10, 2, 1, 19, 22].

A notable example of a formalism for data values is constraint linear temporal lo-
gic (CLTL) [7, 6, 4]. CLTL formulas are defined w.r.t. a relational structure, e.g. (N, =)
or (Z, <); the variables in formulas range over the domain of the structure. Constraints
are atomic formulas defined using variables and symbols from the structure. CLTL formulas
combine such constraints with LTL modalities and Boolean connectives, i.e., CLTL is LTL in
which propositional variables are replaced with constraints. Every CLTL formula defines a
data language, which is a set of infinite sequences of data values.

Constraint automata is the automata-based formalism accompanying CLTL [5, 11, 7].
Again, they are parameterized by a structure, which can have an infinite domain. A
constraint automaton is a Büchi automaton, in which transitions are labeled with constraints;
an automaton can take a transition only if the current and the next data values satisfy the
constraint labeling this transition. The satisfiability problem for CLTL can be reduced to the
non-emptiness of constraint automata as in the LTL case. Furthermore, constraint automata
can use the equality constraints to store a data value for future use, which makes them
closely related to register automata [14, 22, 8].
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3:2 Reachability and Bounded Emptiness Problems

There are several results for CLTL and constraint automata for specific structures (see
survey [9]) but also for some unified classes, like linear orders [26, 16, 4, 3, 10].

We are interested in data values being strings (A∗) over a finite alphabet A. The structures,
considered in the context of strings, may be equipped with basic relations on strings like
prefix, suffix or subsequence. Motivations come from the fact that although temporal logics
with constraints over integers can be helpful in formal analysis of programs with counters, in
order to analyse pushdown systems we need constraints over strings and the prefix relation.
The most typical of prefix and suffix usage is for queues: adding to a queue (represented as a
word) corresponds to stating that the old word is a prefix of the new one, whereas removing
from a queue corresponds to stating that the new word is a suffix of the old one, so both
prefix and suffix are important (and infix can be expressed as a combination of prefix and
suffix). The reachability problem for queue automata (a PDA with a queue instead of a
stack) is undecidable, therefore analyzing systems with a queue is a challenging task.

There has been a large body of work on various problems involving strings especially for
multiple variants of first-order logic (FO) [15, 12, 18]. These results have implications for
CLTL and constraint automata as pointed out in [23]. The undecidability of the satisfiability
problem for CLTL over structure A = (A∗, ≤sub, (= w)w∈Σ∗), where A is a finite alphabet
and ≤sub is the subsequence order, follows from undecidability of the satisfiability problem
for Σ1-fragment of FO logic over A [12].

The satisfiability problem for CLTL over (A∗, ≤p, =, (= w)w∈Σ∗), where ≤p is prefix order,
is PSpace-complete [6]. Note that words with the prefix order alone form the structure
isomorphic to an infinite tree with descendant/ancestor relations. However, it was shown
in [3] that the known unified technique, involving the “existence of homomorphisms is
decidable”-property, for satisfiability results of branching-time logics (like CTL∗ or ECTL∗) [4]
with integer constraints cannot be used to resolve the satisfiability status of temporal logics
with constraints over trees. This in turn shows the difficulty of the result from [6]. In the
automata approach the emptiness problem for constraint automata is PSpace-complete
when the relation is the infinitely branching infinite order tree [16]. Because of the symmetry,
the same complexity follows in the case when prefix order is replaced with suffix order.

Once the satisfiability for CLTL with the prefix (or the suffix) order alone is answered, a
natural question arises: what happens if we study CLTL over the structure A∗ equipped with
both of them? This question has been asked by Demri and Deters [6]. Having both prefix
and suffix allows for checking properties depending on both ends of strings like in Example 2
provided at the end of Section 2.2. In this work we also explicitly include the infix relation
as well as a form of negation for each of the three relations (i.e., incomparable w.r.t. prefix or
suffix or infix respectively). Although infix alone is definable with prefix and suffix using an
additional variable, it is not the case for its negation. It is an important part of our results.

Peteler and Quaas [23] studied the emptiness problem for constraint automata over the
prefix and the suffix orders. They exemplified that FO logic with the prefix order alone is
decidable [25] while FO logic with the prefix order and the suffix order is undecidable (this
follows from the undecidability result for the FO theory for the substring (infix) orders [17],
and the fact that the substring order is FO-definable using prefix and suffix). On the positive
side, as noted in [6], the Σ1-fragment of FO logic is decidable for finite strings over a finite
alphabet. The proof uses an algorithm based on the word equation approach [24, 21, 13].

In the same paper, Peteler and Quaas proved that it is decidable in NL when the
automaton uses only a single variable that ranges over finite strings. The strings can be over
a finite or countably infinite alphabet. Their proof proceeds by reduction to reachability
queries on the finite graph underlying the automaton. They show that their technique works
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in the presence of equality tests with the empty string (similar to a zero test in one-counter
automata). The result implies PSpace-completeness of the satisfiability problem for CLTL
over a single variable. In contrast, in our work we study the emptiness problem for constraint
automata that can use many variables over finite strings, but the string lengths are bounded.

Our contribution
We study constraint automata with the prefix, infix, suffix and equality (=) relations. Our
crucial technical contribution is Lemma 4 in Section 3, which provides a model-theoretic
characterisation of the satisfiability of a maximal set of constraints expressed using the prefix,
suffix and infix relations (without constants) over some (countable, possibly infinite) set of
variables. It says that such a set of constraints is satisfiable if variables with the prefix (resp.,
the suffix) relation form a forest, and variables with the infix relation form a finitary partial
order, i.e., every variable has finitely many predecessors.

We employ this lemma to show that the reachability problem of constraint automata is
PSpace-complete. To do so, we first introduce type-tracking automata, which store in the
state the type of the processed input tuple, i.e., the information on the relation between
all words in the input tuple. In such automata every path corresponds to some (pre)run
over some sequence. For a constraint automaton, the type-tracking automaton may have
exponential size, but it can be constructed on-the-fly and there is no need to store it in
memory. Therefore, the reachability problem for unrestricted constraint automata can be
solved in PSpace. We also prove the matching lower bound.

For constraint automata over infinite sequences with Büchi conditions, we define the
bounded emptiness problem as follows: given a constraint automaton, is there a bound B such
that some sequence accepted by the automaton and all words in all tuples of that sequence
have length bounded by B? We show that this problem is PSpace-complete as well. To do
so, we first prove that if there is a bounded sequence accepted by the automaton, there is an
ultimately-periodic sequence accepted by the automaton. Next, we establish a condition for
a cycle in such an ultimately-periodic sequence. Finally, we show how to check the existence
of such a cycle in polynomial space. The corresponding lower bound can be obtained from
the lower bound for the reachability problem.

2 Preliminaries

2.1 Relations and constraints
We assume Σ to be a finite alphabet, whose elements are letters. A word is a finite sequence
of letters; ϵ denotes the empty word. For words w, v, the word wv is the concatenation of w

and v. An n-tuple is a tuple consisting of n words. An n-sequence is a sequence of n-tuples.
This is illustrated in Figure 1.

We say that a word w is
a (strict) prefix of v, denoted as w ⊏P v if there is a non-empty word t such that wt = v;
a (strict) suffix of v, denoted as w ⊏S v, if there is a non-empty word t such that tw = v;
a (strict) infix of v, denoted as w ⊏I v if there are words t, t′, at least one of them
non-empty, such that twt′ = v.

We say that two words v, w are incomparable with respect to the prefix order, denoted
as v⊥P w if none of the following holds: v = w, w ⊏P v, v ⊏P w. The v⊥Sw and v⊥Iw

relations for suffix and infix are defined in a similar way.

CONCUR 2023



3:4 Reachability and Bounded Emptiness Problems
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Figure 1 An example of a 3-sequence.

An n-constraint (over {x1, . . . , xn}) is a set consisting of atoms of the form x ⊕ y, where
x, y ∈ {x1, . . . , xn} are variables and ⊕ ∈ {<P , <S , <I , ⊥P , ⊥S , ⊥I , =} is a relation symbol.
Given an n-tuple of words w⃗ = (w1, . . . , wn), we define the interpretation Iw⃗ such that
for each variable xi we have Iw⃗(xi) = wi, and for relational symbols we have I(<P ) =⊏P ,
Iw⃗(<S) =⊏S , Iw⃗(<I) =⊏I , Iw⃗(⊥P ) = ⊥P , Iw⃗(⊥S) = ⊥S , Iw⃗(⊥I) = ⊥I , and Iw⃗(=) is =. An
n-constraint γ is satisfied by w⃗ = (w1, . . . , wn), denoted as w⃗ |= γ, if for every atom x ⊕ y

from γ the expression over words Iw⃗(x ⊕ y) is true. An n-constraint γ is satisfiable if there
exists an n-tuple of words w⃗ satisfying γ.

▶ Example 1. Consider the 6-constraint γ = {x3 = x′
3, x1 ⊥P x′

1, x′
1 <S x1} over variables

x1, x2, x3, x′
1, x′

2, x′
3. Let w1, w2, w3, w4 be the 3-sequence presented in Figure 1. We will

write (wi, wj) to denote a 6-tuple of words containing first the words of wi, and then the
words of wj .

Then, (w1, w2) |= γ holds, because ab = ab, ababa ⊥P ba and ba <S ababa. On the other
hand, (w2, w3) |= γ does not hold because ab ̸= ϵ. ◀

An ordered set (X, <) is finitary if for every t ∈ X, the set {s ∈ X | s < t} is finite. An
ordered set (X, <) is a (finitary) tree if for every t ∈ X, the set {s ∈ X | s < t} is finite and
totally ordered w.r.t. <. A (finitary) forest is a disjoint union of trees.

2.2 Constraint automata and their semantics
A (non-deterministic) n-constraint automaton A = (Q, Q0, QF , δ) is an automaton which
processes tuples of finite words, i.e., (Σ∗)n. Such an automaton consists of:

A finite set of states Q and its subsets: initial states Q0 and final states QF .
A transition relation δ ⊆ Q × Γ × Q, where Γ is the set of all satisfiable 2n-constraints
over {x1, . . . , xn, x′

1, . . . , x′
n}.

The size of an n-constraint automaton is the number of elements of Q and δ.
The semantics of n-constraint automata is defined over n-sequences. Intuitively, an

automaton starts in an initial state with the first n-tuple, and then changes the state
according to the following n-tuples and the transition relation. In transitions, unprimed
variables x1, . . . , xn are interpreted as words at the origin and the primed variables are
interpreted as words at the destination. The formal description follows below.

We will consider two semantics of constraint automata: over finite and infinite sequences.
Let A = (Q, Q0, QF , δ) be an n-constraint automaton.

Constraint automata over finite sequences. A partial run of A over a finite sequence
w0, . . . , wm, with m ≥ 1, is a sequence of states q0, . . . , qm where for each i < m there is γ

such that (qi, γ, qi+1) ∈ δ and (wi, wi+1) |= γ. A run is a special case of a partial run that
starts in an initial state, i.e., q0 ∈ Q0. A run is accepting if the last state qm ∈ QF .
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x′
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2, x2 = x′
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x′
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2, x2 <S x′
2

Figure 2 An example of a 2-constraint automaton.

Constraint automata over infinite sequences. A partial run of A over an infinite sequence
w0, w1, . . . is an infinite sequence of states q0, q1, . . . such that every finite prefix is a partial
run over the corresponding prefix of w0, w1, . . . . As before, a partial run is a run if it starts in
an initial state. An infinite run is accepting if there is a state q ∈ QF such that for infinitely
many j we have qj = q (Büchi condition).

In both cases, we say that the automaton accepts a sequence s if there is an accepting
run on it. The language of an automaton is the set of sequences it accepts. Two automata
are equivalent if their languages are the same.

▶ Example 2. Consider the 2-constraint automaton depicted at Figure 2 without the dashed
edges. This automaton, considered over finite sequences, accepts sequences (w1, v1) . . . (ws, vs)
such that ws = vs, for all i, j we have vi = vj , for all i < s we have wi <P vi, wi <P wi+1.
This can model a process that starts from some list of tasks to accomplish (in a specific
order) v and maintains the current list of finished tasks as w. The automaton accepts once
the list is completed.

The automaton depicted in Figure 2 with the dashed edges can be considered on infinite
sequences. In this case, the procedure described above is repeated infinitely often: once a
current list is completed, the process starts over with a new list; in this example, the new list
is the previous list possibly extended with new tasks at the beginning. The “new list” can
be empty or non-empty, as no constraints check whether a word is empty. Note also how we
have used nondeterminism to express the disjunction x2 = x′

2 or x2 <S x′
2 during the return.

2.3 Decision problems
The emptiness problem for constraint automata over finite (resp., infinite) sequences is the
question: given a n-constraint automaton, is there a finite (resp., an infinite) n-sequence
accepted by this automaton?

For finite sequences, we consider a (slightly) more general question, that of reachability:
given an n-constraint automaton A and its two states s, t, is there a finite n-sequence
and a partial run over that sequence starting in s and ending in t? Even though the
reachability problem and the emptiness problem over finite sequences are mutually reducible,
the reachability problem is often more convenient to apply.

We say that an infinite n-sequence σ is bounded if there is a bound B, such that in every
n-tuple σ[i], words have length bounded by B. Note that finite and ultimately periodic
sequences are bounded. The bounded emptiness problem is as follows: given a n-constraint
automaton A, is there an infinite bounded n-sequence accepted by A?

CONCUR 2023



3:6 Reachability and Bounded Emptiness Problems

3 Constraints and their Satisfaction

In this section, we study satisfiability of n-constraints. First, we give a characterization of
satisfiability of constraints based on the shape of constraints (Lemma 4), which gives insight
into the expressive power of constraints. While n-constraints are over finitely many variables,
the characterization of Lemma 4 holds for countable sets of variables and hence it can have
applications beyond this paper.

Next, we show a Craig-interpolation type lemma, which states that for two maximal
satisfiable constraints, if they are consistent on the common variables, then their union is
satisfiable (Lemma 6). We use Lemma 6 to derive a local-to-global principle, which states that
local consistency implies global consistency for constraints resulting from runs of constraint
automata (Theorem 10).

3.1 Satisfiability of maximal constraints
Let γ be a constraint over a set of variables V = {x1, x2, . . .}.

▶ Definition 3. We say that γ is maximal if for every pair of different variables x, y, either
x = y is in γ or for every ρ ∈ {P, S, I} we have one of the following x <ρ y, y <ρ x or
x ⊥ρ x′ belongs to γ.

Consider a maximal constraint γ. First, observe that we can eliminate equality constraints
easily. Let E be the least equivalence relation on V containing all pairs (x, x′) such that
x = x′ occurs in γ. For each equivalence class C of E we pick the least i such that xi ∈ C

and substitute all y ∈ C with xi. Let γ′ be the resulting constraint, which we call the
equality-reduced γ. If γ′ has a conflicting pair of constraints (e.g. y <P y′ and y ⊥P y′),
then γ′ is unsatisfiable as well as γ. Otherwise, if there is no such pair then γ′ is a maximal
constraint and it is satisfiable if and only if γ is.

Assume, without loss of generality, that γ is maximal and without equality constraints.
We study three graphs over V : (V, Pγ), (V, Sγ), and (V, Iγ), which are obtained from γ

by stating atomic constraints from γ as edges, i.e., we define Pγ , Sγ , Iγ over V 2 such that
for all x, x′ ∈ V we have xPγx′ (resp., xSγx′ or xIγx′ ) if and only if x <P x′ ∈ γ (resp.,
x <S x′ ∈ γ or x <I x′ ∈ γ).

Assume that γ is satisfiable, and it is satisfied by (possibly infinite) w⃗. Since γ is maximal
and has no equality constraints, words in w⃗ are pairwise distinct. First, observe that graphs
(V, Pγ) and (V, Sγ) are forests (union of disjoint trees). Indeed, a set of (pairwise distinct)
words ordered by the prefix relation ⊏P is a forest, and hence (V, Pγ) is a forest. Similarly,
(V, Sγ) is a forest as well. Second, observe that (V, Iγ) is an ordered set such that every
element has finitely many predecessors, i.e., for v ∈ V the set Av = {u ∈ V | uIγv} is finite.
Indeed, w ⊏I w′ implies that |w| < |w′| and hence there are no infinite descending chains.
Finally, Iγ contains Pγ and Sγ as every prefix (resp., suffix) is an infix as well.

Interestingly, these properties are in fact sufficient for γ to be satisfiable.

▶ Lemma 4. Let γ be a maximal constraint without equality over the set of variables V .
Then, γ is satisfiable if and only if (V, Pγ) and (V, Sγ) are forests, (V, Iγ) is a finitary ordered
set, and Iγ contains Pγ and Sγ .

We sketch the proof of the remaining implication, that the above conditions imply
satisfiability of γ. We construct an assignment satisfying γ as follows. We first consider a
possibly infinite set Γ = {av | v ∈ V } as the alphabet; we reduce the obtained assignment
later.
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For all minimal elements v in (V, Iγ), we assign the letter av to v. Then, inductively, for
an Iγ-minimal unassigned v, we proceed as follows. Our assumption is that for every pair of
different variables x, y such that xIγv and yIγv all the constraints in γ involving both x and
y are satisfied.

Since (V, Pγ) is a forest, either v has a unique Pγ-predecessor uP , to which a word
wP is assigned, or v is Pγ-minimal and we put wP = ϵ. Similarly, either v has a unique
Sγ-predecessor uS , to which a word wS is assigned, or v is Sγ-minimal and we put wS = ϵ.
Finally, let A be the set of all u such that uIγv. Since (V, Iγ) is a well partial order, the set
A is finite. Let u[1], . . . , u[k] be all words in A and w′ = wu[1] . . . wu[k] be the concatenation
of the words that have already been assigned to u[1], . . . , u[k]. Then, we assign with v the
word wv = wP avw′avwS . Note that this is the first time the letter av is used.

Observe that for every u ∈ V , if u <P v ∈ γ, then u has already been assigned with a word.
Indeed, uPγv and due to Pγ ⊆ Iγ we have uIγv, and hence u has already been considered.
It follows that all constraints u <P v ∈ γ are satisfied by the assignment. Similarly, all
constraints u <S v ∈ γ and u <I v ∈ γ are satisfied by the assignment.

Now, observe that exactly these positive constraints are satisfied. First, consider, for an
already assigned u that is different from v, the constraint u <I v /∈ γ. Recall that wv is
the word assigned to v and let wu be the word assigned to u. We show that wu⊥Iwv and
hence the constraint u ⊥I v, which has to belong to γ due to maximality, is satisfied. Indeed,
observe that Iγ contains Pγ and Sγ , and wP , w′ and wS contain only letters ax such that
xIγv. Since u <I v /∈ γ implies uIγv does not hold, we get that wv does not contain au.
Moreover, wu does not contain av and hence wu⊥Iwv.

Second, consider u <P v /∈ γ. We show wu⊥P wv. If uIγv does not hold, then wu⊥Iwv

and in particular wu⊥P wv. Therefore, uIγv holds. Assume towards contradiction wu ⊏P wv.
We know that wu does not contain av because u was assigned before v. Therefore, if
wu ⊏P wv then wu is either equal to or is a prefix of wv. In this case, wv has to be non-empty.
Recall also that it is the word wx assigned to x, the Pγ-predecessor of v. Note, however that
wu is not equal to wP = wx as all the words in the constructed substitution are different.
Moreover, if wu ⊏P wx then due to the induction hypothesis and because of Pγ ⊆ Iγ we have
u <P x ∈ γ. Therefore u <P v ∈ γ, a contradiction. Thus, wu⊥P wv and u ⊥P v is satisfied.

Similarly, if u <S v /∈ γ, then u ⊥S v is satisfied. As a consequence, the constructed
substitution over Γ = {av | v ∈ V } satisfies γ.

Finally, we can transform the variable assignment over the infinite alphabet Γ to a
satisfying assignment over any Σ with at least two letters. We take two distinct b, c ∈ Σ
and enumerate a1, a2, . . . the set Γ. Next, we apply to each ai ∈ Γ in the assignment the
transformation ai 7→ bcib. One can easily check, that this transformation preserves prefixes,
suffixes and infixes, and hence it is an assignment over Σ satisfying γ.

Observe that having a finite maximal constraint γ, we can eliminate equality in polynomial
time, and then check the conditions of Lemma 4 in polynomial time as well. As a consequence
we have:

▶ Lemma 5. The satisfiability problem for maximal constraints can be solved in polynomial
time.

3.2 Joining constraints
We now prove the second crucial lemma that says that whenever we have two maximal
satisfiable sets of constraints, if the sets agree on the constraints regarding the common
variables, then the union of these sets is satisfiable.

CONCUR 2023



3:8 Reachability and Bounded Emptiness Problems

▶ Lemma 6. Let γ1, γ2 be maximal satisfiable constraints over variables X1, X2 respectively.
If γ1 and γ2 restricted to X1 ∩ X2 coincide, then γ1 ∪ γ2 is satisfiable.

First, observe that it suffices to show the lemma in the special case of X1 = X ∪ {x} and
X2 = X ∪ {z}, i.e., X1 and X2 differ in two variables.
▶ Lemma 7. Let γ1, γ2 be maximal satisfiable constraints over variables X ∪ {x}, X ∪ {z}
respectively. If γ1 and γ2 restricted to X coincide, then γ1 ∪ γ2 is satisfiable.
Proof. The proof strategy is to define a maximal γ over V = X ∪{x, z} such that γ1 ∪γ2 ⊂ γ,
(V, Pγ) and (V, Sγ) are forests, (V, Iγ) is a finitary ordered set, and Iγ contains Pγ and Sγ .
Then, Lemma 4 delivers the satisfiability of γ, and therefore γ1 ∪ γ2. Since γ1 and γ2 are
maximal, we only need to define the relation between x and z in γ.

First, we check whether some of the relations follow from transitivity. More precisely, we
define γT as the least constraint that subsumes γ1 and γ2 and such that all the relations
among {<P , <S , <I} are transitively closed in γT .

We can show that the relations PγT , SγT and IγT in γT are partial orders. The reflexivity
holds trivially and transitivity follows from the definition. To see that the relations are
antisymmetric, observe that the transitive closure only defines relations between x and z, as
γ1 and γ2 are maximal and satisfiable and hence transitively closed. we discuss the case of
IγT here, the others are analogous. Assume towards contradiction that γT contains x <I z

and z <I x; then there are v, v′ ∈ X such that in γ1 ∪ γ2 we have x <I v, v <I z and
z <I v′, v′ <I x. However, since γ1 is maximal, <I is transitive and hence v′ <I v is in γ1.
Similarly, v <I v′ is in γ2. Since γ1 and γ2 restricted to X coincide, we have both v <I v′

and v′ <I v belong to γ1 and γ2 and hence they are not satisfiable.
It is possible that (X ∪ {x, z}, PγT ) is not a forest. This happens when both x and z are

prefixes of some variable y, but the prefix order between x and z is not set. We fix this order
as follows. If a constraint determines that x <I z or z <I x, then we set x <P z or z <P x

accordingly. Otherwise, we set the order in an arbitrary way. The same reasoning applies to
the suffix order.

More precisely, we construct the set γ as an extension of γT in the following way. For
each R ∈ {P, S}, if there is y ∈ X such that x ≤R y and z ≤R y, then we add to γ:

x ≤R z if x ≤I z ∈ γT

z ≤R x and z ≤I x otherwise.
If there is no y such that x ≤R y and z ≤R y, and the R-relation between x and z is not
defined, we set x and z to be R incomparable in γ. This concludes the construction of γ.

This construction guarantees that Iγ contains Pγ and Sγ , and Pγ , Sγ , Iγ are partial
orders. The last step ensures that (V, Pγ) and (V, Sγ) are forests. To see that (V, Iγ) is
finitary in γ, observe that (V, Iγ) was finitary is γ1 and γ2. Thus, every variable in X ∪ {x}
has in γ finitely many predecessors (at most one more than it has in γ2), and the same holds
for X ∪ {z}. ◀

Lemma 6 follows from the above lemma using inductive reasoning.
Lemma 6 shows that a finite union of finite satisfiable constraints is satisfiable. This does

not translate to the infinite union case; the following example shows a constraint that can be
repeated any number of times, but not infinitely many times.
▶ Example 8. Consider a single-state 1-constraint automaton A with the state q that is
both initial and accepting. The only transition is (q, {x′

1 <P x1}, q). This automaton can
accept sequences of arbitrary length; it also has an infinite path (q, q, q, . . . ), but it does not
accept any infinite sequence. This is because there is no infinite sequence of finite words such
that each consecutive word is a prefix of the previous one.
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3.3 Stratified constraints and their satisfaction
In this section, we connect general constraints with constraints that are derived from partial
runs of n-constraint automata. One of the key differences is a natural structure of constraints
resulting from partial runs; such constraints are local, which is captured by the following
definition.

Consider a (partial) run π of an n-constraint automaton over some finite sequence σ and
let γ1, . . . , γk be the sequence of constraints along transitions of this run. First, for each
j we relabel variables in γj in a way such that xi becomes xj−1

i and x′
i becomes xj

i . We
denote the resulting constraint by γ′

j . Second, the constraints γ′
1, . . . , γ′

k can be extended to
maximal satisfiable constraints γt

1, . . . , γt
k, which agree on the common variables; it suffices to

check the relations in the sequence σ. Consider γπ to be the union of constraints γt
1, . . . , γt

k.
The constraints in γπ are local, which is captured by the following definition of stratified
constraints; there are constraints only between variables corresponding to the successive
positions.
▶ Definition 9. Given a natural number n and k ∈ N, a stratified (n, k)-constraint γ is a
constraint over the set of variables of the form xj

i , where i ∈ {1, . . . , n} and 0 ≤ j < k, such
that all the atoms xj

i ⊕ xj′

i′ are such that j − j′ ∈ {−1, 0, 1}. The j-th layer of a stratified
(n, k)-constraint is the set of variables xj

1, . . . , xj
n.

The constraint γπ is a stratified (n, k)-constraint. As it results from a (partial) run (the
run π), it is satisfiable. However, satisfiability of γπ follows also from a general principle.

We show a local-to-global principle, which states that for stratified constraints local
consistency (subconstraints γt

j are satisfiable and agree on common variables) implies global
consistency (i.e., γπ is satisfiable.)
▶ Theorem 10. Let γ be a stratified (n, k)-constraint such that n, k ∈ N and for every
0 ≤ j < k − 1 the constraint γ restricted to layers j, j + 1 is maximal and satisfiable. Then,
the constraint γ is satisfiable.

The proof of Theorem 10 follows by induction from Lemma 6. Consider a stratified
(n, k + 1)-constraint γ and let γ̂1 be the constraint obtained from γ by dropping the last
layer. Since γ̂1 is a stratified (n, k)-constraint, assume that it is consistent. Let γ̂2 be the
(n, 2)-constraint consisting of the last two layers: k-th and (k+1)-th. Note that γ̂2 is maximal
and satisfiable and the intersection of γ̂1 and γ̂1 is the k-th layer. Therefore, by Lemma 6
the constraint γ is satisfiable.

4 Reachability via type-tracking automata

We introduce a special type of n-constraint automata, called type-tracking automata, which
keep track of the type (intuitively: what relations hold between the words of the tuple) of
the current tuple in the states. While in n-constraint automata a path in the automaton,
considered a labeled graph, may not correspond to a partial run, which involves satisfaction
of constraints along the path, in type-tracking automata every finite path corresponds to a
partial run over some sequence. This property is key in solving the reachability problem for
n-constraint automata.

The type of an n-tuple w⃗ is the set of all non-trivial atomic n-constraints over {x1, . . . , xn}
satisfied for w⃗. Observe that a constraint γ is a type if and only if it is maximal and satisfiable.

In the above, non-trivial atomic constraints are the constraints of the form x ⊕ y where x

and y are different variables. For example, the type of the first 3-tuple of Figure 1 is the set
containing the following atoms:
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3:10 Reachability and Bounded Emptiness Problems

x1 ⊥P x2, x2 ⊥P x1, x2 <S x1, x2 <I x1

x3 <P x1, x1 ⊥S x3, x3 ⊥S x1, x3 <I x1

x2 ⊥P x3, x3 ⊥P x2, x2 ⊥S x3, x3 ⊥S x2, x2 <I x3

Let T be the set of all types (of some n-tuples). The set T is exponentially bounded in n

and their members have size polynomial in n.
We now introduce a special version of n-constraint automata whose states carry informa-

tion regarding the type of current n-tuple.

▶ Definition 11. For an n-constraint automaton A = ⟨Q, Q0, QF , δ⟩, the type-tracking
n-constraint automaton AF T resulting from A is the n-constraint automaton ⟨Q′, Q′

0, Q′
F , δ′⟩

such that:
the states of AF T are the pairs of a state of A and a type: Q′ = Q × T, Q′

0 = Q0 × T
and Q′

F = QF × T,
δ′ is the set of tuples ⟨(q1, γ1), γ′, (q2, γ2)⟩, such that for some ⟨q1, γ, q2⟩ ∈ δ, the constraint
γ′ is a maximal consistent constraint that contains γ1, γ2 and γ.

We say that a partial run (q0, γ0), (q1, γ1), . . . (finite or infinite) of a type-tracking
n-constraint automaton AF T over a sequence σ = w0, w1, . . . is consistent if for every
0 ≤ i ≤ |σ| − 1 we have γi is the type of σ[i]. Observe that every partial run of an n-
constraint automaton has the corresponding consistent run in the type-tracking automaton.

The main advantage of type-tracking n-constraint automata is that every path in a type-
tracking automaton corresponds to some partial run, which is not the case for n-constraint
automata in general.

▶ Lemma 12. Let A be an n-constraint automaton and AF T be its the type-tracking n-
constraint automaton.
1. Every (finite or infinite) partial run in A over a sequence σ has a (unique) corresponding

consistent partial run of AF T over σ.
2. Every finite path in AF T corresponds to a partial run of AF T over some sequence σ.

Proof. Property 1 follows from augmenting states of the partial runs with the types of the
corresponding tuples of the given sequence. To see 2, observe that a path π of length k

in the type-tracking automaton AF T yields a stratified (n, k)-constraint such that any two
successive layers are maximal and satisfiable. Thus, by Theorem 10 it is satisfiable and
hence there is a sequence σ such that AF T over σ has a consistent partial run corresponding
to π. ◀

Type-tracking n-constraint automata are typically exponentially larger than their n-
constraint counterparts. For example, consider a single state n-constraint automaton accept-
ing all the sequences. Any corresponding type-tracking n-constraint automaton has to have
at least as many states as there are types, so exponentially many.

The type-tracking n-constraint automata need not be explicitly stored. We can compute
the states of type-tracking n-constraint automata on the fly. To do so, we employ the
following result:

▶ Lemma 13. For a given n-constraint automaton A, the following problems can be solved
in polynomial time.
1. Given (s, t), check whether (s, t) is a state of AF T .
2. Given (s1, t1), (s2, t2) and γ, check whether ((s1, t1), γ, (s2, t2)) is a transition of AF T .
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Proof. To check (s, t) whether it is a state of AF T it suffices to check whether s is a state
of A and t is a type. The latter can be done in polynomial time as follows. Checking
maximality is straightforward and for maximal constraints checking satisfiability can be done
in polynomial time (Lemma 5).

Solving 2 amounts to checking maximality, satisfiability and containment, which can be
done in polynomial time. ◀

Lemma 13 implies that graph-reachability in AF T can be solved in polynomial space
in |A|.

▶ Lemma 14. The problem: given an n-constraint automaton, its states q1, q2 and two types
γ1, γ2, decide whether (q2, γ2) is path-reachable from (q1, γ1) in the type-tracking n-constraint
automaton resulting from A, is in PSpace.

We now show the upper bound for the reachability problem.

▶ Theorem 15. The reachability problem for n-constraint automata is in PSpace.

This theorem follows from Lemma 12 and Lemma 14. To check the reachability from q1
to q2, the algorithm non-deterministically picks (recall that Savitch’s Theorem proves that
PSpace=NPSpace ) two types γ1, γ2 and employs Lemma 14 to check if there is a path
in the type-tracking automaton. By Lemma 12, such γ1, γ2 and a path exist if and only if
there is a path from q1 to q2.

We show PSpace-hardness of reachability in n-constraint automata. For n > 0, we say
that a propositional formula ϕ over 2n variables represents a directed graph G = (V, E), if V

is the set of binary sequences of length n, and for all vertices x⃗, y⃗, we have E(x⃗, y⃗) if and
only if ϕ(x⃗, y⃗) is satisfied. The reachability problem in succinct graphs is defined as follows:
given n > 0, a formula ϕ over 2n variables and two binary sequences s⃗, t⃗ of length n, decide
whether t⃗ is reachable from s⃗ in the graph represented by φ. This problem is known to be
PSpace-complete [20].

We say that a propositional formula ϕ is in an extended-DNF if it is a disjunction of
conjunctions of literals of the following three forms: pi, ¬pi or pi ⇔ pj . Note that in the
standard DNF, the equivalence is not allowed. It turns out that extended-DNF formulas are
enough to make the reachability problem in succinct graphs PSpace-complete.

▶ Lemma 16. The reachability problem in graphs given by formulae in extended-DNF is
PSpace-complete.

The proof follows from the fact that extended-DNF are sufficient to express property of
being the successor configuration of polynomial-space Turing machine. The main idea is that
the two consecutive configurations of a Turing machine differ only on a head position, a state
of the Turing machine, and at most one tape cell; this can be expressed using a disjunction
of polynomially many formulas. The remaining part of the configuration is the same, and
this can be expressed in the conjunctions using ⇔.

We now prove the lower bound for the n-constraint automata.

▶ Theorem 17. The reachability problem for n-constraint automata is PSpace-hard.

Proof. Observe that formulae in extended-DNF can be encoded in an (n + 2)-constraint
automaton, and hence the reachability problem in succinct graphs reduces to the reachability
problem in constraint automata with three states: q0, q, qF . To do so, we designate the
last two elements wn+1, wn+2 in each tuple to be different words (e.g. stating in the
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3:12 Reachability and Bounded Emptiness Problems

constraints xn+1 ⊥I xn+2 ), which do not change along the run, and encode true and false
in the propositional sense. Then, literals pi, ¬pi and pi ⇔ pj are respectively translated
to constraints xi = xn+1, xi = xn+2, and xi = xj . The conjunction of literals can be
stated in the constraints, and the disjunction can be encoded with non-determinism of the
(n + 2)-constraint automaton, i.e., the disjunction d1 ∨ . . . ∨ dk is translated to k transitions
from q to itself each with the constraints resulting from di, which is a conjunction of literals.
Finally, we set the first transition from q0 to q to set the initial vertex in the reachability
problem in graphs given by a propositional formula and one outgoing transition from q to
qF , which is possible only with the valuation of variables corresponding to the final vertex in
the instance of the problem. ◀

As a direct consequence of Theorems 15 and 17 we have:

▶ Corollary 18. The reachability problem for n-constraint automata is PSpace-complete.

5 Checking emptiness over bounded words

In this section, we consider constraint automata over bounded sequences over finite alphabets.
We establish PSpace-completeness of the emptiness problem for constraint automata restric-
ted to bounded sequences. Notice that Example 8 shows that there is no straightforward
counterpart of Lemma 12 for infinite runs.

We show that we can focus on ultimately periodic runs over an ultimately periodic
sequences.

▶ Lemma 19. An n-constraint automaton has an accepting run over some bounded infinite
sequence if and only if it has an accepting ultimately periodic run over an ultimately periodic
sequence.

Proof. Observe that having a bound B, the set of B bounded words is finite and hence
an n-constraint automaton A over B-bounded sequences can be considered as a Büchi-
automaton. Therefore, if A accepts a B-bounded sequence, then it accepts an ultimately
periodic B-bounded sequence. Clearly, every ultimately periodic sequence is bounded from
some B. As a consequence, we can focus on ultimately periodic words. ◀

To decide whether there exists an ultimately periodic sequence σ0σω
1 it suffices to decide

the existence of an appropriate σ0 and σ1 almost independently. First, it is convenient to
work with the type-tracking n-constraint automaton AF T for A, as every finite path there
is realizable. Furthermore, there is a simple condition for a cycle, which can be iterated
indefinitely. We discuss it in the following section.

5.1 Finding a cycle
The cycle c of AF T defines a stratified (n, k)-constraint γ, which is satisfiable, i.e., it is a
partial run over some sequence σ1. We say that the cycle c is iterable if and only if it contains
an accepting state and γ extended with constraints x0

1 = xk
1 , . . . , x0

n = xk
n (equality between

corresponding variables in the first and the last layer) is still satisfiable. Observe, that if c is
an iterable cycle, then cω is a partial run over σ1, i.e., it is realizable.

▶ Lemma 20. Let A be an n-constraint automaton and AF T be its type-tracking n-constraint
automaton. The automaton A has an accepting ultimately periodic run over an ultimately
periodic sequence if and only if there exists a state s in AF T such that

(s, γ) is reachable from the initial state, and
there exists an iterable cycle c from (s, γ) to itself.
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Observe that having a state (s, γ) in AF T , which can be non-deterministically picked,
the first condition can be verified in PSpace due to Theorem 15. For the second condition,
we can employ the following non-deterministic procedure, which works in polynomial space
in |A|, as follows.

▶ Lemma 21. Given an n-constraint automaton A and a state s of its type-tracking n-
constraint automaton AF T , one can decide in PSpace whether there is an iterable cycle in
AF T from s to itself.

Proof. Our non-deterministic algorithm is similar to the standard on-the-fly reachability
checking, but it requires additional information regarding the traversed path to ensure that
the computed cycle is iterable. In particular, it ensures that an accepting state has been
visited and verifies the relations between the initial and the final configuration, that may
depend on the path.

The algorithm stores five objects: the initial state (s, γ1), the current state (t, γ2), number
of steps k, the maximal constraint γ containing γ1, γ2 over the variables from γ1 and γ2, and
a boolean value Acc stating whether an accepting state has been observed. We start with
the state (s, γ1) and initially (s, γ1) = (t, γ2), k = 0, γ being the constraint describing two
copies of γ1 and the equality constraints between the corresponding variables, and Acc being
true if s is accepting. Then, we compute the next value so that the following invariant holds:
inv (t, γ2) is reachable from (s, γ1) over some sequence of length k consistent with γ, i.e.,

there is a sequence σ of length k such that (a) there is a partial run (visiting an accepting
state if Acc it true) over σ from (s, γ1) to (s, γ2), and (b) the constraint γ is consistent
with the relations over σ[1] and σ[k].

We discuss how to maintain the invariant (inv). Assume that (s, γ1), (t, γ2), k, γ and
Acc are correct. Now, suppose that t′ is some successor of t in AF T and γ+ is any maximal
consistent constraint over variables from s, t, t′. The projection of γ+ on the variables of
s and t′ satisfies the invariant. To see this, we apply Lemma 6 to γ̂1 being the constraint
corresponding to the sequence σ and a partial run from s to t, and γ̂2 being γ+. Both sets
are consistent and they agree over the common variables, therefore their union is satisfiable
and the satisfying sequence has length k + 1.

As a consequence, it suffices to execute this non-deterministic procedure until it reaches
the state with (s, γ1), (s, γ1), k > 0, Acc = true and γ containing the equality constraint for
the corresponding variables, in which case it accepts, or it works indefinitely, but it can be
stopped after k exceeds the number of states of AF T times the number of possible transitions,
which is exponential in n. ◀

5.2 Solving the reachability problem
We can now conclude that solving reachability can be done in polynomial space.

▶ Theorem 22. Checking whether there is a bounded infinite sequence accepted by a given
constraint automaton A can be done in polynomial space in |A|.

The (non-deterministic) algorithm guesses a state s and a type γ such that (s, γ) is
reachable from the initial state, and there exists an iterable cycle c from (s, γ) to itself.
Verifying both properties was shown to be decidable in polynomial space. Since NPSpace=
PSpace, the same can be done deterministically in polynomial space.

The matching lower bound follows from a straightforward reduction from the reachability
problem.

▶ Theorem 23. Checking whether there is a bounded infinite sequence accepted by a given
constraint automaton is PSpace-complete.
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6 Conclusions

We have shown that the reachability problem and the non-emptiness over bounded sequences
problem are PSpace-complete for constraint automata. The proof works for constraint
automata with the prefix, the suffix, the infix and the equality relations. The presented
hardness proof requires only equality and negated equality, which can be expressed having
non-strict order (prefix, infix or suffix). We believe that it can be adapted to the case of
two relations: strict prefix and negated strict prefix (resp., suffix). This shows that the
complexity follows from the number of variables.

The remaining open question is whether the (unrestricted) emptiness problem for con-
straint automata over infinite words is decidable. Lemma 4 gives us some insight. An
important step towards this result would be to determine whether every non-empty con-
straint automaton has an accepting run (over some sequence) that is ultimately periodic. We
discuss here an example demonstrating that it is not as straightforward as it may initially
appear.

Consider a 3-constraint automaton A with a single state and a single transition. This
transition is a conjunction of the following atoms:

x1 = x′
1

x2 <I x′
2

x3 ⊥I x2
x3 <I x1
x3 <I x′

2

At first glance, it seems that the language of this automaton should be non-empty: x1 is
always the same, x2 always increases, and x3 is defined based on variables x1 and x2. To
illustrate the issue, consider the following sequence:

abcde
x
a


 abcde

ax

bc


 abcde

axbc

bcd


 abcde

axbcd

bcde




Observe that this sequence is accepted by A, but it cannot be extended in a way that
maintains the acceptance. This is because the next value of x2 must include all the infixes of
x1, which is contradictory with the conditions stating that x3 is an infix of x1 not contained
in x2. It can be easily checked that A does not accept any infinite sequence.

This example can be extended (by adding a lot of constraints to the only transition) in
such a way that the only transition is maximal. In this case, there exist arbitrarily long
sequences accepted by the automaton, where the types of all tuples and relations between
all pairs of tuples in the same order are the same. Moreover, it can be done in a way
that the lengths of x2 and x3 always increase (and x1 remains unchanged). Despite this,
there is no infinite sequence accepted by this automaton. This shows that formulating a
pumping-lemma-esque argument in this context is elusive.
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1 Introduction

Formal Methods excel in eliminating subtle issues in complex software and system designs.
Unfortunately, they are often perceived as complicated and inaccessible. For long, this
sentiment has been a major reason for the slow industrial uptake of such methods. At the
same time, Model-Driven Engineering (MDE), which promotes the use of Domain-Specific
Languages (DSL) and code generation from models written in such languages, has managed
to gain traction. MDE’s success is in large part due to the close to perfect fit of a DSL
and its application domain, which is in sharp contrast to the gap between generic Formal
Methods and their domain of application.
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Currently, we are witnessing the adoption of formal MDE approaches, in which the
DSL is coupled to a design methodology that advocates a stepwise, compositional approach
based on behavioural contracts (sometimes referred to as service or behavioural interface
specification) of components. Commercial approaches of this kind are, e.g., Verum’s Dezyne
methodology [21, 20] and Cocotec’s Coco platform [6].

Underlying the stepwise approach is typically a notion of refinement; for instance, the
Dezyne methodology essentially utilises CSP’s stable-failures refinement [15, 10]. The central
idea is that the code that is generated from a model refines its behavioural contract, provided
that the model refines the same contract. This way, the code for entire constellations of –
guaranteed seemlessly cooperating – components can be generated with little effort.

One step often overlooked, however, is the fact that the model that is being verified is not
identical to the code that is executed: even if the code generator is flawless, the behaviour of
the component still depends on the execution platform, its operating system, the compilers
used, etcetera. As a result, testing is still required to gain confidence in the correct execution
of the generated code.

In practice, testing is still a largely manual and time-consuming activity; at best scripting
is used to automatically execute a number of manually crafted test cases. Model-Based Testing
(MBT) is a formal approach to testing that aims to improve on that situation. Tretmans’
conformance theory [17, 18] is one of the most widely used testing theories, which has even
found commercial use. As a starting point, MBT approaches take a formal specification,
describing the system-under-test, and automatically derive tests from that specification, thus
saving time on manually constructing and executing test cases, and maintaining these as the
specification (and implementation) evolve.

To enable reasoning about implementations, formal approaches to testing typically assume
that there is some (otherwise unknown) model with specific characteristics that underlies the
actual implementation. This is sometimes referred to as the testing assumption. For instance,
Tretmans [17, 18] assumes that implementations behave as input enabled Labelled Transition
Systems with inputs and outputs. Weiglhofer and Wotawa [26] observe that this class of
models is not quite suited in asynchronous settings and advocate internal choice Labelled
Transition Systems with inputs and outputs. Such transition systems accept inputs only in
states that are stable and no longer able to produce outputs. Crucially, implementations
that are obtained through the MDE approach often fall in this class: these generally employ
a run-to-completion semantics that assumes a component is ready for input only when it has
finished processing the previous input.

Combining formal MDE approaches and MBT approaches seems natural and beneficial,
but in practice, the two do not appear to match. Indeed, it is part of folklore that Tretmans’
conformance theory, viz. ioco, is impossible to reconcile with theories of refinement such
as the stable-failures refinement: as we also show in this paper, there are implementations
that formally refine their specifications, but that nevertheless do not pass tests derived from
such specifications. Vice versa, implementations that pass all tests derived from a given
specification do not necessarily refine that specification.

At the same time, there are specifications and implementations for which stable-failures
refinement and ioco both (do not) hold, suggesting there may be some room for combining
the MBT and MDE methodologies in practice. We address this issue in this paper. More
specifically, we study conditions under which Tretmans’ ioco conformance relation can be
used to assess the quality of implementations under the assumption (or guarantee) that the
implementation is a stable-failures refinement of its specification. Our contributions are
threefold:
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We characterise experiments that can be deduced from a specification – so-called stable-
failures testable traces – for which ioco is guaranteed not to reject implementations that
are a stable-failures refinement of that specification;
We show that, surprisingly, for the class of internal choice Labelled Transition Systems of
Weiglhofer and Wotawa [24, 26, 12, 13], the set of stable-failures testable traces coincides
with Tretmans’ suspension traces, implying that off-the-shelf ioco-based tooling can be
used to test these implementations;
We validate our theory in practice through a proof-of-concept implementation. In
particular, we assess whether industrial-grade executable code, obtained using Verum’s
Dezyne methodology:

passes all tests automatically derived from its behavioural contract, and
fails tests when subtle mutations are introduced in the code.

Related Work. Several authors have attempted to equip the CSP theory with a testing
theory. Cavalcanti and Gaudel [3] instantiate Gaudel’s testing theory [7] for the (divergence-
free fragment of the) CSP language and compare failures refinement to the conf relation.
Their work, unlike ours, does not fundamentally distinguish inputs and outputs, contrary to,
e.g., ioco. Sound and complete test suites for CSP’s refinement relation are studied in [14].
In [4], and also later in [5], CSP is equipped with the notion of input and output. The authors
use this distinction, in contrast to our work, to modify the stable-failures refinement to define
a new refinement relation that is stronger than ioco on input enabled CSP processes. In [25],
the authors give a denotational characterisation of an ioco-inspired conformance relation,
in the context of a CSP-like process algebra. They show that, when applied to processes
representing the suspension automata underlying a given specification and implementation,
their relation coincides with Tretmans’ ioco. Related to these approaches, in [11], the authors
introduce a conformance relation called CSP input-output conformance to test systems that
are both input and output enabled. They exploit use case templates to generate test cases
by means of counterexamples to stable failures refinement. Finally, in [1], the authors coin
input-output tock-CSP refinement and study its correspondence to a timed variant of ioco,
called tioco [16], showing that the latter is weaker than their refinement relation.

In the broader scope, there have been several studies looking at the ioco relation from the
perspective of refinement theories and game theory. For instance, in [23], the authors observe
that ioco is non-compositional – in contrast to a proper refinement relation – prompting the
authors to weaken the ioco relation. Their relation coincides with ioco when specifications
have no under-specified inputs (for a more detailed discussion, we refer to, e.g. [19]). In [9],
the authors compare ioco to alternating trace containment, a refinement relation in the
setting of game theory and formal verification. They omit internal transitions (also known
as silent steps) from their model, but their treatment does cover quiescence. The connection
between testing theory and game theory had been previously studied by Van den Bos and
Stoelinga [22].

Paper outline. Our paper is organised as follows. In Section 2, we introduce stable-failures
refinement and Tretmans’ ioco theory. Then, in Section 3 we introduce stable-failures testable
traces and study their role in testing implementations that refine their specifications. In
Section 4, we identify conditions that allow for proving stable-failures refinement using ioco.
Section 5 we describe our experiments with the theory we developed, and we draw conclusions
and sketch future work in Section 6.

CONCUR 2023
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2 Preliminaries

The behaviour of a system is typically formalised using (variations of) labelled transition sys-
tems (LTSs). Actions, taken from a sufficiently large alphabet Act, represent the observables
of a system. We presuppose a constant τ /∈ Act to represent an unobservable action; the set
Actτ denotes the set Act ∪ {τ}.

▶ Definition 1. A labelled transition system (LTS) over Act is a tuple ⟨S, ŝ, −→⟩, where S is
a set of states, ŝ ∈ S is the initial state and −→⊆ S × Actτ × S is the transition relation. We
denote the set of LTSs over Act by LT S(Act).

We often refer to a given LTS ⟨S, ŝ, −→⟩ by its initial state ŝ. We write s
x−→ s′ rather than

(s, x, s′) ∈ −→; moreover, we write s
x−→ when s

x−→ s′ for some s′, and s ̸ x−→ when s
x−→ does

not hold. The transition relation is lifted to a relation over S × Act∗
τ × S in the usual manner,

and we lift the notation introduced for −→ accordingly. We say that a word w ∈ Act∗
τ is a

concrete trace of an LTS ŝ iff ŝ
w−→, and we say that a state s is reachable exactly when ŝ

w−→ s

for some concrete trace w.
A further generalisation of −→ to a relation over words of observable actions ==⇒⊆

S × Act∗ × S is obtained as the smallest relation satisfying the following rules:

s
ϵ=⇒ s

s
w=⇒ s′′ s′′ x−→ s′ x ̸= τ

s
w x===⇒ s′

s
w=⇒ s′′ s′′ τ−→ s′

s
w=⇒ s′

We adopt the notational conventions we introduced earlier for −→ also for ==⇒. The set of

traces of a states s is denoted Traces(s) = {w ∈ Act∗ | s
w=⇒}. For a set of states S′, we

define Traces(S′) =
⋃

s′∈S′ Traces(s′).

▶ Definition 2. Let ⟨S, ŝ, −→⟩ be an LTS. For arbitrary state s ∈ S and set of states S′ ⊆ S,
we define:
1. init(s) = {x ∈ Actτ | s

x−→} and init(S′) =
⋃

s′∈S′ init(s′);
2. Sinit(s) = {x ∈ Act | s

x=⇒} and Sinit(S′) =
⋃

s′∈S′ Sinit(s′);
3. stable(s) iff τ /∈ init(s), and stable(S′) iff for all s′ ∈ S we have stable(s′).

We say that an LTS ⟨S, ŝ, −→⟩ is convergent when none of its states s ∈ S are divergent, i.e.,
no state in S is the start of an infinite sequence of τ -steps.

A set of observable actions X ⊆ Act is a refusal for a state s exactly when init(s) ∩ X = ∅.
Given a state s, we say that the pair (w, X) is a failure for state s when there is some s′

such that stable(s′), s
w=⇒ s′ and init(s′) ∩ X = ∅. The set of failures of a state s is denoted

Failures(s), and defined formally as follows:

Failures(s) = {(w, X) ∈ Act∗ × 2Act | ∃s′ : s
w=⇒ s′ ∧ stable(s′) ∧ X ∩ init(s′) = ∅}

We next recall a classical notion of refinement underlying process algebras such as CSP, see,
e.g. [15, 10].

▶ Definition 3. Let ⟨S, ŝ, −→⟩ be an LTS. For states s, t ∈ S, we define s ⊑F t iff Traces(t) ⊆
Traces(s) and Failures(t) ⊆ Failures(s). We say t is a stable-failures refinement of s iff s ⊑F t.

When interacting with an actual implementation, the initiative to communicate is often
not symmetric: the implementation can receive stimuli from its environment and produce
events that are to be consumed by the environment. We therefore refine the LTS model to
incorporate a distinction between inputs and outputs.
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▶ Definition 4. An input-output labelled transition system over (ActI , ActU ) is an LTS
⟨S, ŝ, −→⟩ over Act in which Act is partitioned into a set ActI of inputs and a set ActU

of outputs. We denote the set of input-output labelled transition systems (IOLTS) over
(ActI , ActU ) by IOLT S(ActI , ActU ).

As a notational convention we distinguish inputs from outputs by adding question- (?)
and exclamation-mark (!) symbols, respectively, in our examples. We stress that these
decorations are not part of action names. States are quiescent when they are stable and
refuse to produce output. Quiescence, defined formally below, is a crucial element in many
testing theories, needed to disqualify implementations that fail to produce output when not
expected.

▶ Definition 5. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ), and let s ∈ S. We say that s

is quiescent, denoted δ(s), iff stable(s) and init(s) ∩ ActU = ∅.

We say that an IOLTS ⟨S, ŝ, −→⟩ is an internal choice IOLTS iff inputs are only specified in
quiescent states; i.e., exactly when for all s ∈ S for which init(s) ∩ ActI ̸= ∅, also δ(s) holds
true. We denote the set of internal choice IOLTSs over (ActI , ActU ) by IOLT S⊓(ActI , ActU ).

Quiescence is typically treated as an output of the system, i.e., an observable of an
implementation under test. Let δ /∈ Act be a special constant denoting the observation of
quiescence, and let Actδ denote the set Act ∪ {δ}.

▶ Definition 6. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ), and let s ∈ S.
The outputs enabled in s, denoted out(s), is defined as out(s) = {δ | δ(s)}∪(ActU ∩init(s));
The inputs enabled in s, denoted in(s), is defined as in(s) = ActI ∩ Sinit(s).

For a set of states S′ ⊆ S, we define out(S′) =
⋃

s′∈S′ out(s′) and in(S′) =
⋂

s′∈S′ in(s′).

The notion of a suspension trace incorporates the observation of quiescence also in our
observations of the behaviour of an implementation over time.

▶ Definition 7. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ), and let s ∈ S. We say that a
sequence of events w ∈ Act∗

δ is a suspension trace of s iff w ∈ Traces(s∆) in the IOLTS ∆(ŝ)
over (ActI , ActU ∪ {δ}), where ∆(ŝ) = ⟨S∆, ŝ∆, −→∆⟩ is defined as follows:

S∆ = {s′
∆ | s′ ∈ S};

−→∆= {(s′
∆, x, s′′

∆) | s′ x−→ s′′} ∪ {(s′, δ, s′) | δ(s′)}.
The set of suspension traces of a state s ∈ S is denoted STraces(s).

We generalise the relation −→∆ to =⇒∆ as before and we allow ourselves to write s
w=⇒∆ s′,

for states s, s′ of an IOLTS ⟨S, ŝ, −→⟩, when we in fact mean s∆
w=⇒∆ s′

∆.

▶ Definition 8. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ). For states s ∈ S and suspension
traces w ∈ STraces(s), we define s after w = {s′ ∈ S | s

w=⇒∆ s′}. For sets of states S′ ⊆ S

we define S′ after w =
⋃

s′∈S′ s′ after w.

Formal testing theories usually build upon the assumption that an implementation can
be captured adequately in a submodel of IOLTSs. We recall two such submodels, viz., the
input output transition systems, used in Tretmans’ testing theory [17, 18] and the internal
choice input output transition systems, introduced by Weiglhofer and Wotawa [24, 26].

Tretmans’ input-output transition systems are IOLTSs with the additional assumption
that inputs will always be accepted. That is, implementations are assumed to be input
enabled.

CONCUR 2023



4:6 The Best of Both Worlds: Model-Driven Engineering Meets Model-Based Testing

▶ Definition 9. Let ⟨S, ŝ, −→, s0⟩ be an IOLTS over (ActI , ActU ). A state s ∈ S is input-
enabled iff ActI ⊆ Sinit(s). The IOLTS ŝ is an input output transition system (IOTS) iff
every state s ∈ S is input-enabled. We denote the class of input output transition systems
ranging over (ActI , ActU ) by IOT S(ActI , ActU ).

Weiglhofer and Wotawa’s model of internal choice input output transition systems relax the
requirement that implementations must be input-enabled at all times. Instead, they require
that only quiescent states are input-enabled, and inputs are only accepted in quiescent states.
Their model better fits with implementations that rely on some form of run to completion.

▶ Definition 10 (Internal choice IOTS). An IOLTS ⟨S, ŝ, −→⟩ is an internal choice input
output transition system over (ActI , ActU ) if for all states s ∈ S:
1. if δ(s), then ActI ⊆ init(s)
2. if init(s) ∩ ActI ̸= ∅ then δ(s).

We denote the class of internal choice input output transition systems over (ActI , ActU ) by
IOT S⊓(ActI , ActU ).

Testing is used to assess whether a given implementation conforms to its specification.
Several conformance relations have been proposed in the literature, and one of the most
prominent ones is input output conformance by Tretmans [17, 18]. This conformance relation
formalises when an implementation, assumed to behave as an input output transition system,
complies to a given specification. Following e.g. [9], we assume here that implementations
can behave, more generally, as input output labelled transition systems.

▶ Definition 11. Let imp, spec ∈ IOLT S(ActI , ActU ) be (a model of) an implementation
and specification, respectively. We say that imp input output conforms to spec, denoted
imp ioco spec, iff for all w ∈ STraces(spec) we have:
1. out(imp after w) ⊆ out(spec after w),
2. in(imp after w) ⊇ in(spec after w).
We remark that condition 2, on the inputs, can be dropped in the above definition in case
the implementation is input enabled, thus simplifying to the definition that can be found
in [17, 18]. After all, input enabledness guarantees that inputs can always be consumed by
the implementation.

3 Testing Refinements of Specifications

Refinement relations are particularly useful in a design methodology in which a system is
successively refined into smaller components, where, at each step, the relevant artefacts
can be related by a stable-failures refinement. Once the models for (sub)components are
sufficiently detailed and simple, implementing these as executable code should be reasonably
straightforward and is even done automatically in formal MDE approaches.

Despite the simplicity and details of these models, the conversion to executable code may
introduce bugs. Even if no bugs are introduced in this step, the platform on which the code
runs may inject issues not foreseen at the time of the design. Conformance testing is therefore
a step that cannot be omitted, but as the following example illustrates, the ioco-conformance
relation may flag implementations to be incorrect, despite these being correct with respect
to stable-failures refinement.

▶ Example 12. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).
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i0 i1 i2 i3
a? a? z!

a? a?

s0

s3

s1 s2

s4 s5

a? a?

x! z!a?
a? y!

a?

a? a?

Observe that spec ⊑F imp holds true. However, imp ioco spec does not hold, since
out(s0 after a δ a) = {y}, whereas out(i0 after a δ a) = {z}. ⌟

Conceptually, the non-conformance in the above example is caused by the ability to continue
testing beyond observations of quiescence. This suggests that, in general, we cannot safely
test the full specification for all its suspension traces. The question thus arises what subset
of the behaviour, modelled by a specification, is available to us for testing. We coin a set
of suspension traces for which we subsequently argue that testing for these cannot lead to
verdicts that conflict with previously established refinements.

▶ Definition 13. Let spec ∈ IOLT S(ActI , ActU ) be an arbitrary IOLTS. A suspension trace
w of spec is stable-failures testable exactly when for all prefixes v δ x of w, with x ∈ Actδ, we
have spec after v x = spec after v δ x. The set of all stable-failures testable suspension traces
is denoted TTraces(spec).

One may remark that the set Actδ that x may range over in the above definition is
too liberal. Indeed, since suspension traces are anomaly-free [27], x cannot be an output.
Restricting the set of symbols that x ranges over to ActI ∪ {δ} would therefore yield an
equivalent, though in practice somewhat more cumbersome, definition.

We start by noting two relevant properties of the set of stable-failures testable traces of a
specification.

▶ Lemma 14. We have Traces(spec) ⊆ TTraces(spec).

Proof. Pick some arbitrary w ∈ Traces(s). Since Traces(s) ⊆ STraces(s), also w ∈ Traces(s).
Moreover, since w ∈ Traces(s), also w ∈ Act∗. Since there is no prefix of the shape v δ x in
w ∈ Act∗, we find that w is stable-failures testable. Hence w ∈ TTraces(spec). ◀

▶ Lemma 15. The set TTraces(spec) is prefix closed.

Proof. Pick some w ∈ TTraces(spec), and let w′ be a prefix of w. Consider an arbitrary
prefix v δ x of w′. Then v δ x is also a prefix of w. Since w ∈ TTraces(spec) we therefore have
spec after v x = spec after v δ x. But then also w′ ∈ TTraces(spec). ◀

We next introduce the operators w and w on suspension traces. In essence, these operators
remove all δ-symbols (respectively, all but a terminal δ-symbol, if present) from a suspension
trace.

▶ Definition 16. Let x ∈ Actδ, y ∈ Act, v ∈ Act∗ and w ∈ Act+
δ . We define the operators

_ : Act∗
δ → Act∗

δ and _ : Act∗
δ → Act∗ as follows:

ϵ = ϵ, y v = y v, δ v = v

ϵ = ϵ, x = x, y w = y w, δ w = w

CONCUR 2023



4:8 The Best of Both Worlds: Model-Driven Engineering Meets Model-Based Testing

Observe that in case w ∈ Act∗, we have w = w = w. In case w ∈ Act∗
δAct+, we have w = w,

and in case w ∈ Act∗
δδ+ we have w = w δ.

▶ Lemma 17. Let spec = ⟨S, ŝ, −→⟩ be an arbitrary IOLTS. For all w ∈ TTraces(spec),
spec after w = spec after w.

Proof. The proof proceeds by means of an induction on the number of δ’s appearing in w.
Base case: w contains no δ-symbols. Then w ∈ Traces(spec) and since w = w for traces,
we immediately find the desired spec after w = spec after w.
Induction: suppose that for all z ∈ TTraces(spec), containing n δ-symbols, we have
spec after z = spec after z. Pick some w ∈ TTraces(spec) containing n + 1 δ-symbols.
Then w must be of the shape v δ u, with u ∈ Act∗, and v containing n δ-symbols. We
distinguish two cases:

Case u = ϵ. Then spec after w = spec after v δ = (spec after v) after δ By induction,
the latter is equal to (spec after v) after δ, which is equivalent to spec after v δ. We
distinguish two further cases:
∗ Case v ∈ Traces(spec). Then v δ = v δ = w, and consequently, spec after v δ =

spec after w.
∗ Case v /∈ Traces(spec). Then v = v′ δ for some v′ ∈ Traces(spec) and therefore

v δ = v′ δ δ. Observe that we have spec after v′ δ δ = spec after v′ δ = spec after v δ =
spec after w.

In both cases, we are done.
Case u ̸= ϵ. We necessarily have u = x u′ for some x and u′. Then, by Definition 13, we
have spec after w = spec after v δ x u′ = spec after v x u′. Since v x u′ contains exactly
n δ-symbols, we may conclude, by induction that spec after v x u′ = spec after v x u′.
But v x u′ = w, so we may conclude spec after w = spec after w. ◀

▶ Definition 18. We say that an IOLTS spec is stable-failures testable exactly when it
satisfies STraces(spec) = TTraces(spec).

It may be clear that not every IOLTS is stable-failures testable. For instance, the specific-
ation depicted in Example 12 contains suspension traces that are not stable-failures testable:
the sequence a δ a, which we used to illustrate the non-conformance of the implementation
to the specification is not stable-failures testable, since s0 after a δ a = {s4} ̸= {s2, s4} =
s0 after a a. On the other hand, the implementation depicted in the same example is stable-
failures testable. The class of internal choice IOLTSs also turns out to be stable-failures
testable, as asserted by the theorem below.

▶ Theorem 19. Every internal choice IOLTS is stable-failures testable.

Proof. Clearly, TTraces(spec) ⊆ STraces(spec), so it suffices to prove STraces(spec) ⊆
TTraces(spec). This can be shown using an induction on the length of the suspension
traces.

Base case w = ϵ. Since ϵ ∈ Traces(spec) ⊆ TTraces(spec), we are done.
Suppose that for w ∈ STraces(spec) of length n, we have w ∈ TTraces(spec). Let x ∈ Actδ

be such that w x ∈ STraces(spec). Let v δ y be a prefix of w x. If v δ y is a prefix of w,
then we may conclude spec after v y = spec after v δ y from our induction hypothesis and
we are done.
So suppose that v δ y = w x. It now suffices to prove that spec after v y = spec after v δ y.
Note that spec after v y ⊇ spec after v δ y follows from the fact that observations of δ

do not change state, so it suffices to prove spec after v y ⊆ spec after v δ y. Pick some
s ∈ spec after v y. From w x = v δ y ∈ STraces(spec) we may conclude that y /∈ ActU . We
distinguish two cases:
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Case y = δ. Then it immediately follows that also s ∈ spec after v δ y and we are done.
Case y ̸= δ. This implies that y ∈ ActI . Since spec is an internal choice IOLTS, we
find that there must be some s′ ∈ spec after v such that δ(s′) and s′ y=⇒∆ s. Let s′ be

such. Since s′ δ=⇒∆ s′, we may conclude that also s ∈ spec after v δ y. ◀

We next formally relate the failures refinement theory to the input output conformance
testing theory. Lemma 20 states that the outputs of implementations that are a stable-failures
refinement of a given specification can be safely tested using stable-failures testable suspension
traces. Likewise, Lemma 21, states that the inputs of convergent implementations that are a
stable-failures refinement of a given specification can be safely tested using stable-failures
testable suspension traces.

▶ Lemma 20. Let imp, spec ∈ IOLT S(ActI , ActU ). Assume that spec ⊑F imp holds true.
Then out(imp after w) ⊆ out(spec after w) for all w ∈ TTraces(spec).

Proof. Suppose that spec ⊑F imp. Towards a contradiction, assume that for some w ∈
TTraces(spec) we do not have out(imp after w) ⊆ out(spec after w). Without loss of generality,
assume that w is the shortest such trace. This implies, in particular, that w is not of the form
v δ, since such a suspension trace cannot give rise to the desired contradiction, and therefore
w ∈ Traces(spec). Note that we also can conclude that out(imp after w) ̸= ∅ and hence w ∈
STraces(imp). Since imp is quiescence-reducible [27], we therefore also have w ∈ Traces(imp).
By definition, imp after w ⊆ imp after w. Consequently, out(imp after w) ⊆ out(imp after w).
Furthermore, using Lemma 17 we may conclude that spec after w = spec after w, so also
out(spec after w) = out(spec after w).

Let X = out(imp after w) \ out(spec after w). We distinguish two cases:
Case δ ∈ X. Then, (w, ActU ) ∈ Failures(imp), but (w, ActU ) /∈ Failures(spec). Since
spec ⊑F imp, this cannot be the case. Contradiction.
Case δ /∈ X. Pick x ∈ X. Then w x ∈ Traces(imp), but w x /∈ Traces(spec). Again, since
spec ⊑F imp, this cannot be the case. Contradiction.

Since both cases lead to a contradiction, we may conclude that for all w ∈ TTraces(spec) we
have out(imp after w) ⊆ out(spec after w). ◀

▶ Lemma 21. Let imp, spec ∈ IOLT S(ActI , ActU ). Assume imp is convergent and assume
spec ⊑F imp holds true. Then in(spec after w) ⊆ in(imp after w) for all w ∈ TTraces(spec).

Proof. Assume that spec ⊑F imp. Suppose that for w ∈ TTraces(spec), in(spec after w) ⊆
in(imp after w) does not hold. Note that this implies that in(spec after w) ̸= ∅. Pick such w

and some input a ∈ in(spec after w) \ in(imp after w). By definition, this means that for all
s ∈ spec after w we have s

a=⇒. By Lemma 17, spec after w = spec after w, so also s
a=⇒ for

all s ∈ spec after w. Observe that this also implies that for all stable states t ∈ spec after w,
if any, we have t

a−→. We distinguish two cases:
w /∈ Traces(spec). Then w = w δ and since spec after w = spec after w δ ̸= ∅, there is some
t ∈ spec after w δ satisfying δ(t), and which is therefore stable. Since for every stable state
t ∈ spec after w δ we have t ∈ spec after w, we may conclude that (w, {a}) /∈ Failures(spec).
w ∈ Traces(spec). Since in that case w = w, we again conclude that (w, {a}) /∈
Failures(spec).

From the above, we thus conclude that (w, {a}) /∈ Failures(spec). We will next argue
that (w, {a}) ∈ Failures(imp). Since this contradicts spec ⊑F imp, we may conclude that
in(spec after w) ⊆ in(imp after w), finishing the proof.
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Concerning the remaining proof obligation (w, {a}) ∈ Failures(imp), we reason as follows.
Since a /∈ in(imp after w) and imp is convergent, we conclude that there must be some state
s ∈ imp after w such that stable(s) and s ̸ a−→. Let s be such a state. By definition, we have
imp after w ⊆ imp after w, so also s ∈ imp after w. But then (w, {a}) ∈ Failures(imp). ◀

One might wonder whether the convergence condition is strictly needed. The example below
illustrates that this condition can indeed not be dropped in general.

▶ Example 22. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).

i0i1 i2
τ τ

τ a?

x!

s0

a?

x!

Observe that spec ⊑F imp holds true. Moreover, note that due to the τ -loop, imp is not con-
vergent. By Lemma 20, we find that for every w ∈ STraces(spec), we have out(imp after w) ⊆
out(spec after w); this is readily checked. However, we have in(spec after ϵ) = {a} ̸= ∅ =
in(imp after ϵ). Consequently, imp ioco spec does not hold true. ⌟

The theorem below follows immediately from the two lemmata above.

▶ Theorem 23. Let imp, spec ∈ IOLT S(ActI , ActU ). Assume imp is convergent. If spec ⊑F

imp then also for all w ∈ TTraces(spec), we have:
1. out(imp after w) ⊆ out(spec after w), and
2. in(imp after w) ⊇ in(spec after w).

Theorem 23 specialises to standard ioco in case the specification is an internal choice
IOLTS and the implementation is convergent, as claimed by the corollary below.

▶ Corollary 24. Let spec ∈ IOLT S⊓(ActI , ActU ) and imp ∈ IOLT S(ActI , ActU ). Suppose
imp is convergent. Then spec ⊑F imp implies imp ioco spec.

We finish with the observation that in case the specification is an internal choice IOLTS
and the implementation is an internal choice IOTS, the requirement on the implementation
being convergent can be dropped, see the corollary below.

▶ Corollary 25. Let spec ∈ IOLT S⊓(ActI , ActU ) and imp ∈ IOT S⊓(ActI , ActU ). Then
spec ⊑F imp implies imp ioco spec.

4 Stable Failures Refinement through Testing

We next identify conditions under which we may conclude that a model of an implementation
is a stable-failures refinement of a given specification after exhaustively testing a faithful
implementation of that model.

Let us first observe that if the specification that is used for testing is not input enabled,
we will not be able to establish a stable-failures refinement relation between the specification
and the implementation. Since the ioco-conformance relation allows for partial specifications,
only those parts that are specified are tested for, and other parts are ignored, resulting in
potentially labelling such an implementation as one that conforms to its specification. As
a result, inputs that are not specified cannot be excluded to be part of some conforming
implementation and will thus lead to trace inclusion violations. This is illustrated by the
following (trivial) example.
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▶ Example 26. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).

i0 b?a? s0a?

Clearly, we have imp ioco spec, but the trace b ∈ Traces(i0) is not present in Traces(s0), thus
contradicting spec ⊑F imp. ⌟

Consequently we can only assess that an implementation refines a specification if the
latter is “at least as input enabled” as the implementation that we are (black box) testing
for. In Tretmans original testing theory, but also in Weiglhofer and Wotawa’s theory, the
input enabledness of the implementation is typically part of the testing assumption, which,
depending on the applications at hand, state that the implementation is either always input
enabled (IOTSs), or input enabled exactly (and only) in quiescent states (internal choice
IOTSs). We therefore confine our analysis to implementations that can be modelled as an
IOTS or an internal choice IOTS, and we study specifications that – in terms of their input
enabledness – fit these assumptions. For these systems, we have the following observation:

▶ Lemma 27. Let spec, imp be IOLTSs. Suppose that either:
both spec and imp are IOTSs, or
both spec and imp are internal choice IOTSs.

Then imp ioco spec implies Traces(imp) ⊆ Traces(spec).

Proof. Suppose that imp ioco spec. Let w ∈ Traces(imp) be such that w /∈ Traces(spec), and,
without loss of generality, assume that there is no shorter trace. Observe that w ̸= ϵ, since
ϵ is a weak trace of both imp and spec. Hence, w must be of the shape v x, for some trace
v ∈ Traces(imp) ∩ Traces(spec) and action x ∈ Act. Let v and x be such.

We first argue that x /∈ ActI . Observe that this follows trivially in case imp and spec
are both IOTSs, since spec would be required to accept input a at any moment. In case
spec is an internal choice IOTS, we reason as follows. Towards a contradiction, assume that
x ∈ ActI . Then v x /∈ Traces(spec) can only be the case when δ /∈ out(spec after v), since
spec is input enabled only (and exactly) in quiescent states. Since v x ∈ Traces(imp), we
must conclude that δ ∈ out(imp after v). But this violates our assumption that imp ioco spec.
Hence, also in case imp and spec are internal choice IOTSs, we have x /∈ ActI .

Consequently, x ∈ ActU and therefore x ∈ out(imp after v). Since v ∈ STraces(spec)
and imp ioco spec, we also find x ∈ out(spec after v). This implies that v x ∈ Traces(spec).
Contradiction. Hence, Traces(imp) ⊆ Traces(spec). ◀

In view of the above result, assuming some form of input enabledness of the specification
is essential for guaranteeing trace inclusion, which is an essential part of the refinement
relation. However, input enabledness does little to establish the other essential part of the
refinement relation, viz., the inclusion of the set of failures. This has to do with the fact
that refinement allows for observing the refusals of individual actions, contrary to the ioco
conformance relation. The next example illustrates the issue. We remark that the example
uses an implementation that behaves as an IOTS, but this can be modified easily to show
the same issue in internal choice IOTSs.

▶ Example 28. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).
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i0i1 i2

x!

a?

y!

a?

τ τ
s0 s1 y!τ

x!

a? a?

x!

Note that imp ioco spec; in particular, out(i0 after ϵ) = out(s0 after ϵ). Clearly, (ϵ, {y}) /∈
Failures(s0) since stable state s1 does not refuse y; of course, state s0 does not offer action y,
but since s0 is unstable, its refusals are not taken into account. However, since i1 is stable,
(ϵ, {y}) ∈ Failures(i0). Therefore, spec ⊑F imp does not hold true. ⌟

The above example illustrates that, from the point of view of stable-failures refinement,
output actions should be preserved and ultimately determined: τ -paths should eventually
lead to states in which only “trivial output choices” can be made.

▶ Definition 29. Let ⟨S, ŝ, −→⟩ be an IOLTS. We say that ŝ is ultimately determined iff for
all states s ∈ S and all x ∈ out(s after ϵ) there is some t ∈ s after ϵ such that out(t) = {x}.

Observe that the specification of Example 28 is not ultimately determined, since, e.g., there
is no state s ∈ s0 after ϵ such that out(s) = {y}.

▶ Proposition 30. For any IOTS imp and convergent, ultimately determined IOTS spec
satisfying imp ioco spec we have spec ⊑F imp.

Proof. Suppose that imp ioco spec holds true for IOTSs imp and spec, and that spec is both
convergent and ultimately determined. We show that spec ⊑F imp; by Lemma 27, it suffices
to prove that Failures(imp) ⊆ Failures(spec).

Towards a contradiction, assume that Failures(imp) ̸⊆ Failures(spec). Pick a failure
(w, X) ∈ Failures(imp) such that (w, X) ̸∈ Failures(spec). Observe that since Traces(imp) ⊆
Traces(spec), w ∈ Traces(imp) ∩ Traces(spec). Without loss of generality, assume that X is
as large as possible: there is no Y such that (w, Y ) ∈ Failures(imp) \ Failures(spec) such that
X ⊂ Y . Then imp w=⇒ t such that stable(t) holds true and init(t) ∩ X = ∅.

Note that since imp is an IOTS and t is stable, we have ActI ⊆ init(t) so X ⊆ ActU .
Because imp ioco spec, we have out(t) ⊆ out(imp after w) ⊆ out(spec after w). So there must
be a state s ∈ spec after w such that out(t) ∩ out(s) ̸= ∅. Let s be such a state, and pick
some x ∈ out(t) ∩ out(s). Since spec is convergent, all τ -paths are finite and end in a stable
state. Because spec is ultimately determined there must be some stable state s′ ∈ s after ϵ

such that out(s′) = {x}. Then out(s′) ⊆ out(t), and consequently, init(s′) ∩ X = ∅. But then
also (w, X) ∈ Failures(spec). Contradiction, so Failures(imp) ⊆ Failures(spec) and therefore
spec ⊑F imp. ◀

Note that there is a rather straightforward reason why we cannot simply drop the assumption
on the specification being convergent; see the example below.

▶ Example 31. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).

i0 i1
a?

x! y!

a?

s0 s1 y!

τ

x!
a?

a?
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Observe that imp ioco spec. Moreover, spec is trivially ultimately determined: s0 after ϵ =
{s0} and the only output action enabled in s0 is x. Because s0 is not stable, we have
(ϵ, {y}) /∈ Failures(s0). On the other hand, (ϵ, {y}) ∈ Failures(i0), so we cannot have spec ⊑F

imp. ⌟

We finish this section with a similar statement for the internal choice testing theory.

▶ Proposition 32. For any internal choice IOTS imp and convergent, ultimately determined
internal choice IOTS spec satisfying imp ioco spec we have spec ⊑F imp.

Proof. Let imp be an internal choice IOTS and spec a convergent, determined internal
choice IOTS. Assume that imp ioco spec holds true. We argue that also spec ⊑F imp
holds true. Towards a contradiction, suppose that spec ̸⊑F imp. Then, by Lemma 27,
Failures(imp) ̸⊆ Failures(spec).

Suppose Failures(imp) ̸⊆ Failures(spec). Pick a failure (w, X) ∈ Failures(imp) such that
(w, X) ̸∈ Failures(spec). Then imp w=⇒ t such that stable(t) holds true and init(t) ∩ X = ∅.
Note that since imp is an internal choice IOTS and stable(t) holds true, we have either
init(t) = ActI or ∅ ⊂ init(t) ⊆ ActU .

Suppose that init(t) = ActI . Because imp is an internal choice IOTS, δ ∈ out(t) and
therefore δ ∈ out(imp after w). Since imp ioco spec, also δ ∈ out(spec after w) and hence
w δ ∈ STraces(spec). This means that there must be some state s such that spec w=⇒ s,
stable(s) and init(s) ∩ ActU = ∅. Pick such a state s. Since spec is an internal choice
IOTS, init(s) = ActI . Note that also init(t) = ActI and therefore init(s) = init(t). But
then also init(s) ∩ X = ∅. Consequently, (w, X) ∈ Failures(spec). Contradiction.
Suppose that ∅ ⊂ init(t) ⊆ ActU . Then ActI ⊆ X. Moreover, because imp ioco spec, we
have ∅ ⊂ init(t) ⊆ out(imp after w) ⊆ out(spec after w). So, there must be some state s

such that spec w=⇒ s and init(t)∩out(s) ̸= ∅. Let s be such a state. Since spec is ultimately
determined, we find that for all x ∈ out(s), there must be some s′ ∈ s after ϵ such that
out(s′) = {x}. Pick some x ∈ init(t) ∩ out(s), and let s′ be such that s′ ∈ s after ϵ and
out(s′) = {x}. This means that out(s′) ⊆ init(t). Since spec is convergent and ultimately
determined, we may assume that s′ is stable. Observe that s′ cannot be quiescent since
out(s′) ⊆ init(t) ⊆ ActU . Since spec ∈ IOT S⊓, we therefore find that ActI ∩ init(s′) = ∅,
and hence init(s′) ⊆ init(t). Consequently, init(s′) ∩ X ⊆ init(t) ∩ X = ∅. From this, we
can conclude that (w, X) ∈ Failures(spec). Contradiction.

Hence, Failures(imp) ⊆ Failures(spec), and therefore spec ⊑F imp. ◀

5 A Small Experiment: Testing Dezyne using mCRL2

As a practical validation of our theory, we apply MBT to a specification and implementation
stemming from an industrial model of a multi-component controller at Philips Image Guided
Therapy systems. The implementation has been generated from specifications in the Dezyne
formal modelling DSL [21, 21]. In the Dezyne development methodology, a system is described
as a hierarchical composition of components by specifying:

a set of behavioural contracts, called interfaces. Each interface provides an abstraction of
a component, the so-called provided interface of the component, and
a behavioural model (a state machine) that describes how a component realises its
behavioural contract, by interacting with subcomponents. The ports via which the
component connects to subcomponents are called required ports, and by association,
the behavioural contracts upon which the component relies are therefore referred to as
required interfaces.
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Table 1 test run results of MBT applied to correct and faulty code-generated implementation.

correct Mutation
average impl. 1 2 3 4 5 6

detection rate 0% 96% 100% 100% 100% 100% 100%
actions required 200 45 41 9 8 10 17

state coverage 96% 80% 85% 46% 46% 63% 53%

The formal check that takes place in Dezyne, before generating code, is whether a component
complies to its provided interface. This check is answered by verifying whether the IOLTS
induced by the provided interface is stable-failures refined by the IOLTS obtained by
combining the IOLTS underlying the component and the IOLTSs underlying the behavioural
contracts of the subcomponents. The actual stable-failures refinement check is conducted
using the mCRL2 toolset [2, 8]. In case a component is found to comply to its provided
interface (and only then), the behavioural model of the component is fully automatically
converted into an equivalent executable C++ program. This way, a correct-by-construction
system can be built from the ground-up, or top-down by specifying, in a step-wise manner,
desired provided interfaces and introducing (sub)components that “implement” these.

For the system that we study in this section, we do not have access to the implementation
of the subcomponents for the required interfaces of our component, but we do have access
to their behavioural contracts and the code that was generated from the main component
itself. In our experiments, we therefore mimic the behaviour of the subcomponents via
a simulator that utilises the IOLTSs of the behavioural contracts of the subcomponents
instead. This yields so-called smart stubs. The specification IOLTS of the multi-component
controller consists of 25 unique states and 54 unique transitions and is stable-failures testable.
As per our theory, the MBT algorithm should not find any non-conformance since the
implementation (the component together with the smart stubs) is a stable-failures refinement
of the specification (the provided interface). Hence, if a non-conformance is found, the
implementation does not reflect the model of the component that was proved to comply
to its behavioural contract, and the non-conformance thus signals an actual issue with the
executable or the platform.

We are interested in assessing whether we can detect erroneous implementations of the
specification using ioco-based MBT techniques. To this end, we test the correct implement-
ation and, in addition, 6 manually created, faulty mutants thereof. The first five faulty
mutants are obtained by altering the implementation of the component such that a single
randomly chosen input which would normally result in a state change, now performs no
actual code execution, and thus results in no state change in the implementation. For the
sixth mutant, each provided interface has been given a preset (1/10) chance of remaining
idle, instead of providing a response when triggered, which should result in a non-conforming
quiescence observation.

Using an on-the-fly MBT algorithm, which implements the original ioco test algorithm [17,
18] in mCRL2, we generated and executed 100 test runs, each consisting of up-to 200
observable actions (including quiescence) for each mutant and for the correct implementation.
The results of this experiment are shown in Table 1. For each set of 100 test runs, we measured
the percentage of runs that detected a non-conformance, the average number of observable
actions (including quiescence) required to observe that non-conformance or terminate (in
the case that no non-conformance is detected) and the average specification state coverage,
i.e., unique states visited during a test-run. We observe that no non-conformances were
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detected when testing the correct implementation. In virtually all of the test runs on incorrect
implementations a non-conformance was detected when using incorrect implementations,
once more confirming the practical relevance of automated testing.

6 Conclusions

We studied the stable-failures refinement relation [15] and its relation to the ioco conformance
testing relation by Tretmans [17, 18]. In particular, we identified a set of experiments – called
stable-failures testable traces – derivable from a specification, for which ioco does not falsely
flag implementations as incorrect when these implementations have been shown to refine the
specification, thus addressing a major obstacle in applying Model-Based Testing techniques
in the Model-Driven Engineering development method. Furthermore, we showed that for
internal choice input output transition systems, these experiments coincide with the full set
of experiments usually associated with the ioco testing theory. To better understand the
limitations of ioco-based testing, we additionally identify conditions under which exhaustive
testing can establish that the implementation refines the specification used for testing.

We did not explore how to implement our testing theory efficiently for specifications whose
stable-failures testable traces are a proper subset of the suspension traces; this is left for
future work. For finite specifications, deriving stable-failures testable traces is easily achieved
by means of a determinisation-like algorithm, constructing a Suspension Automaton [17, 27]
and exploring that structure. For infinite specifications, efficiently deriving and selecting such
stable-failures testable traces on-the-fly would allow to combine the testing methodology
with other on-the-fly testing algorithms.

References
1 James Baxter, Ana Cavalcanti, Maciej Gazda, and Robert M. Hierons. Testing using CSP

models: Time, inputs, and outputs. ACM Trans. Comput. Log., 24(2):17:1–17:40, 2023.
doi:10.1145/3572837.

2 Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 toolset
for analysing concurrent systems - improvements in expressivity and usability. In TACAS
(2), volume 11428 of Lecture Notes in Computer Science, pages 21–39. Springer, 2019. doi:
10.1007/978-3-030-17465-1_2.

3 Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in CSP. In ICFEM,
volume 4789 of Lecture Notes in Computer Science, pages 151–170. Springer, 2007. doi:
10.1007/978-3-540-76650-6_10.

4 Ana Cavalcanti and Robert M. Hierons. Testing with inputs and outputs in CSP. In
FASE, volume 7793 of Lecture Notes in Computer Science, pages 359–374. Springer, 2013.
doi:10.1007/978-3-642-37057-1_26.

5 Ana Cavalcanti, Robert M. Hierons, and Sidney C. Nogueira. Inputs and outputs in CSP:
A model and a testing theory. ACM Trans. Comput. Log., 21(3):24:1–24:53, 2020. doi:
10.1145/3379508.

6 Cocotec. Coco platform. https://cocotec.io/, 2023. Accessed: 01 May 2023.
7 Marie-Claude Gaudel. Testing can be formal, too. In TAPSOFT, volume 915 of Lecture Notes

in Computer Science, pages 82–96. Springer, 1995. doi:10.1007/3-540-59293-8_188.
8 Jan Friso Groote, Jeroen J. A. Keiren, Bas Luttik, Erik P. de Vink, and Tim A. C. Willemse.

Modelling and analysing software in mCRL2. In FACS, volume 12018 of Lecture Notes in
Computer Science, pages 25–48. Springer, 2019. doi:10.1007/978-3-030-40914-2_2.

9 Ramon Janssen, Frits W. Vaandrager, and Jan Tretmans. Relating alternating relations for
conformance and refinement. In IFM, volume 11918 of Lecture Notes in Computer Science,
pages 246–264. Springer, 2019. doi:10.1007/978-3-030-34968-4_14.

CONCUR 2023

https://doi.org/10.1145/3572837
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-540-76650-6_10
https://doi.org/10.1007/978-3-540-76650-6_10
https://doi.org/10.1007/978-3-642-37057-1_26
https://doi.org/10.1145/3379508
https://doi.org/10.1145/3379508
https://cocotec.io/
https://doi.org/10.1007/3-540-59293-8_188
https://doi.org/10.1007/978-3-030-40914-2_2
https://doi.org/10.1007/978-3-030-34968-4_14


4:16 The Best of Both Worlds: Model-Driven Engineering Meets Model-Based Testing

10 Maurice Laveaux, Jan Friso Groote, and Tim A. C. Willemse. Correct and efficient antichain
algorithms for refinement checking. Log. Methods Comput. Sci., 17(1), 2021. doi:10.23638/
LMCS-17(1:8)2021.

11 Sidney C. Nogueira, Augusto Sampaio, and Alexandre Mota. Test generation from state
based use case models. Formal Aspects Comput., 26(3):441–490, 2014. doi:10.1007/
s00165-012-0258-z.

12 Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi, and Tim A. C. Willemse.
Synchronizing asynchronous conformance testing. In SEFM, volume 7041 of Lecture Notes in
Computer Science, pages 334–349. Springer, 2011. doi:10.1007/978-3-642-24690-6_23.

13 Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi, and Tim A. C. Willemse.
Synchrony and asynchrony in conformance testing. Softw. Syst. Model., 14(1):149–172, 2015.
doi:10.1007/s10270-012-0302-8.

14 Jan Peleska, Wen-ling Huang, and Ana Cavalcanti. Finite complete suites for CSP refinement
testing. Sci. Comput. Program., 179:1–23, 2019. doi:10.1016/j.scico.2019.04.004.

15 A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer,
2010. doi:10.1007/978-1-84882-258-0.

16 Julien Schmaltz and Jan Tretmans. On conformance testing for timed systems. In FORMATS,
volume 5215 of Lecture Notes in Computer Science, pages 250–264. Springer, 2008. doi:
10.1007/978-3-540-85778-5_18.

17 Jan Tretmans. Testing concurrent systems: A formal approach. In CONCUR, volume
1664 of Lecture Notes in Computer Science, pages 46–65. Springer, 1999. doi:10.1007/
3-540-48320-9_6.

18 Jan Tretmans. Model based testing with labelled transition systems. In Formal Methods
and Testing, volume 4949 of Lecture Notes in Computer Science, pages 1–38. Springer, 2008.
doi:10.1007/978-3-540-78917-8_1.

19 Jan Tretmans and Ramon Janssen. Goodbye ioco. In A Journey from Process Algebra via
Timed Automata to Model Learning, volume 13560 of Lecture Notes in Computer Science,
pages 491–511. Springer, 2022. doi:10.1007/978-3-031-15629-8_26.

20 Rutger van Beusekom, Bert de Jonge, Paul F. Hoogendijk, and Jan Nieuwenhuizen. Dezyne:
Paving the way to practical formal software engineering. In F-IDE@NFM, volume 338 of
EPTCS, pages 19–30, 2021. doi:10.4204/EPTCS.338.4.

21 Rutger van Beusekom, Jan Friso Groote, Paul F. Hoogendijk, Robert Howe, Wieger Wesselink,
Rob Wieringa, and Tim A. C. Willemse. Formalising the Dezyne modelling language in
mCRL2. In FMICS-AVoCS, volume 10471 of Lecture Notes in Computer Science, pages
217–233. Springer, 2017. doi:10.1007/978-3-319-67113-0_14.

22 Petra van den Bos and Mariëlle Stoelinga. Tester versus bug: A generic framework for
model-based testing via games. In GandALF, volume 277 of EPTCS, pages 118–132, 2018.
doi:10.4204/EPTCS.277.9.

23 Machiel van der Bijl, Arend Rensink, and Jan Tretmans. Compositional testing with ioco.
In FATES, volume 2931 of Lecture Notes in Computer Science, pages 86–100. Springer, 2003.
doi:10.1007/978-3-540-24617-6_7.

24 Martin Weiglhofer. Automated Software Conformance Testing. PhD thesis, Graz University of
Technology, 2009.

25 Martin Weiglhofer and Bernhard K. Aichernig. Unifying input output conformance. In
UTP, volume 5713 of Lecture Notes in Computer Science, pages 181–201. Springer, 2008.
doi:10.1007/978-3-642-14521-6_11.

26 Martin Weiglhofer and Franz Wotawa. Asynchronous input-output conformance testing. In
COMPSAC (1), pages 154–159. IEEE Computer Society, 2009. doi:10.1109/COMPSAC.2009.
194.

27 Tim A. C. Willemse. Heuristics for ioco-based test-based modelling. In FMICS/PDMC,
volume 4346 of Lecture Notes in Computer Science, pages 132–147. Springer, 2006. doi:
10.1007/978-3-540-70952-7_9.

https://doi.org/10.23638/LMCS-17(1:8)2021
https://doi.org/10.23638/LMCS-17(1:8)2021
https://doi.org/10.1007/s00165-012-0258-z
https://doi.org/10.1007/s00165-012-0258-z
https://doi.org/10.1007/978-3-642-24690-6_23
https://doi.org/10.1007/s10270-012-0302-8
https://doi.org/10.1016/j.scico.2019.04.004
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/978-3-540-85778-5_18
https://doi.org/10.1007/978-3-540-85778-5_18
https://doi.org/10.1007/3-540-48320-9_6
https://doi.org/10.1007/3-540-48320-9_6
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-031-15629-8_26
https://doi.org/10.4204/EPTCS.338.4
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.4204/EPTCS.277.9
https://doi.org/10.1007/978-3-540-24617-6_7
https://doi.org/10.1007/978-3-642-14521-6_11
https://doi.org/10.1109/COMPSAC.2009.194
https://doi.org/10.1109/COMPSAC.2009.194
https://doi.org/10.1007/978-3-540-70952-7_9
https://doi.org/10.1007/978-3-540-70952-7_9


Process-Algebraic Models of Multi-Writer
Multi-Reader Non-Atomic Registers
Myrthe S. C. Spronck #

Eindhoven University of Technology, The Netherlands

Bas Luttik #

Eindhoven University of Technology, The Netherlands

Abstract
We present process-algebraic models of multi-writer multi-reader safe, regular and atomic registers.
We establish the relationship between our models and alternative versions presented in the literature.
We use our models to formally analyse by model checking to what extent several well-known mutual
exclusion algorithms are robust for relaxed atomicity requirements. Our analyses refute correctness
claims made about some of these algorithms in the literature.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms; Theory of
computation → Verification by model checking

Keywords and phrases mutual exclusion, model checking, non-atomic reads and writes, regular
register

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.5

Related Version Full Version: https://arxiv.org/abs/2307.05143

Supplementary Material Model: https://github.com/mCRL2org/mCRL2/tree/master/examples/
academic/non-atomic_registers

archived at swh:1:dir:f43fbf368f800067a33124501bb01c27b8a9bfa3

Acknowledgements We thank Rob van Glabbeek for insightful discussions on the topic of this paper.

1 Introduction

The mutual exclusion problem was first outlined by Dijkstra [9]. Given n threads executing
some code with a special section called the “critical section”, the problem is to ensure that at
any one time at most one of the threads is executing its critical section. Dijkstra explicitly
states that communication between threads should be done through shared registers, and
that reading from and writing to these registers should be considered atomic operations;
when two threads simultaneously interact with the register, be it through reading or writing,
the register behaves as though these operations took place in some total order.

Lamport argued that solutions to the mutual exclusion problem that assume atomicity
of register operations do not fundamentally solve it [19]. After all, implementing atomic
operations would require some form of mutual exclusion at a lower level. Many algorithms
have been proposed that solve the mutual exclusion problem without requiring atomicity of
register operations, most famously Lamport’s own Bakery algorithm [18].

Analysing distributed algorithms using non-atomic registers for communication between
threads can be difficult, and correctness proofs are error-prone. Due to the vast number of
execution paths of distributed algorithms, especially when overlapping register operations
need to be taken into account, manual correctness proofs are likely to miss issues. One better
uses computer tools (e.g., model checkers or theorem provers) to support correctness claims
with a detailed and preferably exhaustive analysis. This introduces the need for formal
models of non-atomic registers.
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5:2 Process-Algebraic Models of MWMR Non-Atomic Registers

Lamport proposed a general mathematical formalism for reasoning about the behaviour
of concurrent systems that do not rely on the atomicity of operations, which he then uses
to analyse the correctness of four solutions to the mutual exclusion problem not relying on
atomicity [19, 20]. In [21], he studies in more detail the notion of single-writer multi-reader
(SWMR) non-atomic register to implement communication between concurrent threads of
computation; there, he distinguishes two variants, which he refers to as safe and regular.
When a read operation to a SWMR safe register does not overlap with any write operations,
then it will return the value stored in the register, but when it does overlap with a write
operation then it may return a completely arbitrary value in the domain of the register. A
SWMR regular register is a bit less erratic in the sense that a read operation overlapping with
write operations will at least return any of the values actually being written. Raynal presented
a straightforward generalisation of the notion of SWMR safe register to the multi-writer
case [28]. How the notion of SWMR regular register should be generalised to the multi-writer
case, however, is less obvious. Shao et al. discuss four possibilities [29].

The formalisms in [21, 28, 29] for studying the behaviour of non-atomic registers are not
directly amenable for analysing the correctness of distributed algorithms by explicit-state
model checking, e.g., using the mCRL2 toolset [7]. In fact, it is not clear whether the
four variants of MWMR regular registers presented in [29] will lead to a finite-state model
even if the number of readers and writers and the set of data values of the register are
finite. In [23], Lamport demonstrates a method of modelling SWMR safe registers through
repeatedly writing arbitrary values before settling on the desired value, but this approach
does not generalise to multi-writer registers. The main contribution of this paper is to present
process-algebraic models of multi-writer multi-reader safe, regular and also atomic registers
that can be directly used in mCRL2 to analyse the correctness of distributed algorithms.

We have used our process-algebraic models to analyse to what extent various mutual
exclusion algorithms are robust for relaxed non-atomicity requirements. We find that
Peterson’s algorithm [27] no longer guarantees mutual exclusion if the atomicity requirement
is relaxed for the turn register. A variant of Peterson’s algorithm presented in [4] does
guarantee mutual exclusion even if registers are only safe. The variant presented in [29],
however, does not guarantee mutual exclusion with regular registers, despite a claim that
it does. We also find that some of the algorithms proposed in [31, 32] do not guarantee
mutual exclusion for regular registers, which seems to contradict claims that they are
immune to the problem of flickering bits during writes. When analysing Lamport’s 3-bit
algorithm [20] we discovered that its mutual exclusion guarantee crucially depends on how
one of the more complex statements of the algorithm is implemented. Finally, we confirm
that Aravind’s BLRU algorithm [3], Dekker’s algorithm [1], Dijkstra’s algorithm [9] and
Knuth’s algorithm [17] guarantee mutual exclusion even with safe registers.

This paper is organised as follows. In Section 2 we present some basic definitions pertaining
to SWMR registers, including formalisations of Lamport’s notions of SWMR safe, regular
and atomic registers. In Section 3 we present and discuss our process-algebraic definitions
of MWMR safe, regular and atomic registers, and establish formal relationships with their
SWMR counterparts. In Section 4 we compare our notion of MWMR regular register with
the variants of MWMR regular registers proposed by [29]. In Section 5 we report on our
analyses of the various mutual exclusion algorithms. Finally, we present conclusions and
some ideas for future work in Section 6.
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2 Single-writer multi-reader registers

The definitions presented in this section are adapted from [29] and [22].
We consider n threads operating on a register with values in a finite set D of register

values; the initial value of the register will be denoted by dinit . Threads are identified by
a natural number in the set T = {0, . . . , n − 1}. A read operation by thread i ∈ T on the
register, with return value d ∈ D, is a sequence ri(d) = srifri(d) consisting of an invocation
sri (for “thread i starts to read”), and a matching response fri(d) (for: “the read by thread i

finishes with return value d”). A write operation of thread i on the register, with write value
d, is a sequence wi(d) = swi(d)fwi consisting of an invocation swi(d) (for: “thread i starts
to write value d”) and a matching response fwi (for: “the write by thread i finishes”). An
operation of thread i is either a read operation or a write operation of that thread.

For every i ∈ T, let Ai = {sri , fri(d), swi(v), fwi | d ∈ D}, and let A =
⋃

i∈T Ai. If σ is
a sequence of elements of A, then we denote by σ|i the subsequence of σ consisting of the
elements in Ai. A schedule on a register is a finite or infinite sequence σ of elements of A

such that σ|i consists of alternating invocations and matching responses, beginning with an
invocation, and if σ|i is finite, ending with a response. Note that, by these requirements and
our definition of the notion of operation, σ|i can then be obtained as the concatenation of
read and write operations o0o1o2 . . . executed by thread i.1 We shall denote by ops(σ, i) the
set of all operations executed by thread i (i.e., ops(σ, i) = {o0, o1, o2, . . . }) and by ops(σ) the
set of all operations executed by any of the threads. It is technically convenient to include
in ops(σ) a special write operation winitthat writes the initial value of the register. Then
ops(σ) = {winit} ∪

⋃
i∈T ops(σ, i). We also use reads(σ) and writes(σ) for the subsets of

ops(σ) respectively consisting of the read operations and the write operations only.
A schedule σ induces a partial order on ops(σ): if o, o′ ∈ ops(σ), then we write o <σ o′ if,

and only if, the response of o precedes the invocation of o′ in σ. We stipulate that winit < o

for all o ∈ ops(σ)\{winit}. Let r ∈ ops(σ) be a read operation and let w ∈ ops(σ) be a
write operation. We say that w is fixed for r if w <σ r; fix-writes(σ, r) denotes the set of
all writes that are fixed for r. We say that w is relevant for r if r ̸<σ w; rel-writes(σ, r)
denotes the set of all writes in ops(σ) that are relevant for r. Note that, by the inclusion
of winit , the sets rel-writes(σ, r) and fix-writes(σ, r) are non-empty for all r ∈ reads(σ). We
say that r ∈ reads(σ) can read from w ∈ writes(σ) if w is relevant for r and there does not
exist w′ ∈ writes(σ) such that w <σ w′ <σ r. An operation o has overlapping writes if there
exists w ∈ writes(σ) such that o ̸<σ w and w ̸<σ o.

In [29], a register model is defined as a set of schedules satisfying certain conditions.
Restricting attention to single-writer multi-reader (SWMR) registers only, Lamport considers
three register models: safe, regular and atomic [22]. We proceed to define Lamport’s
models by formulating conditions on single-writer schedules, i.e., schedules in which all write
operations are by one particular thread. If σ is a single-writer schedule, then, since a write
cannot have overlapping writes, every non-empty finite set W of writes has a <σ-maximum,
i.e., an element w ∈W such that w′ <σ w for all w′ ∈W \ {w′}. Since writes that are fixed
for r have their responses in the finite prefix of σ preceding the invocation of r, we have
that fix-writes(σ, r) is finite for every r. Since fix-writes(σ, r) is non-empty, it always has a
<σ-maximum.

1 The same operation may occur multiple times in σ|i. Henceforth, when we consider an operation in σ|i
we actually mean to refer to a specific occurrence in σ|i of the operation. To disambiguate between
two different occurrences of the same operation o we could, e.g., annotate each occurrence of o with its
position in σ|i. We will not do so explicitly, because it will unnecessarily clutter the presentation. But
the reader should keep in mind that, whenever we refer to an operation in a schedule σ we actually
mean to refer to a particular occurrence of that operation in σ|i.
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A SWMR register is safe if a read that does not have overlapping writes returns the most
recently written value. A read that does have overlapping writes may return any arbitrary
value in the domain D of the register.

▶ Definition 1. A single-writer schedule σ is safe if every read r without overlapping writes
returns the value written by the <σ-maximum of the set of fix-writes(σ, r).

A SWMR register is regular if it is safe, and a read that has overlapping writes returns
the value of one of the overlapping writes or the most recently written value.

▶ Definition 2. A single-writer schedule σ is regular if every read r returns either the value
written by the <σ-maximum of the set fix-writes(σ, r) or the value of an overlapping write.

A SWMR register is atomic if all reads and writes behave as though they occur in some
definite order. A serialisation is a total order S on a subset O of ops(σ) that is consistent
with <σ in the sense that for all o, o′ ∈ O we have that o <σ o′ implies o S o′. A serialisation
(O,S) is legal if every read operation returns the value of the most recent write operation
according to S, that is, whenever r ∈ O is a read operation with return value v, then v is the
write value of S-maximum of rel-writes(σ, r).

▶ Definition 3. A single-writer schedule σ is atomic if ops(σ) has a legal serialisation.

3 Multi-writer multi-reader registers

We now want to define multi-write multi-reader (MWMR) safe, regular and atomic registers.
Since our goal is to verify the correctness of mutual exclusion algorithms by model checking,
we prefer operational, process-algebraic definitions of register models over definitions in terms
of schedules. We are going to define register models by giving recursive process definitions
that, given the state of the register, admit certain interactions with the register, resulting
in an update of the state of the register. Which information needs to be maintained in the
state of the register depends on the register model, but the state of register should at least
reflect which operations are currently active. So, with each register model m ∈ {s, r, a} we
associate a set of states Sm, and we assume that the following functions are defined on Sm:

rdrs, wrtrs, idle : Sm → P(T)
usr i, ufr i, ufwi : Sm → Sm

uswi : D× Sm → Sm .

(1)

The mappings rdrs returns the set of all threads that are currently reading, i.e., i ∈ rdrs(s)
if, and only if, thread i has invoked a read operation but the matching response has not
yet occurred. Similarly, wrtrs returns the set of all threads that are currently writing, and
idle returns the set of all threads that are currently not reading and not writing. The
mappings usr i, ufr i, uswi and ufwi perform update operations on the state of the register,
corresponding to whether the most recent interaction of the register was an invocation (usr i)
or response (ufr i) of a read, or an invocation (uswi) or a response (ufwi) of a write. The
update operation uswi also takes the write value into account.

In the remainder of this section we shall first present our models of MWMR safe, regular
and atomic registers, and then comment on the representation of these models in mCRL2.

3.1 MWMR Safe Registers
Lamport’s SWMR safe register model (see Definition 1) accounts for how reads and writes
behave when they do not have overlapping writes, and how reads behave when they do have
overlapping writes. To generalise Lamport’s notion to MWMR registers, we need to define
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Rs(d : D, s : Ss) =

∑
i∈T



(i ∈ idle(s))→ sri ·Rs(d, usr i(s))
+ (i ∈ idle(s))→

∑
d′∈D swi(d ′) ·Rs(d, uswi(d′, s))

+ (i ∈ rdrs(s) ∧ ¬overlapi(s))→ fri(d) ·Rs(d, ufr i(s))
+ (i ∈ rdrs(s) ∧ overlapi(s))→

∑
d′∈D fri(d ′) ·Rs(d, ufr i(s))

+ (i ∈ wrtrs(s) ∧ ¬overlapi(s))→ fwi ·Rs(next(s), ufwi(s))
+ (i ∈ wrtrs(s) ∧ overlapi(s))→

∑
d′∈D fwi ·Rs(d′, ufwi(s))


Figure 1 Safe register model.

how writes behave when they have overlapping writes. We follow Raynal’s approach and
define that when a write has overlapping writes, then its effect is that some arbitrary value
in D is written to the register [28].

Our process-algebraic definition of a MWMR safe register is shown in Figure 1. The
equation defines the behaviour of processes Rs(d, s); the parameter d ∈ D reflects the current
value of the register, and the parameter s ∈ Ss reflects its current state. For the behaviour of
the safe register it must be determined for every read or write operation of a thread whether,
during its interaction with the register, there was an overlapping write operation by some
other thread. Therefore, in addition to the functions specified in Equation 1, we presuppose
on Ss a predicate overlapi such that overlapi(s) holds if during the interaction of thread i

with the register there was an overlapping write by another thread. At the response of a
write that is not overlapping with other writes, the current value d of the register needs to be
replaced by the write value. Hence, whenever a write is invoked, the write value is stored in
s through uswi(s); this value can be retrieved with the mapping next : Ss → D if the write
had no overlapping writes. If there were overlapping writes, next is undefined. The right-
hand side of the equation in Figure 1 specifies the behaviour of the register using standard
process-algebraic operations: · denotes sequential composition, + denotes non-deterministic
choice, → denotes a conditional, and

∑
denotes choice quantification [14].

The definition in Figure 1 induces a transition relations a−→ (a ∈ A) on the set of tuples
⟨d, s⟩ (d ∈ D, s ∈ Ss). For instance, if i ∈ rdrs(s) and ¬overlapi(s), then there is a transition

⟨d, s⟩ fri(d)−→ ⟨d, ufr i(s)⟩ ,

according to the third summand of the definition in Figure 1; and if i ∈ wrtrs(s) and
overlapi(s), then, for every d′ ∈ D, there is a transition

⟨d, s⟩ fwi−→ ⟨d′, uswi(s)⟩ ,

according to the last summand of the definition in Figure 1.
We let sinit denote the initial state of the safe register, and we define idle(sinit) =

T, wrtrs(sinit) = rdrs(sinit) = ∅, overlapi(s) is false, and next(s) = dinit . Henceforth,
we shall abbreviate Rs(dinit , sinit) by Rs. A trace of Rs is a finite or infinite sequence
a0a1 · · · an−1an · · · of elements of A such that there exist d0, d1, d2, . . . , dn, . . . ∈ D and
s0, s1, s2, . . . , sn, . . . ∈ Ss with d0 = dinit and s0 = sinit and ⟨d0, s0⟩

a0−→ ⟨d1, s1⟩
a1−→ · · · an−1−→

⟨dn, sn⟩
an−→ · · · . We denote by Ts the set of all traces of Rs. A trace α ∈ Ts is complete if,

for all i ∈ T, either α|i is infinite or α|i ends with a response. A single-writer trace is a trace
in which all invocations and responses of write operations are by the same thread.

CONCUR 2023



5:6 Process-Algebraic Models of MWMR Non-Atomic Registers

We argue that there is a one-to-one correspondence between the single-writer safe schedules
and the single-writer complete traces of Rs. First, note that schedules and complete traces
adhere to exactly the same restrictions regarding the order in which invocations and responses
of read and write operations can occur: the invocation of an operation by some thread
can only occur when that same thread is not currently executing another operation, and
a response to some thread for an operation can only occur if the last interaction of that
thread was, indeed, an invocation of that same operation. Write values are not restricted
in schedules, nor in complete traces. Moreover, in the single-writer case the value of the
parameter d of the process Rs will always be the write value of write operation of which the
execution finished last. Finally, note that both in schedules and in complete traces of Rs,
if a read operation overlaps with a write operation, then it may return any value, and if it
does not, then it will, indeed, return the value of the most recent write operation.

▶ Proposition 4. Every single-writer safe schedule is a trace of Rs, and every complete
single-writer trace of Rs is a safe schedule.

3.2 MWMR regular registers
According to Lamport’s definition of SWMR regular registers (see Definition 2), a read either
returns the write value of the <σ-maximum of fix-writes(σ, r) or the value written by one of
its overlapping writes. When writes may have overlapping writes, then fix-writes(σ, r) may
not have a <σ-maximum. It is then necessary to determine, for every read r, which of the
<σ-maximal elements of fix-writes(σ, r) should be taken into account when determining the
return value of r, and to what extent different reads should agree on this choice.

Our considerations are as follows. First, we want our MWMR regular register model to
coincide with Lamport’s SWMR regular register model when there are no writes overlapping
other writes, so that our analyses of algorithms that rely on SWMR regular registers are valid
with respect to Lamport’s model. Second, our model should be suitable for explicit-state
model checking. This precludes any definition that requires keeping track of unbounded
information pertaining to the history of the computation. To limit the amount of information
that the model is required to remember, we let the register commit to a unique value when
there are no active writes. In this respect, our model deviates from three of the four models
considered in [29]; in Section 4 we provide a more detailed comparison.

To be consistent with Lamport’s SWMR regular registers, a read r should be able return
the value of any overlapping write. To determine which of the elements of the fixed writes is
taken into account when determining the return value of r, our model non-deterministically
inserts a special order action owi somewhere between the invocation and the response of
every write of every thread i ∈ T. One may think of the order action as marking the moment
at which the write truly takes place. Note that this order action is purely for modelling
purposes, we make no claims on the implementation of a regular register. The write value
associated with the most recent order action preceding the invocation of a read (or the initial
value if no order actions have occurred yet) is taken into account as possible return value
for that read. Thus, a serialisation of all writes is generated on-the-fly through the order
actions: all read operations agree on the order of the writes.

Our process-algebraic definition of a MWMR regular register is given in Figure 2. Here,
Sr denotes the set of possible states of the MWMR regular register. The register keeps track
of the readers, writers and idle threads, similar to the safe register. It additionally keeps
track of the set pndng(s) of threads that have invoked a write but for which the order action
has not yet occurred. The update function uowi : Sr → Sr associated with the order action
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Rr(d : D, s : Sr) =
∑
i∈T


(i ∈ idle(s))→ sri ·Rr(d, usr i(s))

+ (i ∈ idle(s))→
∑

d′∈D swi(d ′) ·Rr(d, uswi(d′, s))
+ (i ∈ rdrs(s))→

∑
d′∈pvali(s) fri(d ′) ·Rr(d, ufr i(s))

+ (i ∈ pndng(s))→ owi ·Rr(wvali(s), uowi(s))
+ (i ∈ wrtrs(s) ∧ i ̸∈ pndng(s))→ fwi ·Rr(d, ufwi(s))


Figure 2 Regular register model.

owi removes thread i from pndng(s). For every thread i ∈ pndng(s), wvali(s) is the write
value of that write; it is used to correctly update the current value d of the register when owi
occurs. For every thread i ∈ rdrs(s), pvali(s) is the set of values that a read r invoked by
thread i may return. That is, it consist of the values of all writes overlapping with r (thus
far) and the value of the write with the most recent owj before the invocation of r.

For i ∈ T, let Ar
i = Ai ∪ {owi}, and let Ar =

⋃
i∈T Ar

i . The process definition in Figure 2
induces transition relations a−→ (a ∈ Ar) on the set of tuples ⟨d, s⟩ (d ∈ D, s ∈ Sr). As
before idle(sinit) = T, rdrs(sinit) = wrtrs(sinit) = ∅. We also have pndng(sinit) = ∅, and
pvali(sinit) = ∅ for all i ∈ T. The initial values for wvali(sinit) do not matter, since wvali(s)
only matters when i ∈ pndng(s). We use Rr to abbreviate Rr(dinit , sinit), and define a trace
of Rr, also as before, as a finite or infinite sequence of elements of Ar appearing as labels in
a transition sequence starting at ⟨dinit , sinit⟩. We denote by Tr the set of all traces of Rr.

Compared to schedules, the traces of Rr have extra owi actions. If α is a finite or infinite
sequence of elements of Ar, then we denote by ᾱ the sequence of elements of A obtained
from α by deleting all occurrences of owi (i ∈ T). We can then formulate a correspondence
between the single-writer traces of Rr (i.e., the traces in which all invocations and responses
of write operations are by the same thread) and single-writer regular schedules.

If writes have no overlapping writes, then the most recent order action when a read r is
invoked either corresponds to the <σ-maximum of fix-writes(σ, r), or to a write that overlaps
with r. In the first case, the set of possible values that can be returned by the read according
to our model will coincide with the set of possible values that it can return according to
Definition 2. In the latter case, our model allows a subset of the values possible according to
Definition 2 to be returned. Hence, a read in our model never returns a value that could not
be returned according to Lamport’s SWMR definition of regular registers. Moreover, if there
is a trace of Rr in which the order action owi of a write that overlaps with r occurs before
the invocation of r, then there also exist a trace in which it occurs after the invocation of r.
Thus, the set of traces described by our model includes all regular schedules according to
Definition 2 whenever there are no writes overlapping other writes.

▶ Proposition 5. For every single-writer regular schedule σ there is a trace α of Rr such
that ᾱ = σ, and if α is a complete single-writer trace of Rr, then ᾱ is a regular schedule.

3.3 MWMR atomic registers
Definition 3, formalising Lamport’s notion of SWMR atomic register, straightforwardly
generalises to MWMR registers by omitting the single-writer restriction on schedules. Our
process-algebraic model should generate the legal serialisation of all operations on-the-fly.
To this end, we introduce, for every thread i, execution actions eri and ewi to mark the
exact moment at which an operation is treated as occurring. An operation’s execution action
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5:8 Process-Algebraic Models of MWMR Non-Atomic Registers

must, of course, occur between its invocation and response. The value that is returned at
the response of a read is the value that the register stored at the moment of that read’s
execution; the register’s stored value is updated to a write’s value at that write’s execution.

The process-algebraic model of our MWMR atomic register is shown in Figure 3. The set
of states of Ra is denoted by Sa. In addition to the standard update functions, there are
extra update functions uer i, uewi : Sa → Sa for the execution actions. The effect of applying
uer i on s is to store the current value d of the register as the value that should be returned
at the response of the active read by thread i; this value can then be retrieved with valsi(s),
and valsi(s) = ⊥ until then. The effect of applying uewi is to update the current value d of
the register to the write value of the active write by thread i; this value can also be retrieved
with valsi(s), and valsi(s) = ⊥ thereafter. Note that, by setting valsi(s) to ⊥ before a read
has been executed and after a write has been executed, we can use valsi(s) in combination
with rdrs(s) and wrtrs(s) to determine whether the execution of an operation has taken
place.

Ra(d : D, s : Sa) =

∑
i∈T



(i ∈ idle(s))→ sri ·Ra(d, usr i(s))
+ (i ∈ idle(s))→

∑
d′∈D swi(d ′) ·Ra(d, uswi(d′, s))

+ (i ∈ rdrs(s) ∧ valsi(s) = ⊥)→ eri ·Ra(d, uer i(s))
+ (i ∈ wrtrs(s) ∧ valsi(s) ̸= ⊥)→ ewi ·Ra(valsi(s), uewi(s))
+ (i ∈ rdrs(s) ∧ valsi(s) ̸= ⊥)→ fri(valsi(s)) ·Ra(d, ufr i(s))
+ (i ∈ wrtrs(s) ∧ valsi(s) = ⊥)→ fwi ·Ra(d, ufwi(s))


Figure 3 Atomic register model.

For i ∈ T, let Aa
i = A ∪ {eri , ewi}, and let Aa =

⋃
i∈T Aa

i . The process definition in
Figure 3 induces transition relations a−→ (a ∈ Aa) on the set of tuples ⟨d, s⟩ (d ∈ D, s ∈ Sa).
As before idle(sinit) = T and rdrs(sinit) = wrtrs(sinit) = ∅; the initial values for valsi(sinit)
do not matter. We use Ra to abbreviate Ra(dinit , sinit), and define a trace of RA, also as
before, as a finite or infinite sequence of elements of AA appearing as labels in a transition
sequence starting at ⟨dinit , sinit⟩. We denote by Ta the set of all traces of Ra.

Compared to schedules, the traces of Ra have extra eri and ewi actions. If α is a finite
or infinite sequence of elements of Aa, then we denote by ᾱ the sequence obtained from α

by deleting all occurrences of eri and ewi for i ∈ T. The correspondence between atomic
schedules and complete traces of Ra follows straightforwardly. It suffices to prove that Ra

admits exactly those traces α such that there exists a legal serialisation of ᾱ. To this end,
note that the execute actions provide such a serialisation, and the definition of Ra has the
responses of operations behave in accordance with this serialisation.

▶ Proposition 6. For every atomic schedule σ there is a trace α of Ra such that ᾱ = σ, and
if α is a complete trace of Ra, then ᾱ is an atomic schedule.

3.4 mCRL2 implementation
The mCRL2 toolset [7] provides tools for model checking and equivalence checking. Models
are defined in the mCRL2 language [14], which comprises a process-algebraic specification
language and facilitates the algebraic specification of data types. Properties defined in the
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modal µ-calculus can be checked on those models. One nice feature of mCRL2 is that when
a property does not hold a counterexample can be generated. For more information we refer
to [14] as well as the toolset’s website2.

We have implemented the models presented in Figures 1, 2 and 3 in the mCRL2 language.
By adding processes that model the threads executing the desired algorithm in a manner
compatible with the interface of the register models, we can verify the same algorithm easily
under different atomicity assumptions. An added benefit is that we can assume different
levels of atomicity for different registers simultaneously, so that we pinpoint exactly to what
extent the algorithm is robust for non-atomicity. The model can be found as part of the
examples delivered with the mCRL2 distribution3.

The mCRL2 language has support for standard data types such as sets, bags and arrays
(implemented as mappings) as well an algebraic specification facility to define new datatypes.
This allows us to model the register models staying close to the process-algebraic models
presented in this paper.

4 Alternative definitions of MWMR regular registers

In [29] four definitions for MWMR regular registers are proposed. These are formulated as
conditions on schedules. We discuss how our definition of MWMR regular registers relates
to these definitions.

The following definition captures the weakest condition on schedules presented in [29].

▶ Definition 7. A schedule σ satisfies the weak condition if, for every read operation r in
ops(σ), there exists a legal serialisation of writes(σ) ∪ {r}.

It follows straightforwardly from our MWMR regular register definition that any complete
trace α ∈ Tr , when transformed into a schedule ᾱ by deleting the order actions, satisfies
Definition 7. As explained in Section 3.2, our model generates a serialisation of all writes.
For every read r by thread i, it returns either the value of the last write in this serialisation
before sri , or the value of one of the writes overlapping this read. In both cases, we may
obtain a legal serialisation of writes(ᾱ) ∪ {r} by taking the serialisation of writes associated
with ᾱ and inserting r right after the write that it reads from. This is consistent with <σ

because the serialisation of the writes is, and r will only be placed after a write that either
has its response before the invocation of r, or that r overlaps with.

▶ Proposition 8. If α ∈ Tr is complete, then the schedule ᾱ satisfies the weak condition.

In all our MWMR register definitions it is the case that when no writes are active on
a register, it stores a unique value. It reduces the burden of storing elaborate information
on the execution history of the register, as would be necessary with the definitions of [29],
and thus leads to a smaller statespace. A consequence of our choice is that not all schedules
satisfying the weak condition can be generated by our model.

▶ Example 9. Consider the schedule depicted in Figure 4a. It is argued in [29, Figure 6]
that it satisfies the weak condition, but it cannot be generated by our regular register model
Rr because once w1 and w2 have ended, the register will have stored a unique value (either 1
or 2). Hence, the return values of r1 and r2 cannot be different. Note that, for the same
reason, the schedule cannot be generated by our safe register model Rs.

2 https://www.mcrl2.org
3 https://github.com/mCRL2org/mCRL2/tree/master/examples/academic/non-atomic_registers

(972629b)
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T0

T1

w1: x ← 1

w2: x ← 2

r1: x = 1

r2: x = 2

(a) A schedule allowed by the weak, reads-
from and no-inversion definitions but not
by our regular register model.

T0

T1

w1: x ← 1

w2: x ← 2

r1: x = 2

r2: x = 1

(b) A schedule allowed by our regular re-
gister model but not by the write-order
definition.

Figure 4 Schedules demonstrating the differences between our regular register model and the
definitions in [29]. We illustrate these schedules on a timeline, where an operation is drawn from its
invocation to its response.

As illustrated in the preceding example, there exist schedules satisfying the weak condition
that cannot be generated by our safe register model Rs. Conversely, it is easy to see that
there exist complete traces generated by our safe register model Rs (e.g., with overlapping
writes resulting in a value that is not written by any of the writes) that do not satisfy the
weak condition.

The second condition in [29] associates with every read operation a serialisation and
formulates a consistency requirement on these serialisations. If r ∈ reads(σ), then an
r-serialisation is a serialisation Sr on rel-writes(σ) ∪ {r}.4

▶ Definition 10. A schedule σ satisfies write-order if for each read r in ops(σ) there exists
a legal serialisation Sr of rel-writes(σ) ∪ {r} satisfying the following condition: for all reads
r1, r2 in ops(σ), and for all writes w1, w2 ∈ rel-writes(σ, r1) ∩ rel-writes(σ, r2) it holds that
w1 Sr1 w2 if and only if w1 Sr2 w2.

▶ Proposition 11. For every schedule σ satisfying the write-order condition, there exists a
trace α in Tr such that ᾱ = σ.

We give a brief, informal description of how such a trace α can be constructed here; a more
formal argument is presented in [30, Appendix A]. The idea is that order actions can be
inserted between the invocation and response of every write in σ, such that the return values
of the reads match this placement of order actions. Note that for reads that return the value
of an overlapping write, this return value is possible according to Figure 2 regardless of how
the order actions are placed. In our placement of order actions, we therefore only need to
carefully consider reads that return the value of a write that is fixed for them. According
to Definition 10, reads in σ agree on the relative ordering of all writes that are relevant to
them. Since fix-writes(σ, r) ⊆ rel-writes(σ, r) for every read r, the reads also agree on the
relative ordering of the fixed writes. We use this information to construct an ordering on all
writes that is consistent both with <σ and with the return values of reads that read from
writes that are fixed for them. Effectively, we find a single view on the relative order of all
the write operations that is possible for every read in the schedule that returns the value of
a fixed write. Using this ordering, we can then place the order actions in the schedule σ to
create the trace α ∈ Tr such that ᾱ = σ.

4 By considering serialisations of the relevant writes for r, instead of all writes, we deviate from [29].
Since a serialisation S on writes(σ) ∪ {r} must be consistent with <σ, we will have that r S w for all
w ∈ writes(σ) \ rel-writes(σ). It follows that the restriction of a serialisation S on writes(σ) ∪ {r} to
rel-writes(σ) ∪ {r} is an r-serialisation, and S is legal if, and only if, its restriction is.
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Whilst every schedule satisfying Definition 10 corresponds to a trace of our model, not
every schedule with a corresponding trace in our model is allowed by the write-order condition.

▶ Example 12. Consider Figure 4b. This schedule is allowed by our model; r1 can read 2
in x because it overlaps with w2 and it is possible for r2 to read 1 if the order action of w2
is done before the order action of w1. This schedule does not meet Definition 10 however;
since both writes to x are relevant for both reads, the two reads must agree on the respective
order of the writes. For r2 to read 1, it must be the case that w2 Sr2 w1. But since w1 < r1
according to the schedule, this means that w2 Sr1 w1 Sr1 r1, so r1 cannot read 2.

The third and fourth conditions on schedules proposed in [29] we refer to as reads-from
[29, Definition 9] and no-inversion [29, Definition 10], respectively. We do not recall these
conditions here, and instead refer to [29] for more details.

Our notion of MWMR regular register is incomparable with the notions induced by
the reads-from and no-inversion conditions on schedules. First, as already indicated, every
schedule that satisfies the write-order condition is also allowed by our model. As it is proven
in [29] that the write-order condition is incomparable with the reads-from and no-inversion
conditions, this means our model admits schedules not admitted by these definitions. To see
that that not all schedules satisfying reads-from and no-inversion are admitted by our model,
it suffices to observe that the schedule presented in Figure 4a, which is not admitted by
our MWMR regular register model, satisfies the reads-from and the no-inversion conditions.
(See, e.g., [29, Figure 8] and [29, Figure 9], which satisfy the reads-from and no-inversion
conditions, respectively, and have the schedule in Figure 4a as prefix.)

5 Verifying Mutual Exclusion Protocols

We have used the register processes described in Section 3 to analyse several well-known
mutual exclusion algorithms. To this end, we have modelled the behaviour of the threads
as prescribed by the algorithm also as processes, which interact with the register processes.
That a thread is executing its non-critical section is represented in our model by the action
noncrit, and that is executing its critical section is represented by the action crit; both
actions are parameterised with the thread id. We have checked the following two properties.
▶ Property 1 (Mutex). There is no state reachable from the initial state of the model in
which there are two distinct threads i and j such that crit(i) and crit(j) are both enabled in
this state.
▶ Property 2 (Reach). For all threads i, always after an occurrence of a noncrit(i) action it
holds that, as long as a crit(i) action has not happened, a state is reachable in which crit(i)
is enabled.

The Reach property is implied by starvation freedom, and so if it does not hold, then
neither does starvation freedom. We chose to analyse this property rather than starvation
freedom itself because the presence of busy waiting loops in our models would require us
to use fairness assumptions to dismiss spurious counterexamples. The question of how to
interpret fairness assumptions when dealing with non-atomic registers is outside of the scope
of this paper.

The results of our verification are shown in Table 1. When doing model checking, we
have to instantiate a specific number of threads. We have restricted our verification to three
threads for all algorithms, except for Dekker, Attiya-Welch and Peterson, which are only
defined for two threads.
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Table 1 Results of verifying mutual exclusion algorithms.

Safe Regular Atomic
Mutex Reach Mutex Reach Mutex Reach

Aravind (BLRU) [3, Figure 4] ✓ ✓ ✓ ✓ ✓ ✓

Attiya-Welch [4, Algorithm 12] ✓ ✓ ✓ ✓ ✓ ✓

Attiya-Welch alternate [29, Figure 19.1] ✓ × ✓ × ✓ ✓

Dekker [1, Figure 1] ✓ ✓ ✓ ✓ ✓ ✓

Dijkstra [9] ✓ ✓ ✓ ✓ ✓ ✓

Knuth [17] ✓ ✓ ✓ ✓ ✓ ✓

Lamport (3-bit) [20, Figure 2] ✓ ✓ ✓ ✓ ✓ ✓

Peterson [27] × ✓ × ✓ ✓ ✓

Szymanski (flag) [31, Figure 2] × × × ✓ ✓ ✓

Szymanski (flag with bits) × ✓ × ✓ × ✓

Szymanski (3-bit lin. wait) [32, Figure 1] × ✓ × ✓ × ✓

In this section, we discuss some of our most interesting findings. For complete descriptions
of counterexamples, as well as further discussion of our results we refer to [30, Appendix B].
All models are available through GitHub5.

5.1 Peterson’s Algorithm

Algorithm 1 Peterson’s algorithm for two threads from [27]. We use i for the thread’s own id
and j for the other thread’s id.

1: flag[i]← 1
2: turn ← i

3: await flag[j] = 0 ∨ turn = j

4: critical section
5: flag[i]← 0

Peterson’s classic algorithm (see Algorithm 1) was not designed to be correct under non-
atomic register assumptions. An analysis of the mutual exclusion violation with safe registers
still gives interesting insights into the algorithm and some of the unexpected behaviour of
safe registers.

T0

T1

d

noncrit

noncrit w1: flag[1] ← 1 w3: turn ← 1

w2: flag[0] ← 1 w4: turn ← 0

r1: flag[0] = 1 r2: turn = 0

r3: flag[1] = 1 r4: turn = 1 crit

crit

Figure 5 Counterexample generated by mCRL2 for mutual exclusion for Peterson’s algorithm
with safe registers, represented on a timeline.

5 https://github.com/mCRL2org/mCRL2/tree/master/examples/academic/non-atomic_registers
(972629b)

https://github.com/mCRL2org/mCRL2/tree/master/examples/academic/non-atomic_registers
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As expected, mCRL2 reports that mutual exclusion does not hold when using non-atomic
registers. We present a visualisation of the counterexample generated by mCRL2 for safe
registers in Figure 5. There are two instances of overlapping operations. First, since the two
writes to turn, labelled w3 and w4 in Figure 5, overlap, according to the safe register model
the register can have any arbitrary value after they both have ended. In this counterexample,
turn has the value 1, which allows thread 0 to read the value 1 (the read labelled r4) and
enter the critical section. Second, thread 1’s read of turn (labelled r2) overlaps with thread
0’s write (labelled w4). The read can therefore return an arbitrary value, in this case the
value 0, which allows thread 1 to enter the critical section.

This counterexample shows only overlaps on the turn register. We can initialise our
model such that the turn register is atomic, but both flag registers behave as safe registers.
We find that mutual exclusion does hold then. This confirms that overlapping operations on
the turn register are the sole cause of the mutual exclusion violation for Peterson’s algorithm.
We discuss Peterson’s algorithm with regular registers in [30, Appendix B].

5.2 Szymanski’s Flag Algorithm

Algorithm 2 Szymanski’s flag algorithm from [31], i is the thread’s own id.

1: flag[i]← 1
2: await ∀j. flag[j] < 3
3: flag[i]← 3
4: if ∃j. flag[j] = 1 then
5: flag[i]← 2
6: await ∃j. flag[j] = 4
7: flag[i]← 4
8: await ∀j < i. flag[j] < 2
9: critical section

10: await ∀j > i. flag[j] < 2 ∨ flag[j] > 3
11: flag[i]← 0

There are several variants of Szymanski’s algorithm, which all seem to have been derived from
the flag-based algorithm shown as Algorithm 2. In [31], Szymanski proposes this flag-based
algorithm and claims that an implementation of it representing the flags using three bits is
robust for flickering of bits (i.e., is correct for non-atomic registers). As indicated in Table 1,
we find that neither the integer nor the bits variant ensure mutual exclusion when using
non-atomic registers. The full analysis of the bits version, as well as a variant of it known as
the 3-bit linear wait algorithm [32] are presented in [30, Appendix B]. Here, we only discuss
the integer version of the flag algorithm, as the counterexample against Mutex that we have
found illustrates the core issue shared by all mentioned variants of Szymanski’s algorithm.

The pseudocode for the flag algorithm is shown in Algorithm 2. It is originally presented
in [31, Figure 2], but note that we have repaired an obvious typo: [31, Figure 2] erroneously
has a conjunction instead of a disjunction in line 10. All flag registers are initialised at 0.

See Figure 6 for a visualisation of the counterexample for mutual exclusion with two
threads and regular registers that we found using the mCRL2 toolset. The first instance of a
read overlapping with a write is irrelevant, reading flag[1] = 1 would also have been possible
without overlap. The other two instances of overlap are of interest. Thread 0 is writing
the value 3 to flag[0] and thread 1 reads flag[0] twice while this write is active. The first

CONCUR 2023



5:14 Process-Algebraic Models of MWMR Non-Atomic Registers

T0

T1

noncrit

noncrit flag[1] ← 1 flag[0] = 0 flag[1] = 1 flag[1] ← 3

flag[0] ← 1 flag[0] = 1 flag[1] = 1

flag[0] = 3

flag[0] ← 3

flag[1] = 3 flag[1] ← 4 flag[0] = 1

flag[0] = 3 flag[1] = 4 flag[0] ← 4 crit

crit

Figure 6 Mutex violation for Szymanski (flag) with regular registers and two threads, generated
by mCRL2, on a timeline. The order-actions are drawn with lines during a write’s execution.

time it reads the new value (3), while the second time it reads the old value (1). Lamport
specifically highlights that such a sequence is possible when using regular registers [22].
Since only single-writer registers are used and write-order reduces to Lamport’s definition of
regular registers when single-writers in that case [29], this counterexample is also valid for
write-order.

5.3 Implementation Details
Our analyses have also revealed that seemingly minor implementation subtleties can make
the difference between a correct and an incorrect algorithm. A non-atomic register that is
read multiple times in a row may return different values, even if no new writes to this register
have started. This means that when the value of a register needs to be checked several times
in an algorithm, there is a difference between reading it once and subsequently checking a
local copy of the value, or reading it again when needed.

For an example where this affects correctness, consider the Attiya-Welch algorithm. While
the presentation in [4, p. 77] ensures reachability of the critical section with safe registers,
the seemingly equivalent reformulation of this same algorithm in [29] does not. The latter
suggests that a thread needs to read a particular register twice as part of two different
conditions that in the former are handled simultaneously. In [29], that presentation of the
algorithm is claimed to be correct under all four of their MWMR regular register models;
our counterexample shows that it is not. A similar phenomenon occurs with Lamport’s 3-bit
algorithm, in which each thread i has a bit zi. As part of the algorithm, a computation is
done on z (the function assigning zi to i). Lamport states that “evaluating [z] at j requires
a read of the variable zj .” This may lead one to implement this algorithm by having threads
re-read variables whenever needed. It turns out this implementation leads to a deadlock.
Locally saving all required z-values at the start of the computation and then only referencing
this local copy during the computation solves this issue. Consequently, these algorithms
have a correct implementation, but they are also easily implemented incorrectly. See the
discussions of Attiya-Welch and Lamport in [30, Appendix B] for more details.

5.4 Other Verifications
There have been many mechanical verifications of mutual exclusion algorithms with atomic
registers. For instance, in recent tutorials on the verification of distributed algorithms in
mCRL2, verifications of Dekker’s and Peterson’s algorithms are presented [12, 13]. Several
such verifications have also been done with the CADP toolset; see, e.g., [26] for the results of
verifying a large number of mutual exclusion algorithms, including Szymanski, Dekker and
Peterson, with atomic registers.

To the best of our knowledge, we are the first to propose a systematic approach to
mechanically verifying the correctness of mutual exclusion algorithms with respect to non-
atomic registers, but there have been some mechanical verifications for specific algorithms.
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Lamport himself modelled the Bakery algorithm in TLA+, representing the non-atomic
writes as sequences of write actions of arbitrary length, where every action results in an
arbitrary value being written, except for the last which writes the intended value [23]. This
approach for modelling safe registers only works for SWMR registers; it does not work for
MWMR registers. This approach for modelling safe SWMR registers, as well as a similar
approach for modelling regular SWMR registers, is presented in [2]. This approach is also used
in several verifications done by Wim Hesselink, including of the Lycklama–Hadzilacos–Aravind
algorithm in [16] and the Bakery algorithm in [15].

In [8], several mutual exclusion algorithms are verified with atomic registers using timed
automata in UPPAAL. Additionally, the Block & Woo algorithm is checked with bit flickering.
Their model does not account for writes that overlap with other writes. Additionally, their
model for the behaviour of safe registers is specific to the registers used in the algorithm.

Dekker’s algorithm with safe registers is considered in [6]. There it is demonstrated that
Dekker’s algorithm does not satisfy starvation freedom when safe registers are used, and a
fixed version of the algorithm is presented.

Szymanski’s flag algorithm with atomic registers is proven correct in [25]. This paper
demonstrates the importance of checking all threads in the “forall” and “exists” statements
in the pseudocode in the same order every time. This is also how we model the algorithm.

There have been other verifications of Szymanski’s algorithms [24, 33], the former paper
using the STeP tool. However, the exact pseudocode in those proofs differs from the
pseudocode in [31] and [32].

6 Conclusions

We have presented process-algebraic models of safe, regular and atomic multi-writer multi-
reader registers and used them to determine the robustness of various mutual exclusion
algorithms for relaxed atomicity assumptions. Our analyses revealed issues with several of
the algorithms discussed.

There are many more mutual exclusion algorithms that could be analysed in the same
way as the ones shown in Section 5. In [32], Szymanski presents three other mutual exclusion
algorithms. There also exist several variants of Szymanski’s algorithm [24, 33], all of which
are similar to the 3-bit linear wait algorithm but differ in small ways. In [6] it is shown that
Dekker’s algorithm does not ensure starvation freedom when safe registers are used and a
modified version of the algorithm is presented which does satisfy this property. When we
add verification of starvation freedom to our analysis, we can confirm their work.

We have only considered to what extent various algorithms guarantee mutual exclusion
and whether the critical section is always reachable for every thread. Our next step will be to
consider starvation freedom. Van Glabbeek proves that starvation freedom cannot hold for
any mutual exclusion algorithm for which the correctness, on the one hand, relies on atomicity
of memory interactions and, on the other hand, does not rely on assumptions regarding the
relative speeds of threads [10]. A crucial presupposition for his argument is that a convincing
verification hinges on not more than a component-based fairness assumption called justness
[11]. In [5] a method is proposed for verifying liveness properties under justness assumptions
using the mCRL2 toolset. The method requires a classification of the roles of components in
interactions. It should be investigated how to classify the roles of threads and registers in
invocations and responses, and, in particular, how to deal with the owi , ewi and eri actions.
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Abstract
Vector Addition Systems (VAS), aka Petri nets, are a popular model of concurrency. The reachability
set of a VAS is the set of configurations reachable from the initial configuration. Leroux has studied
the geometric properties of VAS reachability sets, and used them to derive decision procedures for
important analysis problems. In this paper we continue the geometric study of reachability sets. We
show that every reachability set admits a finite decomposition into disjoint almost hybridlinear sets
enjoying nice geometric properties. Further, we prove that the decomposition of the reachability
set of a given VAS is effectively computable. As a corollary, we derive a new proof of Hauschildt’s
1990 result showing the decidability of the question whether the reachability set of a given VAS is
semilinear. As a second corollary, we prove that the complement of a reachability set, if it is infinite,
always contains an infinite linear set.
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1 Introduction

Vector Addition Systems (VAS), also known as Petri nets, are a popular model of concurrent
systems. The VAS reachability problem consists of deciding if a target configuration of a
VAS is reachable from some initial configuration. It was proved decidable in the 1980s [8,17],
but its complexity (Ackermann-complete) could only be determined recently [2, 3, 14].

The reachability set of a VAS is the set of all configurations reachable from the initial
configuration. Configurations are tuples of natural numbers, and so the reachability set of a
VAS is a subset of Nn for some n called the dimension of the VAS. Results on the geometric
properties of reachability sets have led to new algorithms in the past. For example, in [12]
it was shown that every configuration outside the reachability set R of a VAS is separated
from R by a semilinear inductive invariant. This immediately leads to an algorithm for
the reachability problem consisting of two semi-algorithms, one enumerating all possible
paths to certify reachability, and one enumerating all semilinear sets and checking if they are
separating inductive invariants. Another example is [13], where it was shown that semilinear
reachability sets are flatable. The result led to an algorithm for deciding whether a semilinear
set is included in or equal to the reachability set of a given VAS.
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6:2 Geometry of Reachability Sets of Vector Addition Systems

The separability and flatability results of [12,13] are proven not only for VAS reachability
sets, but for arbitrary semilinear Petri sets, a larger class with a geometric definition
introduced in [12]. So, in particular, [13] is an investigation into the geometric structure
of semilinear Petri sets. In this paper we study the structure of the non-semilinear Petri
sets. We introduce hybridization, or, equivalently, the class of almost hybridlinear sets, a
generalization of the hybridlinear sets introduced by Ginsburg and Spanier [4] and further
studied by Chistikov and Haase [1]. We prove the following decomposition:

▶ Theorem 1.1. Let X be a Petri set. For every semilinear set S there exists a partition
S = S1 ∪ · · · ∪ Sk into pairwise disjoint full linear sets such that for all i ∈ {1, . . . , k} either
X ∩ Si = ∅, Si ⊆ X or X ∩ Si is irreducible with hybridization Si. Further, if X is the
reachability set of a VAS, then the partition is computable.

Defining hybridization and irreducibility is beyond the scope of this introduction; in fact,
they will be introduced in Section 4 and 5 of this paper. However, we can already explain
two properties of the irreducible sets with a hybridization which, combined with Theorem
1.1, have important consequences.

Firstly, irreducible sets with hybridization are always non-semilinear. This leads to
a simple algorithm for deciding whether the reachability set X ⊆ Nd of a given VAS of
dimension d is semilinear. Let S := Nd and compute the partition S1 ∪ · · · ∪ Sk of Theorem
1.1. For every 1 ≤ i ≤ k, check whether X ∩ Si = ∅ or Si ⊆ X hold1. If this is the case for
all i, then let J be the set of indices i, where Si ⊆ X holds. We have

⋃
i∈J Si = X ∩ S = X,

and so, since S1, . . . , Sk are linear, X is semilinear. Otherwise, by Theorem 1.1 there exists
an i such that X ∩ Si is irreducible with hybridization Si, and hence non-semilinear. Since
semilinear sets are closed under intersection, X is not semilinear. The decidability of the
semilinearity of VAS reachability sets was first proved by Hauschildt [6], and in fact we arrive
at essentially the same algorithm. However, we provide a simpler correctness proof and a
clear geometric intuition. Further, our theorem holds for arbitrary Petri sets, a larger class
than VAS reachability sets.

Secondly, if a set X is irreducible with hybridization S, then there are infinitely many
points in the boundary ∂S of S that do not belong to S, i.e., |∂S \ X| = ∞. This allows
to prove that if S \ X is infinite, then S \ X contains an infinite linear set, which was left
as a conjecture in [7]. Namely the proof is now a simple induction on the dimension of the
semilinear set S: If S \ X is infinite, then some Si \ X is infinite. If for this i, we have
X∩Si = ∅ or Si ⊆ X, then Si \X is semilinear and hence contains an infinite line. Otherwise
we have that |∂Si \ X| = ∞, and hence by induction ∂Si \ X contains an infinite line. This
corollary is a first step towards understanding the complements of VAS reachability sets, for
which little is known.

The sections of the paper follow the structure of the main theorem. Section 2 contains
preliminaries. Section 3 introduces smooth sets, preparing for the introduction of hybridization
and Petri sets in Section 4. Section 5 introduces irreducibility and proves Theorem 1.1.
Section 6 proves the corollaries of Theorem 1.1.

2 Preliminaries

We let N,Z,Q,Q≥0 denote the natural, integer, and (non-negative) rational numbers.

1 It is well known that the first question can be reduced to the VAS reachability problem, and the second
is decidable by the flatability results mentioned before.
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Furthermore, we use uppercase letters except A for sets, with A being used for matrices.
We use boldface for vectors and sets of vectors. We denote the cardinality of a set X as |X|.

Given sets X, Y ⊆ Qn, Z ⊆ Q, we write X + Y := {x + y | x ∈ X, y ∈ Y} and
Z · X := {λ · x | λ ∈ Z, x ∈ X}. By identifying elements x ∈ Qn with {x}, we define
x + X := {x} + X, and similarly λ · X := {λ} · X for λ ∈ Q. We denote by XC the
complement of X. On Qn, we consider the usual Euclidean norm and its generated topology.
We denote the closure of a set X in this topology by X.

A vector space V ⊆ Qn is a set such that 0 ∈ V, V + V ⊆ V and Q · V ⊆ V. Given a set
F ⊆ Qn, the vector space generated by F is the smallest vector space containing F. Every
vector space V is finitely generated (f.g.), i.e. there exists a finite set F ⊆ Qn generating V.
Furthermore, it can also be expressed as {x ∈ Qn | Ax = 0} for some integer matrix A.

2.1 Cones, lattices, and periodic sets
A set C ⊆ Qn is a cone if 0 ∈ C, C + C ⊆ C and Q>0C ⊆ C. Given a set F ⊆ Qn, the cone
generated by F is the smallest cone containing F. If C is a cone, then C − C is the vector
space generated by C. Not every cone is finitely generated (f.g.). Instead, we have:

▶ Lemma 2.1 ( [19, Corollary 7.1a]). Let C ⊆ Qn be a cone. Then C is finitely generated if
and only if C = {x ∈ C − C | Ax ≥ 0} for some integer matrix A.

In particular, finitely generated cones are closed. The interior of a finitely generated
cone C is the set int(C) = {x ∈ C − C | Ax > 0}, where A is a matrix as above. The
boundary of the cone is ∂(C) := C \ int(C). It is well known that the boundary of a cone
is a a finite union of lower dimensional cones, called facets [19]. In fact, there is a defining
matrix A such that the facets are exactly the sets of solutions obtained by changing one of
the inequalities of Ax ≥ 0 into an equality. For example, the left part of Figure 1 shows
the cone {(x, y) | x − y ≥ y, y ≥ 0}. Its facets are the sets {(x, y) | x − y = 0, y ≥ 0} and
{(x, y) | x ≥ y, y = 0} (shown as black lines in the picture), and their union is the boundary
of the cone.

A cone C is definable if it is definable in FO(Q, +, ≥). A cone C is definable iff C \ {0} =
{x ∈ C − C | A1x > 0, A2x ≥ 0} for some integer matrices A1, A2. In this case the closure
C is finitely generated. Intuitively, changing an equation from from ≥ 0 to > 0 removes a
facet. Removing all facets yields int(C).

A set L ⊆ Zn is a lattice if L + L ⊆ L, −L ⊆ L and 0 ∈ L. For any finite set
F = {x1, . . . , xs} ⊆ Nn, the lattice generated by F is Zx1 + · · · +Zxs. Every lattice is finitely
generated, and even has a generating set linearly independent over Q.

A set P ⊆ Nn is a periodic set if P + P ⊆ P and 0 ∈ P. For any set F ⊆ Nn,
the periodic set F∗ generated by F is the smallest periodic set containing F. We have
F∗ = {p1 + · · · + pr | r ∈ N, pi ∈ F for all i}. A periodic set P is finitely generated if P = F∗

for some finite set F. Finitely generated periodic sets are characterized as follows:

▶ Lemma 2.2 ( [13, Lemma V.5]). Let P ⊆ Nn be a periodic set. Then P is finitely generated
as a periodic set if and only if Q≥0P is finitely generated as a cone.

Any set generates a lattice, a cone and a vector space. In the case of periodic sets these
have simple formulas; namely P − P, as well as Q≥0P and VectSp(P) := Q≥0(P − P) =
Q≥0P − Q≥0P respectively. These are also depicted in the right of Figure 1. On the other
hand, if C is a cone and L is a lattice, then C ∩ L is a periodic set. We will consider periodic
sets of this form in more depth in Section 2.3.
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Figure 1 Left: The cone generated by {(1, 1), (1, 0)} is shown in red, with its boundary in
black. The lattice (2, 0)Z + (0, 2)Z is the set of of blue dots. Their intersection is the periodic set
{(2, 0), (2, 2)}∗.
Middle: The periodic set P = {(1, 0), (1, 2), (1, 3)}∗ is shown in blue. Intuitively, the set
{(1, 1), (2, 1), (3, 1), . . .} is a “hole” of P. Inside P we find the red area (2, 3) + P, whose blue
points do not intersect the hole, i.e., (2, 3) + Fill(P) ⊆ P.
Right: Graph comparing the classes of sets defined in Section 2.

2.2 Dimension
The dimension of a vector space defined as its number of generators is a well-known concept.
It can be extended to arbitrary subsets of Qn as follows.

▶ Definition 2.3 ([11, 12]). Let X ⊆ Qn. The dimension of X, denoted dim(X), is the
smallest natural number k such that there exist finitely many vector spaces Vi ⊆ Qn with
dim(Vi) ≤ k and vectors bi ∈ Qn such that X ⊆

⋃r
i=1 bi + Vi.

This dimension function has the following properties.

▶ Lemma 2.4. Let X, X′ ⊆ Qn, b ∈ Qn. Then dim(X) = dim(b + X) and dim(X ∪ X′) =
max{dim(X), dim(X′)}. Further, if X ⊆ X′, then dim(X) ≤ dim(X′).

▶ Lemma 2.5 ([11, Lemma 5.3]). Let P be periodic. Then dim(P) = dim(VectSp(P)).

Lemma 2.5 for example shows that the lattice and the cone depicted in the left of Figure 1,
as well as the periodic set obtained as intersection have dimension 2, because all of them
generate the vector space Q2.

2.3 Finitely generated vs. full periodic sets
A set L is linear if L = b + P with b ∈ Nn and P ⊆ Nn a finitely generated periodic set. A
set S is semilinear if it is a finite union of linear sets. The semilinear sets coincide with the
sets definable via formulas φ ∈ FO(N, +, ≥), also called Presburger Arithmetic. This is the
usual definition of a linear set in theoretical computer science, however, we will work with
a slightly smaller class of linear sets, which we call full linear sets. As shown for example
in [20], working with this smaller class does not change the class of semilinear sets: A set S
is semilinear if and only if it is a finite union of full linear sets, i.e. linear sets b + P where P
is not only finitely generated, but even full, as in the following definition.

▶ Definition 2.6. A periodic P is full if P = C ∩ L, where C is a f.g. cone and L a lattice.

Full linear sets have even been used as the main definition of linear set in the literature
before, for example in [18]. Furthermore, while not directly defined, this class was also
utilized in [12,13] as well. For an example of a finitely generated periodic set which is not
full, consider the middle of Figure 1.
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There is another equivalent definition of full periodic sets, which uses an overapproximation
of a periodic set we call Fill(P). This overapproximation was first introduced in [11] with
the terminology lin(P). However, we avoid this terminology because in [12, 13], the same
author used the same notation with a slightly different meaning.

▶ Definition 2.7. Let P be a periodic set. The fill of P is the set Fill(P) := (P − P) ∩Q≥0P.

Intuitively, we overapproximate P via the intersection of the obvious lattice and cone.
The reason for using the closure of Q≥0P instead of the cone Q≥0P itself is Lemma 2.2: If
the cone is not closed, then the periodic set, in our case Fill(P), is not finitely generated. If
P was already finitely generated, the definitions coincide.

▶ Lemma 2.8. A periodic set P is full if and only if Q≥0P is a f.g. cone and P = Fill(P).

By Lemma 2.2, full periodic sets are finitely generated: Namely, their cone Q≥0P equals
C ∩ Q≥0L, which as intersection of f.g. cones is finitely generated by Lemma 2.1.

Let us conclude this subsection with the main advantage of full linear over linear sets.

▶ Lemma 2.9. Let P, Q periodic, P full, b, c ∈ Qn such that c + Q ⊆ b + P. Then Q ⊆ P.

Proof. Since P is full, by Lemma 2.8 it is sufficient to prove Q ⊆ P − P and Q ⊆ Q≥0P.
To prove Q ⊆ P − P, observe that Q = (c + Q) − c ⊆ (b + P) − (b + P) = P − P.
To prove Q ⊆ Q≥0P, write Q≥0P = {x ∈ VectSp(P) | Ax ≥ 0} for a matrix A, as in

Lemma 2.1. Let Ak be the k-th row of A. It suffices to show Akx ≥ 0 for all x ∈ Q. If we
had Akx < 0, then Ak(c + λx) < Akb for large enough λ, contradicting c + Q ⊆ b + P. ◀

Observe that if we replace full by finitely generated, then the lemma does not hold:
Choose P as the periodic set in the middle of Figure 1, then (2, 3) + {(1, 1)}∗ ⊆ P, and the
property is violated, since (1, 1) ̸∈ P.

Another advantage is that many proofs simplify in the full case. The following such case
will be a cornerstone of our main algorithm:

▶ Lemma 2.10 ([13, Corollary D.3]). Let P be a finitely generated periodic set. For every
x ∈ P the set S := P \ (x + P) is semilinear and satisfies dim(S) < dim(P).

To prove this, first show that P contains v + Fill(P), as in the middle of Figure 1, and
reduce to the case of full periodic P. For full P it is geometrically clear; for example removing
the red cone in the middle of Figure 1 from the set, we are left with a finite union of lines.

3 Smooth Periodic Sets

Not all periodic sets we need in the paper are finitely generated, but they are smooth, a
class introduced by Leroux in [13]. Intuitively, a smooth set P is “close” to being finitely
generated, in the sense that Fill(P) is finitely generated. This result (very similar to a result
of [11]) is proven in Section 3.1. In the rest of the section we show that smooth sets satisfying
a novel condition are closed under intersection and enjoy good properties (Proposition 3.9).

We first reintroduce the set of directions of a periodic set.

▶ Definition 3.1 ([13]). Let P be a periodic set. A vector d ∈ Qn is a direction of P if there
exists m ∈ N>0 and a point x such that x +N · md ⊆ P, i.e. some line in direction d is fully
contained in P. The set of directions of P is denoted dir(P).

We can now define smooth periodic sets.
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6:6 Geometry of Reachability Sets of Vector Addition Systems

▶ Definition 3.2 ([13]). Let P be a periodic set.
P is asymptotically definable if dir(P) is a definable cone, i.e. dir(P) \ {0} = {x ∈
VectSp(P) | A1x > 0, A2x ≥ 0} for some integer matrices A1, A2.
P is well-directed if every sequence (pm)m∈N of vectors pm ∈ P has an infinite subsequence
(pmk

)k∈N such that pmk
− pmj

∈ dir(P) for all k ≥ j.
P is smooth if it is asymptotically definable and well-directed.
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Figure 2 Left and middle: The periodic sets P = {(0, 0)} ∪ N2
>0 and P = {(x, y) ∈ N2 | y ≤ x2}

respectively. Neither is finitely generated, but both are smooth with Fill(P) = N2.
Right: Underapproximation of {(x, y) | y ≤ 2x+1} via a union of three cones. The starting points
are respectively (0, 0), (1, 0) and (2, 0).

Figure 2 shows two examples of smooth periodic sets that are not finitely generated.

▶ Example 3.3. Examples of non-smooth sets are P1 = {(x, y) | x ≥√
2y} and P2 = ({(0, 1)} ∪ {(2m, 1) | m ∈ N})∗ = {(x, n) ∈ N2 |

x has at most n bits set to 1 in the binary representation.}. P1 is not asymptotically de-
finable, because defining dir(P) requires irrationals, while P2 is not well-directed (see
observation 2 below).

Intuitively, the “boundaries” of a smooth periodic set in two dimensions are either straight
lines or function graphs “curving outward”, as in the example on the right of Figure 2.

We make a few observations:
1. The set dir(P) is a cone. Indeed, if two lines in different directions d and d′ are contained

in P, then by periodicity P also contains a d, d′ plane, and so P contains a line in every
direction between d and d′.

2. The most important case of Definition 3.2 is when the pm are all on the same infinite line
x + d ·N. Then the definition equivalently states that d ∈ dir(P), i.e. some infinite line in
direction d is contained in P. This makes sets where points are “too scarce” non-smooth.
For instance, the set P2 of Example 3.3 contains infinitely many points on a horizontal
line, but no full horizontal line, which would correspond to an arithmetic progression.

3.1 Fills of Smooth Sets are Finitely Generated
We show that, while a smooth periodic set P may not be finitely generated, the set Fill(P)
always is. We start with the following lemma.

▶ Lemma 3.4. Let P be a periodic set. Then int(Q≥0P) ⊆ Q≥0P ⊆ dir(P) ⊆ Q≥0P.

In particular, all these sets have the same closure.

Proof. Let x ∈ int(C), where C := Q≥0P. Then there exists ε > 0 such that the open ball
B(x, ε) of radius ε around x is contained in C by definition of interior. Hence for every
y ∈ B(x, ε

2 ), there exists f(y) ∈ B(y, ε
4 ) ∩ C by definition of closure. We have surrounded x

by points f(y) ∈ C, hence by convexity of C we have x ∈ C.
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Let d ∈ Q≥0P. Then there exists m ∈ N such that md ∈ P, in particular N · md ⊆ P.
Let d ∈ dir(P). Then by replacing d by a multiple md, there exists x such that

x + N · d ⊆ P. We define the sequence (xm)m∈N via xm := 1
m (x + m · d) ∈ Q≥0P, and

observe that its limit is d, i.e. d ∈ Q≥0P. ◀

▶ Example 3.5. The set on the left of Figure 2 satisfies int(Q≥0P) = Q≥0P ⊊ dir(P) = Q≥0P.
Indeed, int(Q≥0P) contains every direction except north and east, but they both belong
to dir(P). The middle set satisfies int(Q≥0P) ⊊ Q≥0P = dir(P) ⊊ Q≥0P, since int(Q≥0P)
contains neither north nor east, dir(P) contains east, and Q≥0P contains both.

We are now ready to reprove the result:

▶ Proposition 3.6 ([11, Lemma 5.1]). Let P be smooth. Then Fill(P) is full and hence f.g.

Proof. Since P is smooth, dir(P) is definable by definition. By Lemma 3.4 we have Q≥0P =
dir(P). So Q≥0P is the closure of a definable cone, and hence finitely generated by Lemma
2.1. Hence P = Fill(P) is the intersection of a f.g. cone and a lattice, and hence full. ◀

3.2 Underapproximating Periodic Sets
In Section 3.1 we have seen that smooth periodic sets can be overapproximated by full linear
sets in a natural way. Let us combine this with an underapproximation, mainly to provide a
formal basis for the boundary function intuition above.

▶ Proposition 3.7 ([13, Lemma F.1]). Let P be a periodic set. Let F ⊆ Qn finite.
F ⊆ (P − P) ∩ dir(P) if and only if there exists x such that x + F∗ ⊆ P.

Now consider any finitely generated cone C ⊆ dir(P). Then C ∩ (P − P) is full and hence
finitely generated by some set F. By applying Proposition 3.7, we obtain a vector xC ∈ P
such that xC + (C ∩ (P − P)) ⊆ P. This should be viewed as follows: Interpret the lattice
P − P as the set of “candidates” for being in P. Namely, since xC ∈ P, a vector xC + v can
only be in P if v ∈ P − P. Then xC + (C ∩ (P − P)) ⊆ P shows that every candidate in
the given shifted cone (base point non-zero, so strictly speaking not a cone according to our
definition) is actually in P. Repeating this process for larger and larger cones C, we obtain
an underapproximation of P of the form

⋃
f.g. C(xC + C) ∩ (P − P). The union of wider

and wider shifted cones intuitively has a convex function as upper and a concave function as
lower bound, as shown in the right of Figure 2.

Observe that this lower bound did not use smoothness, in general this might hence be a
strict underapproximation, as shown in the right of Figure 2.

3.3 Intersection of Smooth Sets
We would like smooth sets to be closed under intersection. Further, we would like that the
fill of an intersection of smooth sets is the intersection of the fills. However, this does not
hold in general. The following is a counterexample.

▶ Example 3.8. Define P := {0}∪N2
>0, see left of Figure 2, and P′ = {(0, 1)}∗, the y-axis. We

have {0} = dir(P∩P′) ⊊ dir(P)∩dir(P′). Also, {0} = Fill(P∩P′) ⊊ Fill(P)∩Fill(P′) = P′.

Fortunately, we can prove (see the Full version): Smooth sets P, P′ such that Fill(P),
Fill(P′), and Fill(P) ∩ Fill(P′) have the same dimension behave well under intersection.
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6:8 Geometry of Reachability Sets of Vector Addition Systems

▶ Proposition 3.9. Let P, P′ be smooth periodic sets such that
dim(Fill(P) ∩ Fill(P′)) = dim(Fill(P)) = dim(Fill(P′)). Then

1. dim(P ∩ P′) = dim(P) = dim(P′).
2. dir(P ∩ P′) = dir(P) ∩ dir(P′).
3. Fill(P ∩ P′) = Fill(P) ∩ Fill(P′).
4. P ∩ P′ is smooth.

4 Petri sets and Hybridizations

We introduce the remaining classes of sets used in our main result: Petri sets and sets
admitting a hybridization. Petri sets were introduced in [11–13]. Hybridizations are a novel
notion, and play a fundamental role in our main result.

4.1 Petri sets

Leroux introduced almost semilinear sets and developed their theory in [12,13]. Intuitively,
they generalize semilinear sets by replacing linear sets with smooth periodic sets.

▶ Definition 4.1 ([12,13]). A set X is almost linear if X = b + P, where b ∈ Nn and P is a
smooth periodic set, and almost semilinear if it is a finite union of almost linear sets.

It was shown in [12,13] that VAS reachability sets are almost semilinear. However, it is
easy to find almost semilinear sets that are not reachability sets of any VAS. Intuitively, the
definition of a smooth periodic set only restricts the “asymptotic behavior” of the set, which
can be “simple” even if the set itself is very “complex”.

▶ Example 4.2. Let Y ⊆ N>0 be any set. Then P := {(0, 0)} ∪ ({1} × Y) ∪ N2
>1 is a

smooth periodic set; indeed, P contains a line in every direction, and is thus well-directed
and asymptotically definable. So P is almost semilinear.

A way to eliminate at least some of these sets is to require that every intersection of the
set with a semilinear set is still almost semilinear, a property enjoyed by all VAS reachability
sets. For instance, assume that in Example 4.2 the set Y is not almost semilinear. Since the
intersection of P and the linear set (1, 0) + (0, 1) · N is equal to Y, we can eliminate P. This
idea leads to the notion of a Petri set.

▶ Definition 4.3 ([12,13]). A set X is called a Petri set if every intersection X ∩ S with a
semilinear set S is almost semilinear.

All smooth periodic sets shown so far are also Petri sets. To see that the positive examples
are indeed Petri sets we can use the following strong theorem from [13].

▶ Theorem 4.4 ([13, Theorem IX.1]). Reachability sets of VAS are Petri sets.

Many sets of the form {(x, y) | y ≤ f(x)} for convex f , or {(x, y) | y ≥ f(x)} for concave
f , and boolean combinations thereof, are VAS reachability sets, and hence Petri sets.
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Figure 3 Left: An almost linear set X = b + P with b = (0, 1) and P = {(x, y) | y ≤ x2} (in
blue). The property X + P ⊆ X implies that the “translation” of X to any point in the set (shown
in brown for a particular point) is included in the set.
Middle: The two smooth periodic sets P1 := {(x, y) | y ≥ log2(x + 1) + 3} ∪ {(0, 0)} in blue and
P2 := {(x, y) | y ≤ x2} in green. Their union is almost hybridlinear, but not almost linear.
Right: The smooth periodic sets P1 := {(x, y) | x ≥ y ≥ log2(x + 1)} and P2 := {(1, 0)}∗. The union
X does not have a hybridization, since P = {(0, 0)} is the only possibility to fulfill X + P ⊆ X.

4.2 Hybridizations
Given a Petri set X ⊆ Nn, it would be very useful to be able to partition Nn into finitely
many semilinear regions S1, . . . , Sk such that the sets Si ∩ X have a simpler structure. In
particular, we would like Si ∩ X to be almost linear. Unfortunately, for some Petri sets no
such partition exists (an example can be found in the full version of the paper). We replace
almost linearity by a slightly weaker notion for which the partition always exists: having a
hybridization (Definition 4.5).

A set is almost linear if there exists a vector b and a smooth periodic set P such that
X = b + P. The following definition is equivalent: There exists a vector b and a smooth
periodic set P such that b ∈ X and X + P ⊆ X ⊆ b + P.

We weaken this condition by requiring only the existence of a vector b and a smooth
periodic set P such that X + P ⊆ X ⊆ b + Fill(P).

That is, we drop the condition b ∈ X, and replace P on the right by the possibly larger
set Fill(P). (For example, the periodic sets on the left of Figure 3 as well as in the middle
satisfy Fill(P) = N2). We then call the set b + Fill(P) a hybridization of X. The formal
definition is as follows, where for technical reasons we also introduce weak hybridizations.

▶ Definition 4.5. Let X ⊆ Nn be non-empty. A set H is a weak hybridization of X if
there exists a finite set B ⊆ Nn and a smooth periodic set P such that H = B + Fill(P) and
X + P ⊆ X ⊆ H. If B = {b}, then H is a hybridization of X.

▶ Remark 4.6. There are full linear weak hybridizations which are not hybridizations. For
example X = 1 + 3N ∪ 2 + 3N has weak hybridization H = {0, 1, 2} + 3N = N. However,
since X does not contain any points congruent to 0 modulo 3, any periodic set P fulfilling
X + P ⊆ X has to fulfill P ⊆ 3N. Hence B cannot be chosen as a singleton.

It follows from this definition that almost linear sets have hybridizations. The reason for
the name (weak) hybridization is that the set H is always hybridlinear, a notion introduced
in [4] by Ginsburg and Spanier and later studied in [1] by Chistikov and Haase. We recall
the definition for future reference.

▶ Definition 4.7. A set H ⊆ Nn is hybridlinear if H = B + P for some finite set B and
some finitely generated periodic set P ⊆ Nn.

We end this section with a characterization of the sets that admit weak hybridizations.
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6:10 Geometry of Reachability Sets of Vector Addition Systems

▶ Definition 4.8. A non-empty set X ⊆ Nn is almost hybridlinear if there exist b1, . . . , br ∈
Nn and smooth P1, . . . , Pr with X =

⋃r
i=1 bi + Pi, such that Fill(Pi) = Fill(Pj) for all i, j.

▶ Theorem 4.9. A non-empty Petri set X ⊆ Nn is almost hybridlinear if and only if it has
a weak hybridization.

This theorem helps to find examples of non-trivial hybridizations (i.e. not of type P
has hybridization Fill(P)). For example [(0, 1) + P1] ∪ [(0, 6) + P2] for P1 = {(x, y) ∈
N2 | y ≤ x2} and P2 = {(x, y) ∈ N2 | y ≥ log2(x + 1)} has weak hybridization N2, since
Fill(P1) = Fill(P2) = N2. This is very similar to the middle of Figure 3. On the other hand,
in the right of Figure 3 the smooth periodic sets barely intersect, and then the union is
usually not almost hybridlinear.

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The algorithm and its proof will refine the partition
in three steps, respectively described in Section 5.1, Section 5.2 and Section 5.3: During the
first two steps the sets X ∩ Si are not required to be irreducible, and in addition after the
first step, the Si are allowed to be hybridlinear instead of full linear.

5.1 Existence of a Hybridlinear Partition
We collect five important properties of (weak) hybridizations in Proposition 5.2. Then, we use
these properties to formulate a procedure for producing a partition S = S1 ∪ · · · ∪ Sk of sets,
not necessarily full linear, satisfying the properties of Theorem 1.1 except for irreducibility.
The procedure is described in Figure 4. It is effective for VAS reachability sets, but not in
general.

We start by reminding that the class of hybridlinear sets is closed under intersection.

▶ Lemma 5.1 ([10, Lemma 7.8]). Let b1 + Q1 and b2 + Q2 be linear sets. Then (b1 + Q1) ∩
(b2 + Q2) = B + (Q1 ∩ Q2) for some finite B.

▶ Proposition 5.2. The following statements hold:
1) If H is a weak hybridization of X, then dim(X) = dim(H).
2) If H is a weak hybridization of X and L = b + Q full linear s.t. dim(H ∩ L) = dim(H) =

dim(L), then H ∩ L is a weak hybridization for X ∩ L, or X ∩ L is empty.
3) If H is a (weak) hybridization for both X1 and X2, then H is a (weak) hybridization for

X1 ∪ X2.
4) For every Petri set X and semilinear S there is a partition X ∩ S = X1 ∪ · · · ∪ Xr of

X ∩ S such that every Xi has a (true) hybridization Li.
5) If X is the reachability set of a VAS, then the set {L1, . . . , Lr} of hybridizations of part

4) is computable.

Proof. For proofs 1) and 2), write H := B + Fill(P), where P is smooth and X + P ⊆ X.
1): This follows from the properties of dimension in Lemmas 2.4 and 2.5. In particular,
dim(P) = dim(V), where V is the vector space generated by P, also implies dim(P) =
dim(Fill(P)). Hence X ⊆ H implies dim(X) ≤ dim(P). Since X is non-empty, X + P ⊆ X
implies dim(X) ≥ dim(P).
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Partition(X, S). Input: Petri set X and semilinear set S:

1) If S is empty, return S. If S is not full, compute a partition S1, . . . , Sr of S into full linear
sets, return

⋃r
i=1 Partition(X, Si) and stop.

Otherwise, compute the set L = {L1, . . . , Lr} of hybridizations of the partition X1 ∪ · · · ∪ Xr

of X ∩ S given by Proposition 5.2(4), and move to step 2).
Remark: This step is not effective for arbitrary Petri sets, but it is effective for VAS
reachability sets by Proposition 5.2(5).
If r = 0, i.e., if X ∩ S is empty, then return S and stop. Otherwise, move to step 2).

2) For every Li ∈ L compute a decomposition Ki of LC
i ∩ S into full linear sets, where LC

i is
the complement of Li, and move to step 3).

3) Let M be the set of tuples (M1, . . . , Mr) ∈ ({L1} ∪ K1) × · · · × ({Lr} ∪ Kr) .

For every M ∈ M, let SM := S ∩ M1 ∩ · · · ∩ Mr.
Remark: {SM | M ∈ M} is a partition of S.
For every M ∈ M, define PM as follows: If dim(SM ) < dim(S), then PM :=
Partition(X, SM ), otherwise PM := {SM }. Output

⋃
M∈M PM .

Figure 4 The procedure Partition(X, S).

2): By Lemma 5.1, H ∩ L = F + (Fill(P) ∩ Q) for some finite set F. By Proposition 3.9,
we have that P ∩ Q is smooth and Fill(P ∩ Q) = Fill(P) ∩ Fill(Q) = Fill(P) ∩ Q. We have
X∩L ⊆ H∩L. We also have (X∩L)+(P∩Q) ⊆ X+P ⊆ X and (X∩L)+(P∩Q) ⊆ L+Q ⊆ L,
hence H ∩ L is a weak hybridization of X ∩ L.
3): Write B1 + Fill(P1) = H = B2 + Fill(P2), where P1 for X1 and P2 for X2 are as in the
definition of weak hybridization. By Lemma 5.1, we have H = H∩H = F+[Fill(P1)∩Fill(P2)]
for some finite set F. Define P := P1 ∩ P2 and X := X1 ∪ X2. By Proposition 3.9, P is
smooth and Fill(P) = Fill(P1) ∩ Fill(P2). We also have X + P ⊆ X.
4): Since X is a Petri set, X ∩ S is almost semilinear, and can hence be written as X =⋃r

i=1 bi + Pi for smooth periodic sets Pi ⊆ Nn and points bi ∈ Nn. Every Xi := bi + Pi is
by definition almost hybridlinear with hybridization bi + Fill(Pi), which is a full linear set.
5): 4) can be computed using the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST)
decomposition [8–10,16]. The KLMST decomposition constructs a finite set of VASS-like
objects, called perfect marked graph transition sequences or perfect MGTSs, such that the
set of reachable configurations of the VAS is the union of the sets of reachable configurations
of the perfect MGTSs. Further, for every perfect MGTS one can effectively construct a set
of linear equations satisfying the following property: the set of solutions of the equation
system is a hybridization of the set of reachable configurations of the perfect MGTS. The
set of solutions of a system of linear equations is always hybridlinear. Moreover, for the
systems derived from MGTSs one can show that the set has a full linear hybridization
(e.g. [10, Lemma 5.1]). This gives us the desired hybridizations L1, . . . , Lr. 2 ◀

2 While Hauschildt already used the KLMST decomposition in [6] in 1990, it took until 2019 [15,16] to
fully understand the theoretical aspects behind the algorithm and its complexity of Ackermann.
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▶ Proposition 5.3. Let X be a Petri set and let S be a semilinear set. Partition(X, S)
produces a partition S = S1 ∪ · · · ∪ Sk into pairwise disjoint hybridlinear sets (not necessarily
full linear) such that for every i the set X ∩ Si is either empty or has weak hybridization Si.
Further, if X is the reachability set of a VAS, then the partition is computable.

Proof. The procedure is depicted in Figure 4, in addition we give an intuitive description
of it: In Step 1) we first partition S into full linear sets and consider them separately. So
assume that S is a full linear set. The procedure uses Proposition 5.2(5) to compute a set of
full linear hybridizations L1, . . . , Lr of a partition X1 ∪ · · · ∪ Xr of X ∩ S. Step 2) considers
all possible sets obtained by picking for each i ∈ {1, . . . , r} either the set Li or a linear set
of its complement (its complement is semilinear, and so a finite union of linear sets), and
intersecting all of them. The procedure adds all the sets having full dimension to the output
partition, and does a recursive call on the others.

Every step can be performed: The set L of Step 1 exists by Proposition 5.2(4). To check
the dimension of a semilinear set S =

⋃r
j=1 bj + F∗

j , which is needed in step 3), we use
Lemma 2.5 to obtain that for F∗

j this is simply the rank of the generator matrix, and by
Lemma 2.4 we have dim(S) = maxj dim(F∗

j ).
Termination: Partition(X, S) only performs a recursive call if S is not a full linear set or on
semilinear sets S′ with dim(S′) < dim(S), hence recursion depth is at most 2 dim(S) + 1 and
termination immediate.
Correctness: The proof obligation for correctness is that for every M = (M1, . . . , Mr) ∈ M,
where SM fulfills dim(SM ) = dim(S), X∩SM is either empty or has SM as weak hybridization.
Therefore fix such M .

▷ Claim 5.4. dim(Mj) = dim(S) for all j.

Proof of Claim. ≥ dim(S) follows since all these sets contain SM , which fulfills dim(SM ) =
dim(S). For the other direction, to prove “≤” for j where we choose Lj we have dim(S) ≥
dim(X ∩ S) = maxj dim(Lj) by Proposition 5.2. For other j we use LC

j ∩ S ⊆ S. ◁

The claim allows us to use Proposition 5.2(2). Let Xj be such that X ∩ S =
⋃r

j=1 Xj

and Xj has hybridization Lj . By applying Proposition 5.2(2) enough times, for every j

with Mj = Lj , we obtain that Xj ∩ SM has weak hybridization SM . This does not depend
on j because intersecting with Lj twice does not change the set. For all other j we have
Xj ∩ SM = ∅, since we intersect with the complement of an overapproximation. Hence
X∩SM =

⋃
j,Mj=Lj

(Xj ∩SM ) has weak hybridization SM by Proposition 5.2(3), or is empty
if we never chose Mj = Lj . ◀

5.2 Existence of a Full Linear Partition
We show that Proposition 5.3 can be strengthened to make the sets Si not only hybridlinear,
but even full linear, in a way that the sets Si are actually (true) hybridizations.

▶ Proposition 5.5. Let X be a Petri set. For every semilinear set S there exists a partition
S = S1 ∪ · · · ∪ Sk of S into pairwise disjoint full linear sets such that for every i the set
X ∩ Si is either empty or has hybridization Si. Further, if X is the reachability set of a VAS,
then the partition is computable.

Proof. The main algorithm uses a subroutine with the same inputs and outputs as itself, but
with the promise that X ∩ S has weak hybridization S. We first describe the main algorithm,
and then the subroutine.
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Main algorithm: First apply Proposition 5.3 to obtain a partition S = S1 ∪ · · · ∪ Sk into
hybridlinear sets otherwise satisfying the conditions. Output

⋃k
i=1 Subroutine(X, Si).

Subroutine: If S is already full linear, return S. Otherwise write S = {c1, . . . , cr}+Fill(P).
Let j ∼ k ⇐⇒ cj − ck ∈ Fill(P) − Fill(P) = P − P. Compute a system R of representatives
for ∼. For every i ∈ R, define Si := ci + Fill(P). Define S′ := S \

⋃
i∈R Si and output

{Si | i ∈ R} ∪ MainAlgorithm(X, S′).
Termination: We prove that recursion depth ≤ 2 dim(S) + 1 by proving dim(S′) < dim(S)

in the subroutine. For every equivalence class C of ∼, there exists c ∈ Zn such that cj −c ∈ P
for all j ∈ C. To see this, fix some i ∈ C, and write cj − ci = pj − p′

j ∈ P − P. Choose
c := ci −

∑
j∈C p′

j .
Then

⋃
j∈C cj + Fill(P) ⊆ c + Fill(P), and hence using Lemma 2.10 we obtain

dim(
⋃

j∈C cj + Fill(P) \ Si) ≤ dim(c + Fill(P) \ ci + Fill(P)) < dim(Fill(P)).
Correctness: The main algorithm is clearly correct if the subroutine is. In the subroutine,

we have Si ∩ Sj = ∅ since i ̸∼ j for i, j ∈ R. All Si are full linear by definition. Further-
more, X ∩ Si has weak hybridization H ∩ Si = Si by Proposition 5.2(2). To obtain that
the hybridization is not weak, observe that Proposition 5.2(2) specifically shows that the
intersection of the representations, which is the full linear representation of Si, is a weak
hybridization. ◀

5.3 Reducibility of almost hybridlinear Sets
The final ingredient of our main result is reducibility. We name it after its counterpart in
Hauschildt’s PhD thesis [6].

▶ Definition 5.6. A set X with hybridization c + Fill(P) is reducible if there exists x such
that x + Fill(P) ⊆ X.

In other words, X is reducible if every large enough point of its hybridization is already
in X. Observe that this does not follow from hybridization, as Fill(P) is larger than P.
Our usual examples of sets with hybridization are smooth periodic sets, these also illustrate
reducibility: The set in the left of Figure 2 is reducible, while the middle is not. Another
example of hybridization was in the middle of Figure 3, this set is also reducible. In fact,
whenever X = b + P, X is reducible if and only if dir(P) = Q≥0P. Namely, use Proposition
3.7 with F the generators of Fill(P). For other sets X, write X =

⋃r
i=1 bi + Pi as almost

hybridlinear set. Whether it is reducible again only depends on the cones dir(Pi), for a proof
see the full version. Since matrices for the definable cones dir(Pi) can in the case of VAS be
determined using KLMST-decomposition [6], we obtain the following.

▶ Theorem 5.7 ([6, even without promise]). The following problem is decidable.
Input: Reachability set R, represented via the transitions of the VASS, full linear set S.
Promise: R ∩ S has hybridization S.
Output: Is R ∩ S reducible?

We can now prove our main result.

▶ Theorem 1.1. Let X be a Petri set. For every semilinear set S there exists a partition
S = S1 ∪ · · · ∪ Sk into pairwise disjoint full linear sets such that for all i ∈ {1, . . . , k} either
X ∩ Si = ∅, Si ⊆ X or X ∩ Si is irreducible with hybridization Si. Further, if X is the
reachability set of a VAS, then the partition is computable.

Proof. Step 1: Use Proposition 5.5 to compute a partition S = S1 ∪ · · · ∪ Sk into full linear
sets such that X∩Si has hybridization Si if it is non-empty. For every set Si with X∩Si ̸= ∅
do Step 2.
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Step 2: Decide whether X ∩ Si is reducible using Theorem 5.7. If irreducible, output Si.
Otherwise, there exists x such that x + Q ⊆ X ∩ Si, where Si = c + Q. Find such an x, add
x + Q ⊆ X to the final partition and do a recursive call on Si \ (x + Q).

Termination: We claim that we only perform recursion on S′ with dim(S′) < dim(S).
To see this, take Si = c + Q such that X ∩ Si is reducible. We have dim(Si \ x + Q) =
dim(c+Q\x+Q) < dim(Q) by Lemma 2.10, wherefore the recursion uses a lower dimensional
set, and termination follows from bounded recursion depth.

Correctness: Follows from correctness of Proposition 5.5.
The partition is computable for VAS: We have to be able to find x with x + Q ⊆ X given

the promise that such an x exists. This is possible since containment of semilinear sets in
reachability sets is decidable by [13] using flatability. ◀

6 Corollaries of Theorem 1.1

6.1 VAS semilinearity is decidable
We reprove that the semilinearity problem for VAS is decidable. We start with a lemma,
whose full proof is in the full version.

▶ Lemma 6.1. Let X be a semilinear Petri set with hybridization c+Q. Then X is reducible.

Proof idea. The hybridization describes all “limit directions”, with the problematic ones
being for example “north” in case of the parabola {(x, y) | y ≤ x2}, which is a limit but not
actually a direction. If X is semilinear though, then the steepness can only increase finitely
often, namely when changing to a different linear component, and all limit directions are
actually also directions. Using this for generators of Fill(P) we find x + Fill(P) ⊆ X. ◀

▶ Corollary 6.2 ([6]). The following problem is decidable.
Input: Reachability set R of VAS, semilinear S.
Output: Is R ∩ S semilinear?

Proof. As also mentioned in the introduction, the algorithm computes the partition of
Theorem 1.1 and checks whether the third case does not occur.

Correctness: If R ∩ S is semilinear, then in particular R ∩ Si is semilinear for every part
Si of the partition. By Lemma 6.1, R ∩ Si cannot be irreducible, and so either R ∩ Si = ∅
or Si ⊆ R for all i.

On the other hand, if only the cases R ∩ Si = ∅ and Si ⊆ R occur, then the Si such that
Si ⊆ R form a semilinear representation. ◀

6.2 On the Complement of a VAS Reachability Set
We show that if the complement of a VAS reachability set is infinite, then it contains an
infinite linear set. The main part of the argument was already depicted in the middle of
Figure 3: If X contains enough of the boundary, then it is reducible.

We hence need to formalize the notion of boundary and interior also for full linear sets.
If L = b + Q is a full linear set, then int(L) := b + (Q ∩ int(Q≥0Q)) is the interior of
L and ∂(L) := b + (Q ∩ ∂(Q≥0Q)) is the boundary of L, both are inherited from the
cone. These sets are both semilinear, as can be seen by using the definition expressible via
φ ∈ FO(N, +, ≥), i.e. Presburger Arithmetic. Remember that we consider definable cones,
i.e. cones expressible in FO(Q, +, ≥). In the full version, we prove the following proposition,
formalizing the first part of the proof.
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Figure 5 Let C be the cone generated by (2, 1) and (1, 2) and assume that X + [(1, 1) + C] ⊆ X
holds. Then (0, 0) ∈ X implies that the whole red shifted cone is in X. Importantly, we obtain a
similar shifted cone for every point x′ ∈ X. Hence if ∂N2 ⊆ X, then almost all of N2 is contained
in X.

▶ Proposition 6.3. Let X be a set with hybridization c + Fill(P). Assume that |∂(c +
Fill(P)) \ X| < ∞. Then X is reducible.

The proof of Proposition 6.3 is illustrated in the above figure. The main difficulty is
defining a “wide enough” cone C, then Proposition 3.7 applied to C ∩ (P − P) does the rest.

▶ Corollary 6.4. Let X be a Petri set. Let S be a semilinear set such that S \ X is infinite.
Then S \ X contains an infinite linear set.

Proof. Proof by induction on dim(S). If dim(S) = 0, the property holds vacuously. Else
consider the partition of Theorem 1.1. Since S \ X is infinite, some Si \ X is infinite. Fix
such an i. Because of Theorem 1.1, Si ⊆ X or X ∩ Si = ∅ or X ∩ Si is irreducible. In
fact, only the third possibility is interesting. If Si ⊆ X, then Si \ X can not be infinite.
If Si ∩ X = ∅ then Si = Si \ X, hence it contains a line. Let us consider the case when
Si ∩ X is irreducible. Assume for contradiction that Si \ X does not contain an infinite
linear set. Then in particular ∂(Si) \ X does not. We have dim(∂(Si)) < dim(Si), since the
boundary is contained in the finite union of the facets. Hence |∂(Si) \ X| < ∞ by induction.
By Proposition 6.3, X ∩ Si is reducible. Contradiction. ◀

In the full version, we even prove another corollary of the partition. The proof is based
on the existence of a partition as in Theorem 1.1, which has the properties for two Petri sets
X1 and X2 at once.

▶ Corollary 6.5. Let X1 and X2 be Petri sets with X1 ∩ X2 = ∅. Then there exists a
semilinear set S′ such that X1 ⊆ S′ and X2 ∩ S′ = ∅.

▶ Corollary 6.6. Let V be a VAS, and X a Petri set such that Reach(V) ∩ X = ∅. Then there
exists a semilinear inductive invariant S′ of V such that Reach(V) ⊆ S′ and X ∩ S′ = ∅.

7 Conclusion

We have introduced hybridizations, and used them to prove a powerful decomposition theorem
for Petri sets. For VAS reachabillity sets the decomposition can be effectively computed. We
have derived several geometric and computational results. We think that our decomposition
can help to study the computational power of VAS. For example, it leads to this corollary:

▶ Corollary 7.1. Let f : N → N be a function whose graph does not contain an infinite line.
Then either {(x, y) | y < f(x)} or {(x, y) | y > f(x)} is not a Petri set.
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Proof. Assume for contradiction that both are Petri sets. Then, since finite unions of Petri
sets are again Petri sets, {(x, y) | y ̸= f(x)} is a Petri set. Its complement is the graph of f ,
which by assumption does not contain an infinite line. Contradiction to Corollary 6.4. ◀

We plan to study other possible applications of our result, derived from the fact that the
reachability relation of a VAS is also a Petri set.

References
1 Dmitry Chistikov and Christoph Haase. The Taming of the Semi-Linear Set. In ICALP,

volume 55 of LIPIcs, pages 128:1–128:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

2 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The Reachability Problem for Petri Nets is not Elementary. In STOC, pages 24–33. ACM,
2019.

3 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in Vector Addition Systems is
Ackermann-complete. In FOCS, pages 1229–1240. IEEE, 2021.

4 Seymour Ginsburg and Edwin H Spanier. Bounded ALGOL-like Languages. SDC, 1963.
5 Roland Guttenberg, Mikhail Raskin, and Javier Esparza. Geometry of Reachability Sets of

Vector Addition Systems, 2023. arXiv:2211.02889.
6 Dirk Hauschildt. Semilinearity of the Reachability Set is decidable for Petri Nets. PhD thesis,

University of Hamburg, Germany, 1990.
7 Petr Jancar, Jérôme Leroux, and Grégoire Sutre. Co-Finiteness and Co-Emptiness of Reacha-

bility Sets in Vector Addition Systems with States. Fundam. Informaticae, 169(1-2):123–150,
2019.

8 S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems. In STOC, pages
267–281. ACM, 1982.

9 Jean-Luc Lambert. A Structure to Decide Reachability in Petri Nets. Theor. Comput. Sci.,
99(1):79–104, 1992.

10 Jérôme Leroux. The General Vector Addition System Reachability Problem by Presburger
Inductive Invariants. In LICS, pages 4–13. IEEE Computer Society, 2009.

11 Jérôme Leroux. Vector Addition System Reachability Problem: A Short Self-Contained Proof.
In LATA, volume 6638 of Lecture Notes in Computer Science, pages 41–64. Springer, 2011.

12 Jérôme Leroux. Vector Addition Systems Reachability Problem (A Simpler Solution). In
Turing-100, volume 10 of EPiC Series in Computing, pages 214–228. EasyChair, 2012.

13 Jérôme Leroux. Presburger Vector Addition Systems. In LICS, pages 23–32. IEEE Computer
Society, 2013. URL: https://hal.science/hal-00780462v2.

14 Jérôme Leroux. The Reachability Problem for Petri Nets is not Primitive Recursive. In FOCS,
pages 1241–1252. IEEE, 2021.

15 Jérôme Leroux and Sylvain Schmitz. Demystifying Reachability in Vector Addition Systems.
In LICS, pages 56–67. IEEE Computer Society, 2015.

16 Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. In LICS, pages 1–13. IEEE, 2019.

17 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In STOC,
pages 238–246. ACM, 1981.

18 Danny Nguyen and Igor Pak. Enumerating Projections of Integer Points in Unbounded
Polyhedra. SIAM J. Discret. Math., 32(2):986–1002, 2018.

19 Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley, 1999.

20 Kevin Woods. Presburger Arithmetic, Rational Generating Functions, and Quasi-Polynomials.
J. Symb. Log., 80(2):433–449, 2015.

https://arxiv.org/abs/2211.02889
https://hal.science/hal-00780462v2


Safety Analysis of Parameterised Networks with
Non-Blocking Rendez-Vous
Lucie Guillou
IRIF, CNRS, Université Paris Cité, France

Arnaud Sangnier
IRIF, CNRS, Université Paris Cité, France

Nathalie Sznajder
LIP6, CNRS, Sorbonne Université, France

Abstract
We consider networks of processes that all execute the same finite-state protocol and communicate
via a rendez-vous mechanism. When a process requests a rendez-vous, another process can respond
to it and they both change their control states accordingly. We focus here on a specific semantics,
called non-blocking, where the process requesting a rendez-vous can change its state even if no
process can respond to it. In this context, we study the parameterised coverability problem of a
configuration, which consists in determining whether there is an initial number of processes and an
execution allowing to reach a configuration bigger than a given one. We show that this problem is
EXPSPACE-complete and can be solved in polynomial time if the protocol is partitioned into two
sets of states, the states from which a process can request a rendez-vous and the ones from which
it can answer one. We also prove that the problem of the existence of an execution bringing all
the processes in a final state is undecidable in our context. These two problems can be solved in
polynomial time with the classical rendez-vous semantics.
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1 Introduction

Verification of distributed/concurrent systems. Because of their ubiquitous use in applic-
ations we rely on constantly, the development of formal methods to guarantee the correct
behaviour of distributed/concurrent systems has become one of the most important research
directions in the field of computer systems verification in the last two decades. Unfortunately,
such systems are difficult to analyse for several reasons. Among others, we can highlight two
aspects that make the verification process tedious. First, these systems often generate a large
number of different executions due to the various interleavings generated by the concurrent
behaviours of the entities involved. Understanding how these interleavings interact is a
complex task which can often lead to errors at the design-level or make the model of these
systems very complex. Second, in some cases, the number of participants in a distributed
system may be unbounded and not known a priori. To fully guarantee the correctness of such
systems, the analysis would have to be performed for all possible instances of the system,
i.e., an infinite number of times. As a consequence, classical techniques to verify finite state
systems, like testing or model-checking, cannot be easily adapted to distributed systems and
it is often necessary to develop new techniques.
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7:2 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

Parameterised verification. When designing systems with an unbounded number of parti-
cipants, one often provides a schematic program (or protocol) intended to be implemented by
multiple identical processes, parameterised by the number of participants. In general, even
if the verification problem is decidable for a given instance of the parameter, verifying all
possible instances is undecidable ([3]). However, several settings come into play that can be
adjusted to allow automatic verification. One key aspect to obtain decidability is to assume
that the processes do not manipulate identities and use simple communication mechanisms
like pairwise synchronisation (or rendez-vous) [13], broadcast of a message to all the entities
[10] (which can as well be lossy in order to simulate mobility [6]), shared register containing
values of a finite set [11], and so on (see [9] for a survey). In every aforementioned case, all the
entities execute the same protocol given by a finite state automaton. Note that parameterised
verification, when decidable like in the above models, is also sometimes surprisingly easy,
compared to the same problem with a fixed number of participants. For instance, liveness
verification of parameterised systems with shared memory is Pspace-complete for a fixed
number of processes and in NP when parameterised [7].

Considering rendez-vous communication. In one of the seminal papers for the verification
of parameterised networks [13], German and Sistla (and since then [4, 15]) assume that the
entities communicate by “rendez-vous”, a synchronisation mechanism in which two processes
(the sender and the receiver) agree on a common action by which they jointly change their
local state. This mechanism is synchronous and symmetric, meaning that if no process is
ready to receive a message, the sender cannot send it. However, in some applications, such
as Java Thread programming, this is not exactly the primitive that is implemented. When
a Thread is suspended in a waiting state, it is woken up by the reception of a message
notify sent by another Thread. However, the sender is not blocked if there is no suspended
Thread waiting for its message; in this case, the sender sends the notify anyway and the
message is simply lost. This is the reason why Delzanno et. al. have introduced non-blocking
rendez-vous in [5] a communication primitive in which the sender of a message is not blocked
if no process receives it. One of the problems of interest in parameterised verification is the
coverability problem: is it possible that, starting from an initial configuration, (at least)
one process reaches a bad state? In [5], and later in [20], the authors introduce variants
of Petri nets to handle this type of communication. In particular, the authors investigate
in [20] the coverability problem for an extended class of Petri nets with non-blocking arcs,
and show that for this model the coverability problem is decidable using the techniques of
Well-Structured Transitions Systems [1, 2, 12]. However, since their model is an extension of
Petri nets, the latter problem is Expspace-hard [17] (no upper bound is given). Relying on
Petri nets to obtain algorithms for parameterised networks is not always a good option. In
fact, the coverability problem for parameterised networks with rendez-vous is in P [13], while
it is Expspace-complete for Petri nets [19, 17]. Hence, no upper bound or lower bound can
be directly deduced for the verification of networks with non-blocking rendez-vous from [20].

Our contributions. We show that the coverability problem for parameterised networks with
non-blocking rendez-vous communication over a finite alphabet is Expspace-complete. To
obtain this result, we consider an extension of counter machines (without zero test) where
we add non-blocking decrement actions and edges that can bring back the machine to its
initial location at any moment. We show that the coverability problem for these extended
counter machines is Expspace-complete (Section 3) and that it is equivalent to our problem
over parameterised networks (Section 4). We consider then a subclass of parameterised
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networks – wait-only protocols – in which no state can allow to both request a rendez-vous
and wait for one. This restriction is very natural to model concurrent programs since when a
thread is waiting, it cannot perform any other action. We show that coverability problem
can then be solved in polynomial time (Section 5). Finally, we show that the synchronization
problem, where we look for a reachable configuration with all the processes in a given state,
is undecidable in our framework, even for wait-only protocols (Section 6).

Due to lack of space, some proofs are only given in [14].

2 Rendez-vous Networks with Non-Blocking Semantics

For a finite alphabet Σ, we let Σ∗ denote the set of finite sequences over Σ (or words). Given
w ∈ Σ∗, we let |w| denote its length: if w = w0 . . . wn−1 ∈ Σ∗, then |w| = n. We write N to
denote the set of natural numbers and [i, j] to represent the set {k ∈ N | i ≤ k and k ≤ j}
for i, j ∈ N. For a finite set E, the set NE represents the multisets over E. For two elements
m, m′ ∈ NE , we denote m + m′ the multiset such that (m + m′)(e) = m(e) + m′(e) for all
e ∈ E. We say that m ≤ m′ if and only if m(e) ≤ m′(e) for all e ∈ E. If m ≤ m′, then
m′ − m is the multiset such that (m′ − m)(e) = m′(e) − m(e) for all e ∈ E. Given a subset
E′ ⊆ E and m ∈ NE , we denote by ||m||E′ the sum Σe∈E′m(e) of elements of E′ present in
m. The size of a multiset m is given by ||m|| = ||m||E . For e ∈ E, we use sometimes the
notation HeI for the multiset m verifying m(e) = 1 and m(e′) = 0 for all e′ ∈ E \ {e} and,
to represent for instance the multiset with four elements a, b, b and c, we will also use the
notations Ha, b, b, cI or Ha, 2 · b, cI.

2.1 Rendez-Vous Protocols
We can now define our model of networks. We assume that all processes in the network follow
the same protocol. Communication in the network is pairwise and is performed by rendez-vous
through a finite communication alphabet Σ. Each process can either perform an internal
action using the primitive τ , or request a rendez-vous by sending the message m using the
primitive !m or answer to a rendez-vous by receiving the message m using the primitive ?m (for
m ∈ Σ). Thus, the set of primitives used by our protocols is RV (Σ) = {τ}∪{?m, !m | m ∈ Σ}.

▶ Definition 2.1 (Rendez-vous protocol). A rendez-vous protocol (shortly protocol) is a tuple
P = (Q, Σ, qin, qf , T ) where Q is a finite set of states, Σ is a finite alphabet, qin ∈ Q is the
initial state, qf ∈ Q is the final state and T ⊆ Q × RV (Σ) × Q is the finite set of transitions.

For a message m ∈ Σ, we denote by R(m) the set of states q from which the message m

can be received, i.e. states q such that there is a transition (q, ?m, q′) ∈ T for some q′ ∈ Q.
A configuration associated to the protocol P is a non-empty multiset C over Q for which

C(q) denotes the number of processes in the state q and ||C|| denotes the total number
of processes in the configuration C. A configuration C is said to be initial if and only if
C(q) = 0 for all q ∈ Q \ {qin}. We denote by C(P) the set of configurations and by I(P) the
set of initial configurations. Finally for n ∈ N \ {0}, we use the notation Cn(P) to represent
the set of configurations of size n, i.e. Cn(P) = {C ∈ C(P) | ||C|| = n}. When the protocol is
made clear from the context, we shall write C, I and Cn.

We explain now the semantics associated with a protocol. For this matter we define
the relation −→P ⊆

⋃
n≥1 Cn ×

(
{τ} ∪ Σ ∪ {nb(m) | m ∈ Σ}

)
× Cn as follows (here nb(·) is a

special symbol). Given n ∈ N \ {0} and C, C ′ ∈ Cn and m ∈ Σ, we have:
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qin q1

q5

q3

q4 q6

q2

!a

?b !c

?a

?b !b
?c

Figure 1 Example of a rendez-vous protocol P.

1. C
τ−→P C ′ iff there exists (q, τ, q′) ∈ T such that C(q) > 0 and C ′ = C − HqI + Hq′I

(internal);
2. C

m−→P C ′ iff there exists (q1, !m, q′
1) ∈ T and (q2, ?m, q′

2) ∈ T such that C(q1) > 0 and
C(q2) > 0 and C(q1) + C(q2) ≥ 2 (needed when q1 = q2) and C ′ = C − Hq1, q2I + Hq′

1, q′
2I

(rendez-vous);

3. C
nb(m)−−−−→P C ′ iff there exists (q1, !m, q′

1) ∈ T , such that C(q1) > 0 and (C − Hq1I)(q2) = 0
for all (q2, ?m, q′

2) ∈ T and C ′ = C − Hq1I + Hq′
1I (non-blocking request).

Intuitively, from a configuration C, we allow the following behaviours: either a process
takes an internal transition (labeled by τ), or two processes synchronize over a rendez-vous m,
or a process requests a rendez-vous to which no process can answer (non-blocking sending).

This allows us to define SP the transition system (C(P), −→P) associated to P. We will
write C −→P C ′ when there exists a ∈ {τ} ∪ Σ ∪ {nb(m) | m ∈ Σ} such that C

a−→P C ′ and
denote by −→∗

P the reflexive and transitive closure of −→P . Furthermore, when made clear
from the context, we might simply write −→ instead of −→P . An execution is a finite sequence
of configurations ρ = C0C1 . . . such that, for all 0 ≤ i < |ρ|, Ci −→P Ci+1. The execution is
said to be initial if C0 ∈ I(P).

▶ Example 2.2. Figure 1 provides an example of a rendez-vous protocol where qin is the
initial state and q1 the final state. A configuration associated to this protocol is for instance
the multiset H2 · q1, 1 · q4, 1 · q5I and the following sequence represents an initial execution:
H2 · qinI

nb(a)−−−−→ Hqin, q5I
b−→ Hq1, q6I

c−→ H2 · q2I.

▶ Remark 2.3. When we only allow behaviours of type (internal) and (rendez-vous), this
semantics corresponds to the classical rendez-vous semantics ([13, 4, 15]). In opposition,
we will refer to the semantics defined here as the non-blocking semantics where a process
is not blocked if it requests a rendez-vous and no process can answer to it. Note that
all behaviours possible in the classical rendez-vous semantics are as well possible in the
non-blocking semantics but the converse is false.

2.2 Verification Problems
We now present the problems studied in this work. For this matter, given a protocol
P = (Q, Σ, qin, qf , T ), we define two sets of final configurations. The first one F∃(P) = {C ∈
C(P) | C(qf ) > 0} characterises the configurations where one of the processes is in the final
state. The second one F∀(P) = {C ∈ C(P) | C(Q \ {qf }) = 0} represents the configurations
where all the processes are in the final state. Here again, when the protocol is clear from
the context, we might use the notations F∃ and F∀. We study three problems: the state
coverability problem (SCover), the configuration coverability problem (CCover) and the
synchronization problem (Synchro), which all take as input a protocol P and can be stated
as follows:
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Problem name Question

SCover Are there C0 ∈ I and Cf ∈ F∃, such that C0 −→∗ Cf ?
CCover Given C ∈ C, are there C0 ∈ I and C′ ≥ C, such that C0 −→∗ C′?
Synchro Are there C0 ∈ I and Cf ∈ F∀, such that C0 −→∗ Cf ?

▶ Remark 2.4. The difficulty in solving these problems lies in the fact that we are seeking for
an initial configuration allowing a specific execution but the set of initial configurations is
infinite.

The difference between SCover and Synchro is that in the first one we ask for at least
one process to end up in the final state whereas the second one requires all the processes to
end in this state. Note that SCover is an instance of CCover but Synchro is not.

Observe that SCover should be seen as a safety property: if qf is an error state and the
answer is negative, then for any number of processes, no process will ever be in that error
state.

▶ Example 2.5. The rendez-vous protocol of Figure 1 is a positive instance of SCover, as
shown in Example 2.2. However, this is not the case for Synchro: if an execution brings a
process in q2, this process cannot be brought afterwards to q1. If q2 is the final state, P is
now a positive instance of Synchro (see Example 2.2). Note that if the final state is q4, P
is not a positive instance of SCover anymore. In fact, the only way to reach a configuration
with a process in q4 is to put (at least) two processes in state q5 as this is the only state from
which one process can send the message b. However, this cannot happen, since from an initial
configuration, the only available action consists in sending the message a as a non-blocking
request. Once there is one process in state q5, any other attempt to put another process in
this state will induce a reception of message a by the process already in q5, which will hence
leave q5. Finally, note that for any n ∈ N, the configuration Hn · q3I is coverable, even if P
with q3 as final state is not a positive instance of Synchro.

3 Coverability for Non-Blocking Counter Machines

We first detour into new classes of counter machines, which we call non-blocking counter
machines and non-blocking counter machines with restore, in which a new way of decrementing
the counters is added to the classical one: a non-blocking decrement, which is an action that
can always be performed. If the counter is strictly positive, it is decremented; otherwise it is
let to 0. We show that the coverability of a control state in this model is Expspace-complete,
and use this result to solve coverability problems in rendez-vous protocols.

To define counter machines, given a set of integer variables (also called counters) X, we
use the notation CAct(X) to represent the set of associated actions given by {x+, x−, x=0 |
x ∈ X} ∪ {⊥}. Intuitively, x+ increments the value of the counter x, while x− decrements it
and x=0 checks if it is equal to 0. We are now ready to state the syntax of this model.

▶ Definition 3.1. A counter machine (shortly CM) is a tuple M = (Loc, X, ∆, ℓin) such that
Loc is a finite set of locations, ℓin ∈ Loc is an initial location, X is a finite set of counters,
and ∆ ⊆ Loc × CAct(X) × Loc is finite set of transitions.

We will say that a CM is test-free (shortly test-free CM) whenever ∆ ∩ Loc × {x=0 | x ∈
X} × Loc = ∅. A configuration of a CM M = (Loc, X, ∆, ℓin) is a pair (ℓ, v) where ℓ ∈ Loc
specifies the current location of the CM and v ∈ NX associates to each counter a natural
value. The size of a CM M is given by |M | = |Loc|+ |X|+ |∆|. Given two configurations (ℓ, v)
and (ℓ′, v′) and a transition δ ∈ ∆, we define (ℓ, v) δ

⇝M (ℓ′, v′) if and only if δ = (ℓ, op, ℓ′)
and one of the following holds:
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op = ⊥ and v = v′;
op = x+ and v′(x) = v(x) + 1 and
v′(x′) = v(x′) for all x′ ∈ X \ {x};
op = x− and v′(x) = v(x) − 1 and v′(x′) = v(x′) for all x′ ∈ X \ {x};
op = x=0 and v(x) = 0 and v′ = v.

In order to simulate the non-blocking semantics of our rendez-vous protocols with counter
machines, we extend the class of test-free CM with non-blocking decrement actions.

▶ Definition 3.2. A non-blocking test-free counter machine (shortly NB-CM) is a tuple
M = (Loc, X, ∆b, ∆nb, ℓin) such that (Loc, X, ∆b, ℓin) is a test-free CM and ∆nb ⊆ Loc ×
{nb(x−) | x ∈ X} × Loc is a finite set of non-blocking transitions.

Observe that in a NB-CM, both blocking and non-blocking decrements are possible, depending
on the type of transition taken. Again, a configuration is given by a pair (ℓ, v) ∈ Loc × NX .
Given two configurations (ℓ, v) and (ℓ, v′) and δ ∈ ∆b ∪∆nb, we extend the transition relation
(ℓ, v) δ

⇝M (ℓ, v′) over the set ∆nb in the following way: for δ = (ℓ, nb(x−), ℓ′) ∈ ∆nb, we
have (ℓ, v) δ

⇝M (ℓ′, v′) if and only if v′(x) = max(0, v(x) − 1), and v′(x′) = v(x′) for all
x′ ∈ X \ {x}.

We say that M is an NB-CM with restore (shortly NB-R-CM) when (ℓ, ⊥, ℓin) ∈ ∆ for
all ℓ ∈ Loc, i.e. from each location, there is a transition leading to the initial location with
no effect on the counters values.

For a CM M with set of transitions ∆ (resp. an NB-CM with sets of transitions ∆b and
∆nb), we will write (ℓ, v)⇝M (ℓ′, v′) whenever there exists δ ∈ ∆ (resp. δ ∈ ∆b ∪ ∆nb) such
that (ℓ, v) δ

⇝M (ℓ′, v′) and use ⇝∗
M to represent the reflexive and transitive closure of ⇝M .

When the context is clear we shall write ⇝ instead of ⇝M . We let 0X be the valuation
such that 0X(x) = 0 for all x ∈ X. An execution is a finite sequence of configurations
(ℓ0, v0) ⇝ (ℓ1, v1) ⇝ . . . ⇝ (ℓk, vk). It is said to be initial if (ℓ0, v0) = (ℓin, 0X). A
configuration (ℓ, v) is called reachable if (ℓin, 0X)⇝∗ (ℓ, v).

We shall now define the coverability problem for (non-blocking test-free) counter machines,
which asks whether a given location can be reached from the initial configuration. We denote
this problem Cover[M], for M ∈ {CM, test-free CM, NB-CM, NB-R-CM}. It takes as input
a machine M in M (with initial location ℓin and working over a set X of counters) and a
location ℓf and it checks whether there is a valuation v ∈ NX such that (ℓin, 0X)⇝∗ (ℓf , v).

In the rest of this section, we will prove that Cover[NB-R-CM] is Expspace-complete.
To this end, we first establish that Cover[NB-CM] is in Expspace, by an adaptation of
Rackoff’s proof which shows that coverability in Vector Addition Systems is in Expspace
[19]. This gives also the upper bound for NB-R-CM, since any NB-R-CM is a NB-CM. This
result is established by the following theorem, whose proof is omitted due to lack of space.

▶ Theorem 3.3. Cover[NB-CM] and Cover[NB-R-CM] are in Expspace.

To obtain the lower bound, inspired by Lipton’s proof showing that coverability in Vector
Addition Systems is Expspace-hard [8, 17], we rely on 2Exp-bounded test-free CM. We say
that a CM M = (Loc, X, ∆, ℓin) is 2Exp-bounded if there exists n ∈ O(|M |) such that any
reachable configuration (ℓ, v) satisfies v(x) ≤ 22n for all x ∈ X. We use then the following
result.

▶ Theorem 3.4 ([8, 17]). Cover[2Exp-bounded test-free CM] is Expspace-hard.
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ℓ′
in ℓa ℓb ℓin ℓfRstInc Counter Machine M

⊥ ⊥

Restore transitions

Figure 2 The NB-R-CM N .

We now show how to simulate a 2Exp-bounded test-free CM by a NB-R-CM, by carefully
handling restore transitions that may occur at any point in the execution. We will ensure
that each restore transition is followed by a reset of the counters, so that we can always
extract from an execution of the NB-R-CM a correct initial execution of the original test-free
CM. The way we enforce resetting of the counters is inspired by the way Lipton simulates
0-tests of a CM in a test-free CM. As in [17, 8], we will describe the final NB-R-CM by means
of several submachines. To this end, we define procedural non-blocking counter machines that
are NB-CM with several identified output states: formally, a procedural-NB-CM is a tuple
N = (Loc, X, ∆b, ∆nb, ℓin, Lout) such that (Loc, X, ∆b, ∆nb, ℓin) is a NB-CM, Lout ⊆ Loc,
and there is no outgoing transition from states in Lout.

Now fix a 2Exp-bounded test-free CM M = (Loc, X, ∆, ℓin), ℓf ∈ Loc the location to be
covered. There is some c, such that, any reachable configuration (ℓ, v) satisfies v(x) < 22c|M|

for all x ∈ X, fix n = c|M |. We build a NB-R-CM N as pictured in Figure 2. The goal of the
procedural NB-CM RstInc is to ensure that all counters in X are reset. Hence, after each
restore transition, we are sure that we start over a fresh execution of the test-free CM M . We
will need the mechanism designed by Lipton to test whether a counter is equal to 0. So, we
define two families of sets of counters (Yi)0≤i≤n and (Yi)0≤i≤n as follows. Let Yi = {yi, zi, si}
and Y i = {yi, zi, si} for all 0 ≤ i < n and Yn = X and Y n = ∅ and X ′ =

⋃
0≤i≤n Yi ∪ Y i.

All the machines we will describe from now on will work over the set of counters X ′.

Procedural-NB-CM TestSwapi(x). We use a family of procedural-NB-CM defined in [17, 8]:
for all 0 ≤ i < n, for all x ∈ Y i, TestSwapi(x) is a procedural-NB-CM with an initial location
ℓTS,i,x

in , and two output locations ℓTS,i,x
z and ℓTS,i,x

nz . It tests if the value of x is equal to 0, using
the fact that the sum of the values of x and x is equal to 22i . If x = 0, it swaps the values of
x and x, and the execution ends in the output location ℓTS,i,x

z . Otherwise, counters values are
left unchanged and the execution ends in ℓTS,i,x

nz . In any case, other counters are not modified
by the execution. Note that TestSwapi(x) makes use of variables in

⋃
1≤j<i Yi ∪ Y i.

Procedural NB-CM Rsti. We use these machines to define a family of procedural-NB-CM
called (Rsti)0≤i≤n that reset the counters in Yi ∪ Yi, assuming that their values are less
than or equal to 22i . Let 0 ≤ i ≤ n, we let Rsti = (LocR,i, X ′, ∆R,i

b , ∆R,i
nb , ℓR,i

in , {ℓR,i
out}). The

machine Rst0 is pictured Figure 3. For all 0 ≤ i < n, the machine Rsti+1 uses counters from
Yi ∪ Yi and procedural-NB-CM Testswapi(zi) and Testswapi(yi) to control the number of
times variables from Yi+1 and Y i+1 are decremented. It is pictured Figure 4. Observe that
since Yn = X, and Yn = ∅, the machine Rstn will be a bit different from the picture: there
will only be non-blocking decrements over counters from Yn, that is over counters X from
the initial test-free CM M . If yi, zi (and si) are set to 22i and yi, zi (and si) are set to 0,
then each time this procedural-NB-CM takes an outer loop, the variables of Yi+1 ∪ Y i+1
are decremented (in a non-blocking fashion) 22i times. This is ensured by the properties
of TestSwapi(x). Moreover, the location ℓTS,i,y

z will only be reached when the counter yi
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ℓR,0
in ℓR,0

out
. . .nb(y0−) nb(y0−) nb(ȳ0−) nb(ȳ0−) nb(s̄0−)

Figure 3 Description of Rst0.

ℓR,i+1
in ℓR,i+1

1 ℓR,i+1
2 ℓR,i+1

3 ℓR,i+1
4

ℓR,i+1
5 ℓR,i+1

6 ℓR,i+1
r ℓTS,i,z

in

ℓTS,i,z
nz

ℓTS,i,z
z ℓTS,i,y

in

ℓTS,i,y
nz

ℓTS,i,y
z ℓR,i+1

out

TestSwapi(zi) TestSwapi(yi)

. . .

yi− yi+ zi− zi+

nb(yi+1−)

nb(ȳi+1−) ⊥ ⊥ ⊥

⊥
⊥

Figure 4 Description of Rsti+1.

is set to 0, and this will happen after 22i iterations of the outer loop, again thanks to the
properties of TestSwapi(x). So, all in all, variables from Yi and Y i+1 will take a non-blocking
decrement 22i

.22i times, that is 22i+1 .
For all x ∈ X ′, we say that x is initialized in a valuation v if x ∈ Yi for some 0 ≤ i ≤ n

and v(x) = 0, or x ∈ Y i for some 0 ≤ i ≤ n and v(x) = 22i . For 0 ≤ i ≤ n, we say that a
valuation v ∈ NX′ is i-bounded if for all x ∈ Yi ∪ Y i, v(x) ≤ 22i .

The construction ensures that when one enters Rsti with a valuation v that is i-bounded,
and in which all variables in

⋃
0≤j<i Yj ∪ Y j are initialized, the location ℓR,i

out is reached with
a valuation v′ such that: v′(x) = 0 for all x ∈ Yi ∪ Y i and v′(x) = v(x) for all x /∈ Yi ∪ Y i.
Moreover, if v is j-bounded for all 0 ≤ j ≤ n, then any valuation reached during the execution
remains j-bounded for all 0 ≤ j ≤ n.

Procedural NB-CM Inci. The properties we seek for Rsti are ensured whenever the
variables in

⋃
0≤j<i Yj ∪ Y j are initialized. This is taken care of by a family of procedural-

NB-CM introduced in [17, 8]. For all 0 ≤ i < n, Inci is a procedural-NB-CM with initial
location ℓInc,i

in , and unique output location ℓInc,i
out . They enjoy the following property: for

0 ≤ i < n, when one enters Inci with a valuation v in which all the variables in
⋃

0≤j<i Yj ∪Y j

are initialized and v(x) = 0 for all x ∈ Y i, then the location ℓInci
out is reached with a valuation

v′ such that v′(x) = 22i for all x ∈ Y i, and v′(x) = v(x) for all other x ∈ X ′. Moreover, if
v is j-bounded for all 0 ≤ j ≤ n, then any valuation reached during the execution remains
j-bounded for all 0 ≤ j ≤ n.

Procedural NB-CM RstInc. Finally, let RstInc be a procedural-NB-CM with initial
location ℓa and output location ℓb, over the set of counters X ′ and built as an alternation
of Rsti and Inci for 0 ≤ i < n, finished by Rstn. It is depicted in Figure 5. Thanks to the
properties of the machines Rsti and Inci, in the output location of each Inci machine, the
counters in Y i are set to 22i , which allow counters in Yi+1 ∪ Y i+1 to be set to 0 in the output
location of Rsti+1. Hence, in location ℓInc,n

out , counters in Yn = X are set to 0.
From [17, 8], each procedural machine TestSwapi(x) and Inci has size at most C × n2 for

some constant C. Hence, observe that N is of size at most B for some B ∈ O(|M |3). One
can show that (ℓin, 0X)⇝∗

M (ℓf , v) for some v ∈ NX , if and only if (ℓ′
in, 0X′)⇝∗

N (ℓf , v′) for
some v′ ∈ NX′ . Using Theorem 3.4, we obtain:
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ℓa ℓR,0
in ℓR,0

out ℓInc,0
in ℓInc,0

out ℓR,1
in ℓR,1

out ℓInc,n
in ℓInc,n

out ℓb

Rst0 Inc0 Rst1 Rstn

. . .⊥ ⊥ ⊥ ⊥

Figure 5 RstInc.

ℓin

qin+

Figure 6
Incrementing qin.

ℓin

q−

q′+

Figure 7 Transitions
for (q, τ, q′) ∈ T .

ℓin

q− p− q′+

p′+

Figure 8 Transitions for a rendez-vous
(q, !a, q′), (p, ?a, p′) ∈ T .

ℓin

q− nb(p1−) nb(pk−)

q′+

. . .

Figure 9 Transitions for a non-blocking
sending (q, !a, q′) ∈ T and R(a) = {p1 . . . pk}.

ℓin ℓf

q1− q2− qs−
. . .

Figure 10 Verification for the coverability of
CF = Hq1I + Hq2I + · · · + HqsI.

▶ Theorem 3.5. Cover[NB-R-CM] is Expspace-hard.

4 Coverability for Rendez-Vous Protocols

In this section we prove that SCover and CCover problems are both Expspace-complete
for rendez-vous protocols. To this end, we present the following reductions: CCover re-
duces to Cover[NB-CM] and Cover[NB-R-CM] reduces to SCover. This will prove that
CCover is in Expspace and SCover is Expspace-hard (from Theorem 3.3 and The-
orem 3.5). As SCover is an instance of CCover, the two reductions suffice to prove
Expspace-completeness for both problems.

4.1 From Rendez-vous Protocols to NB-CM
Let P = (Q, Σ, qin, qf , T ) a rendez-vous protocol and CF a configuration of P to be covered.
We shall also decompose CF as a sum of multisets Hq1I + Hq2I + · · · + HqsI. Observe
that there might be qi = qj for i ̸= j. We build the NB-CM M = (Loc, X, ∆b, ∆nb, ℓin)
with X = Q. A configuration C of P is meant to be represented in M by (ℓin, v), with
v(q) = C(q) for all q ∈ Q. The only meaningful location of M is then ℓin. The other ones
are here to ensure correct updates of the counters when simulating a transition. We let
Loc = {ℓin} ∪ {ℓ1

(t,t′), ℓ2
(t,t′), ℓ3

(t,t′) | t = (q, !a, q′), t′ = (p, ?a, p′) ∈ T} ∪ {ℓt, ℓa
t,p1

, · · · , ℓa
t,pk

|
t = (q, !a, q′) ∈ T, R(a) = {p1, . . . , pk}} ∪ {ℓq | t = (q, τ, q′) ∈ T} ∪ {ℓ1 . . . ℓs}, with final
location ℓf = ℓs, where R(m) for a message m ∈ Σ has been defined in Section 2. The
sets ∆b and ∆nb are shown Figures 6–10. Transitions pictured Figures 6–8 and 10 show
how to simulate a rendez-vous protocol with the classical rendez-vous mechanism. The
non-blocking rendez-vous are handled by the transitions pictured Figure 9. If the NB-CM M

faithfully simulates P, then this loop of non-blocking decrements is taken when the values
of the counters in R(a) are equal to 0, and the configuration reached still corresponds to a
configuration in P. However, it could be that this loop is taken in M while some counters
in R(a) are strictly positive. In this case, a blocking rendez-vous has to be taken in P, e.g.
(q, !a, q′) and (p, ?a, p′) if the counter p in M is strictly positive. Therefore, the value of the
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qin

qx q′
x

1x

q ℓin ℓf

q⊥

P(M)
!L !R

?L
?L

?incx

?R ?R

!decx

!incx ?decx

?nbdecx

Figure 11 The rendez-vous protocol P built from the NB-R-CM M . Note that there is one
gadget with states {qx, q′

x, 1x} for each counter x ∈ X.

reached configuration (ℓin, v) and the corresponding configuration C in P will be different:
first, C(p′) > v(p′), since the process in p has moved in the state p′ in P when there has
been no increment of p′ in M . Furthermore, all other non-blocking decrements of counters
in R(a) in M may have effectively decremented the counters, when in P no other process
has left a state of R(a). However, this ensures that C ≥ v. The reduction then guarantees
that if (ℓin, v) is reachable in M , then a configuration C ≥ v is reachable in P . Then, if it is
possible to reach a configuration (ℓin, v) in M whose counters are high enough to cover ℓF ,
then the corresponding initial execution in P will reach a configuration C ≥ v, which hence
covers CF .

▶ Theorem 4.1. CCover over rendez-vous protocols is in Expspace.

4.2 From NB-R-CM to Rendez-Vous Protocols
The reduction from Cover[NB-R-CM] to SCover in rendez-vous protocols mainly relies
on the mechanism that can ensure that at most one process evolves in some given set of
states, as explained in Example 2.5. This will allow to somehow select a “leader” among
the processes that will simulate the behaviour of the NB-R-CM whereas other processes will
simulate the values of the counters. Let M = (Loc, X, ∆b, ∆nb, ℓin) a NB-R-CM and ℓf ∈ Loc
a final target location. We build the rendez-vous protocol P pictured in Figure 11, where
P(M) is the part that will simulate the NB-R-CM M . The locations {1x | x ∈ X} will allow
to encode the values of the different counters during the execution: for a configuration C,
C(1x) will represent the value of the counter x. We give then P(M) = (QM , ΣM , ℓin, ℓf , TM )
with QM = Loc ∪ {ℓδ | δ ∈ ∆b}, ΣM = {incx, incx, decx, decx, nbdecx | x ∈ X}, and
TM = {(ℓi, !incx, ℓδ), (ℓδ, ?incx, ℓj) | δ = (ℓi, x+, ℓj) ∈ ∆b} ∪ {(ℓi, !decx, ℓδ), (ℓδ, ?decx, ℓj) |
δ = (ℓi, x−, ℓj) ∈ ∆b} ∪ {(ℓi, !nbdecx, ℓj) | (ℓi, nb(x−), ℓj) ∈ ∆nb} ∪ {(ℓi, τ, ℓj) | (ℓi, ⊥, ℓj) ∈
∆b}. Here, the reception of a message incx (respectively decx) works as an acknowledgement,
ensuring that a process has indeed received the message incx (respectively decx), and that
the corresponding counter has been incremented (resp. decremented). For non-blocking
decrement, obviously no acknowledgement is required. The protocol P = (Q, Σ, qin, ℓf , T ) is
then defined with Q = QM ∪ {1x, qx, q′

x | x ∈ X} ∪ {qin, q, q⊥}, Σ = ΣM ∪ {L, R} and T is
the set of transitions TM along with the transitions pictured in Figure 11. Note that there is
a transition (ℓ, ?L, q⊥) for all ℓ ∈ QM .

With two non-blocking transitions on L and R at the beginning, protocol P can faithfully
simulate the NB-R-CM M without further ado, provided that the initial configuration
contains enough processes to simulate all the counters values during the execution: after
having sent a process in state ℓin, any transition of M can be simulated in P. Conversely,
an initial execution of P can send multiple processes into the P(M) zone, which can mess
up the simulation. However, each new process entering P(M) will first send the message
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L, and as a consequence the process already in {q} ∪ QM , if any, will move to the deadlock
state q⊥ receiving this message, and then the new process will send the message R, which
will be received by some process in {qx, q′

x | x ∈ X}, if any. Moreover, the construction of
the protocol ensures that there can only be one process in the set of states {qx, q′

x | x ∈ X}.
Then, if we have reached a configuration simulating the configuration (ℓ, v) of M , sending a
new process in the P(M) zone will lead to a configuration (ℓin, v), and hence simply mimicks
a restore transition of M . So every initial execution of P corresponds to an initial execution
of M .

▶ Theorem 4.2. SCover and CCover over rendez-vous protocols are Expspace complete.

5 Coverability for Wait-Only Protocols

In this section, we study a restriction on rendez-vous protocols in which we assume that a
process waiting to answer a rendez-vous cannot perform another action by itself. This allows
for a polynomial time algorithm for solving CCover.

5.1 Wait–Only Protocols
We say that a protocol P = (Q, Σ, qin, qf , T ) is wait-only if the set of states Q can be
partitioned into QA — the active states — and QW — the waiting states — with qin ∈ QA

and:
for all q ∈ QA, for all (q′, ?m, q′′) ∈ T , we have q′ ̸= q;
for all q ∈ QW , for all (q′, !m, q′′) ∈ T , we have q′ ̸= q and for all (q′, τ, q′′) ∈ T , we have
q′ ̸= q.

From a waiting state, a process can only perform receptions (if it can perform anything),
whereas in an active state, a process can only perform internal actions or send messages.
Examples of wait-only protocols are given by Figures 12 and 13.

In the sequel, we will often refer to the paths of the underlying graph of the protocol.
Formally, a path in a protocol P = (Q, Σ, qin, qf , T ) is either a control state q ∈ Q or a finite
sequence of transitions in T of the form (q0, a0, q1)(q1, a1, q2) . . . (qk, ak, qk+1), the first case
representing a path from q to q and the second one from q0 to qk+1.

5.2 Abstract Sets of Configurations
To solve the coverability problem for wait-only protocols in polynomial time, we rely on a
sound and complete abstraction of the set of reachable configurations. In the sequel, we
consider a wait-only protocol P = (Q, Σ, qin, qf , T ) whose set of states is partitioned into a
set of active states QA and a set of waiting states QW . An abstract set of configurations γ is
a pair (S, Toks) such that:

S ⊆ Q is a subset of states, and,
Toks ⊆ QW × Σ is a subset of pairs composed of a waiting state and a message, and,
q ̸∈ S for all (q, m) ∈ Toks.

We then abstract the set of reachable configurations as a set of states of the underlying
protocol. However, as we have seen, some states, like states in QA, can host an unbounded
number of processes together (this will be the states in S), while some states can only host a
bounded number (in fact, 1) of processes together (this will be the states stored in Toks).
This happens when a waiting state q answers a rendez-vous m, that has necessarily been
requested for a process to be in q. Hence, in Toks, along with a state q, we remember the
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last message m having been sent in the path leading from qin to q, which is necessarily in
QW . Observe that, since several paths can lead to q, there can be (q, m1), (q, m2) ∈ Toks
with m1 ̸= m2. We denote by Γ the set of abstract sets of configurations.

Let γ = (S, Toks) be an abstract set of configurations. Before we go into the configurations
represented by γ, we need some preliminary definitions. We note st(Toks) the set {q ∈ QW |
there exists m ∈ Σ such that (q, m) ∈ Toks} of control states appearing in Toks. Given a
state q ∈ Q, we let Rec(q) be the set {m ∈ Σ | there exists q′ ∈ Q such that (q, ?m, q′) ∈ T}
of messages that can be received in state q (if q is not a waiting state, this set is empty).
Given two different waiting states q1 and q2 in st(Toks), we say q1 and q2 are conflict-free in
γ if there exist m1, m2 ∈ Σ such that m1 ̸= m2, (q1, m1), (q2, m2) ∈ Toks and m1 /∈ Rec(q2)
and m2 /∈ Rec(q1). We now say that a configuration C ∈ C(P) respects γ if and only if for
all q ∈ Q such that C(q) > 0 one of the following two conditions holds:
1. q ∈ S, or,
2. q ∈ st(Toks) and C(q) = 1 and for all q′ ∈ st(Toks) \ {q} such that C(q′) = 1, we have

that q and q′ are conflict-free.
Note that these conditions only speak about states q such that C(q) > 0 as we are only
interested in characterising the reachable states (and unreachable states should not appear
in S or st(Toks)). Let JγK be the set of configurations respecting γ. Note that in JγK, for q in
S there is no restriction on the number of processes that can be put in q and if q in st(Toks),
it can host at most one process. Two states from st(Toks) can both host a process if they are
conflict-free.

Finally, we will only consider abstract sets of configurations that are consistent. This
property aims to ensure that concrete configurations that respect it are indeed reachable
from states of S. Formally, we say that an abstract set of configurations γ = (S, Toks) is
consistent if (i) for all (q, m) ∈ Toks, there exists a path (q0, a0, q1)(q1, a1, q2) . . . (qk, ak, q)
in P such that q0 ∈ S and a0 = !m and for all 1 ≤ i ≤ k, we have that ai = ?mi and that
there exists (q′

i, !mi, q′′
i ) ∈ T with q′

i ∈ S, and (ii) for two tokens (q, m), (q′, m′) ∈ Toks either
m ∈ Rec(q′) and m′ ∈ Rec(q), or, m /∈ Rec(q′) and m′ /∈ Rec(q). Condition (i) ensures that
processes in S can indeed lead to a process in the states from st(Toks). Condition (ii) ensures
that if in a configuration C, some states in st(Toks) are pairwise conflict-free, then they can
all host a process together.

▶ Lemma 5.1. Given γ ∈ Γ and a configuration C, there exists C ′ ∈ JγK such that C ′ ≥ C

if and only if C ∈ JγK. Checking that C ∈ JγK can be done in polynomial time.

5.3 Computing Abstract Sets of Configurations
Our polynomial time algorithm is based on the computation of a polynomial length sequence
of consistent abstract sets of configurations leading to a final abstract set characterising in
a sound and complete manner (with respect to the coverability problem), an abstraction
for the set of reachable configurations. This will be achieved by a function F : Γ → Γ, that
inductively computes this final abstract set starting from γ0 = ({qin}, ∅). Formal definition
of the function F relies on intermediate sets S′′ ⊆ Q and Toks′′ ⊆ QW × Σ, which are the
smallest sets satisfying the conditions described in Table 1.

From S and Toks, rules described in Table 1 add states and tokens to S′′ and Toks′′ from
the outgoing transitions from states in S and st(Toks). It must be that every state added to
S′′ can host an unbounded number of processes, and every state added to Toks′′ can host at
least one process, furthermore, two conflict-free states in Toks′′ should be able to host at
least one process at the same time.
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Table 1 Definition of S′′, Toks′′ for γ = (S, Toks).

Construction of intermediate states S′′ and Toks′′

1. S ⊆ S′′ and Toks ⊆ Toks′′

2. for all (p, τ, p′) ∈ T with p ∈ S, we have p′ ∈ S′′

3. for all (p, !a, p′) ∈ T with p ∈ S, we have:
a. p′ ∈ S′′ if a /∈ Rec(p′) or if there exists (q, ?a, q′) ∈ T with q ∈ S;
b. (p′, a) ∈ Toks′′ otherwise (i.e. when a ∈ Rec(p′) and for all (q, ?a, q′) ∈ T , q /∈ S);

4. for all (q, ?a, q′) ∈ T with q ∈ S or (q, a) ∈ Toks, we have q′ ∈ S′′ if there exists (p, !a, p′) ∈ T

with p ∈ S;
5. for all (q, ?a, q′) ∈ T with (q, m) ∈ Toks with m ̸= a, if there exists (p, !a, p′) ∈ T with p ∈ S,

we have:
a. q′ ∈ S′′ if m /∈ Rec(q′);
b. (q′, m) ∈ Toks′′ if m ∈ Rec(q′).

qinq1

q2

q3 q4

q5

q6

q7
!a

!b
!d

!c?a, ?b

?c

?a, ?b

?c

?d

Figure 12 Wait-only protocol P1.

qin

q1

q2

q3 p2

p1

p3

p4

!a

!b

!m1

!m2

!m3

?a

?a, ?b

?m1, ?m3

?m2, ?m3

?m1, ?m2, ?m3

Figure 13 Wait-only protocol P2.

▶ Example 5.2. Consider the wait-only protocol P1 depicted on Figure 12. From ({qin}, ∅),
rules described in Table 1 construct the following pair (S′′

1 , Toks′′
1) = ({qin, q4}, {(q1, a),

(q1, b), (q5, c)}). In P1, it is indeed possible to reach a configuration with as many processes
as one wishes in the state q4 by repeating the transition (qin, !d, q4) (rule 3a). On the other
hand, it is possible to put at most one process in the waiting state q1 (rule 3b), because
any other attempt from a process in qin will yield a reception of the message a (resp. b) by
the process already in q1. Similarly, we can put at most one process in q5. Note that in
Toks′′

1 , the states q1 and q5 are conflict-free and it is hence possible to have simultaneously
one process in both of them.

If we apply rules of Table 1 one more time to (S′′
1 , Toks′′

1), we get S′′
2 = {qin, q2, q4, q6, q7}

and Toks′′
2 = {(q1, a), (q1, b), (q3, a), (q3, b), (q5, c)}. We can put at most one process in q3: to

add one, a process will take the transition (q1, ?c, q3). Since (q1, a), (q1, b) ∈ Toks′′
1 , there

can be at most one process in state q1, and this process arrived by a path in which the last
request of rendez-vous was !a or !b. Since {a, b} ⊆ Rec(q3), by rule 5b, (q3, a), (q3, b) are
added. On the other hand we can put as many processes as we want in the state q7 (rule 5a):
from a configuration with one process on state q5, successive non-blocking request on letter
c, and rendez-vous on letter d will allow to increase the number of processes in state q7.

However, one can observe that q5 can in fact host an unbounded number of processes:
once two processes have been put on states q1 and q5 respectively (remember that q1 and q5
are conflict-free in (S′′

1 , Toks′′
1)), iterating rendez-vous on letter c (with transition (q1, ?c, q3))

and rendez-vous on letter a put as many processes in state q5.
As a consequence we need to apply another transformation to (S′′

2 , Toks′′
2) to obtain

F (S′′
1 , Toks′′

1). We shall see that this second step has no impact when computing F (({qin}, ∅))
hence we have that F (({qin}, ∅)) = (S′′

1 , Toks′′
1).
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We shall finally get that F (γ) is equal to (S′, Toks′), where the construction of S′ from
(S′′, Toks′′), is given by Table 2 and Toks′ = Toks′′ \ (S × Σ), i.e. all states added to S′ are
removed from Toks′ so a state belongs either to S′ or to st(Toks′).

Table 2 Definition of S′ where F (γ) = (S′, Toks′) for (S′′, Toks′′).

Construction of state S′, the smallest set including S′′ and such that:

6. for all (q1, m1), (q2, m2) ∈ Toks′′ such that m1 ̸= m2 and m2 /∈ Rec(q1) and m1 ∈ Rec(q2),
we have q1 ∈ S′;

7. for all (q1, m1), (q2, m2), (q3, m2) ∈ Toks′′ s.t m1 ̸= m2 and (q2, ?m1, q3) ∈ T , we have q1 ∈ S′;
8. for all (q1, m1), (q2, m2), (q3, m3) ∈ Toks′′ such that m1 ̸= m2 and m1 ̸= m3 and m2 ̸= m3

and m1 /∈ Rec(q2), m1 ∈ Rec(q3) and m2 /∈ Rec(q1), m2 ∈ Rec(q3), and m3 ∈ Rec(q2) and
m3 ∈ Rec(q1), we have q1 ∈ S′.

▶ Example 5.3. Now the case of state q5 evoked in the previous example leads to applic-
ation of rule 7, since (q5, c), (q1, a) ∈ Toks′′

2 , and (q3, a) (q1, ?c, q3) ∈ T . Finally, we get
that F (S′′

1 , Toks′′
1) = F (F ({qin}, ∅)) = ({qin, q2, q4, q5, q6, q7}, {(q1, a), (q1, b), (q3, a), (q3, b)}).

Since q1 and q3 are not conflict-free, they won’t be reachable together in a configuration.
We consider now the wait-only protocol P2 depicted on Figure 13. In that case, to compute

F (({qin}, ∅)) we will first have S′′ = {qin} and Toks′′ = {(q1, a), (q2, b), (p1, m1), (p2, m2),
(p3, m3)} (using rule 3b), to finally get F (({qin}, ∅)) = ({qin, q1, p1}, {(q2, b), (p2, m2),
(p3, m3)})). Applying rule 6 to tokens (q1, a) and (q2, b) from Toks′′, we obtain that q1 ∈ S′:
whenever one manages to obtain one process in state q2, this process can answer the requests
on message a instead of processes in state q1, allowing one to obtain as many processes as
desired in state q1. Now since (p1, m1), (p2, m2) and (p3, m3) are in Toks′′ and respect the
conditions of rule 8, p1 is added to the set S′ of unbounded states. This case is a generalisation
of the previous one, with 3 processes. Once one process has been put on state p2 from qin,
iterating the following actions: rendez-vous over m3, rendez-vous over m1, non-blocking
request of m2, will ensure as many processes as one wants on state p1. Finally applying
successively F , we get in this case the abstract set ({qin, q1, q3, p1, p2, p3, p4}, {(q2, b)}).

We show that F satisfies the following properties.

▶ Lemma 5.4.
1. F (γ) is consistent and can be computed in polynomial time for all consistent γ ∈ Γ.
2. If (S′, Toks′) = F (S, Toks) then S ⊆ S′ (with S ̸= S′) or Toks ⊆ Toks′.
3. For all consistent γ ∈ Γ, if C ∈ JγK and C −→ C ′ then C ′ ∈ JF (γ)K.
4. For all consistent γ ∈ Γ, if C ′ ∈ JF (γ)K, then there exists C ′′ ∈ C and C ∈ JγK such that

C ′′ ≥ C ′ and C −→∗ C ′′.

5.4 Polynomial Time Algorithm
We now present our polynomial time algorithm to solve CCover for wait-only protocols. We
define the sequence (γn)n∈N as follows: γ0 = ({qin}, ∅) and γi+1 = F (γi) for all i ∈ N. First
note that γ0 is consistent and that Jγ0K = I is the set of initial configurations. Using Lemma
5.4, we deduce that γi is consistent for all i ∈ N. Furthermore, each time we apply F to
an abstract set of configurations (S, Toks) either S or Toks increases, or (S, Toks) stabilises.
Hence for all n ≥ |Q|2 ∗ |Σ|, we have γn+1 = F (γn) = γn. Let γf = γ|Q|2∗|Σ|. Using Lemma
5.4, we get:
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qin

w w′ ℓf

q1 q2 ℓin

0i pi 1i p′
i /

τ

!init
τ

?init !ackinit

?ackinit !w
?w

?inci !ackinci ?deci

?zeroi

!ackdeci

Figure 14 The protocol P – The coloured zone
contains transitions pictured in Figures 15–17.

ℓ ℓ′
!inci ?ackinci

Figure 15 Translation of (ℓ, xi+, ℓ′).

ℓ ℓ′
!deci ?ackdeci

Figure 16 Translation of (ℓ, xi−, ℓ′).

ℓ ℓ′
!zeroi

Figure 17 Translation of (ℓ, xi =0, ℓ′).

▶ Lemma 5.5. Given C ∈ C, there exists C0 ∈ I and C ′ ≥ C such that C0 −→∗ C ′ if and
only if there exists C ′′ ∈ Jγf K such that C ′′ ≥ C.

We need to iterate |Q|2 ∗ |Σ| times the function F to compute γf and each computation
of F can be done in polynomial time. Furthermore checking whether there exists C ′′ ∈ Jγf K
such that C ′′ ≥ C for a configuration C ∈ C can be done in polynomial time by Lemma 5.1,
hence using the previous lemma we obtain the desired result.

▶ Theorem 5.6. CCover and SCover restricted to wait-only protocols are in Ptime.

6 Undecidability of Synchro

It is known that Cover[CM] is undecidable in its full generality [18]. This result holds for a
very restricted class of counter machines, namely Minsky machines (Minsky-CM for short),
which are CM over 2 counters, x1 and x2. Actually, it is already undecidable whether there
is an execution (ℓin, 0{x1,x2})⇝∗ (ℓf , 0{x1,x2}). Reduction from this last problem gives the
following result.

▶ Theorem 6.1. Synchro is undecidable, even for wait-only protocols.

Fix M = (Loc, ℓ0, {x1, x2}, ∆) with ℓf ∈ Loc the final state. W.l.o.g., we assume that there
is no outgoing transition from state ℓf in the machine. The protocol P is described in
Figures 14–16. The states {0i, pi, 1i, p′

i | i = 1, 2} will be visited by processes simulating
values of counters, while the states in Loc will be visited by a process simulating the different
locations in the Minsky-CM. If at the end of the computation, the counters are equal to 0, it
means that each counter has been incremented and decremented the same number of times,
so that all processes simulating the counters end up in the state ℓf . The first challenge is to
appropriately check when a counter equals 0. This is achieved thanks to the non-blocking
semantics: the process sends a message !zeroi to check if the counter i equals 0. If it is does
not, the message will be received by a process that will end up in the deadlock state /. The
second challenge is to ensure that only one process simulates the Minsky-CM in the states
in Loc. This is ensured by the states {w, w′}. Each time a process arrives in the ℓin state,
another must arrive in the w′ state, as a witness that the simulation has begun. This witness
must reach ℓf for the computation to be a testifier of a positive instance of Synchro, but it
should be the first to do so, otherwise a process already in ℓf will receive the message “w”
and reach the deadlock state /. Thus, if two processes simulate the Minsky-CM, there will
be two witnesses, and they won’t be able to reach ℓf together.
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7 Conclusion

We have introduced the model of parameterised networks communicating by non-blocking
rendez-vous, and showed that safety analysis of such networks becomes much harder than in
the framework of classical rendez-vous. Indeed, CCover and SCover become Expspace-
complete and Synchro undecidable in our framework, while these problems are solvable
in polynomial time in the framework of [13]. We have introduced a natural restriction of
protocols, in which control states are partitioned between active states (that allow requesting
of rendez-vous) and waiting states (that can only answer to rendez-vous) and showed that
CCover can then be solved in polynomial time. Future work includes finding further
restrictions that would yield decidability of Synchro. A candidate would be protocols in
which waiting states can only receive one message. Observe that in that case, the reduction
of Section 6 can be adapted to simulate a test-free CM, hence Synchro for this subclass of
protocols is as hard as reachability in Vector Addition Systems with States, i.e. non-primitive
recursive [16]. Decidability remains open though.
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Abstract
There is a recent separability result for the languages of well-structured transition systems (WSTS)
that is surprisingly general: disjoint WSTS languages are always separated by a regular language.
The result assumes that one of the languages is accepted by a deterministic WSTS, and it is not
known whether this assumption is needed. There are two ways to get rid of the assumption, none of
which has led to conclusions so far: (i) show that WSTS can be determinized or (ii) generalize the
separability result to non-deterministic WSTS languages. Our contribution is to show that (i) does
not work but (ii) does. As for (i), we give a non-deterministic WSTS language that we prove cannot
be accepted by a deterministic WSTS. The proof relies on a novel characterization of the languages
accepted by deterministic WSTS. As for (ii), we show how to find finitely represented inductive
invariants without having the tool of ideal decompositions at hand. Instead, we work with closures
under converging sequences. Our results hold for upward- and downward-compatible WSTS.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Regular languages

Keywords and phrases WSTS, regular separability, determinization

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.8

Related Version Full Version: https://arxiv.org/abs/2305.02736

Funding This work was supported by the DFG project EDS@SYN: Effective Denotational Semantics
for Synthesis.

1 Introduction

Czerwiński et al. [16, Theorems 6 and 7] have recently established a separability result for
the languages of well-structured transition systems (WSTS) [20, 4, 2, 23] that is surprisingly
general. Disjoint WSTS languages are always separated by a regular language: whenever we
have L(U ) ∩ L(V ) = ∅, then there is a regular language R with L(U ) ⊆ R and R ∩ L(V ) = ∅.
The result says that WSTS languages either intersect, or they are far apart in that a finite
amount of information is sufficient to distinguish them. Applications abound, we elaborate
on this in the related work. Unfortunately, the result comes with a grain of salt: it assumes
that one of the WSTS, U or V , is deterministic. All attempts to remove the assumption
have failed so far. The assumption is used for a central argument in the proof, namely that
inductive invariants can be represented in a finite way. With determinism, these invariants are
downward-closed sets in a WQO, and hence decompose into finitely many ideals [31, 21, 22].
This is precisely the finite amount of information needed for regularity.

A strategy to circumvent the assumption would be to show that WSTS can be determinized.
Czerwiński et al. already argue in this direction. In [16, Theorem 5], they show that
both finitely-branching WSTS and WSTS over so-called ω2-WQOs can be determinized.
Unfortunately, this does not cover all WSTS. To sum up, it is still open whether the regular
separability result holds for all WSTS languages, and we do not understand the impact of
non-determinism on the expressiveness of the WSTS model.
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8:2 Separability and Non-Determinizability of WSTS

Our first contribution is to prove the regular separability result for all WSTS languages,
without the assumption of determinism. We accept the fact that determinizing a WSTS no
longer yields a WSTS, and carefully study the resulting class of transition systems. They are
formed over a lattice in which sequences have subsequences that converge in a natural sense.
This leads us to define the closure of a set by adding the limits of all converging sequences.
The key insight is that the closure of an inductive invariant is again an inductive invariant.
Together with the fact that closed sets have finitely many maximal elements, we arrive
at the desired finite representation. In short, when moving from WQOs to converging
lattices, maximal elements of closed sets form an alternative to ideal decompositions of
downward-closed sets. We call the new transition systems converging.

Our second contribution is to show that WSTS cannot be determinized in general. We
give a WSTS language T that we prove cannot be accepted by a deterministic WSTS. The
proof relies on a novel characterization of the deterministic WSTS languages: they are
precisely the languages whose Nerode (right) quasi order is a WQO. The characterization
provides a first hint on how to construct T . The language should have an infinite antichain
in the Nerode quasi order, for then this cannot be a WQO. The second hint stems from
the determinizability result [16, Theorem 5]. The accepting WSTS should be infinitely
branching and the WQO should be no ω2-WQO. Such WQOs embed the so-called Rado
WQO [8, Section 2]. Moreover, the Rado WQO is known to have an infinite antichain when
constructing downward-closed sets [22, Proposition 4.2]. The definition of T is thus guided
by the idea of translating the Rado antichain into an antichain in the Nerode quasi order.
Interestingly, the underlying WSTS is deterministic except for the choice of the initial state.

We develop these results for upward-compatible WSTS [23]. Our third contribution is to
show that they also hold for downward-compatible WSTS. We achieve this by proving general
relationships between the models. A key insight is that the complement of a deterministic
upward-compatible WSTS is a deterministic downward-compatible WSTS. Moreover, the
reversal of an upward-compatible WSTS language is a downward-compatible WSTS language.

Details and proofs missing here can be found in the full version of this article [32].

Related Work. The converging transition systems (CTS) we use to generalize the regular
separability result [16] have a topological flavor, and indeed are inspired by Goubault-Larrecq’s
Noetherian transition systems [26, 27]. One difference is that we had to formulate CTS in
lattice-theoretic terms to be able to import a theorem from [16] that links regular separability
to the existence of finitely represented inductive invariants. Another difference is the study
of such invariants (we prove stability under closure) that has no analogue in [26, 27].

We show that deterministic WSTS accept a strictly weaker class of languages than their
non-deterministic counterparts. The work [3] also compares classes of WSTS languages,
but for fixed models (extended Petri nets). We allow the determinization to freely select
the WQO and the transitions, meaning we have considerably less syntactic constraints to work
with. There are also pumping lemmas to distinguish WSTS languages from (among others)
context-free languages [24]. Our characterization of the deterministic WSTS languages is
stronger than the necessary conditions in pumping lemmas. Our language witnessing the
weakness of deterministic WSTS is accepted by an infinitely-branching WSTS, a class of
systems studied in [7]. That work concentrates on decidability results and pays attention to
effectiveness, while we prove a statement of existence and do not need such assumptions.

There is recent interest in separability problems for infinite-state systems [17, 40, 14, 39, 12].
One reason is that standard algorithms rarely apply to separability problems, but these
problems tend to call for new approaches. With the basic separator technique [18], Czerwiński
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and Zetzsche have shown that there is hope for general methods that apply to a range of
separability problems [10, 11, 15]. With the closure of inductive invariants under converging
sequences, we hope to also have contributed a versatile tool.

Another reason for the popularity of separability problems is their usefulness in verification.
In [1], separators act as interpolants in abstraction-guided verification [9]. In [6], separators
are advocated as interfaces in rely-guarantee reasoning [30]. In this context, our result implies
that regular interfaces yield a complete proof method, provided the system is well-structured.

2 Well-Structured Transition Systems

We recall well-structured transition systems (WSTS) with upward compatibility [20, 4, 2, 23].
Downward compatibility will be addressed in Section 5.

Orders. Let (Q, ≤) be a quasi order and P ⊆ Q. We call P a chain, if ≤ restricted to P is
a total order. We call P an antichain, if the elements in P are pairwise incomparable. The
upward closure of P is ↑P = {q ∈ Q | ∃p ∈ P. p ≤ q}. We call P upward closed, if P = ↑P .
The powerset of Q restricted to the upward-closed sets is U(Q). The downward closure is
defined similarly and we use D(Q) for the downward-closed sets. We call (Q, ≤) a well quasi
order (WQO), if for every infinite sequence [pi]i∈N in Q there are indices i < j with pi ≤ pj .

Let (Q, ≤) be a partially-ordered set. We write max P for the set of maximal elements
in the subset P ⊆ Q. They may not exist, in which case the set is empty. We call (Q, ≤) a
complete lattice, if all P ⊆ Q have a greatest lower bound in Q, also called meet and denoted
by ⊔P ∈ Q, and a least upper bound in Q, also called join and denoted by

⊔
P ∈ Q. A

function f : Q → Q on a complete lattice is join preserving [13, Section 11.4], if it distributes
over arbitrary joins in that f(

⊔
P ) =

⊔
f(P ) for all P ⊆ Q, where f(P ) = {f(p) | p ∈ P}.

We call (Q, ≤) a completely distributive lattice, if it is a complete lattice where arbitrary
meets distribute over arbitrary joins, and vice versa:

⊔

a∈A

⊔
b∈Ba

pa,b =
⊔

f∈CA,B

⊔

a∈A

pa,f(a)
⊔

a∈A

⊔

b∈Ba

pa,b = ⊔

f∈CA,B

⊔
a∈A

pa,f(a) .

The definition makes use of the Axiom of Choice: CA,B denotes the set of choice functions
that map each a ∈ A to a choice b ∈ Ba. It is also important to note that, for any quasi
order (Q, ≤), (D(Q), ⊆) is a completely distributive lattice.

Labeled Transition Systems. A labeled transition system (LTS) is a tuple U = (Q, I, Σ, δ, F )
that consists of a set of states Q, in our setting typically infinite, a set of inital states I ⊆ Q, a
set of final states F ⊆ Q, a finite alphabet Σ, and a set of labeled transitions δ : Q×Σ → P(Q).
The LTS is deterministic, if |I| = |δ(p, a)| = 1 for all p ∈ Q and a ∈ Σ.

Its language is the set of words that can reach a final state from an initial state:

L(U ) = {w ∈ Σ∗ | δ(I, w) ∩ F ̸= ∅} .

Here, we extend the transition relation to sets of states and words: δ(P, w.a) = δ(δ(P, w), a)
and δ(P, a) =

⋃
p∈P δ(p, a). Finally, if the LTS is deterministic, we write (Q, y, Σ, δ, F ) and

δ(p, a) = q instead of (Q, {y}, Σ, δ, F ) and δ(p, a) = {q}.
Let U1 and U2 be LTS with Ui = (Qi, Ii, Σ, δi, Fi). We define their synchronized product

to be the LTS U1 × U2 = (Q1 × Q2, I1 × I2, Σ, δ, F1 × F2) where (q1, q2) ∈ δ((p1, p2), a), if
q1 ∈ δ1(p1, a) and q2 ∈ δ2(p2, a). Then L(U1 × U2) = L(U1) ∩ L(U2).

CONCUR 2023



8:4 Separability and Non-Determinizability of WSTS

Compatibility. We work with LTS U = (Q, I, Σ, δ, F ) whose states form a quasi order
(Q, ≤) that is compatible with the remaining components as follows. We have F = ↑F , the
final states are upward closed wrt. ≤. Moreover, ≤ is a simulation relation [36]: for all pairs
of related states p1 ≤ q1 and for all letters a ∈ Σ we have:

for all p2 ∈ δ(p1, a) there is q2 ∈ δ(q1, a) with p2 ≤ q2 .

We also make the quasi order explicit and call U = (Q, ≤, I, Σ, δ, F ) an upward-compatible
LTS (ULTS).

ULTS can be determinized, in the case of U this yields

U det = (D(Q), ⊆, ↓I, Σ, δdet , F det) .

The states are the downward-closed sets ordered by inclusion, the transition relation is defined
by closing the result of the original transition relation downwards, δdet(D, a) = ↓δ(D, a) for
all D ∈ D(Q) and a ∈ Σ, and the set of final states consists of all downward-closed sets that
contain a final state in the original ULTS, F det = {D ∈ D(Q) | D ∩ F ̸= ∅}.

▶ Lemma 1. Let U be an ULTS. Then U det is a deterministic ULTS with L(U det) = L(U ).

We write detULTS for the class of deterministic ULTS. The synchronized product of ULTS
is again an ULTS (with the product order).

Well-Structuredness. An upward-compatible well-structured transition system (WSTS) is
an ULTS U whose states (Q, ≤) form a WQO. The synchronized product of WSTS is again a
WSTS. We are interested in L(WSTS), the class of all languages accepted by WSTS. We also
study L(detWSTS) ⊆ L(WSTS), the class of languages accepted by deterministic WSTS.

We observe that we can focus on WSTS with a countable number of states.

▶ Lemma 2. For every L ∈ L(WSTS) there is a WSTS U with a countable number of states
so that L = L(U ).

The lemma needs two arguments: the language consists of a countable number of words, and
we can assume the transition relation to yield downward-closed sets.

3 Regular Separability of WSTS Languages

Two languages L1, L2 ⊆ Σ∗ are separable by a regular language, denoted by L1 | L2, if there
is a regular language R ⊆ Σ∗ with L1 ⊆ R and R ∩ L2 = ∅. Our main result is that disjoint
WSTS languages are always separable in this sense.

▶ Theorem 3. For L1, L2 ∈ L(WSTS), we have L1 | L2 if and only if L1 ∩ L2 = ∅.

The conclusion is the same as in the main theorem of [16], but we do not need the premise
that one of the languages is accepted by a deterministic WSTS. The implication from left to
right is trivial, the implication from right to left is our first contribution.

We summarize the arguments. The plan is to invoke the proof principle for regular
separability in [16, Theorem 11] and show that the product system has a finitely represented
inductive invariant. The principle holds for general ULTS but needs one of them deterministic.
Therefore, our first step is to determinize the given WSTS. Determinizing a WSTS will
yield an ULTS, but may ruin the WQO property. We show that the set of states of the
resulting ULTS still has a rich structure: it is a powerset lattice in which every infinite
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sequence contains a subsequence that converges in a natural sense. We call such ULTS
converging transition systems (CTS). We only define CTS as deterministic models, which is
why we determinize both WSTS. CTS are closed under products. Moreover, since the initial
languages are disjoint by the assumption, the product trivially has an inductive invariant. It
thus remains to turn this invariant of the product into an invariant that can be represented
in a finite way. The idea is to add the limits of all converging sequences in the invariant.
Since the CTS transitions are compatible with limits, the resulting set of states is again an
inductive invariant. By Zorn’s lemma, every set can contain only finitely many maximal
elements. The maximal elements thus form the finite representation that was needed to
conclude the proof.

It would be possible to give the proof at a set-theoretic level, by explicitly working with
products of powerset lattices. CTS allow us to abstract away the product structure and
highlight the key arguments in the limit construction. We turn to the details.

3.1 Proof Principle for Regular Separability
To establish regular separability, we rely on a proof principle introduced in [16]. The notion
of an inductive invariant will be recalled in a moment.

▶ Theorem 4 (Proof principle for regular separability, [16, Theorem 11]). Consider ULTS U , V ,
one deterministic. If U × V has a finitely represented inductive invariant, then L(U ) | L(V ).

Interestingly, the proof principle does not need the WQO assumption of WSTS but holds for
general ULTS. It does assume one of the ULTS to be deterministic, though. Recall that an
inductive invariant for an ULTS (Q, ≤, I, Σ, δ, F ) is a downward-closed set of states S ⊆ Q

that includes all initial states, excludes all final states, and is closed under taking transitions:

I ⊆ S S ∩ F = ∅ δ(S, a) ⊆ S .

The inductive invariant is finitely represented, if there is a finite set C ⊆ S with S = ↓C. We
refer to a set C that satisfies this as a cover of S.

When trying to invoke Theorem 4, finding an inductive invariant for U × V is easy: the
invariant is guaranteed to exist as soon as the language L(U × V ) = L(U ) ∩ L(V ) is empty,
which is precisely the hypothesis we start from.

▶ Lemma 5 ([16, Lemma 10]). An ULTS U admits an inductive invariant iff L(U ) = ∅.

The difficult part is to find an inductive invariant that can be represented in a finite way.
In [16], this was addressed with ideal decompositions [31, 21, 22]. The ideal decompositions,
however, needed the WQO assumption, which lead to the requirement in the main theorem
that one WSTS had to be deterministic. As we show in Section 4, this is a real restriction:
there are WSTS languages that cannot be accepted by a deterministic WSTS.

Our contribution is to find finitely represented inductive invariants without making use of
ideal decompositions. Our approach is to determinize the given WSTS with the construction
in Lemma 1, and accept that we can no longer guarantee the result to be a WSTS.

3.2 Converging Transition Systems: WSTS in Disguise
We propose converging transition systems (CTS), a new class of ULTS that is general enough
to capture determinized WSTS and retains enough structure to establish the existence
of finitely represented inductive invariants. CTS are inspired by Noetherian transition
systems [26, 27], but are formulated in a lattice-theoretic rather than in a topological way.
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Recall that determinized WSTS have as state space (D(Q), ⊆), where (Q, ≤) is a WQO.
In a WQO, every infinite sequence admits an increasing subsequence. It is well known [38]
that this may not hold for (D(Q), ⊆). However, a natural relaxation holds: every infinite
sequence [Xi]i∈N admits an infinite subsequence [Xφ(i)]i∈N, where any element that is present
in one set is present in almost every set. A similar property, defined for complete lattices, is
called convergence in the literature [25]. Our definition differs from the citation in two ways.
We restrict ourselves to sequences (as opposed to nets), and we require convergence to the
join (as opposed to lim sup = lim inf). This suffices for our setting.

▶ Definition 6. A converging lattice (Q, ≤) is a completely distributive lattice, where every
sequence [pi]i∈N has a converging subsequence [pφ(i)]i∈N. A converging sequence [qi]i∈N is an
infinite sequence with⊔

i∈N

⊔

j≥i

qj =
⊔
i∈N

qi .

The equality formalizes our explaination from before. In the context of sets, where join and
meet are respectively union and intersection, the right-hand side of the equation contains
all elements that appear in any set in the sequence. The left side iterates over every finite
initial segment, and includes every element that appears in all sets outside of this segment.
Every element that is missing in only finitely many sets will eventually be included.

Converging lattices not only generalize downward-closed subsets of WQOs, they are also
a sufficient condition for them. The backward direction is by [38, Proof of Theorem 3]. The
forward direction is by an application of the following fact [38], also [33, Fact III.3]: (D(Q), ⊆)
is well-founded if and only if the order is a WQO. The details are given in [32].

▶ Lemma 7. (D(Q), ⊆) is a converging lattice if and only if (Q, ≤) is a WQO.

The space of converging sequences is closed under the application of join preserving
functions as formulated next. While we would expect this result to be known, we have not
found a reference. The lemma is central to our argument, therefore we give the proof.

▶ Lemma 8. Let (Q, ≤) be a lattice, [pi]i∈N a converging sequence in Q, and f : Q → Q a
join preserving function. Then also [f(pi)]i∈N is converging.

Proof. Due to convergence of the given sequence, we have
⊔

i∈N ⊔j≥i pj =
⊔

i∈N pi. This
equality yields f(

⊔
i∈N ⊔j≥i pj) = f(

⊔
i∈N pi). By join preservation of f , we get⊔

i∈N
f( ⊔

j≥i

pj) =
⊔
i∈N

f(pi) .

Function f is not assumed to be meet preserving. But we can show an inequality that
is sufficient for our needs. For all S ⊆ Q and s ∈ S, we have f( ⊔S) ≤ f(s) ⊔ f( ⊔S). Join
preservation and the fact that s ∈ S yield f(s) ⊔ f( ⊔S) = f(s ⊔ ⊔S) = f(s). We have thus
shown f( ⊔S) ≤ f(s) for all s ∈ S. This means f( ⊔S) ≤ ⊔s∈S f(s).

We apply this inequality to the previous equality:⊔
i∈N

f(pi) =
⊔
i∈N

f( ⊔

j≥i

pj) ≤
⊔
i∈N

⊔

j≥i

f(pj) ≤
⊔
i∈N

f(pi) .

This is
⊔

i∈N ⊔j≥i f(pj) =
⊔

i∈N f(pi), as desired. ◀
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We explain the considerations that lead us to the definition of CTS given below. In the
light of Lemma 7, the states of a CTS should form a converging lattice. This, however, was not
enough to guarantee the existence of finitely represented inductive invariants. One requirement
of invariants is that they are closed under taking transitions. To understand which sets satisfy
this, we had to restrict the transition relation. We define CTS only as a deterministic model.
Then the transitions form a function δ(−, a) for every letter a ∈ Σ. Upward compatibility of
these functions is not very informative. Consider determinized WSTS: upward compatibility
gives us δ(S0 ∪ S1, a) ⊇ δ(S0, a), while we expect δ(S0 ∪ S1, a) = δ(S0, a) ∪ δ(S1, a). In
lattice-theoretic terms, we expect the transition functions δ(−, a) to be join preserving. A
benefit of this requirement is of course that it makes Lemma 8 available. An invariant
should also be disjoint from the final states so that we had to control this set as well. When
determinizing WSTS, a set D ∈ D(Q) is final as soon as it contains a single final state. Given
the definition of convergence, we relax this to containing a finite set of final states.

▶ Definition 9. A converging transition system (CTS) is an ULTS U = (Q, ≤, y, Σ, δ, F )
that is deterministic, where (Q, ≤) is a converging lattice, the functions δ(−, a) are join
preserving for all a ∈ Σ, and the final states satisfy

finite acceptance: for every
⊔

K ∈ F there is a finite set N ⊆ K with
⊔

N ∈ F .

The determinization of a WSTS yields a CTS, as it was one of the goals of the CTS
definition. Somewhat surprisingly, CTS do not add expressiveness but their languages are
already accepted by (non-deterministic) WSTS. The construction is via join prime elements
and can be found in the full version [32]. Together, the CTS languages are precisely the
WSTS languages, and one may see Definition 9 as a reformulation of the WSTS model.

▶ Proposition 10. If U is a WSTS, then U det is a CTS. For every CTS V , there is a
WSTS U with L(V ) = L(U ). Together, L(WSTS) = L(CTS).

The correspondence allows us to import the countability assumption from Lemma 2.
Indeed, if the WQO (Q, ≤) is countable, then there is only a countable number of downward-
closed sets in (D(Q), ⊆). This is by a standard argument for WSTS: each downward-closed
set can be characterized by its complement, the complement is upward closed, and is therefore
characterized by its finite set of minimal elements.

▶ Lemma 11. For every L ∈ L(CTS), there is a CTS U over a countable number of states
so that L = L(U )

We will also need that CTS are closed under synchronized products.

▶ Lemma 12. If U and V are CTS, so is U × V .

We summarize the findings so far. Given disjoint WSTS languages L(V1) ∩ L(V2) = ∅,
the goal is to show regular separability L(V1) | L(V2). We first determinize both WSTS. By
Proposition 10, V det

1 and V det
2 are CTS. Moreover, by Lemma 1, determinization preserves

the language. We use Lemma 11 to obtain countable CTS U1 and U2 that accept the same
languages. To show regular separability, we now intend to invoke Theorem 4 on U1 and U2.
CTS are already deterministic. It thus remains to show that U1 ×U2 has a finitely represented
inductive invariant. With Lemma 12, U1 × U2 is another CTS U . Moreover, the product
corresponds to language intersection, so L(U ) = ∅. By Lemma 5, we know that U has an
inductive invariant. We now show how to turn this invariant into a finitely represented one.
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8:8 Separability and Non-Determinizability of WSTS

3.3 Inductive Invariants in CTS
We show the following surprising property for countable CTS: every inductive invariant S

can be generalized to an inductive invariant cl(S) that is finitely represented. The closure
operator is defined by adding to S the joins of all converging sequences:

cl(S) = {
⊔
i∈N

pi | [pi]i∈N a converging sequence in S } .

▶ Proposition 13. Let U be a countable CTS and S an inductive invariant of U . Then also
cl(S) is an inductive invariant of U and it is finitely represented.

The proposition concludes the proof of Theorem 3. We simply invoke it on the inductive
invariant that exists by Lemma 5 as discussed above. The rest of the section is devoted to
the proof. We fix a countable CTS U = (Q, ≤, y, Σ, δ, F ) and an inductive invariant S ⊆ Q.

As Lemma 14 states, the closure is expansive and idempotent. This means further
applications do not add new limits. Here, we need the fact that we have a completely
distributive lattice. Moreover, the closure yields a downward-closed set. The closure is also
trivially monotonic, and hence an upper closure operator indeed [13, Section 11.7], but we
will not need monotonicity. The proof of Lemma 14 is given in the full version [32].

▶ Lemma 14. S ⊆ cl(S) = cl(cl(S)) = ↓cl(S).

Towards showing Proposition 13, we first argue for invariance.

▶ Lemma 15. cl(S) is an inductive invariant.

Proof. To prove that cl(S) is an inductive invariant, we must show two properties for the
joins

⊔
i∈N pi = p of converging sequences [pi]i∈N in S that we added. First, we must show

that we do not leave cl(S) when taking transitions, δ(p, a) ∈ cl(S) for all a ∈ Σ. Second, we
must show that the join is not a final state. We begin with the latter. Towards a contradiction,
suppose p ∈ F . Convergence yields

⊔
i∈N ⊔j≥i pj ∈ F . By the finite acceptance property of

CTS, there must be a finite set K ⊆ N with k = max K so that⊔
i∈K

⊔

j≥i

pj = ⊔

j≥k

pj ∈ F .

Since ⊔j≥k pj ≤ pk and F is upward closed, we obtain pk ∈ F . This is a contradiction: pk

belongs to the inductive invariant S and the invariant does not intersect the final states.
To show δ(p, a) ∈ cl(S), we first note that δ(pi, a) ∈ S for all i ∈ N. This holds as S is an

invariant and pi ∈ S. We now argue that not only the sequence [δ(pi, a)]i∈N is in S, but also
its join is in the closure. We use that the transition function δ(−, a) is join preserving. This
allows us to apply Lemma 8 showing that [δ(pi, a)]i∈N coverges. Since the sequence belongs
to S, we obtain

⊔
i∈N δ(pi, a) ∈ cl(S). We conclude by applying join preservation:

δ(p, a) = δ(
⊔
i∈N

pi, a) =
⊔
i∈N

δ(pi, a) ∈ cl(S) . ◀

It only remains to show that cl(S) is finitely represented.

▶ Proposition 16. There is a finite set C ⊆ cl(S) so that ↓C = cl(S).
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We break down the proof of Proposition 16 into two steps. First, we show that cl(S) can
be covered by an antichain. Then, we show that infinite antichain covers do not exist. This
implies that there must be a finite antichain cover. The proofs reasons over closed sets, sets
that contain the limits of their converging sequences. We rely on the fact that closed sets
have at least one maximal element.

▶ Lemma 17. Consider G ⊆ Q closed and non-empty. Then max G ̸= ∅.

Moreover, closedness remains intact after certain removals.

▶ Lemma 18. Consider G, H ⊆ Q where G is closed. Then G \ ↓H is closed.

We postpone the proofs of these lemmas until after the proof of Proposition 16.

▶ Lemma 19. There is an antichain cover of cl(S).

Proof. We claim that the maximal elements max cl(S) form an antichain cover of cl(S). It
is clear that max cl(S) is an antichain. Since cl(S) is downward closed by Lemma 14, we also
have ↓(max cl(S)) ⊆ cl(S). To see that max cl(S) is a cover, let G = cl(S) \ ↓(max cl(S))
and suppose G ̸= ∅. Lemma 18 tells us that G is closed. By Lemma 17, we get max G ̸= ∅.
Consider p ∈ max G. By the definition of G, we have p ̸∈ max cl(S). Then, however, there
must be q ∈ cl(S) with p ≤ q and p ̸= q. If q ∈ ↓(max cl(S)), then p ∈ ↓(max cl(S)) as well,
which is a contradiction to p ∈ G. If conversely q ∈ cl(S) \ ↓(max cl(S)) = G, then we have
a contradiction to p ∈ max G. ◀

Now we prove the second part of Proposition 16, which states that there can be no infinite
antichain cover.

▶ Lemma 20. There is no infinite antichain cover of cl(S).

Proof. Suppose there is an infinite antichain cover C ⊆ cl(S). Then, there is an infinite
sequence [pi]i∈N in C. By Definition 6, it has an infinite converging subsequence [pφ(i)]i∈N.
The closure operator adds

⊔
i∈N pφ(i) to cl(S). Since C is a cover of cl(S), there must be

q ∈ C with
⊔

i∈N pφ(i) ≤ q. Because pφ(i) ⊔ pφ(0) ≤ q and pφ(i), pφ(0) are incomparable, we
have pφ(i) < q for all i ∈ N. So pφ(i) < q for all i ∈ N, while at the same time q, pφ(i) ∈ C.
This contradicts the antichain property. ◀

We conclude by showing Lemma 17 and 18.

Proof of Lemma 17. Let ∅ ̸= G ⊆ Q be closed. We prove G chain complete, meaning for
every chain P ⊆ G the limit

⊔
P is again in G. Then Zorn’s lemma [29] applies and yields

max G ̸= ∅. We have Zorn’s lemma, because we agreed on the Axiom of Choice. Towards
chain completeness, consider an increasing sequence [pi]i∈N in G. We prove that

⊔
i∈N pi ∈ G.

For any i ∈ N, we have ⊔j≥i pi = pi. Hence, replacing each meet with the smallest element
shows convergence. Since [pi]i∈N converges and G is closed, we have

⊔
i∈N pi ∈ G.

Although we are in a countable setting, the argument for sequences does not yet cover all
chains. The problem is that the counting processs may not respect the order. To see this,
consider a chain P ⊆ G of ordinal size |P | = ω · 2. The chain is countable, but no counting
process can respect the order. We now argue that still

⊔
P ∈ G. By [34, Theorem 1], there

is a (wrt. inclusion) increasing sequence of subsets [Pi]i∈N in P(P ), where each Pi is finite
and

⋃
i∈N Pi = P . Finite chains contain maximal elements, so let pi = max Pi =

⊔
Pi. Then⊔

P =
⊔ ⋃

i∈N
Pi =

⊔
i∈N

⊔
Pi =

⊔
i∈N

pi .

Since [Pi]i∈N is an increasing sequence, [pi]i∈N is also an increasing sequence. As we have
shown before,

⊔
i∈N pi ∈ G. This concludes the proof. ◀
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Proof of Lemma 18. Consider G, H ⊆ Q with G closed. We show that G \ ↓H is closed.
Let [pi]i∈N be a converging sequence in G \ ↓H. Let q =

⊔
i∈N pi and suppose q ̸∈ G \ ↓H.

Since G is closed, q ∈ G. Then necessarily q ∈ ↓H. But by definition, pi ≤ q for all i ∈ N.
So pi ∈ ↓H as well. This contradicts the fact that the sequence [pi]i∈N lives in G \ ↓H. ◀

4 Non-Determinizability of WSTS

We show that the detWSTS languages form a strict subclass of the WSTS languages. To this
end, we define a WSTS language T that we prove cannot be accepted by a detWSTS. The
proof relies on a novel characterization of the detWSTS languages that may be of independent
interest. In the following, we call T the witness language. This is our second main result.

▶ Theorem 21. L(detWSTS) ̸= L(WSTS).

Towards the definition of T , recall that finitely-branching WSTS and WSTS over so-called
ω2-WQOs can be determinized [16, Theorem 5]. Moreover, it is known that ω2-WQOs are
precisely the WQOs that do not embed the Rado WQO [8, Section 2]. This suggests we
should accept the witness language T by an infinitely-branching WSTS over the Rado WQO.
We begin with our characterization of the detWSTS languages, as it will provide additional
guidance in the definition of the witness language.

4.1 Characterization of the detWSTS Languages
Our characterization is based on a classical concept in formal languages [28, Theorem 3.9].
The Nerode quasi order ≤L ⊆ Σ∗ × Σ∗ of a language L ⊆ Σ∗ is defined by w ≤L v, if

for all u ∈ Σ∗ we have that w.u ∈ L implies v.u ∈ L .

The characterization says that the detWSTS languages are precisely the languages whose
Nerode quasi order is a WQO. Note that this is not the folklore result [5, Proposition 5.1]
saying that a language is regular if and only if the syntactic quasi order is a WQO.

▶ Lemma 22 (Characterization of L(detWSTS)). L ∈ L(detWSTS) iff ≤L is a WQO.

Proof. ⇒ Let L = L(U ) with U = (Q, ≤, i, Σ, δ, F ) a detWSTS. We extend the order
≤ ⊆ Q × Q on the states to an order ≤U ⊆ Σ∗ × Σ∗ on words by setting w ≤U v, if
δ(i, w) = p and δ(i, v) = q with p ≤ q. Since U is deterministic, p and q are guaranteed to
exist and be unique. It is easy to see that ≤U is a WQO. We now show that ≤U is included
in the Nerode quasi order, and so also ≤L is a WQO. To this end, we consider w ≤U v and
u ∈ Σ∗ with w.u ∈ L, and show that also v.u ∈ L. We have δ(i, w.u) = δ(p1, u) = p2 and
δ(i, v.u) = δ(q1, u) = q2 with p1 = δ(i, w) and q1 = δ(i, v). Since w ≤U v, we have p1 ≤ q1.
With the simulation property of WSTS, this implies p2 ≤ q2. Since w.u ∈ L and L = L(U ),
we get p2 ∈ F . Since F is upward closed, also q2 ∈ F . Hence, v.u ∈ L(U ) = L as desired.

⇐ Consider a language L ⊆ Σ∗ whose Nerode quasi order ≤L is a WQO. We define the
trivial detWSTS UL = (Σ∗, ≤L, ε, Σ, δ, L). The states are all words ordered by the Nerode
quasi order. The empty word is the initial state, the language L is the set of final states. Note
that L is upward closed wrt. ≤L. The transition relation is defined as expected, δ(w, a) = w.a.
It is readily checked that L(UL) = L. ◀

The lemma gives a hint on how to construct the witness language T : we should make sure
the associated Nerode quasi order ≤T has an infinite antichain (then it cannot be a WQO).
To obtain such an antichain, remember that T will be accepted by a WSTS over the Rado
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WQO (R, ≤R) [38]. It is known that (D(R), ⊆) has an infinite antichain. Our strategy for
the definition of T will therefore be to translate the infinite antichain in (D(R), ⊆) into an
infinite antichain in (Σ∗, ≤T ). We turn to the details, starting with the Rado WQO.

4.2 Witness Language
Rado Order. Our presentation of the Rado WQO [38] follows [35]. The Rado set is the
upper diagonal, R = {(c, r) | c < r} ⊆ N2. The Rado WQO ≤R ⊆ R × R is defined by:

(c1, r1) ≤R (c2, r2), if r1 ≤ c2 ∨ (c1 = c2 ∧ r1 ≤ r2) .

Given an element (c, r), we call c the column and r the row, as suggested by Figure 1(left).
Columns will play an important role and we denote column i by Ci = {(i, r) | i < r} ⊆ R.
To arrive at a larger element in the Rado WQO, one can increase the row while remaining in
the same column, or move to the rightmost column of the current row, and select an element
to the right, Figure 1(middle).

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(0, 7)

(0, 8)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

(1, 7)

(1, 8)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

(2, 7)

(2, 8)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(3, 8)

(4, 4)

(4, 5)

(4, 6)

(4, 7)

(4, 8)

(5, 5)

(5, 6)

(5, 7)

(5, 8)

(6, 6)

(6, 7)

(6, 8)

(7, 7)

(7, 8)

column 3

row 5

...

(0, 0)

(1, 1)

(2, 2)

(3, 3)

(3, 5)

(3, 6)

(3, 7)

(3, 8)

(4, 4)

(5, 5)

(5, 6)

(5, 7)

(5, 8)

(6, 6)

(6, 7)

(6, 8)

(7, 7)

(7, 8) ...

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 1)

(1, 2)

(1, 3)

(2, 2)

(2, 3) (3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(3, 8)

(4, 4)

(5, 5)

(6, 6)

(7, 7)

...

Figure 1 Rado order with the column and row of (3, 5) marked (left), with the elements larger
than (3, 5) marked (middle), and with the downward closure of column 3 marked (right).

It is not difficult to see that (R, ≤R) is a WQO [38]. In an infinite sequence, either the
columns eventually plateau out, in which case the rows lead to comparable elements, or the
columns grow unboundedly, in which case they eventually exceed the row in the initial pair.
The interest in the Rado WQO is that the WQO property is lost when moving to (D(R), ⊆).
This failure is due to the following well-known fact.

▶ Lemma 23 ([22], Proposition 4.2). {↓Ci | i ∈ N} is an infinite antichain in (D(R), ⊆).

To see the lemma, we illustrate the downward closure of a column in Figure 1(right). Inclusion
fails to be a WQO as each column Ci forms an infinite set that the downward closure ↓Cj

with j > i cannot cover. Indeed, ↓Cj only has the triangle to the bottom-left of column
Cj available to cover Ci, and the triangle is a finite set. We will use exactly this difference
between infinite and finite sets in our witness language. It will become clearer as we proceed.

Definition of T . The witness language is the language accepted by UR = (R, ≤R, C0, Σ, δ, R).
The set of states is the Rado set, the set of initial states is the first column, and the set of
final states is again the entire Rado set. The latter means that a word is accepted as long
as it admits a run. The letters in Σ = {a, ā, zero} reflect the operation that the transitions
δ ⊆ R × Σ × R perform on the states:

δ((c, r), a) = (c + 1, r + 1) δ((c + 1, r + 1), ā) = (c, r)
δ((c + 1, r), zero) = (0, c) δ((0, r + 1), zero) = (0, r) .

We will explain the transitions in a moment, but remark that they are designed in a way
that makes ≤R a simulation relation and hence UR a WSTS.
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8:12 Separability and Non-Determinizability of WSTS

▶ Lemma 24. T ∈ L(WSTS).

To develop an intuition to the language, consider

T ∩ a∗.ā∗.zero∗ = {an.ān.zeroi | n, i ∈ N} ∪ {an.āk.zeroi | n, k, i ∈ N, n − k > i} .

Until reading the first zero symbol, the language keeps track of the (Dyck) balance of a and ā

symbols in a word. If the balance becomes negative, the word is directly rejected. If the
balance is non-negative, it is the task of the zero symbols to distinguish a balance of exactly
zero from a positive balance. Words with a balance of exactly zero get accepted regardless of
how many zero symbols follow. Word that have a positive balance of c > 0 when reading
the first zero get rejected after reading c-many zero symbols. As we show, this is enough to
distinguish words with a balance of c > 0 from words with a balance of d > 0 for d ̸= c, and
thus obtain infinitely many classes in the Nerode quasi order. We turn to the details.

▶ Proposition 25. T /∈ L(detWSTS)

To prove T /∈ L(detWSTS), we associate with each column Ci in the Rado WQO the column
language Li = {w ∈ Σ∗ | δ(C0, w) = Ci}. It consists of those words that reach all states
in Ci from the initial column C0. The column languages are non-empty.

▶ Lemma 26. Li ̸= ∅ for all i ∈ N.

We start from the entire initial column, meaning ε ∈ L0. The transitions labeled by a move
from all states in one column to all states in the next column, Li.a ⊆ Li+1. This already
proves the lemma. The ā-labeled transitions undo the effect of the a-labeled transitions and
decrement the column, Li+1.ā ⊆ Li. In the initial column, this is impossible, δ(C0, ā) = ∅.
We illustrate the behaviour of a and ā in Figure 2 (left).

By Lemma 23, the columns form an antichain in (D(R), ⊆). The languages Li translate this
antichain into (actually several) antichains of the form we need. Combined, Lemmas 26, 27,
and 22 conclude the proof of Proposition 25, and therefore Theorem 21.

▶ Lemma 27. Every set K ⊆ Σ∗ with |K ∩ Li| = 1 for all i ∈ N is an antichain in (Σ∗, ≤T ).

In the rest of the section, we prove Lemma 27. The lemma claims that entire column
languages are incomparable in the Nerode quasi order, so we write L ̸∼T K if for all w ∈ L

and all v ∈ K we have w ̸≤T v and v ̸≤T w. Difficult is the incomparability with L0 stated
in the next lemma. The proof will make formal the idea behind the zero-labeled transitions.

(0, 0)

(1, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

(2, 7)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(4, 4)

(4, 5)

(4, 6)

(4, 7)

(5, 5)

(6, 6)

ā and a

...

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 1)

(1, 2)

(1, 3)

(2, 2)

(2, 3) (3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(4, 4)

(5, 5)

(6, 6)

zero

...

Figure 2 The effect of a and ā-labeled transitions on column 3 (left) and the effect of zero-labeled
transitions on columns 0 and 3 (right).

▶ Lemma 28. L0 ̸∼T Lk for all k > 0.
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Proof. Let w ∈ L0 and v ∈ Lk, meaning w leads to all states in column 0 while v leads to all
states in column k > 0. It is easy to find a suffix that shows v ̸≤T w, namely ā. Appending
ā to v leads to column Ck−1, and so v.ā ∈ T , while there is no transition on ā from C0, and
so w.ā /∈ T .

For w ̸≤T v, we need the zero transitions. The idea is to make them fail in Ck for k > 0,
and have no effect in C0. The problem is that the states in Ck must simulate (0, r) for r ≤ k.
The trick is to fail with a delay. Instead of having no effect in C0, we let the zero transitions
decrement the row. Instead of failing in Ck, we let the zero transitions imitate the behavior
from (0, k) and move to (0, k − 1). This is illustrated in Figure 2(right).

By working with column languages, the zero transitions fail in Ck with a delay as follows.
We have L0.zero ⊆ L0 but Lk.zero ̸⊆ L0, meaning from C0 we again reach the entire
column C0, while from Ck we only reach the state (0, k − 1). The decrement behavior in the
initial column allows us to distinguish the cases by exhausting the rows. Certainly, zerok−1

is enabled in large enough states of C0, meaning w.zerok ∈ T . The state (0, k − 1) reached
by v.zero, however, does not enable corresponding transitions, v.zerok /∈ T . ◀

When executed in Ck with k > 0, the zero transitions resemble reset transitions [19]. An
analogue of leaving C0 unchanged despite decrements does not exist in the classical model.
Moreover, reset nets are defined over Nk (an ω2-WQO) as opposed to the Rado set. To
conclude the proof of Lemma 27, we lift the previous result to arbitrary column languages.

▶ Lemma 29. Li ̸∼T Lj for all i ̸= j.

Proof. Let i < j and consider w ∈ Li and v ∈ Lj . For v ̸≤T w, we append āj , which is
possible only from the larger column: v.āj ∈ T but w.āj /∈ T . For w ̸≤T v, we append āi.
Then w.āi ∈ L0 while v.āi ∈ Lk with k > 0. Now Lemma 28 applies and yields a suffix u so
that w.āi.u ∈ T but v.āi.u /∈ T . ◀

The WSTS accepting the witness language T uses non-determinism only in the choice of
the initial state. The transitions are deterministic. Moreover, the Rado WQO is embedded in
every non-ω2-WQO [8, Section 2]. Given the determinizability results from [16, Theorem 5],
language T thus shows non-determinizability of WSTS with minimal requirements.

5 Downward-Compatible WSTS

We show that the regular separability and non-determinizability results we have obtained for
upward-compatible WSTS so far can be lifted to downward-compatible WSTS (DWSTS).
In DWSTS, smaller states simulate larger ones and the set of final states is downward closed.
We lift our results by establishing general relations between the language classes L(WSTS),
L(DWSTS), L(detWSTS), and L(detDWSTS). Figure 3 summarizes them.

L(detWSTS) L(WSTS)

L(detDWSTS) L(DWSTS)

=cmp, Lemma 31
̸⊆rev, ̸⊇rev, Lemma 35

=rev, Lemma 30

⊊, Theorem 21

⊊, Theorem 34

Figure 3 Relations between language classes.
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8:14 Separability and Non-Determinizability of WSTS

Downward Compatibility. A downward-compatible LTS (DLTS) is an LTS D =
(Q, I, Σ, δ, F ) whose states are equipped with a quasi order ≤ ⊆ Q × Q so that the fol-
lowing holds. The final states are downward closed, ↓F = F , and ≥ is a simulation relation.
Recall that this means for all p1 ≤ q1 and for all q2 ∈ δ(q1, a) there is p2 ∈ δ(p1, a) with
p2 ≤ q2. We denote the class of deterministic DLTS by detDLTS. We use L(DLTS) and
L(detDLTS) to refer to the classes of all DLTS resp. detDLTS languages. If ≤ is also a
WQO, we call D a downward-compatible WSTS (DWSTS).

Relations between L(DLTS) and L(ULTS). The languages accepted by DLTS are the
reverse of the languages accepted by ULTS, and vice-versa. This is easy to see by reversing the
transitions. Let U = (Q, ≤, I, Σ, δ, F ) be an ULTS. We define U rev = (Q, ≤, F, Σ, δrev, ↓I)
to be its reversal. The initial and final states are swapped and the direction of the transitions
is flipped, δrev = {(p, a, q) | (q, a, p′) ∈ δ, p ≤ p′}. Note that we close the initial states
downwards and add transitions from states smaller than the original target. This corresponds
to the assumption that the original transitions relate downward-closed sets. The construction
can also be applied in reverse to get an ULTS Drev from a DLTS D.

▶ Lemma 30. If U ∈ ULTS (WSTS), then U rev ∈ DLTS (DWSTS) and L(U rev) = L(U )rev.
If D ∈ DLTS (DWSTS), then Drev ∈ ULTS (WSTS) and L(Drev) = L(D)rev.

The detDLTS languages are precisely the complements of the detULTS languages. For a
detULTS or detDLTS U = (Q, ≤, y, Σ, δ, F ), we define the complement U = (Q, ≤, y, Σ, δ, F )
by complementing the set of final states [37, Theorem 5].

▶ Lemma 31. U ∈ detULTS (detWSTS) iff U ∈ detDLTS (detDWSTS), and L(U ) = L(U ).

Behind this is the observation that, under determinism, ≤ is a simulation if and only if ≥
is [36, Theorem 3.3(ii)]. The details are in the full version [32].

5.1 Lifting Results
Regular Separability of DWSTS. We obtain the regular separability of disjoint DWSTS
languages as a consequence of the previous results. More precisely, we need Lemma 30,
Theorem 3, and the closure of the regular languages under reversal.

▶ Theorem 32. Let L1, L2 ∈ L(DWSTS). We have L1 | L2 if and only if L1 ∩ L2 = ∅.

Non-Determinizability of DWSTS. To show that DWSTS cannot be determinized, recall
our witness language T from Section 4. Surprisingly, we have the following.

▶ Lemma 33. T rev ∈ L(detDWSTS) and T
rev ∈ L(detWSTS).

For the first claim, recall that the witness language is accepted by the WSTS UR. The
DWSTS UR

rev has one minimal initial state, and transition images δrev(p, b) with one
minimal element for all p ∈ R and b ∈ Σ. Removing simulated states yields a deterministic
DWSTS. The details are in the full version [32]. For the second claim, T rev ∈ L(detWSTS)
by Lemma 31. But T rev = T

rev, and so T
rev ∈ L(detWSTS). Behind this is the fact that

bijections commute with complements, and reversal is a bijection.
The lemma allows us to prove non-determinizability for DWSTS. Notably, we do not

need a characterization for the languages of deterministic DWSTS.

▶ Theorem 34. T ∈ L(DWSTS) \ L(detDWSTS) and so L(DWSTS) ̸= L(detDWSTS).

Proof. By Lemma 33, T
rev ∈ L(detWSTS). Lemma 30 yields T ∈ L(DWSTS). Suppose T ∈

L(detDWSTS). Then T ∈ L(detWSTS) by Lemma 31. This contradicts Proposition 25. ◀



E. Keskin and R. Meyer 8:15

5.2 Consequences
We have shown that neither upward- nor downward-compatible WSTS can be determinized.
This does not yet rule out the possibility of determinizing an upward-compatible WSTS into
a downward-compatible one, and vice versa. Given the correspondence in Lemma 30, we
should allow the determinization to reverse the language. We now show that also this form
of reverse-determinization is impossible: there are even deterministic languages that cannot
be reverse-determinized. This is by Lemma 33, Proposition 25, and Theorem 34.

▶ Lemma 35. T rev ∈ L(detDWSTS) but T /∈ L(detWSTS). Similarly, T
rev ∈ L(detWSTS)

but T /∈ L(detDWSTS)

After reversal, both witness languages T and T can be accepted by a deterministic WSTS.
When it comes to separability, this means the results from [16] apply to them. A consequence
of Lemma 35, however, is that there are WSTS languages that can neither be determinized
nor reverse-determinized. An instance is K = T.#.T

rev with # a fresh letter.

▶ Lemma 36. K ∈ L(WSTS), K ̸∈ L(detWSTS), and Krev ̸∈ L(detDWSTS).

When considering disjoint K1, K2 ∈ L(WSTS) that can neither be determinized nor reverse-
determinized, the separability result from [16] does not apply. Theorem 3 is stronger and
yields K1 | K2. The situation is similar for downward-compatible WSTS.

6 Conclusion and Future Work

We have shown that disjoint WSTS languages are always separated by a regular language.
This strengthens the popular separability result from [16] by showing that the premise in
that work (one language had to be accepted by a deterministic WSTS) is not needed. We
have also shown that deterministic WSTS accept a strictly weaker class of languages than
their non-deterministic counterparts, meaning the premise was a real restriction.

Behind our separability result is a closure of inductive invariants that adds limits of
converging sequences, and the fact that the transition relation is compatible with limits.
It would be interesting to formulate this in a topological setting [26, 27]. It would also be
interesting to apply our invariant closure in settings where separability does not coincide
with intersection emptiness and the complexity is open [6]. Finally, it would be interesting
to develop compositional verification technology based on separability.
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Abstract
Partial Order Reduction (POR) and Symbolic Execution (SE) are two fundamental abstraction
techniques in program analysis. SE is particularly useful as a state abstraction technique for sequential
programs, while POR addresses equivalent interleavings in the execution of concurrent programs.
Recently, several promising connections between these two approaches have been investigated, which
result in symbolic partial order reduction: partial order reduction of symbolically executed programs.
In this work, we provide compositional notions of completeness and correctness for symbolic partial
order reduction. We formalize completeness and correctness for (1) abstraction over program states
and (2) trace equivalence, such that the abstraction gives rise to a complete and correct SE, the trace
equivalence gives rise to a complete and correct POR, and their combination results in complete
and correct symbolic partial order reduction. We develop our results for a core parallel imperative
programming language and mechanize the proofs in Coq.

2012 ACM Subject Classification Theory of computation → Parallel computing models

Keywords and phrases Symbolic Execution, Coq, Trace Semantics, Partial Order Reduction

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.9

Supplementary Material Software (Coq proofs): https://doi.org/10.5281/zenodo.8070170

Funding This work was supported by the Research Council of Norway via SIRIUS (237898) and
PeTWIN (294600).

Acknowledgements The first author would like to thank Yannick Zakowski for help with Coq
formatting and Erik Voogd for valuable insights on symbolic semantics.

1 Introduction

Program analyses rely on representing the possible reachable states and traces of a program
run efficiently and are commonly accompanied by a correctness theorem (all representable
states and traces are reachable) and possibly a completeness theorem (all reachable states
and traces are represented). Explicitly listing all states or traces leads to the “state space
explosion”, as even for simple programs, the number of possible program states may grow so
fast that examining them all explicitly becomes infeasible.

One source of this growth is the domain of data – the number of possible values is very
large, even for a single integer. Symbolic execution [7, 18, 19] (SE) mitigates this problem by
representing values symbolically, thus covering many possible concrete states at once. SE is
utilized to great effect in program analysis [3]. Another source of growth is concurrency, as
the number of possible interleavings grows exponentially. Partial Order Reduction (POR)
is a technique for tackling this explosion by taking advantage of the fact that independent
events can be reordered without affecting the final result [16].
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9:2 Compositional Symbolic POR

The combined use of both POR and SE has recently begun to be investigated [6, 28],
called symbolic partial order reduction (SPOR). Notions of correctness and completeness are
available for both SE and POR, but how these notions can be composed to obtain correctness
and completeness of SPOR remains an open challenge. In this paper, we tackle this challenge
and give a compositional notion of correctness and completeness for SPOR, based on the
abstraction and equivalence notions that define SE and POR. To formulate such a theory we
use trace-based semantics. Trace semantics is both expressive [23, 31] and compositional [11],
and allows a natural formulation of partial order reduction [6].

concrete semantics concrete POR

symbolic semantics symbolic POR

(1)

(2)

Figure 1 State of the art and our contribution.

State of the Art

Figure 1 shows the available correctness and completeness results for SE and for POR. Each
corner denotes a program semantics, and the arrows denote correctness and completeness.
First, let us examine the left side of the square, which is concerned with SE.

The left edge of Figure 1, labeled (1), is provided by de Boer and Bonsangue [5], who
define symbolic and concrete semantics for several minimal imperative languages to formulate
and prove notions of correctness and completeness for SE. However, their work is limited to
a sequential setting. The proof is based on using a suitable abstraction between concrete and
symbolic states, that defines the SE.

The bottom edge of Figure 1, labeled (2), is studied by de Boer et al. [6], who formulate
partial order reduction for symbolic execution with explicit threads using a syntactic notion
of interference freedom and implement this approach in the rewriting logic framework
Maude [10]. Their results are not connected to the concrete semantics. The result is based
on an equivalence relation between symbolic traces, that defines the SPOR, but does not
use an explicit abstraction between states. We discuss further, related results on symbolic
execution in Sec. 6.

The top of Figure 1 concerns POR [1,13, 16, 25] for concrete executions, where numerous
implementations are available. The correctness of such a reduction corresponds to the top
edge of Figure 1, though it is not usually presented in terms of an equivalence relation as
proposed by de Boer et al. Results directly of SPOR are given by Schemmel et al. [28], who
apply (dynamic) partial order reduction to symbolic execution using “unfolding” to explore
paths. This shows that POR is applicable directly to SE, but does not discuss a generic
notion of state abstraction and trace equivalence.

While all four corners of Figure 1 are well established, and several edges have been
explored, there exists no general formalization of the properties for state abstraction and
trace equivalence needed for a uniform and compositional treatment of different POR
algorithms and SE techniques. Hence, the present work unifies notions of correctness and
completeness for symbolic execution and partial order reduction, and fills in the remaining
(black) edges of Figure 1. By compositional completeness and correctness, we mean that the
diagonal follows automatically from the other edges of the figure.
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Approach

To fill the gap we formulate concrete and symbolic trace semantics for a small imperative
language with parallel composition and show that these semantics enjoy a bisimulation
relationship. We then formulate partial order reduction in terms of an equivalence relation on
traces, and show that this also leads to a bisimulation of reduced and non-reduced semantics.
These bisimulations extend to correctness and completeness results, and compose naturally
to semantics with both symbolic execution and partial order reduction.

The results are obtained in a framework extending the work of de Boer et al. and are
centered around the notions of state abstraction and trace equivalence. Following de Boer et
al., state abstraction is given by transforming concrete states according to symbolic states,
and a concrete state is abstracted if it can be obtained by some symbolic transformation.
Trace equivalence defines an equivalence relation on sequences of events which allows for
partial order reduction. In particular, it suffices to explore one trace per equivalence class.

Both symbolic and concrete states are implemented by total functions of variable names
with generic properties. To reduce the number of rules and allow for elegant parallel
composition the semantics are given by a reduction system in the style of Felleisen and
Hieb [12] with contexts formalized as functions on statements and an inductive relation [20].
The full semantics are obtained by stepwise transitive closure, which allows for proofs by
induction and case analysis of the final step.

Contributions

Our contribution is threefold.
1. We unify and fill in the remaining edges in the above diagram. In particular we give

correctness and completeness relations for concrete partial order reduction, directly relate
partial order reduction in the symbolic and concrete case, and compose the results to
relate concrete semantics to reduced symbolic semantics.

2. Correctness and completeness for both symbolic execution and partial order reduction
are formulated in a parametric fashion, allowing for different implementations of both,
providing they fulfill certain conditions.

3. Finally, the entire development is mechanized in Coq [4,32]. This lends credence to the
results and allows for extensions and further work in a systematic manner.

Structure

Section 2 introduces basic notions for symbolic execution with trace semantics for a basic
imperative language with parallel composition. Then both concrete and symbolic seman-
tics are given as reduction systems with contexts to handle both sequential and parallel
composition. Finally we formulate and prove correctness and completeness of the symbolic
semantics with respect to the concrete semantics. Section 3 introduces a notion of trace
equivalence that connects correctness and completeness to partial order reduction, which is
used in Section 4 to define independence of events in a semantic manner. We then define new
PO-reduced semantics for both symbolic and concrete cases, and show that they bisimulate
their non-reduced counterparts. Finally, Section 5 connects previous results and shows that
bisimulation carries through POR to fill in the upper right half of the diagram. Section 6
and 7 give further related work and concludes.

CONCUR 2023
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e :: = n
∣∣ x

∣∣ e1 + e2 arith. expr.
b :: = true

∣∣ false
∣∣ ¬b

∣∣ b1 ∧ b2
∣∣ e1 ≤ e2 bool. expr.

s :: = x := e
∣∣ s1 ; s2

∣∣ s1 || s2
∣∣ if b {s1}{s2}

∣∣ while b {s}
∣∣ skip statements

Figure 2 Grammar for expressions and statements .

2 Symbolic Trace Semantics

In this section we introduce the basic notions of our framework. In particular, we define a
small imperative language with parallel composition and formulate symbolic and concrete
trace semantics for it. We relate the two semantics by a bisimulation defining both trace
completeness and trace correctness.

2.1 Basic Notions
For the basic setup we assume a set of program variables Var , a set of arithmetic expressions
Aexpr and a set of Boolean expressions Bexpr . Our basic programming language is an
imperative language with (side effect free) assignment, conditional branching, iteration and
both sequential and parallel composition.

▶ Definition 2.1 (Syntax). The sets of arithmetic expressions Aexpr , Boolean expressions
Bexpr , and statements Stmt are defined by the grammar in Figure 2, where we let x range
over Var , n over N, b over Bexpr , e over Aexpr and s over statements.

Before we define the semantics, we require a notion of store to express program state. We
distinguish between symbolic stores, for symbolic execution, and concrete stores, for concrete
execution.

▶ Definition 2.2 (Symbolic Store). A symbolic store σ is a substitution, i.e., a map from
Var to Aexpr denoted by σ.

We take equality of substitutions to be extensional, that is σ = σ′ if σ(x) = σ′(x) for all
x. An update to a substitution is denoted by σ[x := e]. A substitution can be recursively
applied to a Boolean or arithmetic expression, resulting in a new expression. We denote such
an application by eσ.

▶ Definition 2.3 (Concrete Store). A concrete store V is a valuation, i.e., a map from Var
to N denoted by V .

Like substitutions, valuations can be updated (denoted V [x := n]) and a valuation can be
used to evaluate an expression. This evaluation is denoted V (e) and results in a natural
number for arithmetic expressions and a Boolean for Boolean expressions. For a Boolean
expression b, we say V is a model of b if V (b) = true and denote this by V |= b. The
definitions of substitution and evaluation are standard and given in the auxiliary material.

2.2 Trace Semantics
Based on the notion of symbolic and concrete stores, we now give the symbolic and concrete
semantics. Both semantics are based on traces, i.e., sequences of events. Events are
assignments or guards in the symbolic case, or just assignments in the concrete case.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Expr.v#L10
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Parallel.v#L23
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▶ Definition 2.4 (Symbolic Trace). A symbolic trace is a sequence of conditions or symbolic
assignments defined by the grammar

τS ::= [ ]
∣∣ τS :: (x := e)

∣∣ τS :: b

▶ Definition 2.5 (Concrete Trace). A concrete trace is a sequence of concrete assignments
defined by the grammar

τC ::= [ ]
∣∣ τC :: (x := e)

In both cases [ ] denotes the empty trace and we write the trace [ ] :: x :: y :: z . . . simply as
[x, y, z . . .]. The concatenation of τ and τ ′ is denoted by τ · τ ′. The trace syntax is shared
between symbolic and concrete traces, but the difference will be clear from context.

We represent the current program state as a pair of a statement (the program remaining
to be executed) and the trace generated so far. Evaluating expressions requires to evaluate
the expression in the last substitution or valuation of the trace. To do so, we extract this
final substitution or valuation from a trace and an initial substitution or valuation by folding
over the trace. In the case of a symbolic trace, the result is a symbolic substitution, while a
concrete trace results in a concrete valuation.

▶ Definition 2.6 (Final Substitution ). Given an initial substitution σ, the final substitution
of a trace τS is denoted τS ⇓σ and inductively defined by

[ ] ⇓σ = σ

τS ::b ⇓σ = τS ⇓σ

τS :: (x := e) ⇓σ = σ′[x := (eσ′)] where σ′ = τS ⇓σ

When σ = id we omit it and write τS ⇓

▶ Definition 2.7 (Final Valuation ). Given an initial valuation V , the final valuation of a
trace τC is denoted τC ⇓V and inductively defined by

[ ] ⇓V = V

τC :: (x := e) ⇓V = V ′[x := V ′(e)] where V ′ = τC ⇓V

Semantics can then be given by a simple reduction relation on atomic statements (Figure 3),
which extends to the full language by s/c-in-context. The symbolic (resp. concrete)
relation works on pairs of statements and symbolic (resp. concrete) traces to extend them
with appropriate events.

▶ Definition 2.8 (Symbolic and Concrete Semantics). The symbolic semantics → between two
symbolic configurations is given on the left of Fig. 3. The concrete semantics ⇒ between two
concrete configurations is given on the right of Fig. 3.

Both semantics are straightforward, we point out three details. First, the main difference is
that the rules with branching (∗-if-t, ∗-if-f, ∗-while-t, ∗-while-f) are non-deterministic
and add an event in the symbolic case, but are deterministic in the concrete case.

Second, in order to concisely deal with both sequential and parallel composition, we use
contexts [12]. A context C represents a statement with a “hole” (□) in it and is generated by
the grammar:

C ::= □
∣∣ (C ; s)

∣∣ (C || s)
∣∣ (s || C)

CONCUR 2023

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L113
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L137


9:6 Compositional Symbolic POR

s-asgn
(x := e, τ)⇝ (skip, τ :: (x := e)) (x := e, τ)⇝⇝⇝V (skip, τ :: (x := e))

c-asgn

s-if-t
(if b {s1}{s2}, τ)⇝ (s1, τ :: b)

τ ⇓V (b) = true
(if b {s1}{s2}, τ)⇝⇝⇝V (s1, τ)

c-if-t

s-if-f
(if b {s1}{s2}, τ)⇝ (s2, τ :: ¬b)

τ ⇓V (b) = false
(if b {s1}{s2}, τ)⇝⇝⇝V (s2, τ)

c-if-f

s-while-t
(while b {s}, τ)⇝ (s ; while b {s}, τ :: b)

τ ⇓V (b) = true
(while b {s}, τ)⇝⇝⇝V (s ; while b {s}, τ)

c-while-t

s-while-f
(while b {s}, τ)⇝ (skip, τ :: ¬b)

τ ⇓V (b) = false
(while b {s}, τ)⇝⇝⇝V (skip, τ)

c-while-f

s-seq
(skip ; s, τ)⇝ (s, τ) (skip ; s, τ)⇝⇝⇝V (s, τ)

c-seq

s-par
(skip || skip, τ)⇝ (skip, τ) (skip || skip, τ)⇝⇝⇝V (skip, τ)

c-par

s-in-context
(s, τ)⇝ (s′, τ ′)

(C[s], τ) → (C[s′], τ ′)
(s, τ)⇝⇝⇝V (s′, τ ′)

(C[s], τ) ⇒V (C[s′], τ ′)
c-in-context

Figure 3 Reduction rules for symbolic and concrete semantics .

Intuitively, the statement we are interested in may occur on its own, sequentially before some
other statement, or on either side of a parallel operator. By C[s] we denote the statement s

in the hole in context C.
Finally, we point out that we model termination by reduction to skip.

▶ Example 2.9. Consider the program s = y := 1 || x := 3 || if X ≤ 1 {Y := 2} {Y := 3}.
We will show that (s, [ ]) →∗ (skip, [x := 3, y := 1, x > 1, y := 3]). In other words that
[x := 3, y := 1, x > 1, y := 3] is one possible trace of the program.

First apply s-in-context with C = y := 1 || □ || if X ≤ 1 {Y := 2} {Y := 3} and s-asgn
to obtain

(s, [ ]) → (y := 1 || skip || if X ≤ 1 {Y := 2} {Y := 3}, [x := 3])

The second assignment is similar, followed by s-if-f in the context skip || skip || □ to obtain

(skip || skip || if X ≤ 1 {Y := 2} {Y := 3}, [x := 3, y := 1])
→ (skip || skip || Y := 3, [x := 3, y := 1, x > 1])

After the last assignment, the superfluous skips are dispensed with by s-par and putting
the steps in sequence gives the desired

(s, [ ]) →∗ (skip, [x := 2, y := x, z := x])

Note that we could choose to apply the contexts in a different order, resulting in five
other potential traces.

2.3 Correctness and Completeness
The value of symbolic execution comes from its ability to simultaneously capture many
possible concrete execution paths. However, not all of these paths will be feasible for all initial
valuations. The feasibility of any particular symbolic trace depends on its path condition – a
conjunction of guards that allow execution to follow down this particular path – which is
computed in a similar fashion to final substitutions.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L48
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L70
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PORExamples.v#L42
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▶ Definition 2.10 (Path Condition ). The path condition of a symbolic trace τS is denoted
pc(τS) and defined by

pc([ ]) = true
pc(τS ::b) = pc(τS) ∧ b(τS ⇓)

pc(τS :: (x := e)) = pc(τS)

Because it is a conjunction of terms, once a path condition becomes false, it cannot
become true again. The following lemma captures the contrapositive: a model of a trace’s
path condition is also a model of any prefix’s path condition.

▶ Lemma 2.11 (Path Condition Monotonicity ). If V |= pc(τ :: ev), then V |= pc(τ)

To relate the symbolic and concrete traces we define a notion of abstraction based on the
correctness and completeness relations of de Boer and Bonsangue.

▶ Definition 2.12 (Trace abstraction [5] ). Given an initial valuation V , a symbolic trace
τS and a concrete trace τC we say τS V -abstracts τC if V |= pc(τS) and τC ⇓V = V ◦ τS ⇓

The steps of the symbolic and concrete systems correspond very closely. Every concrete
step corresponds to a symbolic step whose path condition is satisfiable, and every symbolic
step with a satisfiable path condition corresponds to a concrete step. In both cases the
resulting final states are related by simple composition. This relationship is formalized in
the following bisimulation result.

▶ Theorem 2.13 (Bisimulation ). For any initial valuation V and initial traces τ0, τ ′
0 such

that τ0 V -abstracts τ ′
0:

if there is a concrete step (s, τ0) ⇒V (s′, τ), then there exists a symbolic step
(s, τ ′

0) → (s′, τ ′) such that τ ′ V -abstracts τ , and
if there is a symbolic step (s, τ ′

0) → (s′, τ ′) and V |= pc(τ ′), then there exists a concrete
step (s, τ0) ⇒V (s′, τ) such that τ ⇓V = V ◦ τ ′ ⇓

By induction over the transitive closure and Lemma 2.11 we obtain correctness and
completeness results. Intuitively, correctness means that each symbolic execution whose path
condition is satisfied by some initial valuation V corresponds to a concrete execution with
the same initial valuation. Additionally its trace abstracts the concrete trace in the sense
that the final concrete state is the concretization of V by the final symbolic state. In other
words the subset of states described by its path condition contains V , and there is a concrete
execution corresponding to the transformation described by its final symbolic state.

▶ Corollary 2.14 (Trace Correctness ). If (s, τS) →∗ (s′, τ ′
S), τS V -abstracts τC , and

V |= pc(τ ′
S), then there exists a concrete trace τ ′

C such that (s, τC) ⇒∗
V (s′, τ ′

C) and
τ ′

C ⇓V = τC ⇓V ◦(τ ′
S ⇓).

Completeness captures the opposite relationship: every concrete execution has a symbolic
counterpart. Furthermore the symbolic trace recovers the concrete state, and its path
condition is satisfied by the initial valuation.

▶ Corollary 2.15 (Trace Completeness ). If (s, τC) ⇒∗
V (s′, τ ′

C) and τS V -abstracts τC , there
exists τ ′

S such that (s, τS) →∗ (s′, τ ′
S) and τ ′

S V -abstracts τ ′
C .
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https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L127
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3 Trace Equivalence

In this section we introduce a notion of trace equivalence which will be used to formulate
partial order reduction in Section 4. Intuitively two traces should be equivalent if execution
could continue from either one, i.e., if partial order reduction would prune away one of them.

This is surely the case when their final states are the same. In the symbolic case their
path conditions must also be equivalent. Additionally, we do not want to equate traces
describing observably different behavior, so equivalent traces must contain the same events.
These considerations motivate the following definition.

▶ Definition 3.1 (Symbolic Trace Equivalence ). Symbolic traces τ and τ ′ are equivalent
(denoted τ ∼ τ ′) if

τ ′ is a permutation of τ ,
τ ⇓σ= τ ′ ⇓σ for all initial substitutions σ, and
V |= pc(τ) ⇐⇒ V |= pc(τ ′) for all valuations V

▶ Definition 3.2 (Concrete Trace Equivalence ). Concrete traces τ and τ ′ are equivalent
(denoted τ ≃ τ ′) if

τ ′ is a permutation of τ ,
τ ⇓V = τ ′ ⇓V for all initial valuations V

▶ Example 3.3. Let τ1 = [y := x, z := x] and τ2 = [z := x, y := x]. It is both the
case that τ1 ∼ τ2 and τ1 ≃ τ2.1 They evidently contain the same events and
have the same (trivially true) path condition. Any initial substitution σ results in

a final substitution σ′(v) =
{

x, v ∈ {y, z}
σ(v), otherwise

and any initial valuation V results in

V ′(v) =
{

V (x), v ∈ {y, z}
V (v), otherwise

Clearly, trace equivalence defines an equivalence relation. Furthermore it allows continued
execution in the following sense: given a statement s and a trace τ , we can replace τ with
an equivalent trace τ ′, such that the next execution step will result in two different, but
equivalent traces.

▶ Lemma 3.4 ( ). For equivalent traces τ ∼ τ ′, if (s, τ ) → (s′, τ1) then there exists τ2 such
that (s, τ ′) → (s′, τ2) and τ1 ∼ τ2.

This lemma also holds for concrete traces with concrete equivalence and reduction system
and underlies partial order reduction in both cases.

Crucially, the properties of trace equivalence ensure that it preserves abstraction. The
following theorem shows that the notion of V-abstraction carries through trace equivalence,
which will allow us to connect it with partial order reduction in the sequel.

▶ Theorem 3.5 (Abstraction Congruence ). For equivalent symbolic traces τS ∼ τ ′
S and

concrete traces τC ≃ τ ′
C , if τS V -abstracts τC then τ ′

S V -abstracts τ ′
C

▶ Example 3.6. Continuing Example 3.3, the symbolic trace τ1 V -abstracts the concrete
trace τ1 for every V , and so τ1 also V -abstracts the equivalent concrete trace τ2.

In fact, every symbolic trace V -abstracts itself viewed as a concrete trace for any V .

1 Recall that symbolic traces are also concrete traces if they contain no branching events (guards).

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L21
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L153
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L61
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L284
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3.1 Example: Interference Freedom
The reordering of independent events is the core of many POR approaches. In practice true
independence is prohibitively expensive to compute, so some over-approximation is used.
Interference freedom is a syntactic over-approximation of independence of events. We show
that reordering interference free events is an instance of our notion of trace equivalence.

Interference freedom between ev1 and ev2 means that ev1 does not read or write a variable
written by ev2 and vice versa. Formally:

▶ Definition 3.7 (Interference Freedom). Let ev be either a Boolean expression b or an
assignment (x := e). R(ev) denotes the set of variables read by ev, ie. all the variables in b

or e. W (ev) denotes the set of variables written by ev, ie. x. Then ev1, ev2 are interference
free iff

W (ev1) ∩ W (ev2) = R(ev1) ∩ W (ev2) = R(ev2) ∩ W (ev1) = ∅

Denote the interference freedom of ev1 and ev2 by ev1 ⋄ ev2

Interference freedom is an independence relation in the sense that if ev1 ⋄ ev2, then the
final state of [ev1, ev2] is equal to that of [ev2, ev1]. The reason is that interference freedom
allows for “simultaneous” updates without worrying about the order of operations in the
assignment case, and the variables involved in a Boolean expression can not be changed in
the guard case.

On the other hand, interference freedom is an over-approximation which is perhaps most
easily seen by events like (x := x) and (x ≤ 3). Clearly they are semantically independent
since the value of x does not change, but they are not interference free.

Equipped with a concrete independence relation we can construct new traces by reordering
adjacent independent events. Such a reordering is captured by the equivalence define above
in the sense that it results in an equivalent trace.

▶ Theorem 3.8 (Interference free reordering is a trace equivalence ). Let ∼IF be the smallest
equivalence relation on symbolic traces such that τ · [ev1, ev2] · τ ′ ∼IF τ · [ev2, ev1] · τ ′ for all
τ, τ ′ and ev1 ⋄ ev2.

The equivalence relation ∼IF is contained in ∼.

The analogous result holds for concrete traces and ≃ .
This example shows that a POR scheme based on reordering of independent events is

captured by trace equivalence.

4 Correctness and Completeness for Symbolic Partial Order Reduction

We formulate POR in the present setting through the use of trace equivalence (defined above)
and use it to define new PO-reduced reduction systems. These new systems bisimulate the
non-reduced systems of Section 2, leading directly to correctness and completeness results.

At its core, partial order reduction works by observing that some events commute in
the execution of a parallel program. These events can be reordered without affecting the
final result, and so it it not necessary to explore every interleaving. The reduction is often
formulated in terms of an (in)dependence relation that determines which events may be
reordered. Such a relation must make sure that independent steps leave the system in
equivalent states, regardless of the order they are performed in.

An independence relation lifts to an equivalence relation on traces by permuting adjacent
independent events. POR approaches then employ some algorithm to compute the equivalence
classes of such a relation and avoid exploring traces in the same class. In practice it is difficult
to compute the independence of events, so a sound over-approximation is used instead.
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We instead take a more high-level approach. Considering trace equivalence to be a
fundamental semantic building block, we develop our POR semantics parametric in this
notion. This gives us an abstract notion, independent of the specific algorithm for POR.

To take advantage of partial order reduction, we define new transition systems.

▶ Definition 4.1 (POR Semantics). The transition rules for symbolic POR are:

τ0 ∼ τ ′
0 (s, τ0)⇝ (s′, τ)

(s, τ ′
0)⇝P OR (s′, τ)

(s, τ)⇝P OR (s′, τ ′)
(C[s], τ) →P OR (C[s′], τ ′)

And the transition rules for concrete POR are:

τ0 ≃ τ ′
0 (s, τ0)⇝⇝⇝V (s′, τ)

(s, τ ′
0)⇝⇝⇝P OR,V (s′, τ)

(s, τ)⇝⇝⇝P OR,V (s′, τ ′)
(C[s], τ) ⇒P OR,V (C[s′], τ ′)

This new reduction relation includes the steps of the symbolic case but requires only that
the initial trace is equivalent in the sense defined in Section 3. Crucially, given a class of
equivalent traces we may choose only one of them to continue execution. This is the source
of reduction. Note that it is possible for (s, τ ′

0) to be unreachable in the original semantics,
however the following completeness and correctness results ensure that this does not affect
the final result. This approach most closely resembles sleep sets [15, 17] which keeps track of
equivalent traces that do not need to be explored.

▶ Example 4.2. Consider again the program from Example 2.9 and note that (y := 1)
and (x := 3) are independent assignments. In the middle of some computation we are left
with skip || skip || if x ≤ 1 {Y := 2}{Y := 3} and the trace [x := 3, y := 1]. However, we
have previously explored a computation from the state

(skip || skip || if x ≤ 1 {Y := 2}{Y := 3}, [y := 1, x := 3])

Now the POR semantics let us replace the equivalent traces and use this computation instead.

In order to utilize POR, we need to know that the reduced traces still model our programs’
behavior. It should not throw away any important traces, nor should it invent new ones by
taking unsound equivalence classes. Formally, we want the POR semantics to bisimulate
their non-reduced counterpart up to trace equivalence.

▶ Theorem 4.3 (POR bisimulation ). For equivalent initial traces τ0 ∼ τ ′
0:

If (s, τ0) →P OR (s′, τ) then there exists (s, τ ′
0) → (s′, τ ′) such that τ ∼ τ ′, and

If (s, τ0) → (s′, τ) then there exists (s, τ ′
0) →P OR (s′, τ ′) such that τ ∼ τ ′

For equivalent initial traces τ0 ≃ τ ′
0 and initial valuation V :

If (s, τ0) ⇒P OR,V (s′, τ) then there exists (s, τ ′
0) ⇒V (s′, τ ′) such that τ ≃ τ ′, and

If (s, τ0) ⇒V (s′, τ) then there exists (s, τ ′
0) ⇒P OR,V (s′, τ ′) such that τ ≃ τ ′

From these bisimulation results, correctness and completeness follow by induction. Cor-
rectness captures the intuition that every PO-reduced execution corresponds to a non-reduced
execution with equivalent final traces. This means that partial order reduction is precise in
the sense that it does not introduce new traces with different final states.

Completeness is the opposite relationship: every direct execution has a corresponding
reduced execution with equivalent traces. Since equivalent traces result in the same final
state, completeness means that we do not lose any possible states when performing partial
order reduction.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L86
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L215
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PORExamples.v#L89
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L95
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L223
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(s, [ ]) ⇒∗
V (s′, τC) (s, [ ]) ⇒∗

P OR,V (s′, τ ′
C)

(s, [ ]) →∗ (s′, τS) (s, [ ]) →∗
P OR (s′, τ ′

S)

T heorem 4.3

T heorem 5.4
T heorem 5.1T heorem 2.13

T heorem 4.3

τC ≃ τ ′
C τS ∼ τ ′

S τS V -abstracts τC τ ′
S V -abstracts τ ′

C τ ′
S V -abstracts τC

Figure 4 Overview of the correctness and completeness results.

▶ Corollary 4.4 (Correctness and Completeness). For two equivalent symbolic traces τ0 ∼ τ ′
0:

Completeness If (s, τ0) →∗
P OR (s′, τ) then there exists (s, τ ′

0) →∗ (s′, τ ′) with τ ∼ τ ′

Correctness If (s, τ0) →∗ (s′, τ) then there exists (s, τ ′
0) →∗

P OR (s′, τ ′) with τ ∼ τ ′

For two equivalent concrete traces τ0 ≃ τ ′
0 and initial valuation V :

Completeness If (s, τ0) ⇒∗
P OR,V (s′, τ) then there exists (s, τ ′

0) ⇒∗
V (s′, τ ′) with τ ≃ τ ′

Correctness If (s, τ0) ⇒∗
V (s′, τ) then there exists (s, τ ′

0) ⇒∗
P OR,V (s′, τ ′) with τ ≃ τ ′

5 Composition of SE and POR

In this section we show that the bisimulation results of Section 2 and 4 compose naturally.
We use this composition to fill in the remaining edges of Fig. 1, resulting in Fig. 4. This leads
to the main result: a bisimulation relation between direct concrete semantics and symbolic
POR semantics. Importantly, this allows reasoning about program analysis using both SE
and POR with the symbolic trace abstracting the concrete trace.

The results are parametric in abstraction and trace equivalence in the following sense.
Any equivalence relation on traces which is contained in ours – that is, whose equivalent
traces have equivalent final states and path conditions – can be used to perform partial order
reduction. Additionally, any symbolic abstraction satisfying Theorem 3.5 can be used for the
symbolic execution. The result is a complete and correct symbolic partial order reduction
where completeness and correctness follows from the respective completeness and correctness
results of SE and POR semantics.

First we relate symbolic and concrete POR by combining Theorem 2.13 and Theorem 4.3.

▶ Theorem 5.1 (POR-POR Bisimulation ). For initial traces τS , τC such that τS V -abstracts
τC :

If (s, τC) ⇒P OR,V (s′, τ ′
C), then there exists (s, τS) →P OR (s′, τ ′

S) such that τ ′
S V -

abstracts τ ′
C

If (s, τS) →P OR (s′, τ ′
S) and V |= pc(τ ′

S), then there exists (s, τC) ⇒P OR,V (s′, τ ′
C) and

τ ′
C ⇓V = V ◦ (τ ′

S ⇓)

From this bisimulation, correctness and completeness relations are obtained by induction.
These results are analogous to the direct relationships in Section 2, which shows that the
correctness and completeness of symbolic execution is maintained through partial order
reduction. In particular we may work with representatives of an equivalence class of traces
rather than one single trace – which may greatly reduce the state space – and then perform
symbolic execution in this new setting.
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▶ Corollary 5.2 (Trace POR Correctness ). If (s, τS) →∗
P OR (s′, τ ′

S), τS V -abstracts τC ,
and V |= pc(τ ′

S), then there exists a concrete trace τ ′
C s.t (s, τC) ⇒∗

P OR,V (s′, τ ′
C) and

τ ′
C ⇓V = τC ⇓V ◦(τ ′

S ⇓)

▶ Corollary 5.3 (Trace POR Completeness ). If (s, τC) ⇒∗
P OR,V (s′, τ ′

C) and τS V -abstracts
τC , there exist τ ′

S s.t (s, τS) →∗
P OR (s′, τ ′

S) and τ ′
S V -abstracts τ ′

C .

We are now ready to state our main result, filling in the diagonal and connecting
concrete semantics directly to PO-reduced symbolic semantics. Formally, Theorem 2.13 and
Theorem 4.3 can be combined to obtain bisimulation of the basic concrete semantics and
PO-reduced symbolic semantics.

▶ Theorem 5.4 (Total Bisimulation ). For initial traces τS , τC such that τS V -abstracts τC :
If (s, τC) ⇒V (s′, τ ′

C), then there exists (s, τS) →P OR (s′, τ ′
S) such that τ ′

S V -abstracts τ ′
C

If (s, τS) →P OR (s′, τ ′
S) and V |= pc(τ ′

S), then there exists (s, τC) ⇒V (s′, τ ′
C) and

τ ′
C ⇓V = V ◦ (τ ′

S ⇓)

▶ Corollary 5.5 (Total Correctness ). If (s, τ0) →∗
P OR (s′, τ), τ0 V -abstracts τ ′

0 and
V |= pc(τ), then there exists τ ′ such that (s, τ ′

0) ⇒∗
V (s′, τ ′) and τ V -abstracts τ ′.

▶ Corollary 5.6 (Total Completeness ). If (s, τ0) ⇒∗
V (s′, τ) and τ ′

0 V -abstracts τ0, there
exist τ ′ s.t (s, τ ′

0) →∗
P OR (s′, τ ′) and τ ′ V -abstracts τ .

Figure 4 shows all four reduction systems – symbolic and concrete, with and without
POR. Each double arrow denotes a notion of bisimulation, and we obtain the properties
shown: both symbolic and concrete traces are equivalent across POR, and V -abstraction is
maintained across the symbolic/concrete divide as well as their composition. Additionally we
show the relationships between the four traces – the symbolic traces abstract their concrete
counterparts, and the POR traces are equivalent – although by Theorem 3.5 it suffices to
know the equivalences and one of the abstractions.

5.1 Discussion
The bisimulations compose naturally. As an example, consider Theorem 5.4 which is obtained
by composing the symbolic/concrete bisimulation of Theorem 2.13 and the direct/reduced
bisimulation of Theorem 4.3. Starting with a concrete execution with trace τC we first obtain
a symbolic execution with trace τS such that τS V-abstracts τC . Then the POR-bisimulation
of Theorem 4.3 gives a symbolic POR-computation with an equivalent trace τS . Since trace
equivalence is a congruence for abstraction (Theorem 3.5) and τC is equivalent to itself, this
final trace also abstracts τC .

The ease of this composition is not unexpected, since both abstraction and trace equiva-
lence were explicitly formulated to preserve the relevant parts of the program state. The result
is that any partial order reduction which picks equivalent traces in this sense preserves the
correctness and completeness properties of the symbolic execution. Explicitly, if the notion
of trace equivalence is contained in ours and the symbolic abstraction can be transported
along this equivalence in the sense of Theorem 3.5 then the techniques can be composed.

5.2 Mechanization
In this section we cover some of the details of the mechanization in Coq.

The basic building blocks of program state are simple. Both substitutions and valuations
are implemented as total maps from strings, parameterized by a result type. Updates,
notation and several useful lemmas about maps can be proven generically and the notation

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L335
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L362
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L387
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L481
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L440
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mirrors that of Pierce et al. [24]. Similarly traces are an inductive type, parametric in the
type of events. In essence they are lists, but extended to the right for convenience, with the
expected operations and properties.

Trace equivalence is defined as a relation. Then we show necessary properties of this
relation, in particular Lemma 3.4 and Theorem 3.5 which are used in proofs. Additionally, we
implement an equivalence by permuting independent events and show that it satisfies the same
properties if the independence relation does. This part is parametric in the independence
relation and serves as an example of a POR relation. The example at the end of Section 3 is
an instance with interference freedom as the independence relation .

Expressions (both arithmetic and Boolean) and statements are inductive types. As an
example, the type of statements is given by:

Inductive Stmt : Type :=
| SAsgn (x:Var) (e:Aexpr)
| SPar (s1 s2:Stmt)
| SIf (b:Bexpr) (s1 s2:Stmt)
...

To give semantics to this language, we define a head reduction relation and a type of
contexts. The head reduction describes the single step reductions for each atomic and how it
transforms the current trace. For example an assignment reduces to skip and appends the
assignment to the current trace. Here <{_}> encloses language statements and Asgn__S x e
represents the symbolic event (x := e).

Variant head_red__S: (trace__S * Stmt) → (trace__S * Stmt) → Prop :=
| head_red_asgn__S: ∀t x e,

head_red__S (t, <{ x := e }>) (t :: Asgn__S x e, SSkip)
...

Note that Variant is a version of Inductive that does not include recursive constructors.
Contexts are implemented as functions Stmt → Stmt along with an inductive relation

is_context: (Stmt → Stmt) → Prop – an approach inspired by Xavier Leroy [20]. This
approach allows us to define transition relation semantics parametric in both the type of
contexts and the head reduction relation. The following generalizes the ∗-in-context rules
for any type of state X. In our case, X will be a type of traces, but note that X appears on the
left – this makes the rule amenable to states represented by product types due to the way
parentheses associate.

Variant context_red
(is_cont: (Stmt → Stmt) → Prop) (head_red: relation (X * Stmt))
: relation (X * Stmt) :=

| ctx_red_intro: ∀C x x’ s s’,
head_red (x, s) (x’, s’) → is_context C →
context_red is_cont head_red (x, C s) (x’, C s’).

Having used context_red with the appropriate is_context and head_red we obtain the full
transition relation by stepwise reflexive-transitive closure to the right (clos_refl_trans_n1)
from the Relations library.

The proofs are performed in two steps. Induction on the transition relation leaves us
with either a reflexive step or an induction hypothesis and some sequence followed by a
step. Then unfolding and dependent destruction (from Program.Equality) can be used on the
step to unpack ctx_red_intro and split on the head reduction rule while remembering the
ultimate and penultimate traces.
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6 Related Work

We focus on a simple formal model that permits reasoning about symbolic execution and
partial order reduction. De Boer and Bonsangue [5] lay the foundations of our work – a
symbolic execution model based on transition systems and symbolic substitutions which
may be composed with concrete valuations. They do not consider parallelism, but do apply
their model to languages with other features including recursive function calls and dynamic
object creation. They also explore a kind of trace semantics for the latter extension, but it
differs from the semantics considered herein. Extending the current work with more language
features, including procedure calls and synchronization tools would be interesting.

SymPaths [6] explores the use of POR for SE in a manner very similar to ours, but
does not explicitly compose the correctness and completeness of SE and POR, nor treat
the relationship to partial order reduction in the non-symbolic case. Additionally, their
treatment of trace equivalence focuses on one specific independence relation while we take a
more abstract view.

Other formal approaches to symbolic execution have also been considered in the literature.
Steinhöfel [30] focuses on the semantics of the SE system and uses a concretization function to
relate sets of symbolic and concrete states. The Gillian platform [14,22] and related work [27]
uses separation logic to construct a SE system that is parametric in the target memory model.
Rosu et al. [21,26,29] develop reachability logic to present symbolic execution parameterized
by the semantics of the target language. These all present alternative approaches to the left
edge of Figure 4.

There are also other approaches to partial order reduction. In particular, dynamic or
stateless POR (DPOR) [1, 13, 16, 25] avoids exploring equivalent future traces by identifying
backtracking points. Additionally the unfolding approach explores partial orders more directly
as a tree-like event structure [25]. Unfolding has been fruitfully combined with symbolic
execution in practice [28].

7 Conclusion

POR and SE are fundamental abstraction techniques in program analysis. SE is particu-
larly useful as a state abstraction technique for sequential programs, while POR addresses
equivalent interleavings in the execution of concurrent programs. In this paper, we study
the foundations of both techniques based on transition systems and trace semantics, in the
context of a core imperative language with parallelism. The formalization provides a unified
view of concrete and symbolic semantics with and without partial order reduction. We
further formalize correctness and completeness relations for both POR and SE, and compose
these relations to study how SE and POR can be combined while preserving correctness
and completeness. Our work shows that the framework of correctness and completeness
relations between symbolic and concrete transition systems, introduced by de Boer and
Bonsangue, extends to parallelism and trace semantics, and provides a natural setting to
study formalizations of abstraction techniques for SE, such as POR.

In addition, our formal development of correctness and completeness relations of SE and
POR has been fully mechanized using Coq2. We believe the mechanization of this framework
in Coq can be useful to the community to study further formalizations of abstraction

2 Provided as supplementary material at https://github.com/Aqissiaq/symex-formally-formalized
and https://zenodo.org/record/8070170
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techniques for symbolic execution and their correctness. In particular, in future work, we
plan to extend the framework developed in this paper to understand relations between
concrete SE frameworks typically used for software testing [9], such as Klee [8], in which
states are described using symbolic stores as in this paper, and abstract SE frameworks
typically used for deductive verification, such as KeY [2], in which states are described using
predicates.
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Abstract
Vector addition systems with states (VASS) are a popular model for concurrent systems. However,
many decision problems have prohibitively high complexity. Therefore, it is sometimes useful to
consider overapproximating semantics in which these problems can be decided more efficiently.

We study an overapproximation, called monus semantics, that slightly relaxes the semantics of
decrements: A key property of a vector addition systems is that in order to decrement a counter,
this counter must have a positive value. In contrast, our semantics allows decrements of zero-valued
counters: If such a transition is executed, the counter just remains zero.

It turns out that if only a subset of transitions is used with monus semantics (and the others with
classical semantics), then reachability is undecidable. However, we show that if monus semantics is
used throughout, reachability remains decidable. In particular, we show that reachability for VASS
with monus semantics is as hard as that of classical VASS (i.e. Ackermann-hard), while the zero-
reachability and coverability are easier (i.e. EXPSPACE-complete and NP-complete, respectively). We
provide a comprehensive account of the complexity of the general reachability problem, reachability
of zero configurations, and coverability under monus semantics. We study these problems in general
VASS, two-dimensional VASS, and one-dimensional VASS, with unary and binary counter updates.
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1 Introduction

Vector addition systems with states (VASS) are an established model used in formal verifica-
tion with a wide range of applications, e.g. in concurrent systems [22], business processes [39]
and others (see the survey [37]). They are finite automata with transitions labeled by vectors
over integers in some fixed dimension d. A configuration of a VASS consists of a pair (p,v),
denoted p(v), where p is a state and v is a vector in Nd. As a result of applying a transition
labeled by some z ∈ Zd, the vector in the resulting configuration is v + z. Thus in particular
v + z ≥ 0 must hold for the transition to be applicable. The latter requirement is often called
the VASS semantics. To avoid ambiguity we will refer to it as the classical VASS semantics.
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p

classical p(2, 0) → p(1, 2) → p(0, 4) ̸→
integer p(2, 0) →

Z
p(1, 2) →

Z
p(0, 4) →

Z
p(−1, 6) ∗→

Z
p(−n, 4 + 2n)

monus p(2, 0) ⇒ p(1, 2) ⇒ p(0, 4) ⇒ p(0, 6) ∗=⇒ p(0, 4 + 2n)

(−1, 2)

Figure 1 A VASS in dimension 2 with one state p and one transition t. It has only one transition
labeled with (−1, 2). We consider possible runs assuming that the initial configuration is p(2, 0).
We use different notation for steps in each semantics: →, →

Z
, ⇒. For the classical semantics (→)

after reaching the configuration p(0, 4) the transition can no longer be applied. For the integer
semantics ( ∗→

Z
) the transition can be applied even in p(0, 4), reaching all configurations of the form

p(−n, 4 + 2n). Similarly for the monus semantics ( ∗=⇒), but there the configurations reachable from
p(0, 4) are of the form p(0, 4 + 2n).

The VASS model is also studied with other semantics. One of the most natural variants of
VASS semantics is the integer semantics (or simply Z-semantics), where configurations are of
the form p(v), where v ∈ Zd [25]. There, a transition can always be applied, i.e. the resulting
configuration is v + z and we do not require v + z ≥ 0. In this paper we consider VASS with
the monus semantics, whose behavior partly resembles both classical and integer semantics.
There, a transition can always be applied (as in Z-semantics), however, if as a result the
vector in the new configuration would have negative entries, then these are replaced with 0.
Thus, vectors in configurations are over the naturals (as in classical semantics). The name
monus semantics comes from the monus binary operator, which is a variant of the minus
operator.1 Note that every instance of a VASS can be considered with all three semantics.
See Figure 1 for an example.

We study classical decision problems for VASS: reachability and coverability. The input
for these problems is a VASS V , an initial configuration p(v), and a final configuration q(w).
The reachability problem asks whether there is a run from p(v) to q(w). A variant of this
problem, called zero reachability, requires additionally that in the input the final vector is
fixed to w = 0. The coverability problem asks whether there is a run from p(v) to q(w′),
where w′ ≥ w. Note that all three problems can be considered with respect to any of the
three VASS semantics. As an example consider the VASS in Figure 1. Then for all three
semantics p(1, 2) is both reachable and coverable from p(2, 0); and p(0, 2) is not reachable
from p(2, 0) (but it is coverable as (1, 2) ≥ (0, 2)).

Contribution I: Arbitrary dimension. Our first contribution is settling the complexities of
reachability and coverability for VASS with the monus semantics (see Table 1). We prove that
reachability is Ackermann-complete by showing that it is inter-reducible with classical VASS
reachability, which is known to be Ackermann-complete [30, 9, 29]. This comes as a surprise,
since in monus semantics, every transition can always be applied, just like in Z-semantics,
where reachability is merely NP-complete [25]. Thus, the monus operation encodes enough
information in the resulting configuration that reachability remains extremely hard.

The Ackermann-hardness relies crucially on the fact that the final configuration is non-zero:
We also show that the zero reachability problem is EXPSPACE-complete in monus semantics.
This uses inter-reducibility with classical VASS coverability, which is EXPSPACE-complete

1 One can also think that monus semantics is integer semantics, where after every step we apply the
ReLU function.
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due to seminal results of Lipton and Rackoff [33, 35]. The fact that zero-reachability is
significantly easier than general reachability is in contrast to classical semantics, where zero
reachability is interreducible with the reachability problem (intuitively, one can modify the
input VASS by adding an extra edge that decrements by w).

In another unexpected result, the complexity of coverability drops even more: We prove
that it is NP-complete in monus semantics. We complete these results by showing that
mixing classical and monus semantics (i.e. each transition is designated to either work in
classical or monus semantics) makes reachability undecidable.

Contribution II: Fixed dimension. Understanding the complexity of reachability problems
in VASS of fixed dimension has received a lot of attention in recent years and is now well
understood. This motivates our second contribution: An almost complete complexity analysis
of reachability, zero reachability and coverability for VASS with the monus semantics in
dimensions 1 and 2. Here, the complexity depends on whether the counter updates are
encoded in unary or binary (see Table 1).

We restrict our attention to dimensions 1 and 2 as most research in fixed dimension for
the classical semantics. For the classical semantics not much is known about reachability in
dimension d ≥ 3. Essentially, the only known results consist of an upper bound of F7 that
follows from the Ackermann upper bound in the general case [30], and a PSPACE-lower bound
that holds already for d = 2 [5]. An intuition as to why the jump from 2 to 3 is so difficult is
provided already by Hopcroft and Pansiot [27] who prove that the reachability set is always
semilinear in dimension 2, and show an example that this is not the case in dimension 3.
In contrast, coverability is well understood, and already Rackoff’s construction [35] shows
that for fixed dimension d ≥ 2 coverability is in NL and in PSPACE, for unary and binary
encoding, respectively (with matching lower bounds [5]).

Key technical ideas. The core insights of our paper are characterizations of the reachability
and coverability relations in monus semantics, in terms of reachability and coverability in
classical and Z-semantics (Propositions 3.6 and 3.12 and Lemma 3.10). These allow us to
apply a range of techniques to reduce reachability problems for one semantics into problems
for other semantics, and thereby transfer existing complexity results. There are three cases
where we were unable to ascertain the exact complexity: (i) reachability in 2-VASS with unary
counter updates, (ii) zero reachability in 1-VASS with binary updates, and (iii) coverability in
1-VASS with binary counter updates. Concerning (i), this is because for 2-VASS with unary
updates, it is known that classical reachability is NL-complete [5], but we would need to
decide existence of a run that visits intermediate configurations of a certain shape. In the case
of 2-VASS with binary updates, the methods from [5] (with a slight extension from [3]) allow
this. The other cases, (ii) and (iii), are quite similar to each other. In particular, problem
(ii) is logspace-interreducible with classical coverability in 1-VASS with binary updates, for
which only an NL lower bound and an NC2 upper bound are known [2].

Monus semantics as an overapproximation. Recall the example in Figure 1. Notice that
every configuration reachable in the classical semantics is also reachable in the integer and
monus semantics. It is not hard to see that this is true for every VASS model. Such semantics
are called overapproximations of the classical VASS semantics. Overapproximations are a
standard technique used in implementations of complex problems, in particular for the VASS
model (see the survey [4]). They allow to prune the search space of reachable configurations,
based on the observation that if a configuration is not reachable by an overapproximation
then it cannot be reachable in the classical semantics. This is the core idea behind efficient
implementations both of the coverability problem [15, 6] and the reachability problem [12, 7].
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10:4 Monus Semantics in Vector Addition Systems with States

The two most popular overapproximations, integer semantics [25] and continuous
semantics [20], behave similarly for both reachability and coverability problems, namely both
problems are NP-complete. Note that all of the implementations mentioned above rely on
such algorithms in NP as they can be efficiently implemented via SMT solvers. Interestingly,
the monus semantics is an efficient overapproximation only for the coverability problem.
(As far as we know this is the first study of a VASS overapproximation with this property.)
Therefore, it seems to be a promising approach to try to speed up backward search algorithms
using monus semantics (in the same vein as [6]). Whether this leads to improvements in
practice remains to be seen in future work.

Related work. We discuss related work for VASS in classical semantics. A lot of research
is dedicated to reachability for the flat VASS model, i.e. a model that does not allow for
nested cycles in runs. In dimension 2 decision problems for VASS reduce to flat VASS,
which is crucial to obtain the exact complexities [5]. It is known that in dimensions d ≥ 3
such a reduction is not possible, but this raised natural questions of the complexity for
flat VASS in higher dimensions [8, 10]. Another research direction is treating the counters
in VASS models asymmetrically. For example, it is known that allowing for zero tests in
VASS makes reachability and coverability undecidable (they essentially become Minsky
machines). However, it was shown that if only one of the 2 counters is allowed to be zero
tested then both reachability and coverability remain PSPACE-complete [31]. A different
asymmetric question is when one counter is encoded in binary and the other is encoded
in unary. Then recently it was shown that coverability is in NP [34] but it is unknown
whether there is a matching lower bound. Finally, there are two important extensions of
the VASS model: branching VASS (where runs are trees, not paths), and pushdown VASS
(with one pushdown stack). For branching VASS, coverability is 2EXPTIME-complete [11].
The complexity of reachability is well understood in dimension 1 [23, 18] but in dimension 2
or higher it is unknown whether it is decidable. For pushdown VASS only coverability in
dimension 1 is known to be decidable [32], otherwise decidability of both reachability and
coverability remain open problems. Recently some progress was made on restricted pushdown
VASS models [14, 21]. The monus semantics is a natural overapproximation that can be
studied in all of these variants. Finally, let us mention that VASS with monus semantics
fit into the very general framework of G-nets [13], but does not seem to fall into any of
the decidable subclasses studied in [13]. However, if we equip VASS with with the usual
well-quasi ordering on configurations, it is easy to see that even with monus semantics, they
constitute well-structured transition systems (WSTS) [19, 1], which makes available various
algorithmic techniques developed for WSTS.

Organization. In Section 2 we formally define the VASS model and the classical, integer
and monus semantics. In Section 3 we prove the results in arbitrary dimension. Then in
Section 4 and Section 5 we prove the results in dimension 2 and 1, respectively.

2 Vector addition systems with monus semantics: Main results

Given a vector v ∈ Zd we write v[i] for the value in the i-th coordinate, where i ∈ {1, . . . , d}.
We also refer to i as the i-th counter and write that it contains v[i] tokens. Given two vectors
v and v′ we write v ≥ v′ if v[i] ≥ v′[i] for all i = 1, . . . , d. By 0d we denote the zero vector
in dimension d. We also simply write 0 if d is clear from context.
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Vector addition systems with states. A vector addition system with states (VASS) is a
triple V = (d,Q,∆), where d ∈ N, Q is a finite set of states and ∆ ⊆ Q× Zd ×Q is a finite
set of transitions. Throughout the paper we fix a VASS V = (d,Q,∆).

We start with the formal definitions in the classical semantics. A configuration of a
VASS is a pair p(v) ∈ Q × Nd, denoted p(v). Any transition t ∈ ∆ induces a successor
(partial) function Succt : Q × Nd → Q × Nd such that Succt(q(v)) = q′(v′) iff t = (q, z, q′)
and v′ = v + z. This successor function can be lifted up to ∆ to get a step relation →V ,
such that any pair of configuration C →V C ′ iff there exists t ∈ ∆ with Succt(C) = C ′. A
run is a sequence of configurations

q0(v0), q1(v1), q2(v2), . . . , qk(vk)

such that for every 0 < j ≤ k, qj−1(vj−1) →V qj(vj). If there exists such a run we say
that qk(vk) is reachable from q0(v0) and denote it C0

∗−→V Ck. We call ∗−→V the reachability
relation in the classical VASS semantics.

In this paper we consider two additional semantics. The first is called the integer semantics
(or Z-semantics). A configuration in this semantics is a pair p(v) ∈ Q× Zd (hence, values of
vector coordinates can drop below zero). The definitions of successor function, step relation
and run are analogous as for the classical semantics. By →

Z
V and ∗→

Z
V , we denote the step

and reachability relations in the Z-semantics, respectively.
The second is called monus semantics. The configurations are the same as in the classical

semantics. The difference is in the successor function. Every transition t ∈ ∆ induces a
successor function Succt : Q× Nd → Q× Nd as follows: Succt(q(v)) = q′(v′) iff t = (q, z, q′)
and for all j ∈ {1, 2, . . . d}, v′[j] = max(v[j] + z[j], 0). We write in short v′ = max(v + z,0).
Step relation and runs are defined analogously as in the case of classical semantics. By ⇒V
and ∗=⇒V , we denote the step and reachability relations in the monus semantics, respectively.

We drop the subscript V from the above relations when the VASS is clear from context.
We write that a run is a classical run, a Z run or a monus run to emphasize the considered
semantics. An example highlighting the differences between the three semantics is in Figure 1.

Decision problems. We study the following decision problems for VASS.

The classical reachability problem:
Given A VASS V = (d,Q,∆) and two configurations p(v) and q(w).
Question Does p(v) ∗=⇒ q(w) hold?

The classical zero reachability problem:
Given A VASS V = (d,Q,∆), a configuration p(v) and a state q.
Question Does (p,v) ∗=⇒ q(0d) hold?

The classical coverability problem:
Given A VASS V = (d,Q,∆) and two configurations p(v) and q(w).
Question Does p(v) ∗=⇒ q(w′) hold for some w′ ≥ w?

Similarly, the above problems in Z and classical semantics are defined by replacing ∗=⇒

with ∗→
Z

and ∗−→, respectively.
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conditional jump: p

q

r

(−1, 0, 0, 0)

(−1, 0, −1, 0)

increment: p q
(1, 0, 1, 0)

Figure 2 Two gadgets for realizing a zero-testable counter.

Main results. The main complexity results of this work are summarized in Table 1. In
Table 2, we recall complexity results for VASS with classical semantics for comparison. We
do not split the cases of unary and binary encoding for arbitrary dimensions, since there all
lower bounds work for unary, whereas all upper bounds work for binary.

Concerning the reachability problem, we note that in all cases where we obtain the exact
complexity, it is the same as for the classical VASS semantics. For the other decision problems,
there are stark differences: First, while in the classical semantics, zero reachability is easily
inter-reducible with general reachability, in the monus semantics, its complexity drops in
two cases: In 1-VASS with binary counter updates, monus zero reachability is in NC2 (thus
polynomial time), compared to NP in the classical setting. Moreover, in arbitrary dimension,
monus zero reachability is EXPSPACE-complete, compared to Ackermann in the classical
semantics. For the coverability problem, the monus semantics also lowers the complexity in
two cases: For binary encoded 2-VASS (NP in monus semantics, PSPACE in classical) and in
the general case (NP in monus semantics, EXPSPACE in classical semantics).

Undecidability. To stress the subtle effects of monus semantics, we mention that it leads to
undecidability if combined with classical semantics: If one can specify the applied semantics
(classical vs. monus) for each transition, then (zero) reachability becomes undecidable.

We sketch the proof using Figure 2. It shows two gadgets, where “→” transitions use
classical semantics and “⇒” transitions use monus semantics. The two gadgets realize a
counter with zero test: The left gadget is a conditional jump (“if zero, then go to q, otherwise
decrement and go to r”), whereas the right gadget is just an increment. In intended runs
(i.e. where the left gadget always takes the intended transition), the counter value is stored
both in components 1 and 3. (To realize a full two-counter machine, the same gadgets on
components 2 and 4 realize the other testable counter.) Thus, initially, all components are
zero. Note that if the left gadget always takes the transitions as intended, then the first and
third counter will remain equal. If the gadget takes the upper transition when the counter is
not actually zero, then the first counter becomes smaller than the third, and will then always
stay smaller. Hence, to reach (0, 0, 0, 0), the left gadget must always behave as intended.

However, coverability remains decidable if we can specify the semantics of each transition.
Indeed, suppose we order the configurations of a VASS by the usual well-quasi ordering (i.e.
the control states have to agree, and the counter values are ordered component-wise). Then
it is easy to see that this results in a well-structured transition system (WSTS) [19, 1]. This
also implies, e.g. that termination is decidable in this general setting.

3 Arbitrary dimension

In this section, we prove the complexity results concerning VASS with arbitrary dimension.
This will include the characterizations of monus reachability, monus zero reachability, and
monus coverability in terms of classical and Z-semantics. We begin with some terminology.
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Table 1 Complexity results shown in this work.

Dimension
& encoding Monus Reachability Monus zero reachability Monus coverability

1-dim, unary NL-complete NL-complete NL-complete
1-dim, binary NP-complete in NC2 in NC2

2-dim, unary in PSPACE NL-complete NL-complete
2-dim, binary PSPACE-complete PSPACE-complete NP-complete
arbitrary Ack-complete EXPSPACE-complete NP-complete

Table 2 Known complexities for classical VASS semantics, for comparison.

Dimension
& encoding Reachability Zero reachability Coverability

1-dim, unary NL-complete [38] NL-complete [38] NL-complete [38]
1-dim, binary NP-complete [26] NP-complete [26] in NC2 [2]
2-dim, unary NL-complete [5] NL-complete [5] NL-complete [36]
2-dim, binary PSPACE-complete [5] PSPACE-complete [5] PSPACE-complete [5, 36, 16]
arbitrary Ack-compl. [30, 29, 9] Ack-compl. [30, 29, 9] EXPSPACE-compl. [33, 35]

Paths. A sequence of transitions (p1, z1, q1), . . . , (pk, zk, qk) is valid iff qi = pi+1 for every
1 ≤ i < k− 1. Furthermore, we say that it is valid from a given configuration (p,v) if p = p0.
We call a valid sequence of transitions a path.

Given two paths ρ1 and ρ2 if the last state of ρ1 is equal to the first state of ρ2 then
by ρ = ρ1ρ2 we denote the path defined as the sequence ρ1 followed by the sequence ρ2.
Similarly, we use this notation with more paths, e.g. ρ = ρ1ρ2 . . . ρk means that the path ρ is
composed from k paths: ρ1, . . . ρk.

Fix a path ρ = (p0, z0, p1), . . . , (pk−1, zk−1, pk). We say that z =
∑k−1

i=0 zi is the effect
of the path ρ. Notice that while for classical and Z-semantics the effect of a path can be
computed by subtracting the vectors in the last and first configurations, this is not necessarily
true for monus semantics. In Figure 1 consider the path ρ = t, t, t. The effect is (−3, 6). In
the Z-semantics (2, 0) ∗→

Z
(−1, 6) and the difference (−1, 6) − (2, 0) is precisely the effect of ρ.

In the monus semantics it is not the case as (2, 0) ∗=⇒ (0, 6). This is because a run in monus
semantics can lose some decrements, unlike in classical and Z-semantics.
▶ Remark 3.1. Observe that every classical and Z run defines a unique path from the initial
configuration. For monus semantics uniqueness is not guaranteed as it is possible that a run
induces more than one path. Indeed, suppose p(2, 0) ⇒ q(1, 0). This could be realised by any
transition of the form (p, (−1, z), q), where z ≤ 0. Conversely, a path induces a unique run
for Z and monus semantics. Formally, consider a path (p0, z1, p1), . . . , (pk−1, zk, pk) from a
configuration s(v). Then, in the Z and monus semantics there exists a unique corresponding
run. In the classical semantics a path might be blocked if a counter drops below zero
(see e.g. Figure 1). We write p0(v0) ρ−→ pk(vk), p0(v0) ρ→

Z
pk(vk) and p0(v0) ρ=⇒ pk(vk) if

p0(v0), . . . , pk(vk) is a run in classical, integer and monus semantics, respectively. Recall that
for classical and Z-semantics vi+1 − vi = zi, and for monus semantics vi+1 = max(vi + zi,0).

Consider a run R = p0(v0), . . . , pk(vk) (in any semantics). We say that the counter
j ∈ {1, · · · , d} hits 0 iff vi[j] = 0 for some 1 ≤ i ≤ k. Similarly, we say that the counter
j ∈ {1, · · · , d} goes negative in R iff vi[j] < 0 for some 0 ≤ i ≤ k (this can happen only in
the Z-semantics).
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10:8 Monus Semantics in Vector Addition Systems with States

Let ρ = (p0, z0, p1) . . . (pk−1, zk−1, pk) be a path such that R is the unique run corres-
ponding to ρ from the initial configuration p0(v0). We say that (ρ,R) or p0(v0) ρ=⇒ pk(vk) is
lossy for the counter j ∈ {1, · · · , d} iff vi[j] − vi−1[j] ̸= zi−1[j] for some 1 ≤ i ≤ k (a lossy
run can happen only in the monus semantics).
▶ Remark 3.2. Integer and monus semantics are overapproximations of the classical semantics.
That is, s(v) ρ−→ t(w) implies s(v) ρ→

Z
t(w) and s(v) ρ=⇒ t(w). The converse is not always the

case (see Figure 1). Moreover, s(v) ρ=⇒ t(w) implies s(v) ρ−→ t(w) if s(v) ρ=⇒ t(w) is not lossy.

Notice that if in s(v) ρ=⇒ t(w), none of the counters j ∈ {1, . . . , d} hits 0 then it is not a lossy

run. Similarly, s(v) ρ→
Z
t(w) implies s(v) ρ−→ t(w) if, in the former run, none of the counters

j ∈ {1, . . . , d} goes negative.

Characterizing Monus Reachability. Our first goal is to characterize the reachability
problem for the monus semantics in terms of the classical semantics. We start with some
propositions that relate monus runs to Z runs and classical runs. Let ρ be a path and s0(v0)
a configuration. Let s0(v0) . . . sk(vk) be the unique Z run defined by ρ and s0(v0). We
define the vector m = minZ(ρ, s0,v0) by m[i] = min(mink

j=0 vj [i], 0). Intuitively, it is the
vector of minimal values in the Z run, but note that m ≤ 0.

For the next two propositions we fix a configuration s0(v0) ∈ Q × Nd, a path ρ =
(s0, z0, s1) . . . (sk−1, zk−1, sk), and m = minZ(ρ, s0,v0).

▶ Proposition 3.3. Consider the unique runs induced by ρ from s0(v0) in Z-semantics

s0(v0), . . . , sk−1(vk−1), sk(vk),

and in monus semantics

s0(v′
0), . . . , sk−1(v′

k−1), sk(v′
k).

where v′
0 = v0. Then v′

k = vk − m.

Proof (sketch). We analyse the behavior of every counter j. Recall that the Z run and
the monus run have the same value in the counter j until the first time the value of j
becomes negative in the Z run. We denote this as vi[j] = −u. Note that v′

i[j] = 0. Hence,
vi[j] − v′

i[j] = −u. It is not hard to see that every time the value of the counter j reaches a
new minimum in the Z-semantics, the difference v′

i[j] − vi[j] will be equal to it. We prove
this formally by induction on k. Refer to full version for the formal proof. ◀

▶ Remark 3.4. Let z ∈ Zd. A sequence of configurations s0(v0) . . . sk(vk) is a run in Z-
semantics corresponding to a path ρ iff s0(v0 − z) . . . sk(vk − z) is a run in Z-semantics on
the same path ρ.

▶ Proposition 3.5. Consider the following unique run corresponding to the path ρ from
s0(v0) in the monus semantics

s0(v0), . . . , sk−1(vk−1), sk(vk).

Then the following run, induced by ρ, exists in the classical semantics

s0(v′
0), . . . , sk−1(v′

k−1), sk(v′
k).

where v′
0 = v0 − m and v′

k = vk.
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Proof. This essentially follows from the definition of m and Remark 3.4. One just needs to
observe that the Z run with configurations shifted by the vector −m does not go below zero,
hence it is a classical run. See full version for the formal proof. ◀

We now characterize monus reachability in terms of classical reachability.

▶ Proposition 3.6. Let V = (d,Q,∆) be a VASS, let s(v) and t(w) be configurations of V,
and let ρ be a path of V. Then, s(v) ρ=⇒ t(w) if and only if there is a subset Z ⊆ {1, . . . , d}
and a vector v′ ≥ v such that
1. s(v′) ρ−→ t(w),
2. For every z ∈ Z, the coordinate z hits 0 in s(v′) ρ−→ t(w),
3. For every j ∈ {1, . . . , d} \ Z, we have v′[j] = v[j].

Proof. ( =⇒ ) Let m = minZ(ρ, s,v). This direction is implied by Proposition 3.5 along
with the following argument. Every counter j ∈ {1, . . . , d} hits 0 in s(v) ρ=⇒ t(w) if and only

if it hits 0 in s(v − m) ρ−→ t(w). Moreover, if j does not hit 0 in s(v) ρ=⇒ t(w) then m[j] = 0.

( ⇐= ) Let v′ ≥ v be a vector as in the statement and let s(v′) ρ−→ t(w). We define
Z ⊆ {1 . . . d} such that i ∈ Z if it hits 0. Moreover, let s(v) ρ=⇒ t(w′′). It suffices to show that
w = w′′. We write s(v′) = p0(v′

0) . . . pk(v′
k) = t(w) and s(v) = p0(v0) . . . pk(vk) = t(w′′) for

the corresponding runs in the classical and monus semantics, respectively. Note that v′ ≥ v
implies v′

i ≥ vi for all 0 ≤ i ≤ k. By definition of v′ it suffices to consider counters j that hit
zero, i.e. v′

i[j] = 0 for some 0 ≤ i ≤ k. Since v′
i ≥ vi we get v′

i[j] = 0 = vi[j]. Hence, from i

onward both runs agree on the value in counter j. Thus w = w′′. ◀

The reachability problem. We begin with the Ackermann-completeness proof.

▶ Theorem 3.7. Reachability in monus semantics is Ackermann-complete.

For the upper bound we show how to reduce reachability in monus semantics to reachability
in classical semantics. Let V = (d,Q,∆), s(v), and t(w) be the input of the reachability
problem in monus semantics. We rely on Proposition 3.6. Intuitively, we have to guess a
subset Z ⊆ {1, . . . , d} and a permutation σ : [1, k] → Z (where k = |Z|). Then we check
whether there exists a run as described in Proposition 3.6 with zi = σ(i) for i ∈ [1, k]. To
detect the latter run, we construct the VASS Vσ = (d+ k,Q′, T ′) as follows. It simulates V ,
but it has k extra counters to freeze the values of the counter in Z at the points where the
coordinates σ(k), . . . , σ(1) hit 0 as mentioned in Proposition 3.6.

To remember which counters have already been frozen the set of control states is Q′ =
{qi | q ∈ Q, i ∈ [0, k]}. Intuitively, the index i ∈ [0, k] stores the information how many
counters are frozen. The index i can only increment. Note that guessing the permutation σ

allows us to assume that we know the order in which the counters are frozen.
Since we deal with vectors in dimension d and d+ k we introduce some helpful notation.

We write ej ∈ Zd for the unity vector with ej [j] = 1 and with 0 on other coordinates.
Given a vector z ∈ Zd we define copy(z) ∈ Zd+k as copy(z)[j] = z[j] for 1 ≤ j ≤ d and
copy(z)[j] = z[σ(j − d)] for d < j ≤ d+ k. Intuitively, it simply copies the behaviors of the
corresponding counters. We generalise this notation to allow to also remove the effect on
some coordinates (i.e. “freeze” them). Given z ∈ Zd and 0 ≤ i ≤ k we define copyi(z) ∈ Zd+k

as copyi(z)[j] = copy(z)[j] for 1 ≤ j ≤ d+ k− i and copyi(z)[j] = 0 for d+ k− i < j ≤ d+ k.
In particular copy0(z) = copy(z) and copyi(z) is 0 in the last i counters.
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It remains to define the set of transitions T ′. In the beginning there are transitions
in T ′ that can arbitrarily increment each counter that belongs to Z and its extra copy:
(s0, copy(ej), s0) ∈ T ′ for every j ∈ Z. Moreover, the counter in the control state can
spontaneously be incremented: (pi,0, pi+1) for every p ∈ Q and 0 ≤ i < k. For every
transition (p, z, q) ∈ T and 0 ≤ i ≤ k we define (pi, copyi(z), qi) ∈ T ′.

The following claim is straightforward by Proposition 3.6:

▷ Claim 3.8. We have s(v) ∗=⇒V t(w) if and only if there exists a subset Z ⊆ {1, . . . , d} and

bijection σ : [1, k] → Z such that s0(copy0(v)) ∗−→Vσ tk(copyk(w)).

This implies that we can decide monus reachability by guessing a subset Z ⊆ [1, d], guessing
a bijection σ : [1, k] → Z, and deciding reachability in Vσ. This yields the upper bound.

For the lower bound we reduce classical reachability to monus reachability. Let V =
(d,Q,∆), s(0) and t(0) be the input of the reachability problem in classical semantics (without
loss of generality the input vectors can be 0). We construct the VASS V ′ = (d+ 2, Q′, T ′) as
follows. The states are Q′ = Q ∪ {t′}, where t′ is a fresh copy of t.

Again to deal with vectors in different dimension we introduce the following notation.
Given z ∈ Zd we write ∆(z) ∈ Z for ∆(z) =

∑d
j=1 z[j], i.e. the sum of all components.

Based on this we define extend(z) ∈ Zd+2 as: extend(z) = (z,∆(z), 0) if ∆(z) ≥ 0, and
extend(z) = (z, 0,−∆(z)) otherwise.

We define T ′ as follows. For every (p, z, q) ∈ T : (p, extend(z), q) ∈ T ′. Thus, in the
(d+ 1)-th counter, we collect the sum of all non-negative entry sums of the added vectors.
Analogously, in the (d + 2)-th counter, we collect the sum of all negative entry sums
(with a flipped sign). We also add the transition (t,0, t′) ∈ T ′, and a “count down” loop:
(t′(0,−1,−1), t′), where (0,−1,−1) is 0 in the first d components and −1 otherwise. The
following claim completes the proof of Ackermann-hardness.

▷ Claim 3.9. We have s(0, 1, 1) ∗=⇒ t′(0, 1, 1) in V ′ if and only if s(0) ∗−→ t(0) in V.

Proof. ( ⇐= ) This is obvious, because every run in classical semantics yields a run in monus
semantics between the same configurations.

( =⇒ ) Suppose there is a monus run from s(0, 1, 1) to t′(0, 1, 1). Then for some m ∈ N,
there is a transition sequence ρ leading in monus semantics from s(0, 1, 1) to t(0,m,m). Now
let us execute ρ in Z-semantics. This execution will arrive at some configuration t(v,m,m)
(note that the last two counters are never decreased, except for the final loop). We shall
prove that (i) v = 0 and (ii) this execution never drops below zero. First, according to
Proposition 3.3, the resulting counter values in monus semantics are always at least the values
from Z-semantics. This implies v ≤ 0. Next observe that since the right-most components
have the same value m, the total sum of all entry sums of added vectors (in the first d entries)
must be zero. Thus, ∆(v) = 0. Together with v ≤ 0, this implies v = 0, which shows (i).
Second, if the execution in Z-semantics ever drops below zero in some counter i, then by
Proposition 3.3 and the fact that in Z-semantics we reach v = 0, this would imply that ρ in
monus semantics ends up in a strictly positive value in counter i, which is not true. This
shows (ii). Hence, we have shown that the run in Z-semantics is actually a run in classical
VASS semantics. Therefore, s(0) ∗−→ t(0) in V. ◁

Characterizing zero-reachability. Monus zero-reachability has a simple characterization in
terms of classical coverability. Here, V rev is obtained by reversing all transitions in V and
their effects. Formally, there is a transition (p, z, q) in V rev iff there is a transition (q,−z, p)
in V.
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s0 td t′
0

−ej

eσ(j) − ed+j

for j ∈ [1, d]

for j ∈ [1, d]

Vσ

Figure 3 Construction of V ′
σ in reduction from monus coverability to reachability in Z-semantics.

▶ Lemma 3.10. For any v, we have s(v) ∗=⇒V t(0) iff t(0) ∗−→V rev s(v′) for some v′ ≥ v.

Proof. By Proposition 3.6, s(v) ∗=⇒ t(0) yields a v′ ≥ v with s(v′) ∗−→ t(0). Conversely, if

s(v′) ∗−→ t(0), then we can pick Z = [1, d] in Proposition 3.6 to obtain s(v) ∗=⇒ t(0). ◀

This together with the known complexity of classical coverability [33, 35] immediately implies:

▶ Proposition 3.11. The monus zero-reachability problem is EXPSPACE-complete.

Characterizing coverability. Our third characterization describes coverability in monus
semantics in terms of reachability in Z-semantics:

▶ Proposition 3.12. Let V = (d,Q,∆) be a VASS and let s(v) and t(w) be configurations.
Then s(v) ∗=⇒ t(w′′) for some w′′ ≥ w if and only if there is a permutation σ of {1, . . . , d}
and Z-configurations pd(vd), . . . , p1(v1), t(w′) so that
1. s(v) ∗→

Z
pd(vd) ∗→

Z
pd−1(vd−1) ∗→

Z
· · · ∗→

Z
p1(v1) ∗→

Z
t(w′),

2. for each j ∈ {1, . . . , d}, we have w′[j] + | min(vσ−1(j)[j], 0)| ≥ w[j].

Proof. ( =⇒ ) Let ρ be any path such that s(v) ρ=⇒ t(w′′) and w′′ ≥ w. Then, by

Proposition 3.3 s(v) ρ→
Z
t(w′′ + m), where m is the vector of minimum values in the Z run.

The required permutation σ represents the order σ(d), . . . , σ(1) in which these coordinates
reach their corresponding minimum values. Hence, s(v) ρ→

Z
t(w′′ + m) is the same as s(v) ∗→

Z
pd(vd) ∗→

Z
pd−1(vd−1) ∗→

Z
· · · ∗→

Z
p1(v1) ∗→

Z
t(w′), such that vd[σ(d)] = m[σ(d)], . . . ,v1[σ(1)] =

m[σ(1)], and w′′[j] = w′[j] − m[j] = w′[j] + |m[j]| = w′[j] + | min(vσ−1(j)[j], 0)| for all
1 ≤ j ≤ d. As w′′ ≥ w, w′[j] + | min(vσ−1(j)[j], 0)| ≥ w[j] for all 1 ≤ j ≤ d.

( ⇐= ) This is a direct consequence of Proposition 3.3. It implies that given any
permutation σ on {1, . . . , d} and any run s(v) ∗→

Z
pd(vd) ∗→

Z
pd−1(vd−1) ∗→

Z
· · · ∗→

Z
p1(v1) ∗→

Z
t(w′) such that w′[j] − min(vσ−1(j)[j], 0) ≥ w[j], there is a run from configuration s(v) and
reaching a configuration t(w′′) where w′′[j] = w′[j]−m[j] ≥ w′[j]−min(vσ−1(j)[j], 0) ≥ w[j]
for all 1 ≤ j ≤ d. ◀

We conclude the following.

▶ Proposition 3.13. Monus coverability is NP-complete.

Proof. First we show NP-hardness. In [28, Prop. 5.11], it is shown that it is NP-hard to
decide whether a regular language over some alphabet Σ, given as an NFA, contains a word
in which every letter appears exactly once. Given such an NFA A over Σ = {a1, . . . , ad}, we
construct a d-VASS V. The VASS V simulates A such that when A reads ai, V increments
counter i. Moreover, V maintains a number k ∈ {0, . . . , d} in its state, which always holds the
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number of letters read so far. Thus, V has states qk, where q is a state of A and k ∈ {1, . . . , d}.
Moreover, let s and t be the initial and final state of A, respectively. Then in V, one can
cover td(1, . . . , 1) from s0(0) in monus semantics if and only if A accepts some word as above.

We turn to the NP upper bound. Suppose we are given a d-VASS V = (d,Q,∆) and
configurations s(u), t(v). We employ Proposition 3.12. First non-deterministically guess a
permutation σ of [1, d]. We now construct a 2d-VASS V ′

σ and two configurations c′
1, c

′
2 such

that in V ′
σ, we have c′

1
∗→
Z
c′

2 if and only if there is a run as in Proposition 3.12 with this σ.
Since reachability in Z-semantics is NP-complete [25], this yields the upper bound.

Our VASS V ′
σ is a slight extension of the VASS Vσ from Theorem 3.7, see Figure 3. Recall

that for a permutation σ : [1, k] → Z, Vσ keeps k extra counters that freeze the values of
the counters in Z, in the order σ(k), σ(k − 1), . . . , σ(1). We use this construction, but for
our permutation σ of [1, d]. Thus, Vσ simulates a run of V and then freezes the counters
σ(d), . . . , σ(1) in the extra d counters, in this order. The steps that freeze counters define
the vectors vd, . . . , v1 in Proposition 3.12. Note that for each vi, only vi[σ(i)] is important.

To verify the second condition in Proposition 3.12, we introduce an extra state t′ and
extra transitions as depicted in Figure 3. After executing Vσ, V ′

σ then has two types of loops:
One to move tokens from the counters d+ j to counters σ(j) (for each j ∈ [1, d]), and one to
reduce tokens in counters 1, . . . , d. Thus there exists σ such that s0(copy0(u)) ∗→

Z
t′(copyd(v))

in V ′
σ if and only if s(u) ∗=⇒ t(v′′) for some v′′ ≥ v in V . This proves the NP upper bound. ◀

4 Two-dimensional VASS

In this section we prove the results of Table 1 related to 2-VASS, both for unary and binary
encoding. Note that for all three considered problems, reachability, zero reachability, and
coverability, we always have an NL lower bound, inherited from state reachability in finite
automata. The latter is well-known to be NL-hard, and a VASS without counters (in all
considered semantics) is a finite state automaton.

When dealing with binary/unary updates one needs to be careful with the input size.
In all problems suppose a VASS V = (d,Q, T ) is in the input. If we are interested in the
unary encoding its size is defined as d + |Q| +

∑
(p,z,q)∈T ∥z∥, where ∥z∥ is the absolute

value of the maximal coordinate in z. In the binary encoding one needs to change ∥z∥ to
⌈log(∥z∥ + 1)⌉. From this point onwards, we use the term succinct VASS for VASS where
updates are encoded in binary.

We consider each of the three problems separately.

Reachability. Here we only prove the PSPACE upper bound for monus reachability in binary
encoded 2-VASS, which implies the same upper bound for unary encoding. The PSPACE
lower bound for binary encoding is inherited from zero reachability, see Proposition 4.3 below.

▶ Proposition 4.1. In succinct 2-VASS, reachability with monus semantics is in PSPACE.

According to Proposition 3.6, reachability with monus semantics is equivalent to existence
of a run under classical semantics, where said run is subject to some additional constraints.
Recall that Presburger arithmetic is the first-order theory of (N,+, <, 0, 1). We observe
that all the additional constraints of Proposition 3.6 can be expressed by quantifier-free
Presburger formulas. This leads us to the so-called constrained runs problem for succinct
2-VASS, which was recently shown to be in PSPACE [3], following the fact that classical
reachability itself is PSPACE-complete for succinct 2-VASS [5].
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Formally, the constrained runs problem for succinct 2-VASS is the following:
Given A succinct 2-VASS V, a number m ∈ N, states q1, . . . , qm in V, a quantifier-free

Presburger formula ψ(x1, y1, . . . , xm, ym), and numbers s, t ∈ [1,m] with s ≤ t.
Question Does there exist a run q0(0, 0) ∗−→ q1(x1, y1) ∗−→ · · · ∗−→ qm(xm, ym) that visits a

final state between qs(xs, ys) and qt(xt, yt) and satisfies ψ(x1, y1, . . . , xm, ym)?

▶ Lemma 4.2 ([3, Prop. 6.5]). The constrained runs problem for succinct 2-VASS is in
PSPACE.

We can now prove Proposition 4.1 by reducing to the constrained runs problem: Let V
be a 2-VASS with configurations s(v) and t(w). According to Proposition 3.6, existence
of a run s(v) ∗=⇒ t(w) is equivalent to existence of states p1, p2 and a set Z ⊆ [1, 2] such

that a run s(v′) ∗−→ t(w) with v′ ≥ v that is subject to additional requirements enforced
by conditions (2) and (3) of the Proposition 3.6. Our PSPACE algorithm enumerates all
possibilities of p1, p2 and Z, constructing an instance of the constrained run problem each
time, and checking for a constrained run in PSPACE using Lemma 4.2. If such a run exists
in at least one of the instances, the algorithm accepts, otherwise it rejects. To construct
each instance the algorithm first modifies V to ensure that a starting configuration s(v′)
is reachable for any v′ ≥ v. To this end a new initial state q0 is added, with two loops
that increment one of the counters each, and a transition that goes to s by adding v. Then
the additional requirements of Proposition 3.6 are encoded in quantifier-free Presburger
arithmetic, as required by the constrained run problem. Clearly the constructed algorithm
runs in PSPACE and decides s(v) ∗=⇒ t(w). For more details refer the full version.

Zero reachability.

▶ Proposition 4.3. Monus zero reachability in 2-VASS is PSPACE-complete under binary
encoding and NL-complete under unary encoding.

Proof. This is a simple consequence of monus zero reachability being interreducible with
classical coverability: Classical coverability in 2-VASS under binary encoding is PSPACE-
complete under binary encoding (in [5, Corollary 3.3], this is deduced from [36, p. 108]
and [17, Corollary 10] and NL-complete under unary encoding [36, p. 108].

Let V be a 2-VASS with configurations s(v) and t(0). Then according to Proposition 3.6,
we know that t(0) is monus reachable from s(v) if and only if in V rev the configuration s(v)
is coverable from t(0) with classical semantics. On the other hand, given configurations
s(v) and t(w) of a 2-VASS V, we add a new state s′ and transition (s′,v, s) to construct
the 2-VASS V ′. Then classical coverability of t(w) from s(v) in V is equivalent to the same
from s′(0) in V ′. Now applying Proposition 3.6 in reverse, the latter is further equivalent to
monus reachability of s′(0) from t(w) in V ′rev. ◀

Coverability. By Proposition 3.13, monus coverability is in NP in arbitrary dimension. Thus,
it remains to show the NP lower bound.

▶ Proposition 4.4. Monus coverability in succinct 2-VASS is NP-hard.

Proof. We reduce from the subset sum problem, which is well-known to be NP-hard. Here,
we are given binary encoded numbers a1, . . . , an, a ∈ N and are asked whether there is a
vector (x1, . . . , xn) ∈ {0, 1}n such that x1a1 + · · · + xnan = a. Given such an instance, we
construct the 2-VASS in Figure 4. It is clear that we can cover t(1, 1) from s(0, 0) iff the
subset-sum instance is positive: Covering 1 in the first counter means our sum is at least a,
whereas covering 1 in the second counter means our sum is at most a. ◀
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s t· · ·
(1, a+ 1)

(a1,−a1)

(0, 0)

(an,−an)

(0, 0)

(−a, 0)

Figure 4 2-VASS to show NP-hardness of coverability in dimension two.

q0 q1 q2 qn qn+1 qf· · ·1
a1

0

an

0

−a

Figure 5 1-VASS to show NP-hardness of monus reachability in dimension one with binary
encoded counter updates.

▶ Proposition 4.5. Monus coverability in unary-encoded 2-VASS is in NL.

Proof. This follows using the same construction as for Proposition 3.13: Given a 2-VASS,
there are only two permutations σ of {1, 2}. Thus, we can try both permutations σ and
construct the VASS V ′

σ in logspace. Then, Vσ has dimension 2d. Thus, we reduce monus
coverability in 2-VASS to reachability in Z-semantics in 4-VASS. Since reachability with
Z-semantics in each fixed dimension can be decided in NL [24], this provides an NL upper
bound. ◀

5 One-dimensional VASS

Reachability. We begin with the proofs regarding reachability.

▶ Proposition 5.1. Monus reachability in 1-VASS is in NL under unary encoding and in NP
under binary encoding.

The proof of Proposition 5.1 relies on the following simple consequence of Proposition 3.6:

▶ Lemma 5.2. Let V be a 1-VASS. Then s(m) ∗=⇒V t(n) if and only if (i) s(m) ∗−→V t(n) or

(ii) there exist a state q and number m′ ≥ m with s(m′) ∗−→V q(0) and q(0) ∗−→V t(n).

For Proposition 5.1, we reduce to reachability in one-counter automata. A one-counter
automaton (OCA) is a 1-VASS with zero-tests, i.e. special transitions that test the counter
for zero instead of adding a number. For encoding purposes, zero tests take up as much space
as a transition adding 0 to the counter. In our reduction, the update encoding is preserved:
If the input 1-VASS has unary encoding, then the OCA has unary updates as well. If the
input 1-VASS has binary updates, then the OCA will too. Then, we can use the fact that in
OCA with unary updates, reachability is in NL [38] and for binary updates, it is in NP [26].

The OCA first guesses whether to simulate a run of type (i) or of type (ii) in Lemma 5.2.
Then for type (i), it just simulates a classical 1-VASS. For type (ii), it first non-deterministically
increments the counter, and then simulates a run of the 1-VASS. However, on the way, it
keeps a flag signaling whether the counter has hit 0 at some point (which it can maintain
using zero tests). Thus, when simulating runs of type (ii), the OCA only accepts if zero has
been hit. For a detailed description, refer to the full version.

▶ Proposition 5.3. Monus reachability in 1-VASS is NP-hard under binary encoding.
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As in Proposition 4.4, we reduce from subset sum. Given a1, . . . , an, a in binary, we construct
the 1-VASS in Figure 5. Then q0(0) ∗=⇒ qf (1) iff this is a positive instance. Refer to the full
version.

Zero reachability and coverability.

▶ Proposition 5.4. Monus zero-reachability in 1-VASS is in NL under unary encoding and
in NC2 under binary encoding.

Since monus zero-reachability reduces to classical coverability (Lemma 3.10), this follows
from existing 1-VASS results: Coverability in 1-VASS is in NL under unary encoding [38]
and NC2 under binary encoding [2].

▶ Proposition 5.5. Monus coverability in 1-VASS is in NL under unary encoding and in
NC2 under binary encoding.

The first statement follows from Proposition 5.1 and the fact that monus coverability reduces
to monus reachability by simply adding a new final state where we can count down. For the
NC2 bound, we use the following consequence of Lemma 3.10 (see the full version).

▶ Lemma 5.6. Let V be a 1-VASS with configurations s(m) and t(n). Then t(n) is monus
coverable from s(m) in V if and only if t(n) is coverable from s(m) in V under classical
semantics or there is a state q of V such that t(n) is coverable from q(0) in V under classical
semantics and s(m) is coverable from q(0) in V rev under classical semantics.

Proof of Proposition 5.5. It remains to prove the NC2 upper bound, for which we check
the requirements of Lemma 5.6. Let k be the number of states of the input 1-VASS. Observe
that Lemma 5.6 yields a logical disjunction over k + 1 disjuncts, where one disjunct consists
of a single coverability check and the remaining k each consist of a logical conjunction over
two coverability checks. Classical coverability of binary encoded 1-VASS is in NC2 [2], and
by the definition of this complexity class, we can combine 2k + 1 such checks according to
the aforementioned logical relationship and still yield an NC2-algorithm. Note that this is
only possible because k is linear in the size of the input. ◀
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Context-free session types describe structured patterns of communication on heterogeneously typed
channels, allowing the specification of protocols unconstrained by tail recursion. The enhanced
expressive power provided by non-regular recursion comes, however, at the cost of the decidability of
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session types based on a novel kind of observational preorder we call X YZW-simulation, which
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1 Introduction

Session types, introduced by Honda et al. [31, 32, 50], enhance traditional type systems
with the ability to specify and enforce structured communication protocols on bidirectional,
heterogeneously typed channels. Typically, these specifications include the type, direction
(input or output) and order of the messages, as well as branching points where one participant
can choose how to proceed and the other must follow.

Traditional session types are bound by tail recursion and therefore restricted to the
specification of protocols described by regular languages. This excludes many protocols of
practical interest, with the quintessential example being the serialization of tree-structured
data on a single channel. Context-free session types, proposed by Thiemann and Vascon-
celos [51], liberate types from tail recursion by introducing a sequential composition operator
(_;_) with a monoidal structure and a left and right identity in type Skip, representing no
action. As their name hints, context-free session types can specify protocols corresponding
to (simple deterministic) context-free languages and are thus considerably more expressive
than their regular counterparts.
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11:2 Subtyping Context-Free Session Types

What does it mean for a context-free session type to be a subtype of another? Our answer
follows Gay and Hole’s seminal work on subtyping for regular session types [25], and Liskov’s
principle of safe substitution [39]: S is a subtype of R if channels governed by type S can
take the place of channels governed by type R in whatever context, without violating the
guarantees offered by a type system (e.g. progress, deadlock freedom, session fidelity, etc.).

More concretely, subtyping allows increased flexibility in the interactions between par-
ticipants, namely on the type of the messages (a feature inherited from the subtyped
π-calculus [46]) and on the choices available at branching points [25], allowing a channel to
be governed by a simpler session type if its context so requires. A practical benefit of this
flexibility is that it promotes modular development: the behaviour of one participant may be
refined, while the behaviour of the other is kept intact.

▶ Example 1. Consider the following context-free session types for serializing binary trees.

STree = µs.⊕{Nil: Skip, Node: s;!Int;s}
DTree = µs.&{Nil: Skip, Node: s;?Int;s}

SEmpty = ⊕{Nil: Skip}
SFullTree0 = ⊕{Node: SEmpty;!Int;SEmpty}
SFullTree1 = ⊕{Node: SFullTree0;!Int;SFullTree0}

The recursive STree and DTree types specify, respectively, the serialization and deserialization
of a possibly infinite arbitrary tree, while the remaining non-recursive types specify the
serialization of finite trees of particular configurations. The benefit of subtyping is that it
makes the particular types SEmpty, SFullTree0 and SFullTree1 compatible with the general
DTree type. Observe that its dual, STree, may safely take the place of any type in the right
column. Consider now a function f that generates full trees of height 1 and serializes them
on a given channel end. Assigning it type STree → Unit would not statically ensure that the
fullness and height of the tree are as specified. Type SFullTree1 → Unit would do so, and
subtyping would still allow the function to use an STree channel (i.e., communicate with
someone expecting an arbitrary DTree tree).

Expressive power usually comes at the cost of decidability. While subtyping for regular
session types has been formalized, shown decidable and given an algorithm by Gay and
Hole [25], subtyping in the context-free setting has been proven undecidable by Padovani [43].
The proof is given by a reduction from the inclusion problem for simple languages, shown
undecidable by Friedman [21]. Remarkably, the equivalence problem for simple languages is
known to be decidable, as is the type equivalence of context-free session types [36, 51].

Subtyping context-free session types has until now been considered only in a limited
form, where message types must be syntactically equal [43]. Consequently, the interesting
co/contravariant properties of input/output types have been left unexplored. In this paper,
we propose a more expressive subtyping relation, where the types of messages may vary
co/contravariantly, according to the classical subtyping notion of Gay and Hole. To handle
the contravariance of output types, we introduce a novel notion of observational preorder,
which we call X YZW-simulation (by analogy with X Y-simulation [1]).

While initially formulated in the context of the π-calculus, considerable work has been
done to integrate session types in more standard settings, such as functional languages based
on the polymorphic λ-calculus with linear types [2, 16, 47]. In this scenario, functional types
and session types are not orthogonal: sessions may carry functions, and functions may act
on sessions. With this in mind, we promote our theory to a linear functional setting, thereby
showing how subtyping for records, variants and (linear and unrestricted [22]) functions,
usually introduced by inference rules, can be seamlessly integrated with simulation-based
subtyping for context-free session types.
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Functional and higher-order context-free session types

T, U, V, W ::= Unit | T
m→ U | Lℓ: T Mℓ∈L | S | t | µt.T

S, R ::= ♯T | ⊙{ℓ: T}ℓ∈L | Skip | End | S;R | s | µs.S

Multiplicities, records/variants, polarities and views

m, n ::= 1 | ∗ L·M ::= {·} | ⟨·⟩ ♯ ::= ? | ! ⊙ ::= ⊕ | &

Figure 1 Syntax of types.

Finally, we present a sound algorithm for the novel notion of subtyping, based on the
type equivalence algorithm of Almeida et al. [4]. This algorithm works by first encoding the
types as words in a simple grammar [36] and then deciding their X YZW-similarity. Being
grammar-based and, at its core, agnostic to types, our algorithm may also find applications
for other objects with similar non-regular and contravariant properties.

Contributions. We address the subtyping problem for context-free session types, proposing:
A syntactic definition of subtyping for context-free session types;
A novel kind of behavioural preorder called X YZW-simulation, and, based on it, a
semantic definition of subtyping that coincides with the syntactic one;
A sound subtyping algorithm based on the X YZW-similarity of simple grammars;
An empirical evaluation of the performance of the algorithm, and a comparison with an
existing type equivalence algorithm.

Overview. The rest of this paper is organized as follows: in Section 2 we introduce types,
type formation and syntactic subtyping; in Section 3 we present a notion of semantic
subtyping, to be used as a stepping stone to develop our subtyping algorithm; in Section 4
we present the algorithm and show it to be sound with respect to the semantic subtyping
relation; in Section 5 we evaluate the performance of our implementation of the algorithm;
in Section 6 we present related work; in Section 7 we conclude the paper and trace a path
for the work to follow. The reader can find the rules for type formation and proofs for all
results in the paper in a technical report on arXiv [49].

2 Types and syntactic subtyping

We base our contributions on a type language that includes both functional types and higher-
order context-free session types (i.e., types that allow messages of arbitrary types). The
language is shown in Figure 1. As customary in session types for functional languages [26], the
language of types is given by two mutually recursive syntactic categories: one for functional
types and another for session types. We assume two disjoint and denumerable sets of type
references, with the first ranged over by t, u, v, w, the second by r, s and their union by x, y, z.
We further assume a set of record, variant and choice labels, ranged over by j, k, ℓ.

The first three productions of the grammar for functional types introduce the Unit type,
functions T

m→ U , records {ℓ: Tℓ}ℓ∈L and variants ⟨ℓ: Tℓ⟩ℓ∈L (which correspond to datatypes
in ML-like languages). Our system exhibits linear characteristics: function types contain a
multiplicity annotation m (also in Figure 1), meaning that they must be used exactly once

CONCUR 2023



11:4 Subtyping Context-Free Session Types

if m = 1 or without restrictions if m = ∗ (such types can also be found, for instance, in
Gay’s proposal [26], in System F◦ [40] and in the FreeST language [2]). Their inclusion in
our system is justified by the interesting subtyping properties they exhibit [22].

Session types !T and ?T represent the sending and receiving, respectively, of a value of
type T (an arbitrary type, making the system higher-order). Internal choice types ⊕{ℓ: Sℓ}ℓ∈L

allow the selection of a label k ∈ L and its continuation Sk, while external choice types
&{ℓ: Sℓ}ℓ∈L represent the branching on any label k ∈ L and its continuation Sk. We stipulate
that the set of labels for these types must be non empty. Type Skip represents no action,
while type End indicates the closing of a channel, after which no more communication can
take place. Type R;S denotes the sequential composition of R and S, which is associative,
right distributes over choices types, has (left and right) identity Skip and left-absorber End.

The final two productions in both functional and session grammars introduce self-references
and the recursion operator. Their inclusion in the two grammars ensures we can have both
recursive functional types and recursive session types while avoiding nonsensical types such
as µt.Unit ∗→ !Unit;t at the syntactical level (avoiding the need for a kinding system).

Still, we do not consider all types generated by these grammars to be well-formed.
Consider session type µr.r;!Unit. No matter how many times we unfold it, we cannot resolve
its first communication action. The same could be said of µr.Skip;r;!Unit. We must therefore
ensure that any self-reference in a sequential composition is preceded by a type constructor
representing some meaningful action, i.e., not equivalent to Skip. This is achieved by adapting
the conventional notion of contractivity (no subterms of the form µx.µx1. . . . µxn.x) [25] to
account for Skip as the identity of sequential composition. This corresponds to the notion of
guardedness in the theory of process algebra (e.g. [28, 42]).

In addition to contractivity, we must ensure that well-formed types contain no free
references. The type formation judgement ∆ ⊢ T , where ∆ is a set of references, combines
these requirements. The rules for the judgement can be found in the technical report [49].

We are now set to define our syntactic subtyping relation. We begin by surveying the
features it should support:
Input and output subtyping. Input variance and output contravariance are the central

features of subtyping for types that govern entities that can be written to or read from,
such as channels and references [45]. They are therefore natural features of the subtyping
relation for conventional session types as well [25]. Observe that ?{A: Int, B: Bool} ≤
?{A: Int} should be true, for the type of the received value, {A: Int, B: Bool}, safely
substitutes the expected type, {A: Int}. Observe also that !{A: Int} ≤ !{A: Int, B: Bool}
should be true, because the type of the value to be sent, {A: Int, B: Bool}, is a subtype of
{A: Int}, the type of the messages the substitute channel is allowed to send.

Choice subtyping. If we understand external and internal choice types as, respectively, the
input and output of a label, then their subtyping properties are easy to derive: external
choices are covariant on their label set, internal choices are contravariant on their label
set, and both are covariant on the continuation of the labels (this is known as width
subtyping). Observe that &{A: ?Int} ≤ &{A: ?Int, B: !Bool} should be true, for every
branch in the first type can be safely handled by matching on the second type. Likewise,
⊕{A: ?Int, B: !Bool} ≤ ⊕{A: ?Int} should be true, for every choice in the second type can
be safely selected in the first.

Sequential composition. In the classical subtyping relation for regular session types, input
and output types (♯T.S) can be characterized as covariant in their continuation. Although
the same general intuition applies in the context-free setting, we cannot as easily charac-
terize the variance of the sequential composition constructor (S;R) due to its monoidal,
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Syntactic subtyping (coinductive) T ≤ T

S-Unit
Unit ≤ Unit

S-Arrow
U1 ≤ T1 T2 ≤ U2 m ⊑ n

T1
m→ T2 ≤ U1

n→ U2

S-Rcd
K ⊆ L Tj ≤ Uj (∀j ∈ K)

{ℓ: Tℓ}ℓ∈L ≤ {k: Uk}k∈K

S-Vrt
L ⊆ K Tj ≤ Uj (∀j ∈ L)

⟨ℓ: Tℓ⟩ℓ∈L ≤ ⟨k: Uk⟩k∈K

S-RecL
[µx.T/x]T ≤ U

µx.T ≤ U

S-RecR
T ≤ [µx.U/x]U

T ≤ µx.U

S-In
T ≤ U

?T ≤ ?U

S-Out
U ≤ T

!T ≤ !U

S-ExtChoice
L ⊆ K Sj ≤ Rj (∀j ∈ L)
&{ℓ: Sℓ}ℓ∈L ≤ &{k: Rk}k∈K

S-IntChoice
K ⊆ L Sj ≤ Rj (∀j ∈ K)
⊕{ℓ: Sℓ}ℓ∈L ≤ ⊕{k: Rk}k∈K

S-Skip
Skip ≤ Skip

S-End
End ≤ End

S-InSeq1L
T ≤ U S ≤ Skip

?T ;S ≤ ?U

S-InSeq1R
T ≤ U S ≤ Skip

?T ≤ ?U ;S

S-InSeq2
T ≤ U S ≤ R

?T ;S ≤ ?U ;R

S-OutSeq1L
U ≤ T S ≤ Skip

!T ;S ≤ !U

S-OutSeq1R
U ≤ T S ≤ Skip

!T ≤ !U ;S

S-OutSeq2
U ≤ T S ≤ R

!T ;S ≤ !U ;R

S-ChoiceSeqL
⊙{ℓ: Sℓ;S}ℓ∈L ≤ R

⊙{ℓ: Sℓ}ℓ∈L;S ≤ R

S-ChoiceSeqR
S ≤ ⊙{ℓ: Rℓ;R}ℓ∈L

S ≤ ⊙{ℓ: Rℓ}ℓ∈L;R

S-SkipSeqL
S ≤ R

Skip;S ≤ R

S-SkipSeqR
S ≤ R

S ≤ Skip;R

S-EndSeq1L
End;S ≤ End

S-EndSeq1R
End ≤ End;R

S-EndSeq2
End;S ≤ End;R

S-SeqSeqL
S1;(S2;S3) ≤ R

(S1;S2);S3 ≤ R

S-SeqSeqR
S ≤ R1;(R2;R3)
S ≤ (R1;R2);R3

S-RecSeqL
([µs.S1/s]S1);S2 ≤ R

(µs.S1);S2 ≤ R

S-RecSeqR
S ≤ ([µs.R1/s]R1);R2

S ≤ (µs.R1);R2

Preorder on multiplicities m ⊑ m

m ⊑ m ∗ ⊑ 1

Figure 2 Syntactic subtyping.

distributive and absorbing properties. For instance, consider types S1;S2 and R1;R2, with
S1 = !Int;!Bool, S2 = ?Int, R1 = !Int and R2 = !Bool;?Int. Although it should be true that
S1;S2 ≤ R1;R2, we can have neither S1 ≤ R1 nor S2 ≤ R2.

Functional subtyping. The subtyping properties of function, record and variant types are
well known, and we refer the readers to Pierce’s book for the reasoning behind them [45].
Succinctly, the function type constructor is contravariant on the domain and covariant
on the range, and the variant and record constructors are both covariant on the type of
the fields, but respectively covariant and contravariant on their label sets.
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Multiplicity subtyping. Using an unrestricted (∗) resource where a linear (1) one is expected
does not compromise safety, provided that, multiplicities aside, the type of the former
may safely substitute the type of the latter. We can express this relationship between
multiplicities through a preorder captured by inequality ∗ ⊑ 1. In our system, function
types may be either linear or unrestricted. Thus, type T1

m→ T2 can be considered a
subtype of U1

n→ U2 if U1 and T2 are subtypes, respectively, of T1 and U2 and if m ⊑ n

(thus we can characterize the function type constructor as covariant on its multiplicity).

The rules for our syntactic subtyping relation, interpreted coinductively, are shown
in Figure 2. Rules S-Unit, S-Arrow, S-Rcd, S-Vrt, S-RecL and S-RecR establish
the classical subtyping properties associated with both functional and equi-recursive types,
with S-Arrow additionally encoding subtyping between linear and unrestricted functions,
relying on a preorder on multiplicities also defined in Figure 2. Rules S-End, S-In, S-Out,
S-ExtChoice and S-IntChoice bring to the context-free setting the classical subtyping
properties expected from session types, as put forth by Gay and Hole [25].

The remaining rules account for sequential composition, which distributes over choice
and exhibits a monoidal structure with its neutral element in Skip and left-absorbing element
in End. We include, for each session type constructor S, a left rule (denoted by suffix L)
of the form S;R ≤ S′ and a right rule (denoted by suffix R) of the form S′ ≤ S;R. An
additional rule is necessary for each constructor over which sequential composition does not
distribute, associate or neutralize (S-InSeq2, S-OutSeq2 and S-EndSeq2). Since we are
using a coinductive proof scheme, we include rules to “move” sequential composition down
the syntax. Thus, given a type S;R, we inspect S to decide which rule to apply next.

▶ Theorem 2. The syntactic subtyping relation ≤ is a preorder on types.

▶ Example 3. Let us briefly return to Example 1. It is now easy to see that STree ≤ SFullTree1:
we unfold the left-hand side and apply rule S-IntChoice. Then we apply the distributivity
rules as necessary until reaching an internal choice with no continuation, at which point we
can apply S-IntChoice again, or until reaching a type with !Int at the head, at which point
we apply S-InSeq2. We repeat this process until reaching STree ≤ SFullTree0, and proceed
similarly until reaching STree ≤ SEmpty, which follows from S-IntChoice and S-Skip.

Despite clearly conveying the intended meaning of the subtyping relation, the rules suggest
no obvious algorithmic intepretation: on the one hand, the presence of bare metavariables
makes the system not syntax-directed; on the other hand, rules S-RecL, S-RecSeqL and
their right counterparts lead to infinite derivations which are not solvable by a conventional
fixed-point construction [25, 45]. In the next section we develop an alternative, semantic
approach to subtyping, which we use as a stepping stone to develop our subtyping algorithm.

3 Semantic subtyping

Semantic equivalence for context-free session types is usually based on observational equival-
ence or bisimilarity, meaning that two session types are considered equivalent if they exhibit
exactly the same communication behaviour [51]. An analogous notion of semantic subtyping
should therefore rely on an observational preorder. In this section we develop such a preorder.

We define the behaviour of types via a labelled transition system (LTS) by establishing
relation T

a−→ U (“type T transitions by action a to type U”). We follow Costa et al. [16]
in attributing behaviour to functional types, allowing them to be encompassed in our
observational preorder. The rules defining the transition relation, as well as the grammar
that generates all possible transition actions, are shown in Figure 3.
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Labelled transition system T
a−→ T

L-Unit
Unit Unit−→ Skip

L-ArrowDom
(T m→ U) →d−→ T

L-ArrowRng
(T m→ U) →r−→ U

L-LinArrow
(T 1→ U) →1−→ Skip

L-RcdVrtField
k ∈ L

Lℓ: TℓMℓ∈L
LMk−→ Tk

L-RcdVrt
Lℓ: TℓMℓ∈L

LM−→ Skip

L-Rec
[µx.T/x]T a−→ U

µx.T
a−→ U

L-Msg1
♯T

♯p−→ T

L-Msg2
♯T

♯c−→ Skip

L-Choice
⊙{ℓ: Sℓ}ℓ∈L

⊙−→ Skip

L-ChoiceField
k ∈ L

⊙{ℓ: Sℓ}ℓ∈L

⊙k−→ Sk

L-End
End End−→ Skip

L-MsgSeq1
♯T ;S ♯p−→ T

L-MsgSeq2
♯T ;S ♯c−→ S

L-ChoiceSeq
⊙{ℓ: Sℓ}ℓ∈L;R ⊙−→ Skip

L-SkipSeq
S

a−→ T

Skip; S
a−→ T

L-EndSeq
End;S End−→ Skip

L-SeqSeq
S1; (S2; S3) a−→ T

(S1;S2);S3
a−→ T

L-ChoiceFieldSeq
k ∈ L

⊙{ℓ: Sℓ}ℓ∈L;R ⊙k−→ Sk;R

L-RecSeq
([µs.S/s]S);R a−→ T

(µs.S);R a−→ T
(no rule for Skip)

Actions

a ::= Unit |→d |→r |→1 | End | LMℓ | LM | ♯p | ♯c | ⊙ | ⊙ℓ

Figure 3 Labelled transition system. Letters d, r, p, c in labels stand for “domain”, “range”,
“payload” and “continuation”.

In general, each functional type constructor generates a transition for each of its fields
(Unit and End, which have none, transition to Skip). Linear functions exhibit an additional
transition to represent their restricted use (L-LinArrow), and records/variants include
a default transition that is independent of their fields (L-RcdVrt). The behaviour of
session types is more complex, since it must account for their algebraic properties. Message
types exhibit a transition for their payload (L-Msg1, L-MsgSeq1) and another for their
continuation, which is Skip by omission (L-Msg2, L-MsgSeq2). Choices behave much
like records/variants when alone, but are subject to distributivity when composed (L-
ChoiceFieldSeq). Type End, which absorbs its continuation, transitions to Skip (L-End,
L-EndSeq). Rules L-SeqSeq, L-SkipSeq account for associativity and identity, and rules
L-Rec and L-RecSeq dictate that recursive types behave just like their unfoldings. Notice
that Skip has no transitions.

With the behaviour of types established, we now look for an appropriate notion of
observational preorder. Several such notions have been studied in the literature. Similarity,
defined as follows, is arguably the simplest of them [41, 44].

▶ Definition 4. A type relation R is said to be a simulation if, whenever TRU , for all a

and T ′ with T
a−→ T ′ there is U ′ such that U

a−→ U ′ and T ′RU ′

Similarity, written ⪯, is the union of all simulation relations. We say that a type U

simulates type T if T ⪯ U .
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11:8 Subtyping Context-Free Session Types

Unfortunately, plain similarity is of no use to us. A small example shows why: type
⊕{A: End, B: End} both simulates and is a subtype of ⊕{A: End}, while type &{A: End} does
not simulate yet is a subtype of &{A: End, B: End}. Reversing the direction of the simulation
would be of no avail either, as it would leave us with the reverse problem.

It is apparent that a more refined notion of simulation is necessary, where the direction of
the implication depends on the transition labels. Aarts and Vaandrager provide just such a
notion in the form of X Y-simulation [1], a simulation relation parameterized by two subsets
of actions, X and Y, such that actions in X are simulated from left to right and those in Y
are simulated from right to left, selectively combining the requirements of simulation and
reverse simulation.

▶ Definition 5. Let X , Y ⊆ A. A type relation R is said to be an X Y-simulation if, whenever
TRU , we have:
1. for each a ∈ X and each T ′ with T

a−→ T ′, there is U ′ such that U
a−→ U ′ with T ′RU ′;

2. for each a ∈ Y and each U ′ with U
a−→ U ′, there is T ′ such that T

a−→ T ′ with T ′RU ′.
X Y-similarity, written ⪯X Y , is the union of all X Y-simulation relations. We say that a type
T is X Y-similar to type U if T ⪯X Y U .

Similar or equivalent notions have appeared throughout the literature: modal refine-
ment [38], alternating simulation [7] and, perhaps more appropriately named (for our
purposes), covariant-contravariant simulation [20]. Padovani’s original subtyping relation for
context-free session types [43] can also be understood as a refined form of X Y-simulation.

We can tentatively define a semantic subtyping relation ≲′ as X Y-similarity, where X
and Y are the label sets generated by the following grammars for aX and aY , respectively.

aX ::= aX Y | ⟨⟩ℓ | &ℓ

aY ::= aX Y |→1 | {}ℓ | ⊕ℓ

aX Y ::= Unit |→d |→r | LM | ♯p | ♯c | ⊙ | End

This would indeed give us the desired result for our previous example, but we still cannot
account for the contravariance of output and function types: we want T = !{A: Int} to be
a subtype of U = !{A: Int, B: Bool}, yet T ≲′ U does not hold (in fact, we have U ≲′ T , a
clear violation of run-time safety). The same could be said for types {A: Int} ∗→ Int and
{A: Int, B: Bool} ∗→ Int. In short, our simulation needs the !p and→d-derivatives to be related
in the direction opposite to that of the initial types. Thus we need to selectively apply a
strong form of contrasimulation as well [48, 52] (the original notion is defined with weak
transitions, a sort of transition we do not address).

To allow this, we generalize the definition of X Y-simulation by parameterizing it on two
further subsets of actions and including two more clauses where the direction of the relation
between the derivatives is reversed. By analogy with X Y-simulation, we call the resulting
notion X YZW-simulation.

▶ Definition 6. Let X , Y, Z, W ⊆ A. A type relation R is a X YZW-simulation if, whenever
TRU , we have:
1. for each a ∈ X and each T ′ with T

a−→ T ′, there is U ′ such that U
a−→ U ′ with T ′RU ′;

2. for each a ∈ Y and each U ′ with U
a−→ U ′, there is T ′ such that T

a−→ T ′ with T ′RU ′;
3. for each a ∈ Z and each T ′ with T

a−→ T ′, there is U ′ such that U
a−→ U ′ with U ′RT ′;

4. for each a ∈ W and each U ′ with U
a−→ U ′, there is T ′ such that T

a−→ T ′ with U ′RT ′.
X YZW-similarity, written ⪯X YZW , is the union of all X YZW-simulation relations. We
say that a type T is X YZW-similar to type U if T ⪯X YZW U .
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X YZW-simulation generalizes several existing observational relations: X Y-simulation
can be defined as an X Y∅∅-simulation, bisimulation as AA∅∅-simulation (alternatively,
∅∅AA-simulation or AAAA-simulation), and plain simulation as A∅∅∅-simulation.

▶ Theorem 7. For any X , Y, Z, W, ⪯X YZW is a preorder relation on types.

Equipped with the notion of X YZW-similarity, we are ready to define the semantic
subtyping relation for functional and higher-order context-free session types as follows.

▶ Definition 8. The semantic subtyping relation for functional and higher-order context-free
session types ≲ is defined by T ≲ U when T ⪯X YZW U such that X , Y, Z and W are defined
as the label sets generated by the following grammars for aX , aY , aZ and aW , respectively.

aX ::= aX Y |→1 | ⟨⟩ℓ | &ℓ

aY ::= aX Y | {}ℓ | ⊕ℓ

aZ , aW ::=!p |→d
aX Y ::= Unit |→r | LM | ?p | ♯c | ⊙ | End

Notice the correspondence between the placement of the labels and the variance of
their respective type constructors. Labels arising from covariant positions of the arrow and
input type constructors are placed in both the X and Y sets, while those arising from the
contravariant positions of the arrow and output type constructors are placed in both the Z
and W sets. Labels arising from the fields of constructors exhibiting width subtyping are
placed in a single set, depending on the variance of the constructor on the label set: X for
covariance (external choice and variant constructors), Y for contravariance (internal choice
and record constructors). The function type constructor is covariant on its multiplicity, thus
the linear arrow label is placed in X . Finally, default record/variant/choice labels and those
arising from nullary constructors are placed in X and Y, but they could alternatively be
placed in Z and W or in all four sets (notice the parallel with bisimulation, that can be
defined as AA∅∅-simulation, ∅∅AA-simulation, or AAAA-simulation).

▶ Example 9. Let us go back once again to our tree serialization example from Section 1.
Here it is also easy to see that STree ≲ SFullTree1. Observe that, on the side of STree,
transitions by ⊕Nil and ⊕Node always appear together, while on the side of SFullTree1 types
transition first by ⊕Node and then by ⊕Nil. Since ⊕Nil and ⊕Node belong exclusively to Y,
STree is always able to match SFullTree1 on these labels (as in all the others in Y ∪ W , and
vice-versa for X ∪ Z).

▶ Theorem 10 (Soundness and completeness for subtyping relations). Let ⊢ T and ⊢ U . Then
T ≤ U iff T ≲ U .

4 A subtyping algorithm

The notion of subtyping we have outlined is undecidable. This follows from the fact that our
system, albeit different, contains all the features necessary to reconstruct Padovani’s proof of
undecidability [43]. Using just external choices, sequential composition, the Skip type and
recursion, one is able to encode simple grammars [36] as context-free session types, in a way
that language strings correspond to complete LTS traces of types. By exploiting the covariant
width-subtyping in external choices, one can show that subtyping for these types corresponds
to language inclusion, which is known to be undecidable for simple languages [21].

Despite the undecidability of our subtyping problem, we are still able to devise a sound
(but necessarily incomplete) algorithm for it. In this section we present this algorithm, an
adaptation of the equivalence algorithm of Almeida et al. [4]. At its core, it determines
the X YZW-similarity of simple grammars. Its application to context-free session types is
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facilitated by a translation function to properly encode types as grammars. The algorithm
may likewise be adapted to other domains. Much like the original, our algorithm can be
succinctly described in three distinct phases:
1. translate the given types to a simple grammar [36] and two starting words;
2. prune unreachable symbols from productions;
3. explore an expansion tree rooted at a node containing the initial words, alternating

between expansion and simplification operations until either an empty node is found
(decide True) or all nodes fail to expand (decide False).

Phase 1. The first phase consists of translating the two types to a grammar in Greibach
normal form (GNF) [27], i.e., a grammar where all productions have the form Y → aZ⃗,
and two starting words (X⃗, Y⃗ ). A word is defined as a sequence of non-terminal symbols.
We can check the X YZW-similarity of words in GNF grammars because they naturally
induce a labelled transition system, where states are words X⃗, actions are terminal symbols
a and the transition relation is defined as XY⃗

a−→P Z⃗Y⃗ when X → aZ⃗ ∈ P . We denote the
bisimilarity and X YZW-similarity of grammars by, respectively, ∼P and ⪯X YZW

P , where
P is the set of productions. We also let ≲P denote grammar X YZW-similarity with label
sets as in Definition 8. The deterministic nature of context-free session types allows their
corresponding grammars to be simple [36]: for each non-terminal Y and terminal symbol a,
we have at most one production of the form Y → aZ⃗.

The grammar translation procedure grm remains unchanged from the original equivalence
algorithm [4], and for this reason we omit its details (which include generating productions
for all µ-subterms in types). However, this procedure relies on two auxiliary definitions
which must be adapted: the unr function (Definition 11), which normalizes the head of
session types and unravels recursive types until reaching a type constructor, and the word
procedure (Definition 12), which builds a word from a session type while updating a set P of
productions.

▶ Definition 11. The unraveling of a type T is defined by induction on the structure of T :

unr(µx.T ) = unr([µx.T/x]T )
unr(End;S) = End

unr(⊙{ℓ: Sℓ}ℓ∈L;R) = ⊙{ℓ: Sℓ; R}ℓ∈L

unr(Skip;S) = unr(S)
unr((µs.S);R) = unr(([µs.S/s]S);R)

unr((S1;S2);S3) = unr(S1;(S2;S3))

and in all other cases by unr(T ) = T .

▶ Definition 12. The word corresponding to a well-formed type T , word(T ), is built by
descending on the structure of T while updating a set P of productions:

word(Unit) = Y , setting P := P ∪ {Y → Unit}

word(U 1→ V ) = Y , setting P := P ∪ {Y →→dword(U), Y →→rword(V ), Y →→1}

word(U ∗→ V ) = Y , setting P := P ∪ {Y →→dword(U), Y →→rword(V )}
word(Lℓ: TℓMℓ∈L) = Y , setting P := P ∪ {Y → LM⊥} ∪ {Y → LMkword(Tk) | k ∈ L}

word(Skip) = ε

word(End) = Y , setting P := P ∪ {Y → End⊥}
word(♯U) = Y , setting P := P ∪ {Y → ♯pword(U)⊥, Y → ♯c}

word(⊙{ℓ: Sℓ}ℓ∈L) = Y , setting P := P ∪ {Y → ⊙⊥} ∪ {Y → ⊙kword(Sk) | k ∈ L}
word(S1; S2) = word(S1)word(S2)
word(µx.U) = X



G. Silva, A. Mordido, and V. T. Vasconcelos 11:11

where, in each equation, Y is understood as a fresh non-terminal symbol, X as the non-
terminal symbol corresponding to type reference x, and ⊥ as a non-terminal symbol without
productions.

▶ Example 13. Consider again the types for tree serialization in Section 1. Suppose we want
to know whether SFullTree0 ∗→ Unit ≲ STree 1→ Unit. We know that the grammar generated
for these types is as follows, with X0 and Y0 as their starting words.

X0 →→dX1

X0 →→rX5

X1 → ⊕NodeX2X3X2

X1 → ⊕⊥

X2 → ⊕Empty

X2 → ⊕⊥
X3 →!pX4⊥
X3 →!c

X4 → Int
X5 → Unit

Y0 →→dY1

Y0 →→rX5

Y0 →→1

Y1 → ⊕⊥
Y1 → ⊕Empty

Y1 → ⊕NodeY1X3Y1

For the rest of this section let ⊢ T , ⊢ U , (X⃗T , P ′) = grm(T, ∅) and (X⃗U , P) = grm(U, P ′).

▶ Theorem 14 (Soundness for grammars). If X⃗T ≲P X⃗U , then T ≲ U .

Phase 2. The grammars generated by procedure grm may contain unreachable words,
which can be ignored by the algorithm. Intuitively, these words correspond to communication
actions that cannot be fulfilled, such as subterm ?Bool in type (µs.!Int;s);?Bool. Formally,
these words appear in productions following what are known as unnormed words.

▶ Definition 15. Let a⃗ be a non-empty sequence of non-terminal symbols a1, . . . , an. Write
Y⃗

a⃗−→P Z⃗ when Y⃗
a1−→P . . .

an−→P Z⃗. We say that a word Y⃗ is normed if Y⃗
a⃗−→P ε for some

a⃗, and unnormed otherwise. If Y⃗ is normed and a⃗ is the shortest path such that Y⃗
a⃗−→P ε,

then a⃗ is called the minimal path of Y⃗ , and its length is the norm of Y⃗ , denoted |Y⃗ |.

It is known that any unnormed word Y⃗ is bisimilar to its concatenation with any other
word, i.e., if Y⃗ is unnormed, then Y⃗ ∼P Y⃗ X⃗. It is also easy to show that ∼P ⊆ ≲P , and
hence that Y⃗ ≲P Y⃗ X⃗. In this case, X⃗ is said to be unreachable and can be safely removed
from the grammar. We call the procedure of removing all unreachable symbols from a
grammar pruning, and denote the pruned version of a grammar P by prune(P).

▶ Lemma 16 (Pruning preserves X YZW-similarity). X⃗ ⪯X YZW
P Y⃗ iff X⃗ ⪯X YZW

prune(P) Y⃗

Phase 3. In its third and final phase, the algorithm explores an expansion tree, alternating
between expansion and simplification steps. An expansion tree is a tree whose nodes are sets
of pairs of words, whose root is the singleton set containing the pair of starting words under
test, and where every child is an expansion of its parent. A branch is deemed successful
if it is infinite or has an empty leaf, and deemed unsuccessful otherwise. The original
definition of expansion ensures that the union of all nodes along a successful branch (without
simplifications) constitutes a bisimulation [35]. We adapt this definition to ensure that such
a union yields an X YZW-simulation instead.

▶ Definition 17. The X YZW-expansion of a node N is defined as the minimal set N ′ such
that, for every pair (X⃗, Y⃗ ) in N , it holds that:
1. if X⃗ → aX⃗ ′ and a ∈ X then Y⃗ → aY⃗ ′ with (X⃗ ′, Y⃗ ′) ∈ N ′

2. if Y⃗ → aY⃗ ′ and a ∈ Y then X⃗ → aX⃗ ′ with (X⃗ ′, Y⃗ ′) ∈ N ′

3. if X⃗ → aX⃗ ′ and a ∈ Z then Y⃗ → aY⃗ ′ with (Y⃗ ′, X⃗ ′) ∈ N ′

4. if Y⃗ → aY⃗ ′ and a ∈ W then X⃗ → aX⃗ ′ with (Y⃗ ′, X⃗ ′) ∈ N ′
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Figure 4 An X YZW-expansion tree for Example 13, exhibiting a finite successful branch.

▶ Lemma 18 (Safeness property for X YZW-simulation). Given a set of productions P,
X⃗ ⪯X YZW

P Y⃗ iff the expansion tree rooted at {(X⃗, Y⃗ )} has a successful branch.

The simplification stage consists of applying rules that safely modify the expansion tree
during its construction, in an attempt to keep some branches finite. The rules are iteratively
applied to each node until a fixed point is reached, at which point we can proceed with
expansion. To each node N we apply three simplification rules, adapted from the equivalence
algorithm [4]:
1. Reflexivity: omit pairs of the form (X⃗, X⃗);
2. Preorder: omit pairs belonging to the least preorder containing the ancestors of N ;
3. Split: if (X0X⃗, Y0Y⃗ ) ∈ N and X0 and Y0 are normed, then:

Case |X0| ≤ |Y0|: Let a⃗ be a minimal path for X0 and Z⃗ the word such that Y0
a⃗−→P Z⃗.

Add a sibling node for N including pairs (X0Z⃗, Y0) and (X⃗, Z⃗Y⃗ ) in place of (X0X⃗, Y0Y⃗ );
Otherwise: Let a⃗ be a minimal path for Y0 and Z⃗ the word such that X0

a⃗−→P Z⃗. Add
a sibling node for N including pairs (X0, Y0Z⃗) and (Z⃗X⃗, Y⃗ ) in place of (X0X⃗, Y0Y⃗ ).

When a node is simplified, we keep track of the original node in a sibling, thus ensuring
that along the tree we keep an “expansion-only” branch.

The algorithm explores the tree by breadth-first search using a queue of node-ancestors
pairs, thus avoiding getting stuck in infinite branches, and alternates between expansion and
simplification steps until it terminates with False if all nodes fail to expand or with True if
an empty node is reached. The following pseudo-code illustrates the procedure.

subG(X⃗, Y⃗ , P) = explore(singletonQueue(({(X⃗, Y⃗ )}, ∅), P)
where explore(q, P) =

if empty(q) then False % all nodes failed to expand
else let (n, a) = front(q) in

if empty(n) then True % empty node reached
else if hasExpansion(n, P) % then expand, simplify and recur

then explore(simplify(expand(n, P), a ∪ n, dequeue(q)), P)
else explore(dequeue(q), P) % otherwise, discard node

▶ Example 19. The X YZW-expansion tree for Example 13 is illustrated in Figure 4.
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Finally, function subT puts all the pieces of the algorithm together:

subT (T, U) = let (X⃗, P ′) = grm(T, ∅), (Y⃗ , P) = grm(U, P ′) in subG(X⃗, Y⃗ , prune(P))

It receives two well-formed types T and U , computes their grammar and respective starting
words X⃗ and Y⃗ , prunes the productions of the grammar and, lastly, uses function subG to
determine whether X⃗ ≲P Y⃗ .

The following result shows that algorithm subT is sound with respect to semantic
subtyping relation on functional and higher-order context-free session types.

▶ Theorem 20 (Soundness). If subT (T, U) returns True, then T ≲ U .

5 Evaluation

We have implemented our subtyping algorithm in Haskell and integrated it in the freely
available compiler for FreeST, a statically typed functional programming language featuring
message-passing channels governed by context-free session types [2, 3, 6]. The FreeST
compiler features a running implementation of the type equivalence algorithm of Almeida et
al. [4]. With our contributions, FreeST effectively gains support for subtyping at little to no
cost in performance. In this section we present an empirical study to support this claim.

We employed three test suites to evaluate the performance of our algorithm: a suite
of handwritten pairs of types, a suite of randomly generated pairs of types, and a suite of
handwritten FreeST programs. We focus on the last two, since they allow a more robust and
realistic analysis. All data was collected on a machine featuring an Intel Core i5-6300U at
2.4GHz with 16GB of RAM.

To build our randomly generated suite we employed a type generation module, imple-
mented using the Quickcheck library [15] and following an algorithm induced from the
properties of subtyping, much like the one induced by Almeida et al. [4] from the properties
of bisimilarity. It includes generators for valid and invalid subtyping pairs. We conducted
our evaluation by taking the running time of the algorithm on 2000 valid pairs and 2000
invalid pairs, ranging from 2 to 730 total AST nodes, with a timeout of 30s (ensuring it
terminates with either True, False or Unknown). The results are plotted in Figure 5a.
Despite the incompleteness of the algorithm, we encountered no false negatives, but obtained
188 timeouts. We found, as expected, that the running time increases considerably with the
number of nodes. When a result was produced, valid pairs took generally longer.

Randomly generated types allow for a robust analysis, but they typically do not reflect
the types encountered by a subtyping algorithm in its most obvious practical application,
a compiler. For this reason, we turn our attention to our suite of FreeST programs, comprised
of 286 valid and invalid programs collected throughout the development of the FreeST
language. Programs range from small examples demonstrating particular features of the
language to concurrent applications simulating, for example, an FTP server.

We began by integrating the algorithm in the FreeST compiler, placing next to every call
to the original algorithm [4] (henceforth equivT) a call to subT on the same pairs of types. We
then ran each program in our suite 10 times, collecting and averaging the accumulated running
time of both algorithms on the same pairs of types. We then took the difference between
the average accumulated running times of subT and equivT, obtaining an average difference
of -3.85ms, with a standard deviation of 7.08ms, a minimum difference of -71.29ms and a
maximum difference of 8.03ms (subT performed faster, on average). Figure 5b illustrates
this comparison by plotting against each other the accumulated running times (for clarity,
those in the 20-100ms range) of both algorithms during the typechecking phase of each.
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(a) Performance on valid and invalid subtyping
pairs

(b) Performance comparison against the ori-
ginal equivalence algorithm

Figure 5 Performance evaluation and comparison.

The data collected in this evaluation suggests that replacing the original equivalence
algorithm [4] with the subtyping algorithm in the FreeST typechecker generally does not
incur an overhead, while providing additional expressive power for programmers.

6 Related work

Session types emerged as a formalism to express communication protocols and statically
verify their implementations [31, 32]. Initial formulations allowed only pairwise, tail-recursive
protocols, earning such types the “binary” and “regular” epithets. Since then, considerable
efforts have been made to extend the theory of session types beyond the binary and regular
realms: multiparty session types allow sessions with multiple participants [33], while context-
free session types [51] and nested session types [18] allow non-regular communication patterns.
Our work is centered on context-free session types, which have seen considerable development
since their introduction, most notably their integration in System F [2, 47], an higher-order
formulation [16], as well as proposals for kind and type inference [5, 43].

Subtyping is a standard feature of many type systems, and the literature on the topic
is vast [8, 10, 13, 14, 17, 19, 37]. Its conventional interpretation, based on the notion of
substitutability, originates from the work of Liskov [39]. Multiple approaches to subtyping
for regular session types have been proposed, and they can be classified according to the
objects they consider substitutable: channels versus processes (the difference being most
notable in the variance of type constructors). The earliest approach, subscribing to the
substitutability of channels, is that of Gay and Hole [25]. It is also the one we follow. A later
formulation, proposed by Carbone et al. [12], subscribes to the substitutability of processes.
A survey of both interpretations is given by Gay [24]. The interaction between subtyping
and polymorphism for regular session types, in the form of bounded quantification, has
been investigated by Gay [23]. Horne and Padovani study subtyping under the linear logic
interpretation of regular session types [34], showing that it preserves termination of processes.

Subtyping for session types has spread beyond the regular realm. Das et al. [18] introduce
subtyping for nested session types, show the problem to be undecidable and present a
sound but incomplete algorithm. In the context-free setting, the first and, to the best of
our knowledge, only formulation before our work is that of Padovani [43]. It proposes a
simulation-based subtyping relation, proves the undecidability of the subtyping problem and
provides a sound but incomplete algorithm. This undecidability proof also applies to our
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system, as it possesses all the required elements: width-subtyping on choices, sequential
composition and recursion. The subtyping relation proposed by Padovani contemplates
neither input/output subtyping nor functional subtyping. Furthermore, its implementation
relies on the subtyping features of OCaml, the implementation language. In contrast, we
propose a more expressive relation, featuring input/output subtyping, as well as functional
subtyping. Furthermore, we provide an also sound algorithm that is independent of the
implementation language.

Our subtyping relation is based on a novel form of observational preorder, X YZW-
simulation. There is, as far as we know, no analogue in the literature. It is a generalization of
X Y-simulation, introduced by Aarts and Vaandrager in the context of learning automata [1]
but already known, under slightly different forms, as modal refinement [38], alternating simu-
lation [7] and covariant-contravariant simulation [20]. The contravariance on the derivatives
introduced by X YZW-simulation is also prefigured in contrasimulation [48, 52], but the
former uses strong transitions whereas the latter uses weak ones. There is a vast literature
on other observational relations, to which Sangiorgi’s book provides an overview [48].

Our algorithm decides the X YZW-similarity of simple grammars [36]. It is an adaptation
of the bisimilarity algorithm for simple grammars of Almeida et al. [4]. To our knowledge,
these are the only running algorithms of their sort. Henry and Sénizergues [29] proposed an
algorithm to decide the language equivalence problem on deterministic pushdown automata.
On the related topic of basic process algebra (BPA), BPA processes have been shown to be
equivalent to grammars in GNF [9], of which simple grammars are a particular case. This
makes results and algorithms for BPA processes applicable to grammars in GNF, and vice-
versa. A bisimilarity algorithm for general BPA processes, of doubly-exponential complexity,
has been proposed by Burkart et al. [11], while an analogous polynomial-time algorithm for
the special case of normed BPA processes has been proposed by Hirschfield et al. [30].

7 Conclusion and future work

We have proposed an intuitive notion of subtyping for context-free session types, based
on a novel form of observational preorder, X YZW-simulation. This preorder inverts the
direction of the simulation in the derivatives covered by its W and Z parameters, allowing it
to handle co/contravariant features of input/output types. We take advantage of the fact
that X YZW-simulation generalizes bisimulation to derive a sound subtyping algorithm from
an existing type equivalence algorithm.

Despite its unavoidable incompleteness, stemming from the undecidability of our notion
of subtyping, our algorithm has not yielded any false negatives. Thus, we conjecture that
is partially correct: it may not halt, but, when it does, the answer is correct. We cannot,
however, back this claim without a careful analysis of completeness and termination, which
we leave for future work. We believe such an analysis will advance the understanding of the
subtyping problem by clarifying the practical reasons for its undecidability.

As shown by Thiemann and Vasconcelos [51], support for polymorphism and polymorphic
recursion is paramount in practical applications of context-free session types. Exploring the
interaction between polymorphism and subtyping in the context-free setting, possibly in the
form of bounded quantification, is therefore another avenue for future work.
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1 Introduction

Vector Addition Systems with States (VASS) [11] are a model for discrete systems with
multiple unbounded resources expressively equivalent to Petri nets [20]. Intuitively, a
VASS with d ≥ 1 counters is a finite directed graph where the transitions are labeled by
d-dimensional vectors of integers representing counter updates. A computation starts in
some state for some initial vector of non-negative counter values and proceeds by selecting
transitions non-deterministically and performing the associated counter updates. Since the
counters cannot assume negative values, transitions that would decrease some counter below
zero are disabled.

In program analysis, VASS are used as abstractions for programs operating over unbounded
integer variables. Input parameters are represented by initial counter values, and more
complicated arithmetical functions, such as multiplication, are modeled by VASS gadgets
computing these functions in a weak sense (see, e.g., [17]). Branching constructs, such as
if-then-else, are usually replaced with non-deterministic choice. VASS are particularly useful
for evaluating the asymptotic complexity of infinite-state programs, i.e., the dependency
of the running time (and other complexity measures) on the size of the program input
[21, 22]. Traditional VASS decision problems such as reachability, liveness, or boundedness
are computationally hard [9, 18, 19], and other verification problems such as equivalence-
checking [12] or model-checking [10] are even undecidable. In contrast to this, decision
problems related to the asymptotic growth of VASS complexity measures are solvable with
low complexity and sometimes even in polynomial time [4, 23, 15, 16, 1]; see [14] for a recent
overview.
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12:2 Asymptotic Estimates for VASS MDPs

The existing results about VASS asymptotic analysis are applicable to programs with
non-determinism (in demonic or angelic form, see [5]), but cannot be used to analyze the
complexity of probabilistic programs. This motivates the study of Markov decision process over
VASS (VASS MDPs) with both non-deterministic and probabilistic states, where transitions
in probabilistic states are selected according to fixed probability distributions. Here, the
problems of asymptotic complexity analysis become even more challenging because VASS
MDPs subsume infinite-state stochastic models that are notoriously hard to analyze. So
far, the only existing result about asymptotic VASS MDP analysis is [3] where the linearity
of expected termination time is shown decidable in polynomial time for VASS MDPs with
DAG-like MEC decomposition.

Our Contribution: We study the problems of asymptotic complexity analysis for probabilistic
programs and their VASS abstractions.

For non-deterministic programs, termination complexity is a function Lmax assigning to
every n ∈ N the length of the longest computation initiated in a configuration with each
counter set to n. A natural way of generalizing this concept to probabilistic programs is to
define a function Lexp such that Lexp(n) is the maximal expected length of a computation
initiated in a configuration of size n, where the maximum is taken over all strategies resolving
non-determinism. The same approach is applicable to other complexity measures. We show
that this natural idea is generally inappropriate, especially in situations when Lexp(n) is
infinite for a sufficiently large n. By “inappropriate” we mean that this form of asymptotic
analysis can be misleading. For example, if Lexp(n) = ∞ for all n ≥ 1, one may conclude that
the computation takes a very long time independently of n. However, this is not necessarily
the case, as demonstrated in a simple example of Fig. 1 (we refer to Section 3 for a detailed
discussion). Therefore, we propose new notions of lower/upper/tight complexity estimates
and demonstrate their advantages over the expected values. These notions can be adapted
to other models of probabilistic programs, and constitute the main conceptual contribution
of our work.

Then, we concentrate on algorithmic properties of the complexity estimates in the setting
of VASS MDPs. Our first result concerns counter complexity. We show that for every
VASS MDP with DAG-like MEC decomposition and every counter c, there are only two
possibilities:

The function n is a tight estimate of the asymptotic growth of the maximal c-counter
value assumed along a computation initiated in a configuration of size n.
The function n2 is a lower estimate of the asymptotic growth of the maximal c-counter
value assumed along a computation initiated in a configuration of size n.

Furthermore, it is decidable in polynomial time which of these alternatives holds.
Since the termination and transition complexities can be easily encoded as the counter

complexity for a fresh “step counter”, the above result immediately extends also to these
complexities. To some extent, this result can be seen as a generalization of the result about
termination complexity presented in [3]. See Section 4 for more details.

Our next result is a full classification of asymptotic complexity for one-dimensional VASS
MDPs. We show that for every one-dimensional VASS MDP

the counter complexity is either unbounded or n is a tight estimate;
termination complexity is either unbounded or one of the functions n, n2 is a tight
estimate.
transition complexity is either unbounded, or bounded by a constant, or one of the
functions n, n2 is a tight estimate.

Furthermore, it is decidable in polynomial time which of the above cases hold.
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Since the complexity of the considered problems remains low, the results are encouraging.
On the other hand, they require non-trivial insights, indicating that establishing a full and
effective classification of the asymptotic complexity of multi-dimensional VASS MDPs is a
challenging problem.

Missing proofs can be found in a full version of this paper [2].

2 Preliminaries

We use N, Z, Q, and R to denote the sets of non-negative integers, integers, rational numbers,
and real numbers. Given a function f : N → N, we use O(f) and Ω(f) to denote the sets of
all g : N → N such that g(n) ≤ a · f(n) and g(n) ≥ b · f(n) for all sufficiently large n ∈ N,
where a, b are some positive constants. If h ∈ O(f) and h ∈ Ω(f), we write h ∈ Θ(f).

Let A be a finite index set. The vectors of RA are denoted by bold letters such as
u, v, z, . . .. The component of v of index i ∈ A is denoted by v(i). If the index set is of the
form A = {1, 2, . . . , d} for some positive integer d, we write Rd instead of RA. For every
n ∈ N, we use n to denote the constant vector where all components are equal to n. The
other standard operations and relations on R such as +, ≤, or < are extended to Rd in the
component-wise way. In particular, v < u if v(i) < u(i) for every index i.

A probability distribution over a finite set A is a vector ν ∈ [0, 1]A such that
∑

a∈A ν(a) = 1.
We say that ν is rational if every ν(a) is rational, and Dirac if ν(a) = 1 for some a ∈ A.

2.1 VASS Markov Decision Processes
▶ Definition 1. Let d ≥ 1. A d-dimensional VASS MDP is a tuple A = (Q, (Qn, Qp), T, P ),
where

Q ̸= ∅ is a finite set of states split into two disjoint subsets Qn and Qp of nondeterministic
and probabilistic states,
T ⊆ Q×Zd ×Q is a finite set of transitions such that, for every p ∈ Q, the set Out(p) ⊆ T

of all transitions of the form (p, u, q) is non-empty.
P is a function assigning to each t ∈ Out(p) where p ∈ Qp a positive rational probability
so that

∑
t∈T (p) P (t) = 1.

The encoding size of A is denoted by ||A||, where the integers representing counter updates
are written in binary and probability values are written as fractions of binary numbers. For
every p ∈ Q, we use In(p) ⊆ T to denote the set of all transitions of the form (q, u, p). The
update vector u of a transition t = (p, u, q) is also denoted by ut.

A finite path in A of length n ≥ 0 is a finite sequence of the form p0, u1, p1, u2, . . . , un, pn

where (pi, ui+1, pi+1) ∈ T for all i < n. We use len(α) to denote the length of α. If there
is a finite path from p to q, we say that q is reachable from p. An infinite path in A is an
infinite sequence π = p0, u1, p1, u2, . . . such that every finite prefix of π ending in a state is a
finite path in A.

A strategy is a function σ assigning to every finite path p0, u1, . . . , pn such that pn ∈ Qn

a probability distribution over Out(pn). A strategy is Markovian (M) if it depends only on
the last state pn, and deterministic (D) if it always returns a Dirac distribution. The set of
all strategies is denoted by ΣA, or just Σ when A is understood. Every initial state p ∈ Q

and every strategy σ determine the probability space over infinite paths initiated in p in the
standard way. We use Pσ

p to denote the associated probability measure.
A configuration of A is a pair pv, where p ∈ Q and v ∈ Zd. If some component of v is

negative, then pv is terminal. The set of all configurations of A is denoted by C (A).
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input N

repeat
random choice:

0.5 : N := N + 1;
0.5 : N := N − 1;

until N = 0

p

A

0.5, +10.5, −1

Figure 1 A probabilistic program with infinite expected running time for every N ≥ 1, and its
1-dimensional VASS MDP model A.

Every infinite path p0, u1, p1, u2, . . . and every initial vector v ∈ Zd determine the
corresponding computation of V , i.e., the sequence of configurations p0v0, p1v1, p2v2, . . . such
that v0 = v and vi+1 = vi + ui+1. Let Term(π) be the least j such that pjvj is terminal. If
there is no such j, we put Term(π) = ∞ .

Note that every computation uniquely determines its underlying infinite path. We define
the probability space over all computations initiated in a given pv, where the underlying
probability measure Pσ

pv is obtained from Pσ
p in an obvious way. For a measurable function

X over computations, we use Eσ
pv[X] to denote the expected value of X.

3 Asymptotic Complexity Measures for VASS MDPs

In this section, we introduce asymptotic complexity estimates applicable to probabilistic
programs with non-determinism and their abstract models (such as VASS MDPs). We also
explain their relationship to the standard measures based on the expected values of relevant
random variables.

Let us start with a simple motivating example. Consider the simple probabilistic program
of Fig. 1. The program inputs a positive integer N and then repeatedly increments/decre-
ments N with probability 0.5 until N = 0. One can easily show that for every N ≥ 1, the
program terminates with probability one, and the expected termination time is infinite.
Based on this, one may conclude that the execution takes a very long time, independently of
the initial value of N . However, this conclusion is not consistent with practical experience
gained from trial runs1. The program tends to terminate “relatively quickly” for small N ,
and the termination time does depend on N . Hence, the function assigning ∞ to every N ≥ 1
is not a faithful characterization of the asymptotic growth of termination time. We propose
an alternative characterization based on the following observations2:

For every ε > 0, the probability of all runs terminating after more than n2+ε steps (where
n is the initial value of N) approaches zero as n → ∞.
For every ε > 0, the probability of all runs terminating after more than n2−ε steps (where
n is the initial value of N) approaches one as n → ∞.

Since the execution time is “squeezed” between n2−ε and n2+ε for an arbitrarily small
ε > 0 as n → ∞, it can be characterized as “asymptotically quadratic”. This analysis is in
accordance with experimental outcomes.

1 For N = 1, about 95% of trial runs terminate after at most 1000 iterations of the repeat-until loop.
For N = 10, only about 75% of all runs terminate after at most 1000 iterations, but about 90% of them
terminate after at most 10000 iterations.

2 Formal proofs of these observations are simple; in Section 5, we give a full classification of the asymptotic
behaviour of one-dimensional VASS MDPs subsuming the trivial example of Fig. 1.
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3.1 Complexity of VASS Runs
We recall the complexity measures for VASS runs used in previous works [4, 23, 15, 16, 1].
These functions can be seen as variants of the standard time/space complexities for Turing
machines.

Let A = (Q, (Qn, Qp), T, P ) be a d-dimensional VASS MDP, c ∈ {1, . . . , d}, and t ∈ T .
For every computation π = p0v0, p1v1, p2v2, . . ., we put

L(π) = Term(π)
C[c](π) = sup{vi(c) | 0 ≤ i < Term(π)}
T [t](π) = the total number of all 0 ≤ i < Term(π) such that (pi, vi+1−vi, pi+1) = t

We refer to the functions L, C[c], and T [t] as termination, c-counter, and t-transition
complexity, respectively.

Let F be one of the complexity functions defined above. In VASS abstractions of computer
programs, the input is represented by initial counter values, and the input size corresponds to
the maximal initial counter value. The existing works on non-probabilistic VASS concentrate
on analyzing the asymptotic growth of the functions Fmax : N → N∞ where

Fmax(n) = max{F(π) | π is a computation initiated in pn where p ∈ Q}

For VASS MDP, we can generalize Fmax into Fexp as follows:

Fexp(n) = max{Eσ
pn[F ] | σ ∈ ΣA, p ∈ Q}

Note that for non-probabilistic VASS, the values of Fmax(n) and Fexp(n) are the same.
However, the function Fexp suffers from the deficiency illustrated in the motivating example
at the beginning of Section 3. To see this, consider the one-dimensional VASS MDP A
modeling the simple probabilistic program (see Fig. 1). For every n ≥ 1 and the only (trivial)
strategy σ, we have that Pσ

pn[Term < ∞] = 1 and Lexp(n) = ∞. However, the practical
experience with trial runs of A is the same as with the original probabilistic program (see
above).

3.2 Asymptotic Complexity Estimates
In this section, we introduce asymptotic complexity estimates allowing for a precise analysis
of the asymptotic growth of the termination, c-counter, and t-transition complexity, especially
when their expected values are infinite for a sufficiently large input. For the sake of readability,
we first present a simplified variant applicable to strongly connected VASS MDPs.

Let F be one of the complexity functions for VASS computations defined in Section 3.1,
and let f : N → N. We say that f is a tight estimate of F if, for arbitrarily small ε > 0, the
value of F(n) is “squeezed” between f1−ε(n) and f1+ε(n) as n → ∞. More precisely, for
every ε > 0,

there exist p ∈ Q and strategies σ1, σ2, . . . such that lim infn→∞ Pσn
pn [F ≥ (f(n))1−ε] = 1;

for all p ∈ Q and strategies σ1, σ2, . . . we have that lim supn→∞ Pσn
pn [F ≥ (f(n))1+ε] = 0.

The above definition is adequate for strongly connected VASS MDPs because tight
estimates tend to exist in this subclass. Despite some effort, we have not managed to
construct an example of a strongly connected VASS MDP where an F with some upper
polynomial estimate does not have a tight estimate (see Conjecture 3). However, if the
underlying graph of A is not strongly connected, then the asymptotic growth of F can differ
for computations visiting a different sequence of maximal end components (MECs) of A, and
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12:6 Asymptotic Estimates for VASS MDPs

the asymptotic growth of F can be “squeezed” between f1−ε(n) and f1+ε(n) only for the
subset of computations visiting the same sequence of MECs. This explains why we need a
more general definition of complexity estimates presented below.

An end component (EC) of A is a pair (C, L) where C ⊆ Q and L ⊆ T such that the
following conditions are satisfied:

C ̸= ∅;
if p ∈ C ∩ Qn, then at least one outgoing transition of p belongs to L;
if p ∈ C ∩ Qp, then all outgoing transitions of p belong to L;
if (p, u, q) ∈ L, then p, q ∈ C;
for all p, q ∈ C we have that q is reachable from p and vice versa.

Note that if (C, L) and (C ′, L′) are ECs such that C ∩C ′ ≠ ∅, then (C ∪C ′, L∪L′) is also
an EC. Hence, every p ∈ Q either belongs to a unique maximal end component (MEC), or
does not belong to any EC. Also observe that each MEC can be seen as a strongly connected
VASS MDP. We say that A has DAG-like MEC decomposition if for every pair M, M ′ of
different MECs such that the states of M ′ are reachable from the states of M we have that
the states of M are not reachable from the states of M ′.

For every infinite path π of A, let mecs(π) be the unique sequence of MECs visited by π.
Observe that mecs(π) disregards the states that do not belong to any EC; intuitively, this
is because the transitions executed in such states do not influence the asymptotic growth
of F . Observe that the length of mecs(π), denoted by len(mecs(π)), can be finite or infinite.
The first possibility corresponds to the situation when an infinite suffix of π stays within
the same MEC. Furthermore, for all σ ∈ Σ and p ∈ Q, we have that Pσ

p [len(mecs) = ∞] = 0,
and the probability Pσ

p [len(mecs) ≥ k] decays exponentially in k (these folklore results are
easy to prove). All of these notions are lifted to computations in an obvious way.

Observe that if a strategy σ aims at maximizing the growth of F , we can safely assume
that σ eventually stays in a bottom MEC that cannot be exited (intuitively, σ can always
move from a non-bottom MEC to a bottom MEC by executing a few extra transitions that
do not influence the asymptotic growth of F , and the bottom MEC may allow increasing F
even further). On the other hand, the maximal asymptotic growth of F may be achievable
along some “minimal” sequence of MECs, and this information is certainly relevant for
understanding the behaviour of a given probabilistic program. This leads to the following
definition:

▶ Definition 2. A type is a finite sequence β of MECs such that mecs(π) = β for some
infinite path π.

We say that f is a lower estimate of F for a type β if for every ε > 0 there exist p ∈ Q

and a sequence of strategies σ1, σ2, . . . such that Pσn
pn [mecs = β] > 0 for all n ≥ 1 and

lim inf
n→∞

Pσn
pn [F ≥ (f(n))1−ε | mecs=β] = 1 .

Similarly, we say that f is an upper estimate of F for a type β if for every ε > 0, every
p ∈ Q, and every sequence of strategies σ1, σ2, . . . such that Pσn

pn [mecs = β] > 0 for all n ≥ 1
we have that

lim sup
n→∞

Pσn
pn [F ≥ (f(n))1+ε | mecs=β] = 0

If there is no upper estimate of F for a type β, we say that F is unbounded for β. Finally,
we say that f is a tight estimate of F for β if it is both a lower estimate and an upper
estimate of F for β.
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q

1
2 , (−1, +1, 0, )

1
2 , (+1, +1, 0, )

0⃗0⃗

0⃗

1
2 , 0⃗ 1

2 , 0⃗

(0, −1, 0)(0, −1, +1) 1
2 , (0, −1, +1)

1
2 , (0, +1, +1)

M1

M3M2
M4

Figure 2 A VASS MDP A with four MECs and seven types.

Let us note that in the subclass of non-probabilistic VASS, MECs become strongly
connected components (SCCs), and types correspond to paths in the directed acyclic graph
of SCCs. Each such path determines the corresponding asymptotic increase of F , as
demonstrated in [1]. We conjecture that types play a similar role for VASS MDPs. More
precisely, we conjecture the following:

▶ Conjecture 3. If some polynomial is an upper estimate of F for β, then there exists a
tight estimate f of F for β.

Even if Conjecture 3 is proven wrong, there are interesting subclasses of VASS MDPs where
it holds, as demonstrated in subsequent sections.

For every pair of MECs M, M ′, let P (M, M ′) be the maximal probability (achievable by
some strategy) of reaching a state of M ′ from a state of M in A without passing through a
state of some other MEC M ′′. Note that P (M, M ′) is efficiently computable by standard
methods for finite-state MDPs. The weight of a given type β = M1, . . . , Mk is defined
as weight(β) =

∏k−1
i=1 P (Mi, Mi+1). Intuitively, weight(β) corresponds to the maximal

probability of “enforcing” the asymptotic growth of F according to the tight estimate f of
F for β achievable by some strategy.

Generally, higher asymptotic growth of F may be achievable for types with smaller
weights. Consider the following example to understand better the types, their weights, and
the associated tight estimates.

▶ Example 4. Let A be the VASS MDP of Fig. 2. There are four MECs M1, M2, M3, M4
where M2, M3, M4 are bottom MECs. Hence, there are four types of length one and three
types of length two. Let us examine the types of length two initiated in M1 for F ≡ C[c]
where c is the third counter.

Note that in M1, the first counter is repeatedly incremented/decremented with the same
probability 1

2 . The second counter “counts” these transitions and thus it is “pumped” to
a quadratic value (cf. the VASS MDP of Fig. 1). Then, a strategy may decide to move to
M2, where the value of the second counter is transferred to the third counter. Hence, n2 is
the tight estimate of C[c] for the type M1, M2, and weight(M1, M2) = 1. Alternatively, a
strategy may decide to move to the probabilistic state q. Then, either M3 or M4 is entered
with the same probability 1

2 , which implies weight(M1, M3) = weight(M1, M4) = 1
2 . In M3,
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12:8 Asymptotic Estimates for VASS MDPs

the third counter is unchanged, and hence n is the tight estimate of C[c] for the type M1, M3.
However, in M4, the second counter previously pumped to a quadratic value is repeatedly
incremented/decremented with the same probability 1

2 , and the third counter “counts” these
transitions. This means that n4 is a tight estimate of C[c] for the type M1, M4.

This analysis provides detailed information about the asymptotic growth of C[c] in A.
Every type shows “how” the growth specified by the corresponding tight estimate is achiev-
able, and its weight corresponds to the “maximal achievable probability of this growth”.
This information is completely lost when analyzing the maximal expected value of C[c]
for computations initiated in configurations pn where p is a state of M1, because these
expectations are infinite for all n ≥ 1.

Finally, let us clarify the relationship between the lower/upper estimates of F and the
asymptotic growth of Fexp. The following observation is easy to prove.

▶ Observation 5. If Fexp ∈ O(f) where f : N → N is an unbounded function, then f is an
upper estimate of F for every type. Furthermore, if f : N → N is a lower estimate of F for
some type, then Fexp ∈ Ω(f1−ϵ) for each ϵ > 0. However, if Fexp ∈ Ω(f) where f : N → N,
then f is not necessarily a lower estimate of F for some type.

Observation 5 shows that complexity estimates are generally more informative than the
asymptotics of Fexp even if Fexp ∈ Θ(f) for some “reasonable” function f . For example, it
may happen that there are only two types β1 and β2 where n and n3 are tight estimates of L
for β1 and β2 with weights 0.99 and 0.01, respectively. In this case, Lexp ∈ Θ(n3), although
the termination time is linear for 99% of computations.

4 A Dichotomy between Linear and Quadratic Estimates

In this section, we prove the following result:

▶ Theorem 6. Let A be a VASS MDP with DAG-like MEC decomposition and F one of
the complexity functions L, C[c], or T [t]. For every type β, we have that either n is a tight
estimate of F for β, or n2 is a lower estimate of F for β. It is decidable in polynomial time
which of the two cases holds.

Theorem 6 can be seen as a generalization of the linear/quadratic dichotomy results
previously achieved for non-deterministic VASS [4] and for the termination complexity in
VASS MDPs [3].

It suffices to prove Theorem 6 for the counter complexity. The corresponding results
for the termination and transition complexities then follow as simple consequences. To see
this, observe that we can extend a given VASS MDP with a fresh “step counter” sc that is
incremented by every transition (in the case of L) or the transition t (in the case of T [t])
and thus “emulate” L and T [t] as C[sc].

We first consider the case when A is strongly connected and then generalize the obtained
results to VASS MDPs with DAG-like MEC decomposition. So, let A be a strongly connected
d-dimensional VASS MDP and c a counter of A. The starting point of our analysis is the
dual constraint system designed in [23] for non-probabilistic strongly connected VASS. We
generalize this system to strongly connected VASS MDPs in the way shown in Figure 3 (the
original system of [23] can be recovered by disregarding the probabilistic states).

Note that solutions of both (I) and (II) are closed under addition. Therefore, both (I)
and (II) have solutions maximizing the specified objectives, computable in polynomial time.
For clarity, let us first discuss an intuitive interpretation of these solutions, starting with
simplified variants obtained for non-probabilistic VASS in [23].
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Constraint system (I):

Find x ∈ ZT such that∑
t∈T

x(t)ut ≥ 0⃗

x ≥ 0⃗

and for each p ∈ Q∑
t∈Out(p)

x(t) =
∑

t∈In(p)

x(t)

and for all p ∈ Qp, t ∈ Out(p)

x(t) = P (t) ·
∑

t′∈Out(p)

x(t′)

Objective: Maximize
the number of valid inequalities of
the form∑

t∈T

x(t)ut(c) > 0,

the number of valid inequalities of
the form x(t) > 0.

Constraint system (II):

Find y ∈ Zd, z ∈ ZQ such that

y ≥ 0⃗

z ≥ 0⃗

and for each (p, u, q) ∈ T where p ∈ Qn

z(q) − z(p) +
d∑

i=1

u(i)y(i) ≤ 0

and for each p ∈ Qp

∑
t=(p,u,q)∈Out(p)

P (t)
(
z(q) − z(p) +

d∑
i=1

ut(i)y(i)
)

≤ 0

Objective: Maximize
the number of valid inequalities of the form y(c) > 0,
the number of transitions t = (p, u, q) such that
p ∈ Qn and

z(q) − z(p) +
d∑

i=1

u(i)y(i) < 0,

the number of states p ∈ Qp such that

∑
t=(p,u,q)∈Out(p)

P (t)
(
z(q)−z(p)+

d∑
i=1

u(i)y(i)
)

< 0 .

Figure 3 Constraint systems for strongly connected VASS MDPs.

In the non-probabilistic case, a solution of (I) can be interpreted as a weighted multicycle,
i.e., as a collection of cycles M1, . . . , Mk together with weights a1, . . . , ak such that the total
effect of the multicycle, defined by

∑k
i=1 ai · effect(Mi), is non-negative for every counter.

Here, effect(Mi) is the effect of Mi on the counters. The objective of (I) ensures that the
multicycle includes as many transitions as possible, and the total effect of the multicycle is
positive on as many counters as possible. For VASS MDPs, the M1, . . . , Mk should not be
interpreted as cycles but as Markovian strategies for some ECs, and effect(Mi) corresponds
to the vector of expected counter changes per transition in Mi. The objective of (I) then
maximizes the number of transitions used in the strategies M1, . . . , Mk, and the number of
counters where the expected effect of the “multicycle” is positive.

A solution of (II) for non-probabilistic VASS can be interpreted as a ranking function
for configurations defined by rank(pv) = z(p) +

∑d
i=1 y(i)v(i), such that the value of rank

cannot increase when moving from a configuration pv to a configuration qu using a transition
t = (p, u − v, q). The objective of (II) ensures that as many transitions as possible decrease
the value of rank, and rank depends on as many counters as possible. For VASS MDPs,
this interpretation changes only for the outgoing transitions t = (p, u, q) of probabilistic
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states. Instead of considering the change of rank caused by such t, we now consider the
expected change of rank caused by executing a step from p. The objective ensures that rank
depends on as many counters as possible, the value of rank is decreased by as many outgoing
transitions of non-deterministic states as possible, and the expected change of rank caused
by performing an step is negative in as many probabilistic states as possible.

The key tool for our analysis is the following dichotomy:

▶ Lemma 7. Let x be a (maximal) solution to the constraint system (I) and y, z be a
(maximal) solution to the constraint system (II). Then, for each counter c we have that either
y(c) > 0 or

∑
t∈T x(t)ut(c) > 0, and for each transition t = (p, u, q) ∈ T we have that

if p ∈ Qn then either z(q) − z(p) +
∑d

i=1 u(i)y(i) < 0 or x(t) > 0;
if p ∈ Qp then either

∑
t′=(p,u′,q′)∈Out(p)

P (t′)
(
z(q′) − z(p) +

d∑
i=1

u′(i)y(i)
)

< 0

or x(t) > 0.

For the rest of this section, we fix a maximal solution x of (I) and a maximal solution
y, z of (II), such that the smallest non-zero element of y, z is at least 1. We define a ranking
function rank : C (A) → N as rank(sv) = z(s) +

∑d
i=1 v(i)y(i).

▶ Theorem 8. For each counter c, if y(c) > 0 then n is a tight estimate of C[c] (for the only
type of A). Otherwise, i.e., when y(c) = 0, the function n2 is a lower estimate of C[c].

Note that Theorem 8 implies Theorem 6 for strongly connected VASS MDPs. A proof is
obtained by combining the following lemmata.

▶ Lemma 9. For every counter c such that y(c) > 0, every ε > 0, every p ∈ Q, and every
σ ∈ Σ, there exists n0 such that for all n ≥ n0 we have that Pσ

pn(C[c] ≥ n1+ε) ≤ kn−ε

where k is a constant depending only on A.

For Targets ⊆ C (A) and m ∈ N, we use Reach≤m(Targets) to denote the set of all
computations π = p0v0, p1v1, . . . such that pivi ∈ Targets for some i ≤ m.

▶ Lemma 10. For each counter c such that y(c) = 0 we have that Cexp[c] ∈ Ω(n2) and n2 is
a lower estimate of C[c]. Furthermore, for every ε > 0 there exist a sequence of strategies
σ1, σ2, . . . , a constant k, and p ∈ Q such that for every 0 < ε′ < ε, we have that

lim
n→∞

Pσn
pn(Reach≤kn2−ε′

(Targetsn)) = 1

where Targetsn = {qv ∈ C (A) | v(c) ≥ n2−ε for every counter c such that y(c) = 0}.

It remains to prove Theorem 6 for VASS MDPs with DAG-like MEC decomposition.
Here, we proceed by analyzing the individual MECs one by one, transferring the output of
the previous MEC to the next one. We start in a top MEC with all counters initialized to n.
Here we can directly apply Theorem 8 to determine which of the C[c] have a tight estimate n

and a lower estimate n2, respectively. It follows from Lemma 10 that all counters c such
that n2 is a lover estimate of C[c] can be simultaneously pumped to n2−ε with very high
probability. However, this computation may decrease the counters c such that n is a tight
estimate for C[c]. To ensure that the value of these counters is still Ω(n) when entering the
next MEC, we first divide the initial counter vector n into two halves, each of size ⌊ n

2 ⌋, and
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then pump the counters c such that n2 is a lower estimate for C[c] to the value (⌊ n
2 ⌋)2−ε.

We show that the length of this computation is at most quadratic. The value of the other
counters stays at least ⌊ n

2 ⌋. When analyzing the next MEC, we treat the counters previously
pumped to quadratic values as “infinite” because they are sufficiently large so that they
cannot prevent pumping additional counters to asymptotically quadratic values. Technically,
this is implemented by modifying every counter update vector u so that u[c] = 0 for every
“quadratic” counter c. A precise formulation of these observations and the corresponding
proofs are given in [2].

We conjecture that the dichotomy of Theorem 6 holds for all VASS MDPs, but we do
not have a complete proof. If the MEC decomposition is not DAG-like, a careful analysis of
computations revisiting the same MECs is required; such repeated visits may but do not
have to enable additional asymptotic growth of C[c].

5 One-Dimensional VASS MDPs

In this section, we give a full and effective classification of tight estimates of L, C[c], and
T [t] for one-dimensional VASS MDPs. More precisely, we prove the following theorem:

▶ Theorem 11. Let A be a one-dimensional VASS MDP. We have the following:
Let c be the only counter of A. Then one of the following possibilities holds:

There exists a type β = M such that C[c] is unbounded for β.
n is a tight estimate of C[c] for every type.

Let t be a transition of A. Then one of the following possibilities holds:
There exists a type β = M such that T [t] is unbounded for β.
There exists a type β such that weight(β) > 0 and T [t] is unbounded for β.
There exists a type β = M such that n2 is a tight estimate of T [t] for β.
The transition t occurs in some MEC M , n is a tight estimate of T [t] for every type β

containing the MEC M , and 0 is a tight estimate of T [t] for every type β not containing
the MEC M .
The transition t does not occur in any MEC, and for every type β of length k we have
that k is an upper estimate of T [t] for β.

One of the following possibilities holds:
There exists a type β = M such that L is unbounded for β.
There exists a type β = M such that n2 is a tight estimate of L for β.
n is a tight estimate of L for every type.

It is decidable in polynomial time which of the above cases hold.

Note that some cases are mutually exclusive and some may hold simultaneously. Also
recall that weight(β) = 1 for every type β of length one, and weight(β) decays exponentially
in the length of β. Hence, if a transition t does not occur in any MEC, there is a constant
κ < 1 depending only on A such that Pσ

pv[T [t] ≥ i] ≤ κi for every σ ∈ Σ and pv ∈ C (A).
For the rest of this section, we fix a one-dimensional VASS MDP A = (Q, (Qn, Qp), T, P )

and some linear ordering ⊑ on Q. A proof of Theorem 11 is obtained by analyzing bottom
strongly connected components (BSCCs) in a Markov chain obtained from A by “applying”
some MD strategy σ (we use ΣMD to denote the class of all MD strategies for A). Recall that
σ selects the same outgoing transition in every p ∈ Qn whenever p is revisited, and hence we
can “apply” σ to A by removing the other outgoing transitions. The resulting Markov chain
is denoted by Aσ. Note that every BSCC B of Aσ can also be seen as an end component of
A. For a MEC M of A, we write B ⊆ M if all states and transitions of B are included in M .
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For every BSCC B of Aσ, let pB be the least state of B with respect to ⊑. Let UB be a
function assigning to every infinite path π = p0, u1, p1, u2, . . . the sum

∑ℓ
i=1 ui if p0 = pB

and ℓ ≥ 1 is the least index such that pℓ = pB, otherwise UB(π) = 0. Hence, UB(π) is the
change of the (only) counter c along π until pB is revisited.

▶ Definition 12. Let B be a BSCC of Aσ. We say that B is
increasing if Eσ

pB
(UB) > 0,

decreasing if Eσ
pB

(UB) < 0,
bounded-zero if Eσ

pB
(UB) = 0 and Pσ

pB
[UB=0] = 1,

unbounded-zero if Eσ
pB

(UB) = 0 and Pσ
pB

[UB=0] < 1.

Note that the above definition does not depend on the concrete choice of ⊑. We prove
the following results relating the existence of upper/lower estimates of L, C[c], and T [t] to
the existence of BSCCs with certain properties. More concretely,

for C[c], we show that
C[c] is unbounded for some type β = M if there exists an increasing BSCC B of Aσ

for some σ ∈ ΣMD such that B ⊆ M ;
otherwise, n is a tight estimate of C[c] for every type.

for L, we show that
L is unbounded for some type β = M if there exists an increasing or bounded-zero
BSCC B of Aσ for some σ ∈ ΣMD such that B ⊆ M ;
otherwise, n2 is an upper estimate of L for every type β;
if there exists an unbounded-zero BSCC B of Aσ for some σ ∈ ΣMD, then n2 is a lower
estimate of L for β = M where B ⊆ M ;
if every BSCC B of every Aσ is decreasing, then Lexp(n) ∈ Θ(n) (this follows from
[3]), and hence n is a tight estimate of L for every type (Observation 5);

for T [t], we distinguish two cases:
If t is not contained in any MEC of A, then for every type β of length k, the
transition t cannot be executed more than k times along a arbitrary computation π

where mecs(π) = β.
If t is contained in a MEC M of A, then
∗ T [t] is unbounded for β = M if there exist an increasing BSCC B of Aσ for some

σ ∈ ΣMD such that B ⊆ M , or bounded-zero BSCC B of Aσ for some σ ∈ ΣMD
such that B contains t;

∗ T [t] is unbounded for every β = M1, . . . , Mk such that M = Mi for some i and
there exists an increasing BSCC B of Aσ for some σ ∈ ΣMD such that B ⊆ Mj for
some j ≤ i;

∗ otherwise, n2 is an upper estimate of T [t] for every type;
∗ if there is an unbounded-zero BSCC B of Aσ for some σ ∈ ΣMD such that B

contains t, then n2 is a lower estimate of T [t] for β = M ;
∗ if every BSCC B of every Aσ is decreasing, then T [t]exp(n) ∈ Θ(n) (this follows

from [3]), and hence n is an upper estimate of T [t] for every type (Observation 5).

The polynomial time bound of Theorem 11 is then obtained by realizing the following:
First, we need to decide the existence of an increasing BSCC of Aσ for some σ ∈ ΣMD.
This can be done in polynomial time using the constraint system (I) of Figure 3. If no such
increasing BSCC exists, we need to decide the existence of a bounded-zero BSCC, which
can be achieved in polynomial time for a subclass of one-dimensional VASS MDPs where
no increasing BSCC exists. Then, if no bounded-zero BSCC exists, we need to decide the
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existence of an unbounded-zero BSCC, which can again be done in polynomial time using
the constraint system (I) of Figure 3 (realize that any solution x of (I) implies the existence
of a BSCC that is either increasing, bounded-zero, or unbounded-zero).

Hence, the “algorithmic part” of Theorem 11 is an easy consequence of the above
observations, but there is one remarkable subtlety. Note that we need to decide the existence
of a bounded-zero BSCC only for a subclass of one-dimensional VASS MDPs where no
increasing BSCCs exist. This is actually crucial, because deciding the existence of a bounded-
zero BSCC in general one-dimensional VASS MDPs is NP-complete [2].

The main difficulties requiring novel insights are related to proving the observation about
C[c], stating that if there is no increasing BSCC of Aσ for any σ ∈ ΣMD, then n is an upper
estimate of C[c] for every type. A comparably difficult (and in fact closely related) task is to
show that if there is no increasing or bounded-zero BSCC, then n2 is an upper estimate of L
for every type. Note that here we need to analyze the behaviour of A under all strategies
(not just MD), and consider the notoriously difficult case when the long-run average change
of the counter caused by applying the strategy is zero. Here we need to devise a suitable
decomposition technique allowing for interpreting general strategies as “interleavings” of MD
strategies and lifting the properties of MD strategies to general strategies. Furthermore, we
need to devise techniques for reducing the problems of our interest to analyzing certain types
of random walks that have already been studied in stochastic process theory. We discuss
this more in the following subsection, and we refer to [2] for a complete exposition of these
results.

5.1 MD decomposition
As we already noted, one crucial observation behind Theorem 11 is that if there is no
increasing BSCC of Aσ for any σ ∈ ΣMD, then n is an upper estimate of C[c] for every type.
In this section, we sketch the main steps towards this result.

First, we show that every path in A can be decomposed into “interweavings” of paths
generated by MD strategies.

Let α = p0, v1, . . . , pk be a path. For every i ≤ k, we use α..i = p0, v1, . . . , pi to
denote the prefix of α of length i. We say that α is compatible with a MD strategy σ if
σ(α..i) = (pi, vi+1, pi+1) for all i < k such that pi ∈ Qn. Furthermore, for every path β =
q0, u1, q1, . . . , qℓ such that pk = q0, we define a path α ◦ β = p0, v1, p1, . . . , pk, u1, q1, . . . , qℓ.

▶ Definition 13. Let A be a VASS MDP, π1, . . . , πk ∈ ΣMD, and p1, . . . , pk ∈ Q. An
MD-decomposition of a path α = s1, . . . , sm under π1, . . . , πk and p1, . . . , pk is a decompos-
ition of α into finitely many paths α = γ1

1 ◦ · · · ◦ γk
1 ◦ γ1

2 ◦ · · · ◦ γk
2 ◦ · · · ◦ γ1

ℓ ◦ · · · ◦ γk
ℓ

satisfying the following conditions:
for all i < ℓ and j ≤ k, the last state of γj

i is the same as the first state of γj
i+1;

for every j ≤ k, γj
1 ◦ · · · ◦ γj

ℓ is a path that begins with pj and is compatible with πj.

Note that π1, . . . , πk and p1, . . . , pk are not necessarily pairwise different, and the length
of γj

i can be zero. Also note that the same α may have several MD-decompositions.
Intuitively, an MD decomposition of α shows how to obtain α by repeatedly selecting

zero or more transitions by π1, . . . , πk. The next lemma shows that for every VASS MDP A,
one can fix MD strategies π1, . . . , πk and states p1, . . . , pk such that every path α in A has
an MD-decomposition under π1, . . . , πk and p1, . . . , pk. Furthermore, such a decomposition
is constructible online as α is read from left to right.
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▶ Lemma 14. For every VASS MDP A, there exist π1, . . . , πk ∈ ΣMD, p1, . . . , pk ∈ Q, and
a function DecompA such that the following conditions are satisfied for every finite path α:

DecompA(α) returns an MD-decomposition of α under π1, . . . , πk and p1, . . . , pk.
DecompA(α) = DecompA(α..len(α)−1) ◦ γ1 ◦ · · · ◦ γk, where exactly one of γi has positive
length (the i is called the mode of α).
If the last state of α..len(α)−1 is probabilistic, then the mode of α does not depend on the
last transition of α.

According to Lemma 14, every strategy σ for A just performs a certain “interleaving”
of the MD strategies π1, . . . , πk initiated in the states p1, . . . , pk. We aim to show that if
every BSCC of every Aπj

is non-increasing, then n is an upper estimate of C[c] for every
type. Since we do not have any control over the length of the individual γj

i occurring in
MD-decompositions, we need to introduce another concept of extended VASS MDPs where
the strategies π1, . . . , πk can be interleaved in “longer chunks”. Intuitively, an extended VASS
MDP is obtained from A by taking k copies of A sharing the same counter. The j-th copy
selects transitions according to πj . At each round, only one πj makes a move, where the j

is selected by a special type of “pointing” strategy defined especially for extended MDPs.
Note that σ can be faithfully simulated in the extended VASS MDP by a pointing strategy
that selects the indexes consistently with DecompA. However, we can also construct another
pointing strategy that simulates each πj longer (i.e., “precomputes” the steps executed by πj

in the future) and thus “close cycles” in the BSCC visited by πj . This computation can be
seen as an interleaving of a finite number of independent random walks with non-positive
expectations. Then, we use the optional stopping theorem to get an upper bound on the total
expected number of “cycles”, which can then be used to obtain the desired upper estimate.
We refer to [2] for details.

5.2 A Note about Energy Games
One-dimensional VASS MDPs are closely related to energy games/MDPs [6, 7, 8, 13]. An
important open problem for energy games is the complexity of deciding the existence of
a safe configuration where, for a sufficiently high energy amount, the responsible player
can avoid decreasing the energy resource (counter) below zero. This problem is known
to be in NP ∩ coNP, and a pseudopolynomial algorithm for the problem exists; however,
it is still open whether the problem is in P when the counter updates are encoded in
binary. Our analysis shows that this problem is solvable in polynomial time for energy
(i.e., one-dimensional VASS) MDPs A such that there is no increasing SCC of Aσ for any
σ ∈ ΣMD.

We say that a SCC B of Aσ is non-decreasing if B does not contain any negative cycles.
Note that every bounded-zero SCC is non-decreasing, and a increasing SCC may but does
not have to be non-decreasing.

▶ Lemma 15. An energy MDP has a safe configuration iff there exists a non-decreasing
SCC B of Aσ for some σ ∈ ΣMD.

The “⇐” direction of Lemma 15 is immediate, and the other direction can be proven
using our MD decomposition technique, see [2].

Note that if there is no increasing SCC B of Aσ for any σ ∈ ΣMD, then the existence of
a non-decreasing SCC is equivalent to the existence of a bounded-zero SCC, and hence it
can be decided in polynomial time (see the results presented above). However, for general
energy MDPs, the best upper complexity bound for the existence of a non-decreasing
SCC is NP ∩ coNP. Interestingly, a small modification of this problem already leads to
NP-completeness, as demonstrated by the following lemma.
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▶ Lemma 16. The problem whether there exists a non-decreasing SCC B of Aσ for some
σ ∈ ΣMD such that B contains a given state p ∈ Q is NP-complete.

6 Conclusions

We introduced new estimates for measuring the asymptotic complexity of probabilistic
programs and their VASS abstractions. We demonstrated the advantages of these measures
over the asymptotic analysis of expected values, and we have also shown that tight complexity
estimates can be computed efficiently for certain subclasses of VASS MDPs.

A natural continuation of our work is extending the results achieved for one-dimensional
VASS MDPs to the multi-dimensional case. In particular, an interesting open question is
whether the polynomial asymptotic analysis for non-deterministic VASS presented in [23]
can be generalized to VASS MDPs. Since the study of multi-dimensional VASS MDPs is
notoriously difficult, a good starting point would be a complete understanding of VASS
MDPs with two counters.
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Abstract
Automatic structures are structures whose universe and relations can be represented as regular
languages. It follows from the standard closure properties of regular languages that the first-order
theory of an automatic structure is decidable. While existential quantifiers can be eliminated in
linear time by application of a homomorphism, universal quantifiers are commonly eliminated via
the identity ∀x . Φ ≡ ¬(∃x . ¬Φ). If Φ is represented in the standard way as an NFA, a priori this
approach results in a doubly exponential blow-up. However, the recent literature has shown that
there are classes of automatic structures for which universal quantifiers can be eliminated by different
means without this blow-up by treating them as first-class citizens and not resorting to double
complementation. While existing lower bounds for some classes of automatic structures show that a
singly exponential blow-up is unavoidable when eliminating a universal quantifier, it is not known
whether there may be better approaches that avoid the naïve doubly exponential blow-up, perhaps
at least in restricted settings.

In this paper, we answer this question negatively and show that there is a family of NFA
representing automatic relations for which the minimal NFA recognising the language after eliminating
a single universal quantifier is doubly exponential, and deciding whether this language is empty is
ExpSpace-complete.
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1 Introduction

Quantifier elimination is a standard technique to decide logical theories. A logical theory
T admits quantifier elimination whenever for every quantifier free conjunction of literals
Φ(x, y1, . . . , yn) of T there is a quantifier free formula Ψ(y1, . . . , yn) such that T |= ∃x.Φ ↔
Ψ. Universal quantifiers can then be eliminated simply by applying the duality ∀x .Φ ≡
¬(∃x .¬Φ). If the formula Ψ above is effectively computable then T is decidable. For
quantifier elimination procedures, the computationally most expensive step is the elimination
of an existential quantifier, since negating a formula can be performed on a syntactic level.

Automatic structures [11, 12, 2] are a family of first-order structures whose corresponding
first-order theory can be decided using automata-theoretic methods, as an alternative
approach to syntactic quantifier elimination. In their simplest variant, automatic structures
are relational first-order structures whose universe is isomorphic to a regular language
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13:2 Universal Quantification Makes Automatic Structures Hard to Decide

L ⊆ Σ∗ over some alphabet Σ, and whose n-ary relations are interpreted as regular languages
over (Σn)∗. It follows that the set of all satisfying assignments of a quantifier-free formula
Φ(x1, . . . , xm+1) can be obtained as the language L(A) ⊆ (Σm+1)∗ of some finite-state
automaton A. In this setting, eliminating existential quantifiers is easy. In order to obtain a
finite-state automaton whose language encodes the satisfying assignments to ∃xm+1 .Φ, it
suffices to apply the homomorphism induced by the mapping h : (Σm+1) → (Σm) such that
h(u1, . . . , um+1) := (u1, . . . , um) to L(A). This can be performed in linear time, even when
A is non-deterministic. However, if A is non-deterministic then computing a finite-state
automaton whose language encodes the complement of Φ is computationally difficult and may
lead to an automaton with 2Ω(|A|) many states. In particular, due to double complementation,
eliminating a universal quantifier may a priori lead to an automaton with 22Ω(|A)| many states.
Notable examples of automatic structures are Presburger arithmetic [17], the first-order
theory of the structure ⟨N, 0, 1,+,=⟩, and its extension Büchi arithmetic [6, 4, 5]. Tool suites
such as Lash [1], Tapas [15] and Walnut [16] are based on the automata-theoretic approach
and have successfully been used to decide challenging instances of Presburger arithmetic
and Büchi arithmetic from various application domains. Those tools eliminate universal
quantifiers via double complementation.

Yet another approach to deciding Presburger arithmetic is based on manipulating semi-
linear sets [10, 8], which are generalisations of ultimately periodic sets to arbitrary tuples of
integers in Nd. They are similar to automata-based methods in terms of the computational
difficulty of existential projection and complementation: the former is easy whereas the latter
is difficult.

For certain classes of automatic structures, it is possible to avoid eliminating universal
quantifiers via existential projection and negation. For example, it was shown in [7] that
deciding sentences of quantified integer programming ∃x̄1 ∀x̄2 . . . ∃x̄n . A · x̄ ≥ b̄ is complete
for the n-th level of the polynomial hierarchy. The upper bound was obtained by manipulating
so-called hybrid linear sets, which characterise the sets of integer solutions of systems of linear
equations A·x̄ ≥ b̄. A key technique introduced in [7] is called universal projection and enables
directly eliminating universal quantifiers instead of resorting to double complementation
and existential projection. Given S ⊆ Nd+k, the universal projection of S onto the first d
coordinates is defined as

π∀
d(S) :=

{
ū ∈ Nd

∣∣ (ū, v̄) ∈ S for all v̄ ∈ Nk
}
.

It is shown in [7] that if S is a hybrid linear set then π∀
d(S) is a hybrid linear set that

can be obtained as a finite intersection of existential projections of certain hybrid linear
sets. Moreover, the growth of the constants in the description of the hybrid linear set is
only polynomial. Neither syntactic quantifier elimination nor automata-based methods are
powerful enough to derive those tight upper bounds for quantified integer programming.

Another example is a recent paper of Boigelot et al. [3] showing that, in an automata-
theoretic approach for a fragment of Presburger arithmetic with uninterpreted predicates,
a universal projection step can directly be carried out on the automata level without
complementation and only results in a singly exponential blowup.

Those positive algorithmic and structural results are specific to Presburger arithmetic
and leave open the option that it may be possible to establish analogous results for general
automatic structures. The starting point of this paper is the question of whether, given
a non-deterministic finite automaton A whose language L(A) ⊆ (Σd+k)∗ encodes the set
of solutions of some quantifier-free formula Φ, there is a more efficient way to eliminate a
(block of) universally quantified variable(s) than to first complement A, next to perform



C. Haase and R. Piórkowski 13:3

an existential projection step, and finally to complement the resulting automaton again,
especially in the light of the results of [7, 8]. Such a method would have direct consequences
for tools such as Walnut which perform the aforementioned sequence of operations in order
to eliminate universal quantifiers. In particular, Walnut is not restricted to automata
resulting from formulas of linear arithmetic and allows users to directly specify a finite-state
automaton when desired.

For better or worse, however, as the main result of this paper, we show that deciding
whether the universal projection π∀

d(L(A)) of some language regular language L(A) ⊆(
Σd+k

)∗ is empty is complete for ExpSpace. In particular, the lower bound already holds for
d = k = 1, meaning that, in general, even for fixed-variable fragments of automatic structures,
there is no algorithmically more efficient way to eliminate a single universal quantifier than
the naïve one. The challenging part is to show the ExpSpace lower bound, which requires
an involved reduction from a tiling problem. This reduction also enables us to show that
there is a family

(
An

)
n∈N of non-deterministic finite automata such that |An| = O

(
n3)

and
the smallest non-deterministic finite automaton recognising the universal projection of L(An)
has Ω

(
22n)

many states.

2 Preliminaries

2.1 Regular languages and their compositions
For a word w = a1a2 · · · an ∈ Σ∗, we write w[i] to denote its i-th letter ai, and w[i, j] to
denote the infix aiai+1 · · · aj (i ≤ j). We write |w| for the length of w. A proper suffix of w
is any infix w[i, n] for some 1 < i ≤ n.

Regular expressions. A regular expression over the alphabet Σ is a term featuring Kleene
star, concatenation and union operations, as well as ∅ and all symbols from Σ as constants:

E,E′ ::≡ E∗ | E · E′ | E + E′ | ∅ | a for every a ∈ Σ

For notational convenience, we also use sets of symbols A ⊆ Σ as constants, and a k-fold
concatenation Ek for every k ∈ N; we also drop the concatenation dot most of the time.
The language L(E) ⊆ Σ∗ is defined by structural induction, by interpreting constants as
L(∅) := ∅ and L(a) := {a}, and using the standard semantics of the three operations. The
class of languages definable by regular expressions is called regular languages. The size |E| of
a regular expression E is defined recursively as 1 plus the sizes of its subexpressions. For
ρ : Σ → Γ and a regular expression E, ρ(E) is a regular expression over Γ obtained through
substituting every constant a ∈ Σ appearing in E by ρ(a).

Finite-state automata. Regular languages can also be represented by non-deterministic
finite-state automata (nfa). Such an automaton is a tuple A = (Q,Σ, δ, QI, QF), where Q
is a finite non-empty set of states, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is the transition
relation, QI ⊆ Q is the set of initial states, and QF ⊆ Q is the set of final states. A triple
(p, a, q) ∈ Q× Σ ×Q is called a transition and denoted as p a−→ q. A run of A from a state
q0 to a state qn (n ∈ N) on a word w = a1a2 · · · an ∈ Σ∗ is a finite sequence of transitions(
qi−1

ai−→ qi

)
1≤i≤n

such that qi−1
ai−→ qi ∈ δ for every i. A word w ∈ Σ∗ is accepted by A if

there exists a run of A from some qI ∈ QI to qF ∈ QF over w. The language of A is defined
as L(A) := {w ∈ Σ∗ | w is accepted by A}. We define the size of A as |A| := |Q| + |Q|2 · |Σ|.
This definition only depends on Q and Σ and ensures that |A| ≥ |Q| + |δ| · |Σ|. Subsequently,
we will implicitly apply the well-known fact that the number of states of an nfa accepting
the complement of L(A) is bounded by 2|Q|.

CONCUR 2023



13:4 Universal Quantification Makes Automatic Structures Hard to Decide

Below we state, without proofs, a few folklore properties of nfa:

▶ Fact 1 (nfa closed under language union). For any nfa A,B over Γ, there exists an nfa
A ⊕ B of size O(|A| + |B|) such that L(A ⊕ B) = L(A) ∪ L(B).

▶ Fact 2 (nfa closed under inverse language homomorphisms). For any nfa A and a ho-
momorphic mapping ρ : Σ∗ → Γ∗, there exists an nfa ρ−1(A) of size O(|A|) such that
L

(
ρ−1(A)

)
= ρ−1(L(A)).

▶ Fact 3 (nfa closed under concatenation of languages). For any nfa A,B there exists an nfa
A⊙B of size O(|A| + |B|) s.t. L(A ⊙ B) = L(A) · L(B) := {u · v | u ∈ L(A) and v ∈ L(B)}.

▶ Fact 4 (translating regular expressions into nfa). For any regular expression E, there exists
an nfa A(E) such that |A(E)| = O(|E|) and L(A(E)) = L(E) (see [19]).

Filters. A filter is an auxiliary term introduced to simplify the proofs in Section 3, allowing
for a modular design of regular languages. Fix a finite alphabet Σ and let Φ := {⊤,⊥}.
Define homomorphisms ψin, ψout : (Σ × Φ)∗ → Σ∗ by their actions on a single letter

ψin(a, b) := a ψout(a,⊤) := a ψout(a,⊥) := ε .

(output every symbol from Σ) (output only symbols paired with ⊤)

A filter over an alphabet Σ is any language F ⊆ (Σ × Φ)∗. It induces a binary input-output
relation R(F ) ⊆ Σ∗ × Σ∗ between input words u and their subsequences v:

(u, v) ∈ R(F ) def⇐⇒ u = ψin(w) and v = ψout(w) for some w ∈ F .

We define F (u) := {v | (u, v) ∈ R(F )} to be the set of all possible outputs of F on u.

Filtering regular expressions. A filtering regular expression F over alphabet Σ is any regular
expression over Σ × Φ. We write F(w) := L(F)(w). To simplify the notation, we only write
the Σ component of the constants, and underline parts of the expression. A symbol a
appearing in an underlined fragment represents a pair (a,⊤), and in a fragment which is not
underlined a pair (a,⊥). Intuitively, underlined portions correspond to parts of the words
being output. We apply the same notational convention to words w ∈ (Σ × Φ)∗. Additionally,
for ρ : Σ → Γ, we abuse the notation and extend it to the naturally defined homomorphism
of type Σ × Φ → Γ × Φ, which just preserves the coordinate belonging to Φ.

▶ Example 5. Fix A = {a, b, c, . . . , z}. Consider a filtering regular expression F and a word
w, both over A ∪ {␣}:

F := (AA∗ ␣)∗
AA∗ w := nondeterministic␣finite␣automaton .

We have:

F(w) = {nfa} ,

F =
(

(A× {⊤}) · (A× {⊥})∗ · (␣,⊥)
)∗

· (A× {⊤}) · (A× {⊥})∗
,

L(F) ∋ nondeterministic␣finite␣automaton .

▶ Fact 6. For every filtering regular expression F and w, F(w) = L(A(F))(w).
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2.2 Automatic relations

Let Σ be a finite alphabet such that # ̸∈ Σ. We denote by Σ# := Σ∪{#}. Let w1, . . . , wk ∈ Σ∗

such that wi = ai,1ai,2 · · · ai,ℓi
, and ℓ := max{ℓ1, . . . , ℓk}. For all 1 ≤ i ≤ k and ℓi < j ≤ ℓ,

set ai,j := #. The convolution w1 ⊗ w2 ⊗ · · · ⊗ wk of w1, . . . , wk is defined as

w1 ⊗ w2 ⊗ · · · ⊗ wk :=

a1,1
...

ak,1

 a1,2
...

ak,2

 · · ·

a1,ℓ

...
ak,ℓ

 ⊆
(
Σk

#

)∗
.

For R ⊆ (Σ∗)k and L ⊆
(
Σk

#

)∗ define

Rel2Lang(R) := {w1 ⊗ w2 ⊗ · · · ⊗ wk | (w1, w2, . . . , wk) ∈ R} ,
Lang2Rel(L) := {(w1, w2, . . . , wk) | w1 ⊗ w2 ⊗ · · · ⊗ wk ∈ L} .

In this paper, we say that a relation R ⊆ (Σ∗)k is automatic whenever Rel2Lang(R) is regular.
In the sequel, we assume that Rel2Lang(R) is given by some nfa AR = (Q,Σk

# , δ, QI, QF).
Clearly, not every nfa A = (Q,Σk

# , δ, QI, QF) is associated with an automatic relation
R ⊆ Σk since there are a priori no restrictions on the occurrences of the padding symbol “#”.
The language L ⊆ (Σk

# )∗ of all incorrect words that cannot be obtained as a convolution of
words w1, . . . , wk ∈ Σ∗ can be characterized by the following regular expression:

(
Σk

#

)∗ ·
(

{#}k +
∑

1≤i≤k

((
Σi−1

# × {#} × Σk−i
#

)
·
(
Σi−1

# × Σ × Σk−i
#

)))
·
(
Σk

#

)∗
.

This regular expression “guesses” that either a letter consisting solely of k # symbols occurs,
or in some row of a word in

(
Σk

#

)∗ a “#” symbol is followed by a symbol in Σ. The language
of this regular expression can be implemented by an nfa with k + 2 many states. Hence,
the complement L := L of L , characterizing all “good” words, can be recognized by an
nfa with 2k+2 many states. For the sake of readability, we do not parameterize L explicitly
with k; the relevant k will always be clear from the context.

The (existential) projection of R ⊆ (Σ∗)d+k onto the first d components is defined as

π∃
d(R) :=

{
ū ∈ (Σ∗)d

∣∣ (ū, w̄) ∈ R for some w̄ ∈ (Σ∗)k
}
.

The dual of existential projection is universal projection:

π∀
d(R) :=

{
ū ∈ (Σ∗)d

∣∣ (ū, w̄) ∈ R for all w̄ ∈ (Σ∗)k
}
.

It is clear that π∀
d(R) = π∃

d

(
R

)
. We overload the projection notation for languages

π∃
d(L) := Rel2Lang

(
π∃

d(Lang2Rel(L))
)

π∀
d(L) := Rel2Lang

(
π∀

d(Lang2Rel(L))
)
.

In this article, given AR such that Rel2Lang(R) = L(AR) ⊆
(
Σd+k

#
)∗, we are concerned with

the computational complexity of deciding whether π∀
d(R) = ∅, measured in terms of |AR|. In

Sections 3 and 5 we will prove the following.

▶ Theorem 7. Deciding whether π∀
d(R) ̸= ∅ for an automatic relation R ⊆ (Σ∗)d+k with an

associated nfa AR is ExpSpace-complete. The lower bound already holds for d = k = 1.
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13:6 Universal Quantification Makes Automatic Structures Hard to Decide

3 Emptiness after universal projection is ExpSpace-hard

3.1 Tiling problems
Let T ⊆fin N4 be a set of tiles with colours coded as tuples of numbers in top–right–bottom–
left order. We define natural projections top, right, bottom, left : N4 → N to access individual
colours of a tile, and let colours(T) := top(T) ∪ right(T) ∪ bottom(T) ∪ left(T).

▶ Example 8 (a tile). A tile t = (2, 4, 3, 3) is drawn as 2
4

3
3 with various auxiliary background

shades corresponding to colour values.

A T-tiling of size (h,w) ∈ N2
+ is any h× w matrix T = [ti,j ]i,j ∈ T h×w. It is valid, whenever

colours of the neighboring tiles match:

bottom(ti,j) = top(ti+1,j) for every 1 ≤ i ≤ h− 1 and 1 ≤ j ≤ w, (1)
right(ti,j) = left(ti,j+1) for every 1 ≤ i ≤ h and 1 ≤ j ≤ w − 1. (2)

See Figure 1 on page 14 for an example of a valid tiling. A T-tiling of width w ∈ N+ is any
tiling in T h×w for some h ∈ N+. We define

T ⋆×w :=
⋃

h∈N+

T h×w .

Additionally, for two distinguished tiles t�, t
�∈ T, let (T, t�, t

�)-tiling be any T-tiling with t�
placed in its top-right corner, and t � in its bottom-left corner.

▶ Problem 9. CorridorTiling
Input: A 4-tuple (T, t�, t

�, n), where
T ⊆fin N4 is a finite set of tiles,
t�, t

�∈ T,
n ∈ N given in unary.

Question: Does there exist a valid (T, t�, t
�)-tiling of width 2n?

By T ⊂ Pfin(N4)×N4 ×N4 ×N+ we denote the set of all valid instances of the above problem.

▶ Fact 10. CorridorTiling (Problem 9) is ExpSpace-hard.

It is part of the folklore of the theory of computation that tiling problems can simulate the
computation of Turing machines, the width of the requested tiling corresponding to the
length of tape the machine is allowed to use. ExpSpace-completeness of a variant similar to
the one above is sketched in [18].

3.2 The reduction
We prove Theorem 7 by a reduction from CorridorTiling. We will show that the
ExpSpace-hardness occurs in the simplest case of universal projection – projecting a binary
relation to get a unary one. Intuitively, for each instance I = (T, t�, t

�, n) of CorridorTiling,
we want to construct an automaton AI such that π∀

1(L(AI)) is not empty if, and only if, I
is a YES-instance. Formally, we provide a family of LogSpace-constructible nfa (AI)I∈T,
each of size O

(
n3)

, over the alphabet (ΣI ∪ {#})2 for some ΣI and representing relation
Lang2Rel(L(AI)) ⊆ (Σ∗

I)2 such that

π∀
1(L(AI)) ̸= ∅ ⇐⇒ there exists a valid (T, t�, t

�)-tiling of width 2n. (3)
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For the rest of this section, we fix an instance I = (T, t�, t
�, n) ∈ T. Due to technical reasons,

we assume that n ≥ 6. Note that every instance (T, t�, t
�, n) with n < 6 can be easily

transformed into (T′, t′
�
, t′�, 6), while preserving the (non)existence of a valid tiling.

In Section 3.3, we define ΣI, specify a language LI ∈ Σ∗
I, and prove that:

▶ Lemma 11. LI ̸= ∅ ⇐⇒ there exists a valid (T, t�, t
�)-tiling of width 2n.

In turn in Section 3.4, we construct in LogSpace an nfa AI such that

▶ Lemma 12. π∀
1(L(AI)) = LI.

This completes the proof of Theorem 7, the correctness of the reduction stemming directly
from Lemmas 11 and 12.

3.3 Word encoding of tilings
Here, we provide ΣI and an encoding encI : T ⋆×2n → Σ∗

I. Then we define LI as an intersection
of six conditions, and prove Lemma 11 by showing that it coincides with the language of
encodings of valid tilings.

Let Nn := N ∩ [0, n]. Additionally, let N⋇k
n := {i ∈ Nn | i ⋇ k} for ⋇ ∈ {<,=, >} and

k ∈ N (to be used in the next section). The alphabet ΣI consists of three groups of symbols –
tiles from T, numbers from Nn, and auxiliary symbols:

ΣI := T ∪Nn ∪ {A, ⟦, ⟧,〈, 〉} .

Above, the symbol A is a mnemonic – it marks places in Section 3.4 where we enforce “for-
all”-type properties. In what follows, we print some symbols in colours (e.g., 3010 t 20103)
to assist in understanding the construction – such designations are auxiliary and are not
reflected in the alphabet. The encoding of runs makes use of the word Combn ∈ N∗

n

Combn := nComb′
n−1 n ,

where the words
(
Comb′

i

)
0≤i≤n

are defined recursively as

Comb′
0 := 0

Comb′
i := Comb′

i−1 iComb′
i−1 for 0 < i ≤ n.

Observe that Combn has length exactly 2n + 1; that property is important in the upcoming
construction.

▶ Example 13. Comb4 is 40102010301020104 and has length 17.

We define the encoding function encI : T ⋆×2n → Σ∗
I in three steps. Let T = [ti,j ]i,j ∈ T h×2n

for some h ∈ N. The tile ti,j in T is represented as

encCellI(T, i, j) := 〈 Combn[1, j] ti,j Combn[j + 1, 2n + 1] A 〉 ,

a single row is encoded as

encRowI(T, i) := ⟦
∏

1≤j≤2n

encCellI(T, i, j) ⟧ ,

and finally, the encoding of the entire tiling is defined as

encI(T ) := A
∏

1≤i≤h

encRowI(T, i) .
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▶ Example 14. The tiling T = [ti,j ]i,j of size (2, 24) is encoded as

A ⟦〈4 t1,1 0102010301020104 A〉 · · ·〈40102 t1,5 01030· · · 04 A〉 · · ·〈4010201030102010 t1,16 4 A〉⟧ ·
· ⟦〈4 t2,1 0102010301020104 A〉 · · ·〈40102 t2,5 01030· · · 04 A〉 · · ·〈4010201030102010 t2,16 4 A〉⟧.

The word above is written in two lines to make the correspondence to tiling more apparent.

Languages of encodings

Define the language of encodings of valid tilings of width 2n with t�, t
�in the correct corners

ValidEncI :=
{

encI(T )
∣∣ T is a valid (T, t�, t

�)-tiling of width 2n
}
.

In order to express the notion of an encoding of a valid tiling in a more tangible way, below we
define languages Cond1

I, . . . , Cond6
I, which – as we prove in Lemma 15 – jointly characterise

encodings. The first three of them are easily definable with automata of size O(n), the
next two guarantee an appropriate width of the encoding, while the last one enforces in a
nontrivial way that the vertical colour match.

▶ Condition 1. Language Cond1
I is given by the regular expression

E1
I :=

(
⟦〈 nTN∗

n A〉
(
〈N∗

n TN∗
n A 〉

)∗
〈N∗

n T n A〉⟧
)∗

.

Intuitively, encodings consist of rows bounded by ⟦ and ⟧; each row comprised of cells
delimited by 〈 and 〉; the first cell begins with the number n followed by a tile, while last
one ends with a tile, n and A. As |E1

I| = O(n), by Fact 4 the language Cond1
I is recognised

by an nfa B1
I := A

(
E1
I

)
of size O(n).

▶ Condition 2. The language Cond2
I is defined by the regular expression

E2
I := ⟦

(
〈N∗

n TN∗
n A〉

)∗
〈N∗

n t�N
∗
n A〉⟧ Σ∗

I ⟦〈N∗
n t

�N∗
n A〉

(
〈N∗

n TN∗
n A〉

)∗
⟧ .

Trivially, this requires the first row of a purported tiling to end with t�, and the last row to
begin with t �. As in Condition 1, Cond2

I is recognised by an nfa B2
I := A

(
E2
I

)
of size O(n).

▶ Condition 3. Let Q = colours(T) and B3
I = (Q,ΣI, δ, Q,Q), where δ has transitions

i
t−→ j for every i, j ∈ Q and t ∈ T s.t. left(t) = i and right(t) = j,

i
a−→ i for every i ∈ Q and a ∈ ΣI \ (T ∪ {⟧}),

i
⟧−→ j for every i, j ∈ Q.

We set Cond3
I := L

(
B3

I

)
; it contains encodings where tile colours match horizontally.

▶ Condition 4 (each cell contains a Combn). The definition of Cond4
I uses a filtering regular

expression F4
I :

F4
I := 〈N∗

n TN∗
n A 〉Σ∗

I

Cond4
I :=

{
w ∈ Σ∗

I

∣∣ Combn A ∈ F4
I(v) for every proper suffix v of w s.t. v[1] = 〈

}
▶ Condition 5 (prefix of a cell and first symbols of following cells’ suffixes form a Combn).

F5
I := 〈N∗

n TNn N
∗
n A 〉

(
〈N∗

n TNn N
∗
n A 〉

)∗
〈N∗

n TNn N
∗
n A 〉⟧ Σ∗

I

Cond5
I :=

{
w ∈ Σ∗

I

∣∣ Combn A ∈ F5
I(v) for every proper suffix v of w s.t. v[1] = 〈

}
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▶ Condition 6 (tile colours match vertically). Let ▼t := {t′ ∈ T | top(t′) = bottom(t)} be the
set of tiles with the top colour matching to the bottom of a tile t. Define

F6
I :=

∑
t∈T

(
〈N∗

n t N∗
n A 〉

(
〈N∗

n TN∗
n A 〉

)∗ ⟧ ·

· ⟦
(
〈N∗

n TN∗
n A 〉

)∗ 〈N∗
n ▼t N

∗
n A 〉

(
〈N∗

n TN∗
n A 〉

)∗ ⟧ Σ∗
I

)
.

The expression above was typeset in two lines only to highlight the correspondence between
cells in two consecutive rows. Define the language Cond6

I as

Cond6
I :=

{
w ∈ Σ∗

I

∣∣ Combn A ∈ F6
I(v) for every proper suffix v of w such that

v[1] = 〈 and v[j] = ⟦ for some j
}

Intuitively, requiring ⟦ to appear in v filters out suffixes of the last row.

Define LI := A
⋂

1≤i≤6 Cond i
I. To prove Lemma 11, it suffices to show the following:

▶ Lemma 15. LI = ValidEncI

Proof. The inclusion LI ⊇ ValidEncI is trivial.
Inclusion LI ⊆ ValidEncI. Take any u ∈ LI. Due to Condition 1, it has the form
A

∏
1≤i≤h ⟦ vi ⟧, where each vi ∈ (ΣI\{⟦, ⟧})∗. We will show that ⟦ vi ⟧ ∈ Range(encRowI( ·))

for all i. Fix an arbitrary i. Again due to Condition 1, vi has the form∏
1≤j≤wi

(〈 pi,j ti,j si,j A 〉) ,

where wi ∈ N, pi,j , si,j ∈ N∗
n, pi,1 = si,wi

= n, and ti,j ∈ T. Due to Condition 5, we have
that all si,j are nonempty and

pi,1 si,1[1] si,2[1] si,3[1] · · · si,wi
[1] = Combn . (4)

This implies that wi = 2n. By Condition 5 and Equation (4) we get that pi,j = Combn[1, j],
and now Condition 4 implies that si,j = Combn[j + 1, 2n + 1], so ⟦ vi ⟧ is a valid encoding
of a row of length 2n. Hence u encodes a tiling T := [ti,j ]i,j ∈ T h×2n . Property (2) in the
definition of a valid tiling is now trivially implied by Condition 3, and we only need to
show (1). Fix arbitrary pair of tiles ti,j , ti+1,j which are vertical neighbours. Observe that
pi,jsi+1,x = Combn ⇐⇒ x = j. Therefore, by Condition 6, bottom(ti,j) = top(ti+1,j), thus
T is a valid T-tiling, and – by Condition 2 – a valid (T, t�, t

�)-tiling. ◀

3.4 Construction of the automaton AI

Let ΣI,# := ΣI ∪ {#}. Here, we define the nfa AI over Σ2
I,# and prove Lemma 12, which

states that π∀
1(L(AI)) = LI. The construction we present in this section, however, does not

require the full generality of the setting of automatic structures:
Lang2Rel(L(AI)) only holds for words of the same length, i.e., AI rejects words with #;
we only use a subset of the alphabet: ΣI ×Nn ⊆ Σ2

I,#.
For this reason, we begin with a simplifying Lemma 16, which allows us to focus only on
words satisfying above properties. Let ρI : (ΣI ×Nn)∗ → Σ∗

I be a homomorphism given by
ρI(a, ·) := a. Additionally, let

ρ∀
I(L) :=

{
w ∈ Σ∗

I

∣∣ ρ−1
I (w) ⊆ L

}
.
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▶ Lemma 16 (simplification). For any nfa A′
I over ΣI ×Nn, there exists an nfa AI over

Σ2
I,# such that π∀

1(L(AI)) = ρ∀
I(L(A′

I)).

Proof. Take any A′
I over ΣI ×Nn. Let

E1 :=
(
Σ2

I

)∗(ΣI × {#})+ +
(
Σ2

I

)∗({#} × ΣI)+
(u ⊗ v such that |u| ̸= |v|)

E2 :=
(
Σ2

I

)∗(ΣI × (ΣI \Nn))
(
Σ2

I

)∗
(words with letter from Σ2

I \ ΣI × Nn)

AI := A′
I ⊕ A(E1) ⊕ A(E2) .

By definition, a word w belongs to π∀
1(L(AI)) whenever for all v the word w ⊗ v belongs to

L(AI). By construction, L(AI) contains all w ⊗ v where |v| ̸= |w| (E1) or where v is using a
symbol from ΣI \Nn (E2). Hence, the only words which can be missing from L(AI) come
from L(A′

I). This implies that π∀
1(L(AI)) = ρ∀

I(L(A′
I)). ◀

Therefore, we only have to provide A′
I such that ρ∀

I(L(A′
I)) = LI. The construction is

modular, based on six nfa corresponding to Conditions 1–6:

▶ Lemma 17 (modular design). For any six nfa (Ci
I)1≤i≤6 over ΣI ×Nn, there exists an

nfa A′
I of size O

( ∑
1≤i≤6|Ci

I|
)

over ΣI ×Nn such that

ρ∀
I(L(A′

I)) = A
⋂

1≤i≤6
ρ∀
I

(
L

(
Ci
I

))
.

Proof. Define

H := ({A} ×Nn \ {1, 2, . . . , 6}) (ΣI ×Nn)∗

A′
I := A((A, 1)) ⊙ C1

I ⊕ A((A, 2)) ⊙ C2
I ⊕ · · · ⊕ A((A, 6)) ⊙ C6

I ⊕ A(H) .

Observe that

Aw ∈ ρ∀
I(L(A′

I)) ⇐⇒ ρ−1
I (Aw) ⊆ L(A′

I) ⇐⇒ ({A} ×Nn) ρ−1
I (w) ⊆ L(A′

I) ⇐⇒
⇐⇒ ∀i ∈ Nn . (A, i) ρ−1

I (w) ⊆ L(A′
I) ,

but trivially

L
(

A((A, j)) ⊙ C
j
I

)
∩ (A, i) ρ−1

I (w) = ∅ for any i ̸= j

L(A(H)) ∩ (A, i) ρ−1
I (w) = ∅ for any i.

Therefore, Aw ∈ ρ∀
I(L(A′

I)) if, and only if, ρ−1
I (w) ⊆ ρ∀

I

(
L

(
Ci
I

))
for all i, as required. ◀

By definition of LI, it only remains to construct automata Ci
I such that ρ∀

I

(
L

(
Ci
I

))
= Condi

I

for 1 ≤ i ≤ 6. The construction is easy for Conditions 1–3:

Ci
I := ρ−1

I

(
Bi

I

)
for i ∈ {1, 2, 3}

as ρ∀
I

(
L

(
ρ−1
I (A)

))
= L(A) for any nfa A. Observe that the remaining Conditions 4–6 all

speak about “every proper suffix” satisfying some simple regular property. We handle that
in a general way. For L ⊆ (ΣI ×Nn)∗, define

L∀suf(L) :=
{
w

∣∣ v ∈ ρ∀
I(L) for all proper suffixes v of w

}
▶ Lemma 18 (recognising “for all proper suffixes”). For any nfa A over ΣI ×Nn, there exists
an nfa AllSuf(A) of size O(|A|) such that

ρ∀
I(L(AllSuf(A))) = L∀suf(L(A)) .
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Proof. Fix any nfa A = (Q,ΣI ×Nn, δ, QI, QF). We define AllSuf(A) which guesses the
suffix to verify

AllSuf(A) := (Q ∪ {s},ΣI ×Nn, δ ∪ δ′, {s}, QF ∪ {s})

for some fresh state s /∈ Q, and δ′ containing transitions s (a,0)−−−→ s for a ∈ ΣI and s
(a,n)−−−→ q

for a ∈ ΣI, n ∈ N>0
n , q ∈ QI. Additionally, let τ be a homomorphism such that τ(a) := (a, 0).

Inclusion “⊆”. Take any w ∈ ρ∀
I(L(AllSuf(A))). Let v be any proper suffix of w. Take any

v′ ∈ ρ−1
I (v). We need to show that v′ ∈ L(A). The word w can be written as uav, for |u| ≥ 0

and |a| = 1. Consider a word w′ = τ(u)(a, 1)v′. By definition of ρ∀
I, w′ ∈ L(AllSuf(A)).

Let r be an accepting run of AllSuf(A) over w′. By construction, the run stays in state s
while reading τ(u) and goes to some q ∈ QI upon reading (a, 1). Therefore, the remaining
suffix of r is an accepting run of A over v′.
Inclusion “⊇”. Fix w ∈ L∀suf(L(A)). Take any w′ ∈ ρ−1

I (w). We will show that w′ ∈
L(AllSuf(A)). Let u′(a, k)v′ := w′ be such that u′ is the maximal prefix arising as τ(u)
for some u (possibly empty). Note that k ̸= 0. By assumption, v′ ∈ L(A), so there exists an
accepting run r2 of A over v′ starting in some q ∈ QI. By construction, there exists a run r1
from s to q over u′(a, k) in AllSuf(A). Hence the run r1r2 accepts w′. ◀

To handle conditions “beginning with 〈” and “containing ⟦” appearing as antecedents of
implications, we proceed in the vein of the equivalence a → b ≡ ¬a ∨ b. Let

G¬〈 := (ΣI \ {〈}) Σ∗
I G¬⟦ := (ΣI \ {⟦})∗

.

▶ Lemma 19. For i ∈ {4, 5, 6}, given nfa Ĉi
I satisfying ρ∀(L

(
Ĉi
I

))
={

w
∣∣ Combn A ∈ Fi

I(w)
}

, one can construct Ci
I of size O

(
|Ĉi

I|
)

such that ρ∀
I

(
L

(
Ci
I

))
= Condi

I.

Proof. Fix Ĉ4
I, Ĉ

5
I, Ĉ

6
I as in the statement of the lemma. We define Ci

I as

C4
I := AllSuf

(
Ĉ4
I ⊕ ρ−1

I

(
A(G¬〈)

))
C5
I := AllSuf

(
Ĉ5
I ⊕ ρ−1

I

(
A(G¬〈)

))
C6
I := AllSuf

(
Ĉ6
I ⊕ ρ−1

I

(
A(G¬〈 + G¬⟦)

))
.

The above cases are similar; w.l.o.g. let us focus on C4. Observe that

ρ∀(L
(
Ĉ4
I ⊕ ρ−1

I

(
A(G¬〈)

)))
= ρ∀(L

(
Ĉ4
I

))
∪ L

(
G¬〈

)
=

{
w

∣∣ Combn A ∈ Fi
I(w)

}
∪ L

(
G¬〈

)
,

which directly corresponds to Condition 4, as required. ◀

The essential element needed to define nfa Ĉi
I as in Lemma 19 is an nfa for the language

{CombnA}. First, we define Combn as the intersection of languages of n + 1 regular
expressions, then show how that can be concisely represented by an automaton Cn of size
O

(
n2)

such that ρ∀
I(L(Cn)) = {CombnA}.

▶ Definition 20. We define n+ 1 regular expressions Ei over ΣI

E0 := N>1
n

(
0N>1

n

)∗

Ei := N>i
n

((
N<i

n

)∗
i
(
N<i

n

)∗
N>i

n

)∗
for 0 < i < n

En := n
(
N<n

n

)∗
n

▶ Lemma 21. {Combn} =
⋂

0≤i≤n L(Ei).
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Proof. It is easy to prove the inclusion “⊆” by unravelling the definition of Combn.
Inclusion “⊇”. Take any w ∈

⋂
1≤i≤n L(Ei). We will show that w = Combn.

▷ Claim 22. For 0 ≤ k ≤ n− 1, we have
⋂

1≤i≤k L(Ei) = L
(
N>k

n

(
Comb′

k N
>k
n

))∗

We prove the claim by induction. The base case is trivial. Fix a word

w ∈ L
(
N>k

n

(
Comb′

k N
>k
n

))∗ ∩ L(Ek+1) .

It has the form w = a1 Comb′
k a2 Comb′

k · · · Comb′
k am for some m ≥ 2 and a1, a2, . . . , am ∈

N>k
n . But since w ∈ L(Ek+1), every other symbol ai is equal k + 1 and m is odd. Thus

w = a1 Comb′
k (k + 1) Comb′

k︸ ︷︷ ︸
Comb′

k+1

· · · Comb′
k (k + 1) Comb′

k︸ ︷︷ ︸
Comb′

k+1

am

We conclude by noticing that L(En) ∩ L
(
N

>(n−1)
n

(
Comb′

n−1 N
>(n−1)
n

))∗
= {Combn}. ◀

Let us define

Cn := ρ−1
I (A(E0)) ⊙ A((A, 0)) ⊕ ρ−1

I (A(E1)) ⊙ A((A, 1)) ⊕ · · · ⊕ ρ−1
I (A(En)) ⊙ A((A, n)) .

▶ Lemma 23. ρ∀
I(L(Cn)) =

(⋂
0≤i≤n L(Ei)

)
A.

Proof. Inclusion “⊆”. Take any w = uA ∈ ρ∀
I(L(Cn)), and i ∈ Nn. We prove that u ∈

L(Ei). By definition, ρ−1
I (uA) ⊆ L(Cn). Fix a homomorphism τ(a) = (a, 0). Note that

τ(u)(A, i) ∈ L(Cn). This can be accepted only by the ρ−1
I (A(Ei)) ⊙ A((A, i)) component,

thus u ∈ L(A(Ei)) = L(Ei), as required.
Inclusion “⊇”. Take any w = uA ∈

(⋂
0≤i≤n L(Ei)

)
A. Take any u′(A, i) ∈ ρ−1

I (uA). Since
u ∈ L(Ei), u′ ∈ ρ−1

I (L(Ei)), and u′(A, i) ∈ L
(
ρ−1
I (A(Ei)) ⊙ A((A, i))

)
, as required. ◀

▶ Definition 24 (nfa Ĉi
I). Fix i ∈ {4, 5, 6}, nfa Cn = (Q(1),Σ ×Nn, δ

(1), Q
(1)
I , Q

(1)
F ) (of size

O
(
n2)

) and A
(
Fi
I

)
= (Q(2),Σ × Φ, δ(2), Q

(2)
I , Q

(2)
F ) (of size O(n)).

Define Ĉi
I := (Q,Σ ×Nn, δ, QI, QF) of size O

(
n3)

, where

Q := Q(1) ×Q(2), QI := Q
(1)
I ×Q

(2)
I , QF := Q

(1)
F ×Q

(2)
F ,

and the transition relation is

δ :=
{

(p, q) (a,α)−−−→ (r, s)
∣∣∣ q (a,⊤)−−−→ s ∈ δ(2) ∧ p

(a,α)−−−→ r ∈ δ(1)
}

∪{
(p, q) (a,α)−−−→ (p, s)

∣∣∣ q (a,⊥)−−−→ s ∈ δ(2) ∧ p ∈ Q(1)
}
.

Intuitively, Ĉi
I runs Cn over the fragments of the input which were underlined by Fi

I.

▶ Fact 25. w ∈ L
(
Ĉi
I

)
if, and only if, ∃v ∈ L

(
ρ−1
I

(
Fi
I

))
. ψin(v) = w ∧ ψout(v) ∈ L(Cn).

To finish the construction, we need to prove that

▶ Lemma 26. For i ∈ {4, 5, 6}

ρ∀(L
(
Ĉi
I

))
=

{
w

∣∣ Combn A ∈ Fi
I(w)

}
.
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As the proofs for i ∈ {4, 5, 6} are analogous, we focus on the hardest one, and then only
comment how it can be adapted for i ∈ {4, 5}.

Proof (i = 6).
A. Inclusion “⊆”. Take any w ∈ ρ∀(L

(
Ĉ6
I

))
. Define

U :=
{
u ∈ L

(
F6
I

) ∣∣ ψin(u) = w
}

Note that if U = ∅, then F6
I(w) = ∅, so by Fact 25 L

(
Ĉ6
I

)
= ∅, and ρ∀(L

(
Ĉ6
I

))
= ∅, a

contradiction. Therefore, U ̸= ∅, and w ∈ L
(
ψin

(
F6
I

))
, so it has the form

〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ

for some k ∈ N, p, pi, s, si ∈ N∗
n, t, ti ∈ T, γ ∈ (ΣI \ {⟦, ⟧})∗ and γ ∈ Σ∗

I. Furthermore,
|U | = k and it contains the following underlined words u1, . . . , uk ∈ (ΣI × Φ)∗:

u1 = 〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ

u2 = 〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ
...

uk = 〈 p t s A 〉β ⟧ ⟦〈 p1 t1 s1 A 〉〈 p2 t2 s2 A 〉 · · · 〈 pk tk sk A 〉⟧ γ

Consider two cases, depending on the validity of the following assertion

∃u ∈ U . ψout
(
ρ−1
I (u)

)
⊆ L(Cn)

Case A.1: such u exists. Take any such u ∈ U . Observe that ψout(u) ∈ ρ∀
I(L(Cn)) =

{CombnA}. Hence, ψin(u) = w, ψout(u) = CombnA, and u ∈ L
(
F6
I

)
. Therefore, CombnA ∈

F6
I(w), as required.

Case A.2: such u does not exist. Therefore, for every u ∈ U , there is some vu ∈ ρ−1
I (u)

such that ψout(vu) /∈ L(Cn). Fix any family (vu)u∈U of such words. Let αu be the position
of the last underlined symbol in u. Fix a word w′ ∈ ρ−1

I (w) such that

w′[i] =
{
ψout(vu[i]) if i = αu for some u
(w[i], 0) otherwise

.

Observe that w′ is properly defined, as positions αu are pairwise different (corresponding to
the last letters of s1, s2, . . . , sk). Since ρI(w′) = w, from assumption w ∈ ρ∀(L

(
Ĉ6
I

))
we have

that w′ ∈ L
(
Ĉ6
I

)
. By Fact 25, we obtain v ∈ L

(
ρ−1
I

(
F6
I

))
such that

ψin(v) = w′ ∧ ψout(v) ∈ L(Cn)

However, ρI(ψout(v)) = ρI(ψout(vu)) for some u ∈ U and last symbols of ψout(v) and ψout(vu)
are identical. Since by construction Cn ignores the component Nn of its alphabet ΣI ×Nn

for all letters but the last one, we get that

ψout(v) ∈ L(Cn) ⇐⇒ ψout(vu) ∈ L(Cn) .

We conclude that ψout(v) /∈ L(Cn), a contradiction.
B. Inclusion “⊇”. Take any w such that CombnA ∈ F6

I(w). Using definition of F6
I(w), fix

v ∈ L
(
F6
I

)
such that ψin(v) = w and ψout(v) = CombnA. We have to show ρ−1

I (w) ⊆ L
(
Ĉ6
I

)
.

Take any w′ ∈ ρ−1
I (w). Let u ∈ (ΣI × Nn × Φ)∗ be the unique word such that ψin(u) = w′

and ρI(u) = v. Observe that ψout(w′) ∈ ρ−1
I (ψout(w′)) ⊆ L(Cn), thus w′ ∈ L

(
Ĉ6
I

)
, as

required. ◀
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Proof (i ∈ {4, 5}). The proof is analogous to the case i = 6. As the cases are distinguished
by the filter Fi

I being used, the only differences are related to the shape of words matched by
ψin

(
Fi
I

)
. In particular, the set U for i ∈ {4, 5} is now a singleton containing ui:

u4 = 〈 p t s A 〉γ (i = 4)

u5 = 〈 p1 t s
′
1 s1 A 〉〈 p2 t s

′
2 s2 A 〉 · · ·〈 pk−1 t s

′
k−1 sk−1 A 〉〈 pk t s

′
k A 〉⟧ γ (i = 5)

The rest of the proof only requires substituting F6
I with F4

I or F5
I . ◀

4 NFA of doubly exponential size after universal projection

From the lower bounds established in Section 3.4, it is now easy to construct a family(
A(Tinc,t

�
,t �,n)

)
n∈N of nfa, each of size O

(
n3)

, such that the smallest nfa after a universal
projection step has doubly-exponentially many states. Indeed, let

Tinc :=

2
2

5
5 , 2

2
0

2 , 2
3

3
2 ,

5
0

5
5 , 3

3
3

1 ,
5

4
4

5 , 1
4

4
4 , 3

3
4

4




∪

0
0

0
0 , 1

0
1

0 ,
0

1
1

0 , 1
1

0
1




t� := 2
3

3
2 t �:= 5

4
4

5

Intuitively, the colours 0, 1 vertically represent the counter bits, and horizontally encode
the carryover bit. The only valid (Tinc, t�, t

�)-tiling of width n simulates incrementing an
(n − 2)-bit binary counter from 0 to 2(n−2) − 1; see Figure 1 for an example with n = 5.
Thus, after a universal projection step, the resulting nfa accepts a single word of length
doubly exponential in n.
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0
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0
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0
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1
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1
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0
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0
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0

0
0

0
1

1
0

3
3

3
1

5
0

5
5

1
0

1
0

0
1

1
0

1
1
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5
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Figure 1 The unique valid (Tinc, t�, t �)-tiling of width 5.

▶ Proposition 27. The nfa for π∀
1
(
L

(
A(Tinc,t

�
,t �,n)

))
has size Ω

(
22n)

.
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5 Emptiness after universal projection is in ExpSpace

We now consider algorithmic upper bounds for deciding whether the language of an automatic
relation R ⊆ (Σ∗)d+k after a universal projection step is non-empty, measured in terms of
the size of the associated nfa AR, which yields the upper bound of Theorem 7.

Define a homomorphism h : (Σd+k
# )∗ → (Σd

#)∗ by

h(a1, . . . , ad, ad+1, . . . , ad+k) := (a1, . . . , ad).

Given an nfa B over Σd+k
# such that S ⊆ (Σ∗)d+k is automatic via B, it is clear that

we can compute in linear time an nfa B′ with the same number of states as B such that
L(B′) = h(L(B)). The homomorphism h acts almost like existential projection, but in
general, we do not have that π∃

d(S) is automatic via B′. For instance, suppose that

w =
[
a
a

] [
b
a

] [
#
c

] [
#
a

]
∈ L(B) .

Then h(w) = aa## ̸∈ L because of the trailing # symbols. To remove them, we define

Strip(L) :=
{
w

∣∣∣ there exists v ∈ (
{
#
}d)∗ such that wv ∈ L

}
.

It is then the case that π∃
d(S) is automatic via Strip(L(B′)) ∩ L . Note that an nfa for

Strip(L) can be computed in linear time from an nfa for L without changing the set of
states by making all states accepting that can reach a final state via a sequence of “{#}d”
symbols.

Recall that π∀
d(R) = π∃

d

(
R

)
, consequently an automatic presentation of π∀

d(R) is given by(
Strip

(
h

(
L(AR)

))
∩ L

)
∩ L .

Assuming Q is the set of states of AR, and recalling that L ⊆ (Σd
#)∗ is given by an nfa

with 2d+2 many states, it can easily be checked that the number of states of an nfa whose
language gives the universal projection of R is bounded by 2(2|Q|+d+2)+d+2.

With those characterisations and estimations at hand, the ExpSpace upper bound stated
in Theorem 7 can now easily be established.

▶ Proposition 28. Deciding whether π∀
d(R) ̸= ∅ is in ExpSpace, measured in terms of the

size of its associated nfa AR.

Proof. For an ExpSpace algorithm, we first construct an NFA B = (Q,Σd
# , δ, q0, F ) whose

language is
(
Strip

(
pd(L(AR))

)
∩ L

)
. We have |Q| ≤ 2|QR|+d+2, where QR is the set of

states of AR, and hence B can be constructed in exponential space. It remains to show that
non-emptiness of L(B) ∩ L can be decided in exponential space.

Clearly, we cannot explicitly construct an nfa for this language. Let A = (S,Σd
# , δ , s0, F )

be the the nfa for L , we can however non-deterministically guess a word in L(B) ∩ L(A )
letter by letter as follows. We keep track of a configuration of the form (Q′, s) ∈ 2Q × S,
which initially is ({q0}, s0). Then we repeatedly non-deterministically guess some a ∈ Σd

#

and update (Q′, s) to (δ(Q′, a), δ (s, a)) until we reach a configuration (Q′, s) such that
Q′ ∩ F = ∅ and s ∈ F . Clearly, the word obtained by this sequence of letters is in L(B) and
L(L ). The overall membership in ExpSpace is then a consequence of Savitch’s theorem
and the observation that the length of the shortest word in L(B) ∩ L is bounded by
2(2|Q|+d+2)+d+2. ◀

CONCUR 2023
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6 Conclusion

In this paper, we studied the computational complexity of eliminating universal quantifiers
in automatic structures. We showed that, in general, this is a computationally challenging
problem whose associated decision problem is ExpSpace-complete. Our result further
reinforces the intuition already stemming from [13] that, in general, the alternation of
quantifiers requires “complex” automata.

It would be interesting to understand whether it is possible to identify natural sufficient
conditions on regular languages for which a universal projection step does not result in a
doubly-exponential blow-up and only leads to, e.g., polynomial or singly exponential growth.
Results of this kind have been obtained in model-theoretic terms for structures of bounded
degree [14, 9], but we are not aware of a systematic study of questions of this kind on the
level of regular languages.
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Decisiveness of infinite Markov chains with respect to some (finite or infinite) target set of states is
a key property that allows to compute the reachability probability of this set up to an arbitrary
precision. Most of the existing works assume constant weights for defining the probability of a
transition in the considered models. However numerous probabilistic modelings require the (dynamic)
weight to also depend on the current state. So we introduce a dynamic probabilistic version of
counter machine (pCM). After establishing that decisiveness is undecidable for pCMs even with
constant weights, we study the decidability of decisiveness for subclasses of pCM. We show that,
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counter pCMs under mild conditions. Then we show that decisiveness of probabilistic Petri nets
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the case of constant weights. Finally we prove that the standard subclass of pPNs with a regular
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2012 ACM Subject Classification Mathematics of computing → Markov processes; Theory of
computation → Concurrency

Keywords and phrases infinite Markov chain, reachability probability, decisiveness

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.14

Related Version Full Version: https://arxiv.org/abs/2305.19564 [17]

Funding Alain Finkel: His work has been supported by ANR project BRAVAS (ANR-17-CE40-0028).
Serge Haddad: His work has been supported by ANR project MAVeriQ (ANR-20-CE25-0012).

1 Introduction

Infinite Markov chains. Since the 1980’s, finite-state Markov chains have been considered
for the modeling and analysis of probabilistic concurrent finite-state programs [27]. More
recently this approach has been extended to the verification of the infinite-state Markov
chains obtained from probabilistic versions of automata extended with unbounded data (like
stacks, channels, counters, clocks). The problem of Computing the Reachability Probability
up to an arbitrary precision (CRP) is a central problem in quantitative verification and it
has been studied by many authors [23, 16, 3, 12].

Computing the probability of reachability. There are (at least) two strategies to solve the
CRP problem.
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The first one is to consider the Markov chains associated with a particular class of
probabilistic models like probabilistic pushdown automata (pPDA) or probabilistic Petri
nets (pPN) and some specific target sets and to exploit the properties of these models to
design a CRP-algorithm. For instance in [12], the authors exhibit a PSPACE algorithm for
pPDA and PTIME algorithms for single-state pPDA and for one-counter automata.

The second one consists in exhibiting a property of Markov chains that yields a generic
algorithm for solving the CRP problem and then looking for models that generate Markov
chains that fulfill this property. Decisiveness of Markov chains is such a property (a Markov
chain is decisive w.r.t. a target if almost surely a random path either reaches the target or
the target becomes unreachable) and it has been shown that pLCS are decisive and that
probabilistic Petri nets (pPN) are decisive when the target set is upward-closed [3].

Two limits of the previous approaches. In most of the works, the probabilistic models
associate a constant (also called static) weight for transitions and get transition probabilities
by normalizing these weights among the enabled transitions in the current state (except for
some semantics of pLCS like in [19] where transition probabilities depend on the state due
to the possibility of message losses). This forbids to model phenomena like congestion in
networks (resp. performance collapsing in distributed systems) when the number of messages
(resp. processes) exceeds some threshold leading to an increasing probability of message
arrivals (resp. process creations) before message departures (resp. process terminations). In
order to handle them, one needs to consider dynamic weights i.e., weights depending on the
current state.

Dynamic weights. The usual formalism for performance evaluation is the model of con-
tinuous time Markov chain (CTMC) (see for instance the book “Continuous-Time Markov
Chains: An Applications-Oriented Approach”. William J. Anderson). In this model, the
transitions are labelled by a rate (of a negative exponential distribution). The underlying
discrete time model (which is enough to study some important properties) is a DTMC
obtained by normalizing the rates viewed as weights. To emphasize the relevance of dynamic
and more specifically polynomial weights, let us recall few examples which are recurrent
patterns of CTMCs:

in queuing networks, the policy of a server may be the infinite server policy leading to
linear weights;
in biological and epidemiological models, the rate of some “synchronization” between two
instances of some species is quadratic w.r.t. the size of the species.

Probabilistic models. Generally given some probabilistic model and some kind of target
set of states, it may occur that some instances of the model are decisive and some others are
not. This raises the issue of the decidability status of the decisiveness problem.

The first definition of pPDA seems to be given by Eugene S. Santos [24] in 1972. The
CRP and more generally, the qualitative and quantitative model checking has been shown
decidable for pPDA (see surveys of Kucera et al. [16] and Brazdil et al. [12]). As we did in
the paper, Brazdil et al. [12] and Lin [21] studied the same subclasses of pPDA (called there
stateless pPDA and POC). Interestingly, the decidability of the decisiveness property has
only be studied and shown decidable for pPDA with constant weights [16]: static pPDA, and
even static one-counter automata, are not decisive w.r.t. regular languages but decisiveness
is decidable (w.r.t regular languages).
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Probabilistic lossy channel systems (pLCS) have been introduced by Iyer et al. [19] in
1997 where they prove that the CRP and the quantitative model checking against a fragment
of LTL is decidable. See also Baier et al. [6], Abdulla et al. [1], Rabinovich [23], Bertrand
et al. [10], Abdulla et al. [2] for pLCS with modified semantics of losses. Observe that
depending on the selected semantics, the model of pLCS leads either to static or dynamic
weights. In particular the decisiveness property of pLCS is ensured by a particular case of
dynamic weights.

Probabilistic counter machines (pCM) have been studied in [13]. For example, static
Probabilistic Petri nets (pPN) are decisive w.r.t. upward-closed sets but it is unknown
whether decisiveness is decidable w.r.t. finite sets or w.r.t. dynamic weights.

Our contributions.
In order to unify analysis of decisiveness, we introduce a dynamic probabilistic version of
counter machine (pCM) and we first establish that decisiveness is undecidable for pCMs
even with constant weights.
Then we study the decidability of decisiveness of one-counter pCMs. We show that,
without restrictions on dynamic weights, decisiveness is undecidable for one-counter pCM
even with a single state. On the contrary, with polynomial weights, decisiveness becomes
decidable for a large subclass of one-counter pCMs, called homogeneous probabilistic
counter machine (pHM).
Then we show that decisiveness of probabilistic Petri nets (pPNs) with polynomial weights
is undecidable when the target set is finite or upward-closed (unlike the case of constant
weights). Finally we prove that the standard subclass of pPNs with a regular language is
decisive with respect to a finite set whatever the kind of weights.
Some of our results are not only technically involved but contain new ideas. In particular,
the proof of undecidability of decisiveness for pPN with polynomial weights with respect
to a finite or upward closed set is based on an original weak simulation of CM. Similarly
the model of pHM can be viewed as a dynamic extension of quasi-birth–death processes
well-known in the performance evaluation field [8].

Organisation. Section 2 recalls decisive Markov chains, presents the classical algorithm for
solving the CRP problem and shows that decisiveness is somehow related to recurrence of
Markov chains. In section 3, we introduce pCM and show that decisiveness is undecidable
for static pCM. In section 4, we study the decidability status of decisiveness for probabilistic
one-counter pCM and in section 5, the decidability status of decisiveness for pPN. Finally in
Section 6 we conclude and give some perspectives to this work. All missing proofs can be
found in [17].

2 Decisive Markov chains

As usual, N and N∗ denote respectively the set of non negative integers and the set of positive
integers. The notations Q, Q≥0 and Q>0 denote the set of rationals, non-negative rationals
and positive rationals. Let F ⊆ E; when there is no ambiguity about E, F will denote E \F .

2.1 Markov chains: definitions and properties
Notations. A set S is countable if there exists an injective function from S to the set of
natural numbers: hence it could be finite or countably infinite. Let S be a countable set
of elements called states. Then Dist(S) = {∆ : S → Q≥0 |

∑
s∈S ∆(s) = 1} is the set of

rational distributions over S. Let ∆ ∈ Dist(S), then Supp(∆) = ∆−1(Q>0).

CONCUR 2023
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0 1 2 3 · · ·

1

g(1)
f(1)+g(1)

f(1)
f(1)+g(1)

g(2)
f(2)+g(2)

f(2)
f(2)+g(2)

g(3)
f(3)+g(3)

f(3)
f(3)+g(3)

g(4)
f(4)+g(4)

Figure 1 A Markov chain M1 with for all n ∈ N, 0 < f(n) and 0 < g(n).

▶ Definition 1 ((Effective) Markov chain). A Markov chain M = (S, p) is a tuple where:
S is a countable set of states;
p is the transition function from S to Dist(S).

When for all s ∈ S, Supp(p(s)) is finite with both Supp(p(s)) and the function s 7→ p(s)
being computable, one says that M is effective.

When S is countably infinite, we say that M is infinite and we sometimes identify S with N.
We also denote p(s)(s′) by p(s, s′) and p(s, s′) > 0 by s

p(s,s′)−−−−→ s′. A Markov chain is also
viewed as a transition system whose transition relation → is defined by s→ s′ if p(s, s′) > 0.

▶ Example 2. Let M1 be the Markov chain of Figure 1. In any state i > 0, the probability
for going to the “right”, p(i, i+1) = f(i)

f(i)+g(i) and for going to the “left”, p(i, i−1) = g(i)
f(i)+g(i) .

In state 0, one goes to 1 with probability 1. M1 is effective if the functions f and g are
computable.

We denote →∗, the reflexive and transitive closure of → and we say that s′ is reachable
from s if s→∗ s′. We say that a subset A ⊆ S is reachable from s if some s′ ∈ A is reachable
from s and we denote s→∗ A. Let us remark that every finite path of M can be extended
into (at least) one infinite path.

Given an initial state s0, the sampling of a Markov chain M is an infinite random
sequence of states (i.e., a path) σ = s0s1 . . . such that for all i ≥ 0, si → si+1. As usual,
the corresponding σ-algebra is generated by the finite prefixes of infinite paths and the
probability of a measurable subset Π of infinite paths, given an initial state s0, is denoted
PrM,s0(Π). In particular denoting s0 . . . snSω the set of infinite paths with s0 . . . sn as prefix
PrM,s0(s0 . . . snSω) =

∏
0≤i<n p(si, si+1).

Notations. From now on, G (resp. F, X) denotes the always (resp. eventual, next) operator
of LTL, and E the existential operator of CTL∗ [7].

Let A ⊆ S. We say that σ reaches A if ∃i ∈ N si ∈ A which corresponds to σ |= FA.
Similarly σ |= XFA if ∃i > 0 si ∈ A. The probability that starting from s0, the path σ

reaches A is thus denoted by PrM,s0(FA).
The next definition states qualitative and quantitative properties of a Markov chain.

▶ Definition 3 (Irreducibility, recurrence, transience). Let M = (S, p) be a Markov chain and
s ∈ S. Then:
M is irreducible if for all s, s′ ∈ S, s→∗ s′;
s is recurrent if PrM,s(XF{s}) = 1 otherwise s is transient.

The next proposition states that in an irreducible Markov chain, all states are in the
same category [20].
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▶ Proposition 4. Let M = (S, p) be an irreducible Markov chain and s, s′ ∈ S. Then s is
recurrent if and only if s′ is recurrent.

Thus an irreducible Markov chain will be said transient or recurrent depending on the
category of its states (all states are in the same category). In the remainder of this section,
we will relate this category with techniques for computing reachability probabilities.

▶ Example 5. M1 of Figure 1 is clearly irreducible. Let us define pn = f(n)
f(n)+g(n) . Then

(see [17] for more details), M1 is recurrent if and only if
∑

n∈N
∏

1≤m<n ρm = ∞ with
ρm = 1−pm

pm
, and when transient, the probability that starting from i the random path

reaches 0 is equal to
∑

i≤n

∏
1≤m<n

ρm∑
n∈N

∏
1≤m<n

ρm
.

2.2 Decisive Markov chains
One of the goals of the quantitative analysis of infinite Markov chains is to approximately
compute reachability probabilities. Let us formalize it. Given a finite representation of a
subset A ⊆ S, one says that this representation is effective if one can decide the membership
problem for A. With a slight abuse of language, we identify A with any effective representation
of A.

The Computing of Reachability Probability (CRP) problem

• Input: an effective Markov chain M, an (initial) state s0, an effective subset of states
A, and a rational θ > 0.
• Output: an interval [low, up] such that up− low ≤ θ and PrM,s0(FA) ∈ [low, up].

In finite Markov chains, there is a well-known algorithm for computing exactly the
reachability probabilities in polynomial time [7]. In infinite Markov chains, there are (at
least) two possible research directions: (1) either using the specific features of a formalism
to design such a CRP algorithm [16], (2) or requiring a supplementary property on Markov
chains in order to design an “abstract” algorithm, then verifying that given a formalism this
property is satisfied and finally transforming this algorithm into a concrete one. Decisiveness-
based approach follows the second direction [3]. In words, decisiveness w.r.t. s0 and A means
that almost surely the random path σ starting from s0 will reach A or some state s′ from
which A is unreachable.

▶ Definition 6. A Markov chain M is decisive w.r.t. s0 ∈ S and A ⊆ S if:

PrM,s0(G(A ∩EFA)) = 0

Then under the hypotheses of decisiveness w.r.t. s0 and A and decidability of the reachability
problem w.r.t. A, Algorithm 1 solves the CRP problem.

Let us explain Algorithm 1. If A is unreachable from s0, then it returns the singleton
interval [0, 0]. Otherwise it maintains a lower bound pmin (initially 0) and an upper bound
pmax (initially 1) of the reachability probability and builds some prefix of the infinite
execution tree of M. It also maintains the probability to reach a vertex in this tree. There
are three possible cases when examining the state s associated with the current vertex along
a path of probability q: (1) either s ∈ A and the lower bound is incremented by q, (2) either
A is unreachable from s and the upper bound is decremented by q, (3) or it extends the
prefix of the tree by the successors of s. The lower bound always converges to the searched
probability while due to the decisiveness property, the upper bound also converges to it
ensuring termination of the algorithm. For the sake of termination, a fair extraction policy
is required such as a FIFO one.
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▶ Proposition 7 ([3]). Algorithm 1 terminates and computes an interval of length at most θ

containing PrM,s0(FA) when applied to a decisive Markov chain M w.r.t. s0 and A with a
decidable reachability problem w.r.t. A.

Algorithm 1 can be applied to probabilistic Lossy Channel Systems (pLCS) since they are
decisive (Corollary 4.7 in [3] and see [5] for the first statement) and reachability is decidable
in LCS [4]. It can be also applied to pVASSs w.r.t. upward closed sets because Corollary 4.4
in [3] states that pVASSs are decisive w.r.t. upward closed sets.

Observations. The test pmin = 0 is not necessary but adding it avoids to return 0 as lower
bound, which would be inaccurate since entering this loop means that A is reachable from s0.
Extractions from the front are performed in a way that the execution tree will be covered
(for instance by a breadth first exploration).

Algorithm 1 Framing the reachability probability in decisive Markov chains.

CompProb(M, s0, A, θ)
if not s0 →∗ A then return (0, 0)
pmin← 0; pmax← 1; Front← ∅
Insert(Front, (s0, 1))
while pmax− pmin > θ or pmin = 0 do

(s, q)← Extract(Front)
if s ∈ A then pmin← pmin + q

else if not s→∗ A then pmax← pmax− q

else
for s′∈ Supp(p(s)) do

Insert(Front, (s′, qp(s, s′))
end

end
end
return (pmin, pmax)

Let M be a Markov chain. One denotes Post∗
M(A), the set of states that can be reached

from some state of A and Pre∗
M(A), the set of states that can reach A. While decisiveness

has been used in several contexts including uncountable probabilistic systems [9], its relation
with standard properties of Markov chains has not been investigated. This is the goal of
the next definition and proposition. In words, Ms0,A consists of reachable states not in A

but that can reach A with an additional state s⊥ corresponding to states of M that are
either in A or cannot reach A. The probabilities are defined similarly as those of M except
that the transition probabilities to s⊥ are the sums of the transition probabilities to the
corresponding states in M.

▶ Definition 8. Let M be a Markov chain, s0 ∈ S and A ⊆ S such that s0 ∈ Pre∗
M(A) \A.

The Markov chain Ms0,A = (Ss0,A, ps0,A) is defined as follows:
Ss0,A is the union of (1) the smallest set containing s0 and such that for all s ∈ Ss0,A

and s′ ∈ Pre∗
M(A) \A with s→ s′, one have:

s′ ∈ Ss0,A and (2) {s⊥} where s⊥ is a new state;
for all s, s′ ̸= s⊥, ps0,A(s, s′) = p(s, s′) and ps0,A(s, s⊥) =

∑
s′ /∈∈P re∗

M(A)\A p(s, s′);
ps0,A(s⊥, s0) = 1.
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▶ Proposition 9. Let M = (S, p) be a Markov chain, s0 ∈ S and A ⊆ S such that
s0 ∈ Pre∗

M(A) \A. Then Ms0,A is irreducible. Furthermore M is decisive w.r.t. s0 and A

if and only if Ms0,A is recurrent.

Proof. Let s ∈ Ss0,A \ {s⊥}. Then s is reachable from s0 and A is reachable from s in M
implying that s →∗ s⊥ in Ms0,A (using a shortest path for reachability). Since s⊥ → s0,
s⊥ →∗ s. Thus Ms0,A is irreducible.
Ms0,A is recurrent iff PrMs0,A,s⊥(XF{s⊥}) = 1 iff PrMs0,A,s0(F{s⊥}) = 1 iff PrM,s0(FA∪
Pre∗

M(A)) = 1 iff M is decisive w.r.t. s0 and A. ◀

The equivalence between decisiveness of M w.r.t. s0 ∈ S and A ⊆ S and recurrence of
Ms0,A allows to apply standard criteria for recurrence in order to check decisiveness. For
instance in Section 4, we will use the criterion presented in Example 5 for the Markov chain
of Figure 1.

3 Probabilistic counter machines

We now introduce probabilistic Counter Machines (pCM) in order to study the decidability
of the decisiveness property w.r.t. several relevant subclasses of pCM.

▶ Definition 10 (pCM). A probabilistic counter machine (pCM) is a tuple C = (Q, P, ∆, W )
where:

Q is a finite set of control states;
P = {p1, . . . , pd} is a finite set of counters (also called places);
∆ = ∆0 ⊎∆1 where ∆0 is a finite subset of Q× P × Nd ×Q

and ∆1 is a finite subset of Q× Nd × Nd ×Q;
W is a computable function from ∆× Nd to N∗.

Notations. A transition t ∈ ∆0 is denoted t = (q−
t , pt, Post(t), q+

t ) and also q−
t

pt,Post(t)−−−−−−→
q+

t . A transition t ∈ ∆1 is denoted t = (q−
t , Pre(t), Post(t), q+

t ) and also q−
t

Pre(t),Post(t)−−−−−−−−−→
q+

t . Let t be a transition of C. Then W (t) is the function from Nd to Q>0 defined by
W (t)(m) = W (t, m). A polynomial is positive if all its coefficients are non-negative and
there is a positive constant term. When for all t ∈ T , W (t) is a positive polynomial whose
variables are the counters, we say that C is a polynomial pCM.

A configuration of C is an item of Q × Nd. Let s = (q, m) be a configuration and
t = (q−

t , pt, Post(t), q+
t ) be a transition in ∆0. Then t is enabled in s if m(pt) = 0 and q = q−

t ;
its firing leads to the configuration (q+

t , m+Post(t)). Let t = (q−
t , Pre(t), Post(t), q+

t ) ∈ ∆1.
Then t is enabled in s if m ≥ Pre(t) and q = q−

t ; its firing leads to the configuration
s′ = (q+

t , m − Pre(t) + Post(t)). One denotes the configuration change by: s
t−→ s′. One

denotes En(s), the set of transitions enabled in s and Weight(s) =
∑

t∈En(s) W (t, m). Let
σ = t1 . . . tn be a sequence of transitions. We define the enabling and the firing of σ by
induction. The empty sequence is always enabled in s and its firing leads to s. When n > 0,
σ is enabled if s

t1−→ s1 and t2 . . . tn is enabled in s1. The firing of σ leads to the configuration
reached by t2 . . . tn from s1. A configuration s is reachable from some s0 if there is a firing
sequence σ that reaches s from s0. When Q is a singleton, one omits the control states in
the definition of transitions and configurations.

We now provide the semantic of a pCM as a countable Markov chain.
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▶ Definition 11. Let C be a pCM. Then the Markov chain MC = (S, p) is defined by:
S = Q× Nd;
For all s = (q, m) ∈ S, if En(s) = ∅ then p(s, s) = 1. Otherwise for all s′ ∈ S:

p(s, s′) = Weight(s)−1
∑

s
t−→s′

W (t, m)

For establishing the undecidability results, we will reduce an undecidable problem related
to counter programs, which are a variant of CM. Let us recall that a d-counter program
P is defined by a set of d counters {c1, . . . , cd} and a set of n + 1 instructions labelled by
{0, . . . , n}, where for all i < n, the instruction i is of type

either (1) cj ← cj + 1; goto i′ with 1 ≤ j ≤ d and 0 ≤ i′ ≤ n

or (2) if cj > 0 then cj ← cj−1; goto i′, else goto i′′ with 1 ≤ j ≤ d and 0 ≤ i′, i′′ ≤ n

and the instruction n is halt. The program starts at instruction 0 and halts if it reaches the
instruction n.

The halting problem for two-counter programs asks, given a two-counter program P and
initial values of counters, whether P eventually halts. It is undecidable [22]. We introduce a
subclass of two-counter programs that we call normalized. A normalized two-counter program
P starts by resetting its counters and, on termination, resets its counters before halting.

Normalized two-counter program. The first two instructions of a normalized two-counter
program reset counters c1, c2 as follows:

0 : if c1 > 0 then c1 ← c1 − 1; goto 0 else goto 1
1 : if c2 > 0 then c2 ← c2 − 1; goto 1 else goto 2

The last three instructions of a normalized two-counter program are:
n−2 : if c1 > 0 then c1 ← c1 − 1; goto n−2 else goto n−1
n−1 : if c2 > 0 then c2 ← c2 − 1; goto n−1 else goto n

n : halt
For 1 < i < n − 2, the labels occurring in instruction i belong to {0, . . . , n − 2}. In a
normalized two-counter program P , given any initial values v1, v2, P halts with v1, v2 if and
only if P halts with initial values 0, 0. Moreover when P halts, the values of the counters are
null. The halting problem for normalized two-counter programs is also undecidable (see [17]
for the proof).

We now show that decisiveness is undecidable even for static pCM, by considering only
static weights: for all t ∈ ∆, W (t) is a constant function.

▶ Theorem 12. Decisiveness w.r.t. a finite set is undecidable in (static) pCM.

4 Probabilistic safe one-counter machines

We now study decisiveness for pCMs that only have one counter denoted c. We also restrict
∆1: a single counter PCM is safe if for all t ∈ ∆1, (Pre(t), Post(t)) ∈ {1} × {0, 1, 2}. In
words, in a safe one-counter pCM, a transition of ∆1 requires the counter to be positive and
may either let it unchanged, or incremented or decremented by a unit.

4.1 One-state and one-counter pCM
We first prove that decisiveness is undecidable for the probabilistic version of one-state and
one-counter machines. Then we show how to restrict the weight functions and ∆1 such
that this property becomes decidable. Both proofs make use of the relationship between
decisiveness and recurrence stated in Proposition 9, in an implicit way.
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▶ Theorem 13. The decisiveness problem for safe one-counter pCM is undecidable even
with a single state.

Proof. We will reduce the Hilbert’s tenth problem to decisiveness problems. Let P ∈
Z[X1, . . . Xk] be an integer polynomial with k variables. This problem asks whether there
exist n1, . . . , nk ∈ N such that P (n1, . . . , nk) = 0.
We define C as follows. There are two transitions both in ∆1:

dec with Pre(dec) = 1 and Post(dec) = 0;
inc with Pre(inc) = 0 and Post(inc) = 1.

The weight of dec is the constant function 1, i.e., W (dec, n) = f(n) = 1, while the weight of
inc is defined by the following (non polynomial) function:

W (inc, n) = g(n) = min(P 2(n1, . . . , nk) + 1 | n1 + . . . + nk ≤ n)

This function is obviously computable. Let us study the decisiveness of MC w.r.t. s0 = 1
and A = {0}. Observe that MC is the Markov chain M1 of Figure 1. Let us recall that in
M1, the probability to reach 0 from i is 1 iff

∑
n∈N

∏
1≤m<n ρm = ∞ and otherwise it is

equal to
∑

i≤n

∏
1≤m<n

ρm∑
n∈N

∏
1≤m<n

ρm
with ρm = 1−pm

pm
.

• Assume there exist n1, . . . , nk∈N s.t. P (n1, . . . , nk)=0. Let n0 =n1 + · · ·+ nk. Thus for
all n≥n0, W (inc, n) = 1, which implies that pC(n, n− 1) = pC(n, n + 1) = 1

2 . Thus due to
the results on M1, from any state n, one reaches 0 almost surely and so MC is decisive.
• Assume there do not exist n1, . . . , nk ∈ N s.t. P (n1, . . . , nk) = 0. For all n ∈ N,
W (inc, n) ≥ 2, implying that in M1, ρn ≤ 1

2 . Thus MC is not decisive. ◀

Due to the negative result for single state and single counter pCM stated in Theorem 13,
it is clear that one must restrict the possible weight functions.

▶ Theorem 14. The decisiveness problem w.r.t. s0 and finite A for polynomial safe one-
counter pCM C with a single state is decidable in linear time.

4.2 Homogeneous one-counter machines
We now study another interesting model that is considered as a generalization of the well-
known model of quasi-birth-death process with dynamic weights. This model has been the
topic of numerous theoretical results and modelings, see for instance [8].

Let C be a one-counter safe pCM. For all q ∈ Q, let Sq,1 =
∑

t=(q,Pre(t),Post(t),q+
t )∈∆1

W (t)
and MC be the Q×Q matrix defined by

MC [q, q′] =
∑

t=(q,Pre(t),Post(t),q′)∈∆1
W (t)

Sq,1

(thus MC [q, q′] is a function from N to Q≥0).

▶ Definition 15 (pHM). A probabilistic homogeneous machine (pHM) is a probabilistic safe
one-counter machine C = (Q, ∆, W ) where:

For all t ∈ ∆, W (t) is a positive polynomial in N[X];
For all q, q′ ∈ Q, MC [q, q′] is constant.

Observe that by definition, in a pHM, MC is a transition matrix.

▶ Example 16. Here MC [q, q′] = MC [q, q′′] = X2+X+1
2(X2+X+1) = 1

2 fulfilling the homogeneous
requirement. Let us describe a possible transition: given a configuration (q, n) with n > 0
the probability to go to (q′, n + 1) is equal to X

2(X2+X+1) .
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q′ q q′′

X, 1, 2

X2 + 1, 1, 0 X + 1, 1, 0

X2, 1, 1

The family (rq)q∈Q of the next proposition is independent of the function W and is
associated with the qualitative behaviour of C, i.e., its underlying transition system. For all
q ∈ Q, rq is an upper bound of the counter value for q, from which Q× {0} is reachable.

▶ Proposition 17. Let C be a pHM. Then one can compute in polynomial time a family
(rq)q∈Q such that for all q, rq ∈ {0, . . . , |Q| − 1} ∪ {∞}, and Q× {0} is reachable from (q, k)
iff k ≤ rq.

▶ Theorem 18. Let C be a pHM such that MC is irreducible. Then the decisiveness problem
of C w.r.t. s0 = (q, n) ∈ Q× N and A = Q× {0} is decidable in polynomial time.

Proof. With the notations of previous proposition, assume that there exist q with rq <∞
and q′ with rq′ = ∞. Since MC is irreducible, there is a sequence of transitions in ∆1

q0
1,v1−−→ q1 · · ·

1,vm−−−→ qm with q0 = q and qm = q′. Let sv = min(
∑

i≤j(vi−1)|j ≤ m) and pick
some k > max(rq,−sv). Then there is a path in MC from (q, k) to (q′, k +

∑
i≤m(vi − 1)),

which yields a contradiction since (q, k) cannot reach Q× {0} while (q′, k +
∑

i≤m vi) can
reach it. Thus either (1) for all q ∈ Q, rq <∞ or (2) for all q ∈ Q, rq =∞.
• First assume that for all q ∈ Q, rq <∞. Thus for all k > rq, (q, k) cannot reach Q× {0}
and thus C is decisive w.r.t. (q, k) and Q × {0}. Now consider a configuration (q, k) with
k ≤ rq. By definition there is a positive probability say p(q,k) to reach Q× {0} from (q, k).
Let pmin = min(p(q,k) | q ∈ Q∧ k ≤ rq). Then for all (q, k) with k ≤ rq, there is a probability
at least pmin to reach either Q × {0} or {(q, k) | q ∈ Q ∧ k > rq} by a path of length
ℓ =

∑
q∈Q(rq + 1). This implies that after nℓ transitions the probability to reach either

Q×{0} or {(q, k) | q ∈ Q∧ k > rq} is at least 1− (1− pmin)n. Thus C is decisive w.r.t. (q, k)
and Q× {0}. Summarizing for all (q, k), C is decisive w.r.t. (q, k) and Q× {0}.
• Now assume that for all (q, k) ∈ Q × N, Q × {0} is reachable from (q, k). Thus the
decisiveness problem boils down to the almost sure reachability of Q× {0}.
Since the target of decisiveness is Q× {0}, we can arbitrarily set up the outgoing transitions
of these states (i.e., ∆0) without changing the decisiveness problem. So we choose these
transitions and associated probabilities as follows. For all q, q′ such that MC [q, q′] > 0, there
is a transition t = q

c,0−−→ q′ with W (t) = MC [q, q′].
Since MC is irreducible, there is a unique invariant distribution π∞ (i.e., π∞MC = π∞)
fulfilling for all q ∈ Q, π∞(q) > 0.
Let (Qn, Nn)n∈N be the stochastic process defined by MC with N0 = k for some k and for
all q ∈ Q, Pr(Q0 = q) = π∞(q). Due to the invariance of π∞ and the choice of transitions
for Q× {0}, one gets by induction that for all n ∈ N :

Pr(Qn = q) = π∞(q);
for all k > 0 and v ∈ {−1, 0, 1}, Pr(Nn+1 = k + v − 1|Nn = k) =∑

q∈Q π∞(q)
∑

t=(q,1,v,q′)∈∆1
W (t,k)

Sq,1(k) =
∑

q∈Q
π∞(q)

∏
q′ ̸=q

Sq′,1(k)
∑

t=(q,1,v,q′)∈∆
W (t,k)∏

q′∈Q
Sq′,1(k)

;

Pr(Nn+1 = 0|Nn = 0) = 1.

For v ∈ {−1, 0, 1}, let us define the polynomial Pv by:∑
q∈Q

π∞(q)
∏
q′ ̸=q

Sq′,1
∑

t=(q,1,v+1,q′)∈∆1

W (t)
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Due to the previous observations, the stochastic process (Nn)n∈N is the Markov chain defined
below where the weights outgoing from a state have to be normalized:

0 1 2 3 · · ·

P−1(1)

P1(1)

P−1(2)

P1(2)

P−1(3)

P1(3)

P−1(4)

1

P0(1) P0(2) P0(3)

Using our hypothesis about reachability, P−1 is a positive polynomial (while P1 could be null)
and thus the decisiveness of this Markov chain w.r.t. state 0 is equivalent to the decisiveness
of the Markov chain below:

0 1 2 3 · · ·

P−1(1)

P1(1)

P−1(2)

P1(2)

P−1(3)

P1(3)

P−1(4)

1

Due to Theorem 14, this problem is decidable (in linear time) and either (1) for all k ∈ N
this Markov chain is decisive w.r.t k and 0 or (2) for all k > 0 this Markov chain is not
decisive w.r.t k and 0. Let us analyze the two cases w.r.t. the Markov chain of the pHM.

Case (1). In the stochastic process (Qn, Nn)n∈N, the initial distribution has a positive
probability for (q, k) for all q ∈ Q. This implies that for all q, C is decisive w.r.t. (q, k) and
Q× {0}. Since k was arbitrary, this means that for all (q, k), C is decisive w.r.t. (q, k) and
Q× {0}.

Case (2). Choosing k = 1 and applying the same reasoning as for the previous case, there
is some (q, 1) which is not decisive (and so for all (q, k′) with k′ > 0). Let q′ ∈ Q, since MC
is irreducible, there is a (shortest) sequence of transitions in ∆1 leading from q′ to q whose
length is at most |Q| − 1. Thus for all (q′, k′) with k′ ≥ |Q| there is a positive probability to
reach some (q, k) with k > 0. Thus (q′, k) is not decisive.
Now let (q′, k′) with k′ < |Q|. Then we compute by a breadth first exploration the configura-
tions reachable from (q′, k′) until either (1) one reaches some (q′′, k′′) with k′′ ≥ |Q| or (2)
the full (finite) reachability set is computed. In the first case, there is a positive probability
to reach some (q′′, k′′) with k′′ ≥ |Q| and from (q′′, k′′) to some (q, k) with k > 0 and so
(q′, k′) is not decisive. In the second case, it means that the reachable set is finite and from
any configuration of this set there is a positive probability to reach Q × {0} by a path of
length at most the size of this set. Thus almost surely Q× {0} will be reached and (q′, k′) is
decisive. ◀

5 Probabilistic Petri nets

We now introduce probabilistic Petri nets as a subclass of pCM.

▶ Definition 19 (pPN). A probabilistic Petri net (pPN) N is a pCM N = (Q, P, ∆, W )
where Q is a singleton and ∆0 = ∅.
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Notations. Since there is a unique control state in a pPN, a configuration in a pPN is
reduced to m ∈ NP and it is called a marking. As usual a marking m is also denoted as
a bag

∑
p∈P m(p)p where the term m(p)p is omitted when m(p) = 0 and the term m(p)p

is rewritten p when m(p) = 1. A pair (N , m0), where N is a pPN and m0 ∈ NP is some
(initial) marking, is called a marked pPN. As pPN is defined as a subclass of pCM, its formal
semantics is the same as the one described in Section 3.

In previous works [3, 11] about pPNs, the weight function W is a static one: i.e., a
function from ∆ to N∗. As above, we call these models static probabilistic Petri nets.

pi

cj

pi′

stop

inci exiti

Figure 2 i : cj ← cj + 1; goto i′.

pn

sim

p0 stop

c1 c2

again clean1 clean2

clean3

Figure 3 halt instruction and cleaning stage.

Static-probabilistic VASS (and so pPNs) are decisive with respect to upward closed sets
(Corollary 4.4 in [3]) but they may not be decisive w.r.t. an arbitrary finite set. Surprisingly,
the decisiveness problem for Petri nets or VASS seems not to have been studied. We establish
below that even for polynomial pPNs, decisiveness is undecidable.

▶ Theorem 20. The decisiveness problem of polynomial pPNs w.r.t. a finite or upward
closed set is undecidable.

Proof. We reduce the reachability problem of normalized two-counter machines to the
decisiveness problem of pPN. Let C be a normalized two-counter machine with an instruction
set {0, . . . , n}. The corresponding marked pPN (NC , m0) is built as follows. Its set of places
is P = {pi | 0 ≤ i ≤ n} ∪ {qi | i is a test instruction} ∪ {cj | 1 ≤ j ≤ 2} ∪ {sim, stop}. The
initial marking is m0 = p0.
The set ∆ of transitions is defined by a pattern per type of instruction. The pattern for the
incrementation instruction is depicted in Figure 2. The pattern for the test instruction is
depicted in Figure 4. The pattern for the halt instruction is depicted in Figure 3 with in
addition a cleaning stage. A place is depicted by a circle while a transition is depicted by a
rectangle. There is an edge from place p to transition t (resp. from transition t to place p)
labelled by v = Pre(t)(p) (resp. v = Post(t)(p)) when v > 0; v is omitted when v = 1.

pi

cj

qi

pi′ pi′′ stop
sim

deci

begZi

endZi

exiti

rmi
2

Figure 4 i : if cj > 0 then cj ← cj − 1; goto i′else goto i′′.



A. Finkel, S. Haddad, and L. Ye 14:13

Before specifying the weight function W , let us describe the qualitative behaviour of this net.
(NC , m0) performs repeatedly a weak simulation of C. As usual since the zero test does not
exist in Petri nets, during a test instruction i, the simulation can follow the zero branch while
the corresponding counter is non null (transitions begZi and endZi). If the net has cheated
then with transition rmi, it can remove tokens from sim (two per two). In addition when
the instruction is not halt, instead of simulating it, it can exit the simulation by putting a
token in stop and then will remove tokens from the counter places including the simulation
counter as long as they are not empty. The simulation of the halt instruction consists in
restarting the simulation and incrementing the simulation counter sim.

Thus the set of reachable markings is included in the following set of markings {pi + xc1 +
yc2 + zsim | 0 ≤ i ≤ n, x, y, z ∈ N} ∪ {qi + xc1 + yc2 + zsim | i is a test instruction, x, y, z ∈
N} ∪ {stop + xc1 + yc2 + zsim | x, y, z ∈ N}. By construction, the marking stop is always
reachable. We will establish that NC is decisive w.r.t. m0 and {stop} if and only if C does
not halt.

Let us specify the weight function. For any incrementation instruction i, W (inci, m) =
m(sim)2 + 1. For any test instruction i, W (begZi, m) = m(sim)2 + 1, W (deci, m) =
2m(sim)4 + 2 and W (rmi, m) = 2. All other weights are equal to 1.

• Assume that C halts and consider its execution σC with initial values (0, 0). Let ℓ = |σC | be
the length of this execution. Consider now σ the infinite sequence of (NC , m0) that infinitely
performs the correct simulation of this execution. The infinite sequence σ never marks the
place stop. We now show that the probability of σ is non null implying that NC is not
decisive.

After every simulation of σC , the marking of sim is incremented and it is never decremented
since (due to the correctness of the simulation) every time a transition begZi is fired, the
corresponding counter place cj is unmarked which forbids the firing of rmi. So during the
(n + 1)th simulation of ρ, the marking of sim is equal to n.

So consider the probability of the correct simulation of an instruction i during the (n + 1)th

simulation.
If i is an incrementation then the weight of inci is n2 and the weight of exiti is 1. So the
probability of a correct simulation is n2+1

n2+2 = 1− 1
n2+2 ≥ e

− 2
n2+2 . 1

If i is a test of cj and the marking of cj is non null then the weight of deci is 2n4 + 2,
the weight of begZi is n2 + 1 and the weight of exiti is 1. So the probability of a correct
simulation is 2n4+2

2n4+n2+4 ≥
2n4+2

2n4+2n2+4 = n2+1
n2+2 = 1− 1

n2+2 ≥ e
− 2

n2+2 .
If i is a test of cj and the marking of cj is null then the weight of begZi is n2 + 1 and the
weight of exiti is 1. So the probability of a correct simulation is n2+1

n2+2 = 1− 1
n2+2 ≥ e

− 2
n2+2 .

So the probability of the correct simulation during the (n + 1)th simulation is at least
(e− 2

n2+2 )ℓ = e
− 2ℓ

n2+2 . Hence the probability of σ is at least
∏

n∈N e
− 2ℓ

n2+2 = e
−

∑
n∈N

2ℓ
n2+2 > 0,

as the sum in the exponent converges.

• Assume that C does not halt (and so does not halt for any initial values of the counters).
We partition the set of infinite paths into a countable family of subsets and prove that for all
of them the probability to infinitely avoid to mark stop is null which will imply that NC is
decisive. The partition is based on k ∈ N ∪ {∞}, the number of firings of again in the path.

1 We use 1− x ≥ e−2x for 0 ≤ x ≤ 1
2 .
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Case k < ∞. Let σ be such a path and consider the suffix of σ after the last firing of
again. The marking of sim is at most k and can only decrease along the suffix. Consider
a simulation of an increment instruction i. The weight of inci is at most is k2 + 1 and the
weight of exiti is 1. So the probability of avoiding exiti is at most k2+1

k2+2 = 1− 1
k2+2 ≤ e

− 1
k2+2 .

Consider the simulation of a test instruction i. Then the weight of deci is at most 2k4 + 2,
the weight of begZi is at most k2 + 1 and the weight of exiti is 1. So the probability of
avoiding exiti is at most 2k4+k2+2

2k4+k2+4 ≤
4k4+1
4k4+2 = 1− 1

4k4+2 ≤ e
− 1

4k4+2 .
Thus after n simulations of instructions in the suffix, the probability to avoid to mark stop is
at most e

− n
4k4+2 . Letting n go to infinity yields the result.

Case k = ∞. We first show that almost surely there will be an infinite number of
simulations of C with the marking of sim at most 1. Observe that all these simulations are
incorrect since they mark pn while C does not halt. So at least once per simulation some
place qi and the corresponding counter cj must be marked and if the marking of sim is at
least 2 with probability 2

3 two tokens of sim are removed (recall that the weight of rmi is 2
and the weight of endZi is 1). Thus once the marking of sim is greater than 1, considering
the successive random markings of sim after the firing of again until it possibly reaches 1,
this behaviour is stochastically bounded by the following random walk:

1 2 3 · · ·

2
3

1
3

2
3

1
3

2
3

In this random walk, one reaches the state 1 with probability 1. This establishes that
almost surely there will be an infinite number of simulations of C with the marking of sim

at most 1. Such a simulation must simulate at least one instruction. If this instruction is
an incrementation, the exiting probability is at least 1

3 ; if it is a test instruction the exiting
probability is at least 1

7 . Thus after n such simulations of C, the probability to avoid to mark
stop is at most ( 6

7 )n. Letting n go to infinity yields the result.
Observe that the result remains true when substituting the singleton {stop} by the set of
markings greater than or equal to stop. ◀

We deduce thus that decisiveness of extended (probabilistic) Petri nets is undecidable :
in particular for Reset Petri nets [15], Post-Self-Modifying Petri nets [25], Recursive Petri
nets, etc.

▶ Definition 21. The language of a marked Petri net (N , m0) is defined by L(N , m0) =
{σ ∈ ∆∗ |m0

σ−→}. The marked Petri net (N , m0) is regular if L(N , m0) is regular.

Given a marked Petri net (N , m0), the problem who asks whether it is regular is decidable
[18, 26] and belongs to EXPSPACE [14]. For establishing the next proposition, we only need
the following result that holds for regular Petri nets: There exists a computable bound
B(N , m0) such that for all markings m1 reachable from m0 and all markings m2 with some
p ∈ P fulfilling m2(p) + B(N , m0) < m1(p), m2 is unreachable from m1 ([18]).

▶ Theorem 22. Let (N , m0) be a regular marked pPN and m1 be a marking. Then (N , m0)
is decisive with respect to m0 and {m1}.
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Proof. Consider the following algorithm that, after computing B(N , m0), builds a finite
graph whose vertices are some reachable markings and edges correspond to transition firings
between markings:

The initial vertex is m0 and push on the stack m0.
While the stack is not empty, pop from the stack some marking m. Compute the set of
transition firings m t−→m′. Add m′ in the set of vertices, the firings m t−→m′ to the set
of edges and push on the stack m′ if:

1. m′ is not already present in the set of vertices,
2. and m′ ̸= m1,
3. and for all p ∈ P , m1(p) + B(N , m0) ≥m′(p).

Due to the third condition, this algorithm terminates. From above, if m1 does not occur in
the graph then m1 is unreachable from m0 and thus N is decisive w.r.t. m1.
Otherwise, considering the weights specified by W and adding loops for states without
successors, this graph can be viewed as a finite Markov chain and so reaching some bottom
strongly connected component (BSCC) almost surely. There are three possible cases: (1) the
BSCC consisting of m1, (2) a BSCC consisting of a single marking m for which there exists
some p ∈ P fulfilling m1(p) + B(N , m0) < m(p) and thus from which m1 is unreachable or
(3) a BSCC that is also a BSCC of MN and thus from which one cannot reach m1. This
establishes that N is decisive w.r.t. m1. ◀

In this particular case, instead of using Algorithm 1 to frame the reachability probability,
one can use the Markov chain of the proof to exactly compute this probability.

6 Conclusion and perspectives

We have studied the decidability of decisiveness with respect to several subclasses of probab-
ilistic counter machines. The results are summarized in the following table. When A is not
mentioned it means that A is finite.

model constant polynomial general
pHM D D [Th 14] U [Th 13]

even with a single state
pPN ? U [Th 20] U

also w.r.t. upward closed sets[Th 20] but D when regular [Th 22]
pCM U [Th 12] U U

In the future, apart for solving the left open problem in the above table, we plan to introduce
sufficient conditions for decisiveness for models with undecidability of decisiveness like pPNs
with polynomial weights. This could have a practical impact for real case-study modellings.

In another direction, we have established that the decisiveness and recurrence properties
are closely related. It would be interesting to define a property related to transience in
Markov chains. In fact we have identified such a property called divergence and the definition
and analysis of this property will appear in a forthcoming paper.

References
1 Parosh Aziz Abdulla, Christel Baier, S. Purushothaman Iyer, and Bengt Jonsson. Reasoning

about probabilistic lossy channel systems. In Catuscia Palamidessi, editor, CONCUR 2000 -
11th International Conference on Concurrency Theory, University Park, PA, USA, August
22-25, volume 1877 of LNCS, pages 320–333. Springer, 2000. doi:10.1007/3-540-44618-4_24.

CONCUR 2023

https://doi.org/10.1007/3-540-44618-4_24


14:16 About Decisiveness of Dynamic Probabilistic Models

2 Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Moshe Rabinovich, and Philippe
Schnoebelen. Verification of probabilistic systems with faulty communication. Inf. Comput.,
202(2):141–165, 2005. doi:10.1016/j.ic.2005.05.008.

3 Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. Decisive Markov chains. Log.
Methods Comput. Sci., 3(4), 2007. doi:10.48550/arXiv.0706.2585.

4 Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. Inf.
Comput., 127(2):91–101, 1996. doi:10.1109/LICS.1993.287591.

5 Parosh Aziz Abdulla and Alexander Moshe Rabinovich. Verification of probabilistic systems
with faulty communication. In Proceedings of the 6th international conference on Foundations
of Software Science and Computational Structures FOSSACS, volume 2620 of LNCS, pages
39–53. Springer, 2003. doi:10.1007/3-540-36576-1_3.

6 Christel Baier and Bettina Engelen. Establishing qualitative properties for probabilistic
lossy channel systems: An algorithmic approach. In Formal Methods for Real-Time and
Probabilistic Systems, Proceedings of the 5th International AMAST Workshop, ARTS’99,
Bamberg, Germany, May 26-28, 1999, volume 1601 of LNCS, pages 34–52. Springer, 1999.
doi:10.1007/3-540-48778-6_3.

7 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
8 N. G. Bean, L. Bright, G. Latouche, C. E. M. Pearce, P. K. Pollett, and P. G. Taylor. The

quasi-stationary behavior of quasi-birth-and-death processes. The Annals of Applied Probability,
7(1):134–155, 1997. doi:10.1214/aoap/1034625256.

9 Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Pierre Carlier. When are stochastic
transition systems tameable? J. Log. Algebraic Methods Program., 99:41–96, 2018. doi:
10.48550/arXiv.1703.04806.

10 Nathalie Bertrand and Philippe Schnoebelen. Model checking lossy channels systems is
probably decidable. In Proceedings of the 6th International Conference on Foundations of
Software Science and Computation Structures, FOSSACS 2003 Held as Part of ETAPS
2003, Warsaw, Poland, April 7-11, volume 2620 of LNCS, pages 120–135. Springer, 2003.
doi:10.1007/3-540-36576-1_8.

11 Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, Petr Novotný, Dominik Velan, and
Florian Zuleger. Efficient algorithms for asymptotic bounds on termination time in VASS. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, pages 185–194. ACM, 2018. doi:10.1145/3209108.3209191.

12 Tomás Brázdil, Javier Esparza, Stefan Kiefer, and Antonín Kucera. Analyzing prob-
abilistic pushdown automata. Formal Methods Syst. Des., 43(2):124–163, 2013. doi:
10.1007/s10703-012-0166-0.

13 Tomás Brázdil, Stefan Kiefer, and Antonín Kucera. Efficient analysis of probabilistic programs
with an unbounded counter. J. ACM, 61(6):41:1–41:35, 2014. doi:10.1145/2629599.

14 Stéphane Demri. On selective unboundedness of VASS. J. Comput. Syst. Sci., 79(5):689–713,
2013. doi:10.1016/j.jcss.2013.01.014.

15 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidability
and undecidability. In Proceedings of the 25th International Colloquium on Automata, Lan-
guages and Programming, ICALP’98, volume 1443 of LNCS, pages 103–115. Springer, 1998.
doi:10.5555/646252.686157.

16 Javier Esparza, Antonín Kucera, and Richard Mayr. Model Checking Probabilistic Pushdown
Automata. Logical Methods in Computer Science, Volume 2, Issue 1, 2006. doi:10.2168/
LMCS-2(1:2)2006.

17 Alain Finkel, Serge Haddad, and Lina Ye. About decisiveness of dynamic probabilistic models.
CoRR, abs/2305.19564, 2023. doi:10.48550/arXiv.2305.19564.

18 Abraham Ginzburg and Michael Yoeli. Vector addition systems and regular languages. J.
Comput. Syst. Sci., 20(3):277–284, 1980. doi:10.1016/0022-0000(80)90009-4.

https://doi.org/10.1016/j.ic.2005.05.008
https://doi.org/10.48550/arXiv.0706.2585
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1007/3-540-36576-1_3
https://doi.org/10.1007/3-540-48778-6_3
https://doi.org/10.1214/aoap/1034625256
https://doi.org/10.48550/arXiv.1703.04806
https://doi.org/10.48550/arXiv.1703.04806
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1145/3209108.3209191
https://doi.org/10.1007/s10703-012-0166-0
https://doi.org/10.1007/s10703-012-0166-0
https://doi.org/10.1145/2629599
https://doi.org/10.1016/j.jcss.2013.01.014
https://doi.org/10.5555/646252.686157
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.48550/arXiv.2305.19564
https://doi.org/10.1016/0022-0000(80)90009-4


A. Finkel, S. Haddad, and L. Ye 14:17

19 S. Purushothaman Iyer and Murali Narasimha. Probabilistic lossy channel systems. In
Theory and Practice of Software Development (TAPSOFT), 7th International Joint Conference
CAAP/FASE, volume 1214 of LNCS, pages 667–681. Springer, 1997. doi:10.1007/BFb0030633.

20 J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer-Verlag, 2nd edition,
1976. doi:10.1007/978-1-4684-9455-6.

21 Tianrong Lin. Model-checking PCTL properties of stateless probabilistic pushdown systems
with various extensions, 2023. doi:10.48550/arXiv.2209.10517.

22 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA,
1967. doi:10.5555/1095587.

23 Alexander Moshe Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In
Proceedings of 30th International Colloquium Automata, Languages and Programming ICALP,
volume 2719 of LNCS, pages 1008–1021. Springer, 2003. doi:10.1007/3-540-45061-0_78.

24 Eugene S. Santos. Probabilistic grammars and automata. Inf. Control., 21(1):27–47, 1972.
doi:10.1016/S0019-9958(72)90026-5.

25 Rüdiger Valk. Self-modifying nets, a natural extension of Petri nets. In Proceedings of the 5th
International Colloquium on Automata, Languages and Programming, volume 62 of LNCS,
pages 464–476. Springer, 1978. doi:10.1007/3-540-08860-1_35.

26 Rüdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. J. Comput. Syst. Sci.,
23(3):299–325, 1981. doi:10.1016/0022-0000(81)90067-2.

27 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pages
327–338. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.12.

CONCUR 2023

https://doi.org/10.1007/BFb0030633
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.48550/arXiv.2209.10517
https://doi.org/10.5555/1095587
https://doi.org/10.1007/3-540-45061-0_78
https://doi.org/10.1016/S0019-9958(72)90026-5
https://doi.org/10.1007/3-540-08860-1_35
https://doi.org/10.1016/0022-0000(81)90067-2
https://doi.org/10.1109/SFCS.1985.12




Probabilistic Operational Correspondence
Anna Schmitt #

TU Darmstadt, Germany

Kirstin Peters #

Augsburg University, Germany

Abstract
Encodings are the main way to compare process calculi. By applying quality criteria to encodings
we analyse their quality and rule out trivial or meaningless encodings. Thereby, operational
correspondence is one of the most common and most important quality criteria. It ensures that
processes and their translations have the same abstract behaviour. We analyse probabilistic versions
of operational correspondence to enable such a verification for probabilistic systems.

Concretely, we present three versions of probabilistic operational correspondence: weak, middle,
and strong. We show the relevance of the weaker version using an encoding from a sublanguage of
probabilistic CCS into the probabilistic π-calculus. Moreover, we map this version of probabilistic
operational correspondence onto a probabilistic behavioural relation that directly relates source
and target terms. Then we can analyse the quality of the criterion by analysing the relation it
induces between a source term and its translation. For the second version of probabilistic operational
correspondence we proceed in the opposite direction. We start with a standard simulation relation
for probabilistic systems and map it onto a probabilistic operational correspondence criterion.
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1 Introduction

Encodings are used to compare process calculi and to reason about their expressive power.
Encodability criteria are conditions that limit the existence of encodings. Their main purpose
is to rule out trivial or meaningless encodings, but they can also be used to limit attention
to encodings that are of special interest in a particular domain or for a particular purpose.
These quality criteria are the main tool in separation results, saying that one calculus is not
expressible in another one; here one has to show that no encoding meeting these criteria
exists. To obtain stronger separation results, care has to be taken in selecting quality criteria
that are not too restrictive. For encodability results, saying that one calculus is expressible
in another one, all one needs is an encoding, together with criteria testifying for the quality
of the encoding. Here it is important that the criteria are not too weak.

In the literature various different criteria and different variants of the same criteria
are employed to achieve separation and encodability results (see e.g. [29] for an overview).
Unfortunately it is not always obvious whether the criteria used to obtain a result in a
particular setting do indeed fit to this setting. A way to formally analyse the quality of
encodability criteria was presented in [30]. They propose to map the criteria on conditions
on relations between source and target terms that in particular relate each source term
with its literal translation. This allows us to formally reason about encodability criteria,
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to completely capture and describe their semantic effect, and to analyse side conditions of
combinations of criteria. We want to use this technique to define and analyse versions of
operational correspondence for probabilistic systems.

Intuitively, operational correspondence requires executions to be respected. It consists of
a completeness and a soundness part. The completeness condition requires that for all source
term executions there is one emulation in the target language such that the encoding of the
result in the source and the result in the target are related by some relation RT on the target
language. Intuitively, the completeness condition requires that any source term execution is
emulated by the target term modulo RT. Soundness requires that for all executions of the
target there exists some execution of the source such that again the results are related by
RT. Intuitively, soundness requires that whatever the encoded term can do is a translation
of some behaviour of the source term modulo RT.

To study and compare probabilistic languages we need probabilistic versions of operational
correspondence. In § 4 we start in the traditional way and use a particular encoding, that we
consider reasonable. We derive a version of probabilistic operational correspondence (PrOC)
that captures the way in that the encoding relates the behaviour of the source and the target
language. Concretely, we consider an encoding from a sublanguage of probabilistic CCS from
[7] into the probabilistic π-calculus of [38]. As result we obtain a weak version of PrOC.

In § 5 we then map the conditions in weak PrOC onto requirements of a relation between
source and target terms as proposed in [30]. Thereby we are able to show that weak PrOC
ensures that source terms and their literal translations are related by a probabilistic version
of coupled similarity ([27]).

For our second variant of PrOC we are interested in a stricter criterion that induces a
stricter simulation relation such as bisimulation. In § 6 we therefore reverse the ideas of
[30]. Instead of starting with a criterion that we map on conditions of a relation, we start
with an interesting relation and derive which variant of PrOC induces this relation. Since
bisimulation is often considered as the standard behavioural relation between processes, we
start with probabilistic barbed bisimulation. From this relation we derive a version of PrOC
that induces this relation between source terms and their translations. Finally, we also
present a strong version of PrOC and its correspondence to strong probabilistic bisimulation.

We conclude in § 7. The proofs and some additional material can be found in [33].

2 Process Calculi

A process calculus is a language L = (P, 7−→) consisting of a set of terms P – its syntax –
and its semantics defining reduction steps. The syntax of a process calculus is usually defined
by a context-free grammar defining operators. An operator of arity 0 is a constant. The
arguments that are again process terms are called subterms. A guard is an operator that
prevents the reductions of subterms until the guard is reduced first. In the languages we
consider, guards are action prefixes.

We assume that the semantics is given as an operational semantics consisting of inference
rules defined on the operators of the language [31]. For many process calculi, the semantics
is provided in two forms, as reduction semantics and as labelled transition semantics. We
assume that at least the reduction semantics 7−→ is given as part of the definition, because
its treatment is easier in the context of encodings. We consider probabilistic calculi, where a
process reduces in a step to a discrete probability distribution.

A (discrete) probability distribution over a set S is a mapping ∆ : S → [0, 1] with∑
P ∈S ∆(P ) = 1. Let D(S) ranged over by ∆, Θ, Φ denote the collection of all such

distributions over S. The support of ∆ is the set ⌈∆⌉ = {P | ∆(P ) > 0} of elements with
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a positive probability. We use P to denote the point distribution assigning probability 1
to state P and 0 to all other states in S. If

∑
i∈I pi = 1, pi ≥ 0, and ∆i is a probability

distribution for each i in some finite index set I, then
∑

i∈I pi ·∆i is a probability distribution
given by

(∑
i∈I pi · ∆i

)
(P ) =

∑
i∈I pi ·∆i(P ). We sometimes use {p1P1, . . . , pnPn} to denote

a distribution ∆ with ⌈∆⌉ = {P1, . . . , Pn} and ∆(Pi) = pi for all 1 ≤ i ≤ n.
A (reduction) step P 7−→ ∆ is a single application of the reduction relation 7−→ ⊆

P × D(P), where ∆ is called derivative. We lift 7−→ to a relation between distributions (see
e.g. [7] for a similar but stricter relation).

▶ Definition 1 (Reductions of Distributions). Let ∆ 7−→ Θ whenever
(a) ∆ =

∑
i∈I piPi, where I is a finite index set and

∑
i∈I pi = 1,

(b) for each i ∈ I there is a distribution Θi such that Pi 7−→ Θi or Θi = Pi,
(c) for some i ∈ I we have Pi 7−→ Θi, and
(d) Θ =

∑
i∈I pi · Θi.

Let P 7−→ and ∆ 7−→ denote the existence of a single step from P or ∆. We write
P 7−→ω if there is some ∆ such that P 7−→ ∆ and ∆ 7−→ω, where ∆ 7−→ω if ∆ has an infinite
sequence of steps. Let Z=⇒ be the reflexive and transitive closure of 7−→ on distributions and
let P Z=⇒ ∆ if ∆ = P or P 7−→ Z=⇒ ∆.

To reason about environments of terms, we use functions on process terms called contexts.
More precisely, a context C([·]1, . . . , [·]n) : Pn → P with n holes is a function from n terms
into one term, i.e., given P1, . . . , Pn ∈ P, the term C(P1, . . . , Pn) is the result of inserting
P1, . . . , Pn in the corresponding order into the n holes of C.

Assume a countably-infinite set N of names. Let N = {n | n ∈ N } and τ /∈ N . Let
fn(P ) denote the set of free names in P . A substitution σ is a finite mapping from names to
names defined by a set {y1/x1, . . . , yn/xn} = {y1, . . . , yn/x1, . . . , xn} = {ỹ/x̃} of renamings,
where the x1, . . . , xn are pairwise distinct. The application P{ỹ/x̃} of a substitution on a
term is defined as the result of simultaneously replacing all free occurrences of xi by yi for
i ∈ {1, . . . , n}, possibly applying α-conversion to avoid capture or name clashes. For all
names in N \ {x1, . . . , xn} the substitution behaves as the identity mapping. We naturally
extend substitution to distributions.

For the last criterion of [15] (see Section 3), we need a special constant ✓, called success(ful
termination). Therefore, we add ✓ to the grammar of a language without explicitly mentioning
it. Success is used as a barb to implement some form of (fair) testing, where P↓✓ if P

has an unguarded occurrence of ✓, ∆↓✓ if there is some P with ∆(P ) > 0 and P↓✓, and
P⇓✓ = ∃∆. P Z=⇒ ∆ ∧ ∆↓✓.

Languages can be augmented with (a set of) relations R ⊆ P2 on their processes. If
R ⊆ B2 is a relation and B′ ⊆ B, then the relation R↾B′ = {(x, y) | x, y ∈ B′ ∧ (x, y) ∈ R}
denotes the restriction of R to the domain B′.

Following [7], we lift relations R ⊆ P2 to a relation R ⊆ D(P)2 on distributions.

▶ Definition 2 (Relations on Distributions, [7]).
Let R ⊆ P2 and let ∆, Θ ∈ D(P). Then (∆, Θ) ∈ R if
(a) ∆ =

∑
i∈I piPi, where I is a finite index set and

∑
i∈I pi = 1,

(b) for each i ∈ I there is a process Qi such that (Pi, Qi) ∈ R, and
(c) Θ =

∑
i∈I piQi.

An important property of this lifting operation is that it preserves reflexivity and transit-
ivity, i.e., if R is reflexive/transitive then so is R. The case of transitivity is shown in [7].
The case of reflexivity can be found in the technical report ([33]).

CONCUR 2023
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3 Encodings and Quality Criteria

Let LS = ⟨PS, 7−→S⟩ and LT = ⟨PT, 7−→T⟩ be two process calculi, denoted as source and
target language. An encoding from LS into LT is a function J·K : PS → PT. We often use
S, S′, . . . and T, T ′, . . . to range over PS and PT, respectively.

We naturally extend the encoding function to distributions, i.e., for all distributions ∆ in
the source language and all T in the target language: J∆K(T ) =

∑
S∈{S∈PS |JSK=T } ∆(S).

Let φJ·K : N → N k be a renaming policy, i.e., a mapping from a name to a vector of
names that can be used by encodings to split names and to reserve special names, such that
no two different names are translated into overlapping vectors of names. We use projection
to obtain the respective elements of a translated name, i.e., if φJ·K(a) = (a1, a2, a3) then
φJ·K(a).2 = a2. Slightly abusing notation, we sometimes use the tuples that are generated by
the renaming policy as sets. We require e.g. φJ·K(a) ∩ φJ·K(b) = ∅ whenever a ̸= b.

To analyse the quality of encodings and to rule out trivial or meaningless encodings, they
are augmented with a set of quality criteria. One such set of criteria that is well suited for
separation as well as encodability results between traditional processes calculi, i.e., calculi
without probabilities, was proposed in [15]. It turns out that for probabilistic systems as
defined above the only criterion that needs to be adapted is operational correspondence.
Accordingly, we inherit the remaining criteria from [15]:
Compositionality: For every operator op with arity n of LS and for every subset of names

N , there exists a context CN
op([·]1, . . . , [·]n) such that, for all S1, . . . , Sn with fn(S1) ∪ . . . ∪

fn(Sn) = N , it holds that Jop (S1, . . . , Sn)K = CN
op(JS1K, . . . , JSnK).

Name Invariance w.r.t. a Relation RT ⊆ P2
T: For every S ∈ PS and every substitution σ,

it holds that JSσK ≡α JSKσ′ if σ is injective and (JSσK, JSKσ′) ∈ RT otherwise, where σ′

is such that φJ·K(σ(a)) = σ′(φJ·K(a)
)

for all a ∈ N .
Divergence Reflection: For every S, JSK 7−→ω implies S 7−→ω.
Success Sensitiveness: For every S, S⇓✓ iff JSK⇓✓.

Compositionality ensures that encodings are of practical relevance by enforcing that they
can be implemented compositionally, i.e., by an algorithm that proceeds on the syntax and
does not need to analyse the source term to compute its translation. However, the formulation
of compositionality is rather strict, i.e., it rules out practically relevant translations. Note
that the best known encoding from the asynchronous π-calculus into the Join Calculus in [11]
is not compositional, but consists of an inner, compositional encoding surrounded by a fixed
context – the implementation of so-called firewalls – that is parameterised on the free names
of the source term. In order to capture this and similar encodings we relax the definition of
compositionality.
Weak Compositionality: The encoding is either compositional or consists of an inner, com-

positional encoding surrounded by a fixed context that can be parameterised on the free
names of the source term or information that are not part of the source term.

Precisely, we use this relaxation to capture process definitions that are a relevant part of the
source language CCSp but that are not contained in source terms.

A behavioural relation RT on the target is assumed for name invariance and operational
correspondence. RT needs to be success sensitive, i.e., (T1, T2) ∈ RT implies T1⇓✓ iff T2⇓✓.

Operational correspondence is arguably the most important of the five criteria in [15],
since it compares the behaviour of source terms and their translations (though only the
combination with success sensitiveness ensures that this requirement is not trivial). It
consists of a soundness and a completeness condition. Completeness requires that every
computation of a source term can be emulated by its translation. Soundness requires that
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every computation of a target term corresponds to some computation of the corresponding
source term. Different variants of operational correspondence are used in the literature (see
e.g. [30, 29]). In particular, the following three variants are often used for encodings between
process calculi without probabilities.

▶ Definition 3 (Operational Correspondence, Non-Probabilistic).
An encoding J·K is strongly operationally corresponding w.r.t. RT ⊆ P2

T if it is:
Strongly Complete: ∀S, S′. S 7−→ S′ implies (∃T. JSK 7−→ T ∧ (JS′K, T ) ∈ RT)
Strongly Sound: ∀S, T. JSK 7−→ T implies (∃S′. S 7−→ S′ ∧ (JS′K, T ) ∈ RT)

J·K is operationally corresponding w.r.t. RT ⊆ P2
T if it is:

Complete: ∀S, S′. S Z=⇒ S′ implies (∃T. JSK Z=⇒ T ∧ (JS′K, T ) ∈ RT)
Sound: ∀S, T. JSK Z=⇒ T implies (∃S′. S Z=⇒ S′ ∧ (JS′K, T ) ∈ RT)

J·K is weakly operationally corresponding w.r.t. RT ⊆ P2
T if it is:

Complete: ∀S, S′. S Z=⇒ S′ implies (∃T. JSK Z=⇒ T ∧ (JS′K, T ) ∈ RT)
Weakly Sound: ∀S, T. JSK Z=⇒ T impl. (∃S′, T ′. S Z=⇒ S′ ∧ T Z=⇒ T ′ ∧ (JS′K, T ′) ∈ RT)

S S′

JSK

JS′K

T T ′

J·K

J·K

RT

The first variant requires a strong correspondence between source and target term steps, i.e.,
a source term step is emulated by exactly one target term step and vice versa. The second
variant allows for the emulation of a single source term step by a sequence of target term
steps. With this variant encoding functions may use things like pre- and post-processing
steps. The last variant additionally allows for intermediate states, i.e., target terms that
are not directly related to the encoding of any source term but that are in between two
such source term encodings [27, 28, 17]. Such an intermediate state is depicted by T on the
right. Intermediate states often result from partial commitments: The decision on which
step is performed for a single source term step is split into two or more partial decisions in a
sequence of target term steps, where each decision already rules out some of the alternatives
that existed in the source for this step but does not rule out all alternatives.

4 PrOC for a Reasonable Encoding

The quality criteria of encodings should rule out trivial and meaningless encodings but they
should capture good encodings. Accordingly, we start with an intuitively reasonable encoding
(from CCSp into πp) and derive a version of PrOC that captures how this encoding translates
the behaviour of source terms. Then we analyse the quality of our new criterium by mapping
it on a relation between source and target terms in Section 5.

Our source language, probabilistic CCS, is introduced in [7] as a probabilistic extension of
CCS [21]. We omit the operator for non-deterministic choice from [7], because its summands
are not necessarily guarded, whereas our target language has only guarded choice. Thus,
ignoring this operator simplifies the task of finding an encoding. Since for the design
of encodability criteria the consideration of non-determinism and unguarded choices is
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orthogonal to the consideration of probabilities, it is safe to neglect this operator here. The
versions of PrOC we discover in the following can deal with combinations of non-determinism
and probabilities. We denote the resulting calculus as CCSp. Let u, v, . . . range over the set
of actions Act = N ∪ N ∪ {τ}.

▶ Definition 4 (Syntax of CCSp). The terms PC of CCSp are given by:

P ::= u.
⊕
i∈I

piPi | P1 | P2 | P \ A | P [f ] | C⟨x̃⟩

where A ⊆ N and f : N → N is a renaming function.

The probabilistic choice operator u.
⊕

i∈I piPi is guarded by an action u and offers branches
with probabilities, where pi > 0 is the probability of branch i with

∑
i∈I pi = 1. We write⊕

i∈1..n piPi as p1P1 ⊕ . . . ⊕ pnPn for a finite index set I. The process P1 | P2 implements
parallel composition, in P \ A the names in A are restricted, and P [f ] behaves like P where
each a ∈ N is replaced by f(a). For simplicity, we assume that for all f the set {x | f(x) ̸= x}
is finite. Each process constant C has a definition C

def= (x̃)P , where P ∈ PC and x̃ collect
all names in P that are not restricted. Then C⟨ỹ⟩ behaves as P with ỹ replacing x̃.

As described in [33], we use a reduction semantics obtained from the labelled semantics
in [7] by a rule that maps every τ -labelled step to a reduction step. Due to lack of space, we
only highlight the rules for choice and communication here and refer to [33] for the rest.

ProbChoiceCCSp

∆(P ) =
∑

{pi | i ∈ I ∧ Pi = P}
u.

⊕
i∈I piPi

u−−→ ∆
ComLCCSp

P1
a−−→ ∆1 P2

a−−→ ∆2

P1 | P2
τ−−→ ∆1 | ∆2

where (∆1 | ∆2)(P ) =
{

∆1(P1) · ∆2(P2) , if P = P1 | P2

0 otherwise
.

Our target language, the probabilistic π-calculus (πp), is introduced in [38], as a probabil-
istic version of the πI-calculus [32], where output is endowed with probabilities.

▶ Definition 5 (Syntax of πp). The terms Pπ of πp are given by:

P ::= x ⊕i∈I piini(ỹi).Pi | xΦi∈Iini(ỹi).Pi | P | P | (νx)P | 0 | !x(ỹ).P

The probabilistic π-calculus assigns probabilities to output. The process x ⊕i∈I piini(ỹi).Pi

is a probabilistic selecting output, where pi ∈ [0, 1] for all i ∈ I and
∑

i∈I pi = 1. The
term xΦi∈Iini(ỹi).Pi is a branching input, which does not attach probabilities to the single
events. For branching/selection labels, the index i is the branch of the label. We write
x(ỹ).P and x(ỹ).P for single outputs or inputs and x (p1in1 (ỹ1) .P1 ⊕ . . . ⊕ pninn (ỹn) .Pn)
and x (in1 (ỹ1) .P1 & . . . & inn (ỹn) .Pn) for finite indexing sets I = {1, . . . , n} in ⊕i∈I and
Φi∈I . The process P | Q is a parallel composition, (νx)P is a restriction, and !x(ỹ).P is a
replicated input. We sometimes omit empty sequences of arguments () as well as dangling 0,
i.e., a stands for a().0.

Structural congruence ≡ is defined, similarly to [22], as the smallest congruence containing
α-equivalence ≡α that is closed under the following rules:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R (νx)0 ≡ 0
(νxy)P ≡ (νyx)P (νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P )

We lift structural congruence to distributions, i.e., ∆1 ≡ ∆2 if there is a finite index set I

such that ∆1 =
∑

i∈I piPi, ∆2 =
∑

i∈I piQi, and Pi ≡ Qi for all i ∈ I.
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r
x.

⊕
i∈I

piPi

zπp

CCSp
= x.(νzi)

(
zi ⊕i∈I piini. JPiK

πp
CCSp

| zi

)
r

x.
⊕

i∈I
piPi

zπp

CCSp
= x ⊕i∈I piini. JPiK

πp
CCSp

r
τ.

⊕
i∈I

piPi

zπp

CCSp
= (νzτ )

(
zτ ⊕i∈I piini. JPiK

πp
CCSp

| zτ

)
JP | QKπp

CCSp
= JP Kπp

CCSp
| JQKπp

CCSp

JP \ AKπp
CCSp

= (νA) JP Kπp
CCSp

JP [f ]Kπp
CCSp

= JP Kπp
CCSp

{ranf /domf }
JC⟨ỹ⟩Kπp

CCSp
= C(ỹ)

J✓Kπp
CCSp

= ✓

where for each f the

ranf = y1, . . . , yn and domf = x1, . . . , xn are vectors of names such that
{x1, . . . , xn} = {x | f(x) ̸= x} and f(xi) = yi for all 1 ≤ i ≤ n.

Figure 1 Inner Encoding.

Again we refer to [33] or [38] for the semantics of πp and highlight the rule for selection.

Selectπp x ⊕i∈I piini(ỹi).Pi

{
xini⟨ỹi⟩−−−−−→

pi

Pi

}
i∈I

We observe that in [38] the semantics is given as a Segala automaton. To obtain a reduction
semantics with steps into probability distributions, we add the following rule:

Redπp

P

{
τ−−→
pi

Qi

}
i∈I

∆(R) =
∑

{pi | Qi = R}

P 7−→ ∆

An encoding from CCSp into πp has to deal with the following challenge: Probabilistic
choice in CCSp can have output, input, and τ guards, but in πp all summands of a probabilistic
choice have to be output guarded. The input guarded choice operator in πp has no probabilities
and the τ is not part of the syntax. Therefore, the encoding of a probabilistic choice in CCSp
is split into three cases depending on its guard and the probabilistic selecting output of the
target language is used in each of these cases to assign the probabilities.

We use the renaming policy φL·Mπp
CCSp

to reserve the names zi (for input guarded probabilistic
choice) and zτ (for τ -guarded probabilistic choice). Moreover, we translate process constants
C into channel names C and use the renaming policy to keep these channel names C distinct
from source term names. Precisely, we assume that |φL·Mπp

CCSp
(n)| = 1 for all n ∈ N and that

φL·Mπp
CCSp

(n) ∩ {zi, zτ , C | C is a process constant} = ∅ for all n ∈ N . In the following, in order
to increase readability, the indication of the renaming policy is omitted, i.e., we assume
zi ̸= n ≠ zτ and n ̸= C for all source term names n and all process constants C and write n

instead of φL·Mπp
CCSp

(n).1 in the translation.

▶ Definition 6 (Encoding L·Mπp
CCSp

/J·Kπp
CCSp

from CCSp into πp). The encoding of S ∈ PC with

the process definitions C1
def= (x̃1).S1, . . . , Cn

def= (x̃n).Sn consists of the outer encoding L·Mπp
CCSp

,
where LSMπp

CCSp
is

(νC1, . . . , Cn)
(
JSKπp

CCSp
| !C1(x̃1). JS1K

πp
CCSp

| . . . | !Cn(x̃n). JSnKπp
CCSp

)
and the inner encoding J·Kπp

CCSp
is given in Figure 1.
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The encoding of a probabilistic choice is split into three cases. For input guards a single
input on x is used, to enable the communication with a potential corresponding output.
Then a probabilistic selecting output on the reserved name zi composed in parallel with a
matching input is used to encode the probabilities. The sequence of these two communication
steps on x and zi emulates the behaviour of a single communication step in the source.

The encoding of an output-guarded probabilistic choice is straightforward, as it is
translated using the probabilistic selecting output.

For the guard τ , an output-guarded probabilistic choice in parallel to a single input on
the reserved name zτ is used.

The application of a renaming function is encoded by a substitution. A call C⟨ỹ⟩ is
encoded by an output, where the corresponding process definitions are translated into
replicated inputs and placed in parallel by the outer encoding. The remaining translations
are homomorphic.

We are looking for a variant of operational correspondence with probabilities that captures
the way in that our encoding emulates source term steps. By Definition 6, the emulation of a
communication step consists of a sequence containing two target term steps. Accordingly, we
are looking for a variant of operational correspondence that permits a sequence of target term
steps to emulate a single source term step as in the second and third case of Definition 3.

▶ Example 7. Consider S = x.
( 3

4 P ⊕ 1
4 Q

)
| x.

( 1
2 R ⊕ 1

2 S
)

in CCSp without process defini-
tions. By the semantics of CCSp, S 7−→ ∆S =

{ 3
8 (P | R), 3

8 (P | S), 1
8 (Q | R), 1

8 (Q | S)
}

. By
Definition 6, LSMπp

CCSp
= JSKπp

CCSp
and:

JSKπp
CCSp

= x
(

3
4 in1. JP Kπp

CCSp
⊕ 1

4 in2. JQKπp
CCSp

)
|

x.(νzi)
(

zi

(
1
2 in1. JRKπp

CCSp
⊕ 1

2 in2. JSKπp
CCSp

)
| zi

)
By the semantics of πp, LSMπp

CCSp
can perform exactly one maximal sequence of steps, namely

LSMπp
CCSp

7−→ ∆T 7−→ ∆′
T , where:

∆T =
{

3
4

(
JP Kπp

CCSp
| (νzi)

(
zi

(
1
2 in1. JRKπp

CCSp
⊕ 1

2 in2. JSKπp
CCSp

)
| zi

))
,

1
4

(
JQKπp

CCSp
| (νzi)

(
zi

(
1
2 in1. JRKπp

CCSp
⊕ 1

2 in2. JSKπp
CCSp

)
| zi

))}
∆′

T =
{

3
8

(
JP Kπp

CCSp
| JRKπp

CCSp
| 0

)
, 3

8

(
JP Kπp

CCSp
| JSKπp

CCSp
| 0

)
,

1
8

(
JQKπp

CCSp
| JRKπp

CCSp
| 0

)
, 1

8

(
JQKπp

CCSp
| JSKπp

CCSp
| 0

)}
We observe that L∆SMπp

CCSp
≡ ∆′

T and in particular that the distributions ∆S and ∆′
T have

the same probabilities. However, the distribution ∆T is not that obviously related to LSMπp
CCSp

or L∆SMπp
CCSp

. ◀

We already ruled out strong operational correspondence as defined in Definition 3. The
other two versions differ in whether they allow for intermediate states. Another look at
Example 7 tells us that intermediate states make sense. ∆T is a finite probability distribution
with two cases: the case containing JP Kπp

CCSp
with probability 3

4 and the case containing
JQKπp

CCSp
with probability 1

4 , but neither S nor ∆S have cases with these probabilities. In the
second variant of operational correspondence in Definition 3 without intermediate states, we
would need to find a relation RT that relates ∆T either to LSMπp

CCSp
or ∆′

T . Such a relation RT
is difficult or at least not intuitive, since it has to relate states with different probabilities. It
is easier to allow for intermediate states. So, we want to build a weak version of operational
correspondence (third case of Definition 3) with probabilities.
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As discussed above, we need to require that the resulting distribution in the source has
the same probabilities as the resulting distribution in the target term sequence. Moreover, it
makes sense to require that for all matching cases, i.e., all branches with the same probability,
the encoding of the respective source term and the respective target term are related by RT.
Definition 2 allows us to formalise this by comparing the distributions with RT. This leads
to the version of probabilistic operational correspondence below denoted as weak probabilistic
operational correspondence.

▶ Definition 8 (Weak Probabilistic Operational Correspondence). An encoding J·K : PS → PT
is weakly probabilistic operationally corresponding (weak PrOC) w.r.t. RT ⊆ P2

T if it is:
Probabilistic Complete:

∀S, ∆S . S Z=⇒ ∆S implies
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
Weakly Probabilistic Sound: ∀S, ∆T . JSK Z=⇒ ∆T implies(

∃∆S , ∆′
T . S Z=⇒ ∆S ∧ ∆T Z=⇒ ∆′

T ∧ (J∆SK, ∆′
T ) ∈ RT

)
Every source term step is emulated by one or two target term steps modulo ≡ (the

standard structural congruence on the target language). We prove in [33] that this holds
for all source term steps and that the encoding satisfies weak PrOC. Weak compositionality
holds by definition. Name invariance follows from the strict use of the renaming policy and
because the encoding does not introduce free names. Divergence reflection results from weak
probabilistic operational soundness. Finally, weak probabilistic operational correspondence
and the homomorphic translation of success ensure that L·Mπp

CCSp
is success sensitive.

▶ Theorem 9. The encoding L·Mπp
CCSp

satisfies weak compositionality, name invariance, weak
probabilistic operational correspondence w.r.t. ≡, divergence reflection, and success sensitive-
ness.

To ensure that weak PrOC is a meaningful criterion, we use the technique for analysing
encodability criteria presented in [30]. Therefore, weak PrOC is mapped on requirements on
a relation between source and target terms.

5 Analysing Weak Probabilistic Operational Correspondence

To analyse the quality of the criterion weak PrOC in Definition 8, we follow the technique
presented in [30] and map this criterion on requirements of a behavioural relation between
source and target. Thus, an encoding that satisfies this criterion relates source terms and
their translations in the target modulo the respective behavioural relation. This transfers
the task to analyse the quality of weak PrOC to the quality of the behavioural relation it is
mapped on. As such relations are a well researched area, this allows us to formally reason
about the underlying version of operational correspondence.

In [30] the relation between different versions of operational correspondence and beha-
vioural relations is shown. Therefore, requirements are derived such that an encoding is
operational corresponding w.r.t. the considered variant of operational correspondence iff
a behavioural relation with these requirements exists that relates source terms with their
translations. The derived relation describes how similar the behaviour of the source term is
to its translation and, thus, tells us about the quality of the criterion.

Among the versions of operational correspondence considered in [30] weak PrOC is closest
to weak operational correspondence in Definition 3. The corresponding result relates weak
operational correspondence and correspondence similarity.
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▶ Lemma 10 (Weak Operational Correspondence, [30]). J·K is weakly operationally corres-
ponding w.r.t. a preorder RT ⊆ P2

T that is a correspondence simulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K → (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a correspondence simulation.

Remember that a preorder is a binary relation that is reflexive and transitive. The
relation RJ·K (here and in all of the following results) is a set of pairs over the disjoint union
of source and target terms. Correspondence similarity is a simulation relation in between
bisimilarity and coupled similarity, that was derived in [30] to exactly capture the nature of
weak operational correspondence.

▶ Definition 11 (Correspondence Simulation, [30]). A relation R is a (weak reduction)
correspondence simulation if for each (P, Q) ∈ R:

P Z=⇒ P ′ implies ∃Q′. Q Z=⇒ Q′ ∧ (P ′, Q′) ∈ R
Q Z=⇒ Q′ implies ∃P ′′, Q′′. P Z=⇒ P ′′ ∧ Q′ Z=⇒ Q′′ ∧ (P ′′, Q′′) ∈ R

Two terms are correspondence similar if a correspondence simulation relates them.

To obtain a result similar to Lemma 10 for weak PrOC, we use Definition 2 to lift the
definition of correspondence similarity to probability distributions.

▶ Definition 12 (Probabilistic Correspondence Simulation). A relation R is a (weak) probab-
ilistic (reduction) correspondence simulation if for each (P, Q) ∈ R:

P Z=⇒ ∆ implies ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R
Q Z=⇒ Θ implies ∃∆′, Θ′. P Z=⇒ ∆′ ∧ Θ Z=⇒ Θ′ ∧ (∆′, Θ′) ∈ R

Two terms are probabilistic correspondence similar if a probabilistic correspondence simulation
relates them.

To use probabilistic correspondence similarity, we have to show that the lifting operation
in Definition 2 preserves the property of being a probabilistic correspondence simulation
(at least for preorders). A relation R on distributions is a probabilistic correspondence
simulation if it satisfies Definition 11 with distributions instead of processes.

▶ Lemma 13 (Preservation of the Correspondence Property).
If the preorder R is a probabilistic correspondence simulation then so is R.

With the probabilistic version of correspondence similarity we can adapt Lemma 10 to
weak PrOC.

▶ Theorem 14 (Weak PrOC). J·K is weakly probabilistically operationally corresponding w.r.t.
a preorder RT ⊆ P2

T that is a probabilistic correspondence simulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a probabilistic correspondence simulation.

To prove this theorem, we have to construct (for the if-case) a relation RJ·K from RT.
Therefore, we use t(r(RT ∪ {(S, JSK) | S ∈ PS})), where t and r denote transitive and reflexive
closure. Then we show that in both directions the respective properties imply each other. In
particular, we establish the relation between weak PrOC and the definition of probabilistic
correspondence simulation, i.e., completeness of weak PrOC in Definition 8

∀S, ∆S . S Z=⇒ ∆S −→
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
is mapped on the first condition of Definition 12

P Z=⇒ ∆ −→
(
∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R

)
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and weak soundness of weak PrOC

∀S, ∆T . JSK Z=⇒ ∆T −→
(
∃∆S , ∆′

T . S Z=⇒ ∆S ∧ ∆T Z=⇒ ∆′
T ∧ (J∆SK, ∆′

T ) ∈ RT
)

is mapped on the seconded condition of Definition 12:

Q Z=⇒ Θ −→
(
∃∆′, Θ′. P Z=⇒ ∆′ ∧ Θ Z=⇒ Θ′ ∧ (∆′, Θ′) ∈ R

)
The condition ∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT is necessary to ensure (with the remain-
ing properties) that the encoding satisfies weak PrOC in the “only if”-case of Theorem 14.
Although the formulation of weak PrOC and probabilistic correspondence simulation are
quite close, to prove that they are related is technically challenging. We have to show that the
properties of the involved relations are preserved when we lift the relations on distributions
with Definition 2 and that the probabilistic version of the correspondence similarity exactly
captures the probabilistic nature of weak PrOC.

The property ∀S. (S, JSK) ∈ RJ·K allows us to conclude from pairs of target terms in RT
and RJ·K on pairs of a source and a target term. This is necessary to prove that the encoding
satisfies weak PrOC in the “only if”-case, but also ensures that RJ·K is a relation that relates
source terms with their literal translations. From Theorem 9 and Theorem 14 we can thus
conclude that the encoding L·Mπp

CCSp
from CCSp into πp relates a source term S ∈ PC and its

literal translation LSMπp
CCSp

by a probabilistic correspondence simulation.
As derived in [30], weak operational correspondence does not directly map to a well-known,

i.e., standard, kind of simulation relation, but is linked to the new relation correspondence
simularity. Correspondence simularity is in between the standard simulation relations coupled
similarity (see e.g. [27, 3]) and bisimilarity (see e.g. [23]).

Coupled similarity is strictly weaker than bisimilarity. As pointed out in [27], in contrast
to bisimilarity it allows for intermediate states in simulations: states that cannot be identified
with states of the simulated term. Each symmetric coupled simulation is a bisimulation.

▶ Definition 15 (Coupled Simulation). A relation R is a (weak reduction) coupled simu-
lation if both (∃Q′. Q Z=⇒ Q′ ∧ (P ′, Q′) ∈ R) and (∃Q′. Q Z=⇒ Q′ ∧ (Q′, P ′) ∈ R) whenever
(P, Q) ∈ R and P Z=⇒ P ′. Two terms are coupled similar if they are related by a coupled
simulation in both directions.

Just as coupled similarity, correspondence similarity allows for intermediate states that
result e.g. from partial commitments, but in contrast to coupled similarity these intermediate
states are not necessarily covered in the relation. Correspondence similarity is obviously
strictly weaker than bisimilarity, but as shown in [30] it implies coupled similarity. The same
holds for the probabilistic variants of correspondence similarity and coupled similarity, where
probabilistic coupled similarity is the adaptation of coupled similarity to distributions using
Definition 2.

▶ Definition 16 (Probabilistic Coupled Simulation). A relation R is a (weak) probab-
ilistic (reduction) coupled simulation if we have both

(
∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R

)
and(

∃Θ. Q Z=⇒ Θ ∧ (Θ, ∆) ∈ R
)

whenever (P, Q) ∈ R and P Z=⇒ ∆. Two terms are prob-
abilistic coupled similar if they are related by a probabilistic coupled simulation in both
directions.

For each probabilistic correspondence simulation R there exists a probabilistic coupled
simulation R′ such that ∀ (P, Q) ∈ R. (P, Q) , (Q, P ) ∈ R′.
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Intuitively, coupled similarity (and also probabilistic coupled similarity) is the strict-
est standard simulation relation that allows for intermediate states. Accordingly, that a
weak probabilistically operationally corresponding encoding ensures that a source term is
probabilistic coupled similar to its literal translation is indeed an interesting property (see
e.g. [27, 3] for the relevance of coupled similarity). This proves that our version of weak PrOC
is meaningful. As described in [30], the combination with the criteria divergence reflection
and success sensitiveness further strengthens the induced relation between source and target,
i.e., we obtain a divergence reflecting, success sensitive, probabilistic correspondence (or
coupled) simulation to relate source terms and their literal translations.

Weak operational correspondence is very flexible and allows us to encode source term
concepts that have no direct counterpart in the target. As discussed in [27, 17, 29], relating
source terms and their literal translations by a bisimulation does not allow for intermediate
states, i.e., for bisimulation we need stricter encodability criteria as discussed next.

6 (Strong) Probabilistic Operational Correspondence

In this section we proceed in the opposite direction. We start with a standard simulation
relation and derive a version of PrOC that induces such a relation between source terms and
their translations. Often bisimilarity (see e.g. [23]) is considered as the standard relation
between processes. Accordingly, we start from a probabilistic version of bisimilarity, namely
probabilistic barbed bisimilarity as introduced and analysed in [7].

▶ Definition 17 (Probabilistic Barbed Bisimulation, [7]). An equivalence R is a probabilistic
barbed bisimulation if for each (P, Q) ∈ R:

P 7−→ ∆ implies ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R
for each atomic action a, if P↓a then Q⇓a

Two terms are probabilistic barbed bisimilar if a probabilistic bisimulation relates them.

Here P↓a if P
a−−→ ∆, and ∆↓a if P↓a for all P ∈ ⌈∆⌉ with a ∈ N ∪ N . Moreover,

P⇓a = ∃∆. P Z=⇒ ∆ ∧ ∆↓a and ∆⇓a = ∃∆′. ∆ Z=⇒ ∆′ ∧ ∆′↓a. We use this notion of barbs
on our source language CCSp. Accordingly, barbs ·↓a are defined via labelled steps. The
versions of operational correspondence that we considered so far do not use labelled but
only reduction steps. This is because the treatment of labels in encodings can be difficult.
For instance the labels in Mobile Ambients ([5]) are technically and conceptionally very
different from the labels in the Join-calculus ([11]) and both kinds of labels are technically
and conceptionally very different from labels in CCS or the π-calculus. The consideration of
labelled steps is only meaningful if the considered source and target language use similar
kinds of labels. Because of that, operational correspondence usually considers reduction steps
only. If the languages have similar notions of barbs, success sensitiveness can be replaced by
barbed sensitiveness to establish this connection. We remove the condition on barbs.

▶ Definition 18 (Probabilistic Bisimulation). A relation R is a probabilistic (reduction)
bisimulation if for each (P, Q) ∈ R:

P Z=⇒ ∆ implies ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R
Q Z=⇒ Θ implies ∃∆. P Z=⇒ ∆ ∧ (∆, Θ) ∈ R

Two terms are probabilistic bisimilar if a probabilistic bisimulation relates them.

In comparison to Definition 17 we also replace P 7−→ ∆ by P Z=⇒ ∆, remove the
condition of R being an equivalence, and add the symmetric case of the first condition. These
adaptations have little consequence on the derived relation, but provide a structure more
closely related to operational correspondence.
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Note that the above notion of probabilistic bisimulation without barbs is trivial. However,
also operational correspondence is a trivial encodability relation unless we combine it with
success sensitiveness. We discuss the combination with success or barbs below.

We want to derive a version of PrOC for probabilistic bisimilarity. As we learnt in
Section 5, the first condition

P Z=⇒ ∆ −→ ∃Θ. Q Z=⇒ Θ ∧ (∆, Θ) ∈ R

for the left part of pairs has to be linked with completeness. Since it is identical to the first
condition of probabilistic correspondence simulation in Definition 12 we can link it to the
same version of completeness:

∀S, ∆S . S Z=⇒ ∆S −→
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
The second condition

Q Z=⇒ Θ −→ ∃∆. P Z=⇒ ∆ ∧ (∆, Θ) ∈ R

of Definition 18 is simpler than the second condition of probabilistic correspondence simulation
in Definition 12. The part that allows for intermediate states is missing. Thus, we link it to
a similarly simplified version of soundness:

∀S, ∆T . JSK Z=⇒ ∆T −→
(
∃∆S . S Z=⇒ ∆S ∧ (J∆SK, ∆T ) ∈ RT

)
We denote the result as probabilistic operational correspondence or shortly as PrOC.

▶ Definition 19 (Probabilistic Operational Correspondence). An encoding J·K : PS → PT is
probabilistic operationally corresponding (PrOC) w.r.t. RT ⊆ P2

T if it is:
Probabilistic Complete:

∀S, ∆S . S Z=⇒ ∆S implies
(
∃∆T . JSK Z=⇒ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
Probabilistic Sound:

∀S, ∆T . JSK Z=⇒ ∆T implies
(
∃∆S . S Z=⇒ ∆S ∧ (J∆SK, ∆T ) ∈ RT

)
Of course we have to formally establish the described connection between probabilistic

bisimilarity and PrOC.

▶ Theorem 20 (PrOC). J·K is probabilistically operationally corresponding w.r.t. a preorder
RT ⊆ P2

T that is a probabilistic bisimulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a probabilistic bisimulation.

The proof of Theorem 20 is as challenging as the proof of Theorem 14 but fortunately we
can reuse the main proof strategy.

In the same way, we can also link strong probabilistic bisimilarity and a strong version of
PrOC. We obtain strong probabilistic bisimilarity by considering only single steps.

▶ Definition 21 (Strong Probabilistic Bisimulation). A relation R is a strong probabilistic
(reduction) bisimulation if for each (P, Q) ∈ R:

P 7−→ ∆ implies ∃Θ. Q 7−→ Θ ∧ (∆, Θ) ∈ R
Q 7−→ Θ implies ∃∆. P 7−→ ∆ ∧ (∆, Θ) ∈ R

Two terms are strong probabilistic bisimilar if a strong probabilistic bisimulation relates them.

Strong probabilistic operational correspondence is obtained in a similar way from PrOC
by considering only single steps.

CONCUR 2023



15:14 Probabilistic Operational Correspondence

▶ Definition 22 (Strong Probabilistic Operational Correspondence). An encoding J·K : PS → PT
is strongly probabilistic operationally corresponding (strong PrOC) w.r.t. RT ⊆ P2

T if it is:
Strongly Probabilistic Complete:

∀S, ∆S . S 7−→ ∆S implies
(
∃∆T . JSK 7−→ ∆T ∧ (J∆SK, ∆T ) ∈ RT

)
Strongly Probabilistic Sound:

∀S, ∆T . JSK 7−→ ∆T implies
(
∃∆S . S 7−→ ∆S ∧ (J∆SK, ∆T ) ∈ RT

)
Finally, we establish the connection between strong PrOC and strong probabilistic

bisimilarity in Theorem 23. The proofs of Theorem 20 and Theorem 23 can be found in [33].

▶ Theorem 23 (Strong PrOC). J·K is strongly probabilistically operationally corresponding
w.r.t. a preorder RT ⊆ P2

T that is a strong probabilistic bisimulation iff
∃RJ·K.

(
∀S. (S, JSK) ∈ RJ·K

)
∧RT = RJ·K↾PT ∧

(
∀S, T. (S, T ) ∈ RJ·K −→ (JSK, T ) ∈ RT

)
∧RJ·K

is a preorder and a strong probabilistic bisimulation.

If (strong) bisimilarity is the standard reference relation, i.e., if we usually do not record
differences between terms that cannot be observed by (strong) probabilistic bisimilarity, then
an encoding that ensures that source terms and their translations are (strongly) probabilistic
bisimilar strongly validates the claim that the target language is at least as expressive as the
source language. In this sense PrOC and strong PrOC are strict but also very meaningful
criteria.

Again the combination with the criteria divergence reflection and success sensitiveness
further strengthens the induced relation between source and target (see [30]), i.e., we obtain
a divergence reflecting, success sensitive, (strong) probabilistic bisimulation to relate source
terms and their literal translations.

As discussed above, the consideration of labels and barbs is difficult in the context of
encodings unless the source and target language have very similar notions of labels and
barbs. In our source language CCSp, labels are of the form x or x, whereas by [38] our
target language πp uses labels of the form xini⟨ỹi⟩, xini⟨ỹi⟩, x⟨ỹ⟩, and x⟨ỹ⟩. The main
difference are the transmitted values and variables for reception. However, for all terms that
are created by our encoding function L·Mπp

CCSp
in Definition 6, i.e., all terms in ∆T such that

LSMπp
CCSp

Z=⇒ ∆T for some source term S, all visible labels are of the form xini⟨⟩ or xini⟨⟩.
Labels of the form x⟨ỹ⟩ and x⟨ỹ⟩ are used to emulate the unfolding of recursion but the
respective channel names Ci are restricted, i.e., not visible. Moreover, CCS-like barbs, i.e.,
barbs without values or variables, are often also used for variants of the π-calculus.

This observation allows us to define a suitable notion of barbs for our target language

πp
1. Let P↓x if P

{
xini⟨⟩−−−−→

pi

Ti

}
i∈I

, P↓x if P

{
xini⟨⟩−−−−→

pi

Ti

}
i∈I

, and ∆↓a if P↓a for all P ∈ ⌈∆⌉

with a ∈ N ∪ N . Moreover, P⇓a = ∃∆. P Z=⇒ ∆ ∧ ∆↓a and ∆⇓a = ∃∆′. ∆ Z=⇒ ∆′ ∧ ∆′↓a.
Note that our encoding L·Mπp

CCSp
does not translate an input on x to a step with label xini⟨⟩

but with label φL·Mπp
CCSp

(x)ini⟨⟩, i.e., we should not forget the renaming policy. Accordingly
we compare the reachability of a barb n in the source, i.e., S⇓n, with the reachability of
the translated barb φL·Mπp

CCSp
(n) in the translation, i.e., LSMπp

CCSp
⇓φ

L·M
πp
CCSp

(n). With these notions

of barbs on the source and target language, we can show that our encoding L·Mπp
CCSp

is barb
sensitive.

1 Remember that the semantics of πp is given as a Segala automaton, i.e., P

{
αi−−→
pi

Ti

}
i∈I

means that for

every i ∈ I the term P can do a step to Ti with label αi and probability pi (see [38, 33]).
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▶ Lemma 24 (Barb Sensitiveness, L·Mπp
CCSp

/J·Kπp
CCSp

).
For every S and all n ∈ N ∪ N , S⇓n iff LSMπp

CCSp
⇓φ

L·M
πp
CCSp

(n).

If we combine, as described in [30], barb sensitiveness with PrOC, we obtain that all
source terms S are related to JSK by a probabilistic barbed bisimulation as described in
Definition 17. However, since our encoding L·Mπp

CCSp
satisfies only weak PrOC and not PrOC,

S and LSMπp
CCSp

are related by a probabilistic barbed correspondence (or coupled) simulation.

7 Conclusions

We provided three notions of probabilistic operational correspondence:
1. Weak Probabilistic Operational Correspondence (weak PrOC), where single source term

steps can be translated by sequences of target term steps and intermediate states in the
translation are possible.

2. Probabilistic Operational Correspondence (PrOC), where single source term steps can be
translated by sequences of target term steps but intermediate states are forbidden.

3. Strong Probabilistic Operational Correspondence (strong PrOC), where a single source
term step has to be translated to a single target term step.

We proved that strong PrOC induces a strong probabilistic bisimulation between source
terms and their literal translations, i.e., strong PrOC is a very strict criterion that ensures a
close connection between the source and target language. In contrast weak PrOC induces a
probabilistic correspondence (or coupled) simulation between source terms and their literal
translations. This allows for pre- and post-processing steps in the encoding and even for
intermediate states, i.e., for more flexibility in the creation of encoding functions.

Related Work. There are several papers such as e.g. [4, 24, 14, 15, 13, 12, 36, 37, 16, 25,
26, 29, 30] that study quality criteria for encodings in the traditional setting. As far as we
know, there are no studies of quality criteria for encodings between probabilistic systems.

Probabilistic versions of bisimulation for process calculi are studied e.g. in [18, 20, 34, 1,
2, 7]. Encodings between concrete probabilistic process calculi are studied e.g. in [35, 19].
They argue for the quality of the specific presented encodings but do not derive quality
criteria for encodings in general. For instance [35] compares two versions of the probabilistic
π-calculus (one with mixed choice and one with only separate choice). Since the two versions
of the considered language are close, they prove the quality of their encoding by showing a
direct correspondence between labelled steps of the respective source and target language.
Essentially they prove a labelled variant of weak PrOC. However, as discussed above the
consideration of labels in encodings is difficult, because different languages usually have very
different notions of labels. Because of that, we use reduction steps and barbs or success for
our general formulation of quality criteria. Moreover, since [35, 19] do not present general
quality criteria for encodings, they also do not discuss the quality of such criteria.

We are focusing on encodings between process calculi. Instead [38] connects the probabil-
istic π-calculus and event structures. Therefore, they show an operational correspondence
between the semantics of the π-calculus and event structures (see Theorem 6.3 in Section 6.2
of [38]). Their formulation of operational correspondence is basically a variant of strong
PrOC in Definition 22.

Further Work. Our original motivation to study versions of PrOC steamed from quantum
based systems. As probabilistic versions of simulation relations are essential for studying
quantum based systems (see e.g. [10, 9, 8, 6]), this work supports the development of formal
methods for quantum based systems.
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Abstract
We introduce and study pawn games, a class of two-player zero-sum turn-based graph games. A
turn-based graph game proceeds by placing a token on an initial vertex, and whoever controls the
vertex on which the token is located, chooses its next location. This leads to a path in the graph,
which determines the winner. Traditionally, the control of vertices is predetermined and fixed. The
novelty of pawn games is that control of vertices changes dynamically throughout the game as
follows. Each vertex of a pawn game is owned by a pawn. In each turn, the pawns are partitioned
between the two players, and the player who controls the pawn that owns the vertex on which the
token is located, chooses the next location of the token. Control of pawns changes dynamically
throughout the game according to a fixed mechanism. Specifically, we define several grabbing-based
mechanisms in which control of at most one pawn transfers at the end of each turn. We study the
complexity of solving pawn games, where we focus on reachability objectives and parameterize the
problem by the mechanism that is being used and by restrictions on pawn ownership of vertices.
On the positive side, even though pawn games are exponentially-succinct turn-based games, we
identify several natural classes that can be solved in PTIME. On the negative side, we identify
several EXPTIME-complete classes, where our hardness proofs are based on a new class of games
called Lock & Key games, which may be of independent interest.
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1 Introduction

Two-player zero-sum graph games constitute a fundamental class of games [5] with applications,
e.g., in reactive synthesis [26], multi-agent systems [4], and more. A graph game is played on
a directed graph ⟨V, E⟩, where V = V1 ∪ V2 is a fixed partition of the vertices. The game
proceeds as follows. A token is initially placed on some vertex. When the token is placed on
v ∈ Vi, for i ∈ {1, 2}, Player i chooses u with ⟨v, u⟩ ∈ E to move the token to. The outcome
of the game is an infinite path, called a play. We focus on reachability games: Player 1 wins
a play iff it visits a set of target vertices T ⊆ V .

In this paper, we introduce pawn games, which are graph games in which the control of
vertices changes dynamically throughout the game as follows. The arena consists of d pawns.
For 1 ≤ j ≤ d, Pawn j owns a set of vertices Vj . Throughout the game, the pawns are
distributed between the two players, and in each turn, the control of pawns determines which
player moves the token. Pawn control may be updated after moving the token by running a
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v0 v1 s t
v0 v1 t

v2 v3

Figure 1 Left: The pawn game G1; a non-monotonic game under optional-grabbing. Right: The
pawn game G2 in which Player 1 wins from ⟨v0, {v0, v1}⟩, but must visit v1 twice.

predetermined mechanism. Formally, a configuration of a pawn game is a pair ⟨v, P ⟩, where
v denotes the position of the token and P the set of pawns that Player 1 controls. The
player who moves the token is determined according to P : if Player 1 controls a pawn that
owns v, then Player 1 moves. Specifically, when each vertex is owned by a unique pawn,
i.e., V1, . . . , Vd partitions V , then Player 1 moves iff he controls the pawn that owns v. We
consider the following mechanisms for exchanging control of pawns. For i ∈ {1, 2}, we denote
by −i = 3 − i the “other player”.
Optional grabbing. For i ∈ {1, 2}, following a Player i move, Player −i has the option to

grab one of Player i’s pawns; namely, transfer one of the pawns that Player −i to his
control.

Always grabbing. For i ∈ {1, 2}, following every Player i move, Player −i grabs one of
Player i’s pawns.

Always grabbing or giving. Following a Player i move, Player −i either grabs one of
Player i’s pawns or gives her one of his pawns.

k-grabbing. For k ∈ N, Player 1 can grab at most k pawns from Player 2 throughout the
game. In each round, after moving the token, Player 1 has the option of grabbing one of
the pawns that is controlled by Player 2. A grabbed pawn stays in the control of Player 1
for the remainder of the game. Note the asymmetry: only Player 1 grabs pawns.

Note that players in pawn games have two types of actions: moving the token and
transferring control of pawns. We illustrate the model and some interesting properties of it.

▶ Example 1. Consider the game G1 in Fig. 1(left). We consider optional-grabbing and
the same reasoning applies for always-grabbing. Each vertex is owned by a unique pawn,
and Player 1’s target is t. Note that Player 2 wins if the game reaches s. We claim that G1
is non-monotonic: increasing the set of pawns that Player 1 initially controls is “harmful”
for him. Formally, Player 1 wins from configuration ⟨v0, ∅⟩, i.e., when he initially does not
control any pawns, but loses from ⟨v0, {v0}⟩, i.e., when controlling v0. Indeed, from ⟨v0, ∅⟩,
Player 2 initially moves the token from v0 to v1, Player 1 then uses his option to grab v1,
and wins by proceeding to t. Second, from ⟨v0, {v0}⟩, Player 1 makes the first move and
thus cannot grab v1. Since Player 2 controls v1, she wins by proceeding to s. In Thm. 5
and 18, we generalize this observation and show, somewhat surprisingly, that if a player wins
from the current vertex v, then he wins from v with fewer pawns as long as if he controlled v

previously, then he maintains control of v.
Consider the game G2 in Fig. 1 (right). We consider optional-grabbing, each vertex is

owned by a unique pawn, and Player 1’s target is t. We claim that Player 1 wins from
configuration ⟨v0, {v0, v2}⟩ and Player 2 can force the game to visit v1 twice. This differs
from turn-based games in which if Player 1 wins, he can force winning while visiting each
vertex at most once. To illustrate, consider the following outcome. Player 1 makes the first
move, so he cannot grab v1. Player 2 avoids losing by moving to v2. Player 1 will not grab,
move to v3, Player 2 moves to v1, then Player 1 grabs v1 and proceeds to t. We point out
that no loop is closed in the explicit configuration graph that corresponds to G2.
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Applications

Pawn games model multi-agent settings in which the agent who acts in each turn is not
predetermined. We argue that such settings arise naturally.

Quantitative shield synthesis. It is common practice to model an environment as a Kripke
structure (e.g. [27]), which for sake of simplicity, we will think of as a graph in which vertices
model environment states and edges model actions. A policy chooses an outgoing edge from
each vertex. A popular technique to obtain policies is reinforcement learning (RL) [29] whose
main drawback is lack of worst-case guarantees [13]. In order to regain safety at runtime,
a shield [19, 6, 13] is placed as a proxy: in each point in time, it can alter the action of a
policy. The goal in shield synthesis is to synthesize a shield offline that ensures safety at
runtime while minimizing interventions. We suggest a procedure to synthesize shields based
on k-grabbing pawn games. Player 2 models an unknown policy. We set his goal to reaching
an unsafe state. Player 1 (the shield) ensures safety by grabbing at most k times. Grabbing
is associated with a shield intervention. Note that once the shield intervenes in a vertex v, it
will choose the action at v in subsequent turns. An optimal shield is obtained by finding the
minimal k for which Player 1 has a winning strategy.

We describe other examples that can be captured by a k-grabbing pawn game in which
Player 1 models an “authority” that has the “upper hand”, and aims to maximize freedom
of action for Player 2 while using grabs to ensure safety. Consider a concurrent system in
which Player 2 models a scheduler and Player 1 can force synchronization, e.g., by means of
“locks” or “fences” in order to maintain correctness (see [14]). Synchronization is minimized
in order to maximize parallelism and speed. As another example, Player 1 might model an
operating system that allows freedom to an application and blocks only unsafe actions. As a
final example, in [2], synthesis for a safety specification was enriched with “advice” given by
an external policy for optimizing a soft quantitative objective. Again, the challenge is how
to maximize accepting advice while maintaining safety.

Modelling crashes. A sabotage game [31] is a two-player game which is played on a graph.
Player 1 (the Runner) moves a token throughout the graph with the goal of reaching a target
set. In each round, Player 2 (the Saboteur) crashes an edge from the graph with the goal of
preventing Player 1 from reaching his target. Crashes are a simple type of fault that restrict
Player 1’s actions. A malicious fault (called byzantine faults [21]) actively tries to harm the
network, e.g., by moving away from the target. Pawn games can model sabotage games with
byzantine faults: each vertex (router) is owned by a unique pawn, all pawns are initially
owned by Player 1, and a Player 2 grab corresponds to a byzantine fault. Several grabbing
mechanisms are appealing in this context: k-grabbing restricts the number of faults and
optional- and always-grabbing accommodate repairs of routers.

Our results

We distinguish between three types of ownership of vertices. Let V = V1 ∪ . . . ∪ Vd be a
set of vertices, where for j ∈ {1, . . . , d}, Pawn j owns the vertices in Vj . In one vertex per
pawn (OVPP) games, each pawn owns exactly one vertex, thus Vj is a singleton, for all
j ∈ {1, . . . , d}. In multiple vertices per pawn (MVPP) games, V1, . . . , Vd consists of a partition
of V , where the sets might contain more than one vertex. In overlapping multiple vertices
per pawn (OMVPP) games, the sets might overlap. For example, in the shield synthesis
application above, the type of ownership translates to dependencies between interventions:
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OVPP models no dependencies, MVPP models cases in which interventions come in “batches”,
e.g., grabbing control in all states labeled by some predicate, and OMVPP models the case
when the batches overlap. We define that Player 1 moves the token from a vertex v iff he
controls at least one of the pawns that owns v. Clearly, OMVPP generalizes MVPP, which
in turn generalizes OVPP.

We consider the problem of deciding whether Player 1 wins a reachability pawn game
from an initial configuration of the game. Our results are summarized below.

Mechanisms OVPP MVPP OMVPP
k-grabbing PTIME (Thm. 22) NP-hard (Thm. 23) PSPACE-C (Thm. 26)
Optional-grabbing PTIME (Thm. 7) EXPTIME-C (Thm. 12) EXPTIME-C (Thm. 12)

Always PTIME
(grab or give; Thm. 21)

PTIME (grab or give; Thm. 21)
EXPTIME-C (grab; Thm. 17) EXPTIME-C (grab; Thm. 17)

Pawn games are succinctly-represented turn-based games. A naive algorithm to solve
a pawn game constructs and solves an explicit turn-based game on its configuration graph
leading to membership in EXPTIME. We thus find the positive results to be pleasantly
surprising; we identify classes of succinctly-represented games that can be solved in PTIME.
Each of these algorithms is obtained by a careful and tailored modification to the attractor-
computation algorithm for turn-based reachability games. For OMVPP k-grabbing, the
PSPACE upper bound is obtained by observing that grabs in a winning strategy must be
spaced by at most |V | turns, implying that a game ends within polynomial-many rounds
(Lem. 25).

Our EXPTIME-hardness proofs are based on a new class of games called Lock & Key
games and may be of independent interest. A Lock & Key game is a turn-based game that
is enriched with a set of locks, where each lock is associated with a key. Each edge is labeled
by a subset of locks and keys. A lock can either be closed or open. An edge that is labeled
with a closed lock cannot be crossed. A lock changes state once an edge labeled by its
key is traversed. We show two reductions. The first shows that deciding the winner in
Lock & Key games is EXPTIME-hardness. Second, we reduce Lock & Key games to MVPP
optional-grabbing pawn games. The core of the reduction consists of gadgets that simulate
the operation of locks and keys using pawns. Then, we carefully analyze the pawn games
that result from applying both reductions one after the other, and show that the guarantees
are maintained when using always grabbing instead of optional grabbing. The main difficulty
in constructing a winning Player i strategy under always-grabbing from a winning Player i

strategy under optional-grabbing is to ensure that throughout the game, both players have
sufficient and the correct pawns to grab (Lem. 16).

Related work

The semantics of pawn games is inspired by the seminal paper [4]. There, the goal is, given
a game, an objective O, and a set C of pawns (called “players” there), to decide whether
Player 1 (called a “coalition” there) can ensure O when he controls the pawns in C. A key
distinction from pawn games is that the set C that is controlled by Player 1 is fixed. The
paper introduced a logic called alternating time temporal logic, which was later significantly
extended and generalized to strategy logic [15, 23, 24]. Multi-player games with rational
players have been widely studied; e.g., finding Nash equilibrium [30] or subgame perfect
equilibrium [12], and rational synthesis [17, 20, 32, 11]. A key distinction from pawn games
is that, in pawn games, as the name suggests, the owners of the resources (pawns) have no
individual goals and act as pawns in the control of the players. Changes to multi-player
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graph games in order guarantee existence or improve the quality of an equilibrium have been
studied [3, 25, 10]. The key difference from our approach is that there, changes occur offline,
before the game starts, whereas in pawn games, the transfer of vertex ownership occurs online.
In bidding games [22, 8] (see in particular, discrete-bidding games [16, 1, 9]) control of vertices
changes online: players have budgets, and in each turn, a bidding determines which player
moves the token. Bidding games are technically very different from pawn games. While
pawn games allow varied and fine-grained mechanisms for transfer of control, bidding games
only consider strict auction-based mechanisms, which lead to specialized proof techniques
that cannot be applied to pawn games. For example, bidding games are monotonic – more
budget cannot harm a player – whereas pawn games are not (see Ex. 1).

2 Preliminaries

For k ∈ N, we use [k] to denote the set {1, . . . , k}. For i ∈ {1, 2}, we use −i = 3 − i to refer
to the “other player”.

Turn-based games

Throughout this paper we consider reachability objectives. For general graph games, see for
example [5]. A turn-based game is G = ⟨V, E, T ⟩, where V = V1 ∪ V2 is a set of vertices that
is partitioned among the players, E ⊆ V × V is a set of directed edges, and T ⊆ V is a set of
target vertices for Player 1. Player 1’s goal is to reach T and Player 2’s goal is to avoid T .
For v ∈ V , we denote the neighbors of v by N(v) = {u ∈ V : E(v, u)}. Intuitively, a strategy
is a recipe for playing a game: in each vertex it prescribes a neighbor to move the token to.
Formally, for i ∈ {1, 2}, a (memoryless) strategy for Player i is a function f : Vi → V such
that for every v ∈ Vi, we have f(v) ∈ N(v).1 An initial vertex v0 ∈ V together with two
strategies f1 and f2 for the players, give rise to a unique play, denoted π(v0, f1, f2), which is
a finite or infinite path in G and is defined inductively as follows. The first vertex is v0. For
j ≥ 0, assuming v0, . . . , vj has been defined, then vj+1 = fi(vj), where vj ∈ Vi, for i ∈ {1, 2}.
A Player 1 strategy f1 is winning from v0 ∈ V if for every Player 2 strategy f2, the play
π(v0, f1, f2) ends in T . Dually, a Player 2 strategy f2 is winning from v0 ∈ V if for every
Player 1 strategy f1, the play π(v0, f1, f2) does not visit T .

▶ Theorem 2 ([18]). Turn based games are determined: from each vertex, one of the players
has a (memoryless) winning strategy. Deciding the winner of a game is in PTIME.

Proof sketch. For completeness, we briefly describe the classic attractor-computation al-
gorithm. Consider a game ⟨V, E, T ⟩. Let W0 = T . For i ≥ 1, let Wi = Wi−1 ∪ {v ∈ V1 :
N(v) ∩ Wi ̸= ∅} ∪ {v ∈ V2 : N(v) ⊆ Wi}. One can prove by induction that Wi consists of the
vertices from which Player 1 can force reaching T within i turns. The sequence necessarily
reaches a fixed point W 1 =

⋃
i≥1 Wi, which can be computed in linear time. Finally, one can

show that Player 2 has a winning strategy from each v /∈ W 1. ◀

Pawn games

A pawn game with d ∈ N pawns is P = ⟨V, E, T, M⟩, where V = V1 ∪ . . . ∪ Vd and for j ∈ [d],
Vj denotes the vertices that Pawn j owns, E and T are as in turn-based games, and M is a
mechanism for exchanging pawns as we elaborate later. Player 1 wins a play if it reaches T .

1 We restrict to memoryless strategies since these suffice for reachability objectives.
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We stress that the set of pawns that he controls when reaching T is irrelevant. We omit M
when it is clear from the context. We distinguish between classes of pawn games based on
the type of ownership of vertices:
One Vertex Per Pawn (OVPP). There is a one-to-one correspondence between pawns and

vertices; namely, |V | = d and each Vj is singleton, for j ∈ [d]. For j ∈ [d] and {vj} = Vj ,
we sometimes abuse notation by referring to Pawn j as vj .

Multiple Vertices Per Pawn (MVPP). Each vertex is owned by a unique pawn but a pawn
can own multiple vertices, thus V1, . . . , Vd is a partition of V .

Overlapping Multiple Vertices Per Pawn (OMVPP). Each pawn can own multiple vertices
and a vertex can be owned by multiple pawns, i.e., we allow Vi ∩ Vj ̸= ∅, for i ̸= j.

Clearly OMVPP generalizes MVPP, which generalizes OVPP. In MVPP, we sometimes abuse
notation and refer to a pawn by a vertex that it owns.

A configuration of a pawn game is ⟨v, P ⟩, meaning that the token is placed on a vertex
v ∈ V and P ⊆ [d] is the set of pawns that Player 1 controls. Implicitly, Player 2 controls the
complement set P = [d] \ P . Player 1 moves the token from ⟨v, P ⟩ iff he controls at least one
pawn that owns v. Note that in OVPP and MVPP, let j ∈ [d] with v ∈ Vj , then Player 1
moves iff i ∈ P . Once the token moves, we update the control of the pawns by applying M.

From pawn games to turn-based games. We describe the formal semantics of pawn games
together with the pawn-exchanging mechanisms by describing the explicit turn-based game
that corresponds to a pawn game. For a pawn game G = ⟨V, E, T, M⟩, we construct the
turn-based game G′ = ⟨V ′, E′, T ′⟩. For i ∈ {1, 2}, denote by V ′

i Player i’s vertices in G′.
The vertices of G′ consist of two types of vertices: configuration vertices C = V × 2[d], and
intermediate vertices V × C. When M is k-grabbing, configuration vertices include the
remaining number of pawns that Player 1 can grab, as we elaborate below. The target
vertices are T ′ = {⟨v, P ⟩ : v ∈ T}. We describe E′ next. For a configuration vertex c = ⟨v, P ⟩,
we define c ∈ V ′

1 iff there exists j ∈ P such that v ∈ Vj . That is, Player 1 moves from c in
G′ iff he moves from c in G. We define the neighbors of c to be the intermediate vertices
{⟨v′, c⟩ : v′ ∈ N(v)}. That is, moving the token in G′ from c to ⟨v′, c⟩ corresponds to moving
the token from v to v′ in G. Moves from intermediate vertices represent an application of M.
We consider the following mechanisms.

Optional grabbing. For i ∈ {1, 2}, following a Player i move, Player −i has the option to
grab one of Player i’s pawns. Formally, for a configuration vertex c = ⟨v, P ⟩ ∈ V ′

1 , we have
N(c) ⊆ V ′

2 . From ⟨v′, c⟩ ∈ N(c), Player 2 has two options: (1) do not grab and proceed to
⟨v′, P ⟩, or (2) grab j ∈ P , and proceed to ⟨v′, P \ {j}⟩. The definition for Player 2 is dual.

Always grabbing. For i ∈ {1, 2}, following a Player i move, Player −i always has to grab
one of Player i’s pawns. The formal definition is similar to optional grabbing with the
difference that option (1) of not grabbing is not available to the players. We point out that
Player −i grabs only after Player i has moved, which in particular implies that Player i

controls at least one pawn that Player −i can grab.

Always grabbing or giving. Following a Player i move, Player −i must either grab one of
Player i’s pawns or give her a pawn. The formal definition is similar to always grabbing with
the difference that, for an intermediate vertex ⟨v′, ⟨v, P ⟩⟩, there are both neighbors of the
form ⟨v′, P \ {j}⟩, for j ∈ P , and neighbors of the form ⟨v′, P ∪ {j}⟩, for j /∈ P .
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k-grabbing. After each round, Player 1 has the option of grabbing a pawn from Player 2,
and at most k grabs are allowed in a play. A configuration vertex in k-grabbing is c = ⟨v, P, r⟩,
where r ∈ [k]∪{0} denotes the number of grabs remaining. Intermediate vertices are Player 1
vertices. Let ⟨v′, c⟩ ∈ V ′

1 . Player 1 has two options: (1) do not grab and proceed to the
configuration vertex ⟨v′, P, r⟩, or (2) grab j /∈ P , and proceed to ⟨v′, P ∪ {j}, r − 1⟩ when
r > 0. Note that grabs are not allowed when r = 0 and that Pawn j stays at the control of
Player 1 for the remainder of the game.

Since pawn games are succinctly-represented turn-based games, Thm. 2 implies determin-
acy; namely, one of the players wins from each initial configuration. We study the problem
of determining the winner of a pawn game, formally defined as follows.

▶ Definition 3. Let α ∈ {OVPP, MVPP, OMVPP} and β be a pawn-grabbing mechanism.
The problem α β PAWN-GAMES takes as input an α β pawn game G and an initial
configuration c, and the goal is to decide whether Player 1 wins from c in G.

A naive algorithm to solve a pawn game applies attractor computation on the explicit
turn-based game, which implies the following theorem.

▶ Theorem 4. α β PAWN-GAMES is in EXPTIME, for all values of α and β.

3 Optional-Grabbing Pawn Games

Before describing our complexity results, we identify a somewhat unexpected property of
MVPP optional-grabbing games. Consider a vertex v and two sets of pawns P and P ′ having
P ′ ⊆ P . Intuitively, it is tempting to believe that Player 1 “prefers” configuration c = ⟨v, P ⟩
over c′ = ⟨v, P ′⟩ since he controls more pawns in c. Somewhat surprisingly, the following
theorem shows that the reverse holds (see also Ex. 1). More formally, the theorem states
that if Player 1 wins from c, then he also wins from c′, under the restriction that if he makes
the first move at c (i.e., he controls v in c), then he also makes the first move in c′ (i.e., he
controls v in c′).

▶ Theorem 5. Consider a configuration ⟨v, P ⟩ of an MVPP optional-grabbing pawn game G.
Let j ∈ [d] such that v ∈ Vj and P ′ ⊆ P . Assuming that j ∈ P implies j ∈ P ′, if Player 1
wins from ⟨v, P ⟩, he wins from ⟨v, P ′⟩. Assuming that j ∈ P ′ implies j ∈ P , if Player 2 wins
from ⟨v, P ′⟩, she wins from ⟨v, P ⟩.

Proof. We prove for Player 1 and the proof for Player 2 follows from determinacy. Let G, P ,
P ′, c = ⟨v, P ⟩, and c′ = ⟨v, P ′⟩ be as in the theorem statement. Let G′ be the turn-based
game corresponding to G. For i ≥ 0, let Wi be the set of vertices in G′ from which Player 1
can win in at most i rounds (see Thm. 2). The following claim clearly implies the theorem.
Its proof, which proceeds by a careful induction, can be found in the full version.
Claim: Configuration vertices: for i ≥ 0, if ⟨v, P ⟩ ∈ Wi, then ⟨v, P ′⟩ ∈ Wi. Intermediate
vertices: for i ≥ 1 and every vertex u ∈ N(v), if ⟨u, c⟩ ∈ Wi−1, then ⟨u, c′⟩ ∈ Wi−1. ◀

Thm. 5 implies that we can restrict attention to strategies that only “grab locally”. The
assumption j ∈ P implies j ∈ P ′ also implies that if Player 1 wins from ⟨v, P ⟩ when Player 2
controls v then Player 1 also wins from ⟨v, P ′⟩ since P ′ ⊆ P .

▶ Corollary 6. Consider an MVPP optional-grabbing game. Suppose that Player 1 controls
P ⊆ [d], and that Player 2 moves the token to a vertex v owned by Pawn j, i.e., v ∈ Vj.
Player 1 has the option to grab. If Player 1 can win by grabbing a pawn j′ ≠ j, i.e., a pawn
that does not own the next vertex, he can win by not grabbing at all. Formally, if Player 1
wins from ⟨v, P ∪ {j′}⟩, he also wins from ⟨v, P ⟩. And dually for Player 2.
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Algorithm 1 Given an OVPP optional-grabbing pawn game G = ⟨V, E, T ⟩ and an initial config-
uration c = ⟨v, P0⟩, determines which player wins G from c.

1: W0 = T , i = 0
2: while True do
3: if v0 ∈ Wi then return Player 1
4: Wi+1 = Wi ∪ {u : N(u) ⊆ Wi}
5: if Wi ̸= Wi+1 then i := i + 1; Continue
6: B := {u : N(u) ∩ Wi ̸= ∅}
7: if B = ∅ then return Player 2
8: if v0 ∈ B and v0 ∈ P0 then return Player 1
9: B′ := {u ∈ B : N(u) ⊆ B ∪ Wi}

10: if B′ ̸= ∅ then Wi+1 := Wi ∪ B′; i := i + 1; Continue
11: R = {u : N(u) ⊆ B}
12: if R \ P0 ̸= ∅ then Wi+1 = Wi ∪ (R \ P0); i := i + 1
13: else return Player 2

One can show that Thm. 5 and Cor. 6 do not hold for OMVPP optional-grabbing games.

3.1 OVPP: A PTIME algorithm

We turn to study complexity results, and start with the following positive result.

▶ Theorem 7. OVPP optional-grabbing PAWN-GAMES is in PTIME.

Proof. We describe the intuition of the algorithm, the pseudo-code can be found in Alg. 1,
and its correctness is proven in the full version. Recall that in turn-based games (see Thm. 2),
the attractor computation iteratively “grows” the set of states from which Player 1 wins:
initially W0 = T , and in each iteration, a vertex u is added to Wi if (1) u belongs to Player 2
and all its neighbors belong to Wi or (2) u belongs to Player 1 and it has a neighbor in
Wi. In optional-grabbing games, applying attractor computation is intricate since vertex
ownership is dynamic. Note that the reasoning behind (1) above holds; namely, if N(u) ⊆ Wi,
no matter who controls u, necessarily Wi is reached in the next turn. However, the reasoning
behind (2) fails. Consider a Player 1 vertex u that has two neighbors v1 ∈ Wi and v2 /∈ Wi.
While u would be in Wi+1 according to (2), under optional-grabbing, when Player 1 makes
the move into u, Player 2 can avoid Wi by grabbing u and proceeding to v2.

In order to overcome this, our algorithm operates as follows. Vertices that satisfy (1) are
added independent of their owner (Line 4). The counterpart of (2) can be seen as two careful
steps of attractor computation. First, let B denote the border of Wi, namely the vertices
who have a neighbor in Wi (Line 6). Second, a vertex u is in Wi+1 in one of two cases. (i)
u ∈ B and all of its neighbors are in B ∪ Wi (Line 10). Indeed, if Player 1 controls u he
wins by proceeding to Wi and if Player 2 owns u, she can avoid Wi by moving to B, then
Player 1 grabs and proceeds to Wi. (ii) Player 2 controls u in the initial configuration and
all of its neighbors are in B (Line 12). Indeed, Player 2 cannot avoid proceeding into B,
and following Player 2’s move, Player 1 grabs and proceeds to Wi. Finally, note that the
algorithm terminates once a fixed point is reached, thus it runs for at most |V | iterations. ◀



G. Avni, P. Ghorpade, and S. Guha 16:9

3.2 MVPP: EXPTIME-hardness via Lock & Key games
We prove hardness of MVPP optional-grabbing pawn games by reduction through a class of
games that we introduce and call Lock & Key games, and may be of independent interest.
A Lock & Key game is G = ⟨V, E, T, L, K, λ, κ⟩, where ⟨V, E, T ⟩ is a turn-based game,
L = {ℓ1, . . . , ℓn} is a set of locks K = {k1, . . . , kn} is a set of keys, each ℓj is associated to
key kj ∈ K for j ∈ [n], and each edge is labeled by a set of locks and keys respectively given
by λ : E → 2L and κ : E → 2K . Note that a lock and a key can appear on multiple edges.

Intuitively, a Lock & Key game is a turn-based game, only that the locks impose restric-
tions on the edges that a player is allowed to cross. Formally, a configuration of a Lock & Key
game is c = ⟨v, A⟩ ∈ V × 2L, meaning that the token is placed on v and each lock in A is
closed (all other locks are open). When v ∈ Vi, for i ∈ {1, 2}, then Player i moves the token
as in turn-based games with the restriction that he cannot choose an edge that is labeled
by a closed lock, thus e = ⟨v, u⟩ ∈ E is a legal move at c when λ(e) ⊆ (L \ A). Crossing e

updates the configuration of the locks by “turning” all keys that e is labeled with. Formally,
let ⟨u, A′⟩ be the configuration after crossing e. For kj ∈ κ(e) (“key kj is turned”), we have
ℓj ∈ A iff ℓj /∈ A′. For kj /∈ κ(e) (“key kj is unchanged”), we have ℓj ∈ A iff ℓj ∈ A′.

Note that, similar to pawn games, each Lock & Key game corresponds to an exponentially
sized two-player turn-based game. Thus, membership in EXPTIME is immediate. For the
lower bound, we show a reduction for the problem of deciding whether an alternating
polynomial-space Turing machine (ATM) accepts a given word.

▶ Theorem 8. Given a Lock & Key game G and an initial configuration c, deciding whether
Player 1 wins from c in G is EXPTIME-complete.

Proof. We briefly describe the syntax and semantics of ATMs, see for example [28], for
more details. An ATM is A = ⟨Q, Γ, δ, q0, qacc, qrej⟩, where Q is a collection of states that
is partitioned into Q = Q1 ∪ Q2 owned by Player 1 and Player 2 respectively, Γ is a tape
alphabet, δ : Q × Γ → 2Q×Γ×{L,R} is a transition function, q0, qacc, qrej ∈ Q are respectively
an initial, accepting, and rejecting states. A configuration of A is c = ⟨q, i, ⟨γ1, . . . , γm⟩⟩,
meaning that the control state is q, the head position is i, and ⟨γ1, . . . , γm⟩ is the tape
content, where m is polynomial in the length of the input word w. In order to determine
whether A accepts w we construct a (succinctly-represented) turn-based game over the
possible configurations of A, the neighbors of a configuration are determined according to δ,
and, for i ∈ {1, 2}, Player i moves from states in Qi. We say that A accepts w iff Player 1
has a winning strategy from the initial configuration for the target state qacc.

Given A and w, we construct a Lock & Key game G = ⟨V, E, T, L, K, λ, κ⟩ and an
initial configuration ⟨v0, A⟩ such that Player 1 wins from ⟨v, A⟩ in G iff w is accepted by
A. The vertices of G consist of main and intermediate vertices. Consider a configuration
c = ⟨q, i, ⟨γ1, . . . , γm⟩⟩ of A. We simulate c in G using c′ = ⟨v, A⟩ as follows. First, the main
vertices are Q × {1, . . . , m} × Γ and keep track of the control state and position on the tape.
The main vertex that simulates c = ⟨q, i, ⟨γ1, . . . , γm⟩⟩ is v = ⟨q, i, γi⟩. We define v ∈ Vi iff
q ∈ Qi. Second, we use locks to keep track of the tape contents. For each 1 ≤ i ≤ m and
γ ∈ Γ, we introduce a lock ℓi,γ . Then, in the configuration c′ = ⟨v, A⟩ that simulates c, the
only locks that are open are ℓi,γi

, for i ∈ {1, . . . , m}. Next, we describe the transitions, where
intermediate vertices are used for book-keeping. The neighbors of a main vertex v are the
intermediate vertices {⟨v, t⟩ : t ∈ δ(q, γ)}, where a transition of A is t = ⟨q′, γ′, B⟩, meaning
that the next control state is q′, the tape head moves to i + 1 if B = R and to i − 1 if B = L,
and the i-th tape content changes from γ to γ′. We update the state of the locks so that
they reflect the tape contents: for the edge ⟨v, ⟨v, t⟩⟩, we have κ(⟨v, ⟨v, t⟩⟩) = {ki,γ , ki,γ′}.
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Figure 2 From turn-based to optional-grabbing games.

That is, traversing the edge turn the keys to close ℓi,γ and open ℓi,γ′ . The neighbors of
⟨v, t⟩ are main vertices having control state q′ and head position i′. Recall that the third
component of a main vertex is the tape content at the current position. We use the locks’
state to prevent moving to main vertices with incorrect tape content: outgoing edges from
⟨v, t⟩ are of the form ⟨⟨v, t⟩, ⟨q′, i′, γ′′⟩⟩ and is labeled by the lock ℓi′,γ′′ . That is, the edge
can only be traversed when the i′-th tape position is γ′′. It is not hard to verify that there is
a one-to-one correspondence between runs of A and plays of G. Thus, Player 1 forces A to
reach a configuration with control state qacc iff Player 1 forces to reach a main vertex with
control state qacc. Note that the construction is clearly polynomial since G has |Q| · m · |Γ|
main vertices. ◀

3.2.1 From Lock & Key games to optional-grabbing pawn games
Throughout this section, fix a Lock & Key game G and an initial configuration c. We
construct an optional-grabbing pawn game G′ over a set of pawns [d], and identify an initial
configuration c′ such that Player 1 wins in G from c iff Player 1 wins from c′ in G′.

From turn-based games to optional-grabbing games

In this section, we consider the case in which G has no keys or locks, thus G is a turn-based
game. The reduction is depicted in Fig. 2. Denote the turn-based game G = ⟨V, E, T ⟩ with
V = V1 ∪V2 and initial vertex v0. We construct an OVPP optional-grabbing G′ = ⟨V ′, E′, T ′⟩,
where V ′ = V ∪ {v′ : v ∈ V } ∪ {s, t}. We add edges to ensure that the player who owns a
vertex v ∈ V is the player who moves from v in G′: we have ⟨v′, v⟩ ∈ E′, and if v ∈ V1, then
⟨v, s⟩ ∈ E′, and if v ∈ V2, then ⟨v, t⟩ ∈ E′. We redirect each edge ⟨u, v⟩ in G to ⟨u, v′⟩ in G′.
Intuitively, for v ∈ V1, a Player 1 winning strategy will guarantee that v′ is always in the
control of Player 2, and following her move at v′, Player 1 must grab v otherwise Player 2
wins and choose the next location. And dually for v ∈ V2. Let V ′

1 = V1 ∪ {v′ : v ∈ V2}, the
initial configuration of G′ is ⟨v0, V ′

1⟩, that is Player 2 controls V2 ∪ {v′ : v ∈ V1}. Formally,
we prove the following in the full version.

▶ Lemma 9. For a turn-based game G, Player 1 wins G from a vertex v0 ∈ V iff Player 1
wins the optional-grabbing game G′ from configuration ⟨v0, V ′

1⟩.

Gadgets for simulating locks and keys

For each lock ℓ ∈ L and its corresponding key k ∈ K, we construct gadgets Gℓ and Gk

that simulate the operations of ℓ and k in G′. The gadgets in two states are depicted in
Fig. 3. We highlight three pawns colored blue, green, and red, respectively owning, {vℓ

1, vk
1 },

{vℓ
2, vk

2 , vk
7 , vk

8 }, and {vk
in, vk

4 , vk
5 , vk

6 }. Each of the other vertices (colored white) is owned by
a fresh pawn. Intuitively, for each lock ℓ, we identify two sets Pℓ

O, Pℓ
C ⊆ 2[d], respectively

representing an open and closed state of ℓ. We will ensure that when entering and exiting
a gadget, the configuration is in Pℓ

O ∪ Pℓ
C . When the set of pawns that Player 1 controls

is in Pℓ
O and Pℓ

C , we respectively say that Gℓ is in open and closed state, and similarly
for Gk as stated below. Formally, we define Pℓ

O = {P ∈ 2[d] : vℓ
1 /∈ P ∧ vℓ

2 ∈ P} and
Pℓ

C = {P ∈ 2[d] : vℓ
1 ∈ P ∧ vℓ

2 /∈ P}.
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Figure 3 From left to right: Gℓ in open and closed state and Gk in open and closed state.

▶ Lemma 10. Let i ∈ {1, 2}. An open lock stays open: If Player i enters Gℓ in Pℓ
O, then

he has a strategy that guarantees that either he wins G′ or Gℓ is exited in Pℓ
O. A closed lock

cannot be crossed: If Player i enters Gℓ in Pℓ
C , then Player −i has a strategy that guarantees

that Player i loses G′.

Proof. We prove for Player 1 and the proof is dual for Player 2. First, suppose Player 1
enters Gℓ in Pℓ

O. Player 2 may or may not grab vℓ
in, and the game can proceed to either vℓ

1
or vℓ

2. We argue that if the game proceeds to vℓ
1, then Player 1 will not grab vℓ

1. We can
also similarly show that if the game proceeds to vℓ

2, then Player 2 will not grab vℓ
2. Player 2

controls vℓ
1. We claim that if Player 1 grabs vℓ

1, he will lose the game. Indeed, following
Player 1’s move in vℓ

1, Player 2 will grab vℓ
3 and move the token to the sink vertex s to win

the game. Thus, Player 1 does not grab vℓ
1 and keeps it in the control of Player 2. Following

Player 2’s move in vℓ
1, Player 1 grabs vℓ

3 and proceeds to exit Gℓ. Note that when Gℓ is exited,
Player 1 maintains control of vℓ

2 and Player 2 maintains control of vℓ
1, thus the configuration

is in Pℓ
O. Second, suppose that Player 1 enters Gℓ in Pℓ

C . Then, Player 2 grabs vℓ
in and moves

the token to vℓ
1. Since Player 1 controls vℓ

1 he must make the next move. Player 2 then grabs
vℓ

3 and moves the token to s to win the game. ◀

Next, we present the gadget Gk for simulating the operation of a key k (see Fig. 3).
Intuitively, we maintain that Gk is in open state iff Gℓ is in open state, and traversing Gk swaps
the state of both. We define sets of configurations Pk

O = {P ∈ 2[d] : {vk
in, vk

1 , vk
4 , vk

5 , vk
6 } ∩ P =

∅ ∧ {vk
2 , vk

7 , vk
8 } ⊆ P} and Pk

C = {P ∈ 2[d] : {vk
in, vk

1 , vk
4 , vk

5 , vk
6 } ⊆ P ∧ {vk

2 , vk
7 , vk

8 } ∩ P = ∅}
(see Fig. 3). Note that Pk

O ⊆ Pℓ
O and Pk

C ⊆ Pℓ
C since vk

i and vℓ
i are owned by the same pawn

for i ∈ [2]. In the full version, we prove the following.

▶ Lemma 11. Turning k closes an open ℓ: Let i ∈ {1, 2}. If Player i enters Gk in Pk
O, then

he has a strategy that ensures that either Player i wins G′ or Gk is exited in Pk
C . Turning k

opens a closed ℓ: when Player i enters Gk in Pk
C , Player i ensures that either he wins G′ or

Gk is exited in Pk
O.

Putting it all together

We describe the construction of a pawn game G′ from a Lock & Key game G. We assume
w.l.o.g. that each edge ⟨u, v⟩ in G is labeled by at most one lock or key since an edge that
is labeled by multiple locks or keys can be split into a chain of edges, each labeled by a
single lock or a key. We describe the construction of G′. We first apply the construction for
turn-based games on G while “ignoring” the locks and keys. Recall that the construction
introduces fresh vertices so that an edge e = ⟨u, v⟩ in G is mapped to an edge e′ = ⟨u′, v⟩ in
G′. We re-introduce the locks and keys so that the labeling of e′ coincides with the labeling of
e. Next, we replace an edge e′ that is labeled by a lock ℓ, by a copy of Gℓ, and if e is labeled
by a key k, we replace e′ by a copy of Gk. Note that multiple edges could be labeled by the
same lock ℓ. In such a case we use fresh vertices in each copy of Gℓ, but crucially, all gadgets
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Figure 4 A δ-path is a path between two primed main vertices in an optional- or always-grabbing
game, and it crosses two key gadgets and one lock gadget.

share the same pawns so that they share the same state. And similarly for keys. For an
illustration of this construction, see Fig. 4, which applies the construction on a Lock & Key
game that is output from the reduction in Thm. 8.

Finally, given an initial configuration c = ⟨v, A⟩ of G we define an initial configuration
c′ = ⟨v, P ⟩ of G′. Note that the initial vertex is the entry point of the gadget that simulates
v in G′. For each lock ℓ and corresponding key k, if ℓ is open according to A, then P ∈ Pℓ

O,
i.e., both Gℓ and Gk are initially in open state. And similarly when ℓ is closed according to
A. Combining the properties in Lemmas 9, 10, and 11 implies that Player 1 wins G from c

iff Player 1 wins G′ from c′. Thus, by Thm. 8, we have the following.

▶ Theorem 12. MVPP optional-grabbing PAWN-GAMES is EXPTIME-complete.

4 Always-Grabbing Pawn Games

In this section, we study always-grabbing pawn games and show that MVPP always-grabbing
pawn-games are EXPTIME-complete. The main challenge is proving the lower bound. We
proceed as follows. Let M be an ATM. Apply the reduction in Thm 8 and the one in
Thm. 12 to obtain pairs ⟨G, c⟩ and ⟨G′, c′⟩, where G and G′ are respectively Lock & Key
and optional-grabbing games with initial configurations c and c′ respectively. We devise a
construction that takes ⟨G′, c′⟩ and produces an always-grabbing game G′′ and a configuration
c′′ such that Player 1 wins from c′′ in G′′ iff he wins from c in G.

Our analysis heavily depends on the special structure of G′. The construction in Thm. 8
outputs a game G with main vertices of the form ⟨q, i, γ⟩ (q is a state, i is a tape position, and
γ is a letter in the tape alphabet). A play of G can be partitioned into paths between main
vertices. Each such path corresponds to one transition of the Turing machine and traverses
two keys and a lock before again reaching a main vertex. Recall that when constructing G′

from G, we replace locks and keys with their respective gadgets, and for every vertex v that
belongs to G, we add a new primed vertex v′ such that if v is controlled by Player i then v′

is controlled by Player −i. We call a path in G′ that corresponds to a path in G between
two successive main vertices, say v and v′, a δ-path. Fig. 4 depicts a δ-path. An important
property of the specific optional-grabbing game G′ that is constructed in Thm 8 from an
ATM is that every play of G′ consists of a sequence of δ-paths. More details on δ-paths can
be found in the full version. The following observation can easily be verified:

▶ Observation 13. A δ-path from v′ to v′
2 consists of 20 turns.

The following lemma is crucial for the construction of G′′.

▶ Lemma 14. For i ∈ {1, 2}, if Player i has a strategy in the optional-grabbing game G′ to
cross a δ-path from v′ to v′

2, then Player i has a strategy that moves the token in at least 10
rounds and Player −i moves the token in at most 10 rounds in the δ-path.
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Let G′ = ⟨V ′, E′, T ′⟩ with d pawns. The game G′′ is constructed from G′ by adding 2(d+10)
fresh isolated vertices each owned by a fresh unique pawn. Formally, G′′ = ⟨V ′′, E′, T ′⟩,
where V ′′ = V ′ ∪ {v1, v2, . . . , v2(d+10)} such that vj /∈ V ′, for j ∈ [2(d + 10)]. Consider a
configuration c′ = ⟨v, P ⟩ in G′. Let c′′ = ⟨v, P ∪ {1, 2, . . . , d + 10}⟩ be a configuration in G′′.
Note that Lemma 14 also applies to the always-grabbing game G′′, and we get the following.

▶ Corollary 15. For i ∈ {1, 2}, if Player i has a strategy in the always-grabbing game G′′ to
cross a δ-path from v′ to v′

2, then Player i has a strategy such that out of the 20 rounds in
the δ-path, the following hold.
1. Player −i grabs a pawn in at least 10 rounds, and
2. Player i grabs a pawn in at most 10 rounds.

Corollary 15 follows directly from Lemma 14 since in an always-grabbing game, the
number of times Player −i grabs equals the number of times Player i moves. In the remaining
part of this section, we show that Player 1 wins G′ from c′ iff Player 1 wins G′′ from the
configuration c′′ described above.

▶ Lemma 16. For i ∈ {1, 2}, Player i wins from c′ in the optional-grabbing game G′ iff he
wins from c′′ in the always-grabbing game G′′.

Proof sketch. We prove that if Player 1 has a winning strategy f ′ in G′ from c′, then he
has a winning strategy f ′′ from c′′ in G′′. The case for Player 2 is analogous and the other
direction follows from determinacy (Thm. 2). We construct f ′′ to mimic f ′ with the following
difference. Whenever f ′ chooses not to grab, in order to follow the rules of the always-
grabbing mechanism, f ′′ grabs a pawn owning an isolated vertex. This is possible since
we show that we maintain the invariant that along a play in G′′ that consists of sequences
of δ-paths, at the beginning of each δ-path, Player 2 has at least 10 isolated pawns. Note
that the invariant holds initially due to the definition of c′′. We show that it is maintained.
Recall from the proof of Theorem 8 that crossing a δ-path simulates a transition in the
Turing machine. Since Player 1 has a winning strategy in G′, in a winning play, the strategy
enables her to cross the δ-path. Thus, by Lem. 14, Player 1 moves in at least 10 rounds.
Thus, Player 2 moves in at most 10 rounds, and during each such round, Player 1 grabs a
pawn. Hence, Player 1 grabs at most 10 times which thus maintains the invariant. In the
full version, we show that f ′′ is a winning Player 1 strategy. ◀

We now state the following theorem. While the lower bound follows from Thm. 12 and
Lem. 16, the upper bound follows from Thm. 4.

▶ Theorem 17. MVPP always-grabbing PAWN-GAMES is EXPTIME-complete.

We conclude this section by adapting Thm. 5 to always-grabbing. Namely, we show that
adding pawns to a player is never beneficial in MVPP always-grabbing games. (with the
exception of the pawn that owns the current vertex). The proof can be found in the full
version.

▶ Theorem 18. Consider a configuration ⟨v, P ⟩ of an MVPP always-grabbing pawn game G.
Let j ∈ [d] such that v ∈ Vj and P ′ ⊆ P . Assuming that j ∈ P implies j ∈ P ′, if Player 1
wins from ⟨v, P ⟩, he wins from ⟨v, P ′⟩. Assuming that j ∈ P ′ implies j ∈ P , if Player 2 wins
from ⟨v, P ′⟩, she wins from ⟨v, P ⟩.
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5 Always Grabbing-or-Giving Pawn Games

In this section, we show that MVPP always grabbing or giving games are in PTIME. We find
it intriguing that a seemingly small change in the mechanism – allowing a choice between
grabbing and giving instead of only grabbing – reduces the complexity to PTIME from
EXPTIME-complete. We make the following simple observation.

▶ Observation 19. In an always grabbing or giving game, every time Player i makes a move
from a vertex v to a vertex u, Player −i can decide which player controls u.

If Player −i does not control pu that owns u and he wants to control u, he can grab pu from
Player i. If he does not want to control u and if he has pu, he can give it to Player i.

Consider an always-grabbing-or-giving game G = ⟨V, E, T ⟩ and an initial configuration c.
We construct a turn-based game G′ and an initial vertex v0 so that Player 1 wins in G from
c iff he wins in G′ from v0. Let G′ = ⟨V ′, E′, T ′⟩, where V ′ = {⟨v, i⟩, ⟨v̂, i⟩ | v ∈ V, i ∈ {1, 2}}
with V ′

1 = {⟨v, 1⟩, ⟨v̂, 1⟩ | v ∈ V } and V ′
2 = {⟨v, 2⟩, ⟨v̂, 2⟩ | v ∈ V }, T ′ = T × {1, 2}, and

E′ = {(⟨v, i⟩, ⟨û, 3 − i⟩), (⟨û, 3 − i⟩, ⟨u, i⟩), (⟨û, 3 − i⟩, ⟨u, 3 − i⟩) | (v, u) ∈ E, i ∈ {1, 2}}. We
call each vertex ⟨v, i⟩ a main vertex and each ⟨v̂, i⟩ an intermediate vertex. Suppose that
Player i moves the token from v to u in G. If Player −i decides to control u, then in G′, the
token moves from the main vertex ⟨v, i⟩ to the main vertex ⟨u, 3 − i⟩, else from ⟨v, i⟩ to the
main vertex ⟨u, i⟩, and in each case, through the intermediate vertex (û, 3 − i) that models
the decision of Player −i on the control of u. The target vertices T ′ are main vertices. The
proof of the following lemma appears in the full version.

▶ Lemma 20. Suppose Player 1 wins from configuration ⟨v, P ⟩ in G. If he controls v, he
wins from ⟨v, 1⟩ in G′, and if Player 2 controls v, Player 1 wins from ⟨v, 2⟩ in G′. Dually,
suppose that Player 2 wins from ⟨v, P ⟩ in G. If she controls v, then she wins from ⟨v, 2⟩ in
G′, and if Player 1 controls v, Player 2 wins from ⟨v, 1⟩ in G′.

Since the size of G′ is polynomial in the size of G, Thm. 2 implies the following.

▶ Theorem 21. MVPP always-grab-or-give PAWN-GAMES is in PTIME.

6 k-Grabbing Pawn Games

In this section, we consider pawn games under k-grabbing in increasing level of generality of
the mechanisms. We start with positive news.

▶ Theorem 22. OVPP k-grabbing PAWN-GAMES is in PTIME.

Proof. Let k ∈ N, an OVPP k-grabbing game G = ⟨V, E, T ⟩, and an initial configuration
c = ⟨v0, P0⟩, where we refer to P0 as a set of vertices rather than pawns. For a vertex u ∈ V ,
let η(u) denote the minimum number of grabs with which Player 1 can guarantee winning G
from configuration ⟨u, P0⟩. The algorithm recursively computes η based on repeated calls to
an algorithm to solve turn-based games (see Thm. 2).

For the base case, consider the turn-based game G0 = ⟨V, E, T ⟩ with V1 = P0. Let
W 1

0 ⊆ V denote Player 1’s winning region in G0. Clearly, for every u ∈ W 1
0 , we have

η(v0) = 0, and for every u /∈ W 1
0 , we have η(v0) ≥ 1. For the inductive step, suppose that for

ℓ ≥ 0, the set W 1
ℓ = {u ∈ V : η(u) ≤ ℓ} has been found. That is, for every u /∈ W 1

ℓ , Player 2
has a strategy that wins the ℓ-grabbing pawn game G from configuration ⟨u, P0⟩. We show
how to find W 1

ℓ+1 in linear time. Let the border of W 1
ℓ , denoted Bℓ, be the set of vertices

from which W 1
ℓ can be reached in one step, thus Bℓ = {v ∈ V : v /∈ W 1

ℓ : N(v) ∩ W 1
ℓ ̸= ∅}.
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Note that the vertices in Bℓ are all controlled by Player 2 since otherwise, such vertices
will be in the set W 1

ℓ . In the full version, we show that a vertex u /∈ W 1
ℓ has η(u) = ℓ + 1

iff Player 1 can force the game from configuration ⟨u, P0⟩ to a vertex in Bℓ in one or more
rounds without making any grab. Player 1 wins from such a vertex u by forcing the game into
Bℓ, grabbing the pawn in Bℓ, and proceeding to Wℓ, where by the induction hypothesis, he
wins with the remaining grabs. Computing W 1

ℓ+1 roughly entails a solution to a turn-based
game with target set Bℓ ∪ W 1

ℓ . ◀

The proof of the following theorem, which can be found in the full version, is obtained by
a reduction from SET-COVER.

▶ Theorem 23. MVPP k-grabbing game PAWN-GAMES is NP-hard.

We conclude this section by studying OMVPP games.

▶ Lemma 24. OMVPP k-grabbing PAWN-GAMES is PSPACE-hard.

Proof. Consider an input ϕ = Q1x1 . . . QnxnC1 ∧ . . . ∧ Cm to TQBF, where Qi ∈ {∃, ∀}, for
1 ≤ i ≤ n, each Cj , for 1 ≤ j ≤ m, is a clause over the variables x1, . . . , xn. We construct
an OMVPP n-grabbing pawn game G = ⟨V, E, T ⟩ such that Player 1 wins iff ϕ is true. We
describe the intuition and the details can be found in the full version. The structure of
G is chain-like. Player 1 needs to cross the chain in order to win. The first part of the
chain requires Player 1 to grab, for each variable xi, either a pawn pi or a pawn ¬pi. For
existentially-quantified variables, Player 1 decides which of the two is grabbed, and for
universally-quantified variables, Player 2 decides. In the second part of G, we verify that
the corresponding assignment is valid. Certain positions of G correspond to a clause Cj , for
j ∈ [m], which Player 1 must take control over during the first part of G. The key is to use
OMVPP: We define that if xi appears in Cj , then pi is an owner of Cj , and if ¬xi appears
in Cj , then ¬pi is an owner of Cj . Thus, Player 1 controls Cj iff he grabbed a pawn that
owns Cj which is iff the assignment satisfies Cj . ◀

We turn to study the upper bound. The following lemma bounds the provides a polynomial
bound on the length of a winning play for Player 1. The core of the proof, which can be
found in the full version, intuitively shows that we can restrict attention to Player 1 strategies
that grab at least once in a sequence of |V | rounds. Otherwise, the game enters a cycle that
is winning for Player 2.

▶ Lemma 25. Consider an OMVPP k-grabbing PAWN-GAME G = ⟨V, E, T ⟩, and an initial
configuration c that is winning for Player 1. Then, Player 1 has a strategy such that, for
every Player 2 strategy, a target in T is reached within |V | · (k + 1) rounds.

For the upper bound, in the full version, we describe an algorithm performing a depth-first
traversal of the configuration graph of a game while storing, at a time, only a branch in
PSPACE. By Lem. 25, each branch of such a traversal has polynomial length, leading to the
PSPACE upper bound. We thus have the following.

▶ Theorem 26. OMVPP k-grabbing PAWN-GAMES is PSPACE-complete.

7 Discussion

We introduce pawn games, a class of two-player turn-based games in which control of
vertices changes dynamically throughout the game. Pawn games constitute a class of
succinctly-represented turn-based games. We identify natural classes that are in PTIME.
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Our EXPTIME-hardness results are based on Lock & Key games, which we hope will serve
as a framework for proving lower bounds. We mention directions for future research. First,
we leave several open problems; e.g., for MVPP k-grabbing pawn games, we only show
NP-hardness and membership in PSPACE. Second, we focused on reachability games. It
is interesting to study pawn games with richer objectives such as parity or quantitative
objectives. Third, it is interesting to consider other pawn-transferring mechanisms and to
identify properties of mechanisms that admit low-complexity results. Finally, grabbing pawns
is a general concept and can be applied to more involved games like stochastic or concurrent
games.
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Abstract
The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in
verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary
functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for
the specific classes of quantitative properties expressed by quantitative automata. These automata
contain finitely many states and rational-valued transition weights, and their common value functions
Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totally-
ordered domain of real numbers. In this automata-theoretic setting, we establish a connection
between quantitative safety and topological continuity and provide an alternative characterization
of quantitative safety and liveness in terms of their boolean counterparts. For all common value
functions, we show how the safety closure of a quantitative automaton can be constructed in PTime,
and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live,
with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace.
Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into
safe and live automata. These decompositions enable the separation of techniques for safety and
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1 Introduction

Safety and liveness [2] are fundamental concepts in the specification of system behaviors
and their verification. While safety characterizes whether a system property can always be
falsified by a finite prefix of its violating executions, liveness characterizes whether this is
never possible. A celebrated result shows that every property is the intersection of a safety
property and a liveness property [2]. This decomposition significantly impacts verification
efforts: every verification task can be split into verifying a safety property, which can be
solved by lighter methods, such as computational induction, and a liveness property, which
requires heavier methods, such as ranking functions.
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Figure 1 (a) A LimSup-automaton A modeling the long-term maximal power consumption of a
device. (b) An Inf-automaton (or a LimSup-automaton) expressing the safety closure of A. (c) A
LimSup-automaton expressing the liveness component of the decomposition of A.

The notions of safety and liveness consider system properties in full generality: every set
of system executions – even the uncomputable ones – can be seen through the lens of the
safety-liveness dichotomy. To bring these notions more in line with practical requirements,
their projections onto formalisms with desirable closure and decidability properties, such as
ω-regular languages, have been studied thoroughly. For example, [3] gives a construction for
the safety closure of a Büchi automaton and shows that Büchi automata are closed under the
safety-liveness decomposition. In turn, [29] describes an efficient model-checking algorithm
for Büchi automata that define safety properties.

Boolean properties define sets of system executions or, equivalently, characteristic functions
mapping each infinite execution to a binary truth value. Quantitative properties [10] generalize
their boolean counterparts; they are functions from infinite executions to richer value domains,
such as the real numbers, allowing the specification and verification of system properties not
only for correctness but also for performance and robustness.

As in the boolean case, quantitative extensions of safety and liveness [25] have been
defined through the falsifiability, from finite execution prefixes, of quantitative membership
hypotheses, which are claims that a given value is a lower or upper bound on the values of
certain executions. In particular, quantitative safety (resp. co-safety) characterizes whether
every wrong lower (resp. upper) bound hypothesis can always be rejected by a finite execution
prefix, and quantitative liveness (resp. co-liveness) characterizes whether some wrong lower
(resp. upper) bound hypothesis can never be rejected by a finite execution prefix. In this
setting, the safety closure of a quantitative property maps each execution to the greatest
lower bound over the best values that all execution prefixes can have via some continuations;
in other words, it is the least safety property that bounds the given property from above [25].

Let us give some examples. Suppose we have three observations on, eco, and off,
corresponding to the operational modes of a device, with the power consumption values 2, 1,
and 0, respectively. The quantitative property MinPow maps every execution to the minimum
among the power consumption values of the modes that occur in the execution, and MaxPow
maps them to the corresponding maximum. The property MinPow is safe because, for every
execution and power consumption value v, if the MinPow value of the execution is less than
v, then there is a finite prefix of the execution in which an operational mode with a power
value less than v occurs, and after this prefix, no matter what infinite execution follows,
MinPow value cannot be greater. The property MaxPow is live because, for every execution
(whose MaxPow value is not the maximal possible value of 2), there is a power value v such
that the MaxPow value of the execution is less than v, but for all of its finite prefixes there is
an infinite continuation that achieves a MaxPow value of at least v.

Similarly to how boolean automata (e.g., regular and ω-regular automata) define classes
of boolean properties amenable to boolean verification, quantitative automata (e.g., limit-
average and discounted-sum automata) define classes of quantitative properties amenable to
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quantitative verification. Quantitative automata generalize standard boolean automata with
weighted transitions and a value function that accumulates an infinite sequence of weights
into a single value, a generalization of acceptance conditions of ω-regular automata. Let
us extend the set of possible observations in the above example with err, which denotes
an error in the device. In Figure 1a, we describe a quantitative automaton using the value
function LimSup to express the long-term maximal power consumption of the device.

In this work, we study the projection of the quantitative safety-liveness dichotomy onto
the properties definable by common quantitative automata. First, we show how certain
attributes of quantitative automata simplify the notions of safety and liveness. Then, we use
these simplifications to the study safety and liveness of the classes of quantitative automata
with the value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum [10].

In contrast to general quantitative properties, these quantitative automata use functions
on the totally-ordered domain of the real numbers (as opposed to a more general partially-
ordered domain). In addition, quantitative automata have the restriction that only finitely
many weights (those on the automaton transitions) can contribute to the value of an execution.
These constraints allow us to provide alternative, simpler characterizations of safety for
properties defined by quantitative automata. In particular, we show that, for totally-ordered
value domains, a quantitative property is safe iff, for every value v, the set of executions
whose value is at least v is safe in the boolean sense. The total-order restriction also allows
us to study quantitative safety through the lens of topological continuity. In particular, we
characterize safety properties as continuous functions with respect to the left-order topology
of their totally-ordered value domain. Moreover, we define the safety of value functions
and show that a value function is safe iff every quantitative automaton equipped with
this value function expresses a safety property. For example, Inf is a safe value function.
Pushing further, we characterize discounting properties and value functions as those that are
uniformly continuous and show that it characterizes the conjunction of safety and co-safety.
For example, DSum is a discounting value function, therefore both safe and co-safe.

We prove that the considered classes of quantitative automata have the ability to express
the least upper bound over their values, namely, they are supremum-closed. Similarly as for
safety and the total-order constraint, this ability helps us simplify quantitative liveness. For
supremum-closed quantitative properties, we show that a property is live iff for every value
v, the set of executions whose value is at least v is live in the boolean sense.

These simplifying characterizations of safety and liveness for quantitative automata
prove useful for checking the safety and liveness of these automata, for constructing the
safety closure of an automaton, and for decomposing an automaton into safety and liveness
components. Let us recall the quantitative automaton in Figure 1a. Since it is supremum-
closed, we can construct its safety closure in PTime by computing the maximal value it can
achieve from each state. The safety closure of this automaton is shown in Figure 1b. For the
value functions Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg, the safety closure of a
given automaton is an Inf-automaton, while for DSum, it is a DSum-automaton.

Evidently, one can check if a quantitative automaton A is safe by checking if it is equivalent
to its safety closure, i.e., if A(w) = SafetyCl(A)(w) for every execution w. This allows for a
PSpace procedure for checking the safety of Sup-, LimInf-, and LimSup-automata [10], but not
for LimInfAvg- and LimSupAvg-automata, whose equivalence check is undecidable [15]. For
these cases, we use the special structure of the safety-closure automaton for reducing safety
checking to the problem of whether some other automaton expresses a constant function. We
show that the latter problem is PSpace-complete for LimInfAvg- and LimSupAvg-automata,
by a somewhat involved reduction to the limitedness problem of distance automata, and
obtain an ExpSpace decision procedure for their safety check.
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Thanks to our alternative characterization of liveness, one can check if a quantitative
automaton A is live by checking if its safety closure is universal with respect to its maximal
value, i.e., if SafetyCl(A)(w) ≥ ⊤ for every execution w, where ⊤ is the supremum over
the values of A. For all value functions we consider except DSum, the safety closure is
an Inf-automaton, which allows for a PSpace solution to liveness checking [10], which we
show to be optimal. Yet, it is not applicable for DSum automata, as the decidability of
their universality check is an open problem. Nonetheless, as we consider only universality
with respect to the maximal value of the automaton, we can reduce the problem again
to checking whether an automaton defines a constant function, which we show to be in
PSpace for DSum-automata. This yields a PSpace-complete solution to the liveness check
of DSum-automata.

Finally, we investigate the safety-liveness decomposition for quantitative automata. Recall
the automaton from Figure 1a and its safety closure from Figure 1b. The liveness component
of the corresponding decomposition is shown in Figure 1c. Intuitively, it ignores err and
provides information on the power consumption as if the device never fails. Then, for every
execution w, the value of the original automaton on w is the minimum of the values of its
safety closure and the liveness component on w. Since we identified the value functions
Inf and DSum as safe, their safety-liveness decomposition is trivial. For deterministic Sup-,
LimInf-, and LimSup-automata, we provide PTime decompositions, where for Sup and LimInf
it extends to nondeterministic automata at the cost of exponential determinization.

We note that our alternative, simpler characterizations of safety and liveness of quanti-
tative properties extend to co-safety and co-liveness. Our results for the specific automata
classes are summarized in Table 1. While we focus on automata that resolve nondeterminism
by sup, their duals hold for quantitative co-safety and co-liveness of automata that resolve
nondeterminism by inf, as well as for deterministic automata. We leave the questions of
co-safety and co-liveness for automata that resolve nondeterminism by sup open.

Related Work. The notions of safety and liveness for boolean properties were first presented
in [30] and were later formally defined in [2]. The projections of safety and liveness onto
properties definable by Büchi automata were studied in [3]. For linear temporal logic,
safety and liveness were studied in [37], where checking whether a given formula is safe was
shown to be PSpace-complete. The safety-liveness dichotomy also shaped various efforts on
verification, such as an efficient model-checking algorithm for safe Büchi automata [29]. A
framework for monitorability through the lens of safety and liveness was given in [34], and a
monitor model for safety properties beyond ω-regular ones was defined and studied in [18].

Quantitative properties (a.k.a. quantitative languages [10]) generalize their boolean
counterparts by moving from a binary domain of truth values to richer value domains such
as the real numbers. In the past decades, quantitative properties and automata have been
studied extensively in games with quantitative objectives [6, 9], specification and analysis of
system robustness [33], measuring the distance between two systems or specifications [13, 23],
best-effort synthesis and repair [5, 12], approximate monitoring [26, 24], and more [11, 8, 17].

Safety and liveness of general quantitative properties were defined and studied in [25].
In particular, quantitative safety properties were characterized as upper semicontinuous
functions, and every quantitative property was shown to be the pointwise minimum of a
safety property and a liveness property. Yet, these definitions have not been studied from
the perspective of quantitative finite-state automata.

Other definitions of safety and liveness for nonboolean formalisms were presented in [32, 20].
While [32] focuses on multi-valued formalisms with the aim of providing model-checking
algorithms, [20] focuses on the monitorability view of safety and liveness in richer value
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Table 1 The complexity of performing the operations on the left column with respect to
nondeterministic automata with the value function specified on the top row.

Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum
Constructing
SafetyCl(A) O(1) PTime

Theorem 4.18 O(1)

Constant-function
check

PSpace-complete
Proposition 3.2 and Theorems 3.3 and 3.7

Safety check O(1) PSpace-complete
Theorem 4.22

ExpSpace; PSpace-hard
Theorem 4.23 and Lemma 4.21 O(1)

Liveness check PSpace-complete
Theorem 5.9

Safety-liveness
decomposition O(1) PTime if deterministic

Theorems 5.10 and 5.11 Open O(1)

domains. The relations between these definitions were investigated in [25]. Notably, a notion
of safety was studied for the rational-valued min-plus weighted automata on finite words
in [38]. They take a weighted property as v-safe for a given rational v when for every
execution w, if the hypothesis that the value of w is strictly less than v is wrong (i.e., its
value is at least v), then there is a finite prefix of w to witness it. Then, a weighted property
is safe when it is v-safe for some value v. Given a nondeterministic weighted automaton
A and an integer v, they show that it is undecidable to check whether A is v-safe. In
contrast, the definition in [25], which we follow, quantifies over all values and non-strict
lower-bound hypotheses. Moreover, for this definition, we show that checking safety of all
common classes of quantitative automata is decidable, even in the presence of nondeterminism.
Finally, [4] studies the safety and co-safety of discounted-sum comparator automata. While
these automata internally use discounted summation, they are boolean automata recognizing
languages, and therefore they only consider boolean safety and co-safety.

Our study shows that determining whether a given quantitative automaton expresses a
constant function is a key for deciding safety and liveness, in particular for automata classes
in which equivalence or universality checks are undecidable. To the best of our knowledge,
this problem has not been studied before.

2 Quantitative Properties and Automata

Let Σ = {a, b, . . .} be a finite alphabet of letters (observations). An infinite (resp. finite) word
is an infinite (resp. finite) sequence of letters w ∈ Σω (resp. u ∈ Σ∗). For a natural number
n ∈ N, we denote by Σn the set of finite words of length n. Given u ∈ Σ∗ and w ∈ Σ∗ ∪ Σω,
we write u ≺ w (resp. u ⪯ w) when u is a strict (resp. nonstrict) prefix of w. We denote by
|w| the length of w ∈ Σ∗ ∪ Σω and, given a ∈ Σ, by |w|a the number of occurrences of a in
w. For w ∈ Σ∗ ∪ Σω and 0 ≤ i < |w|, we denote by w[i] the ith letter of w.

A value domain D is a poset. Unless otherwise stated, we assume that D is a nontrivial
(i.e., ⊥ ̸= ⊤) complete lattice. Whenever appropriate, we write 0 or −∞ instead of ⊥ for the
least element, and 1 or ∞ instead of ⊤ for the greatest element. We respectively use the
terms minimum and maximum for the greatest lower bound and the least upper bound of
finitely many elements.

A quantitative property is a total function Φ : Σω → D from the set of infinite words to a
value domain. A boolean property P ⊆ Σω is a set of infinite words. We use the boolean
domain B = {0, 1} with 0 < 1 and, in place of P , its characteristic property ΦP : Σω → B,
which is defined by ΦP (w) = 1 if w ∈ P , and ΦP (w) = 0 if w /∈ P . When we say just property,
we mean a quantitative one.

CONCUR 2023



17:6 Safety and Liveness of Quantitative Automata

Given a property Φ : Σω → D and a value v ∈ D, we define Φ∼v = {w ∈ Σω | Φ(w) ∼ v}
for ∼ ∈ {≤, ≥, ̸≤, ̸≥}. The top value of a property Φ is supw∈Σω Φ(w), which we denote by
⊤Φ, or simply ⊤ when Φ is clear from the context.

A nondeterministic quantitative1 automaton (or just automaton from here on) on words
is a tuple A = (Σ, Q, ι, δ), where Σ is an alphabet; Q is a finite nonempty set of states; ι ∈ Q

is an initial state; and δ : Q × Σ → 2(Q×Q) is a finite transition function over weight-state
pairs. A transition is a tuple (q, σ, x, q′) ∈ Q×Σ×Q × Q, such that (x, q′) ∈ δ(q, σ), also
written q

σ:x−−→ q′. (There might be finitely many transitions with different weights over the
same letter between the same states.2) We write γ(t) = x for the weight of a transition
t = (q, σ, x, q′). A is deterministic if for all q ∈ Q and a ∈ Σ, the set δ(q, a) is a singleton.
We require the automaton A to be total, namely that for every state q ∈ Q and letter σ ∈ Σ,
there is at least one state q′ and a transition q

σ:x−−→ q′. For a state q ∈ Q, we denote by Aq

the automaton that is derived from A by setting its initial state ι to q.
A run of A on a word w is a sequence ρ = q0

w[0]:x0−−−−→ q1
w[1]:x1−−−−→ q2 . . . of transitions where

q0 = ι and (xi, qi+1) ∈ δ(qi, w[i]). For 0 ≤ i < |w|, we denote the ith transition in ρ by ρ[i],
and the finite prefix of ρ up to and including the ith transition by ρ[..i]. As each transition
ti carries a weight γ(ti) ∈ Q, the sequence ρ provides a weight sequence γ(ρ) = γ(t0)γ(t1) . . .

A Val (e.g., DSum) automaton is one equipped with a value function Val : Qω → R, which
assigns real values to runs of A. We assume that Val is bounded for every finite set of
rationals, i.e., for every finite V ⊂ Q there exist m, M ∈ R such that m ≤ Val(x) ≤ M for
every x ∈ V ω. Note that the finite set V corresponds to transition weights of a quantitative
automaton, and the concrete value functions we consider satisfy this assumption.

The value of a run ρ is Val(γ(ρ)). The value of a Val-automaton A on a word w, denoted
A(w), is the supremum of Val(ρ) over all runs ρ of A on w. The top value of a Val-automaton
A is the top value of the property it expresses, which we denote by ⊤A, or simply ⊤ when
A is clear from the context. Note that when we speak of the top value of a property or an
automaton, we always match its value domain to have the same top value.

Two automata A and A′ are equivalent, if they express the same function from words to
reals. The size of an automaton consists of the maximum among the size of its alphabet,
state-space, and transition-space, where weights are represented in binary.

We list below the value functions for quantitative automata that we will use, defined over
infinite sequences v0v1 . . . of rational weights.

Inf(v) = inf{vn | n ≥ 0} Sup(v) = sup{vn | n ≥ 0}

LimInf(v) = lim
n→∞

inf{vi | i ≥ n}

LimInfAvg(v) = LimInf
(

1
n

n−1∑
i=0

vi

) LimSup(v) = lim
n→∞

sup{vi | i ≥ n}

LimSupAvg(v) = LimSup
(

1
n

n−1∑
i=0

vi

)

For a discount factor λ ∈ Q ∩ (0, 1), DSumλ(v) =
∑
i≥0

λivi

Note that (i) when the discount factor λ ∈ Q ∩ (0, 1) is unspecified, we write DSum, and
(ii) LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff in the literature.

1 We speak of “quantitative” rather than “weighted” automata, following the distinction made in [7]
between the two.

2 The flexibility of allowing “parallel” transitions with different weights is often omitted, as it is redundant
for some value functions, including the ones we focus on in the sequel, while important for others.
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The following statement allows us to consider Inf- and Sup-automata as only having runs
with nonincreasing and nondecreasing, respectively, sequences of weights and to also consider
them as LimInf- and LimSup-automata.

▶ Proposition 2.1. Let Val ∈ {Inf, Sup}. Given a Val-automaton, we can construct in
PTime an equivalent Val-, LimInf- or LimSup-automaton whose runs yield monotonic weight
sequences.

Given a property Φ and a finite word u ∈ Σ∗, let PΦ,u = {Φ(uw) | w ∈ Σω}. A
property Φ is sup-closed (resp. inf-closed) when for every finite word u ∈ Σ∗ we have that
sup PΦ,u ∈ PΦ,u (resp. inf PΦ,u ∈ PΦ,u) [25].

We show that the common classes of quantitative automata always express sup-closed
properties, which will simplify the study of their safety and liveness.

▶ Proposition 2.2. Let Val ∈ {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. Every
Val-automaton expresses a property that is sup-closed. Furthermore its top value is rational,
attainable by a run, and can be computed in PTime.

3 Subroutine: Constant-Function Check

We will show that the problems of whether a given automaton is safe or live are closely
related to the problem of whether an automaton expresses a constant function, motivating its
study in this section. We first prove the problem hardness by reduction from the universality
of nondeterministic finite-state automata (NFAs) and reachability automata.

▶ Lemma 3.1. Let Val ∈ {Sup, Inf, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. It is
PSpace-hard to decide whether a Val-automaton A expresses a constant function.

A simple solution to the problem is to check whether the given automaton A is equivalent
to an automaton B expressing the constant top value of A, which is computable in PTime by
Proposition 2.2. For some automata classes, it is good enough for a matching upper bound.

▶ Proposition 3.2. Deciding whether an Inf-, Sup-, LimInf-, or LimSup-automaton expresses
a constant function is PSpace-complete.

Yet, this simple approach does not work for DSum-automata, whose equivalence is an
open problem, and for limit-average automata, whose equivalence is undecidable [15].

For DSum-automata, our alternative solution removes “non-optimal” transitions from the
automaton and then reduces the problem to the universality problem of NFAs.

▶ Theorem 3.3. Deciding whether a DSum-automaton expresses a constant function is
PSpace-complete.

The solution for limit-average automata is more involved. It is based on a reduction to the
limitedness problem of distance automata, which is known to be in PSpace [21, 36, 22, 31].
We start with presenting Johnson’s algorithm, which we will use for manipulating the
transition weights of the given automaton, and proving some properties of distance automata,
which we will need for the reduction.

A weighted graph is a directed graph G = ⟨V, E⟩ equipped with a weight function
γ : E → Z. The cost of a path p = v0, v1, . . . , vk is γ(p) =

∑k−1
i=0 γ(vi, vi+1).

▶ Proposition 3.4 (Johnson’s Algorithm [28, Lem. 2 and Thms. 4 and 5]). Consider a
weighted graph G = ⟨V, E⟩ with weight function γ : E → Z, such that G has no negative
cycles according to γ. We can compute in PTime functions h : V → Z and γ′ : E → N such
that for every path p = v0, v1, . . . , vk in G it holds that γ′(p) = γ(p) + h(v0) − h(vk).
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17:8 Safety and Liveness of Quantitative Automata

▶ Remark. Proposition 3.4 is stated for graphs, while we will apply it for graphs underlying
automata, which are multi-graphs, namely having several transitions between the same pairs
of states. Nevertheless, to see that Johnson’s algorithm holds also in our case, one can
change every automaton to an equivalent one whose underlying graph is a standard graph,
by splitting every state into several states, each having a single incoming transition.

A distance automaton is a weighted automaton over the tropical semiring (a.k.a., min-plus
semiring) with weights in {0, 1}. It can be viewed as a quantitative automaton over finite
words with transition weights in {0, 1} and the value function of summation, extended with
accepting states. A distance automaton is of limited distance if there exists a bound on the
automaton’s values on all accepted words.

Lifting limitedness to infinite words, we have by König’s lemma that a total distance
automaton of limited distance b, in which all states are accepting, is also guaranteed to have
a run whose weight summation is bounded by b on every infinite word.

▶ Proposition 3.5. Consider a total distance automaton D of limited distance b, in which
all states are accepting. Then for every infinite word w, there exists an infinite run of D
on w whose summation of weights (considering only the transition weights and ignoring the
final weights of states), is bounded by b.

Lifting nonlimitedness to infinite words, it may not suffice for our purposes to have an
infinite word on which all runs of the distance automaton are unbounded, as their limit-
average value might still be 0. Yet, thanks to the following lemma, we are able to construct
an infinite word on which the limit-average value is strictly positive.

▶ Lemma 3.6. Consider a total distance automaton D of unlimited distance, in which all
states are accepting. Then there exists a finite nonempty word u, such that D(u) = 1 and the
possible runs of D on u lead to a set of states U , such that the distance automaton that is
the same as D but with U as the set of its initial states is also of unlimited distance.

Using Propositions 3.4 and 3.5 and Lemma 3.6 we are in position to solve our problem
by reduction to the limitedness problem of distance automata.

▶ Theorem 3.7. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a con-
stant function, for a given constant or any constant, is PSpace-complete.

4 Quantitative Safety

The membership problem for quantitative properties asks, given a property Φ : Σω → D,
a word w ∈ Σω, and a value v ∈ D, whether Φ(w) ≥ v holds [10]. Safety of quantitative
properties is defined from the perspective of membership queries [25]. Intuitively, a property
is safe when each wrong membership hypothesis has a finite prefix to witness the violation.
The safety closure of a given property maps each word to the greatest lower bound over its
prefixes of the least upper bound of possible values.

▶ Definition 4.1 (Safety [25]). A property Φ : Σω → D is safe when for every w ∈ Σω and
value v ∈ D with Φ(w) ̸≥ v, there is a prefix u ≺ w such that supw′∈Σω Φ(uw′) ̸≥ v. The safety
closure of a property Φ is the property defined by SafetyCl(Φ)(w) = infu≺w supw′∈Σω Φ(uw′)
for all w ∈ Σω.

We remark that (i) a property is safe iff it defines the same function as its safety closure [25,
Thm. 9], and (ii) the safety closure of a property is the least safety property that bounds
the given property from above [25, Prop. 6]. Co-safety of quantitative properties and the
co-safety closure is defined symmetrically.
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▶ Definition 4.2 (Co-safety [25]). A property Φ : Σω → D is co-safe when for every w ∈ Σω

and value v ∈ D with Φ(w) ̸≤ v, there exists a prefix u ≺ w such that infw′∈Σω Φ(uw′) ̸≤
v. The co-safety closure of a property Φ is the property defined by CoSafetyCl(Φ)(w) =
supu≺w infw′∈Σω Φ(uw′) for all w ∈ Σω.

Consider the case of a server that processes incoming requests and approves them
accordingly. The quantitative property for the minimal response time of such a server is safe,
while its maximal response time is co-safe [25, Examples 3 and 26]. Although these are sup-
and inf-closed properties, safety and co-safety are independent of sup- and inf-closedness.
To witness, consider the alphabet Σ = {a, b} and the value domain D = {x, y, ⊥, ⊤} where x

and y are incomparable, and define Φ(w) = x if a ≺ w and Φ(w) = y if b ≺ w.

▶ Proposition 4.3. There is a property Φ that is safe and co-safe but neither sup- nor
inf-closed.

The Cantor space of infinite words is the set Σω with the metric µ : Σω × Σω → [0, 1]
such that µ(w, w) = 0 and µ(w, w′) = 2−|u| where u ∈ Σ∗ is the longest common prefix
of w, w′ ∈ Σω with w ̸= w′. Given a boolean property P ⊆ Σω, the topological closure
TopolCl(P ) of P is the smallest closed set (i.e., boolean safety property) that contains P ,
and the topological interior TopolInt(P ) of P is the greatest open set (i.e., boolean co-safety
property) that is contained in P .

We show the connection between the quantitative safety (resp. co-safety) closure and the
topological closure (resp. interior) through sup-closedness (resp. inf-closedness). Note that
the sup-closedness assumption makes the quantitative safety closure values realizable. This
guarantees that for every value v, every word whose safety closure value is at least v belongs
to the topological closure of the set of words whose property values are at least v.

▶ Theorem 4.4. Consider a property Φ : Σω → D and a threshold v ∈ D. If Φ is sup-
closed, then (SafetyCl(Φ))≥v = TopolCl(Φ≥v). If Φ is inf-closed, then (CoSafetyCl(Φ))≤v =
TopolInt(Φ≤v).

For studying the safety of automata, we first provide alternative characterizations of
quantitative safety through threshold safety, which bridges the gap between the boolean
and the quantitative settings, and continuity of functions. These hold for all properties
on totally-ordered value domains, and in particular for those expressed by quantitative
automata. Then, we extend the safety notions from properties to value functions, allowing
us to characterize families of safe quantitative automata. Finally, we provide algorithms to
construct the safety closure of a given automaton A and to decide whether A is safe.

4.1 Threshold Safety and Continuity

In this section, we define threshold safety to connect the boolean and the quantitative settings.
It turns out that quantitative safety and threshold safety coincide on totally-ordered value
domains. Furthermore, these value domains enable a purely topological characterization of
quantitative safety properties in terms of their continuity.

▶ Definition 4.5 (Threshold safety). A property Φ : Σω → D is threshold safe when for every
v ∈ D the boolean property Φ≥v = {w ∈ Σω | Φ(w) ≥ v} is safe (and thus Φ ̸≥v is co-safe).
Equivalently, for every w ∈ Σω and v ∈ D if Φ(w) ̸≥ v then there exists u ≺ w such that for
all w′ ∈ Σω we have Φ(uw′) ̸≥ v.
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▶ Definition 4.6 (Threshold co-safety). A property Φ : Σω → D is threshold co-safe when for
every v ∈ D the boolean property Φ ̸≤v = {w ∈ Σω | Φ(w) ̸≤ v} is co-safe (and thus Φ≤v is
safe). Equivalently, for every w ∈ Σω and v ∈ D if Φ(w) ̸≤ v then there exists u ≺ w such
that for all w′ ∈ Σω we have Φ(uw′) ̸≤ v.

In general, quantitative safety implies threshold safety, but the converse need not hold
with respect to partially-ordered value domains. To witness, consider the value domain
D = [0, 1] ∪ {x} where x is such that 0 < x and x < 1, but it is incomparable with all
v ∈ (0, 1), while within [0, 1] there is the standard order. Let Φ be a property defined over
Σ = {a, b} as follows: Φ(w) = x if w = aω, Φ(w) = 2−|w|a if w ∈ Σ∗bω, and Φ(w) = 0
otherwise. We show that Φ is threshold safe but not safe.

▶ Proposition 4.7. Every safety property is threshold safe, but there is a threshold-safety
property that is not safe.

While for a fixed threshold, safety and threshold safety do not necessarily overlap even
on totally-ordered domains, once quantifying over all thresholds, they do.

▶ Theorem 4.8. Let D be a totally-ordered value domain. A property Φ : Σω → D is safe iff
it is threshold safe.

We move next to the relation between safety and continuity. We recall some standard
definitions; more about it can be found in textbooks, e.g., [19, 27]. A topology of a set X can
be defined to be its collection τ of open subsets, and the pair (X, τ) stands for a topological
space. It is metrizable when there exists a distance function (metric) d on X such that the
topology induced by d on X is τ .

Recall that we take Σω as a Cantor space with the metric µ defined as in Section 4.
Consider a totally-ordered value domain D. For each element v ∈ D, let Lv = {v′ ∈
D | v′ < v} and Rv = {v′ ∈ D | v < v′}. The order topology on D is generated by the set
{Lv | v ∈ D} ∪ {Rv | v ∈ D}. Moreover, the left order topology (resp. right order topology) is
generated by the set {Lv | v ∈ D} (resp. {Rv | v ∈ D}). For a given property Φ : Σω → D and
a set V ⊆ D of values, the preimage of V on Φ is defined as Φ−1(V ) = {w ∈ Σω | Φ(w) ∈ V }.

A property Φ : Σω → D on a topological space D is continuous when for every open subset
V ⊆ D the preimage Φ−1(V ) ⊆ Σω is open. In [25, 26], a property Φ is defined as upper
semicontinuous when Φ(w) = limu≺w supw′∈Σω Φ(uw′), extending the standard definition
for functions on extended reals to functions from infinite words to complete lattices. This
characterizes safety properties since it is an equivalent condition to a property defining the
same function as its safety closure [25, Thm. 9]. We complete the picture by providing
a purely topological characterization of safety properties in terms of their continuity in
totally-ordered value domains.

▶ Theorem 4.9. Let D be a totally-ordered value domain. A property Φ : Σω → D is safe
(resp. co-safe) iff it is continuous with respect to the left (resp. right) order topology on D.

Observe that a property is continuous with respect to the order topology on D iff it is
continuous with respect to both left and right order topologies on D. Then, we immediately
obtain the following.

▶ Corollary 4.10. Let D be a totally-ordered value domain. A property Φ : Σω → D is safe
and co-safe iff it is continuous with respect to the order topology on D.

Now, we shift our focus to totally-ordered value domains whose order topology is metriz-
able. We provide a general definition of discounting properties on such domains.
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▶ Definition 4.11 (Discounting). Let D be a totally-ordered value domain for which the
order topology is metrizable with a metric d. A property Φ : Σω → D is discounting when
for every ε > 0 there exists n ∈ N such that for every u ∈ Σn and w, w′ ∈ Σω we have
d(Φ(uw), Φ(uw′)) < ε.

Intuitively, a property is discounting when the range of potential values for every word
converges to a singleton. As an example, consider the following discounted safety property:
Given a boolean safety property P , let Φ be a quantitative property such that Φ(w) = 1 if
w ∈ P , and Φ(w) = 2−|u| if w /∈ P , where u ≺ w is the shortest bad prefix of w for P . We
remark that our definition captures the previous definitions of discounting given in [14, 1].
▶ Remark. Notice that the definition of discounting coincides with uniform continuity. Since
Σω equipped with Cantor distance is a compact space [16], every continuous property is also
uniformly continuous by Heine-Cantor theorem, and thus discounting.

As an immediate consequence, we obtain the following.

▶ Corollary 4.12. Let D be a totally-ordered value domain for which the order topology is
metrizable. A property Φ : Σω → D is safe and co-safe iff it is discounting.

4.2 Safety of Value Functions
In this section, we focus on the value functions of quantitative automata, which operate on the
value domain of real numbers. In particular, we carry the definitions of safety, co-safety, and
discounting to value functions. This allows us to characterize safe (resp. co-safe, discounting)
value functions as those for which all automata with this value function are safe (resp. co-safe,
discounting). Moreover, we characterize discounting value functions as those that are safe
and co-safe.

Recall that we consider the value functions of quantitative automata to be bounded from
below and above for every finite input domain V ⊂ Q. As the set V ω can be taken as a
Cantor space, just like Σω, we can carry the notions of safety, co-safety, and discounting
from properties to value functions.

▶ Definition 4.13 (Safety and co-safety of value functions). A value function Val : Qω → R
is safe when for every finite subset V ⊂ Q, infinite sequence x ∈ V ω, and value v ∈ R, if
Val(x) < v then there exists a finite prefix z ≺ x such that supy∈V ω Val(zy) < v. Similarly, a
value function Val : Qω → R is co-safe when for every finite subset V ⊂ Q, infinite sequence
x ∈ V ω, and value v ∈ R, if Val(x) > v then there exists a finite prefix z ≺ x such that
infy∈V ω Val(zy) > v.

▶ Definition 4.14 (Discounting value function). A value function Val : Qω → R is discounting
when for every finite subset V ⊂ Q and every ε > 0 there exists n ∈ N such that for every
x ∈ V n and y, y′ ∈ V ω we have |Val(xy) − Val(xy′)| < ε.

We remark that by [25, Thms. 20 and 27], the value function Inf is safe and Sup is
co-safe; moreover, the value function DSum is discounting by definition. Now, we characterize
the safety (resp. co-safety) of a given value function by the safety (resp. co-safety) of the
automata family it defines. We emphasize that the proofs of the two statement are not dual.
In particular, exhibiting a finite set of weights that falsifies the safety of a value function
from a nonsafe automaton requires a compactness argument.

▶ Theorem 4.15. Consider a value function Val. All Val-automata are safe (resp. co-safe)
iff Val is safe (resp. co-safe).
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A

q0q1 q2

a : 0
b : 1

c : 2

Σ : 0 Σ : 0

Figure 2 A Sup-automaton whose safety closure cannot be expressed by a Sup-automaton.

Thanks to the remark following Definition 4.11, for any finite set of weights V ⊂ Q,
a value function is discounting iff it is continuous on the Cantor space V ω. We leverage
this observation to characterize discounting value functions as those that are both safe and
co-safe.

▶ Theorem 4.16. A value function is discounting iff it is safe and co-safe.

As a consequence of Corollary 4.12 and Theorems 4.15–4.16, we obtain the following.

▶ Corollary 4.17. All Val-automata are discounting iff Val is discounting.

4.3 Safety of Quantitative Automata
We now switch our focus from generic value functions to families of quantitative automata
defined by the common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and
DSum. As remarked in Section 4.2, the value functions Inf and DSum are safe, thus all
Inf-automata and DSum-automata express a safety property by Theorem 4.15. Below, we
focus on the remaining value functions of interest.

Given a Val-automaton A where Val is one of the nonsafe value functions above, we
describe (i) a construction of an automaton that expresses the safety closure of A, and (ii)
an algorithm to decide whether A is safe.

For these value functions, we can construct the safety closure as an Inf-automaton.

▶ Theorem 4.18. Let Val ∈ {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}. Given a Val-
automaton A, we can construct in PTime an Inf-automaton that expresses its safety closure.

For the prefix-independent value functions we study, the safety-closure automaton we
construct in Theorem 4.18 can be taken as a deterministic automaton with the same value
function.

▶ Theorem 4.19. Let Val ∈ {LimInf, LimSup, LimInfAvg, LimSupAvg}. Given a Val-automaton
A, we can construct in PTime a Val-automaton that expresses its safety closure and can be
determinized in ExpTime.

In contrast, this is not possible in general for Sup-automata, as Figure 2 witnesses.

▶ Proposition 4.20. Some Sup-automaton admits no Sup-automata that expresses its safety
closure.

We first prove the problem hardness by reduction from constant-function checks.

▶ Lemma 4.21. Let Val ∈ {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}. It is PSpace-hard
to decide whether a Val-automaton is safe.

For automata classes with PSpace equivalence check, a matching upper bound is straight-
forward by comparing the given automaton and its safety-closure automaton.
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▶ Theorem 4.22. Deciding whether a Sup-, LimInf-, or LimSup-automaton expresses a safety
property is PSpace-complete.

On the other hand, even though equivalence of limit-average automata is undecidable [15],
we are able to provide a decision procedure using as a subroutine our algorithm to check
whether a given limit-average automaton expresses a constant function (see Theorem 3.7).
The key idea is to construct a limit-average automaton that expresses the constant function
0 iff the original automaton is safe. Our approach involves the determinization of the
safety-closure automaton, resulting in an ExpSpace complexity.

▶ Theorem 4.23. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a safety
property is in ExpSpace.

5 Quantitative Liveness

The definition of quantitative liveness, similarly to that of quantitative safety, comes from the
perspective of the quantitative membership problem [25]. Intuitively, a property is live when
for every word whose value is less than the top, there is a wrong membership hypothesis
without a finite prefix to witness the violation.

▶ Definition 5.1 (Liveness and co-liveness [25]). A property Φ : Σω → D is live when for all
w ∈ Σω, if Φ(w) < ⊤, then there exists a value v ∈ D such that Φ(w) ̸≥ v and for all prefixes
u ≺ w, we have supw′∈Σω Φ(uw′) ≥ v. Similarly, a property Φ : Σω → D is co-live when for
all w ∈ Σω, if Φ(w) > ⊥, then there exists a value v ∈ D such that Φ(w) ̸≤ v and for all
prefixes u ≺ w, we have infw′∈Σω Φ(uw′) ≤ v.

As an example, consider a server that receives requests and issues grants. The server’s
maximum response time is live, while its minimum response time is co-live, and its average
response time is both live and co-live [25, Examples 41 and 42].

First, we provide alternative characterizations of quantitative liveness for sup-closed prop-
erties by threshold liveness, which bridges the gap between the boolean and the quantitative
settings, and top liveness. Then, we provide algorithms to check liveness of quantitative
automata, and to decompose them into a safety automaton and a liveness automaton.

5.1 Threshold Liveness and Top Liveness
Threshold liveness connects a quantitative property and the boolean liveness of the sets of
words whose values exceed a threshold value.

▶ Definition 5.2 (Threshold liveness and co-liveness). A property Φ : Σω → D is threshold
live when for every v ∈ D the boolean property Φ≥v = {w ∈ Σω | Φ(w) ≥ v} is live (and thus
Φ ̸≥v is co-live). Equivalently, Φ is threshold live when for every u ∈ Σ∗ and v ∈ D there
exists w ∈ Σω such that Φ(uw) ≥ v. Similarly, a property Φ : Σω → D is threshold co-live
when for every v ∈ D the boolean property Φ ̸≤v = {w ∈ Σω | Φ(w) ̸≤ v} is co-live (and thus
Φ≤v is live). Equivalently, Φ is threshold co-live when for every u ∈ Σ∗ and v ∈ D there
exists w ∈ Σω such that Φ(uw) ≤ v.

A set P ⊆ Σω is dense in Σω when its topological closure equals Σω, i.e., TopolCl(P ) = Σω.
We relate threshold liveness with the topological denseness of a single set of words.

▶ Proposition 5.3. A property Φ is threshold live iff the set {w ∈ Σω | Φ(w) = ⊤} is dense
in Σω.

CONCUR 2023



17:14 Safety and Liveness of Quantitative Automata

Liveness is characterized by the safety closure being strictly greater than the property
whenever possible [25, Thm. 37]. Top liveness puts an additional requirement on liveness:
the safety closure of the property should not only be greater than the original property but
also equal to the top value.

▶ Definition 5.4 (Top liveness and bottom co-liveness). A property Φ is top live when
SafetyCl(Φ)(w) = ⊤ for every w ∈ Σω. Similarly, a property Φ is bottom co-live when
CoSafetyCl(Φ)(w) = ⊥ for every w ∈ Σω.

We provide a strict hierarchy of threshold-liveness, top-liveness, and liveness.

▶ Proposition 5.5. Every threshold-live property is top live, but not vice versa; and every
top-live property is live, but not vice versa.

Top liveness does not imply threshold liveness, but it does imply a weaker form of it.

▶ Proposition 5.6. For every top-live property Φ and value v < ⊤, the set Φ≥v is live in the
boolean sense.

While the three liveness notions differ in general, they do coincide for sup-closed properties.

▶ Theorem 5.7. A sup-closed property is live iff it is top live iff it is threshold live.

5.2 Liveness of Quantitative Automata
We start with the problem of checking whether a quantitative automaton is live, and continue
with quantitative safety-liveness decomposition.

We first provide a hardness result by reduction from constant-function checks.

▶ Lemma 5.8. Let Val ∈ {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. It is
PSpace-hard to decide whether a Val-automaton A is live.

For automata classes whose safety closure can be expressed as Inf-automata, we provide a
matching upper bound by simply checking the universality of the safety closure with respect
to its top value. For DSum-automata, whose universality problem is open, our solution is
based on our constant-function-check algorithm (see Theorem 3.3).

▶ Theorem 5.9. Deciding whether an Inf-, Sup-, LimInf-, LimSup-, LimInfAvg-, LimSupAvg-
or DSum-automaton expresses a liveness property is PSpace-complete.

We turn to safety-liveness decomposition, and start with the simple case of Inf- and
DSum-automata, which are guaranteed to be safe. Their decomposition thus consists of only
generating a liveness component, which can simply express a constant function that is at
least as high as the maximal possible value of the original automaton A. Assuming that the
maximal transition weight of A is fixed, it can be done in constant time.

Considering Sup-automata, recall that their safety closure might not be expressible by Sup-
automata (Proposition 4.20). Therefore, our decomposition of deterministic Sup-automata
takes the safety component as an Inf-automaton. The key idea is to copy the state space
of the original automaton and manipulate the transition weights depending on how they
compare with the safety-closure automaton.

▶ Theorem 5.10. Given a deterministic Sup-automaton A, we can construct in PTime a
deterministic safety Inf-automaton B and a deterministic liveness Sup-automaton C, such
that A(w) = min(B(w), C(w)) for every infinite word w.
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Using the same idea, but with a slightly more involved reasoning, we show a safety-liveness
decomposition for deterministic LimInf- and LimSup-automata.

▶ Theorem 5.11. Let Val ∈ {LimInf, LimSup}. Given a deterministic Val-automaton A, we
can construct in PTime a deterministic safety Val-automaton B and a deterministic liveness
Val-automaton C, such that A(w) = min(B(w), C(w)) for every infinite word w.

Considering nondeterministic Sup- and LimInf-automata, they can be decomposed by
first determinizing them at an exponential cost [10, Thm. 14]. For nondeterministic LimSup-
automata, which cannot always be determinized, we leave the problem open. We also
leave open the question of whether LimInfAvg- and LimSupAvg-automata are closed under
safety-liveness decomposition.

6 Conclusions

We studied, for the first time, the quantitative safety-liveness dichotomy for properties
expressed by Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum automata. To this
end, we characterized the quantitative safety and liveness of automata by their boolean
counterparts, connected them to topological continuity and denseness, and solved the
constant-function problem for these classes of automata. We presented automata-theoretic
constructions for the safety closure of these automata and decision procedures for checking
their safety and liveness. We proved that the value function Inf yields a class of safe automata
and DSum both safe and co-safe. For some automata classes, we provided a decomposition
of an automaton into a safe and a live component. We emphasize that the safety component
of our decomposition algorithm is the safety closure, and thus the best safe approximation of
a given automaton.

We focused on quantitative automata [10] because their totally-ordered value domain
and their sup-closedness make quantitative safety and liveness behave in particularly natural
ways; a corresponding investigation of weighted automata [35] remains to be done. We
left open the problems of the safety-liveness decomposition of limit-average automata, the
complexity gap in the safety check of limit-average automata, and the study of co-safety and
co-liveness for nondeterministic quantitative automata, which is not symmetric to safety and
liveness due to the nonsymmetry in resolving nondeterminism by the supremum value of all
possible runs.

References

1 Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL. In Erika Ábrahám
and Klaus Havelund, editors, Tools and Algorithms for the Construction and Analysis of
Systems – 20th International Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages 424–439. Springer,
2014. doi:10.1007/978-3-642-54862-8_37.

2 Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985. doi:10.1016/0020-0190(85)90056-0.

3 Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Comput.,
2(3):117–126, 1987. doi:10.1007/BF01782772.

4 Suguman Bansal and Moshe Y. Vardi. Safety and co-safety comparator automata for discounted-
sum inclusion. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification – 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I, volume 11561 of Lecture Notes in Computer Science, pages 60–78. Springer, 2019.
doi:10.1007/978-3-030-25540-4_4.

CONCUR 2023

https://doi.org/10.1007/978-3-642-54862-8_37
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-030-25540-4_4


17:16 Safety and Liveness of Quantitative Automata

5 Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In Ahmed Bouajjani and Oded
Maler, editors, Computer Aided Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 – July 2, 2009. Proceedings, volume 5643 of Lecture Notes in
Computer Science, pages 140–156. Springer, 2009. doi:10.1007/978-3-642-02658-4_14.

6 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and
reactive synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 921–962. Springer, 2018.
doi:10.1007/978-3-319-10575-8_27.

7 Udi Boker. Quantitative vs. weighted automata. In Proc. of Reachbility Problems, pages 1–16,
2021.

8 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative
automata. In Patricia Bouyer and Lutz Schröder, editors, Foundations of Software Science
and Computation Structures – 25th International Conference, FOSSACS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, volume 13242 of Lecture Notes in Computer Science,
pages 120–139. Springer, 2022. doi:10.1007/978-3-030-99253-8_7.

9 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon
Laursen. Average-energy games. Acta Informatica, 55(2):91–127, 2018. doi:10.1007/
s00236-016-0274-1.

10 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4):23:1–23:38, 2010. doi:10.1145/1805950.1805953.

11 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative monitor automata.
In Xavier Rival, editor, Static Analysis – 23rd International Symposium, SAS 2016, Edinburgh,
UK, September 8-10, 2016, Proceedings, volume 9837 of Lecture Notes in Computer Science,
pages 23–38. Springer, 2016. doi:10.1007/978-3-662-53413-7_2.

12 Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with quantitative
objectives. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification –
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II, volume 9780 of Lecture Notes in Computer Science, pages 383–401. Springer, 2016.
doi:10.1007/978-3-319-41540-6_21.

13 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching metrics for
quantitative transition systems. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald
Sannella, editors, Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in
Computer Science, pages 97–109. Springer, 2004. doi:10.1007/978-3-540-27836-8_11.

14 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the future in systems
theory. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger,
editors, Automata, Languages and Programming, 30th International Colloquium, ICALP 2003,
Eindhoven, The Netherlands, June 30 – July 4, 2003. Proceedings, volume 2719 of Lecture Notes
in Computer Science, pages 1022–1037. Springer, 2003. doi:10.1007/3-540-45061-0_79.

15 Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon
Torunczyk. Energy and mean-payoff games with imperfect information. In Anuj Dawar
and Helmut Veith, editors, Computer Science Logic, 24th International Workshop, CSL 2010,
19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceed-
ings, volume 6247 of Lecture Notes in Computer Science, pages 260–274. Springer, 2010.
doi:10.1007/978-3-642-15205-4_22.

16 Volker Diekert and Martin Leucker. Topology, monitorable properties and runtime verification.
Theor. Comput. Sci., 537:29–41, 2014. doi:10.1016/j.tcs.2014.02.052.

17 Uli Fahrenberg. A generic approach to quantitative verification. CoRR, abs/2204.11302, 2022.
doi:10.48550/arXiv.2204.11302.

https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-030-99253-8_7
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-662-53413-7_2
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1016/j.tcs.2014.02.052
https://doi.org/10.48550/arXiv.2204.11302


U. Boker, T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 17:17

18 Thomas Ferrère, Thomas A. Henzinger, and N. Ege Saraç. A theory of register monitors. In
Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 394–403.
ACM, 2018. doi:10.1145/3209108.3209194.

19 Theodore W Gamelin and Robert Everist Greene. Introduction to topology. Courier Corporation,
1999.

20 Felipe Gorostiaga and César Sánchez. Monitorability of expressive verdicts. In Jyotir-
moy V. Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal Methods – 14th
International Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceed-
ings, volume 13260 of Lecture Notes in Computer Science, pages 693–712. Springer, 2022.
doi:10.1007/978-3-031-06773-0_37.

21 K. Hashiguchi. Limitedness theorem on finite automata with distance functions. Journal of
computer and system sciences, 24(2):233–244, 1982.

22 K. Hashiguchi. New upper bounds to the limitedness of distance automata. Theoretical
Computer Science, 233(1-2):19–32, 2000.

23 Thomas A. Henzinger. Quantitative reactive modeling and verification. Comput. Sci. Res.
Dev., 28(4):331–344, 2013. doi:10.1007/s00450-013-0251-7.

24 Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Abstract monitors for quan-
titative specifications. In Thao Dang and Volker Stolz, editors, Runtime Verification –
22nd International Conference, RV 2022, Tbilisi, Georgia, September 28-30, 2022, Pro-
ceedings, volume 13498 of Lecture Notes in Computer Science, pages 200–220. Springer, 2022.
doi:10.1007/978-3-031-17196-3_11.

25 Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Quantitative safety and liveness.
In Orna Kupferman and Pawel Sobocinski, editors, Foundations of Software Science and
Computation Structures – 26th International Conference, FoSSaCS 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France,
April 22-27, 2023, Proceedings, volume 13992 of Lecture Notes in Computer Science, pages
349–370. Springer, 2023. doi:10.1007/978-3-031-30829-1_17.

26 Thomas A. Henzinger and N. Ege Saraç. Quantitative and approximate monitoring. In 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 – July 2, 2021, pages 1–14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470547.

27 Hendrik Jan Hoogeboom and Grzegorz Rozenberg. Infinitary languages: Basic theory an
applications to concurrent systems. In J. W. de Bakker, Willem P. de Roever, and Grzegorz
Rozenberg, editors, Current Trends in Concurrency, Overviews and Tutorials, volume 224 of
Lecture Notes in Computer Science, pages 266–342. Springer, 1986. doi:10.1007/BFb0027043.

28 D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM
(JACM), 24(1):1–13, 1977.

29 Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal Methods
Syst. Des., 19(3):291–314, 2001. doi:10.1023/A:1011254632723.

30 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software
Eng., 3(2):125–143, 1977. doi:10.1109/TSE.1977.229904.

31 H. Leung and V. Podolskiy. The limitedness problem on distance automata: Hashiguchi’s
method revisited. Theoretical Computer Science, 310(1-3):147–158, 2004.

32 Yongming Li, Manfred Droste, and Lihui Lei. Model checking of linear-time properties in
multi-valued systems. Inf. Sci., 377:51–74, 2017. doi:10.1016/j.ins.2016.10.030.

33 Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus. AMT 2.0:
qualitative and quantitative trace analysis with extended signal temporal logic. Int. J. Softw.
Tools Technol. Transf., 22(6):741–758, 2020. doi:10.1007/s10009-020-00582-z.

34 Doron Peled and Klaus Havelund. Refining the safety-liveness classification of temporal
properties according to monitorability. In Tiziana Margaria, Susanne Graf, and Kim G. Larsen,
editors, Models, Mindsets, Meta: The What, the How, and the Why Not? – Essays Dedicated
to Bernhard Steffen on the Occasion of His 60th Birthday, volume 11200 of Lecture Notes in
Computer Science, pages 218–234. Springer, 2018. doi:10.1007/978-3-030-22348-9_14.

CONCUR 2023

https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1007/BFb0027043
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/978-3-030-22348-9_14


17:18 Safety and Liveness of Quantitative Automata

35 Marcel Paul Schützenberger. On the definition of a family of automata. Inf. Control.,
4(2-3):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

36 I. Simon. On semigroups of matrices over the tropical semiring. RAIRO-Theoretical Informatics
and Applications, 28(3-4):277–294, 1994.

37 A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects Comput.,
6(5):495–512, 1994. doi:10.1007/BF01211865.

38 Sigal Weiner, Matan Hasson, Orna Kupferman, Eyal Pery, and Zohar Shevach. Weighted safety.
In Dang Van Hung and Mizuhito Ogawa, editors, Automated Technology for Verification and
Analysis – 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013.
Proceedings, volume 8172 of Lecture Notes in Computer Science, pages 133–147. Springer,
2013. doi:10.1007/978-3-319-02444-8_11.

https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1007/BF01211865
https://doi.org/10.1007/978-3-319-02444-8_11


History-Deterministic Vector Addition Systems
Sougata Bose #

University of Liverpool, UK

David Purser #

University of Liverpool, UK

Patrick Totzke #

University of Liverpool, UK

Abstract
We consider history-determinism, a restricted form of non-determinism, for Vector Addition Sys-
tems with States (VASS) when used as acceptors to recognise languages of finite words. History-
determinism requires that the non-deterministic choices can be resolved on-the-fly; based on the
past and without jeopardising acceptance of any possible continuation of the input word.

Our results show that the history-deterministic (HD) VASS sit strictly between deterministic and
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1 Introduction

Vector addition systems with states (VASSs) are an established model of concurrency with
extensive applications in modelling and analysis of hardware, software, chemical, biological
and business processes. They are non-deterministic finite automata equipped with a fixed
number of integer counters that may be incremented or decremented when changing control
state, as long as they remain non-negative.

We explore the notion of history-determinism for VASSs when used as acceptors to define
languages of finite words. History-determinism is a restricted form of non-determinism. In
a nutshell, a non-deterministic automaton is history-deterministic (HD) if there exists a
resolver, which is a strategy to stepwise produce a run for any input word given one letter at
a time, in such a way that if there exist some accepting run on the given word then the run
produced by the resolver is also accepting.

The original motivation for HDness comes from formal verification: most modelling
formalisms incorporate some form of non-determinism, e.g., to over-approximate determ-
inistic algorithms, to state specifications concisely, or to model system behaviour due to
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uncontrollable external environments. However, for non-deterministic models, many formal
analysis techniques require costly determinisation steps that are often the main barrier to
efficient procedures. History-deterministic automata provide a middle ground: they are
typically more succinct, or even more expressive, than their deterministic counterparts while
preserving some of their good algorithmic properties. They were also called “good-for-games”
as they preserve the winner of games under composition and thus allow solving games without
determinisation.

Any resolver must always choose language-maximal successors, that is, the language of
the chosen successor must also include the language of any alternative successor. When
considering languages of finite words, being able to continue making language-maximal
choices is even a sufficient condition for being a resolver. Therefore, in this case, resolvers can
be assumed to be (configuration) positional: they base their decisions only on the current
configuration and not the full history leading to it. Perhaps surprisingly, resolvers for VASSs
are not necessarily monotone with respect to counter values, and may require more than just
comparing counters to integer thresholds (see full version [7]).

Related Work. VASSs, also known as Petri nets or partially blind counter automata, have
been studied intensively since their inception in the 1960s. Early works focussed on modelling
capabilities, relative expressiveness and closure properties of their recognised languages
[15, 13, 37, 22] but the bulk of research on VASSs concerns decidability and complexity
of decision problems [24, 29, 33, 25, 21, 23, 2, 28, 10]. In order to define languages with
VASSs, different definitions distinguish between coverability and reachability acceptance
conditions, and whether or not silent (ε) transitions are permitted. Checking language
emptiness amounts to testing coverability or reachability, which are EXPSPACE [33, 29] and
Ackermann-complete [10] respectively. Many other decision problems are undecidable, such
as checking language inclusion, bisimulation and related equivalences [20] as well as checking
(language) regularity [23]. Universality is undecidable for reachability acceptance [37] and
decidable for coverability acceptance, via a well-quasi-order argument but with extremely high
complexity (Hyper-Ackermannian in general [21] and still Ackermannian in dimension 1 [19]).
These negative results by and large rely on the presence of non-deterministic choice, which
motivates restricted forms of non-determinism such as bounded ambiguity (that allows for
decidable inclusion [9]) or the notion of history-determinism studied here.

VASS recognisable languages over infinite words are significantly more complex than their
finite-word cousins, both topologically and in terms of decision problems: already 1-VASS
with (cover) Büchi acceptance can recognise Σ1

1-complete languages [35, 12] and have an
undecidable universality problem [1]. Again, the added complexity is due to non-determinism
(languages of deterministic models are Borel, lower in the analytical hierarchy).

History-determinism was introduced independently, with slightly different definitions, by
Henzinger and Piterman [17] for solving games without determinisation, by Colcombet [8]
for cost-functions, and by Kupferman, Safra, and Vardi [26] for recognising derived tree
languages of word automata. These different definitions all coincide for finite automata [3]
but not necessarily for more general quantitative automata [4].

Until now, history-determinism has mainly been studied for finite-state systems. In this
paper we continue a recent line of work [14, 27, 11, 16, 6, 32] that studies the notion for
infinite-state models capable of recognising languages beyond (ω-)regular ones. For infinite-
state systems, deterministic models are in general less expressive, not just less succinct,
than their non-deterministic counterparts. In some cases they can be determinised, such
is the case for quantitative automata [4] and timed automata with safety and reachability
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acceptance [16]. In contrast, for pushdown automata [14] and Parikh automata (VASS
with Z-valued counters; [11]), and timed automata with co-Büchi acceptance, allowing
history-determinism strictly increases expressiveness (and adds more closure properties)
compared to the deterministic variant. Whenever HD automata are strictly less expressive
than fully non-deterministic ones, one can reasonably ask if there exists an equivalent HD
automaton for a given non-deterministic one. This language HDness question is undecidable
for pushdown and Parikh-automata [14, 11]. In fact, even checking if a given (pushdown or
Parikh) automaton is itself HD is undecidable (for Parikh automata this follows for example
by the undecidability of 2-dim. robot games [31]). On the other hand, checking HDness for
timed automata is decidable [16] and various models of quantitative automata [5].

Most closely related to our work is that of Prakash and Thejaswini [32] who study history-
deterministic one counter automata (OCA; PDA with unary stack alphabet) and nets (OCN;
1-dimensional VASSs) with state-based (coverability) acceptance. They show that checking
automata HDness and inclusion are undecidable for OCA but remain decidable for OCNs. A
useful consequence of their construction is that for any OCN one can construct a language
equivalent deterministic OCA (with zero-test), albeit with a doubly exponential blow-up.
They do not consider closure properties and leave open whether history-deterministic OCNs
can be determinised, are equally expressive as fully non-deterministic OCNs, or fall strictly in
between in expressiveness. Our work extends and generalises this paper in several directions.

Our Contributions. We study history-deterministic VASSs on finite words and without
restricting the dimension. We consider coverability and reachability acceptance conditions,
with and without silent (ε) transitions, and in all cases study the relative expressiveness,
closure properties, and related decision problems.

We show that HD VASSs are more expressive than deterministic, but less expressive
than non-deterministic ones. The same is true for languages recognised by VASSs of any
fixed dimensions k, which answers the open question in [32] for k = 1. In particular, we
provide examples of 1-dim. HD VASSs for which no equivalent deterministic ones exist in
any dimension k, and also demonstrate that HD VASSs are strictly more expressive than
finitely sequential ones (another restricted form of non-determinism).

We show that HD VASS languages are closed under inverse homomorphisms and inter-
sections for both coverability and reachability semantics, although sometimes necessarily
increasing the dimension. Coverability languages are closed under unions, whereas reach-
ability languages are not. Neither are closed under other standard operations, including
complementation, concatenation, homomorphisms, iteration and commutative closures.

We report that HDness is not sufficient for decidability of inclusion checking, even for
2-dimensional VASSs. A direct consequence is the undecidability of checking HDness of a
given 2-VASS, contrasting decidability in dimension 1. Further, it is undecidable to check if a
given VASS has a HD equivalent, and also if a given HD VASS recognises a regular language.

2 Definitions

Vector-Addition Systems and their recognised languages. A k-dimensional vector-addition
system (k-VASS) is a non-deterministic finite automaton whose transitions manipulate k

non-negative integer counters. It is given by A = (Σ, Q, δ, s0, F) consisting of a finite alphabet
Σ; a finite set of control states Q; a transition relation δ ⊆ Q × Σ ∪ {ε} × Zk × Q; an initial
state s0; a subset F ⊆ Q of final states.
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For a transition t = (s, a, e, s′) ∈ δ we sometimes write label(t) def= a for the letter from
Σ ∪ {ε} it reads and effect(t) def= e for its effect on the counters. ∥δ∥ denotes the largest
absolute effect among all transitions on any counter.

A VASS naturally induces an infinite-state labelled transition system in which each
configuration is a pair (s, v) ∈ Q × Nk comprising a control state and a non-negative integer
vector. Every transition t = (s, a, e, s′) ∈ δ gives rise to steps (s, v) t−→ (s′, v′) for all v, v′ ∈ N
with v′ = v + e. We will call a path ρ = (s0, v0) t1−→ (s1, v1) t1−→ . . .

tk−→ (sk, vk) a run of the
VASS and say it is a cycle if s0 = sk. Its effect is the sum of all transition effects effect(ρ) def=∑k

i=1 effect(ti). A run ρ as above reads the word label(ρ) = label(t1)label(t2) . . . label(tk) ∈ Σ∗.
It is accepting if it ends in a final configuration.

We consider two different definitions for what constitutes a final (also accepting) con-
figurations: In the coverability semantics, the set of final configurations is F × N. In the
reachability semantics, only configurations from F × 0 are final. We define the language
LA(s, v) ⊆ Σ∗ of a configuration (s, v) to contain exactly all words read by some accepting
run starting in (s, v) (we omit the subscript A if the VASS is clear from context). For
notational convenience, we will lift this to sets S ⊆ Q × Nk of configurations in the natural
way: LA(S) def=

⋃
(s,v)∈S LA(s, v) and define the language of A as that of its initial state with

all counters zero: L(A) def= LA(s0, 0).
We will sometimes denote languages using short-hand “counting expressions”. For instance,

we write anb≤n for the language {anbm | n ≥ m} over Σ = {a, b}.

Deterministic and finitely-sequential VASSs. A VASS A = (Σ, Q, δ, s0, F) is called ε-free if
no transition is labelled by ε. It is deterministic if it is ε-free and for every pair (s, a) ∈ Q ×Σ
there is at most one transition t = (s, a, e, s′) ∈ δ. A VASS is finitely sequential if it is
the finite union of deterministic VASSs. That is, all transitions from its initial state s0 are
labelled by ε and lead to an initial state of one of finitely many deterministic VASSs.

History-deterministic VASSs. A VASS is history-deterministic if one can resolve non-
deterministic choices on-the-fly. More formally, consider a function r : (Q × Nk × δ)∗(Q ×
N) × Σ → δ that, given a finite run ρi = (s0, v0) t1−→ (s1, v1) t2−→ . . .

ti−→ (si, vi) and a
next letter ai+1 ∈ Σ, returns a transition r(ρi, ai+1) = ti+1 = (si, ai+1, ei+1, si+1) ∈ δ with
vi +ei+1 ∈ Nk. This yields, for every word w = a1a2 . . . ∈ Σ∗ and initial configuration (s0, v0),
a unique run in which the ith step (si−1, vi−1) ti−→ (si, vi) results from a transition chosen by
r. Such a function is called resolver if for any input word w ∈ LA(s0, v0) the constructed
run ρ from initial configuration (s0, v0) is accepting. A k-VASS is history-deterministic if
such a resolver exists.

Language Classes. We denote by k-D, k-H,and k-N the classes of languages recognised by
k-dimensional ε-free deterministic, history-deterministic, and fully non-deterministic VASSs,
in the coverability semantics. Similarly, let k-D0, k-H0, and k-N 0 denote the classes of
languages recognised by k-dimensional ε-free deterministic, history-deterministic, and fully
non-deterministic VASSs, in the reachability semantics. Finally, define k-Hε,k-Nε k-H0

ε, and
k-N 0

ε , as above but without the restriction to ε-free systems. When dropping the parameter
k we refer to the union over all dimensions k. For instance, H def=

⋃
k∈N k-H.
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k-D

k-H

k-Nk-Hε

k-Nε

k-D0

k-H0

k-H0
ε k-N 0

k-N 0
ε

k = 1 eqiv
k ≥ 2 : L6

L3
L7 L4

L2L1

L3

L3k = 1 eqiv
k ≥ 2 : L6

L6

∋ L4 ̸∈

∋ L6 ̸∈ ̸∋ L3 ∈

∋ L6 ̸∈ ̸∋ L3 ∈

∋ L4 ̸∈

̸∋ L5 ∈Coverability Semantics Reachability Semantics
Language Definition Alphabet Page
L1 anb≤n + a∗b∗c {a, b, c} 5
L2 anb≥n# {a, b, #} 6
L3 (a + b)∗anb≤n {a, b} 6
L4 anb≤n {a, b} 7
L5 anbn {a, b} 7
L6 bin(n)#0≤n#, where bin(n) is n in binary. {0, 1, #} 8
L7 anb≤n# {a, b, #} 8

Figure 1 Comparison of expressive power of VASS and H-VASS language classes, with and
without silent transitions, in reachability and coverability semantics. A solid arrow A −→ B indicates
strict inclusion A ⊊ B, with a separating language denoted on the edge. A red/dashed line indicates
pair-wise incomparability, with the separating languages denoted. Dotted arrows indicate a special
case.

3 Expressiveness

We consider the hierarchy of language classes recognised by vector addition systems, varying
definitions in three directions: the degree of non-determinism, reachability vs coverability
acceptance, and with/without ε-transitions.

The situation is depicted in Figure 1. We start by looking at the classes defined by ε-free
systems (in Section 3.1) before discussing the effect of ε-transitions (in Section 3.2) and
following this up with a comparison with finitely-sequential VASS (in Section 3.3).

3.1 Separating determinism, history-determinism and non-determinism
In terms of the classes of languages they define, history-deterministic VASSs are strictly more
expressive than deterministic ones, and in turn strictly subsumed by fully non-deterministic
ones. The following theorem states this formally. Its proof is split into Lemmas 2–5.

▶ Theorem 1. For all k ≥ 1, we have k-D ⊊ k-H ⊊ k-N and k-D0 ⊊ k-H0 ⊊ k-N 0.

▶ Lemma 2. L1
def= anb≤n + a∗b∗c ∈ 1-H \ D.

Proof. L1 can be recognised by the 1-H-VASS depicted in Figure 2a. Note that the VASS
is HD: the only non-deterministic choice is whether to go to q2 or q3 on b, for which the
resolver must always choose q2 if available (if the counter is non-zero). The choice of resolver
is unique as going to q3 unnecessarily is not language maximal.

CONCUR 2023
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q1 q2 q3 q4

a,+

b,−

b

b,−

b

b

c
c

c

(a) A 1-H-VASS recognising L1.

q1 q2

a,+
b,−

b

b,−

b

(b) A 1-H-VASS0 recognising L2.

Figure 2 Transitions labelled with + increment the counter by 1, and those labelled by −
decrement the counter by 1 and otherwise have no effect on the counter.

For a contradiction, suppose L1 is accepted by a k-D-VASS with n states. Since wn+1 =
an+1bn+1 ∈ L1 the run is accepted. There exists i < j ≤ n + 1 such that an+1bi is in state q

with counter vector v ∈ Nk and an+1bj is also in state q with counter vector v′ ∈ Nk. Since
an+1bi ∈ L1, we have that state q is accepting.

Suppose v′ − v ≥ 0, then an+1bi+(j−i)n ̸∈ L1 is accepted. Therefore there exists a
dimension such that v′ − v is negative. Hence for some ℓ we have an+1bi+(j−i)ℓ is a dead
run. Hence it cannot accept an+1bi+(j−i)ℓc ∈ L1. ◀

▶ Lemma 3. L2
def= anb≥n ∈ 1-H0 \ D0

Proof. L2 is recognised by the H-VASS0 depicted in Figure 2b. On b the resolver can choose
between decrementing the counter and no effect, the resolver will always choose to decrement
whenever the counter is non-zero.

We have L2 ̸∈ D0. Suppose a D-VASS0 with n states exists, consider the run on the word
wn+1 = an+1bn+1 ∈ L2. There exists two prefixes of the run in which an+1bi and an+1bj

revisit a state, and so the system cycles through states on extension of an+1bi with b∗. Thus,
in order to accept wn+1bi for all i the automaton must visit only accepting states throughout
the cycle. Since an+1bi ̸∈ L2 the counter must be non-zero, but zero at u = an+1bi+(j−i)n

since u ∈ L, thus the effect of the cycle is decreasing on some counter, there must exist k > n

such that the run is dead on an+1bi+(j−i)k. This is a contradiction as an+1bi+(j−i)k ∈ L2. ◀

▶ Lemma 4. L3
def= {a, b}∗an>0b≤n ∈ 1-N \ H.

Proof. L3 can be accepted a 1-N-VASS, which non-deterministically guesses the start of the
last a∗b∗ block and accepts if there are fewer b’s than a’s.

We show that L3 ̸∈ H. Suppose for contradiction there is a k-H-VASS with |Q| states,
∥δ∥ the largest effect on a counter in any transition and a resolver r.

Consider a sequence of accepted words wℓ = wℓ−1amℓbmℓ , with w0 the empty word,
where mℓ is large enough so that there exist rℓ,1 < rℓ,2 ≤ mℓ, such that the run given by
the resolver r on wℓ−1arℓ,1 has configuration (qℓ, vℓ) and wℓ−1arℓ,2 has (qℓ, uℓ), with uℓ ≥ vℓ.
In other words, whilst reading amℓ , the run encounters a cycle on state qℓ which does not
strictly decrease any counter value. This occurs due to Dickson’s lemma and depends on
|Q|, ∥δ∥, k and m1, . . . , mℓ−1. This gives an inductive way to build words wℓ consisting of ℓ

blocks of as and bs such that each a-block visits a non-decreasing cycle. We consider the
word wn for n = 2k + 1 and the run ρ on wn given by the resolver.

Given a vector v ∈ Nk, we define support(v) = {i | vi ≠ 0}. Since there are n blocks of a in
wn, each of which has a non-decreasing cycle (qℓ, uℓ) and (qℓ, vℓ), for ℓ ∈ {1, . . . , n}. However,
there are 2k + 1 possible choices for support(uℓ − vℓ). Therefore, there exists ℓ < ℓ′ such that
support(uℓ − vℓ) = support(uℓ′ − vℓ′). In other words, there are two a-blocks which have a
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an1 bn1 an2

r1

bn2 w ank

r2

bnk
accepting

an1 bn1 an2+R·r1 bn2 w ank−r2 bnk

R times
s.t. R · u ≥ v

u ≥ 0
v ≥ 0 accepting

(but shouldn’t)

Figure 3 Proof that L3 ̸∈ H (Lemma 4). For two cycles of lengths r1, r2 chosen in different
a∗-blocks with effects u, v ≥ 0 and support(u) = support(v), repeating the first cycle and removing
the second one constructs an accepting run on a word /∈ L3.

non-decreasing cycle such that the effect of the cycles have the same support. Let R ∈ N
be such that R(uℓ − vℓ) ≥ uℓ′ − vℓ′ , which exists since support(uℓ − vℓ) = support(uℓ′ − vℓ′)
and uℓ − vℓ ≥ 0 and uℓ′ − vℓ′ ≥ 0.

Let u be the word such that wℓ′−1 = wℓu, i.e, the part between the ℓth b-block and ℓ′th
a-block. Consider the word w′ = wℓ−1amℓ+R(rℓ,2−rℓ,1)bmℓuamℓ′ −(rℓ′,2−rℓ′,1)bmℓ′ . The word
w′ is therefore obtained by adding R(rℓ,2 − rℓ,1) many a’s in the ℓth a-block and removing
(rℓ′,2 − rℓ′,1) many a’s from the ℓ′th a-block. Note that w′ ̸∈ L3, since the last block has
more b’s than a’s. We will show that there is an accepting run on w′, by modifying the
resolver run on w′

ℓ.
Let ρℓ′ be the run on wℓ′ given by the resolver r. We consider the run ρ′ where we take

the cycle between (qℓ, vℓ) and (qℓ, uℓ) an additional R times in the ℓ-th a-block, but removes
the cycle between (qℓ′ , vℓ′) and (qℓ′ , uℓ′). We show that ρ′ is a run on w′. To see this, we
must verify that no counter drops below zero in ρ′. Note that the runs ρℓ′ and ρ′ are the
same till the prefix wℓ−1arℓ,2 after which it reaches the configuration (qℓ, uℓ). Then it does R

additional cycles which results in the configuration (qℓ, uℓ + R(uℓ − vℓ)). From this point ρ′

follows the same sequence of transitions as ρℓ′ till it reads the prefix up to wℓ′−1arℓ′,1 ending
up in the configuration (qℓ′ , vℓ′ + R(uℓ − vℓ)). Since vℓ′ + R(uℓ − vℓ) ≥ vℓ′ + (uℓ′ − vℓ′) = uℓ′ ,
ρ′ can follow the suffix of the run ρℓ′ from (qℓ′ , uℓ′) on amℓ′ −rℓ′,2bmℓ′ , which ends in the same
state as ρℓ′ with a non-zero counter value. This is a contradiction as we get a accepting run
on w′ /∈ L3. We conclude that there is no k−H-VASS that recognises the language L3. ◀

▶ Lemma 5. L4
def= anb≤n ∈ 1-N 0 \ H0

Proof. In the non-deterministic case reachability semantics can recognise L4 ∈ 1-N 0: On a,
non-deterministically choose either to increment by 1 or not, guessing ahead of time how
many b’s will be seen. On b, the machine moves to a new state and counts down, preventing
more b’s than the guessed number.

However L4 cannot be recognised with history-determinism. To see this, observe that
since an ∈ L4 all the counters must be zero after reading an, then, for n larger than the
number of states, the machine cannot distinguish anbn ∈ L4 and anbn+1 ̸∈ L4. ◀

3.2 Silent transitions
First observe that L5

def= anbn can be recognised with reachability semantics (even D0), but
cannot be recognised under coverability semantics (even Nε). On the other hand L4 = anb≤n

can be recognised by coverability semantics (even D), but cannot be recognised by H0
ε, thus
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q1 q2qs

a,+

a,+

b,−
a,−

b,−

Σ

Figure 4 A 1-H-VASS automaton with language L8 = L(q1, 0) that is not finitely sequential.
The automaton reads blocks of a’s followed by blocks of b’s. If some block of a’s is followed by fewer
b’s then the automaton can read anything after the next a. If every block is followed by the same
number of a’s and b’s then it must read another block of the form anbn or anb<n. The language is
thus L8 =

⋃∞
k=0 an0 bn0 . . . ank−1 bnk−1 ank b<nk aΣ∗.

together L4 and L5 show pairwise incomparability between reachability and coverability
semantics for deterministic and history-deterministic systems. However, if the languages have
an end marker then coverability acceptance can be turned into reachability acceptance (with
ε-transitions) as ε-transitions can be used to take the counters to zero at the end marker.

The separation between N and Nε is due to [13] for which L6
def= bin(n)#0≤n# ∈ Nε \N ,

where bin(n) is the binary representation of n ∈ N, n > 0 in 1{0, 1}∗. This language cannot
be recognised without ε transitions (see full version [7] or [13] for details). We observe that
the same language separates H and Hε, as the 2-VASS of [13] recognising L6 is in fact
history-deterministic. However, in dimension 1, the two classes collapse:

▶ Lemma 6. 1-H = 1-Hε.

While in coverability semantics, the presence of ε-transitions separates languages recog-
nised by k-H-VASS and k-H-VASSε only for dimensions k ≥ 2, in reachability semantics the
separation occurs already in dimension 1: L7

def= anb≤n# is in H0
ε but not in H0.

3.3 Comparison with Finitely Sequential VASS
Recall that finitely sequential VASS are the union of finitely many D-VASS. In Lemma 8 we
show that language of a finite union of history-deterministic VASS is also history-deterministic.
In particular, the deterministic VASSs comprising the finitely sequential VASS are themselves
history-deterministic, so any finitely sequential VASS has an equivalent history-deterministic
VASS recognising the same language. On the other hand, we show that history-deterministic
VASS with coverability acceptance are strictly more powerful:

▶ Lemma 7. There exists a language in 1-H that is not finitely sequential.

Proof. Consider the language L8
def= L(q1, 0) of the VASS depicted in Figure 4. Observe that

it is history-deterministic: when reading a at state q1, the resolver goes to qs if possible.
This choice is language-maximal and there is no other non-determinism to resolve.

We show the language is not finitely sequential. Suppose for contradiction the language
is accepted by a finitely sequential VASS that is the union of k many D-VASS, each with at
most m states. We consider the word am+1bm+1, which can be extended into an accepting
word in L8, and thus is alive in some D-VASS. For D-VASS in which the run is still alive,
reading this word goes through a cycle in the run while reading am+1 and similarly also
whilst reading bm+1.
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Let c1, . . . , ck be the lengths of these cycles while reading a’s in each D-VASS respectively,
d1, . . . , dk be the lengths of the cycles reading b’s, and fix C =

∏
i≤k ci and D =

∏
i≤k d.

Observe that, for every x, for each D-VASS the same state is reached after reading am+1+xC .
Similarly, for any y, the same state is reached after reading am+1+xCbm+1+yD. In particular,
fix words w = am+1+CDbm+1+CD and the words u = am+1+CDbm+1+(C−1)D.

Observe that after reading ua, the system in Figure 4 can be in state qs and therefore,
any extension of ua is accepted. However, the automaton of Figure 4 can only reach state q2
on wa and so, for any z ∈ N, i ≥ 1, wazbz+i ̸∈ L8. Consider this word for z = m + 1. Since
there is a cycle somewhere while reading bz, then when reading more b’s the automaton
visits only states on that cycle. Since wazbz+i ̸∈ L8 for i ≥ 1 either every state on the cycle
is non-accepting, or the cycle has a negative effect on at least one counter and therefore
becomes unavailable for large enough i.

Recall, in M both wa and ua are in the same control location in each constituent D-VASS,
and thus for any v ∈ Σ∗ we have wav and uav reach the same control locations (or possibly
the run is dead). However, for every z, i, there is some D-VASS in which the word uazbz+i

is accepting. However, we have argued that for every D-VASS, for sufficiently large i, the
run on wazbz+i is stuck in a rejecting cycle, or a cycle in which the counter is decreasing.
Thus for sufficiently large i, in every D-VASS, either the run on uazbz+i is also dead or in a
rejecting cycle, which contradicts uazbz+i ∈ L8. ◀

4 Closure Properties

We take a look at closure properties of the classes H and H0 recognised by history-
deterministic VASSs in coverability and reachability semantics, respectively.

Union closure (of H and H0) and closure under intersection (for H) can be shown using
a straightforward product construction at the cost of increasing the dimension.

▶ Lemma 8. Let L ∈ k-H and L′ ∈ k′-H. Then L∪L′ ∈ (k +k′)-H and L∩L′ ∈ (k +k′)-H.
Let L ∈ k-H0 and L′ ∈ k′-H0. Then L ∩ L′ ∈ (k + k′)-H0.

A naïve product of the two systems recognising L and L′ does not work for showing the
union closure of H0 because here, acceptance requires all counters to be zero even for inputs
that are only in one of the two languages (note the absence of ε-transitions). Indeed, H0

are not closed under union, as witnessed by L9
def= anbn ∪ anb2n not being in H0 (see full

version [7]).
Taking a direct product yields a H-VASS that may not be optimal in terms of the number

of counters and in general, increasing the dimension is not avoidable. For instance, the
languages L10

def= anb≤nc∗ ∪ anb∗c≤n and L11
def= anb≤nc∗ ∩ anb∗c≤n are not in 1-H, while the

individual component languages are. Similarly, the language L12
def= anbnc∗ ∩anb∗cn = anbncn

witnesses non-closure of 1-H0 under intersection.
The theorems below summarise our findings regarding closure properties of history-

deterministic classes. Full proofs are in the full version [7].

▶ Theorem 9. H is closed under union, intersection and inverse homomorphisms.
It is not closed under complementation, concatenation, homomorphisms, iteration, nor
commutative closure.

▶ Theorem 10. H0 is closed under intersection and inverse homomorphisms.
It is not closed under union, complementation, concatenation, homomorphisms, iteration,
nor commutative closure.
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5 Decision Problems

In this section we consider decision problems related to history-determinism: checking if a
given N-VASS is history-deterministic, HD definability (as well as regularity) of its recognised
language, and language inclusion between HD VASSs.

Prakash and Thejaswini [32] showed that in dimension 1 (and for coverability semantics),
checking HDness and inclusion is decidable in PSPACE by reduction to simulation preorder [18].
This can be generalised slightly as follows.

▶ Theorem 11. Language inclusion L(B) ⊆ L(A) is decidable for any 1-H-VASS A and for
any N-VASS B.

Proof. By Theorem 19 in [32], for any 1-H-VASS, one can effectively construct a language
equivalent deterministic one-counter automaton (DOCA; a 1-VASS with zero-testing trans-
itions). DOCA can be complemented [36] and so the inclusion question is equivalent to
the emptiness (reachability) of A × B, a VASS with one zero-testable counter, which is
decidable [34]. Note this result is independent of the number of counters of B. ◀

We continue to show that in higher dimensions, these questions are undecidable. Through-
out this section, when we show undecidability for ε-free VASS, the result naturally also
applies for superclass with silent transitions. Our constructions proving this are similar, yet
require subtle differences, and are all based on weakly simulating two-counter machines [30].
Let us recall these in a suitable syntax first.

▶ Definition 12. A two-counter Minsky machine (2CM) M = (Q, q0, qh, δ) consists of a finite
set of states Q, including a distinguished starting and final state q0, qh, respectively, as well
as a finite set of transitions δ ⊆ Q × Γ × Q, where Γ = {inc1, inc2, dec1, dec2, ztest1, ztest2}
are the operations on the counters1.

A configuration of M is an element of Q ×N2, comprising the current state and the value
of the two counters. For every state q either:
1. There is only one transition of the form (q, inci, q′). This allows to move from state q to

q′, increment counter i by one and leaves the other counter untouched; or
2. There are exactly two transitions from q, of the form (q, ztesti, q′) and (q, deci, q′′). The

former allows to move to q′ without changing the counters, but only if counter i has value
0. The latter allows to move from q to q′′ and decrease counter i, and leaves the other
counter unchanged.

Notice that from any configuration there is exactly one possible successor configuration.
We can therefore speak of the run of M , and its sequence of counter operations, from the
initial configuration (q0, 0, 0). We say that M terminates if its run visits the final state qh.
W.l.o.g., we can assume that both counters have value 0 whenever M terminates.

Deciding whether a given 2CM terminates is undecidable [30]. An easy consequence, and
the basis for our construction for regularity, is the undecidability of checking finiteness of the
reachability set for a given 2CM.

▶ Lemma 13. It is undecidable to check, for given 2CM M , if its run visits infinitely many
different configurations.

1 Readers may be more familiar with an instruction of the form if Ci = 0 goto qℓ else goto qk, this can be
simulated by a ztesti to qℓ and a decrement followed by an increment to qk.
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Figure 5 The 2-VASSs A (in red) and B (in green) both include a copy of, and weakly simulate,
a given 2CM M . For any zero-testing operation ztesti in M both can go to a sink state if counter i

is in fact non-zero, reading the letter ztesti and decreasing the VASS counter i, as indicated by the
effect vector Xi−−. The extra letter b ensures that L(B) ̸⊆ L(A); Only A can accept words that
consist of valid sequences of 2CM operations and that end in the letter h.

5.1 Checking HDness and Inclusion
We focus on the questions of whether a given VASS is history-deterministic, and whether
language inclusion holds for two languages given by H-VASS. For languages of finite words
these two decision problems are intrinsically linked due to the connection with language
maximal resolvers.

▶ Lemma 14. For a given 2CM M one can construct two history-deterministic 2-VASSs
with initial states sA and sB, respectively, so that L(sA, 0) ⊆ L(sB, 0) if, and only if, the
unique valid run of M never reaches a halting state.

Proof. Suppose we are given 2CM M with designated initial and halting states s and h,
respectively, and let Γ denote the set of counter operations. W.l.o.g., there is exactly one
valid sequence of counter operations that is either infinite or finite. We define two 2-VASSs
A and B over the alphabet Σ = Γ ⊎ {b, h}. These are just copies of, and just weakly simulate
the machine M : For every state q of M , there are states qA and qB; For every transition
q

γ−→ q′ of M , there are corresponding edges qA
γ−→ q′

A and qB
γ−→ q′

B that read the letter γ

and manipulates the counter accordingly: if γ = inci (or deci) then counter i is incremented
(or decremented, respectively). If γ = ztesti then counter i remains as is. The only accepting
states so far are hA and hB , corresponding to the designated halting state of M .

Additionally, for every zero-testing transition q
ztesti−−−→ q′ in M , both A and B have a

transition from state q that decreases counter i and goes to a new, accepting, sink state u

with language ⊇ (Γ ∪ {h})∗. This way, both systems will accept any word that prescribes a
run of M that contains a “counter cheat”, meaning that the word contains operation ztesti

but the run of M so far ends in a configuration where counter i is not zero.
We now modify the systems A and B so that they differ in two ways:

1. the halting state hA of A admits a h-labelled step (to itself) but sB does not.
2. All states in B have b-labelled steps (to the accepting sink uB) but none of As states do.
See Figure 5 for a depiction of the constructed 2-VASS.

Notice that L(B) ̸⊆ L(A) by design, because no word containing the letter b can be
accepted by A. Notice that both A and B are indeed history-deterministic: the only choices
to be resolved are upon reading a zero-testing letter ztesti from a configuration where the
corresponding counter i is not zero. In any such case, moving to the sink is language maximal.
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It remains to argue that L(sA) ̸⊆ L(sB) if, and only if, M has a finite run from an initial
configuration to its final state. Indeed, if M terminates via a sequence ρ = e0e1, . . . ek, then
L(A) contains the word ρ · h. Since this run does not contain “cheats” nor letters b, the
system B cannot possibly reach the winning sink uB and therefore not accept. Conversely, if
M does not terminate, then any word ρ ∈ Γ∗ · h accepted by A must prescribe a run of M

that contains a cheat. Say ρ = ρ1 · ztesti · ρ1 · h. But then, B will be able to reach the sink
uB after reading the prefix ρ1 · ztesti and thus accept. ◀

The construction in the previous lemma works both in coverability and reachability semantics
(note that we assume that a 2CM terminates with counters at 0). The next two theorems
are direct consequences and again hold for coverability and reachability semantics.

▶ Theorem 15. Checking language inclusion is undecidable for 2-HD VASSs.

▶ Theorem 16. It is undecidable to check if a given 2-VASS is history-deterministic.

Proof. By reduction from 2CM termination: Construct the two systems A and B as given
by Lemma 14 and add one new initial state s that, upon reading some letter b can move to
the initial state sA of A or sB of B. The so-constructed system is HD iff L(sA) ⊆ L(sB),
which is true iff M does not terminate. ◀

5.2 Checking HDness of VASS Languages
We turn to showing undecidability of language history-determinism, i.e., the question if for a
given VASS there exists an equivalent history-deterministic VASS. We start with the more
interesting and involved case, for the coverability semantics (Theorem 17) and present an
easier construction for reachability (Theorem 18) afterwards.

We give a proof by reduction from the 2CM halting problem, combining the constructions
to show the non-HDness of L3 = (a, b)∗anb≤n, (Lemma 4) and the proof of [23] that checking
regularity for N-VASS languages is undecidable.

▶ Theorem 17. It is undecidable to check if L(A) ∈ H holds for a given N-VASS A.

Proof. By reduction from the 2CM halting problem. For a given 2CM M with states
QM and counter operations Γ = {inc1, inc2, dec1, dec2, ztest1, ztest2} we construct a 3-VASS
A = (Σ, Q, δ, s0, F) so that L(A) is history-deterministic iff the faithful run of M is finite.

We refer to the three counters as X1, X2, X3 and write Xi−− and Xi++ for the effects
of (VASS) transitions that decrement/increment counter i only.

The construction. A uses the alphabet Σ = Γ ∪ {a, b}, consisting of counter operations
of M and two fresh symbols. The control states of A mimic those of M , except that in
between any simulated step of M , A can read a word in a+b+: For every state q ∈ QM we
introduce states qin, qout and qstep. In addition, we add three other states sink, r1, r2. We
make sink universal by adding self-loops (s, a, 0, s) for every letter a ∈ Σ. First we consider
the simulation of M .

For every step q
γ−→ p of M , A has a transition t = (qout, γ, e, pin) from qout to pin that

reads the letter label(t) = γ and manipulates the counter accordingly: if γ = inci then
e = Xi++; if γ = deci then e = Xi−−; if γ = ztesti then e = 0. In addition, for zero-testing
steps q

ztest−−−→i p, A in M , A contains a decreasing transition t = (qout, ztesti, Xi−−, sink) to
the universal sink state. From a state qin. There are two possible continuations:
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1. Reading a word in a+b+ and moving to qout, via transitions qin
a,0−−→ qstep, qstep

a,0−−→ qstep,
qstep

b,0−−→ qout and qout
b,0−−→ qout.

2. Reading a word in anb≤n and stopping. For this, there are transitions qin
a,X3++−−−−−→ r1,

r1
a,X3++−−−−−→ r1, r1

b,X3−−−−−−−→ r2 and r2
b,X3−−−−−−−→ r2.

The accepting states of A are F = {r2, sink}. Its initial state is s0 = qout, where q ∈ QM is
the initial state of M .

The recognised language. The language of the constructed 3-VASS A contains sequences
of instructions of M interspersed with blocks of the form a+b+. Let’s call a sequence
γ1γ2 . . . γk ∈ Γ∗ of operations in M faithful if for all i ≤ k, γi is the ith instruction in
the run of M from its initial configuration (q, 0, 0). Clearly, for any k less or equal to
the length of the run of M , there is a unique faithful sequence ρk of length k. Define
Correctk

def= γ1(a+b+)γ2(a+b+)γ3 . . . (a+b+)γk where γ1γ2 . . . γk = ρk. Let Incorrectk ⊆ Σ∗

contain exactly all words wγ ∈ Σ∗ \ Correctk where w ∈ Correctk−1 and γ ∈ {ztest1, ztest2}.
That is, words whose projection into the operations of M is faithful up to step k − 1 but
that contain an incorrect zero-test at step k.

Observe that if the faithful sequence of length k takes M to (q, C1, C2) then A can read
any word in Correctk and every run on such a word leads to the configuration (qin, C1, C2, 0).
Such a run of A can be extended in two ways to reach an accepting state. Either by reading
a word in anb≤n to reach r2, or by continuing on the run of M and eventually erroneously
reading a ztesti to reach sink. We can therefore write the language of A as

L(A) =
⋃
k≥0

Correctk · (anb≤n) ∪
⋃
k≥0

Incorrectk · Σ∗

HDness. We show that if M terminates, meaning its run has some length k ∈ N, then
L(A) is history-deterministic. Observe that for every 0 ≤ i ≤ k, both languages Correcti and
Incorrecti are regular. We can concatenate a DFA recognising the former with a 1-H-VASS
for anb≤n to construct an 1-H-VASS recognising Correcti · (anb≤n). Observe that Incorrecti,
i > k + 1 is empty. Now, L(A) is the finite union of k many 1-H-VASS languages (and a
regular language) and therefore recognisable by a k-dimensional H-VASS.

It remains to show that if the run of M is infinite, then L(A) is not in k-H, for any k.
Our proof mirrors the proof of Lemma 4, except that we interleave {a, b}-blocks with the
faithful operations of M . Suppose towards a contradiction that there exists a k-H-VASS
B with states QB and let ρ = γ1γ2, · · · ∈ Γω denote the infinite run of M . That is, every
length-i prefix ρi is faithful. Consider a sequence (wn)n≥0 of words in L(B) such that w0 = ε

and otherwise wℓ = wℓ−1γℓa
mℓbmℓ with mℓ large enough so that the resolved run on wℓ

contains a non-decreasing cycle while reading the last a-block. Say,

(s0, 0) wℓ−1γℓarℓ,1
−−−−−−−−→ (qℓ, uℓ)

arℓ,2
−−−→ (qℓ, vℓ)

with uℓ ≤ vℓ. This is well-defined by Dickson’s Lemma.
Setting n = |QB|2k + 1 is sufficiently high so that there must be ℓ < ℓ′ with qℓ = qℓ′ and

support(uℓ − vℓ) = support(uℓ′ − vℓ′). Take R be such that R(uℓ − vℓ) ≥ (uℓ′ − vℓ′) and let
u be the word such that wℓ′−1 = wℓu. Now consider the word

w′ = wℓ−1γℓa
mℓ+R(r2,ℓ)bmℓuγℓ′amℓ′ −r2,ℓ′ bmℓ′

that results from wn by removing one iteration of the loop in block ℓ′ and making up for
it by inserting R iterations of the loop in block ℓ. Notice that w′ is accepted by the run
that follows the resolved run on wn and repeats the designated loops on the extra letters.
However, w′ /∈ L(A) because its last {a, b}-block contains more b’s than a’s. ◀
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Notice that if the given 2CM terminates then our construction produces a history-
deterministic VASS where the number of counters corresponds to the length of the terminating
run. Therefore it remains open whether the language k-HDness problem is decidable, which
ask whether there is an equivalent k-HDVASS for the given language.

The analogous statement for reachability is simpler to prove; by adapting the construction
for the regularity problem of Parikh-automata [11], we reduce from the universality problem,
which is undecidable in reachability semantics [37, Theorem 10].

▶ Theorem 18. It is undecidable to check if L(A) ∈ H0 holds for a given N-VASS A.

Proof. We reduce from the undecidable universality problem for VASS languages in reachab-
ility semantics [37, Theorem 10]. The construction is the same as for the regularity problem
of Parikh-automata, recently presented in [11]. For an alphabet Σ let Σ$ = Σ ⊎ {$} for some
fresh symbol $ /∈ Σ. For two words u, v let u ⊗ v be the word w = (a1, b1)(a2, b2) . . . (ak, bk)
so that either u = a1a2 . . . ak and b1b2 . . . bk ∈ v$∗ or v = b1b2 . . . bk and a1a2 . . . ak ∈ u$∗.

For two languages L, L′ ⊆ Σ∗ define their cross-union L>L ⊆ (Σ2
$)∗ to be the langugae of

words u ⊗ v such that u ∈ L or v ∈ L′. That is, for any word w ∈ L>L, either the projection
into the first components is π1(w) ∈ L or that into the second components π2(w) ∈ L′.

Recall the language L4 = anb≤n ∈ N 0 \ H0, which is not HD recognisable. To show our
claim, let L be some given N-VASS language and consider the language L14

def= $ · (L > ∅) ∪
$ · (∅ > L4). This is clearly in N 0. Now, if L = Σ∗ is universal then L > ∅ is universal over
Σ2

$ and so L14 = $(Σ2
$)∗ ∈ H0 (even, regular). If conversely, suppose L is not universal as

witnessed by w /∈ L, then L14 cannot be recognised by any H-VASS0 for the same reason
as anb≥n ̸∈ H0: suppose it is accepted by some k-H-VASS0 run on n states and consider
run of the resolver on the word u = $(w ⊗ a|w|+n+1) ∈ L14, thus must end with counter 0.
The extension of u by ($, b)n+1 is also accepting, it must remain at 0 and cycle on accepting
states. Hence u($, b)|w|+n+1 ∈ L14 cannot be distinguished from u($, b)|w|+n+2 ̸∈ L14. ◀

5.3 Regularity
We turn to the decision problem of whether a given VASS recognises a regular language.
This regularity question is undecidable for general N-VASS [23]. It again turns out that for
history-deterministic VASSs, the decidability status of regularity depends on the dimension.
For 1-H-VASS, one can effectively construct a language equivalent DOCA [32], for which
checking regularity remains decidable [2, 36].

▶ Theorem 19. Given a 1-H-VASS A, checking if L(A) is regular is decidable in EXPSPACE.

Although checking regularity of DOCA is NL-complete, the added complexity here is due
to the doubly exponentially large DOCA produced in the reduction. Since 1-H-VASSε can
be transformed into 1-H-VASS by Lemma 6, the theorem also holds for 1-H-VASSε. We now
show undecidability already for dimension 2.

▶ Theorem 20. Given a 2-H-VASS A, it is undecidable if L(A) is regular.

Proof. By reduction from the finiteness problem for 2CM (Lemma 13). For a given 2CM
M we construct a 2-H-VASS whose language will be regular iff M ’s run visits only finitely
many configurations. We make the argument for coverability semantics first.

Let ρ = γ1γ2 . . . be the faithful run of M and |ρ| ∈ N ∪ {∞} for its length. Write
correctk for its length-k prefixes and let xk be 1 plus the sum of both counter-values in the
configuration M reaches after reading correctk. Further, wherever correctk = correctk−1deci,
define incorrectk as correctk−1ztesti.
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Consider the language L = G ⊎ B over the alphabet Σ = Γ ⊎ {a},

G
def=

⋃
k≥0

(
ρk · a≤xk

)
and B

def=
⋃
k≥0

(incorrectk · Σ∗)

G consists of words that describe some length-k prefix of M ’s run followed by xk or fewer
symbols a; B contains all words describing the run of M up to length-k, followed by an
incorrect zero-test, and then anything.

We claim that this language L is recognised by a 2-H-VASS. To see this, again build
a VASS that weakly simulates M as done before, for example in the proof of Theorem 17.
This will simulate increment and decrement operations faithfully, reading letters inci or deci,
respectively. For any step q

ztesti−−−→ q′ in M , the VASS A will have a transition (q, ztesti, 0, q′)
as well as one that reads ztesti, decreases counter i and leads to a universal state. This
allows to accept exactly all words in B. In addition, from any state q of M , A can move
to a new countdown phase: there is a transition q

a,0−−→ c to a new, final, control state that
can continue to read a′s while at least one of the counters remains non-zero. This allows to
accept exactly all words in G. Note that the only non-determinism is for letters ztesti when
M ’s ith counter after reading ρi is not zero. In this case, the only language-maximal choice
is to move to the universal state. The constructed system is therefore history-deterministic.

To conclude the proof, we argue that L is regular iff ρ visits only finitely many config-
urations. Indeed, if so, then G is finite because all xi, i ≤ k are bounded, and B is regular
because at most k many words incorrectk exist. So L is the finite union of regular languages
and thus regular.

Conversely, suppose that M ’s run ρ visits infinitely many different configurations. Then in
particular, there are infinitely many faithful prefixes ρk. Let us assume towards contradiction
that L is regular and recognised by a DFA with d many states. We pick a prefix ρk so that
xk > d and consider the word ρkaxk ∈ L. While reading the suffix am, our DFA must repeat
some cycle of length c ≤ d. But then it must also accept ρkaxk+c /∈ L by going through that
cycle twice.

The same proof goes through for the reachability semantics if we set G
def=

⋃
k≥0 (ρk · a=xk )

and B
def=

⋃
k≥0

(
incorrectk · Σ≥xk−1)

. Then again, if the run of M visits finitely many
configurations then both G and B are regular. Otherwise G is not regular. The extra
symbols at the end (of words in G and B) allow a run of the VASS A to decrease the counters
to 0 and accept (and therefore to conclude that language L = G ⊎ B is in 2-H0). ◀
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Abstract
The interaction among components in a system is traditionally modeled by a game. In the turned-
based setting, the players in the game jointly move a token along the game graph, with each
player deciding where to move the token in vertices she controls. The objectives of the players are
modeled by ω-regular winning conditions, and players whose objectives are satisfied get rewards.
Thus, the game is non-zero-sum, and we are interested in its stable outcomes. In particular, in the
rational-synthesis problem, we seek a strategy for the system player that guarantees the satisfaction
of the system’s objective in all rational environments. In this paper, we study an extension of the
traditional setting by trading of control. In our game, the players may pay each other in exchange
for directing the token also in vertices they do not control. The utility of each player then combines
the reward for the satisfaction of her objective and the profit from the trading. The setting combines
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1 Introduction

Synthesis is the automated construction of a system from its specification. A useful way to
approach synthesis of reactive systems is to consider the situation as a game between the
system and its environment. Together, they generate a computation, and the system wins
if the computation satisfies the specification. Thus, synthesis is reduced to generation of a
winning strategy for the system in the game – a strategy that ensures that the system wins
against all environments [1, 35].

Nowadays systems have rich structures. More and more systems lack a centralized
authority and involve selfish users, giving rise to an extensive study of multi-agent systems [2]
in which the agents have their own objectives, and thus correspond to non-zero-sum games
[33]: the outcome of the game may satisfy the objectives of a subset of the agents.

The rich settings in which synthesis is applied have led to more involved definitions
of the problem. First, in rational synthesis [26, 28, 24, 25, 30], the goal is to construct a
system that satisfies the specification in all rational environments, namely environments
that are composed of components that have their own objectives and act to achieve their
objectives. The system can capitalize on the rationality of the environment, leading to
synthesis of specifications that cannot be synthesized in hostile environments. Then, in
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19:2 Games with Trading of Control

quantitative synthesis, the satisfaction value of a specification in a computation need not be
Boolean. Thus, beyond correctness, specifications may describe quality, enabling the specifier
to prioritize different satisfaction scenarios. For example, the value of a computation may
be a value in N, reflecting costs and rewards to events along the computation. A synthesis
algorithm aims to construct systems that satisfy their objectives in the highest possible value
[3, 5, 6, 18, 20]. Quantitative rational synthesis then combines the two extensions, with
systems composed of rational components having quantitative objectives [26, 28, 6, 19].

Viewing synthesis as a game has led to a fruitful exchange of ideas between formal
methods and game theory [17, 27]. The extensions to rational and quantitative synthesis make
the connection between the two communities stronger. Indeed, rationality is a prominent
notion in game theory, and most studies in game theory involve quantitative utilities for
the players. Classical game theory concerns games for economy-driven applications like
resource allocation, pricing, bidding, auctions, and more [37, 33]. Many more useful ideas in
classical game theory are waiting to be explored and used in the context of synthesis [23].
In this paper, we introduce and study a framework for extending synthesis with trading of
control. For example, in a communication network in which each company controls a subset
of the routers, companies may pay each other in exchange for committing on some routing
decisions, and in a system consisting of a server and clients, clients may pay the server for
allocating resources in some beneficial way. The decisions of the players in such settings
depend on both their behavioral objectives and their desire to maximize the profit from the
trade. When a media company decides, for example, how many and which advertisements it
broadcasts, its decisions depend not only on the expected revenue but also on its need to
limit the volume (and hopefully also content) of commercial content it broadcasts [16, 31].
More examples include shields in synthesis, which can alter commands issued by a controller,
aiming to guarantee maximal performance with minimal interference [7, 9].

Our framework considers multi-agent systems modeled by a game played on a graph.
Since we care about infinite on-going behaviors of the system, we consider infinite paths in
the graph, which correspond to computations of the system. We study settings in which
each of the players has control in different parts of the system. Formally, if there are n

players, then there is a partition V1, . . . , Vn of the set of vertices in the game graph among
the players, with Player i controlling the vertices in Vi. The game is turn-based: starting
from an initial vertex, the players jointly move a token along the game graph, with each
player deciding where to move the token in vertices she controls. A strategy for Player i

directs her how to move a token that reaches a vertex in Vi. A profile is a vector of strategies,
one for each player, and the outcome of a profile is the path generated when the players
follow their strategies in the profile. The objectives of the players refer to the generated path.
In classical parity games (PGs, for short), they are given by parity winning conditions over
the set of vertices of the graph. Thus, each player has a coloring that assigns numbers to
vertices in the graph, and her objective is that the minimal color the path visits infinitely
often is even. While satisfaction of the parity winning condition is Boolean, the players get
quantitative rewards for satisfying their objectives.

In parity trading games (PTG, for short), a strategy for Player i is composed of two
strategies: a buying strategy, which specifies, for each edge ⟨v, u⟩ in the game, how much
Player i offers to pay the player that controls v in exchange for this player selling ⟨v, u⟩; that
is, for always choosing u as v’s successor; and a selling strategy, which specifies, for each
vertex v ∈ Vi, which edge from v is sold, as a function of the offers that Player i receives
from the other players. Note that Player i need not sell the edge that gets the highest offer.
Indeed, her choice also depends on her objective. Also note that selling strategies are similar
to memoryless strategies in PGs, in the sense that a sold edge is going to be traversed in
all the visits of the token to its source vertex, regardless of the history of the path. Recall
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that we consider parity winning conditions, which admits memoryless winning strategies.
Accordingly, if a player can force the satisfaction of her parity objective in a PG she can also
force the satisfaction of her parity objective in the corresponding PTG.

A profile of strategies in a PTG induces a set of sold edges, one from each vertex. Hence,
as in PGs, the outcome of each profile is a path in the game. The utility of Player i in the
game is the sum of two factors: a satisfaction profit, which, as in PGs, is a reward that
Player i receives if the outcome satisfies her objective, and a trading profit, which is the sum
of payments she receives from the other players, minus the sum of payments she gives others,
where payments are made only for sold edges.

Related work studies synthesis of systems that combine behavioral and monetary object-
ives. One direction of work considers systems with budgets. The budget can be used for
tasks such as sensing of input signals, purchase of library components [22, 15, 4], and, in
the context of control – shielding a controller that interacts with a plant [7, 9]. Even closer
is work in which the players can use the budget in order to negotiate control. The most
relevant work here is on bidding games [12]: graph games in which in each turn an auction is
held in order to determine which player gets control. That is, whenever the token is on a
vertex v, the players submit bids, the player with the highest bid wins, she decides to which
successor of v to move the token, and the budgets of the players are updated according to the
bids. Variants of the game refer to its duration, the type of objectives, the way the budgets
are updated, and more [13, 14, 11]. Trading games are very different from bidding games: in
trading games, negotiation about buying and selling of control takes place before the game
starts, and no auctions are held during the game. Also, the games include an initial partition
of control, as is the natural setting in multi-agent systems. Moreover, control in trading
games is not sold to the highest offer. Rather, selling strategies may depend in the objective
of the seller. Finally, the games are non-zero-sum, and are studied for arbitrary number of
players.

Another direction of related work considers systems with dynamic change of control
that do not involve monetary objectives, such as pawn games [10]: zero-sum turn-based
games in which the vertices are statically partitioned between a set of pawns, the pawns are
dynamically partitioned between the players, and the player that chooses the successor for
a vertex v at a given turn is the player that controls the pawn to which v belongs. At the
end of each turn, the partition of the pawns among the players is updated according to a
predetermined mechanism.

Since a PTG is non-zero-sum, interesting questions about it concern stable outcomes, in
particular Nash equilibria (NE) [32]. A profile is an NE if no player has a beneficial deviation;
thus, no player can increase her utility by changing her strategy in the profile. Note that in
PTGs, a change of a strategy amounts to a change in the buying or selling strategies, or in
both of them.

We first study best response in PTGs – the problem of finding the most beneficial deviation
for a player in a given profile. We show that the problem can be reduced to the problem of
finding shortest paths in weighted graphs. Essentially, the weights in the graph are induced
by the maximal profit that a player can make from selling edges from vertices she owns and
the minimal profit she may lose in order to buy edges from vertices she does not own. We
conclude that the problem can be solved in polynomial time. We also study best response
dynamics – a process in which, as long as the profile is not an NE, some player is chosen
to perform her best response. We show that trading makes the setting less stable, in the
sense that best response dynamics need not converge to an NE, even when convergence is
guaranteed in the underlying PG. On the positive side, as is the case in PGs, every PTG has
an NE.
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19:4 Games with Trading of Control

We continue and study rational synthesis in PTGs. Two approaches to rational synthesis
have been studied. In cooperative rational synthesis (CRS) [26], the desired output is an
NE profile whose outcome satisfies the objective of the system. In non-cooperative rational
synthesis (NRS) [28], we seek a strategy for the system such that its objective is satisfied in
the outcome of all NE profiles that include this strategy. In settings with quantitative utilities,
in particular PTGs, the input to the CRS and NRS problems includes a threshold t ≥ 0,
and we replace the requirement for the system to satisfy her objective by the requirement
that her utility is at least t. The two approaches have to do with the technical ability to
communicate strategies to the environment players, say due to different architectures, as well
as with the willingness of the environment players to follow a suggested strategy. As shown
in [6], the two approaches are related to the two stability-inefficiency measures of price of
stability (PoS) [8] and price of anarchy (PoA) [29, 34], and we study these measures in the
context of PTG.

Problem Finding an NE Cooperative Rational Synthesis Non-cooperative Rational Synthesis

Parity Games UP \ co-UP fixed n
NP-complete unfixed n

[37], [Th. 5]

UP \ co-UP fixed n
NP-complete unfixed n

[22], [37]

PSPACE, NP-hard, co-NP-hard fixed n
EXPTIME, PSPACE-hard unfixed n

[22]

Parity Trading Games NP-complete
[Th. 10]

NP-complete n = 2
⌃P

2-complete n � 3
[Th. 12], [Th. 13]

Büchi Games PTIME
[37], [Th. 5]

PTIME
[37]

PTIME fixed n
PSPACE-complete unfixed n

[22]

Büchi Trading Games NP-complete
[Th. 10]

NP-complete n = 2
⌃P

2-complete n � 3 or unfixed n
[Th. 12], [Th. 13]

TABLE I
COMPLEXITY OF DIFFERENT PROBLEMS ON n-PLAYER PGS, PTGS, BGS, AND BTGS.

and to ensure the consistency of suggested assignments. When
the number of players in the environment is bigger than 2,
we can use trade among the environment players in order to
simulate universal quantification, which explains the transition
form NP to ⌃P

2 .
Our complexity results on !-regular trading games and their

comparison to standard !-regular non-zero-sum games are
summarized in Table I.

II. PRELIMINARIES

For n � 1, let [n] = {1, ..., n}. An n-player game graph

is a tuple G = h{Vi}i2[n], v0, Ei, where {Vi}i2[n] are disjoint
sets of vertices, each owned by a different player, and we let
V =

S
i2[n] Vi. Then, v0 2 V1 is an initial vertex, which we

assume to be owned by Player 1, and E ✓ V ⇥ V is a total
edge relation, thus for every v 2 V , there is at least one u 2 V
such that hv, ui 2 E. The size |G| of G is |E|, namely the
number of edges in it.

For every vertex v 2 V , we denote by succ(v) the set of
successors of v inG. That is, succ(v) = {u 2 V : hv, ui 2 E}.
Also, for every v 2 V , we denote by Ev the set of edges from
v. That is, Ev = {hv, ui : u 2 succ(v)}. Then, for every
i 2 [n], we denote by Ei the set of edges whose source vertex
is owned by Player i. That is, Ei =

S
v2Vi

Ev .
In the beginning of the game, a token is placed on v0. The

players control the movement of the token in vertices they
own: In each turn in the game, the player that owns the vertex
with the token chooses a successor vertex and moves the token
to it. Together, the players generate a play ⇢ = v0, v1, . . . in
G, namely an infinite path that starts in v0 and respects E: for
all i � 0, we have that (vi, vi+1) 2 E.
For a play ⇢ = v0, v1, . . ., we denote by inf(⇢) the set

of vertices visited infinitely often along ⇢. That is, inf(⇢) =
{v 2 V : there are infinitely many i � 0 such that vi = v}.
A parity objective is given by a coloring function ↵ : V !
{0, . . . , k}, for some k � 0, and requires the minimal color
visited infinitely often along ⇢ to be even. Formally, a play
⇢ satisfies ↵ iff min{↵(v) : v 2 inf(⇢)} is even. A Büchi

objective is a special case of parity. For simplicity, we describe
a Büchi objective by a set of vertices ↵ ✓ V . The condition

requires that some vertex in ↵ is visited infinitely often along
⇢, thus inf(⇢) \ ↵ 6= ;.

A parity game (PG, for short) is a tuple G =
hG, {↵i}i2[n], {Ri}i2[n]i, where G is a n-player game graph,
and for every i 2 [n], we have that ↵i : V ! {0, . . . , ki} is
a parity objective for Player i. Intuitively, for every i 2 [n],
Player i aims for a play ⇢ that satisfies her objective ↵i, and
Ri 2 N is a reward that Player i gets when ↵i is satisfied.
Büchi games (BG, for short) are defined similarly, with Büchi
objectives.

A strategy for Player i is a function fi : V ⇤ · Vi ! V that
directs her how to move the token in vertices she owns. Thus,
fi maps prefixes of plays to possible extensions in a way that
respects E: for every ⇢ · v with ⇢ 2 V ⇤ and v 2 Vi, we have
that (v, fi(⇢·v)) 2 E. A strategy fi for Player i is memoryless
if it only depends on the current vertex. That is, if for every
two histories h, h0 2 V ⇤ and vertex v 2 Vi, we have that
fi(h · v) = fi(h0 · v). Note that a memoryless strategy can be
viewed as a function fi : Vi ! V .

A profile is a tuple ⇡ = hf1, ..., fni of strategies, one for
each player. The outcome of a profile ⇡ = hf1, ..., fni is
the play obtained when the players follow their strategies.
Formally, Outcome(⇡) = v0, v1, ... is such that for all j � 0,
we have that vj+1 = fi(v0, v1, . . . , vj), where i 2 [n] is such
that vj 2 Vi.
For every profile ⇡ and i 2 [n], we say that Player i wins

in ⇡ if Outcome(⇡) |= ↵i. Otherwise, Player i loses in ⇡. We
denote by Win(⇡) the set of players that win in ⇡. Then, the
satisfaction profit of Player i in ⇡, denoted sprofiti(⇡), is Ri

if i 2 Win(⇡), and is 0 otherwise.
As the objectives of the players may overlap, the game is

not zero-sum and thus we are interested in stable profiles in
the game. A profile ⇡ = hf1, ..., fni is a Nash Equilibrium

(NE, for short) [33] if, intuitively, no player can benefit
(that is, increase her profit) from unilaterally changing her
strategy. Formally, for i 2 [n] and some strategy f 0

i for
Player i, let ⇡[i  f 0

i ] = hf1, ..., fi�1, f 0
i , fi+1, ..., fni be

the profile in which Player i deviates to the strategy f 0
i . We

say that ⇡ is an NE if for every i 2 [n], we have that
sprofiti(⇡) � sprofiti(⇡[i  f 0

i ]), for every strategy f 0
i for

Player i. That is, no player can unilaterally increase her profit.

3

Figure 1 Complexity of different problems on n-player PGs, PTGs, BGs, and BTGs.

In PGs, the tight complexity of rational synthesis is still open, and depends on whether
the number of players is fixed. We show that in PTGs, CRS is NP-complete, and the
complexity of NRS depends on the number of players: it is NP-complete for two players
and is ΣP

2 -complete for three or more (in particular, unfixed number of) players. Our upper
bounds are based on reductions to a sequence of shortest-path algorithms in weighted graphs.
They hold also for an unfixed number of players, making rational synthesis with an unfixed
number of players easier in PTGs than in PGs. Intuitively, it follows from the fact that
deviations in the selling or buying strategies of single players in PTGs induce a change in the
outcome only if they are matched by the buying and selling strategies, respectively, of players
that do not deviate. Our lower bounds involve reductions from SAT and QBF2, where trade
is used to incentive a satisfying assignment, when exists, and to ensure the consistency of
suggested assignments. When the number of players in the environment is bigger than 2, we
can use trade among the environment players in order to simulate universal quantification,
which explains the transition form NP to ΣP

2 .
Our complexity results on ω-regular trading games and their comparison to standard

ω-regular non-zero-sum games are summarized in the table in Figure 1. Due to the lack of
space, examples and some proofs are omitted or given partially, and can be found at the full
version.

2 Preliminaries

For n ≥ 1, let [n] = {1, . . . , n}. An n-player game graph is a tuple G = ⟨{Vi}i∈[n], v0, E⟩,
where {Vi}i∈[n] are disjoint sets of vertices, each owned by a different player, and we let
V =

⋃
i∈[n] Vi. Then, v0 ∈ V1 is an initial vertex, which we assume to be owned by Player 1,

and E ⊆ V × V is a total edge relation, thus for every v ∈ V , there is at least one u ∈ V

such that ⟨v, u⟩ ∈ E. The size |G| of G is |E|, namely the number of edges in it.
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For every vertex v ∈ V , we denote by succ(v) the set of successors of v in G. That is,
succ(v) = {u ∈ V : ⟨v, u⟩ ∈ E}. Also, for every v ∈ V , we denote by Ev the set of edges from
v. That is, Ev = {⟨v, u⟩ : u ∈ succ(v)}. Then, for every i ∈ [n], we denote by Ei the set of
edges whose source vertex is owned by Player i. That is, Ei =

⋃
v∈Vi

Ev.
In the beginning of the game, a token is placed on v0. The players control the movement

of the token in vertices they own: In each turn in the game, the player that owns the vertex
with the token chooses a successor vertex and moves the token to it. Together, the players
generate a play ρ = v0, v1, . . . in G, namely an infinite path that starts in v0 and respects E:
for all i ≥ 0, we have that (vi, vi+1) ∈ E.

For a play ρ = v0, v1, . . ., we denote by inf(ρ) the set of vertices visited infinitely often
along ρ. That is, inf(ρ) = {v ∈ V : there are infinitely many i ≥ 0 such that vi = v}. A
parity objective is given by a coloring function α : V → {0, . . . , k}, for some k ≥ 0, and
requires the minimal color visited infinitely often along ρ to be even. Formally, a play ρ

satisfies α iff min{α(v) : v ∈ inf(ρ)} is even. A Büchi objective is a special case of parity. For
simplicity, we describe a Büchi objective by a set of vertices α ⊆ V . The condition requires
that some vertex in α is visited infinitely often along ρ, thus inf(ρ) ∩ α ̸= ∅.

A parity game (PG, for short) is a tuple G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, where G is a
n-player game graph, and for every i ∈ [n], we have that αi : V → {0, . . . , ki} is a parity
objective for Player i. Intuitively, for every i ∈ [n], Player i aims for a play ρ that satisfies
her objective αi, and Ri ∈ N is a reward that Player i gets when αi is satisfied. Büchi games
(BG, for short) are defined similarly, with Büchi objectives. We assume that at least one
condition is satisfiable.

A strategy for Player i is a function fi : V ∗ · Vi → V that directs her how to move the
token in vertices she owns. Thus, fi maps prefixes of plays to possible extensions in a way
that respects E: for every ρ · v with ρ ∈ V ∗ and v ∈ Vi, we have that (v, fi(ρ · v)) ∈ E. A
strategy fi for Player i is memoryless if it only depends on the current vertex. That is, if
for every two histories h, h′ ∈ V ∗ and vertex v ∈ Vi, we have that fi(h · v) = fi(h′ · v). Note
that a memoryless strategy can be viewed as a function fi : Vi → V .

A profile is a tuple π = ⟨f1, . . . , fn⟩ of strategies, one for each player. The outcome of a
profile π = ⟨f1, . . . , fn⟩ is the play obtained when the players follow their strategies. Formally,
Outcome(π) = v0, v1, . . . is such that for all j ≥ 0, we have that vj+1 = fi(v0, v1, . . . , vj),
where i ∈ [n] is such that vj ∈ Vi. For every profile π and i ∈ [n], we say that Player i wins
in π if Outcome(π) |= αi. Otherwise, Player i loses in π. We denote by Win(π) the set of
players that win in π. Then, the satisfaction profit of Player i in π, denoted sprofiti(π), is
Ri if i ∈Win(π), and is 0 otherwise.

As the objectives of the players may overlap, the game is not zero-sum and thus we are
interested in stable profiles in the game. A profile π = ⟨f1, . . . , fn⟩ is a Nash Equilibrium
(NE, for short) [32] if, intuitively, no player can benefit (that is, increase her profit) from
unilaterally changing her strategy. Formally, for i ∈ [n] and some strategy f ′

i for Player i,
let π[i ← f ′

i ] = ⟨f1, . . . , fi−1, f ′
i , fi+1, . . . , fn⟩ be the profile in which Player i deviates to

the strategy f ′
i . We say that π is an NE if for every i ∈ [n], we have that sprofiti(π) ≥

sprofiti(π[i ← f ′
i ]), for every strategy f ′

i for Player i. That is, no player can unilaterally
increase her profit.

In rational synthesis, we consider a game between a system, modeled by Player 1, and an
environment composed of several components, modeled by Players 2 . . . n. Then, we seek a
strategy for Player 1 with which she wins, assuming rationality of the other players. Note
that the system may also be composed of several components, each with its own objective.
It is not hard to see, however, that they can be merged to a single player whose objective is
the conjunction of the underlying components.
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We say that a profile π = ⟨f1, . . . , fn⟩ is a 1-fixed NE, if no player i ∈ [n] \ {1} has a
beneficial deviation. We formalize the intuition behind rational synthesis in two ways, as
follows. Consider an n-player game G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, and a threshold t ≥ 0.
The problem of cooperative rational synthesis (CRS) is to return a 1-fixed NE π such that
sprofit1(π) ≥ t. The problem of non-cooperative rational synthesis (NRS) is to return a
strategy f1 for Player 1 such that for every 1-fixed NE π that extends f1, we have that
sprofit1(π) ≥ t.

As in traditional synthesis, one can also define the corresponding decision problems, of
rational realizability, where we only need to decide whether the desired strategies exist. In
order to avoid additional notations, we refer to CRS and NRS also as decision problems.

3 Parity Trading Games

Parity trading games (PTG, for short, or BTG, when the objectives of the players are Büchi
objectives) are similar to parity games, except that now, the movement of the token along
the game graph depends on trade among the players, who pay each other in exchange for
certain behaviors. Thus, instead of strategies that direct them how to move the token, now
the players have strategies that direct the trade.

Consider a PTG G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, defined on top of a game graph G =
⟨{Vi}i∈[n], v0, E⟩. A buying strategy for Player i is a function bi : E → N that maps each
edge e = ⟨v, u⟩ ∈ E to the price that Player i is willing to pay to the owner of v in exchange
for selling e; that is, for always choosing u as v’s successor when the token is in v. For edges
e ∈ Ei, we require bi(e) to be 0.

Consider a vector β = ⟨b1, . . . , bn⟩ of buying strategies, one for each player. The vector β

determines, for an edge e ∈ E, the collective price that the players are willing to pay for e.
Accordingly, we sometime refer to β as a price list, namely a function in NE , where for every
e ∈ E, we have that β(e) =

∑
i∈[n] bi(e).

A selling strategy for Player i determines which edges Player i sells. The strategy is a
collection of policies, which determines for each v ∈ Vi, which edge from v to sell, given prices
offered for the edges in Ev. Formally, a selling policy for v ∈ Vi is a function sv : NEv → Ev

that maps each price list for the edges in Ev to an edge in Ev. Note that the mapping is
arbitrary, thus a player need not sell the edge that gets the highest price. We refer to the
selling strategy for Player i, thus the collection {sv : v ∈ Vi} of selling policies for her vertices,
as a function si : NE → 2Ei that maps price lists to the set of edges that Player i chooses to
sell. Note also that selling strategies in PTGs are similar to memoryless strategies in PGs, in
the sense that the choice of the edge that is sold from v is independent of the history of the
game.

A profile is a tuple π = ⟨(b1, s1), . . . , (bn, sn)⟩ of pairs of buying and selling strategies, one
for each player. We sometime refer to the pair of buying and selling strategies for Player i as
a single strategy, and use the notation fi = (bi, si). We also use βπ to denote the price list
induced by the buying strategies in π. We say that an edge e ∈ Ei is sold in π iff e ∈ si(βπ).
We denote by S(π) the set of edges sold in π. Recall that for every v ∈ V , there exists exactly
one edge e ∈ Ev such that e ∈ S(π). The outcome of a profile π, denoted Outcome(π), is
then the path v0, v1, . . ., where for all j ≥ 0, we have that (vj , vj+1) ∈ S(π).

As in PGs, the satisfaction profit of Player i in π, denoted sprofiti(π), is Ri if αi is
satisfied in Outcome(π), and is 0 otherwise. In PTGs, however, we consider also the trading
profits of the players: For every player i ∈ [n], the gain of Player i in π, denoted gaini(π),
is the sum of payments she receives from other players, and the loss of Player i, denoted
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lossi(π), is the sum of payments she pays others. That is, gaini(π) =
∑

e∈S(π)∩Ei
βπ(e), and

lossi(π) =
∑

e∈S(π) bi(e). Then, the trading profit of Player i in π, denoted tprofiti(π), is her
gain minus her loss in π. That is, tprofiti(π) = gaini(π)− lossi(π). Note that while all the
edges in Outcome(π) are in S(π), not all edges in S(π) are traversed during the play. Still,
payments depend only on S(π), regardless of whether the edges are traversed. Finally, the
utility of Player i in π, denoted utili(π), is the sum of her satisfaction and trading profits in
π. That is, utili(π) = sprofiti(π) + tprofiti(π). The definitions of beneficial deviations, NEs,
and 1-fixed NEs are then defined as in the case of PG.

Note that the definition of a selling strategy si as a function from NE hides the fact that
the selling policy for each vertex v ∈ Vi depends only on the price list for the edges in Ev.
Note also that as there are infinitely many price lists, an enumerative presentation of selling
strategies is infinite. As we detail in the full version, we assume that selling strategies are
given symbolically. For example, a selling strategy for a vertex v with successors {u1, u2, u3},
may be “if the price offered for u2 is at least p, then sell (v, u2); otherwise, sell (v, u1)”.
Specifically, a strategy for Player i is given by a set of pairs of the form ⟨b, T ⟩, where b is
a predicate on NE and T ⊆ Ei is the set of edges that Player i sells when then price list
satisfies b. The predicates are disjoint, and can be computed in polynomial time. In the full
version we also argue that every profile π of strategies can be simplified so that the set of
winners and the utilities for the players are preserved, and all prices are of polynomial size.
As we argue in the sequel, restricting attention to simple profiles and to strategies that can
be represented symbolically does not lose generality, in the sense that whenever we search
for a profile of strategies and a desired profile exists, then there is also a profile that consists
of strategies that can be represented symbolically.

Describing a profile π = ⟨(b1, s1), . . . , (bn, sn)⟩, we sometimes use a symbolic description,
as follows. For players i, j ∈ [n], an edge e ∈ Ej , and a price p ∈ N, we say that Player i

offers to buy e for price p if bi(e) = p, and that Player i pays p for e if, in addition, e ∈ sj(βπ).
For a vertex v ∈ Vi, and an edge e = ⟨v, u⟩ ∈ Ev, we say that Player i moves from v to u,
if e ∈ si(βπ), thus Player i sells e in βπ. Then, we say that Player i always moves from v

to u, if Player i always sells e, thus e ∈ si(β) for every price list β. Describing a deviation
from π to a profile π′ = ⟨(b′

1, s′
1), . . . , (b′

n, s′
n)⟩, we sometimes use a symbolic description, as

follows. For a player i ∈ [n] and an edge e ∈ E, we say that Player i cancels the purchase of
e if bi(e) > 0 and b′

i(e) = 0. For an edge e ∈ Ei, we say that Player i cancels the sale of e if
e ∈ si(βπ) and e /∈ si(βπ′).

4 Stability in Parity Trading Games

In this section we study the stability of PTGs. We start with the best-response problem,
which searches for deviations that are most beneficial for the players, and show that the
problem can be solved in polynomial time. On the negative side, a best-response dynamics in
PTGs, where players repeatedly perform their most beneficial deviations, need not converge.
We then study the existence of NEs in PTGs, show that every PTG has an NE, and relate
the stability in a PTG and its underlying PG. Finally, we study the inefficiency that may be
caused by instability, and show that the price of stability and price of anarchy in PTGs are
unbounded and infinite, respectively.

Throughout this section, we consider an n-player game G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩,
defined on top of a game graph G = ⟨{Vi}i∈[n], v0, E⟩. We use GP and GT to denote G when
viewed as a PG and PTG, respectively.
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4.1 Best response
The input to the best response (BR, for short) problem is a game G, a profile π, and i ∈ [n].
The goal is to find a strategy f ′

i for Player i such that utili(π[i ← f ′
i ]) is maximal. We

describe an algorithm that solves the BR problem in polynomial time. The key idea behind
our algorithm is as follows. Consider a profile π = ⟨(b1, s1), . . . , (bn, sn)⟩. Recall that the
utility of Player i in π is the sum of her satisfaction and trading profits in π. If Player i

ignores her objective and only tries to maximize her trading profit, then her strategy is
straightforward: she buys no edge, and in each vertex v ∈ Vi, she sells an edge with the
maximal price in βπ. If there is a strategy f∗

i as above such that the outcome of π[i← f∗
i ]

satisfies αi, then clearly f∗
i is a best response for Player i, and we are done. Otherwise, the

algorithm searches for a minimal reduction in the trading profit with which Player i can
induce an outcome that satisfies αi. For this, the algorithm labels each edge e = ⟨v, u⟩ in
G by the cost of ensuring that e is sold. If Player i owns e, then this cost is the difference
between βπ(e) and max{βπ(e′) : e′ ∈ Ev}. If Player i does not own e, thus v ∈ Vj , for some
player j ̸= i, then this cost is the minimal price that Player i has to offer for e in order
to change βπ to a price list β for which sj(β) = e. Once the graph G is labeled by costs
as above, the desired strategy is induced by the path with the minimal cost that satisfies
αi. Finally, if the minimal cost of satisfying αi is higher than her reward Ri, then the best
response for Player i is to give up the satisfaction of αi and follow the strategy f∗

i , in which
the maximal trading profit is attained.

We now describe the algorithm in detail. We first label the edges from every vertex v ∈ V

by costs in N. For every vertex v ∈ Vi, we denote by potential(π, v) the maximal price that
Player i can get from selling an edge from v. That is, potential(π, v) = max{βπ(e) : e ∈ Ev}.
For every vertex v ∈ Vi and edge e ∈ Ev, we define cost(π, e) as the cost for Player i of selling
e rather then an edge that attains potential(π, v). That is, cost(π, e) = potential(π, v)−βπ(e).

We continue to vertices v ̸∈ Vi. For j ∈ [n] \ {i} and an edge e ∈ Ej , we define cost(π, e)
as the minimal price that Player i needs to pay to Player j in order for her to sell e. Formally,
let Be

i be the set of buying strategies for Player i that cause Player j to sell e. That is,
Be

i = {b′
i : E → N : e ∈ sj(βπ[i← b′

i])}. When Player i uses a strategy b′
i ∈ Be

i as her buying
strategy, Player j sells e, and Player i pays the price b′

i(e). Hence, the minimal price that
Player i needs to pay in order for Player j to sell e is cost(π, e) = min{b′

i(e) : b′
i ∈ Be

i }. Note
that Be

i may be empty, in which case cost(π, e) =∞.
We define best(π) ⊆ E as the set of edges that minimize the cost of Player i. Formally,

best(π) =
⋃

v∈V best(π, v), where for v ∈ Vi, we have that best(π, v) ⊆ Ev is the set of
edges from v with which potential(π, v) is attained, thus best(π, v) = {e ∈ Ev : βπ(e) =
potential(π, v)}; and for v ∈ Vj , for j ̸= i, we have that best(π, v) is the set of edges from
v that Player i can make Player j sell without paying for e, thus best(π, v) = {e ∈ Ev :
cost(π, e) = 0}. Note that for every vertex v ∈ V , the set best(π, v) is not empty.

We say that a path ρ in G is feasible if cost(π, e) <∞ for every edge e in ρ. In Lemma 1
below, we argue that for every feasible path ρ, Player i can change her strategy in π so that
the outcome of the new profile is ρ. We also calculate the cost required for Player i to do so.

▶ Lemma 1. Let ρ be a feasible path in G. Then, there exists a strategy fρ
i for Player i

such that Outcome(π[i ← fρ
i ]) = ρ, and tprofiti(π[i ← fρ

i ]) =
∑

v∈Vi
potential(π, v) −∑

e∈ρ cost(π, e). Also, tprofiti(π[i← fρ
i ]) is the maximal trading profit for Player i when she

changes her strategy in π to a strategy that causes the outcome to be ρ.

For a path ρ in G, let fρ
i be a strategy for Player i such that the outcome of π[i← fρ

i ] is
ρ. Note that fρ

i can be described symbolically.
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Our algorithms for finding beneficial deviations are based on a search for short lassos
in weighted variants of the graph G. A lasso is a path of the form ρ1 · ρω

2 , for finite paths
ρ1 ∈ V ∗ and ρ2 ∈ V +. When G is weighted, the length of the lasso is defined as the sum of
the weights in the path ρ1 · ρ2.

▶ Theorem 2. The BR problem in PTGs can be solved in polynomial time.

Proof. Given an n-player PTG G, a profile π, and i ∈ [n], the algorithm for finding a BR for
Player i proceeds as follows.
1. Let Gbest(π) = ⟨V, best(π)⟩ be the restriction of G to edges in best(π).
2. If there is a path ρ in Gbest(π) that satisfies αi, then return fρ

i . Otherwise, let f∗
i be a

strategy for Player i that induces some lasso in Gbest(π).
3. Let G′ = ⟨V, E, w⟩ be the weighted extension of G, where w : E → N is such that for

every edge e ∈ E, we have that w(e) = cost(π, e).
4. Let ρ be a shortest (with respect to the weights in w) lasso that satisfies αi.
5. If w(ρ) ≥ Ri, then return f∗

i , else return fρ
i . ◀

Recall that a best response dynamic (BRD) is an iterative process in which as long as the
profile is not an NE, some player is chosen to perform a best response. In Theorem 3 below,
we demonstrate that a BRD in a PTG (in fact, a BTG) need not converge, even in settings
in which every BRD in the corresponding PG does converge.

▶ Theorem 3. There is a game G such that every BRD in the PG GP converges to an NE,
yet a BRD in GT need not converge.

Proof. Consider the 2-player Büchi game G = ⟨G, {α1, α2}, {1, 3}⟩, where G is described in
Figure 2, α1 = {a, c}, and α2 = {b, d}.

v0v u

a

b d

c

Figure 2 The game graph G. All the vertices are owned by Player 1.

All the vertices in G are owned by Player 1, and the vertices in α1 are reachable sinks.
Hence, once Player 1 is chosen to deviate in GP , an NE is reached.

In the full version we describe a BRD in GT that does not converge. ◀

4.2 Nash equilibria
We continue and show that while a BRD in GT need not converge even when every BRD
in GP does, we can still use NEs in GP in order to obtain NEs in GT . Consider a profile
π = ⟨f1, . . . , fn⟩ of memoryless strategies for the players in GP . We define the trivial-trading
analogue of π, denoted tt(π) as the a profile in GT that is obtained from π by replacing
each strategy fi by the pair (bi, si), for an empty buying strategy bi (that is, bi(e) = 0 for
all e ∈ E), and a selling strategy si that mimics fi (that is, for every price list β, we have
that ⟨v, u⟩ ∈ si(β) iff fi(v) = u). Note that all the strategies in tt(π) can be described
symbolically.

▶ Lemma 4. If π is an NE in GP that consists of memoryless strategies, then tt(π) is an
NE in GT .
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Lemma 4 enables us to reduce the search for an NE in an n-player PTG GT to a search
for an NE in the PG GP :

▶ Theorem 5. Every PTG has an NE, which can be found in UP ∩ co-UP when the number
of players is fixed, and in NP when the number of players is not fixed. For BTGs, an NE
can be found in polynomial time.

Recall that for solving the rational-synthesis problem, we are not interested in arbitrary
NEs, but in 1-fixed NEs in which the utility of Player 1 is above some threshold. As
we shall see now, the situation here is more complicated: searching for solutions for the
rational-synthesis problem in a PTG, we cannot reason about the corresponding PG.

▶ Theorem 6. There is a PTG GT and t ≥ 1 such that there is a 1-fixed NE πT in GT

with util1(πT ) ≥ t, yet for every 1-fixed NE of memoryless strategies π in GP , we have that
util1(tt(π)) < t.

Proof. Consider the 2-player BTG GT = ⟨G, {{a}, {b}}, {1, 3}⟩, where G appears in Figure 3.
Consider a profile πT in which the strategy for Player 1 moves from v0 to b if Player 2
offers to buy ⟨v0, b⟩ for price 2, and moves to a otherwise, and the strategy for Player 2
offers to buy ⟨v0, b⟩ for price 2. In the full version, we prove that πT is a 1-fixed NE with
util1(πT ) = 2, whereas for every 1-fixed NE of memoryless strategies π in GP , we have that
util1(tt(π)) < 2. ◀

Figure 3 The game graph G. All the vertices are owned by Player 1.

Note that while Theorem 6 considers a 1-fixed NE, and thus corresponds to the setting of
CRS, the strategy for Player 1 described there is in fact an NRS solution for the threshold
t = 2, and the latter cannot be obtained by extending an NRS solution for Player 1 in GP .

4.3 Equilibrium inefficiency
In this section we study the price of stability (PoS) and price of anarchy (PoA) measures
[33] in PTGs, describing the best-case and worst-case inefficiency of a Nash equilibrium.

Before we define these measures formally, we observe that for every PTG, outcomes that
agree on the set of winners also agree in the sum of utilities of the players. Essentially, this
follows from the fact that the trading profits for the players sum to 0. Formally, we have the
following.

▶ Lemma 7. Let ρ be a path in G, and let Win(ρ) be the set of players whose objectives
are satisfied in ρ. Then, for every profile π with Outcome(π) = ρ, we have that the sum of
utilities of the players in π is exactly

∑
i∈Win(ρ) Ri.

The social optimum in a game G, denoted SO(G), is the maximal sum of utilities that the
players can have in some profile. Thus, SO(G) is the maximal

∑
i∈[n] utili(π) over all profiles

π for G. Since every path ρ in G can be the outcome of some profile, then, by Lemma 7, we
have that SO(G) is the maximal

∑
i∈Win(ρ) Ri over all paths ρ in G.
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Let πB and πW be NEs with the highest and lowest sum of utilities for the players,
respectively. We define BNE(G) =

∑
i∈[n] utili(πB) and WNE(G) =

∑
i∈[n] utili(πW ). We

then define the price of stability in G as PoS(G) = SO(G)/BNE(G), and the price of anarchy
in G as PoA(G) = SO(G)/WNE(G). Analyzing the prices of stability and anarchy of PTGs,
we assume that all rewards in a game G are positive, thus Ri > 0 for all i ∈ [n]. Note that
without this assumption, it is easy to define a game G with SO(G) > 0 yet BNE(G) = 0, and
hence with PoS(G) = PoA(G) =∞.

We start with the price of anarchy. It is easy to see that it may be infinite even in simple
PTGs in which all rewards are positive:

▶ Theorem 8. There is a 2-player BTG G with PoA(G) =∞.

Proof. Consider the BTG G = ⟨GP oA, {{a}, {a}}, {1, 1}⟩, where the game graph GP oA is
described in Figure 4. In the full version we show that SO(G) = 1 + 1 = 2, whereas
WNE(G) = 0, and so PoA(G) = 2/0 =∞. ◀

v0 v ab

Figure 4 The game graph GP oA. The circles are vertices controlled by Player 1, and the squares
are vertices controlled by Player 2.

We continue to the price of stability. It can be shown that every PG has an NE in
which all players use memoryless strategies and at least one player satisfies her objective.
Essentially, this follows from the fact that either at least one player in the game has a strategy
to fulfill her objective from some vertex in all environments (that is, in the zero-sum game
played with her objective), or all players do not have such a strategy. In the first case, the
outcome of the required NE reaches the winning (in the zero-sum sense) vertex for the player
along vertices that are losing (in the zero-sum sense) for the other players. In the second,
the outcome traverses a lasso that satisfies the objective of at least one player but consists of
vertices that are losing (again, in the zero-sum sense) for all players. By Lemma 4, it then
follows that every PTG also has an NE in which at least one player satisfies her objective.
Thus, as we assume that all rewards are strictly positive, we conclude that BNE(G) > 0 for
every PTG G. Therefore, we cannot expect PoS(G) to be ∞, and the strongest result we can
prove is that PoS(G) is unbounded:

▶ Theorem 9. For every x ∈ N, there exists a two-player BTG G with PoS(G) = x.

Proof. Given x, consider the two-player game graph G = ⟨V1, V2, v1, E⟩, where V1 = ∅,
V2 = {v1, . . . , vx+2, u}, and E = {⟨vi, vi+1⟩, ⟨vi, u⟩ : 1 ≤ i ≤ x + 1} ∪ {⟨u, u⟩, ⟨vx+2, vx+2⟩}
(see Figure 5).

Consider the BTG G = ⟨G, {{vx+2}, {u}}, {x, 1}⟩. In the full version, we show that
SO(G) = x whereas BNE(G) = 1, thus PoS(G) = x. ◀

5 Cooperative Rational Synthesis in Parity Trading Games

In this section, we study the complexity of the the CRS problem for PTGs and BTGs. Recall
that for PGs, the CRS problem can be solved in UP ∩ co-UP when the number of players
is fixed, and is in NP when the number of players is not fixed [24]. For BGs, CRS can be
solved in polynomial time [36]. We show that trading make the problem harder: CRS in
PTGs is NP-complete already for a fixed number of players and for Büchi objectives.
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Figure 5 The game graph G. All the vertices are owned by Player 2.

▶ Theorem 10. CRS for PTGs is NP-complete. Hardness in NP holds already for BTGs.

Proof. We start with membership in NP. Given a threshold t ≥ 0, an NP algorithm
guesses a profile π, checks that util1(π) ≥ t, and checks that π is a 1-fixed NE as follows.
For every i ∈ [n] \ {1}, it finds the best response f∗

i for Player i in π, and checks that
utili(π) ≥ utili(π[i ← f∗

i ]), thus Player i has no beneficial deviation in π. By Theorem 2,
finding the best response for each player in π can be done in polynomial time, hence the
check is in polynomial time.

For the lower bound, we describe a reduction from 3-SAT to CRS in BTGs. Let
X = {x1, . . . , xn}, X = {x1, . . . , xn}, and let φ be a Boolean formula over the variables in
X, given in 3CNF. That is, φ = (l1

1 ∨ l2
1 ∨ l3

1)∧ · · · ∧ (l1
k ∨ l2

k ∨ l3
k), where for all 1 ≤ i ≤ k and

1 ≤ j ≤ 3, we have that lj
i ∈ X ∪X. For every 1 ≤ i ≤ k, let Ci = (l1

i ∨ l2
i ∨ l3

i ).
Given a formula φ, we construct (see Figure 6) a two-player BG G = ⟨GSAT , {α1, α2},

{R1, R2}⟩, where α1 = V \ {s}, α2 = {s}, R1 = n + 1 and R2 = 1, such that φ is satisfiable
iff there exists a 1-fixed NE π in G in which util1(π) ≥ 1. The main idea of the reduction
is that Player 1 chooses an assignment to the variables in X, and then Player 2 challenges
the assignment by choosing a clause of φ. The objective of Player 1 is to not get stuck in a
sink, and the objective of Player 2 is to get stuck in the sink. Whenever Player 1 chooses an
assignment to a variable, Player 2 has an opportunity to go to the sink, and Player 1 has to
buy an edge in order to prevent her from doing so. The reward R1 for Player 1 is n + 1, and
so Player 1 can buy n edges and still have utility 1. If Player 1 chooses an assignment that
satisfies φ, then she can prevent the game from going to the sink by buying only n edges –
one for each variable. Otherwise, Player 2 can choose a clause that is not satisfied by the
assignment, which forces Player 1 to buy more than n edges or give up the prevention of the
sink. ◀

Figure 6 The game graph GSAT . The circles are vertices owned by Player 1, and the squares
are vertices owned by Player 2. The dashed vertices are the corresponding literal vertices on the
assignment part of the graph.
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6 Non-cooperative Rational Synthesis in Parity Trading Games

In this section we study NRS for PTGs. Recall that in PGs, the NRS problem is in PSPACE
when the number of players is fixed, and can be solved in exponential time when their number
is not fixed [24]. In BGs, NRS can be solved in polynomial time when the number of players
is fixed, and the problem is PSPACE-complete when the number of players is not fixed. We
show that the NRS problem in PTGs and BTGs is NP-complete for games with two players,
and is ΣP

2 -complete for games with three or more players.

6.1 Two-player NRS
Consider a game G = ⟨G, {α1, α2}, {R1, R2}⟩, a strategy f1 = (b1, s1) for Player 1, and a
threshold t ≥ 0. We describe an algorithm that determines if f1 is an NRS solution for t in
polynomial time. The key idea behind our algorithm is as follows. Let U2 be the maximal
utility for Player 2 in a profile π that extends f1. Then, as Player 2 can ensure she gets
utility of U2, we have that every profile π in which util2(π) = U2 is a 1-fixed NE, and every
profile π in which util2(π) < U2 is not a 1-fixed NE. Hence, f1 is an NRS solution iff for
every profile π that extends f1 with util2(π) = U2, we have that util1(π) ≥ t.

We now describe the algorithm in detail. The algorithm first labels the edges from every
vertex v ∈ V by costs in N. Recall the weights cost(π, e) described in Section 4 in the context
of deviations for Player i. Observe that cost(π, e) is independent of the strategy fi of Player i

in π. In particular, when we consider deviations for Player 2, we have that cost(π, e) depends
only on the function f1 of Player 1, and can thus be denoted cost(f1, e).

▶ Lemma 11. Checking whether a given strategy for Player 1 is an NRS solution in a PTG
can be done in polynomial time.

Proof. Consider a PTG G = ⟨G, {α1, α2}, {R1, R2}⟩, a strategy f1 for Player 1, and a
threshold t ≥ 0. Let G = ⟨V, E⟩.
1. Let G′ = ⟨V, E, w⟩ be a weighted version of G, where for every edge e ∈ E, we have that

w(e) = cost(f1, e).
2. For every W ⊆ {1, 2}, let ρW be the shortest lasso in G′ such that the set of winners in

ρW is W . Let fW
2 denote the corresponding strategy for Player 2.

3. Let U2 = max{util2(⟨f1, fW
2 ⟩) : W ⊆ {1, 2}}. Note that U2 is the maximal utility that

Player 2 can get when the strategy for Player 1 is f1.
4. If there exists a set W ⊆ {1, 2} such that util2(⟨f1, fW

2 ⟩) = U2 and util1(⟨f1, fW
2 ⟩) < t,

then f1 is not a NRS solution. Otherwise, f1 is an NRS solution. ◀

Lemma 11 implies an NP upper bound for NRS for 2-players PTGs. A matching lower
bound is proven by a reduction from 3SAT.

▶ Theorem 12. NRS for 2-players PTGs is NP-complete. Hardness in NP holds already for
BTGs.

6.2 n-player NRS for n ≥ 3
We continue and study NRS for PTGs with strictly more than two players. As bad news, we
show that the polynomial algorithm from the proof of Theorem 12 cannot be generalized
for NRS with three or more players. Intuitively, the reason is as follows. In the case of two
players, there is a single environment player, and when the strategy for the system player is
fixed, we could find the maximal possible utility for the environment player. On the other
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hand, when there are two or more environment players, the maximal possible utility for
each of them depends on both the strategy of the system player and the strategies of the
other environment players, which are not fixed. Formally, we prove that NRS for PTGs with
strictly more than two players is ΣP

2 -complete. As good news, NRS stays ΣP
2 also when the

number of players in not fixed; thus is is easier than NRS in PGs, where the problem is
PSPACE-hard for an unfixed number of players.

▶ Theorem 13. NRS for n-players PTGs with n ≥ 3 is ΣP
2 -complete. Hardness in ΣP

2 holds
already for BTGs.

Proof. We start with the upper bound. We say that a profile π is good if util1(π) ≥ t, or π

is not a 1-fixed NE. Checking whether a given profile π is good can be done in polynomial
time. Indeed, for checking whether util1(π) ≥ t, we can find S(π) and Outcome(π), and then
calculate util1(π) in polynomial time. For checking whether π is not a 1-fixed NE, we can
use Theorem 2 and check if some player i ∈ [n] \ {1} has a beneficial deviation. Hence, an
algorithm in ΣP

2 for NRS guesses a strategy f1 for Player 1 and then checks that for all
guessed strategies f2, . . . , fn for Players 2 . . . n, the profile ⟨f1, f2, . . . , fn⟩ is good. Note that
the complexity is independent of n being fixed.

We continue to the lower bound and show that NRS is ΣP
2 -hard already for three players

in BTGs. We describe a reduction from QBF2, the problem of determining the truth of
quantified Boolean formulas with one alternation of quantifiers, where the external quantifier
is “exists”. Consider a QBF2 formula Φ = ∃x1, . . . , xn∀y1, . . . , ymφ. We assume that φ is a
Boolean propositional formula in 3DNF. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Given
Φ, we construct a 3-player Büchi game such that there exists an NRS solution f1 in G for
t = 1 iff Φ = true.

The main idea of the reduction is to construct a game in which Player 1 chooses an
assignment to the variables in X; Player 2 tries to prove that Φ = false, by showing that
there exists an assignment to the variables in Y with which for every clause Ci, there is
a literal lj

i such that lj
i = false; and Player 3 can point out whenever Player 2’s proof is

incorrect. The game has a sink s. The objective of Player 1 and Player 3 is to not get stuck
in the sink, and the objective of Player 2 is V . That is, Player 2 wins in every path in the
game. The reward to Player 1 is n + 1, and she can pay 1 for each assignment in order to
ensure that the play does not reach s. If Player 1 chooses an assignment for the variables in
X such that for every assignment to the variables in Y , we have that φ is satisfied, then she
and Player 3 can prevent the game from going to s, with Player 1 paying a total price of n.
Otherwise, Player 2 can prove that Φ = false, and by that forces the play to reach s, unless
Player 1 pays more than n, which exceeds her reward. ◀

7 Discussion

We introduced trading games, which extend ω-regular graph games with trading of control.
Our buying and selling strategies concern edges in the game graph, and the result of the
trading is a set of sold edges. In this section we discuss richer settings, classified according
to the parameter they extend the setting with.

Buying strategies. We see two interesting ways to enrich buying strategies. The first, which
is common in game theory, is to allow dependencies between the sold goods, thus let players
bid on sets of edges [33]. Indeed, a company may be willing to pay for the rights to direct the
traffic in a certain router in a communication network only if it also gets the right to direct
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traffic in a certain neighbour router. While it is not hard to extend our results to a setting
with such dependencies, it makes the description of strategies more complex. The second
way concerns the type of control that is traded. Rather than buying edges, a player may buy
ownership of vertices. In the case of games with objectives that only require memoryless
strategies, the difference boils down to information: the new owner is still going to use the
same edge in all visits to a vertex she bought, yet unlike in our setting, the seller of the vertex
does not known which edge it is. For games in which memoryless strategies are too weak (for
example, games with generalized parity objectives, or objectives in LTL [21]), the suggested
model allows the buyer to proceed with different edges in different visits to the sold vertex.
Moreover, by allowing buying strategies that specify scenarios in which control is wanted,
we can let players share control on a vertex. Thus, buying strategies may involve regular
expressions that specify conditions on the history of the computation, and the suggested
prices depend on these conditions. For example, a user may be willing to pay for an edge
that guarantees a certain service only after certain events have happened.

Pricing and deviations. In our setting, payments are made for all the sold edges. It is not
hard to see that stability can be increased by charging players only for edges that actually
participate in the outcome of the profile. On the other hand, the latter charging policy
encourages players to bid for more edges. Also, in our setting, a player can deviate from
a profile only if unilaterally changing her buying or selling strategies increases her utility.
This deviation rule prevents players from initiating a trade, even if both the seller and buyer
benefit from it. This motivates the definition of joined deviations, where, for example, two
players can deviate together by offering and accepting an offer, respectively, as long as they
both increase their utilities.

Game graphs. The fact our games are turned-based makes the ownership of control simple:
Player i controls and may sell the vertices in Vi. It is possible, however, to trade control also
in concurrent games. There, the movement of the token depends on actions taken by all the
players in all the vertices. Two natural ways to trade control in a concurrent setting are
transverse – when players buy the right to choose an action for the seller in certain vertices,
or longitudinal – when each player has a set of variables she controls, and an action amounts
to assigning values to these variables. Then, players may buy variables, namely the right
to assign values to these variable throughout the computation. For example, in a system
with users that direct robots in warehouse by assigning them a direction and speed, a user
may sell the control on her robot in certain locations in the warehouse, or sell the ability to
decide its speed throughout the computation. Finally, as in other game-graphs studied in
formal methods, it is interesting to study extensions to richer settings, addressing incomplete
information, infinite domains, stochastic behavior, and more.
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Abstract
In this paper we study a Separation Logic of Relations (SLR) and compare its expressiveness to
(Monadic) Second Order Logic [(M)SO]. SLR is based on the well-known Symbolic Heap fragment of
Separation Logic, whose formulæ are composed of points-to assertions, inductively defined predicates,
with the separating conjunction as the only logical connective. SLR generalizes the Symbolic Heap
fragment by supporting general relational atoms, instead of only points-to assertions. In this paper,
we restrict ourselves to finite relational structures, and hence only consider Weak (M)SO, where
quantification ranges over finite sets. Our main results are that SLR and MSO are incomparable
on structures of unbounded treewidth, while SLR can be embedded in SO in general. Furthermore,
MSO becomes a strict subset of SLR, when the treewidth of the models is bounded by a parameter
and all vertices attached to some hyperedge belong to the interpretation of a fixed unary relation
symbol. We also discuss the problem of identifying a fragment of SLR that is equivalent to MSO
over models of bounded treewidth.
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1 Introduction

Relational structures are interpretations of relation symbols that define the standard semantics
of first and second order logic [58]. They provide a unifying framework for reasoning about a
multitude of graph types e.g., graphs with multiple edges, labeled graphs, colored graphs,
hypergraphs, etc. Graphs are, in turn, important for many areas of computing, e.g., static
analysis [45], databases and knowledge representation [1] and concurrency [27].

A well-established language for specifying graph properties is Monadic Second Order
Logic (MSO), where quantification is over vertices only, or both vertices and edges, and
sets thereof [25]. Other graph description logics use formal language theory (e.g., regular
expressions, context-free grammars) to check for paths with certain patterns [37].

Another way of describing graphs is by an algebra of operations, such as vertex/hyperedge
replacement, i.e., substitution of a vertex/hyperedge in a graph by another graph. Graph
algebras come with robust notions of recognizable sets (i.e., unions of equivalence classes
of a finite index congruence) and inductive sets (i.e., least solutions of recursive sets of
equations, sometimes also called equational or context-free sets [25]). The relation between
the expressivity of MSO-definable, recognizable and inductive sets is well-understood: all
definable sets are recognizable, but there are recognizable sets that are not definable [22].
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The equivalence between definability and recognizability has been established for those sets
in which the treewidth (a positive integer that indicates how close the graph is to a tree) is
bounded by a fixed constant [6]. Moreover, it is known that the set of graphs of treewidth
bounded by a constant is inductive [25, Theorem 2.83].

From a system designer’s point of view, logical specification is declarative (i.e., it describes
required properties, such as acyclicity, hamiltonicity, etc.), whereas algebraic specification
is operational (i.e., describes the way graphs are built from pieces), relying on low-level
details (e.g., designated source vertices). Because of this, system provers (e.g., model checkers
or deductive verifiers) tend to use logic both for requirement specification and internal
representation of configuration sets. However, algebraic theories (e.g., automata theory) are
used to obtain algorithms for discharging the generated logical verification conditions, e.g.,
satisfiability of formulæ or validity of entailments between formulæ.

Separation Logic (SL) [43, 56, 18] is a first order substructural logic with a separating
conjunction ∗ that decomposes structures. For reasons related to its applications in the
deductive verification of pointer-manipulating programs, the models of SL are finite graphs
of fixed outdegree, described by partial functions, called heaps. The separating conjunction
is interpreted in SL as the union of heaps with disjoint domains.

Since their early days, substructural logics have had (abstract) algebraic semantics [54],
yet their relation with graph algebras has received scant attention. However, as we argue in
this paper, the standard interpretation of the separating conjunction has the flavor of certain
graph-algebraic operations, such as the disjoint union with fusion of designated nodes [23].

The benefits of SL over purely boolean graph logics (e.g., MSO) are two-fold:
I. The separating conjunction in combination with inductive definitions [2] provide concise

descriptions of datastructures in the heap memory of a program. For instance, the rules
(1) ls(x, y) ← x = y and (2) ls(x, y) ← ∃z . x 7→ z ∗ ls(z, y) define finite singly-linked
list segments, that are either (1) empty with equal endpoints, or (2) consist of a single
cell x separated from the rest of the list segment ls(z, y). Most recursive datastructures
(singly- and doubly-linked lists, trees, etc.) can be defined using only existentially
quantified spatial conjunctions of atoms, that are (dis-)equalities and points-to atoms.
This simple subset of SL is referred to as the Symbolic Heap fragment. The problems
of model checking [13], satisfiability [12], robustness properties [44] and entailment
[21, 47, 34, 35, 53] for this fragment have been studied extensively.

II. The separating conjunction is a powerful tool for reasoning about mutations of heaps.
In fact, the built-in separating conjunction allows to describe actions locally, i.e., only
with respect to the resources (e.g., memory cells, network nodes) involved, while framing
out the part of the state that is irrelevant for that particular action. This principle of
describing mutations, known as local reasoning [16], is at the heart of very powerful
compositional proof techniques for pointer programs using SL [14].

The extension of SL from heaps to relational structures, called Separation Logic of
Relations (SLR), has been first considered for relational databases and type systems of object-
oriented languages, known as role logic [48]. Our motivation for studying the expressivity of
SLR arose from several works:
(1) deductive verification of self-adapting distributed systems, where Hoare-style local

reasoning is applied to write correctness proofs for systems with dynamically changing
network architectures [4, 7, 9], and

(2) model-checking such systems for absence of deadlocks and critical section violations [10].
Another possible application of SLR is reasoning about programs with overlaid datastructures
[31, 46], using variants of SL with a per-field composition of heaps, naturally expressed
in SLR.
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Table 1 A comparison of SLR, MSO and SO in terms of expressiveness, where ✓ means that the
inclusion holds, × means it does not and ? denotes an open problem.

SLR MSO SO

SLR ✓ ? × (§4) × (§4) ✓(§5) ✓(§7)
MSO × (§4) ✓(§6) ✓ ✓(§7) ✓ ✓(§7)
SO × (§4) ? × (§7) × (§7) ✓ ✓(§7)

The SLR separating conjunction is understood as splitting the interpretation of each
relation symbol from the signature into disjoint parts. For instance, the formula R(x1, . . . , xn)
describes a structure in which all relations are empty and R consists of a single tuple of
values x1, . . . , xn, whereas R(x1, . . . , xn) ∗ R(y1, . . . , yn) says that R consists of two distinct
tuples, i.e., the values of xi and yi differ for at least one index 1 ≤ i ≤ n. In contrast to
the Courcelle-style composition of disjoint structures with fusion of nodes that interpret
the common constants (i.e., function symbols of arity zero) [23], the SLR-style composition
(i.e., the pointwise disjoint union of the interpretations of each relation symbol) is more
fine-grained. For instance, if structures are used to encode graphs, SLR allows to specify
(hyper-)edges that have no connected vertices, isolated vertices, or both. The same style
of composition is found in other spatial logics for graphs, such as the GL logic of Cardelli,
Gardner and Ghelli [18].

In particular, SLR is strictly more expressive than standard SL interpreted over heaps.
For instance, the previous definition of a list segment can be written in a relational signature
having at least a unary relation D and a binary relation H, as (1) rls(x, y) ← x = y and
(2) rls(x, y)← ∃z . D(x) ∗ H(x, z) ∗ rls(z, y). Note that the D(x) atoms joined by separating
conjunction ensure that all the nodes are pairwise different, except for the last one denoted
by y. We will later generalize this use of D for the definition of a Courcelle-style composition
operator [23], where D ensures that all but a bounded number of nodes are pairwise different.
Further, SLR can describe graphs of unbounded degree, e.g., stars with a central vertex
and outgoing binary edges E to frontier vertices e.g., (1) star(x) ← N(x) ∗ node(x) (2)
node(x)← x = x and (3) node(x)← ∃y . E(x, y) ∗N(y) ∗ node(x). The definition of stars is
not possible with SL interpreted over heaps, because of their bounded out-degree.

Our contributions. We compare the expressiveness of SLR with (monadic) second-order
logic (M)SO. We are interested in finite relational structures, and hence only consider weak
(M)SO, where relations are interpreted as finite sets.

For a logic L ∈ {SLR,MSO, SO} using a finite set Σ of relation and constant symbols, we
denote by [[L]] the set of sets of models for all formulæ ϕ ∈ L. For a unary relation symbol
D not in Σ, considered fixed in the rest of the paper, we say that a graph is guarded if all
elements from a tuple in the interpretation of a relation symbol belong to the interpretation
of D. Then [[L]]D,k is the set of sets of guarded models of treewidth at most k of a formula
from L, where the signature of L is extended with D, and [[L1]]D,k ⊆ [[L2]] means that L2 is
at least as expressive as L1, when only guarded models of treewidth at most k are considered.
Note that [[L]]D,k ⊆ [[L]] is not a trivial statement, in general, because it asserts the existence
of a formula of L that defines the set of guarded structures of treewidth at most k.

Each cell of Table 1 shows [[L1]] ⊆ [[L2]] (left) and [[L1]]D,k ⊆ [[L2]] (right). Here ✓ means
that the inclusion holds, × means it does not and ? denotes an open problem, with reference
to the sections where (non-trivial) proofs are given. The most interesting cases are:
1. SLR and MSO are incomparable on unguarded structures of unbounded treewidth, i.e.,

there are formulæ in each of the logics that do not have an equivalent in the other,
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2. SO is strictly more expressive than SLR, when considering unguarded structures of
unbounded treewidth, and at least as expressive as SLR, when considering guarded
structures of bounded treewidth,

3. SLR is strictly more expressive than MSO, when considering guarded structures of
bounded treewidth; this shows the expressive power of SLR, emphasizing (once more) the
model-theoretic importance of the treewidth parameter.

Note that, when considering SLR-definable sets of bounded treewidth, we systematically
assume these structures to be guarded. We state as an open problem and conjecture that
every infinite SLR-definable set of structures of bounded treewidth is necessarily guarded, in
a hope that the guardedness condition can actually be lifted. So far, similar conditions have
been used to, e.g., obtain decidability of entailments between SL symbolic heaps [41, 47] and
of invariance for assertions written in a fragment of SLR for verifying distributed networks [9].
Moreover, the problem of checking if a given set of inductive definitions defines a guarded
set of structures is decidable for these logics [44, 8].

A further natural question asks for a fragment of SLR with the same expressive power as
MSO, over structures of bounded treewidth. This is also motivated by the need for a general
fragment of SLR with a decidable entailment problem, that is instrumental in designing
automated verification systems. Unfortunately, such a definition is challenging because the
MSO-definability of the sets defined by SLR is an undecidable problem, whereas treewidth
boundedness of such sets remains an open problem, conjectured to be decidable.

All proofs can be found in the full version of the paper [42].

Related work. Treewidth is a cornerstone of algorithmic tractability. For instance, many
NP-complete graph problems such as Hamiltonicity and 3-Coloring become PTIME, when
restricted to inputs whose treewidth is bounded by a constant, see, e.g., [38, Chapter 11].
Moreover, bounding the treewidth by a constant sets the frontier between the decidability
and undecidability of monadic second order (MSO) logical theories. A result of Courcelle [22]
proves that MSO is decidable over bounded treewidth structures, by reduction to the
emptiness problem of tree automata. A dual result of Seese [57] proves that each class of
structures with a decidable MSO theory necessarily has bounded treewidth.

Comparing the expressiveness of SL [56] with classical logics received a fair amount of
attention. A first proof of undecidability of the satisfiability problem for SL, with first order
quantification, negation and separating implication, but without inductive definitions [17], is
based on a reduction to Trakhtenbrot’s undecidability result for first order logic on finite
models [32]. This proof uses heaps of outdegree two to encode arbitrary binary relations as
R(x, y) def= ∃z . z 7→ (x, y) ∗ true. A more refined proof for heaps of outdegree one was given
in [11], where it was shown that SO has the same expressivity as SL, when negation and
separating implication is allowed, which is not the case for our fragment of SLR.

A related line of work, pioneered by Lozes [50], is the translation of quantifier-free SL
formulæ into boolean combinations of core formulæ, belonging to a small set of very simple
patterns. This enables a straightforward translation of the quantifier-free fragment of SL
into first order logic, over unrestricted signatures with both relation and function symbols,
subsequently extended to two quantified variables [28] and restricted quantifier prefixes [33].
Moreover, a translation of quantifier-free SL into first order logic, based on the small model
property of the former, has been described in [15]. These are fragments of SL without
inductive definitions, but with arbitrary combinations of boolean (conjunction, negation)
and spatial (separating conjunction, magic wand) connectives. A non-trivial attempt of
generalizing the technique of core formulæ to reachability and list segment predicates is given



R. Iosif and F. Zuleger 20:5

in [29]. Moreover, an in-depth comparison between the expressiveness of various models of
separation, i.e., spatial, as in SL, and contextual (subtree-like), as in Ambient Logic [19], can
be found in [52]. The restriction of SLR on trees is, however, out of the scope of this paper.

An early combination of spatial connective for graph decomposition with (least fixpoint)
recursion is Graph Logic (GL) [18], whose expressiveness is compared to that of MSO2, i.e.,
MSO interpreted over graphs, with quantification over both vertices and edges [26]. For
reasons related to its applications, GL quantifies over the vertices and edge labels of a graph,
unlike MSO2 that quantifies over vertices, edges and sets thereof. Another fairly subtle
difference is that GL can describe graphs with multiple edges that involve the same vertices
and same label, whereas the models of MSO2 are simple graphs. Without recursion, GL can
be translated into MSO2 and it has been shown that MSO2 is strictly more expressive than
GL without edge label quantification [5]. Little is known for GL with recursion, besides that
it can express PSPACE-complete model checking problems [26], whereas model checking is
PSPACE-complete for MSO [59].

The separating conjunction used in SLR has been first introduced in role logic [48], a
logic designed to reason about properties of record fields in object-oriented programs. This
logic uses separating conjunction in combination with boolean connectives and first order
quantifier (ranging over vertices) and has no recursive constructs (least fixpoints or inductive
definitions). A bothways translation between role logic and SO has been described in [49].
These translations rely on boolean connectives and first order quantifiers, instead of least
fixpoint recursion, which is the case in our work.

To complete the picture, a substructural logic with separating conjunction and implication,
based on a layered decomposition of graphs has been developped in [20]. However, the relation
between this logic and (M)SO remains unexplored, to the best of our knowledge.

2 Definitions

For a set A, we denote by pow(A) its powerset, A1 def= A, Ai+1 def= Ai ×A, for all i ≥ 1, where
× is the Cartesian product, and A+ def=

⋃
i≥1 A

i. The cardinality of a finite set A is denoted
by ||A||. Given integers i and j, we write [i, j] for the set {i, i+ 1, . . . , j}, empty if i > j. For
a partial function f : A→ B, we denote by dom(f) its domain and by f⇃S its restriction to
S ⊆ dom(f). f is locally co-finite iff the set {a ∈ A | f(a) = b} is finite, for all b ∈ B. f is
effectively computable iff there exists a Turing machine M, such that, for any a ∈ dom(f),
M outputs f(a) in finitely many steps and diverges for a ̸∈ dom(f).

Signatures and Structures. Let Σ = {R1, . . . ,RN , c1, . . . , cM} be a finite signature, where
Ri are relation symbols of arity #Ri ≥ 1 and cj are constant symbols, i.e., function symbols
of arity zero. Additionally, we assume the existence of a unary relation symbol D, not in Σ.
Unless stated otherwise, we consider Σ and D to be fixed in the following.

A structure is a pair (U, σ), where U is an infinite set, called universe, and σ : Σ →
U ∪pow(U+) is an interpretation that maps each relation symbol R to a relation σ(R) ⊆ U#R

and each constant c to an element σ(c) ∈ U . Two structures are isomorphic iff they differ
only by a renaming of their elements (a formal definition is given in, e.g., [32, §A3]). We
write Rel(σ) for the set of elements that belong to σ(R), for some relation symbol R ∈ Σ and
Supp(σ) def= Rel(σ) ∪ {σ(c1), . . . , σ(cM )} for the support of the structure, that includes the
interpretation of constants. We denote by Str(Σ) (resp. Str(Σ,D)) the set of structures over
the signature Σ (resp. Σ ∪ {D}).
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A structure is guarded iff all nodes that occur in some tuple from the denotation of a
relation symbol sit also inside the denotation of the unary relation D:

▶ Definition 1. A structure (U, σ) ∈ Str(Σ,D) is guarded iff Rel(σ) = σ(D).

Two interpretations σ1 and σ2 are compatible iff σ1(c) = σ2(c), for all constant symbols c ∈ Σ.
Two structures (U1, σ1) and (U2, σ2) are locally disjoint iff σ1(R) ∩ σ2(R) = ∅, for all relation
symbols R ∈ Σ. The (spatial) composition of structures is defined below:

▶ Definition 2. The composition of two compatible and locally disjoint structures (U1, σ1)
and (U2, σ2) is (U1, σ1) • (U2, σ2) def= (U1 ∪U2, σ1 ⊎ σ2), where (σ1 ⊎ σ2)(Ri)

def= σ1(Ri)∪ σ2(Ri)
and (σ1 ⊎ σ2)(cj) def= σ1(cj) = σ2(cj), for all i ∈ [1, N ] and j ∈ [1,M ]. The composition is
undefined for structures that are not compatible or not locally disjoint.

Graphs and Treewidth. A graph is a pair G = (V, E), such that V is a set of vertices and
E ⊆ V × V is a set of edges. All graphs considered in this paper are finite and directed, i.e.,
E is not necessarily a symmetric relation. Graphs are naturally encoded as structures:

▶ Definition 3. A graph G = (V, E) is encoded by the structure (UG , σG) over the signature
Γ def= {V,E}, where #V = 1 and #E = 2, such that UG = V, σG(V) = V and σG(E) = E.

A path in G is a sequence of pairwise distinct vertices v1, . . . , vn, such that (vi, vi+1) ∈ E , for
all i ∈ [1, n− 1]. We say that v1, . . . , vn is an undirected path if {(vi, vi+1), (vi+1, vi)}∩E ̸= ∅
instead, for all i ∈ [1, n− 1]. A set of vertices V ⊆ V is connected in G iff there is an
undirected path in G between any two vertices in V . A graph G is connected iff V is connected
in G. A clique is a graph such that each two distinct nodes are the endpoints of an edge, the
direction of which is not important. We denote by Kn the set of cliques with n vertices.

Given a set Λ of labels, a Λ-labeled tree is a tuple T = (N ,F , r, λ), where (N ,F) is a
graph, r ∈ N is a designated vertex called the root, such that there exists a unique path in
(N ,F) from r to any other vertex v ∈ N \ {r} and r has no incoming edges (p, r) ∈ F . The
mapping λ : N → Λ associates each vertex of the tree a label from Λ.

▶ Definition 4. A tree decomposition of a structure (U, σ) over the signature Σ is a pow(U)-
labeled tree T = (N ,F , r, λ), such that the following hold:
1. for each relation symbol R ∈ Σ and each tuple ⟨u1, . . . , u#R⟩ ∈ σ(R) there exists n ∈ N ,

such that {u1, . . . , u#R} ⊆ λ(n), and
2. for each u ∈ Supp(σ), the set {n ∈ N | u ∈ λ(n)} is nonempty and connected in (N ,F).

The width of the tree decomposition is tw(T ) def= maxn∈N ||λ(n)|| − 1. The treewidth of the
structure (U, σ) is tw(U, σ) def= min{tw(T ) | T is a tree decomposition of σ}.

A set of structures is treewidth-bounded iff the set of corresponding treewidths is finite
and treewidth-unbounded otherwise. A set is strictly treewidth-unbounded iff it is treewidth-
unbounded and any of its infinite subsets is treewidth-unbounded. The following result can
be found in [30, Theorem 12.3.9] and is restated here for self-containment:

▶ Proposition 5. The set of cliques {Kn | n ∈ N} is strictly treewidth-unbounded.
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3 Logics

We introduce two logics over a relational signature Σ = {R1, . . . ,RN , c1, . . . , cM}. First, the
Separation Logic of Relations (SLR) uses a set of first order variables V1 = {x, . . .} and a
set of predicates A = {A, . . .} (also called recursion variables in the literature, e.g., [18]) of
arities #A ≥ 0. We use the symbols ξ, χ ∈ V1 ∪ {c1, . . . , cM} to denote terms, i.e., either
first order variables or constants. The formulæ of SLR are defined by the following syntax:

ϕ := emp | ξ = χ | ξ ̸= χ | R(ξ1, . . . , ξ#R) | A(ξ1, . . . , ξ#A) | ϕ ∗ ϕ | ∃x . ϕ

The formulæ ξ = χ and ξ ̸= χ are called equalities and disequalities, R(ξ1, . . . , ξ#R) and
A(ξ1, . . . , ξ#A) are called relation and predicate atoms, respectively. A formula with no
occurrences of predicate atoms (resp. existential quantifiers) is called predicate-free (resp.
quantifier-free). A variable is free if it does not occur within the scope of an existential
quantifier and bound otherwise. We denote by fv(ϕ) be the set of free variables of ϕ. A
sentence is a formula with no free variables. A substitution ϕ[x1/ξ1 . . . xn/ξn] replaces
simultaneously every occurrence of the free variable xi by the term ξi in ϕ, for all i ∈ [1, n].
As a convention, the bound variables in ϕ are renamed to avoid clashes with ξ1, . . . , ξn.

The predicates from A are interpreted as sets of structures, defined inductively:

▶ Definition 6. A set of inductive definitions (SID) ∆ is a finite set of rules of the form
A(x1, . . . , x#A) ← ϕ, where x1, . . . , x#A are pairwise distinct variables, called parameters,
such that fv(ϕ) ⊆ {x1, . . . , x#A}. A rule A(x1, . . . , x#A)← ϕ is said to define A.

The semantics of SLR formulæ is given by the satisfaction relation (U, σ) |=ν
∆ ϕ between

structures and formulæ. This relation is parameterized by a store ν : V1 → U mapping the
free variables of a formula into elements of the universe and an SID ∆. We write ν[x← u]
for the store that maps x into u and agrees with ν on all variables other than x. For a term
ξ, we denote by (σ, ν)(ξ) the value σ(ξ) if ξ is a constant, or ν(ξ) if ξ is a first-order variable.
The satisfaction relation is the least relation that satisfies the following conditions:

(U, σ) |=ν
∆ emp ⇔ σ(R) = ∅, for all R ∈ Σ

(U, σ) |=ν
∆ ξ ∼ χ ⇔ (U, σ) |=ν

∆ emp and (σ, ν)(ξ) ∼ (σ, ν)(χ), where ∼ ∈{=, ̸=}
(U, σ) |=ν

∆ R(ξ1, . . . , ξ#R) ⇔ σ(R) = {⟨(σ, ν)(ξ1), . . . , (σ, ν)(ξ#R)⟩}
and σ(R′) = ∅, for R′ ∈ Σ \ {R}

(U, σ) |=ν
∆ A(ξ1, . . . , ξ#A) ⇔ (U, σ) |=ν

∆ ϕ[x1/ξ1, . . . , x#A/ξ#A],
for some A(x1, . . . , x#A)← ϕ ∈ ∆

(U, σ) |=ν
∆ ϕ1 ∗ ϕ2 ⇔ there exist structures (U1, σ1) and (U2, σ2), such that

(U, σ) = (U1, σ1) • (U2, σ2) and (U, σi) |=ν
∆ ϕi, for i = 1, 2

(U, σ) |=ν
∆ ∃x . ϕ ⇔ (U, σ) |=ν[x←u]

∆ ϕ, for some u ∈ U

Note that every structure (U, σ), such that (U, σ) |=ν
∆ ϕ, interprets each relation symbol

as a finite set of tuples, defined by a finite least fixpoint iteration over the rules in ∆. In
particular, the assumption that each universe is infinite excludes the cases in which a SLR
formula becomes unsatisfiable because the universe does not have enough elements to be
assigned to the existentially quantified variables during the unfolding of the rules.

If ϕ is a sentence, the satisfaction relation does not depend on the store, in which case
we write (U, σ) |=∆ ϕ and say that (U, σ) is a ∆-model of ϕ. We denote by [[ϕ]]∆ the set
of ∆-models of ϕ. We call [[ϕ]]∆ an SLR-definable set. By [[ϕ]]∆

D,k we denote the set of
guarded structures (Def. 1) of treewidth at most k from [[ϕ]]∆. We write [[SLR]] def= {[[ϕ]]∆ |
ϕ is a SLR formula,∆ is a SID} and [[SLR]]D,k def= {[[ϕ]]∆

D,k | ϕ is a SLR formula,∆ is a SID}.
Below we show that SLR-definable sets are unions of isomorphic equivalence classes:
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▶ Proposition 7. Given isomorphic structures (U, σ) and (U ′, σ′), for any sentence ϕ of SLR
and any SID ∆, we have (U, σ) |=∆ ϕ ⇔ (U ′, σ′) |=∆ ϕ.

The other logic is the Weak Second Order Logic (SO) defined using a set of second order
variables V2 = {X, . . .}, in addition to first order variables V1. We denote by #X the arity
of a second order variable X. Terms and atoms are the same as in SLR. The formulæ of SO
have the following syntax:

ψ := ξ = χ | R(ξ1, . . . , ξ#R) | X(ξ1, . . . , ξ#X) | ¬ψ | ψ ∧ ψ | ∃x . ψ | ∃X . ψ

We write ξ ̸= χ
def= ¬ξ = χ, ψ1∨ψ2

def= ¬(¬ψ1∧¬ψ2), ψ1 → ψ2
def= ¬ψ1∨ψ2, ∀x . ψ def= ¬∃x . ¬ψ

and ∀X . ψ
def= ¬∃X . ¬ψ. The Weak Monadic Second Order Logic (MSO) is the fragment of

SO restricted to second-order variables of arity one. The Weak Existential Second Order
Logic (ESO) is the fragment of SO consisting of formulæ of the form ∃X1 . . . ∃Xn . ϕ, where
ϕ has only first order quantifiers.

The semantics of SO is given by a relation (U, σ) ⊩ν ψ, where the store ν : V1 ∪ V2 →
U ∪ pow(U+) maps each first-order variable x ∈ V1 to an element of the universe ν(x) ∈ U
and each second-order variable X ∈ V2 to a finite relation ν(X) ⊆ U#X . The satisfaction
relation of SO is defined inductively on the structure of formulæ:

(U, σ) ⊩ν ξ = χ ⇔ (σ, ν)(ξ) = (σ, ν)(χ)
(U, σ) ⊩ν R(ξ1, . . . , ξ#R) ⇔ ⟨(σ, ν)(ξ1), . . . , (σ, ν)(ξ#R)⟩ ∈ σ(R)
(U, σ) ⊩ν X(ξ1, . . . , ξ#X) ⇔ ⟨(σ, ν)(ξ1), . . . , (σ, ν)(ξ#X)⟩ ∈ ν(X)
(U, σ) ⊩ν ∃X . ψ ⇔ (U, σ) ⊩ν[X←V ] ψ, for some finite set V ⊆ U#X

The semantics of negation, conjunction and first-order quantification are standard and
omitted for brevity. Note the difference between equalities and relation atoms in SLR and
SO: in the former, equalities (relation atoms) hold in an empty (singleton) structure, whereas
no such upper bounds on the cardinality of the model of an atom occur in SO.

However, SO can express upper bounds on the cardinality of the universe. Such formulæ
are unsatisfiable under the assumption that the universe of each structure is infinite. We
chose to keep the comparison between SLR and SO simple and not consider the general case
of a finite universe, for the time being. A detailed study of SL interpreted over finite universe
heaps, with arbitrary nesting of boolean and separating connectives but without inductive
definitions is given in [33]. We plan to give a similar comparison in an extended version.

If ϕ is a sentence, we write (U, σ) ⊩ ϕ instead of (U, σ) ⊩ν ϕ and define [[ϕ]] def= {(U, σ) |
(U, σ) ⊩ ϕ} and [[ϕ]]D,k for the restriction of [[ϕ]] to guarded structures of treewidth at most
k. We call [[ϕ]] an (M)SO-definable set. We write [[(M)SO]] def= {[[ϕ]] | ϕ is a (M)SO formula}
and [[(M)SO]]D,k def= {[[ϕ]]D,k | ϕ is a (M)SO formula}.

The aim of this paper is comparing the expressive powers of SLR, MSO and SO, with
respect to the properties that can be defined in these logics. We are concerned with the
problems [[L1]] ⊆ [[L2]] and [[L1]]D,k ⊆ [[L2]], where L1 and L2 are any of the logics SLR, MSO
and SO, respectively. In particular, for [[L1]]D,k ⊆ [[L2]], we implicitly assume that L1 and L2
are sets of formulæ over the relational signature Σ ∪ {D}. Table 1 summarizes our results,
with references to the sections in the paper where the (non-trivial) proofs can be found, and
the remaining open problems.

4 [[SLR]]D,k ̸⊆ [[MSO]] ̸⊆ [[SLR]]

The argument that shows [[SLR]]D,k ̸⊆ [[MSO]] is that MSO cannot express the fact that
the cardinality of a set is even [22, Proposition 6.2]. The SLR rules below state that the
cardinality of R is even, for a predicate A of arity zero:
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A()← ∃x∃y . R(x) ∗R(y) ∗A() A()← emp

Note that every model of A() interprets R as a set with an even number of disconnected
elements and every other relation symbol by an empty set. The treewidth of such models is
one, thus [[SLR]]D,k ̸⊆ [[MSO]] for any k ≥ 1, and we obtain [[SLR]] ̸⊆ [[MSO]], in general.

The argument for [[MSO]] ̸⊆ [[SLR]] is that the set of cliques is MSO-definable (actually,
even first order definable) but not SLR-definable. First, the set {Kn | n ∈ N} is defined by
the following first order formula in the signature of graph encodings (Def. 3):

∀x∀y . V(x) ∧V(y) ∧ x ̸= y → E(x, y) ∨ E(y, x)

Since this set is strictly treewidth-unbounded (Prop. 5), it is sufficient to prove that SLR
cannot define strictly treewidth-unbounded sets. More precisely, for each SLR sentence ϕ and
SID ∆, we prove the existence of an integer W ≥ 1, depending on ϕ and ∆ alone, such that

(i) for each structure (U, σ) ∈ [[ϕ]]∆ there exists a structure (U, σ) ∈ [[ϕ]]∆, of treewidth at
most W , and

(ii) the function that maps (U, σ) into (U, σ) is locally co-finite (Lemma 10).
Then each infinite SLR-definable set has an infinite treewidth-bounded subset, i.e., it is not
strictly treewidth-unbounded (Prop. 12).

A first ingredient of the proof is that each SID can be transformed into an equivalent
SID without equality constraints between variables:

▶ Definition 8. A rule A(x1, . . . , x#A) ← ∃y1 . . . ∃yn . ψ, where ψ is a quantifier-free
formula, is normalized iff no equality atom x = y occurs in ψ, for distinct variables x, y ∈
{x1, . . . , x#A} ∪ {y1, . . . , yn}. An SID is normalized iff it contains only normalized rules.

▶ Lemma 9. Given an SID ∆, one can build a normalized SID ∆′ such that, for each structure
σ and each predicate atom A(ξ1, . . . , ξ#A), we have (U, σ) |=∆ ∃ξi1 . . . ∃ξin

. A(ξ1, . . . , ξ#A) ⇔
(U, σ) |=∆′ ∃ξi1 . . . ∃ξin

. A(ξ1, . . . , ξ#A), where {ξi1 , . . . , ξin
} = {ξ1, . . . , ξ#A} ∩ V1.

A consequence is that, in the absence of equality constraints, each existentially quantified
variable instantiated by the inductive definition of the satisfaction relation can be assigned
a distinct element of the universe. For instance, considering the rules fold_ls(x1) ← emp
and fold_ls(x1)← ∃y . H(x1, y) ∗ fold_ls(y), the fold_ls(x) formula defines an infinite set of
graphs whose edges are given by the interpretation of a relation symbol H, such that there
exists an Eulerian path visiting all edges exactly once, and all vertices possibly more than
once. Since there are no equality constraints, each model of fold_ls(x) can be expanded into
an acyclic list that never visits the same vertex twice, except at the endpoints. This graph
has treewidth two, if the endpoints coincide, and one otherwise.

Formally, we write (U, σ) |=• ν
∆ ϕ iff the satisfaction relation (U, σ) |=ν

∆ ϕ can be established
by considering finite injective stores. The definition of |=• ν

∆ is the same as the one of |=ν
∆

(§3), except for the cases below:

(U, σ) |=• ν
∆ ϕ1 ∗ ϕ2 ⇔ there exist structures (U1, σ1) • (U2, σ2) = (U, σ), such that

U1 ∩ U2 = ν(fv(ϕ1) ∩ fv(ϕ2)) and (Ui, σi) |=
• ν⇂fv(ϕi)

∆ ϕi, for i = 1, 2

(U, σ) |=• ν
∆ ∃x . ϕ ⇔ (U, σ) |=

• ν[x←u]
∆ ϕ, for some u ∈ U \ ν(fv(ϕ))

For instance, we have (U, σ) |=• ν
∆ fold_ls(x) only if σ(H) is a list of pairwise distinct elements.
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▶ Lemma 10. Given a normalized SID ∆, a predicate atom A(ξ1, . . . , ξ#A), for each structure
(U, σ) and a store ν, such that (U, σ) |=ν

∆ A(ξ1, . . . , ξ#A), there exists a structure (U, σ), such
that (U, σ) |=• ν

∆ A(ξ1, . . . , ξ#A). Moreover, the function with domain [[A(ξ1, . . . , ξ#A)]]∆ that
maps (U, σ) into the set of structures isomorphic with (U, σ) is locally co-finite.

We show that the models defined on injective stores have bounded treewidth:

▶ Lemma 11. Given a normalized SID ∆ and a predicate atom A(ξ1, . . . , ξ#A), we have
tw(σ) ≤W , for each structure (U, σ) and store ν, such that (U, σ) |=• ν

∆ A(ξ1, . . . , ξ#A), where
W ≥ 1 is a constant depending only on ∆.

Note that proving Lemmas 10 and 11 for predicate atoms loses no generality, because for
each formula ϕ, such that fv(ϕ) = {x1, . . . , xn}, we can consider a predicate symbol Aϕ of
arity n and extend the SID by the rule Aϕ(x1, . . . , xn)← ϕ. The proof of [[MSO]] ̸⊆ [[SLR]]
relies on the following:

▶ Proposition 12. Given a sentence ϕ and an SID ∆, [[ϕ]]∆ is either finite or it has an
infinite subset of bounded treewidth.

5 [[SLR]] ⊆ [[SO]]

Since SLR and MSO are incomparable, it is natural to ask for a logic that subsumes both
of them. In this section, we prove that SO is such a logic. Since MSO is a syntactic subset
of SO, we have [[MSO]] ⊆ [[SO]] trivially. We show that [[SLR]] ⊆ [[SO]] using the fact that
each model of a predicate atom in SLR is built according to a finite unfolding tree indicating
the partial order in which the rules of the SID are used in the inductive definition of the
satisfaction relation; in other words, unfolding trees are for SIDs what derivation trees are for
context-free grammars. More precisely, any model of a SLR sentence can be decomposed into
pairwise disjoint substructures, each being the model of the quantifier- and predicate-free
subformula of a rule in the SID, such that there is a one-to-one mapping between the nodes
of the tree and the substructures from the decomposition of the model. We use second order
variables, interpreted as finite relations, to define the unfolding tree and the mapping between
the nodes of the unfolding tree and the tuples in the interpretation of the relation symbols
from the model. These second order variables are existentially quantified and the resulting
SO formula describes the model, without the unfolding tree that witnesses its construction
according to the rules of the SID.

Let ∆ def= {r1, . . . , rR} be a given SID. Without loss of generality, for each relation symbol
R ∈ Σ, we assume that there is at most one occurrence of an atom R(y1, . . . , y#R) in each
rule from ∆. If this is not the case, we split the rule by introducing a new predicate symbol
for each relation atom with relation symbol Ri, until the condition is satisfied.

▶ Definition 13. An unfolding tree for a predicate atom A(ξ1, . . . , ξ#A) is a ∆-labeled tree
T = (N ,F , r, λ), such that λ(r) defines A and, for each vertex n ∈ N , if B1(z1,1, . . . , z1,#B1),
. . ., Bh(zh,1, . . . , zh,#Bh

) are the predicate atoms that occur in λ(n), then p1, . . . , ph are the
children of n in T , such that λ(pℓ) defines Bℓ, for all ℓ ∈ [1, h].

We build a SO formula that defines the models of a relation atom A(ξ1, . . . , ξ#A). As
explained above, this is without loss of generality. Let P be the maximum number of
occurrences of predicate atoms in a rule from ∆ϕ. We use second order variables Y1, . . . , YP

of arity 2, for the edges of the unfolding tree and X1, . . . , XR of arity 1, for the labels
of the nodes in the unfolding tree, i.e., the rules of ∆. First, we build a SO formula
T(x, {Xi}R

i=1, {Yj}P
j=1), as the conjunction of SO formulæ that describe the following facts:
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the root x belongs to Xi, for some rule ri that defines A,
the sets X1, . . . , XR are pairwise disjoint,
each vertex in X1 ∪ . . . ∪XR is reachable from x by a path with edges Y1, . . . , YP ,
each vertex in X1 ∪ . . . ∪XR, except for x, has exactly one incoming edge,
x has no incoming edge,
each vertex from Xi has exactly h outgoing edges Y1, . . . , Yh, each to a vertex from Xjℓ

,
respectively, such that rjℓ

defines Bℓ, for all ℓ ∈ [1, h], where B1(z1,1, . . . , z1,#B1), . . . ,
Bh(zh,1, . . . , zh,#Bh

) are the predicate atoms that occur in ri.
Second, we build a SO formula expressing the relationship between the unfolding tree T =
(N ,F , r, λ) and the model. The formula F(ξ1, . . . , ξ#A, x, {Xi}R

i=1, {Yj}P
j=1, {{Zk,ℓ}#Rk

ℓ=1 }N
k=1)

uses second order variables Zk,ℓ, of arity 2, that encode partial functions mapping a tree
node n to the value of ξℓ for the (unique) atom Rk(ξ1, . . . , ξ#Ri

) from the rule λ(n), in case
such an atom exists. The formula F is the conjunction of following SO-definable facts1:

(i) each second order variable Zk,ℓ denotes a functional binary relation,
(ii) for each tree node labeled by a rule ri and each atom Rk(ξ1, . . . , ξ#Rk

) occurring at that
node, the interpretation of Rk contains a tuple, whose elements are related to the node
via Zk,1, . . . , Zk,#Rk

, respectively,
(iii) for any (not necessarily distinct) rules ri and rj such that an atom with relation symbol

Rk occurs in both, the corresponding tuples from the interpretation of Rk are distinct,
(iv) each tuple from the interpretation of Rk must have been introduced by a relation atom

with relation symbol Rk that occurs in a rule ri,
(v) two terms ξm and χn that occur in two relation atoms Rk(ξ1, . . . , ξ#Rk

) and
Rℓ(χ1, . . . , χ#Rℓ

) within rules ri and rj , respectively, and are constrained to be equal
(i.e., via equalities and parameter passing), must be equated,

(vi) a disequality ξ ≠ χ that occurs in a rule ri is propagated throughout the tree to each pair
of variables that occur within two relation atoms Rk(ξ1, . . . , ξ#Rk

) and Rℓ(χ1, . . . , χ#Rℓ
)

in rules rjk
and rjℓ

, respectively, such that ξ is bound ξr and χ to χs by equalities and
parameter passing,

(vii) each term in A(ξ1, . . . , ξ#A) that is bound to a variable from a relation atom
Rk(z1, . . . , z#Rk

) in the unfolding, must be equated to that variable.

Summing up, the SO formula defining the models of the predicate atom A(ξ1, . . . , ξ#A)
with respect to the SID ∆ is:

AA
∆(ξ1, . . . , ξ#A) def= ∃x∃{Xi}R

i=1∃{Yj}P
j=1∃{Z1,ℓ}#R1

ℓ=1 . . . ∃{ZK,ℓ}#RK

ℓ=1 .

T(x, {Xi}R
i=1, {Yj}P

j=1) ∧ F(ξ1, . . . , ξ#A, x, {Xi}R
i=1, {Yj}P

j=1, {{Zk,ℓ}#Rk

ℓ=1 }N
k=1)

The correctness of the above construction is proved in the following proposition, that also
shows [[SLR]] ⊆ [[SO]]:

▶ Proposition 14. Given an SID ∆ and a predicate atom A(ξ1, . . . , ξ#A), for each structure
(U, σ) and store ν, we have (U, σ) |=ν

∆ A(ξ1, . . . , ξ#A) ⇔ (U, σ) ⊩ν AA
∆(ξ1, . . . , ξ#A).

We state as an open question whether the above formula can be written in ESO, which
would sharpen the comparison between SLR and SO, as ESO is known to be strictly less
expressive than SO [40]. In particular, the problem is writing F in ESO.

1 The exact SO formulæ are given in the full version of the paper [42].
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6 [[MSO]]D,k ⊆ [[SLR]]

We prove that, for any MSO sentence ϕ and any integer k ≥ 1, there exists an SID ∆(k, ϕ)
and a predicate Ak,ϕ of arity zero, such that [[ϕ]]D,k = [[Ak,ϕ()]]∆(k,ϕ), i.e., the set of guarded
models of ϕ of treewidth at most k corresponds to the set of structures SLR-defined by the
predicate atom Ak,ϕ(), when interpreted in the SID ∆(k, ϕ). Our proof leverages from a
technique of Courcelle [23], used to show that the models of bounded treewidth of a given
MSO sentence can be described by a finite set of recursive equations, written using an algebra
of operations on structures. This result follows up in a long-standing line of work (known as
Feferman-Vaught theorems [51]) that reduces the evaluation of an MSO sentence on the result
of an algebraic operation to the evaluation of several related sentences in the arguments of
the respective operation.

6.1 A Theorem of Courcelle

We recall first a result of Courcelle [23], that describes the structures of bounded treewidth,
which satisfy a given MSO formula ϕ, by an effectively constructible set of recursive equations.
This set of equations uses two operations on structures, namely glue and fgcstj , that are
lifted to sets of structures, as usual. The result is developed in two steps. The first step
builds a generic set of equations, that characterizes all structures of treewidth at most k.
This set of equations is then refined, in the second step, to describe only models of ϕ. Because
this result applies to general (i.e., finite and infinite) structures (U, σ), we do not require U
to be infinite, for the purposes of this presentation. We consider a fixed integer k ≥ 1 and
MSO sentence ϕ in the rest of this section.

Operations on Structures. Let Σ1 and Σ2 be two (possibly overlapping) signatures. The
glueing operation glue : Str(Σ1) × Str(Σ2) → Str(Σ1 ∪ Σ2) is the union of structures with
disjoint universes, followed by fusion of the elements denoted by constants. Formally, given
Si = (Ui, σi), for i = 1, 2, such that U1 ∩ U2 = ∅, let ∼ be the least equivalence relation
on U1 ∪ U2 such that σ1(c) ∼ σ2(c), for all c ∈ Σ1 ∩ Σ2. Let [u] be the equivalence class
of u ∈ U1 ∪ U2 with respect to ∼ and lift this notation to tuples and sets of tuples. Then
glue(S1, S2) def= (U, σ), where U def= {[u] | u ∈ U1 ∪ U2} and σ is defined as follows:

σ(R) def=
{

[σi(R)], if R ∈ Σi \ Σ3−i, for both i = 1, 2
[σ1(R) ∪ σ2(R)], if R ∈ Σ1 ∩ Σ2

Since we match isomorphic structures, the nature of the elements of U (i.e., equivalence
classes) is not important. The forget operation fgcstj : Str(Σ)→ Str(Σ \ {cj}) simply drops
the constant cj from the domain of its argument.

Structures of Bounded Treewidth. Let Σ = {R1, . . . ,RN , c1, . . . , cM} be a signature and
Π = {cM+1, . . . , cM+k+1} be a set of constants disjoint from Σ, called ports. We consider
variables Yi, for all subsets Πi ⊆ Π, denoting sets of structures over the signature Σ ∪ Πi.
The equation system Tw(k) is the set of recursive equations of the form Y0 ⊇ f(Y1, . . . , Yn),
where each f is either glue, fgcstM+j , for any j ∈ [1, k + 1], or a singleton relation of type Ri,
consisting of a tuple with at most k+ 1 distinct elements, for any i ∈ [1, N ]. It is known that
the set of structures of treewidth at most k is a component of the least solution of Tw(k), in
the domain of tuples of sets ordered by pointwise inclusion [25, Theorem 2.83].
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Models of MSO Formulæ. The quantifier rank qr(ϕ) of an MSO formula ϕ is the maximal
depth of nested quantifiers, i.e., qr(ϕ) def= 0 if ϕ is an atom, qr(¬ϕ1) def= qr(ϕ1), qr(ϕ1 ∧ ϕ2) def=
max(qr(ϕ1), qr(ϕ2)) and qr(∃x . ϕ1) = qr(∃X . ϕ1) def= qr(ϕ1) + 1. We denote by Fr

MSO the set
of MSO sentences of quantifier rank at most r. This set is finite, up to logical equivalence.
For a structure S = (U, σ), we define its r-type as typer(S) def= {ϕ ∈ Fr

MSO | S ⊩ ϕ}. We assume
the sentences in typer(S) to use the signature over which S is defined; this signature will be
clear from the context in the following.

▶ Definition 15. An operation f : Str(Σ1) × . . . × Str(Σn) → Str(Σn+1) is (effectively)
MSO-compatible2 iff, for all structures S1, . . . , Sn, typer(f(S1, . . . , Sn)) depends only on
(and can be effectively computed from) typer(S1), . . . , typer(Sn) by an abstract operation
f ♯ : (pow(Fr

MSO))n → pow(Fr
MSO).

The result of Courcelle establishes that glueing and forgetting of constants are effectively
MSO-compatible operations, with effectively computable abstract operations glue♯ and
fgcst♯

M+i, for i ∈ [1, k + 1], see [23, Lemmas 3.2 and 3.3]. As a consequence, one can
build from Tw(k) a set of recursive equations Tw♯(k) of the form Y τ0

0 = f(Y τ1
1 , . . . , Y τn

n ),
where Y0 = f(Y1, . . . , Yn) is an equation from Tw(k) and τ0, . . . , τn are r-types such that
τ0 = f ♯(τ1, . . . , τn). Intuitively, each annotated variable Y τ denotes the set of structures
whose r-type is τ , from the Y -component of the least solution of Tw(k). Given some
formula ϕ with qr(ϕ) = r, the set of models of ϕ of treewidth at most k is the union of the
Y τ -components of the least solution of Tw♯(k), such that ϕ ∈ τ [23, Theorem 3.6].

6.2 Encoding Types in SLR
We begin explaining the proof for [[MSO]]D,k ⊆ [[SLR]]. Instead of using the set of recursive
equations Tw(k) from the previous subsection, we give an SID ∆(k) that characterizes the
guarded structures of bounded treewidth (Fig. 1a). We use the separating conjunction to
simulate the glueing operation. The main problem is with the interpretation of the separating
conjunction, as composition of structures with possibly overlapping universes (Def. 2), that
cannot be glued directly. Our solution is to consider guarded structures (Def. 1), where the
unary relation symbol D is used to enforce disjointness of the arguments of the composition
operation, in all but finitely many elements. Intuitively, D “collects” the values assigned to
the existentially quantified variables created by rule (2) of ∆(k) and the top-level rule (4)
during the unraveling. This ensures that

(i) the variables of a predicate atom are mapped to pairwise distinct values and
(ii) the composition of two guarded structures is the same as glueing them.

Similar conditions have been used to define e.g., fragments of SL with nice computational
properties, such as the establishment condition used to ensure decidability of entailments
[36], or the tightness condition from [4, §5.2].

To alleviate the presentation, the SID ∆(k) defines only structures (U, σ) ∈ Str(Σ,D)
with at least k + 1 distinct elements in σ(D) (rule 4) and σ(R) ̸= ∅ for at least one relation
symbol R ∈ Σ (rule 3). The cases of structures such that ||σ(D)|| ≤ k or

⋃
R∈Σ σ(R) = ∅ can

be dealt with easily, by adding more rules to ∆(k). In the rest of this section we show that
∆(k) defines all structures of k-bounded treewidth (except for the mentioned corner cases).

The main property of ∆(k) is stated below:

▶ Lemma 16. For any guarded structure (U, σ) ∈ Str(Σ,D), such that ||σ(D)|| ≥ k + 1 and
σ(R) ̸= ∅, for at least some R ∈ Σ, we have tw(σ) ≤ k iff (U, σ) |=∆(k) Ak().

2 Also referred to as smooth operations in [51].
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A(x1, . . . , xk+1)← A(x1, . . . , xk+1) ∗ A(x1, . . . , xk+1) (1)

A(x1, . . . , xk+1)← ∃y . D(y) ∗ A(x1, . . . , xk+1)[xi/y] for all i ∈ [1, k + 1] (2)

A(x1, . . . , xk+1)← R(y1, . . . , y#R) for all R ∈ Σ and y1, . . . , y#R ∈ {x1, . . . , xk+1} (3)

Ak()← ∃x1 . . . ∃xk+1 . D(x1) ∗ . . . ∗D(xk+1) ∗ A(x1, . . . , xk+1) (4)

(a)

Aτ (x1, . . . , xk+1)← Aτ1(x1, . . . , xk+1) ∗ Aτ2(x1, . . . , xk+1) where τ = glue♯(τ1, τ2) (5)

Aτ (x1, . . . , xk+1)←∃y . D(y) ∗ Aτ1(x1, . . . , xk+1)[xi/y] for all i ∈ [1, k + 1],where (6)
τ = glue♯(fgcst♯

M+i(τ1), ρi) and ρi is the type of some structure
S ∈ Str({cM+i},D) with singleton universe and S ⊩ D(cM+i)

Aτ (x1, . . . , xk+1)← R(y1, . . . , y#R) for some y1, . . . , y#R ∈ {x1, . . . , xk+1}, where (7)
τ = typeqr(ϕ)(S), S ∈ Str(Σ ∪ {cM+1, . . . , cM+k+1},D) and
S ⊩ R(y1, . . . , y#R)[x1/cM+1, . . . , xk+1/cM+k+1] ∗ ∗ k+1

i=1 D(cM+i)

Ak,ϕ()←∃x1 . . . ∃xk+1 . D(x1) ∗ . . . ∗D(xk+1) ∗ Aτ (x1, . . . , xk+1) (8)
for all τ such that ϕ ∈ τ

(b)

Figure 1 The SID ∆(k) defining structures of treewidth at most k (a) and its annotation ∆(k, ϕ)
defining the models of an MSO sentence ϕ, of treewidth at most k (b).

We remark that the encoding of glue and fgcstj used in the definition of ∆(k) can be
used to show that any inductive set of structures, i.e., a set defined by finitely many recursive
equations written using glue and fgcstj , can be also defined in SLR. This means that SLR is
at least as expressive than the inductive sets, which are always of bounded treewidth.

The second step of our construction is the annotation of the rules in ∆(k) with qr(ϕ)-types,
in order to obtain an SID ∆(k, ϕ) (Fig. 1b) describing the models of an MSO sentence ϕ, of
treewidth at most k. We consider the set of ports Π = {cM+1, . . . , cM+k+1} disjoint from Σ.
The encoding of the store values of the variables x1, . . . , xk+1 in a given structure is defined
below:

▶ Definition 17. Let Σ = {R1, . . . ,RN , c1, . . . , cM} be a signature, Π = {cM+1, . . . , cM+k+1}
be a set of constants not in Σ, and let (U, σ) ∈ Str(Σ,D) be a structure. Let ν be a store
mapping x1, . . . , xk+1 to elements of U \ σ(D). Then, encode((U, σ), ν) ∈ Str(Σ ∪Π,D) is
a structure with universe U that agrees with (U, σ) over Σ, maps each cM+i to ν(xi), for
i ∈ [1, k + 1] and maps D to σ(D) ∪ {ν(x1), . . . , ν(xk+1)}.

The correctness of our construction relies on the fact that the composition acts like
glueing, for structures with universe U , whose sets of elements involved in the interpretation
of some relation symbol may only overlap at the interpretation of the ports from Π:

▶ Lemma 18. For an integer r ≥ 0, a store ν and locally disjoint compat-
ible structures (U1, σ1), (U2, σ2) ∈ Str(Σ ∪Π,D), such that Rel(σ1) ∩ Rel(σ2) ⊆
{σ1(cM+1), . . . , σ1(cM+k+1)} and (σ1(D) ∪ σ2(D)) ∩ {ν(xi) | i ∈ [1,m]} = ∅, we have:

typer(encode((U1, σ1) • (U2, σ2), ν)) = glue♯(typer(encode((U1, σ1), ν)), typer(encode((U2, σ2), ν)))
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Finally, the main property of ∆(k, ϕ) is stated and proved below:

▶ Proposition 19. For any k ≥ 1, MSO sentence ϕ, and guarded structure (U, σ) ∈ Str(Σ,D),
the following are equivalent:
(1) (U, σ) ⊩ ϕ and tw(σ) ≤ k, and
(2) (U, σ) |=∆(k,ϕ) Ak,ϕ().

The above result shows that SLR can define the guarded models (U, σ) ∈ Str(Σ,D) of a
given MSO formula whose treewidth is bounded by a given integer. We do not know, for the
moment, if this result holds on unguarded structures as well.

The above construction of the SID ∆(k, ϕ) is effectively computable, except for the
rule (7), where one needs to determine the type of a structure S = (U, σ) with infinite
universe. However, we prove in the following that determining this type can be reduced
to computing the type of a finite structure, which amounts to solving finitely many MSO
model checking problems on finite structures, each of which being PSPACE-complete [59].
Given an integer n ≥ 0 and a structure S = (U, σ) ∈ Str(Σ), we define the finite structure
Sn = (Supp(σ) ∪ {v1, . . . , vn}, σ), for pairwise distinct elements v1, . . . , vn ∈ U \ Supp(σ).
Then, for any quantifier rank r, the structures S and S2r have the same r-type:

▶ Lemma 20. Given r ≥ 0 and S = (U, σ) ∈ Str(Σ), we have typer(S) = typer(S2r ).
As a final remark, we notice that the idea used to prove [[MSO]]D,k ⊆ [[SLR]] can be

extended to show also [[CMSO]]D,k ⊆ [[SLR]], where CMSO denotes the extension of MSO
with cardinality constraints ||X||p,q stating that the cardinality of a set of vertices X equals p
modulo q, for some constants 0 ≤ p < q. This is because glueing and forgetting constants
are CMSO-compatible operations [22, Lemma 4.5, 4.6 and 4.7].

7 The Remaining Cases

We discuss the results from Table 1, that are not already covered by §4, §5 and §6.

[[SO]]D,k ̸⊆ [[MSO]]. Since [[SLR]] ⊆ [[SO]] and[[SLR]]D,k ̸⊆ [[MSO]], we obtain that [[SO]]D,k ̸⊆
[[MSO]]. Moreover, [[SO]] ̸⊆ [[MSO]] follows from the fact that our counterexample for
[[SLR]]D,k ̸⊆ [[MSO]] involves only structures of treewidth one.

[[SLR]]D,k ⊆ [[SO]]. By applying the translation of SLR to SO from §5 to ∆(k) (Fig. 1a)
and to a given SID ∆ defining a predicate A of zero arity, respectively, and taking the
conjunction of the results with the SO formula defining guarded structures3, we obtain an
SO formula that defines the set [[A()]]∆

D,k, thus proving that [[SLR]]D,k ⊆ [[SO]].

[[(M)SO]]D,k ⊆ [[(M)SO]]. For each given k ≥ 1, there exists an MSO formula θk that
defines the structures of treewidth at most k [25, Proposition 5.11]. This is a consequence
of the Graph Minor Theorem proved by Robertson and Seymour [55], combined with the
fact that bounded treewidth graphs are closed under taking minors and that the property of
having a given finite minor is MSO-definable4. Then, for any given (M)SO formula ϕ, the
(M)SO formula ϕ ∧ θk defines the models of ϕ of treewidth at most k.

3 ∧
R∈Σ ∀x1 . . . ∀x#R . R(x1, . . . , x#R)→

∧
i∈[1,#R] D(xi).

4 The proof of Robertson and Seymour does not build θk, see [3] for an effective proof.
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Open Problems. The following problems from Table 1 are currently open: [[SLR]]D,k ⊆ [[SLR]]
and [[SO]]D,k ⊆ [[SLR]], both conjectured to have a negative answer. In particular, the difficulty
concerning [[SLR]]D,k ⊆ [[SLR]] is that, in order to ensure treewidth boundedness, it seems
necessary to force the composition of structures to behave like glueing (see the definition of
∆(k) in Fig. 1a), which seems difficult without the additional relation symbol D.

Since [[MSO]]D,k ⊆ [[SLR]] but [[MSO]] ̸⊆ [[SLR]], we naturally ask for the existence of
a fragment of SLR that describes only MSO-definable families of structures of bounded
treewidth. In particular, [8, §6] defines a fragment of SLR that has bounded-treewidth
models and is MSO-definable. However, in general, since SLR can define context-free sets of
guarded graphs (the grammar in Figure 1a can be adapted to encode Hyperedge Replacement
(HR) grammars [24]), the MSO-definability of a SLR-definable set is undecidable, as a
consequence of the undecidability of the recognizability of context-free languages [39]. On
the other hand, the treewidth-boundedness of a SLR-definable set is an open problem, that
we conjecture decidable.

A possible direction for future work is also adding Boolean connectives to SLR. Here,
one might study an SLR variant that supports Boolean connectives in a top-level logic but
not within the inductive definitions, similar to the SL studied in [47, 53]. Adding Boolean
connectives within the inductive definitions appears more difficult, as one will need to impose
syntactic restitutions such as positive occurrences of predicate atoms in the right hand side
of definitions or stratification of negation in order to ensure well-definedness.

8 Conclusions

We have compared the expressiveness of SLR, MSO and SO, in general and for models of
bounded treewidth. Interestingly, we found that SLR and MSO are, in general, incomparable
and subsumed by SO, whereas the models of bounded treewidth of MSO can be defined
by SLR, modulo augmenting the signature with a unary relation symbol used to store the
elements that occur in the original structure.
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1 Introduction

Formalisms like Linear temporal logic (LTL) or automata are commonly used to specify and
verify trace properties of concurrent systems. Security requirements such as information-flow
policies require simultaneous reasoning about multiple execution traces; hence, they cannot be
expressed as trace properties. Hyperproperties address this limitation by specifying properties
of trace sets [11]. HyperLTL [10], an extension of LTL with trace quantifiers, has emerged
as a popular formalism for both the specification and verification of an important class of
hyperproperties. The temporal operators of HyperLTL and related hyperlogics progress
in lockstep over all traces that are bound to a trace variable; they specify synchronous
hyperproperties. As a consequence, HyperLTL cannot specify, for instance, an information-
flow policy that changes from one system mode to another if the mode transition can occur at
different times in different system executions [3]. This limitation has been observed repeatedly
and independently in recent years by [12, 8, 5] all of whom have proposed asynchronous
versions of hyperlogics to address the problem.
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We take a different route and propose a specification language for hyperproperties, called
hypernode automata, which combines synchronicity and asynchronicity by combining automata
and logic. Hypernode automata are finite automata with nodes labeled with formulas from a
fully asynchronous, non-temporal hyperlogic, called hypernode logic, and transitions labeled
with actions used to synchronize different execution traces. While automata-based languages
have been used before for specifying synchronous hyperproperties [7], hypernode automata are
the first language that systematically separates trace synchronicity from trace asynchronicity
in the specification of hyperproperties: within hypernodes (i.e., states of the hypernode
automata), different execution traces proceed at independent speeds, only to “wait for
each other” when they transition to the next hypernode. This separation leads to natural
specifications and plays to the strengths of both automata-based and logic-based formalisms.

Hypernodes’ specification adopts a maximally asynchronous view over finite trace seg-
ments: each program variable can progress independently. We introduce hypernode logic to
specify such asynchronous hyperproperties. Hypernode logic includes quantification over
finite traces and the binary relation x(π)≾ y(π′), for trace variables π and π′, and system
(or program) variables x and y. This relation asserts that the program variable x undergoes
the same ordered value changes in the trace assigned to π as the variable y does in π′, but
the changes may happen at different times (stuttering), and there may be additional changes
of y in π′ (prefixing). The stutter-reduced prefixing relation ≾ between finite traces is the
only nonlogical operator of hypernode logic, yielding a novel, elegant, and powerful method
to specify asynchronous hyperproperties over finite traces.

For each finite or infinite action sequence, a hypernode automaton specifies a corresponding
sequence of formulas from hypernode logic. This paper’s main contribution is a model-checking
algorithm for hypernode automata. Our algorithm checks if a given hypernode automaton
accepts the set of (possibly) infinite traces defined by an action-labeled Kripke structure.
The action labels on transitions of the Kripke structure (the “model”) induce equally labeled
transitions of the hypernode automaton (the “specification”). The subroutine that model-
checks formulas of hypernode logic is technically novel: it introduces automata-theoretic
constructions on a new concept called stutter-free automata, which are then used in familiar
logical contexts such as filtration and self-composition. While hypernode logic has existential
trace quantifiers and thus can specify nonsafety hyperproperties such as the independence of
variables [3], we focus in this paper on safe hypernode automata to specify hyperproperties
of infinite executions. To our knowledge, this is the first decidability result for a simple but
general formalism that can specify important asynchronous hyperproperties.

Perhaps the most famous asynchronous hyperproperty is observational determinism [17].
In Section 2, we motivate hypernode logic by providing a formal specification of observational
determinism as defined by [17]. We further motivate hypernode automata by specifying
declassification of information, which can be represented by a transition between hypernodes.
Section 3 defines hypernode logic and hypernode automata. In Section 4, we first solve the
model-checking problem for hypernode logic over Kripke structures using stutter-reduced
automata, and then the more general model-checking problem for hypernode automata over
action-labeled Kripke structures. In contrast to previously proposed specification formalisms
for asynchronous hyperproperties [12, 8, 5], which are undecidable in general and decidable
only for specific fragments, our model-checking algorithms are doubly exponential in the
number of variables in the Kripke structure. Finally, in Section 5, we argue that our formalism
is expressively incomparable to these other formalisms. For this reason, hypernode automaton
is a promising specification formalism for asynchronous hyperproperties and thus significantly
contributes to the automatic verification of security properties.
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φod({y, z}) φod({z})φod({y})
Debz Deby

Clear Clear
Clear

Deby

Debz

Deby

Debz

Figure 1 Hypernode automaton H specifying the mutually exclusive declassification of secure
information, where φod(L) def= ∀π∀π′ ∧

l∈L
(l(π)≾ l(π′) ∨ l(π′)≾ l(π)).

2 Motivating Example

The seminal work by Zdancewic and Myers [17] proposes the notion of observational determ-
inism to specify information-flow policies of concurrent programs. Observational determinism
is a noninterference property which requires publicly visible values to not depend on secret
information. Noninterference specification is particularly challenging for multi-threaded
programs because (i) the executions of a multi-threaded program depend on the scheduling
policy, and (ii) a change from one program state to another can happen at different times in
each execution of the program. According to [17], a program is observationally deterministic
if, when starting from any two low-equivalent states, then any two traces of each low variable
are equivalent up to stuttering and prefixing. This definition takes an asynchronous view of
execution traces, so HyperLTL is not adequate to specify it [3].

In this section, we use hypernode logic to specify Zdancewic-Myers observational de-
terminism, and use it to define a mutually exclusive declassification policy with a hypernode
automaton. The declassification policy involves not only the asynchronous requirement
of observational determinism, but also dynamic changes between different observational
determinism requirements. In particular, the policy requires that during normal operation,
two publicly visible variables y and z must not leak secret information. The policy also
admits two debugging modes, in which either y or z can leak information, but never both.
The “mode operation” is inspired by examples on declassification policies by the programming
languages community (c.f. [2, 15]).

The hypernode automaton specification H of the declassification policy is shown in
Figure 1. A hypernode automaton is interpreted over a set of action-labeled traces, which
are sequences of valuations for program variables and actions. The transitions between
automaton nodes are labeled with actions marking when the program changes its mode
of operation, say, from normal mode to one of the two debugging modes. In the example,
transitions from the normal mode to the two debugging modes are labeled with Deby and
Debz actions, respectively; transitions from either debugging mode to the normal mode are
labeled with Clear.

The automaton nodes are labelled with formulas of hypernode logic. In our example, all
three formulas specify Zdancewic-Myers observational determinism but for different program
variables. Observational determinism requires that for any two program executions (specified
by ∀π∀π′), their projections to each publicly visible program variable (l in a set L of public
variables) are equivalent up to stuttering and prefixing (specified by l(π)≾ l(π′)∨ l(π′)≾ l(π)).
The visible program variables change from mode to mode, so the different specification nodes
are labeled with different instances of the same formula. For example, the hypernode with
formula φod({y}) requires observational determinism only for y.

Algorithm 1 defines a reactive program Pvar (where var can be either y or z) which in
every iteration reads the input variable x and the action status. If, for example, the action
is Deby, then variable y is used for debugging and the program copies the content of x to y.
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Algorithm 1 Program Pvar.

1 do
2 var := 0;
3 read(x);
4 read(status);
5 if (status = Debvar) then
6 var := x;
7 end
8 output(var);
9 while true;

Table 1 Executions of Py || Pz.

τ1 x: 0 0 0
y: 0 0 0
z: 0 0 0

status: ε Deby Debz

τ2 x: 1 1 1 1
y: 0 0 1 1
z: 0 0 0 1

status: ε ε Deby Debz

The parallel composition Py || Pz does not satisfy the specification H. Consider, for
instance, the set T = {τ1, τ2} of traces shown in Table 1. We make two important observations
on τ1 and τ2: (1) these traces have different lengths, and (2) they exhibit the same sequence
of actions (Deby followed by Debz) happening at different times (hence the traces are
asynchronous). We note that the above sequence of actions partitions each trace into a
sequence of three trace segments, called slices, which we denote using the white, the light gray,
and the dark gray color in Table 1. We map each slice to a unique node in the hypernode
automaton. The white slice of T is mapped to the initial node of H. The light-gray slice of T
is mapped to the node accessible from the initial state with action Deby (i.e., the debugging
mode for y), which is labeled by the formula φod({z}). The dark-gray slice of T is mapped
to the same node, because the action Debz triggers the self-loop transition.

A sequence of actions defines a path in the hypernode automaton. Then, a set T of traces
with a sequence of actions p satisfies the hypernode automaton H iff the slicing of T induced
by p satisfies the hypernode formulas in the path defined by p in H. This is not the case
in our example because the dark-gray slice of T violates its associated hypernode formula
φod({z}). More specifically, the program variable z evaluates to 0 in the dark-gray segment
of the trace τ1, while it evaluates to 1 in the dark-gray segment of τ2. The specification
violation occurs because the critical section (lines 5 − 7 in Algorithm 1) is unprotected. It is
possible that the action Debz happens (line 4 in Pz) after Deby. Thereafter the input value
x is copied to z (line 6 in Pz), and both y and z are made observable (line 8 in both Py

and Pz). Hence they both leak information about x, which violates the specification. Our
model-checking algorithm allows us to fully automate the reasoning in this example.

3 Hypernode Automata

In this section, we define hypernode logic and hypernode automata. We represent program
executions as finite or infinite sequences of finite trace segments with synchronization actions.
Let X be a finite set of program variables over a finite domain Σ, A be a finite set of actions
and Aε = A ∪ {ε}.

Hypernode logic is interpreted over finite trace segments. A trace segment τ is a finite
sequence of valuations in ΣX , where each valuation v :X → Σ maps program variables to
domain values. We denote the set of trace segments over X and Σ by (ΣX)∗. A segment
property T is a set of trace segments, that is, T ⊆(ΣX)∗. A formula of hypernode logic
specifies a property of a set of trace segments, which is called a segment hyperproperty.
Formally, a segment hyperproperty T is a set of segment properties, that is, T ⊆ 2(ΣX )∗ .

Hypernode automata are interpreted over finite and infinite action-labeled traces. An
action-labeled trace ρ is a finite or infinite sequence of pairs, each consisting of a valuation and
either an action label from A, or the empty label ε; that is, ρ ∈ (ΣX×Aε)∗ or ρ ∈ (ΣX×Aε)ω.
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We require, for technical simplicity, that for infinite action-labeled traces, infinitely many
labels are non-empty. An action-labeled trace property is a set of action-labeled traces. A
hypernode automaton accepts action-labeled trace properties, and thus specifies an action-
labeled trace hyperproperty, namely, the set of all action-labeled trace properties it accepts.

3.1 Hypernode Logic
Hypernode logic, FO[≾], is a first-order formalism to specify relations between the changes
of the values of program variables over a set of trace segments. The formulas of hypernode
logic are defined by the grammar: φ ::= ∃π φ | ¬φ |φ∧φ |x(π)≾x(π), where the first-order
variable π ranges over the set V of trace variables and the unary function symbol x ranges
over the set X of program variables. Hypernode logic refers to time only through the
binary stutter-reduced prefixing predicate ≾. The intended meaning of the atomic formula
x(π)≾ y(π′) is that x undergoes the same ordered value changes in the trace segment assigned
to π as the variable y does in π′, followed by possibly additional value changes of y in π′.
In other words, hypernode logic adopts a fully asynchronous comparison of different trace
segments in which all variables are considered separately.

We therefore interpret hypernode formulas over unzipped trace segments, which encode
the evolution of each program variable independently. An unzipped trace segment τ :X → Σ∗

is a function from the program variables to finite strings of values. The formulas of hypernode
logic are interpreted over assignments of trace variables to unzipped trace segments. Given
a set T ⊆ (Σ∗)X of unzipped trace segments, an assignment ΠT : V → T maps each trace
variable to an unzipped trace segment in T . We denote by ΠT [π 7→ τ ] the update of ΠT ,
where π is assigned to τ . The satisfaction relation for a formula φ of hypernode logic over
an assignment ΠT is defined inductively as follows:

ΠT |= ∃πφ iff there exists τ ∈ T : ΠT [π 7→ τ ] |= φ;
ΠT |= ψ1 ∧ ψ2 iff ΠT |= ψ1 and ΠT |= ψ2; ΠT |= ¬ψ1 iff ΠT ̸|= ψ1;
ΠT |= x(π)≾ y(π′) iff ΠT (π)(x) ∈σ+

0 . . . σ+
n and ΠT (π′)(y) ∈σ+

0 . . . σ+
n Σ∗

with σi ̸= σi+1, for 0 ≤ i < n.

A set T of unzipped trace segments is a model of the formula φ, denoted by T |= φ, iff there
exists an assignment ΠT such that ΠT |= φ. We adopt the usual abbreviations ∀πφ def= ¬∃π¬φ
and φ∨φ′ def= ¬(¬φ ∧ ¬φ′). From now on, unless stated otherwise, program and trace variables
are indexed by a natural number, i.e., X = {x1, . . . , xm} and V = {π1, . . . , πn}.

▶ Example 1. We illustrate how to use hypernode logic by specifying four different variants
of non-interference between program variables. Zdancewic and Myers introduced in [17] the
first notion of observational determinism to capture non-interference for concurrent programs.
They require that in every program execution, every publicly visible variable in a set L must
be stutter-equivalent up to prefixing (i.e., one of the executions can have more value changes):
∀π∀π′ ∧

l∈L

(l(π)≾ l(π′) ∨ l(π′)≾ l(π)). Later, Huisman, Worah, and Sunesen [13] strengthened

the previous definition by requiring every publicly visible variable to be stutter-equivalent in
all executions: ∀π∀π′ ∧

l∈L

l(π)≾ l(π′). Our third variant of observational determinism is from

Terauchi[16], requiring the set of all publicly visible variables to be stutter-equivalent up to
prefixing: ∀π∀π′ (L(π)≾L(π′)∨L(π′)≾L(π)). Note that, we can encode the values of a finite
set of variables within a single variable called L because we interpreted hypernode formulas
over arbitrary finite domains. Finally, we specify independence (also known as generalized
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non-interference [11]) as defined in [3]. Two program variables x and y are independent iff
whenever a sequence of value changes for x is possible in some trace π, and a sequence of
value changes for y is possible in some trace π′, then also their combination (x(π), y(π′)) is
possible in some trace. The formula for independence specifies that for every two traces (π
and π′) there exists a third trace (π∃) that witnesses the combination (x(π), y(π′)) up to
stuttering and prefixing: ∀π∀π′∃π∃ (x(π)≾x(π∃) ∧ y(π′)≾ y(π∃)). ◁

Stutter-reduced trace segments
We are interested in unzipped trace segments that are stutter-free, i.e., that do not repeat
the same variable value in consecutive time points. For a program variable x and unzipped
trace segment τ with τ(x) ∈σ+

0 . . . σ+
n where σi ̸= σi+1 for i < n, the stutter-reduction

is ⌊τ(x)⌋ = σ0 . . . σn. We extend this notion naturally to the stutter-reduction of τ by
⌊τ⌋(x) = ⌊τ(x)⌋ for all program variables x ∈ X, and to the stutter reduction of a set T of
unzipped trace segments by ⌊T ⌋ = {⌊τ⌋ | τ ∈ T}. We prove that formulas of hypernode logic
cannot distinguish between a set of unzipped trace segments T and its stutter-reduction ⌊T ⌋.

▶ Proposition 2. Let T ⊆ (Σ∗)X be a set of unzipped trace segments and φ a formula of
hypernode logic. Then, T |= φ iff ⌊T ⌋ |= φ.

3.2 Hypernode Automata
Hypernode automata are finite automata with states (called hypernodes) labeled with formulas
of hypernode logic and transitions labeled with actions. A hypernode automaton reads a set
R⊆(ΣX ×Aε)ω of action-labeled traces, and accepts some of these sets.

▶ Definition 3. A deterministic, finite hypernode automaton (HNA) is a tuple H =(Q, q̂, γ, δ),
where Q is a finite set of states with q̂ ∈ Q being the initial state, the state labeling function
γ assigns a closed formula of hypernode logic over the program variables X to each state in
Q, and the transition function δ : Q×A → Q is a total function assigning to each state and
action a unique successor state.

We assume the totality and determinism of the transition function only for the sim-
plicity of the technical presentation. A run of the HNA H is a finite or infinite sequence
r= q0a0 q1a1 q2a2 . . . of alternating hypernodes and actions which starts in the initial hyper-
node q0 = q̂ and follows the transition function, i.e., δ(qi, ai) = qi+1 for all i ≥ 0. We refer to
the corresponding sequence p= a0a1a2 . . . of actions as the action sequence of r. Note that
each action sequence defines a unique run of H.

The action sequence of an action-labeled trace ρ=(v0, a0)(v1, a1)(v2, a2) . . ., where vi ∈ ΣX

and ai ∈Aε for all i ≥ 0, is the projection of the trace to its actions, with all empty labels ε
removed; that is, ρ[A] = a′

0a
′
1 . . . with a0a1 . . .∈ a′

0ε
∗a′

1ε
∗ . . . and a′

i ∈ A for all i ≥ 0. Given
a set R of action-labeled traces, the projection of R with respect to a finite action sequence
p∈A∗ is R[p]={ρ∈R | ρ[A] = p p′ for some suffix p′ ∈A∗ ∪Aω}.

Each step in the run of a hypernode automaton defines a new slice on a set of action-labeled
traces. Let p = a0a1 . . . an be a finite action sequence, and ρ = (v0, a

′
0)(v1, a

′
1) . . . be an action-

labeled trace that has prefix p, and let R be a set of such traces. We write ρ(∅, a0) for the
initial trace segment of ρ which ends with the action label a0. Formally, ρ(∅, a0) = v0 . . . vk

such that a′
k = a0, and a′

i = ε for all 0 ≤ i < k. Furthermore, we write ρ(a0a1 . . . ai, ai+1)
for the subsequent trace segments of ρ which end with the action label ai+1 after having
seen the action sequence a0a1 . . . ai. Inductively, if ρ(a0a1 . . . ai−1, ai) = vk . . . vl, a′

m = ai+1
for m > l, and a′

j = ε for all l<j<m, then ρ(a0a1 . . . ai, ai+1) = vl+1 . . . vm. The slicing is
extended to sets of action-labeled traces accordingly; for example, R(∅, a) ={ρ(∅, a) | ρ ∈ R}.
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Since the formulas of hypernode logic are interpreted over unzipped trace segments, in a
final step, we need to unzip each slice. The unzipping of a trace segment τ = v0 . . . vn over the
set of variables X = {x1, . . . , xm} is unzip(τ) ={x0 : v0(x0)..vn(x0), . . . , xm : v0(xm)..vn(xm)}.
We define the unzipping of trace segments sets naturally as Unzip(T ) ={unzip(τ) | τ ∈T}.

▶ Definition 4. Let H =(Q, q̂, γ, δ) be an HNA, and R a set of action-labeled traces. Let p be a
finite action sequence in A∗. The set R is accepted by H with respect to the pattern p, denoted
R |=p H, iff for the run H[p] = q0a0 q1a1 . . . qnan, all slices of R induced by p are models of
the formulas that label the respective hypernodes; that is, Unzip(R[p](∅, a0)) |= γ(q0), and
Unzip(R[p](a0 . . . ai−1, ai)) |= γ(qi) for all 0 < i ≤ n.

A set R of action-labeled traces is accepted by the HNA H iff for all finite action sequences
p∈A∗, if R[p] ̸= ∅, then R |=p H. The language accepted by H is the set of all sets of
action-labeled traces that are accepted by H, denoted L(H). Note that this definition assumes
that all finite and infinite runs of HNA are feasible; such automata are often called safety
automata. Refinements are possible where finite runs must end in accepting states or, for
example, infinite runs must visit accepting states infinitely often.

4 Model Checking

We present an algorithm for the model-checking problem for hypernode automata over Kripke
structures whose transitions are labeled with actions.

4.1 Action-labeled Kripke Structures

A Kripke structure is a tuple K =(W,ΣX ,∆, V ) consisting of a finite set W of worlds, a
set X of variables over a finite domain Σ, a transition relation ∆⊆W×W , and a value
assignment V :W ×X→Σ that assigns a value from the finite domain Σ to each variable
in each world. Given a Kripke structure with a transition relation ∆, and given a set A of
actions, an action labeling for K over A is a function A : ∆ → 2Aε that assigns a set of action
labels (including possibly the empty label ε) to each transition. A pointed Kripke structure
is a Kripke structure with one of its worlds being an initial world, denoted (K,w0) with
w0 ∈W .

A path in the Kripke structure K with action labeling A is a finite or infinite sequence
w0a0 w1a1 w2a2 . . . of alternating worlds and actions which respects both the transition
relation, (wi, wi+1) ∈ ∆, and the action labeling, ai ∈A(wi, wi+1), for all i ≥ 0. We write
Paths(K,A) for the set of all such paths. The path ϱ=w0a0 w1a1 . . . defines the action-
labeled trace zip(ϱ) =V (w0)a0 V (w1)a1 . . .. We write Zip(K,A) for the set of action-labeled
traces defined by paths in Paths(K,A). By Paths(K,A, w0) we denote the set of all paths
in Paths(K,A) that start at the world w0. As before, Zip(K,A, w0) refers to the set of all
action-labeled traces that are defined by paths in Paths(K,A, w0).

We are now ready to formally define the central verification question solved in this paper,
namely, the model-checking problem for specifications given as hypernode automata over
models given as pointed Kripke structures with action labelling. The conversion of concurrent
programs, such as those from Section II, into a pointed Kripke structure with action labeling
is straightforward; its formalization is omitted here for space reasons.
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Model-checking problem for hypernode automata

Let (K,w0) be a pointed Kripke structure with set of variables X over a finite domain
Σ, and let A be an action labeling for K over a set A of actions. Let H be a
hypernode automaton over the same set X of variables, domain Σ and set A of actions.
Is the set of action-labeled traces generated by (K,A, w0) accepted by H; that is,
Zip(K,A, w0) ∈ L(H)?

4.2 Model Checking Hypernodes
We begin by formulating and solving the model-checking problem for hypernode logic (rather
than automata) over Kripke structures. This algorithm constitutes the key subroutine for
model-checking hypernode automata. To interpret formulas of hypernode logic over a Kripke
structure, we equip the Kripke structure with two set of worlds: the entry worlds, where trace
segments begin, and the exit worlds, where trace segments end. Formally, an open Kripke
structure consists of a Kripke structure K =(W,ΣX ,∆, V ), and a pair W = (Win,Wout)
consisting of a set Win ⊆ W of entry worlds, and a set Wout ⊆ W of exit worlds.

A path of the open Kripke structure (K,W) is path w0 . . . wn in K that starts in a entry
world, w0 ∈Win and ends in an exit world, wn ∈Wout. The set of unzipped trace segments
generated by the open Kripke structure (K,W) is Unzip(K)(x) ={V (w0, x) . . . V (wn, x) |
w0. . .wn ∈ Paths(K,W)} for all variables x ∈ X.

Model-checking problem for hypernode logic

Let (K,W) be an open Kripke structure, and φ a formula of hypernode logic over the
same set of variables X and finite domain Σ. Is the set of unzipped trace segments
generated by (K,W) a model for φ; that is, Unzip(K,W) |= φ?

Stutter-free automata
From Proposition 2, it follows that it suffices to consider the stutter reduction of Unzip(K,W)
to solve the model-checking problem for hypernode logic. We introduce stutter-free automata
as a formalism for specifying sets of stutter-free unzipped trace segments. We use stutter-free
automata boolean operators to define a filtration that, when applied to a hypernode formula
φ and a stutter-free automaton over the variables in φ, returns an automaton with non-empty
language iff the language of the input automaton is a model of φ. Finally, we construct, from
a given open Kripke structure (K,W), a stutter-free automaton that accepts an unzipped
trace segment if the segment is the stutter reduction of a trace segment generated by (K,W).
We include a graphical overview of the algorithm in the extended version in [4].

Stutter-free automata are a restricted form of nondeterministic finite automata (NFA) that
read unzipped trace segments and guarantees that, for each state, there are no repeated vari-
able assignments on their incoming and outgoing transitions. We denote by ΣX all assignments
of variables in X to values in Σ or the termination symbol #. Formally, for X ={x0, . . . , xm},
let ΣX ={x0 :σ0, . . . , xm :σm | ∀0 ≤ i ≤ m σi ∈ Σ ∪ {#}} \ {x0 : #, . . . , xm : #}.

▶ Definition 5. Let X be a finite set of variables over Σ. A nondeterministic stutter-free
automaton (NSFA) is a tuple A =(Q, Q̂, F, δ) with a finite set Q of states, a set Q̂ ⊆ Q

of initial states, a set F ⊆ Q of final states, and a transition relation δ : Q× ΣX → 2Q

that satisfies the following for all states q ∈ Q and variables x ∈ X: (i) stutter-freedom
requiring In(q, x) ∩ Out(q, x) ⊆ {#}, and (ii) termination requiring that if # ∈ In(q, x),
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then Out(q, x) = {#}, where In(q, x) is the set of all x-valuations incoming to state q and
Out(q, x) is the set of all x-valuations outgoing from state q; formally, In(q, x) ={v(x) | q ∈
δ(q′, v) for some q′ ∈ Q} and Out(q, x) ={v(x) | δ(q, v) ̸=∅}.

A run of the stutter-free automaton A is a finite sequence q0v0q1v1 . . . vn−1qn of alternating
states and variable assignments which starts with an initial state, q0 ∈ Q̂, and satisfies the
transition function, qi+1 ∈ δ(qi, vi) for all i < n. The run is accepting if it ends in a final
state, qn ∈ F . An unzipped trace segment τ over a set of variables X with domain Σ is
accepted by the stutter-free automaton A iff there exists an accepting run q0v0 . . . vn−1qn

such that τ(x) = v0(x) . . . vn−1(x), for all x ∈ X. The language of A, denoted L(A), is the set
of all accepted unzipped trace segments accepted by A. We sometimes refer to the language
of a stutter-free automaton without the termination symbol: L(A)|# ={τ |# : X → Σ∗ | τ ∈
L(A)}, where τ |# removes all occurrences of # in a trace segment τ . Note that since A
is stutter-free, L(A)|# = ⌊L(A)|#⌋, where ⌊·⌋ is the stutter reduction of unzipped trace
segments.

The union, intersection, and determinization for NSFA are defined as usual for NFA;
we omit the formal definitions for reasons of space. The complementation of a stutter-free
automaton follows the same approach as for NFA: we first determinize the automaton, then
complete it, and lastly swap the final and nonfinal states. The only operation that requires
special attention for NSFA is completion, as we need to be careful to statisfy the condition of
stutter-freedom.

A stutter-free automaton A =(Q, Q̂, F, δ) over ΣX is complete iff In(q) ∪ Out(q) is
a maximal subset of ΣX according to the conditions in Definition 5, where In(q) =
{v(x) | x∈X and v(x) ∈ In(q, x)} and Out(q) = {v(x) |x∈X and v(x) ∈ Out(q, x)}. The
universal stutter-free automaton UΣX over ΣX , defined next, is a deterministic and complete
automaton with language L(UΣX )|# = ⌊(Σ∗)X⌋, i.e., it contains all stutter-free unzipped
traces over ΣX . We use the universal stutter-free automaton as a “sink” area when completing
other automata.

▶ Definition 6. Let X = {x0, . . . , xm} be a set of variables over the finite domain Σ. The
universal stutter-free automaton over ΣX is UΣX =(QU , QU , QU , δU ), where QU = ΣX and

δU ({xi :σi}i∈[0,m],

{xi :σ′
i}i∈[0,m]) =

{
{xi :σ′

i}i∈[0,m] if ∀0 ≤ i ≤ m, if σi = # then σ′
i = # else σi ̸= σ′

i;
∅ otherwise.

We use the states and transitions of the universal automaton to complete other stutter-free
automata. The details are in the extended version in [4]. The complement of a deterministic
and complete stutter-free automaton A =(Q, Q̂, F, δ) over ΣX is A =(Q, Q̂,Q \ F, δ), with
the final and nonfinal states interchanged.

▶ Proposition 7. Let A be a deterministic and complete stutter-free automaton over ΣX .
Then, A is a stutter-free automaton and L(A) =⌊(Σ∗)X⌋ \ L(A).

From formulas of hypernode logic to stutter-free automata
Having prepared the ground by defining stutter-free automata, which are closed under union,
intersection, and complement, we now turn to the model-checking problem for hypernode
logic. Given a stutter-free automaton and a hypernode formula, we define an inductive
filtration (i.e., in each step we get produce a sub-automaton) over the hypernode formula
structure to apply to the automaton we want to model-check. The input automaton is a
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model of the input formula if the language of the automaton returned by the filtration is
non-empty. The inductive filtration for boolean operators translates naturally to automata
operators. For atomic hypernode formulas (i.e., the predicate ≾), we define a stutter-free
automaton that captures the meaning of ≾.

▶ Definition 8. Let UX =(QU , QU , QU , δU ) be the universal stutter-free automaton over ΣX ,
and let x, y ∈ X. The stutter-free automaton for the atomic formula x≾ y of hypernode logic
is the stutter-free automaton Ax ≾ y =(Q,Q,Q, δ) over the same variables and domain, where
Q={v ∈QU | v(x) = v(y) or v(x) = #}, and δ(q, v) = δU (q, v) for all q ∈ Q and v ∈ ΣX .

To cope with trace variables in hypernode formulas, we extend the set of variables X with
a reference to trace variables in V , by XV ={xπ |x ∈ X and π ∈ V}. From an unzipped trace
segment τ over the set of variables XV we derive the trace assignment Πτ (π, x) = τ(xπ) for
all x ∈ X and π ∈ V. We prove now that all words accepted by the stutter-free automaton
for x(π)≾ y(π′) define assignments that satisfy that hypernode atomic formula.

▶ Lemma 9. An unzipped trace segment τ over (ΣXV )∗ is accepted by Axπ ≾ yπ′ over the
same variables and domain, τ ∈ L(Axπ ≾ yπ′ )|#, iff Πτ |= x(π)≾ y(π′).

The inductive filtration defined next is the main element of the model-checking algorithm
for formulas of hypernode logic.

▶ Definition 10. Let A be a stutter-free automaton, and φ a formula of hypernode logic. We
define the positive and negative filtration of A by φ, denoted φ+[A] and φ−[A],respectively,
inductively over the structure of φ as follows:

(x(π)≾ y(π′))+[A] = A ∩ Axπ ≾ yπ′ (x(π)≾ y(π′))−[A] = A ∩ Axπ ≾ yπ′

(φ1 ∧ φ2)+[A] =φ+
1 [A] ∩ φ+

2 [A] (φ1 ∧ φ2)−[A] =φ−
1 [A] ∪ φ−

2 [A]
(¬φ)+[A] =φ−[A] (¬φ)−[A] =φ+[A]

(∃πφ)+[A] =φ+[A] (∃πφ)−[A] = A \ φ+[A].

We reduce the problem of model checking a stutter-free automaton A over a formula
φ with n trace variables to filtering the n-self-composition of A by φ. The stutter-free
automaton An is the result of composing n copies of A under a standard synchronous
product construction, where for each copy Ai, with i ≤ n, all program variables x ∈ X are
renamed to xπi

. Note that, the assignment derived by an unzipped trace segment τ accepted
by An defines a trace assignment from {π1, . . . , πn} to traces accepted by A.

▶ Theorem 11. Let A be a stutter-free automaton, and φ a formula of hypernode logic with
n trace variables. Then, L(φ+[An]) ̸= ∅ iff L(A) |= φ, and L(φ−[An]) ̸= ∅ iff L(A) ̸|= φ.

Model checking hypernode logic over Kripke structures
We are only missing to translate an open Kripke structure (K,W) to a stutter-free automaton
AK,W defining the same unzipped trace segments; i.e., L(AK,W)|# = ⌊Unzip(K,W)⌋. We
present the details in the appendix, but, in a nutshell, we represent the progression of each
variable valuation along the Kripke structure independently (to allow skipping stuttering
states) in the derived stutter-free automaton. Having this translation, we can apply the
filtration from Definition 10 to the stutter-free automaton derived by an open Kripke structure
to solve the model-checking problem for hypernode logic.
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▶ Theorem 12. Let (K,W) be an open Kripke structure, and φ a formula of hypernode
logic over the same set of variables. Let n be the number of trace variables in φ. Then,
Unzip(K,W) |= φ iff L(φ+[An

K,W]) ̸= ∅.

The proof follows from Proposition 7, Theorem 11, and L(A)|# = ⌊L(A)|#⌋. This gives
us our main result.

▶ Theorem 13. Model checking of hypernode logic over open Kripke structures is decidable.

Using our algorithm, the running time of model checking a formula of hypernode logic
over an open Kripke structure depends doubly exponentially on the number of variables,
singly exponentially on the number of worlds of the Kripke structure, and singly exponentially
on the length of the formula.

▶ Corollary 14. The time complexity of model checking a formula φ of hypernode logic with
n trace variables and m variables, over an open Kripke structure with k worlds, is O(2n·km).

Proof. The encoding of the open Kripke Structure by a stutter-free automaton has O(km)
states. The determinized stutter-free automaton has O(2km) states. After completing the
deterministic stutter-free automaton there are 2m states. We observe that the size of the
domain Σ only affects the step of completing a stutter-free automaton, which adds |Σ||X|

states. This addition is dominated by the more expensive step of determinizing the automaton.
Finally, the n-self-composition of the resulting automaton has O(2n·km) states. ◀

4.3 Model Checking Hypernode Automata
We defined the run of a hypernode automaton for a given action sequence p, with each
run inducing a slicing of a set of action-labeled traces consistent with p. To model-check
a hypernode automaton H against a pointed Kripke structure (K,A, w0) with an action
labeling, we build a finite automaton, called Slice(K,A, w0), which encodes all slicings of
action-labeled traces generated by (K,A, w0). We then reduce the model-checking problem
to checking whether the language defined by the composition of Slice(K,A, w0) with the
specification automaton H, called Join(H,K,A, w0), is non-empty. We include an overview
of this process in the extended version in [4].

We start by defining the slicing of a given Kripke structure K =(W,ΣX ,∆, V ) for a given
action labeling A. The building blocks of the slicing are Kripke substructures. A Kripke
structure K ′ =(W ′,ΣX ,∆′, V ′) is a substructure of K, denoted K ′ ≤K, iff W ′ ⊆W , and for
all worlds w∈W ′ we have ∆′(w) ⊆ ∆(w) and V ′(w) =V (w). The substructure induced by a
transition relation ∆′ ⊆ ∆ is K[∆′] =(W ′, X,∆′, V (W ′)), where W ′ = {w,w′ | (w,w′) ∈ ∆′}.
The transition relation defined by all transitions in a path of the action-labeled Kripke
structure (K,A) from an entry world in Win ⊆W to the first step labeled with a∈A is:

(K,A,Win) ↓ a={(wj , wj+1) |w0ε . . . wn−1εwna∈ Paths(K,A), w0 ∈Win for all j < n}.

The open substructure induced by (K,A,Win) ↓ a, written W[(K,A,Win) ↓ a], is the open
Kripke structure where the Kripke structure is K[(K,A,Win) ↓ a], the set Win are the entry
worlds, and the set {w |w∈W and A(w, a) ̸= ∅} are the exit worlds, containing all possible
exit points for action a.

We define the finite automaton Slice(K,A, w0) and prove, in Lemma 16 below, that every
finite action sequence p defines a unique path in this automaton, and the slices of this path
contain the same trace segments that are obtained when the action sequence p is applied
directly to the original pointed, action-labeled Kripke structure. The states of the automaton
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Slice(K,A, w0) are all open substructures induced by paths from any choice of entry worlds
to an action a ∈ A. Note that there are only finitely many such states. The transition
relation of Slice(K,A, w0) connects, for all actions a, open substructures with exit a and
open substructures with matching entry worlds.

▶ Definition 15. Let (K,w0) be a pointed Kripke structure with worlds W , and let A
be an action labeling for K with actions A. The slicing Slice(K,A, w0) =(Q, Q̂, δ) is a
finite automaton with states Q = {W[(K,A,Win) ↓ a] | a ∈ A and Win ⊆ W}; initial
states Q̂ = {W ∈ Q | entry(W) = {w0}}; transition function δ :Q × A → Q, where
δ(W, a) =W′ iff W exits with action a, that is, for all w∈ exit(W) there exists w′ ∈W′

such that a∈A(w,w′), and the entry worlds of W′ define a maximal subset of the worlds
accessible with action a from the exit worlds in W, that is, for all W′′ ∈ Q that are not W′,
if entry(W′′) ⊆{w | a∈A(w′, w) for some w′ ∈ exit(W)}, then entry(W′) ̸⊆ entry(W′′). Here,
entry(W) and exit(W) refer to the sets of entry and exit worlds of the open Kripke structure
W, respectively.

We remark that the transition function δ :Q×A → Q is well-defined, because there is
a unique maximal subset for the next entry worlds, given an action a. For every two open
Kripke substructures, W1 and W2, their union defines W[(K,A, entry(W1) ∪ entry(W2)) ↓ a],
which is again a state of the slicing.

▶ Lemma 16. Let (K,w0) be a pointed Kripke structure, and A an action labeling for K
with actions A. For every finite action sequence p = a0 . . . an in A∗, if Zip(K,A, w0)[p] ̸= ∅,
then p defines a unique run W0a0 · · ·Wnan of Slice(K,A, w0) such that for all 0 ≤ i ≤ n,
Paths(Wi) = Paths(K,A, w0)(a0 . . . ai−1, ai).

In a final step, we define a synchronous composition of the slicing automaton defined
above and the given hypernode automaton H. The states of this composition are pairs
consisting of open Kripke substructures (stemming from the given pointed, action-labeled
Kripke structure) and formulas of hypernode logic (stemming from the hypernode labels of
H). We mark as final states all pairs where the open Kripke substructure is not a model of
the hypernode formula.

▶ Definition 17. Let H = (Qh, q̂, γ, δh) be a hypernode automaton. The intersection of H
with the slicing of a pointed, action-labeled Kripke structure (K,A, w0), Slice(K,A, w0)=
(Qs, Q̂s, δs), is the finite automaton Join(H,K,A, w0) = (Q, Q̂, F,A, δ) with set of states
Q = {(W, q) |W∈Qs, q ∈Qh and W |= γ(q)} ∪ {(W, q) |W∈Qs, q ∈Qh and W ̸|= γ(q)};
initial states Q̂ = {(W, q̂) ∈ Q | W ∈ Q̂s} ∪ {(W, q̂) ∈ Q | W ∈ Q̂s}; final state F =
{(W, q) | (W, q) ∈ Q}; transition function δ : Q×A → Q, where for all (W, q) ∈ Q, we have
δ((W, q), a) = {(W′, q′) ∈ Q | δh(q) = (q′, a) and W′ ∈ δs(W, a)}.

The finite automaton Join(H,K,A, w0) reads sequences of actions. The notion of run
is defined as usual, and a run is accepting if it ends in a final state. The language of the
automaton is empty iff it has no accepting run.

▶ Theorem 18. Let (K,w0) be a pointed Kripke structure with action labeling A. Let H
be a hypernode automaton over the same set of propositions and actions as (K,A). Then,
Zip(K,A, w0) ∈ L(H) iff the language of the finite automaton Join(H,K,A, w0) is empty.

The following theorem puts all results from this section together.

▶ Theorem 19. Model checking of hypernode automata over pointed Kripke structures with
action labelings is decidable.
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Proof. We have seen that the model checking of hypernode logic over open Kripke structures
is decidable (Theorem 13). Evaluating Join(H,K,A, w0) is also decidable. The main challenge
is the slicing of A(K,w0). Note that there is a finite number of states that can be in A(K,w0),
as they are all substructures of the Kripke structure K. ◀

The hardest part of model checking a hypernode automaton over an action-labeled Kripke
structure is checking the formulas of all hypernodes. Therefore, also the running time for
model checking hypernode automata is dominated, as with hypernode logic, by a doubly
exponential dependency on the number of program variables. Furthermore, our model-
checking algorithm depends singly exponentially on both the size of the Kripke structure
and the size of the hypernode automaton.

▶ Corollary 20. Let A be a set of actions and X a set of m program variables. Let (K,w0) be a
pointed Kripke structure over X, and A an action labeling for K over A. Let H be a hypernode
automaton over X and A. The time complexity of checking whether Zip(K,A, w0) ∈ L(H)
is O(|H| · 2|A|+n·|K|m), where n is the largest number of trace quantifiers that occurs in any
hypernode formula in H.

5 Related Work

The first logic studied to express asynchronous hyperproperties was an extension of µ-calculus
with explicit quantification over traces, called Hµ [12]. The trace-quantifier free formulas
of Hµ are expressively equivalent to the parity multi-tape Alternating Asynchronous Word
Automata (AAWA) introduced in [12]. Both formalisms have highly undecidable model-
checking problems. The undecidability stems from comparing positions in different traces
that are arbitrarily far apart, over an unbounded number of traces. When one of the two
dimensions (the distance between positions, or the number of traces) is given an explicit
finite bound, model checking becomes decidable [12]. In comparison, we achieve decidability
by an entirely different means: we decouple the progress of different program variables
(asynchronicity), while allowing resynchronization through automaton-level transitions.

In Hµ formulas, trace quantifiers always precede time operators, while hypernode automata
allow a restricted form of quantifier alternation between time operators and trace quantifiers.
In particular, the automaton-level transitions correspond to outermost time operators,
which precede the trace quantifiers of hypernode logic formulas, whose stutter-reduced
prefixing relations correspond to innermost time quantifiers. We conjecture that Hµ and
hypernode automata have incomparable expressive powers. Consider, for example, the
hypernode automaton shown in Figure 2, which specifies that the asynchronous progress of a
propositional variable p is fully described by a finite trace π within each slice induced by a
repeated action a. Each new slice can have a different trace π witnessing the asynchronous
progress of p. The length of the traces in each slice is unbounded, and as we do not know
how many times a repeats, the number of slices is also unbounded. Hence we do not know
how many outermost existential trace quantifiers would be needed in order to guarantee a
different trace witness for each slice. Therefore we conjecture that the hyperproperty that is
specified by the hypernode automaton of Figure 2 cannot be expressed in Hµ.

Also various extensions of HyperLTL were explored recently in order to support asyn-
chronous hyperproperties. Stuttering HyperLTL (HyperLTLS) and context HyperLTL
(HyperLTLC), both introduced in [8], extend HyperLTL with new operators. Asynchronous
HyperLTL (A-HyperLTL) [5] extends HyperLTL with quantification over trajectories. A tra-
jectory specifies the traces that progress in each evaluation step. While the model-checking
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∃π∀π′ p(π′)≾ p(π) a

Figure 2 Hypernode automaton specifying that within each slice of a trace set induced by the
repeated action a, there exists a trace that describes the asynchronous progress of the propositional
variable p within the current slice.

problems for all of these extensions of HyperLTL are undecidable, the authors identify
syntactic fragments that support certain asynchronous hyperproperties. These decidable frag-
ments adopt restrictions akin to the decidable parts of Hµ. All of HyperLTLS , HyperLTLC ,
and A-HyperLTL are subsumed by Hµ [9]. As we argued that the hypernode automaton
from Figure 2 cannot be expressed in Hµ, it would neither be expressible in any of the three
proposed asynchronous extensions of HyperLTL.

Krebs et al. [14] propose to reinterpret LTL under a so-called team semantics. Team
semantics works with sets of variable assignments, and the authors introduce both synchronous
and asynchronous varieties. They prove that under asynchronous team semantics, LTL is as
expressive as universal HyperLTL (where all trace quantifiers are universal quantifiers). As
hypernode logic allows existential quantification over traces, again, our approach is orthogonal
and expressively incomparable.

In [6] the authors introduce HyperATL*, which extends alternating-time temporal logic [1]
with strategy quantifiers that bind strategies to trace variables, and an explicit construct
to resolve games in parallel. HyperATL* enables the specification of strategic hyperprop-
erties. This work is orthogonal to ours as we are interested in linear-time asynchronous
hyperproperties, rather than strategic hyperproperties.

Although many logic-based specification languages have been proposed to express asyn-
chronous hyperproperties, there is a lack of automaton-based approaches to specify such
properties. Note that AAWA [12] do not support explicit quantification over trace vari-
ables. The finite-word hyperautomata of [7] constitute a step in this direction by prefixing
finite automata with explicit quantification over traces, but they are limited to synchronous
hyperproperties.

6 Conclusion

We presented a new formalism for specifying hyperproperties of concurrent systems. Our
formalism mixes synchronization between different execution traces, expressed as action-
labeled transitions of a specification automaton, with asynchronous comparisons between
corresponding segments of different traces, expressed as hypernode logic formulas that label
the states of the specification automaton. In this way, the specification language of hypernode
automata can alternate asynchronous requirements on trace segments of possibly different
lengths with synchronization points. Unlike previous formalisms for specifying asynchronous
hyperproperties, hypernode automata fully support automatic verification. Our model-
checking algorithm for hypernode automata is based on an entirely novel technique that
introduces stutter-free automata and operations on these automata, thus providing a nice
example for the power of automata-theoretic methods in verification.

Besides having a decidable verification problem, hypernode automata represent a genuinely
new and useful specification language. We demonstrated this by specifying several published
variations of observational determinism using hypernode logic, by specifying information
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declassification using hypernode automata, and by presenting a formula to support our
conjecture that the formalism of hypernode automata is expressively incomparable to various
hyperlogics that have been proposed recently for specifying asynchronous hyperproperties.

The boundary between asynchronicity and synchronicity of trace comparisons can be
fine-tuned by introducing variables with compound types, such as boolean arrays, which can
be used, for example, to couple the variables of each thread of a multi-threaded program. The
ramifications of such alphabet variations on hypernode logic and hypernode automata are to
be explored in future work. There is no shortage of additional topics that follow immediately
from the present work but, even if straightforward, require further investigations, including
the study of hypernode automata with partial and nondeterministic transition relations,
and of hypernode automata with infinitary acceptance conditions (such as hypernode Büchi
automata), as well as the extension of formal expressiveness studies for hyperproperty
specifications in order to include hypernode logic and automata, and the presentation
of algorithms for solving classical decision problems for hypernode logic and automata
other than model checking (such as satisfiability and emptiness). Also the applicability of
stutter-free automata in other asynchronous verification contexts (not necessarily concerning
hyperproperties) is an interesting question.
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Abstract
We present a data-driven approach to the quantitative verification of probabilistic programs and
stochastic dynamical models. Our approach leverages neural networks to compute tight and sound
bounds for the probability that a stochastic process hits a target condition within finite time. This
problem subsumes a variety of quantitative verification questions, from the reachability and safety
analysis of discrete-time stochastic dynamical models, to the study of assertion-violation and termin-
ation analysis of probabilistic programs. We rely on neural networks to represent supermartingale
certificates that yield such probability bounds, which we compute using a counterexample-guided
inductive synthesis loop: we train the neural certificate while tightening the probability bound over
samples of the state space using stochastic optimisation, and then we formally check the certificate’s
validity over every possible state using satisfiability modulo theories; if we receive a counterexample,
we add it to our set of samples and repeat the loop until validity is confirmed. We demonstrate on a
diverse set of benchmarks that, thanks to the expressive power of neural networks, our method yields
smaller or comparable probability bounds than existing symbolic methods in all cases, and that our
approach succeeds on models that are entirely beyond the reach of such alternative techniques.
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1 Introduction

Probabilistic programs extend imperative programs with the ability to sample from probability
distributions [20,27,31,37], which provides an expressive language to describe randomized
algorithms, cryptographic protocols, and Bayesian inference schemes. Discrete-time stochastic
dynamical models, characterised by stochastic difference equations, are a natural framework
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to describe auto-regressive time series, as well as sequential decision and planning problems
in unknown environments. A fundamental quantitative verification problem for probabilistic
programs and stochastic dynamical models is the quantitative reachability question, which
amounts to finding the probability with which the system reaches a given target condition
within a finite number of steps. Reachability is at the core of a variety of other important
quantitative verification questions as, by selecting appropriate target conditions on the state
space, we can express the probability that a probabilistic program terminates or that it
violates an assertion, as well as the probability that a stochastic dynamical model satisfies
an invariant or remains within a set of safe configurations.

Quantitative reachability verification has been studied extensively using theories and
algorithms built upon symbolic reasoning techniques, such as quantitative calculi [36, 38],
probabilistic model checking algorithms [22,33], discrete abstractions of stochastic dynamical
models [4, 44], and the synthesis of supermartingale-like certificates [13,15,16,19]. Among
the latter class, a method to provide a sound upper bound for the reachability probability of
a system is to synthesise a supermartingale function that maps every reachable state to a
non-negative real, whose value is never smaller than 1 inside the target condition, and such
that it never increases in expectation as the system evolves outside of the target. This is
referred to as a non-negative repulsing supermartingale or stochastic invariant indicator in
the literature [17, 19, 43], and its output over a given state provides an upper bound for the
probability that the system reaches the target condition from that state. Symbolic methods
for the synthesis of such certificates assume that the supermartingale function, as well as
its post-expectation, which depends on the model constraints and distributions, are both in
linear or polynomial form. This poses syntactic restrictions to their applicability.

Data-driven and counterexample-guided inductive synthesis (CEGIS) procedures, com-
bined with machine learning approaches that leverage neural networks to represent certificates,
have shown great promise in mitigating the aforementioned limitation [1, 3, 14, 26, 34, 35, 40].
In particular, neural-based CEGIS decouples the task of guessing a certificate from that of
checking its validity, delegating the guessing task to efficient machine learning algorithms
that leverage the expressive power of neural networks, while confining symbolic reasoning to
the checking part of the task, which is computationally easier to solve in isolation than the
entire synthesis problem. CEGIS has been applied to the synthesis of neural supermartingales
for the almost-sure termination of probabilistic programs [3], as well as their counterpart
for stochastic dynamical models with applications to qualitative queries such as almost-sure
safety and stability [34,35].

In this paper, we present theory, methods, and an extensive experimental evaluation
to demonstrate the efficacy and flexibility of neural supermartingales to solve quantitative
verification questions for probabilistic program and stochastic dynamical models, using
machine learning combined with satisfiability modulo theories (SMT) technologies.

Theory. We adapt the theory of non-negative repulsing supermartingales to leverage neural
networks as representations of supermartingale functions for quantitative verification.
Unlike previous deductive methods which need deterministic invariants and impose
restrictions on the models under study, our version entirely relies on neural architectures
and SMT solving to guarantee soundness, without requiring such assumptions.

Methods. We present a CEGIS-based approach to train neural supermartingale functions
that minimise an upper bound for the reachability probability over sample points from
the state space, and check their validity over every possible state using SMT solving. We
present a program-agnostic approach that relies on state samples in the training phase,
and also a novel program-aware approach that embeds model information in the loss
function to enhance the effectiveness of stochastic optimisation.
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v ∈ Vars (variables)
N ∈ R (numerals)
E ::= v | N | -E | E + E | E − E | E ∗ E | . . . (arithmetic expressions)
P ::= Bernoulli( E ) | Gaussian( E, E ) | . . . (probability distributions)
B ::= true | !B | B && B | B||B | E == E | E < E | . . . (Boolean expressions)
C ::= skip (update commands)

| v = E (deterministic assignment)
| v ∼ P (probabilistic assignment)
| C ; C (sequential composition)
| if B then C else C fi (conditional composition)

Figure 1 Grammar for update commands, Boolean and arithmetic expressions.

Experiments. We build a prototype implementation and compare the efficacy of our method
with the state of the art in synthesis of linear supermartingales using symbolic reason-
ing [43]. We show that our program-aware approach computes tighter or comparable
probability bounds than symbolic reasoning on existing benchmarks, while our program-
agnostic approach matches it in over half of the instances. We additionally demonstrate
that both our approaches can handle models beyond reach of purely symbolic methods.

2 Probabilistic Programs and Stochastic Dynamical Models

Probabilistic programs are computer programs whose execution is determined by random
variables, and stochastic dynamical models describe discrete-time dynamical systems with
probabilistic behaviour. The earlier enjoy the flexibility of imperative programming constructs
and are used to describe randomised algorithms, and the latter are expressed as stochastic
difference equations and are used to describe probabilistic systems that evolve over infinite
time. The semantics of both can be described in terms of stochastic processes and, for this
reason, verification questions for both can be solved with similar techniques.

The syntax of our modeling framework uses imperative constructs from probabilistic
programs and defines executions over infinite time as dynamical systems. Specifically, we
consider programs that operate over an ordered set of n real-valued variables, denoted by Vars,
and update their values through the repeated execution of a command C whose grammar
is described in Figure 1. Under this definition, a state of the system is an n-dimensional
vector s ∈ Rn that assigns a value to each variable symbol. The update command C

defines an update function f : Rn × [0, 1]m → Rn, where m is the number of syntactic
probabilistic assignment statements occurring in C, which maps the current state and m

random variables uniformly distributed in [0, 1] into the next state. Conceptually, within f ,
each random variable is mapped into its respective distribution by applying the appropriate
inverse transformation. Altogether, our probabilistic program defines a stochastic process,
whose behavior is determined by the following stochastic difference equation:

st+1 = f(st, rt), rt ∼ Um, (1)

where rt is an m-dimensional random input sampled at time t from the uniform distribution
Um over the m-dimensional hypercube [0, 1]m. The initial state s0 is either given as a
deterministic assignment to constant values, or is non-deterministically chosen from a
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set of initial conditions S0 characterized by a Boolean expression. This setting can be
seen as an assertion about the initial conditions followed by the probabilistic program
while true do C od. As we show in Section 3, this allows us to characterise verification
questions such as termination, non-termination, invariance and assertion-violation for while
loops with general guards, as well as reachability and safety verification questions for
dynamical models with general stochastic disturbances.

The semantics of our model is defined as a stochastic process induced by the Markov
chain over the probability space of infinite words of random samples. This is defined by the
probability space triple (Ω, F ,P) [12, 28], where

Ω is the set of infinite sequences ([0, 1]m)ω of m-dimensional tuples of values in [0, 1],
F is the extension of the Borel σ-algebra over the unit interval B([0, 1]) to Ω,
P is the extension of the Lebesgue measure on [0, 1] to Ω.

Every initialisation of the system on state s ∈ Rn induces a stochastic process {Xs
t (ω)}t∈N

over the state space Rn. Let ω = r0r1r2 . . . be an infinite sequence of random samples in
[0, 1]m, then the stochastic process is defined by the sequence of random variables

Xs
t+1(ω) = f(Xs

t (ω), rt), Xs
0(ω) = s. (2)

This defines the natural filtration {Ft}t∈N, which is the smallest filtration to which the
stochastic process Xs

t is adapted. In other words [30], this can be seen as another Markov
chain with state space Rn and transition kernel

T (s, S′) = Leb ({r ∈ [0, 1]m | f(s, r) ∈ S′}) , (3)

where S′ is a Borel measurable subset of Rn and Leb refers to the Lebesgue measure of a
measurable subset of [0, 1]m. In other words, kernel T denotes the probability to transition
from state s into a set of states S′. The transition kernel also defines the post-expectation
operator X, also known as the next-time operator [43, Definition 2.16]. X can be applied
to an arbitrary Borel-measurable function h : Rn → R defining the post-expectation of h,
denoted by X[h] and defined as the following function over states:

X[h](s) =
∫

h(s′)T (s, ds′). (4)

This represents the expected value of h evaluated at the next state, given the current state
being s. Computing the symbolic representation of a post-expectation for probabilistic
programs and stochastic dynamical models is a core problem in probabilistic verification [24,
25]. Indeed, our theoretical framework builds upon the post-expectation (cf. Eq. (13b)),
and our verification procedure uses a symbolic representation of the post-expectation in
our program-aware method (cf. Eqs. (17) and (19)), while our program-agnostic method
approximates it statistically.

We remark that our model encompasses general probabilistic program loops as well as
stochastic dynamical systems with general disturbances. For example, a probabilistic loop
with guard condition B and body C in the form

while B do C od (5)

can be expressed as a loop with guard true and body if B then C else skip fi. This
expresses the fact that, after termination, the program will stay on the terminal state
indefinitely. Also, discrete-time stochastic difference equations with a nonlinear vector field g

and time-invariant input disturbance with an arbitrary distribution W in the form

st+1 = g(st, wt), wt ∼ W . (6)
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comply with our model. It is sufficient to derive wt with an appropriate inverse transformation
from the uniform distribution and embed it in f . Our model is even more general, as it
encompasses state-dependent distributions, whose parameters depend on the state and may
depend on other distributions and thus define joint, multi-variate and hierarchically-structured
distributions. Notably, our model comprises both continuous and discrete probability
distributions and is able to model discrete-time stochastic hybrid systems.

3 Quantitative Reachability Verification of Probabilistic Models

Quantitative verification treats the question of providing a quantity for which a system
satisfies a property as opposed to providing a definite positive or negative answer. In
fact, it is sometimes too conservative or inappropriate to demand a definite outcome to a
formal verification question. For instance, a system whose behaviour is probabilistic may
violate a specification on rare corner cases and yet satisfy it with a probability that is
deemed acceptable for the application domain. We address the quantitative verification of
probabilistic systems, which is the problem of computing the probability for which a system
satisfies a specification [7, 8, 32,45].

We consider the quantitative reachability verification question, which as we show below,
is at the core of a variety of quantitative verification questions for probabilistic programs
and stochastic dynamical models. Henceforth, we use 1S to denote the indicator function
of set S, i.e., 1S(s) = 1 if s ∈ S and 1S(s) = 0 if s ̸∈ S; we also use λx.M to denote the
anonymous function that takes an argument x and evaluates the expression M to produce
its result. We now characterise the probability that a stochastic process reaches a Borel
measurable target set A in exactly time t, in at most time t, and in any finite time.

▶ Lemma 1. Let the event that a stochastic process {Xs
t (ω)}t∈N over state space Rn initialised

in state s ∈ Rn reaches a target set A ∈ B(Rn) in exactly time t ∈ N be

Reachs
t (A) =

{
ω ∈ Ω | Xs

0(ω) ̸∈ A, . . . , Xs
t−1(ω) ̸∈ A, Xs

t (ω) ∈ A
}

, (7)

with Reachs
0(A) = Ω if s ∈ A, and Reachs

0(A) = ∅ if s /∈ A. Then, Reachs
t (A) is measurable

and its probability measure can be expressed as follows:

P[Reachs
t+1(A)] = 1Rn\A(s) · X[λs′.P[Reachs′

t (A)]](s), (8a)
P[Reachs

0(A)] = 1A(s). (8b)

▶ Lemma 2. Let the event that a stochastic process {Xs
t (ω)}t∈N over state space Rn initialised

in state s ∈ Rn reaches a target set A ∈ B(Rn) in at most time t ∈ N be

Reachs
≤t(A) = ∪{ Reachs

i (A) : 0 ≤ i ≤ t }, (9)

Then, Reachs
≤t(A) is measurable and its probability measure can be expressed as follows:

P[Reachs
≤t+1(A)] = 1A(s) + 1Rn\A(s) · X[λs′.P[Reachs′

≤t(A)]](s), (10a)
P[Reachs

≤0(A)] = 1A(s). (10b)

▶ Lemma 3. Let the event that a stochastic process {Xs
t (ω)}t∈N over state space Rn initialised

in state s ∈ Rn reaches a target set A ∈ B(Rn) in finite time be

Reachs
fin(A) = ∪ {Reachs

t (A) : t ∈ N} = ∪
{

Reachs
≤t(A) : t ∈ N

}
. (11)
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Then, Reachs
fin(A) is measurable and its probability measure (which we refer to as the

reachability probability of the target set) can be expressed as follows:

P[Reachs
fin(A)] = lim

t→∞
P[Reachs

≤t(A)]. (12)

The lemmata above follow from measure-theoretic results in probabilistic verification
(proofs are provided in the extended version [2]), and underpin the formal characterisation
of quantitative probabilistic reachability in the next section. Our method leverages neural
networks to compute an upper bound for the reachability probability with respect to a given
target set (cf. Section 4). Notice that an appropriate choice of target set allows us to express
a variety of other quantitative verification questions, for which our method can provide an
upper or lower bound. Below, by providing a suitable choice for the target set, we show
how important quantitative verification questions for probabilistic programs and stochastic
dynamical models can be characterised as instances of quantitative reachability.

Termination Analysis. Let G ∈ B(Rn) be the guard set of a probabilistic while loop as in
Eq. (5), i.e., the set of states for which that guard condition evaluates to true. The event
that the loop terminates from initial state s0 is Reachs0

fin(Rn \ G). Our method computes
an upper bound for the probability that the loop terminates or, dually, it computes a
lower bound for the probability of non-termination. Notably, when this lower bound is
greater than 0, then almost-sure termination is refuted.

Assertion-violation Analysis. Let G ∈ B(Rn) be the guard set of a probabilistic while loop
and A ∈ B(Rn) be the satisfying set of an assertion placed at the beginning of the
loop body. Given initial state s0, the event that the assertion is eventually violated is
Reachs0

fin(G \ A). Our method computes an upper bound for the probability of assertion
violation or, dually, a lower bound for its satisfaction. Note that assertions in other
positions of the body can be modelled similarly by using additional Boolean variables.

Safety Verification. Let B ∈ B(Rn) be a set of undesirable states in a stochastic dynamical
model. The event that the system is safe when initialised in s0, i.e., it never reaches an
undesirable state, is given by Ω \ Reachs0

fin(B). Our method computes a lower bound for
the probability that the system is safe, which is 1 − P[Reachs0

fin(B)].
Invariant Verification. Let I ∈ B(Rn) be a candidate invariant set. The event that I is

invariant when the system is initialised in s0 is Ω\Reachs0
fin(Rn \I). Our method computes

a lower bound for the probability that set I is invariant, which is 1 − P[Reachs0
fin(Rn \ I)].

Note that if s0 /∈ I, this definition yields a trivial lower bound of zero for the probability
of invariance.

4 Neural Supermartingales for Quantitative Verification

Supermartingale certificates provide a flexible and powerful theoretical framework for the
formal verification of probabilistic models with infinite state spaces. Not only have super-
martingales been applied to qualitative questions, such as almost-sure termination analysis of
probabilistic programs and almost-sure stability analysis of stochastic dynamical models, but
also to quantitative reachability verification, as in this work. Specifically, this is enabled by
the theory of non-negative repulsing supermartingales and of stochastic invariants [17,19,43].

Our method builds upon the theory of non-negative repulsing supermartingales and
stochastic invariant indicators and adapts it to take advantage of the expressive power of
neural networks and the flexibility of machine learning and counterexample-guided inductive
synthesis algorithms. Our method hinges on the following theorem, whose proof we provide
in the extended version [2].
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while x > 0 do
assert (x <= 10);
p ~ Bernoulli (0.5);
if p == 1 then

x -= 2
else

x += 1
fi

od −2−1 1 2 3 4 5 6 7 8 9 10 11

1

Initial value of x

P
ro

ba
bi

lit
y

V lin

V neur
3

V neur
12 Preach

Figure 2 Comparison between linear and neural supermartingale functions in tightness of bounds
for the assertion violation probability of the program repulse, shown on the left. On the right, the
function V lin indicates the tightest linear supermartingale (under the restriction that x is greater
than −2). The functions V neur

3 and V neur
12 indicate single-layer neural supermartingales with 3 and

12 neurons respectively. The piecewise constant function Preach is the true probability of assertion
violation, and indicates the ideal lower bound for the value of any supermartingale function.

▶ Theorem 4. Let X be the post-expectation operator of a stochastic process over state space
Rn and let A ∈ B(Rn) be a target set. Let V : Rn → R≥0 ∪ {∞} be a non-negative function
that satisfies the following two conditions:

(indicating condition) ∀s ∈ A : V (s) ≥ 1, (13a)
(non-increasing condition) ∀s ̸∈ A : X[V ](s) ≤ V (s), (13b)

Then, for every state s ∈ Rn, it holds that V (s) ≥ P[Reachs
fin(A)].

As we show in detail in Section 5, we compute a supermartingale that satisfies the two
criteria (13a) and (13b), while also minimising its output over the initial state s0. When the
initial state is chosen nondeterministically from a set S0, we instead minimise the output
over all states in the set. As a consequence, the maximum of V over S0 is a sound upper
bound for the reachability probability.

In this work, we template V as a neural network with n input neurons, l hidden layers
with respectively h1, . . . hl neurons in each hidden layer, and 1 output neuron. We guarantee
a-priori that the function’s output will be non-negative over the entire domain using the
following architecture:

V (x) = sum (σl ◦ · · · ◦ σ1(x)) , σi(z) = (ReLU(wT
i,1z+bi,1), . . . , ReLU(wT

i,hi
z+bi,hi

)) (14)

where sum(zl,1, . . . , zl,hl
) =

∑hl

k=1 zl,k and wT
i,j ∈ Qhi−1 (defining h0 = n, the number of

input neurons) and bi,j ∈ Q are respectively the weight vector and the bias parameter for
the inputs to neuron j at layer i. Then, our method trains the neural network to satisfy the
two criteria (13a) and (13b), while also minimising its output on the initial condition.

Using neural networks as templates of supermartingale functions introduces non-trivial
advantages with respect to symbolic methods for the synthesis of supermartingales. Firstly,
neural supermartingales are able to better approximate the true probability of reachability
and thus attain tighter upper bounds on it. Secondly, symbolic methods require deterministic
invariants that overapproximate the set of reachable states, and suitably restricts the domain
of the template. Figure 2 illustrates using an example the advantages of neural certificates
with respect to linear supermartingales synthesised using Farkas’ lemma. This example shows
that increasing the number of neurons provides greater flexibility and allows the certificate
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Learner Verifier
V, p

f , S0, A

dcex

Candidate V

Figure 3 Overview of the counterexample-guided inductive synthesis procedure used to synthesise
neural supermartingales for quantitative reachability verification. Inputs to the procedure are a
probabilistic program f , a set of initial states S0, and a target set A. The procedure outputs a valid
neural supermartingale V and a probability bound p.

to more tightly approximate the true probability. Moreover, this example shows that linear
supermartingales require their domain to be restricted with an appropriate deterministic
invariant. Notably, symbolic methods for the synthesis of polynomial supermartingales
based on Putinar’s Positivstellensatz also require compact deterministic invariants to be
provided [17]. By contrast, neural supermartingales (whose output is always non-negative)
achieve the same result while relaxing the requirement of providing an invariant beforehand.

5 Data-driven Synthesis of Neural Supermartingales

Our approach to synthesising neural supermartingales for quantitative verification utilises a
counterexample-guided inductive synthesis (CEGIS) procedure [41,42] (cf. Figure 3). This
procedure consists of two components, a learner and a verifier, that work in opposition to
each other. On the one hand, the learner seeks to synthesise a candidate supermartingale that
meets the desired specification (cf. Eq. (13)) over a finite set of samples from the state space,
while simultaneously optimising the tightness of the probability bound. On the other hand,
the verifier seeks to disprove the validity of this candidate by searching for counterexamples,
i.e., instances where the desired specification is invalidated, over the entire state space. If the
verifier shows that no such counterexample exists, then the desired specification is met by the
supermartingale and the procedure provides a sound probability bound for the reachability
probability of interest, together with a neural supermartingale to certify it.

5.1 Training of Neural Supermartingales From Samples
Our neural supermartingale for quantitative reachability verification consists of a neural net-
work with ReLU activation functions, with an arbitrary number of hidden layers (cf. Section 4).
We train this neural network using gradient descent over a finite set D = {d(1), . . . , d(m)} ⊆ Rn

of states d(i) sampled over the state space Rn. Initially, we sample uniformly within a bounded
hyper-rectangle of Rn, a technique that scales effectively to high dimensional state spaces
and efficiently populates the initial dataset of state samples. Then, we construct a loss
function that guides gradient descent to optimise the parameters (weight and biases) of the
neural network V to satisfy the specification set out in Eq. (13) while also minimising the
probability bound. We define a loss function L(D) that consists of three terms:

L(D) = β1Lind(D) + β2Lnon-inc(D) + β3Lmin(D). (15)

Components Lind and Lnon-inc are responsible for encouraging satisfaction of the conditions in
Eq. (13), while the component Lmin is responsible for tightening the probability bound. The
parameters of this optimisation problem are the parameters of the neural network, which are
initialised randomly. The dataset consists of the state samples, initially sampled randomly,
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and generated from counterexamples in subsequent CEGIS iterations (cf. Section 5.2). The
coefficients β1, β2 and β3 denote scale factors for each term, which we choose according to
the priority that we want to assign to each condition (cf. Section 6).

First, consider the condition in Eq. (13a), which we refer to as the indicating condition.
For this, we use the following loss function:

(indicating loss) Lind(D) = Ed∈D∩A[ReLU(1 − V (d))]. (16)

This adds a penalty for states d ∈ D lying inside the target condition A, at which V fails to
satisfy the indicating condition, whilst ignoring any states where V satisfies it. We average
this per-state penalty across all states in D ∩ A.

We next consider the non-increasing condition in Eq. (13b), for which we use the following
loss term:

(non-increasing loss) Lnon-inc(D) = Ed∈D\A[ReLU(X[V ](d) − V (d))]. (17)

This penalises states d ∈ D lying outside of the target set A, at which V fails to satisfy the
non-increasing condition. Notably, this component is defined in terms of the post-expectation
X[V ] of our supermartingale. To embed this expression in our loss function we consider two
alternative approaches, which we call program-aware and program-agnostic.
Program-aware Approach. The program-aware approach uses the source code of the program

to generate a symbolic expression for the post-expectation of V . For this purpose, we
exploit the symbolic inference algorithm introduced by the tool PSI [24, 25], along with a
symbolic representation of V . We construct a probabilistic program which represents the
evaluation of V on the state resulting after the execution of the update function f . The
expected value of this program is precisely X[V ]. This results in a symbolic expression
that is a function of the program state and parameters of V . In the non-increasing loss,
states are instantiated to elements of D \ A, while the parameters are left as free-variables
that the gradient descent engine differentiates with respect to.

Program-agnostic Approach. The program-agnostic approach provides an alternative for-
mulation of the non-increasing loss term that does not require symbolic reasoning. Instead
of leveraging the program’s source code, it only requires the ability to execute it. For
this, we utilise a Monte Carlo scheme to estimate the post-expectation. For each state d

in our dataset D, to obtain an estimate of X[V ](d) we sample a number m′ of successor
states D′ = {d′(k) : 1 ≤ k ≤ m′}. Each successor state d′(k) is sampled by executing
the program’s update function f (cf. Eq. (1)) at state d. Then X[V ](d) is estimated
as X[V ](d) ≈ Ed′∈D′ [V (d′)] which is the average of V over D′. Even though this is an
approximation, we emphasise that this does not affect the soundness of our scheme, which
is ensured by the verifier.

Finally, we introduce a tightness criterion that minimises the probability upper bound:

(minimisation loss) Lmin(D) = Ed∈D∩S0 [V (d)]. (18)

This term encourages V to take smaller values over the set of initial states S0. Recall that
the smaller the probability upper bound, the closer it is to the true value.

The loss function is provided to the gradient descent optimiser, whose performance
benefits from a smooth objective. For this reason, to improve the performance of our
learner we replace every ReLU with a smooth approximation, Softplus, which takes the form
Softplus(s) = log(1 + exp(s)). Additionally, we improve the approximation of Softplus to
ReLU at small values over the interval [0, 1] by re-scaling V . This means that we modify the
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bounding condition to require that V (x) ≥ α over the target set A, for some large α > 1.
In other words, we modify the indicating loss to Lind(V ) = Ed∈D∩A[ReLU(α − V (d))]. We
remark that while Softplus is used as the activation function in the learning stage, for the
verification stage we instead employ ReLU activation functions, ensuring soundness of the
generated neural supermartingale. We remark that this has no effect on the soundness of
our approach, which is ultimately guaranteed by the verifier.

5.2 Verification of Neural Supermartingales Using SMT Solvers
The purpose of the verification stage is to check that the neural supermartingale meets the
requirements of Eq. (13) over the entire state space Rn, and if that is determined to be the
case to furthermore obtain a sound upper bound on the reachability probability. We achieve
this by constructing a suitable formula in first-order logic, Eq. (19), and use SMT solving to
decide its validity, or equivalently, to decide the satisfiability of its negation, Eq. (20).

The conditions pertaining to the validity of the neural supermartingale, given in (13a)
and (13b), are encoded by the formulas φind and φnon-inc. We also note that for a constant
p ∈ [0, 1] to be a sound upper bound on the reachability probability, it is sufficient to require
that p is an upper bound on the neural supermartingale’s value over the set of initial states
S0 (cf. Theorem 4), which is expressed by the formula φbound. A suitable choice for the
bound p is determined by a binary search over the interval [0, 1].

∀s ∈ Rn : (s ∈ A → V (s) ≥ 1)︸ ︷︷ ︸
φind

∧ (s /∈ A → X[V ](s) ≤ V (s))︸ ︷︷ ︸
φnon-inc

∧ (s ∈ S0 → V (s) < p)︸ ︷︷ ︸
φbound

. (19)

Here, V (s) is a symbolic encoding of the candidate neural supermartingale proposed by the
learner (Section 5.1), and S0 and A are defined by Boolean predicates over program variables,
all of which (in our setting of networks composed from ReLU activations) are expressible
using expressions and constraints in non-linear real arithmetic. For this reason, we use Z3 as
our SMT solver [21].

The SMT solver is provided with the negation of Eq. (19), namely

∃s ∈ Rn : (s ∈ A ∧ V (s) < 1)︸ ︷︷ ︸
¬φind

∨ (s /∈ A ∧ X[V ](s) > V (s))︸ ︷︷ ︸
¬φnon-inc

∨ (s ∈ S0 ∧ V (s) ≥ p)︸ ︷︷ ︸
¬φbound

, (20)

and decides its satisfiability, seeking an assignment dcex of s that is a counterexample to the
neural supermartingale’s validity, for which any of ¬φind, ¬φnon-inc and ¬φbound are satisfied.
If no counterexample is found, this certifies the validity of the neural supermartingale.
Alternatively, if a counterexample dcex is found, it is added to the data set D, for the
synthesis to incrementally resume.

6 Experimental Evaluation

The previous section develops a method for synthesising neural supermartingales. This section
presents an empirical evaluation of the method, by testing it against a series of benchmarks.
Each benchmark is tested ten times. A test is successful if a valid supermartingale is
synthesised, and the proportion of successful tests is recorded. Further, the average bound
from the valid supermartingales is also recorded, along with the average time taken by
the learning and verification steps, respectively. This procedure is applied separately for
program-aware and program-agnostic synthesis. We use values β1 = 10, β2 = 105, β3 = 1 in
Eq. (15) to define the priority ordering of the three terms in the loss function, which we find
beneficial across our set of benchmarks. To compare our method against existing work, we
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Table 1 Results comparing neural supermartingales with Farkas Lemma for different benchmarks.
Here, p is the average probability bound generated by the certificate; success ratio is the number
of successful experiments, out of 10 repeats, generated by CEGIS with neural supermartingale; ‘-’
means no result was obtained. We also denote the architecture of the network: (h1, h2) denotes a
network with 2 hidden layers consisting of h1 and h2 neurons respectively.

Benchmark Farkas’ Quantitative Neural Certificates Network

Lemma Program-Agnostic Program-Aware Arch.

p Success Ratio p Success Ratio

persist_2d - ≤ 0.1026 0.9 ≤ 0.1175 0.9 (3, 1)
faulty_marbles - ≤ 0.0739 0.9 ≤ 0.0649 0.8 3
faulty_unreliable - ≤ 0.0553 0.9 ≤ 0.0536 1.0 3
faulty_regions - ≤ 0.0473 0.9 ≤ 0.0411 0.9 (3, 1)

cliff_crossing ≤ 0.4546 ≤ 0.0553 0.9 ≤ 0.0591 0.8 4
repulse100 ≤ 0.0991 ≤ 0.0288 1.0 ≤ 0.0268 1.0 3
repulse100_uniform ≤ 0.0991 ≤ 0.0344 1.0 - - 2
repulse100_2d ≤ 0.0991 ≤ 0.0568 1.0 ≤ 0.0541 1.0 3
faulty_varying ≤ 0.1819 ≤ 0.0864 1.0 ≤ 0.0865 1.0 2
faulty_concave ≤ 0.1819 ≤ 0.1399 1.0 ≤ 0.1356 0.9 (3, 1)

fixed_loop ≤ 0.0091 ≤ 0.0095 1.0 ≤ 0.0094 1.0 1
faulty_loop ≤ 0.0181 ≤ 0.0195 1.0 ≤ 0.0184 1.0 1
faulty_uniform ≤ 0.0181 ≤ 0.0233 1.0 ≤ 0.0221 1.0 1
faulty_rare ≤ 0.0019 ≤ 0.0022 1.0 ≤ 0.0022 1.0 1
faulty_easy1 ≤ 0.0801 ≤ 0.1007 1.0 ≤ 0.0865 1.0 1
faulty_ndecr ≤ 0.0561 ≤ 0.0723 1.0 ≤ 0.0630 1.0 1
faulty_walk ≤ 0.0121 ≤ 0.0173 1.0 ≤ 0.0166 1.0 1

perform template-based synthesis of linear supermartingales using Farkas’ Lemma. This
requires deterministic invariants to overapproximate the reachable set of states, which may
either be generated by abstract interpretation, or provided manually [43]. In our experiments,
we provide a suitable invariant manually based on the guard of the loop, in some cases
strengthening them with additional constraints by an educated guess.

It should be noted that our method is inherently stochastic. One reason is the random
initialisation of the neural template’s parameters in the learning phase. In program-agnostic
synthesis, an additional source of randomness is the sampling of successor states. So that the
results accurately reflect the performance of our method, the random seed for these sources
of randomness is selected differently for each test. An additional source of non-determinism
arises from the SMT solver Z3 as it generates counterexamples: this cannot be controlled
externally. Benchmarks are run on a machine with an Nvidia A40 GPU, and involve the
assertion-violation analysis of programs created using the following two patterns:
Unreliable Hardware. These are programs that execute on unreliable hardware. The goal is

to upper bound the probability that the program fails to terminate due to a hardware
fault. A simple example is faulty_loop, whose source code is presented in the extended
version [2], and which consists of a loop which may violate an assertion with small
probability, modelling a hardware fault.

Robot Motion. These programs model an agent (e.g., a robot) that moves within a physical
environment. In these benchmarks, the uncertainty in control and sensing is modelled
probabilistically. The environment contains a target region and a hazardous region. The
goal is to upper bound the probability that the robot enters the hazardous region. We
provide the program repulse100 as an example, which is variant of repulse (Figure 2)
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Figure 4 Probability bounds generated using program-agnostic neural supermartingales and using
Farkas’ Lemma. The reference line y = x allows one to see which approach outperforms the other
and by how much: above the line means that neural supermartingales outperform Farkas’ Lemma,
below the line the opposite. Neural supermartingales can significantly outperform linear templates
when a better bound exists, but otherwise achieve similar results. Our approach with program-aware
neural supermartingales provides even better outcomes, compared with Farkas’ Lemma.

containing a modified assertion and initial state. The program models the motion of a
robot in a one-dimensional environment, starting at x = 10. The target region is where
x < 0, and hazardous region is where x > 100. As with repulse, in each iteration there
is an equal probability of x being decremented by 2, and x being incremented by 1.

Several of the programs are based on benchmarks used in prior work focusing on other types
of supermartingales [6, 13]. Additionally, there are several benchmarks that are entirely new.

The results are reported in Table 1. The table is divided into three sections. The first
section shows the benchmarks where Farkas’ Lemma cannot be applied, and where only our
method is capable of producing a bound. The second section shows examples where both
methods are able to produce a bound, but our method produces a notably better bound.
The third section shows benchmarks where both methods produce comparable bounds.

Dashes in the table indicate experiments where a valid supermartingale could not be
obtained. In the case of Farkas’ Lemma, there are several cases where there is no linear
supermartingale for the benchmark. By contrast, program-agnostic and program-aware syn-
thesis could be applied to almost all benchmarks. The one exception is repulse100_uniform
where only program-aware verification was unsuccessful: this is due to indicator functions in
the post-expectation, which are not smooth and posed a problem for the optimiser. This
benchmark underscores the value of program-agnostic synthesis, since it does not require
embedding the explicit post-expectation in the loss function.

The first section of the benchmarks in Table 1 demonstrates that our method produces
useful results on programs that are out-of-scope for existing techniques. Furthermore, the
success ratio of our method is high on all the benchmarks, which indicates its robustness.
For the second and third sections (which consist of benchmarks to which Farkas’ Lemma is
applicable), the success ratio of our method is broadly maximal, which is to be expected,
since these programs can also be solved by Farkas’ Lemma.
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Table 2 Results showing the time taken in seconds to synthesise supermartingales by our method
and Farkas’ Lemma. For our method, we show the time taken during learning and verification.

Benchmark Farkas’ Quantitative Neural Certificates

Lemma Program-Agnostic Program-Aware

Learn Time Verify Time Learn Time Verify Time

persist_2d - 169.14 85.31 44.96 74.90
faulty_marbles - 114.24 29.23 15.86 28.68
faulty_unreliable - 123.85 45.48 18.34 33.97
faulty_regions - 17.92 35.85 17.55 32.38

cliff_crossing 0.11 134.61 19.02 21.27 29.07
repulse100 0.19 16.65 5.00 6.49 3.74
repulse100_uniform 0.19 21.28 14.18 - -
repulse100_2d 0.12 122.92 64.54 15.75 47.70
faulty_varying 0.36 21.74 5.06 4.71 3.28
faulty_concave 0.39 49.12 13.37 13.49 7.82

fixed_loop 0.15 14.16 3.14 3.34 2.43
faulty_loop 0.16 25.52 3.81 3.73 2.66
faulty_uniform 0.34 20.20 1.91 6.75 1.33
faulty_rare 0.27 25.52 4.27 3.71 2.96
faulty_easy1 0.31 104.20 12.78 4.95 7.51
faulty_ndecr 0.33 104.89 9.06 5.37 4.66
faulty_walk 0.32 15.08 4.00 6.97 3.33

In the second section of Table 1, we find more complex benchmarks where our method
was able to significantly improve the bound from Farkas’ Lemma. The smallest improvement
was about 0.04, and the largest improvement was over 0.39. The intuition here is that neural
templates allow more sophisticated supermartingales to be learnt, that can approximate how
the reachability probability varies across the state space better than linear templates, and
thereby yield tighter probability bounds.

The third section of Table 1 consists of relatively simple benchmarks, where our method
produces results that are marginally less tight in comparison to Farkas’ Lemma. This is
not surprising since our method uses neural networks consisting of a single neuron for these
examples, owing to their simplicity. The expressive power of these networks is therefore
similar to linear templates.

In summary, the results show that our method does significantly better on more complex
examples, and marginally worse on very simple examples. This is highlighted in Figure 4.
Each point represents a benchmark. The position on the x-axis shows the probability
bound obtained by our program-agnostic method, and the y-axis shows the probability
bound obtained by Farkas’ Lemma. Points above the line indicate benchmarks where neural
supermartingales outperform Farkas’ Lemma, and vice versa. The scale is logarithmic to
emphasise order-of-magnitude differences.

Notice that in Table 1 the program-aware algorithm usually yields better bounds than
the program-agnostic algorithm, but the improvement is mostly marginal. This is in fact a
strength of our method: our data-driven approach performs almost as well as one dependent
on symbolic representations, which is promising in light of questions of scalability to more
complex programs. We also include a breakdown of computation time (Table 2) which
allows distinguishing between learning and verification overheads. Notably, Farkas’ Lemma
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Figure 5 Supermartingale functions for the cliff_crossing benchmark as generated using
Farkas’ Lemma (on the left) and using neural supermartingales (on the right). The right hand figure
illustrates the tighter bounds obtainable through the use of neural templates.

is significantly faster than our method, given that it relies on solving a convex optimisation
problem via linear programming, whereas the synthesis of neural supermartingales is a
non-convex optimisation problem that is addressed using gradient descent.

Having presented the experimental results, we shall further comment on some specific
benchmarks. The repulse100 program in Table 1 is a variation of repulse presented in
Figure 2, but with the assertion changed to assert(x <= 100). While this is a small program,
our method is still able to produce a significantly better result than Farkas’ lemma, using
a neural supermartingale with a single hidden layer consisting of three ReLU components
that are summed together, which allows a convex piecewise linear function to be learnt.
The cliff_crossing program is a further benchmark for which our method is capable of
producing a significantly better bound. This is a 2 dimensional benchmark, for which we
use a neural supermartingale that consists of two input neurons and four ReLU components,
leading to a clear improvement compared to the linear supermartingale in the tightness
of the probability bounds generated, as illustrated by Figure 5. Both repulse100 and
cliff_crossing are benchmarks that use neural supermartingales with a single hidden layer.
An example that uses two hidden layers is faulty_concave, in which there are two distinct
regions of the state space, one of which has a significantly higher reachability probability than
the other. We find that neither a linear template nor a single-layer neural supermartingale
is able to exploit this conditional behaviour, each of which yield an overly conservative
certificate, but that a neural supermartingale with two hidden layers is able to more tightly
approximate the reachability probability in each of the two regions. Further discussion and
the source code of these case studies are presented in the extended version [2].

7 Related Work

The formal verification of probabilistic programs using supermartingales is a well-studied topic.
Early approaches to introduce this technique applied them to almost-sure termination analysis
of probabilistic programs [13], which allowed several extensions to polynomial programs,
programs with non-determinism, lexicographic and modular termination arguments, and
persistence properties [5, 15,16,19,23,29]. All these methods relied on symbolic reasoning
algorithms for synthesising supermartingales, that leveraged theories based on Farkas’ lemma
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for the synthesis of linear certificates, and Putinar’s Positivestellensatz and sum-of-square
methods for the synthesis of polynomial certificates. While these methods are the state-of-
the-art for many existing problem instances in literature, to achieve the strong guarantees
that they provide (such as completeness for the specific class of programs they target),
they must necessarily introduce restrictions on the class of programs to which they are
applicable, and the form of certificates that they derive. Moreover, symbolic methods need
externally provided invariants that are stronger than Rn to enforce non-negativity in the case
of linear certificates, as we illustrate in Figure 2. Also, symbolic methods for the synthesis of
polynomial certificates require compact deterministic invariants to operate.

The use of neural networks to represent certificates has allowed many of these restrictions
to be lifted. In the context of the analysis of probabilistic programs, neural networks were
first applied to certify positive almost-sure termination [3]. This approach lent itself to a
wider range of formal verification questions for stochastic dynamical models, from stability
and safety analysis to controller synthesis [18, 34, 35]. These data-driven inductive synthesis
techniques for supermartingales have also been extended to machine learning techniques other
then deep learning, such as piecewise linear regression and decision tree learning [10,11].

In this paper, we further extend data-driven synthesis of neural supermartingale certificates
to quantitative verification questions. The correctness of our approach builds upon the theory
of non-negative repulsing supermartingales [43], as formulated in Theorem 4. Our experiments
have demonstrated that neural certificates attain comparable results on programs that are
amenable to symbolic analysis (such as those in the third section of Table 1), while surpassing
symbolic methods on more complex programs that are either out-of-scope or yield overly
conservative bounds when existing techniques are applied (such as those in the first and
second section of Table 1).

8 Conclusion

We have presented a data-driven framework for the quantitative verification of probabilistic
models that leverage neural networks to represent supermartingale certificates. Our experi-
ments have shown that neural certificates are applicable to a wider range of probabilistic
models than was previously possible using purely symbolic techniques. We also illustrate that
on existing models our method yields certificates of better or comparable quality than those
produced by symbolic techniques for the synthesis of linear supermartingales. This builds
upon the ability of neural networks to approximate non-linear functions, while satisfying the
constraints imposed by Theorem 4 without the need for supporting deterministic invariants
to be provided externally. Our method applies to quantitative termination and assertion-
violation analysis for probabilistic programs, as well as safety and invariant verification for
stochastic dynamic models. We imagine extensions to further quantitative verification ques-
tions, such as temporal properties beyond reachability [9], and bounding expected accrued
costs [39,46,47].
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1 Introduction

Metric Temporal Logic (MTL[UI ,SI ]) and Timed Propositional Temporal Logic
(TPTL[UI , SI ]) are natural extensions of Linear Temporal Logic (LTL) for specifying real-time
properties [6]. MTL extends the U and S modality of LTL by associating a time interval
with these. Intuitively, aUIb is true at a point in the given behaviour iff event a keeps on
occurring until at some future time point within relative time interval I, event b occurs.
(Similarly, aSIb is its mirror image specifying the past behaviour.) On the other hand, TPTL
uses freeze quantifiers to store the current time stamp. A freeze quantifier [4, 6] has the form
x.φ with freeze variable x (also called a clock [7, 27]). When it is evaluated at a point i on a
timed word, the time stamp of i (say τi) is frozen or registered in x, and the formula φ is
evaluated using this value for x. Variable x is used in φ in a constraint of the form T −x ∈ I;
this constraint, when evaluated at a point j, checks if τj − τi ∈ I, where τj is the time stamp
at point j. Here T can be seen as a special variable giving the timestamp of the present
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point. For example, the formula φ = Fx.(a ∧ F(b ∧ T − x ∈ [1, 2] ∧ F(c ∧ T − x ∈ [1, 2])))
asserts that there is a point i in the future where a holds and in its future there is a b within
interval [1, 2] followed by a c within interval [1, 2] from i. In this paper, we restrict ourselves
to future time modalities only. Hence, we use the term MTL and TPTL for MTL[UI ] and
TPTL[U], respectively, and MTL+Past and TPTL+Past for MTL[UI ,SI ] and TPTL[U,S],
respectively. We also confine ourselves to the pointwise interpretation of these logics [7].

While these logics are natural formalisms to express real-time properties, it is unfortunate
that both the logics have an undecidable satisfiability checking problem, making automated
analysis of these logics difficult in general. Exploring natural decidable variants of these logics
has been an active area of research since their advent [5, 31, 13, 35, 30, 14, 15]. One of the
most celebrated such logics is the Metric Interval Temporal Logic (MITL) [1], a subclass of
MTL where the timing intervals are restricted to be non-punctual i.e. non-singular (intervals
of the form ⟨x, y⟩ where x < y). The satisfiability checking for MITL formulae is ExpSpace
complete [1] (the result also holds for MITL + Past).

Every formula in MTL can be expressed in the 1-variable fragment of TPTL (denoted
1-TPTL). Moreover, the above-mentioned property φ is not expressible in MTL + Past
[26]. Hence, 1-TPTL is strictly more expressive than MTL [27, 7]. The Logic 1-TPTL can
also express MTL augmented with richer counting and Pnueli modalities. Hence, TPTL
is a logic with high expressive power. However, decidable fragments of TPTL are harder
to find. While 1-TPTL has decidable satisfiability over finite timed words [10] (albeit with
non-primitive recursive complexity), it is undecidable over infinite words [25]. There are no
known fragments of multi-variable TPTL which are decidable (without artificially restricting
the class of timed words). In this paper, we propose one such logic, which is efficiently
decidable over both finite and infinite timed words.

We propose a fragment of TPTL, called TPTL0,∞, where, for any formula ϕ in negation
normal form, each of its closed subformula κ has unilateral intervals; that is, intervals of the
form ⟨0, u⟩, or of the form ⟨l,∞) (where ⟨∈ {[, (} and ⟩ ∈ {], )}). The main result of this
paper is to show that satisfiability checking for TPTL0,∞ is PSpace complete. Moreover, we
show that even the 1-variable fragment of this logic is strictly more expressive than MITL.
PSpace completeness for satisfiability checking is proved as follows: We define a sub-class of
Alternating Timed Automata (ATA [24] [21]) called Very Weak Alternating Timed Automata
with Unilateral Intervals(VWATA0,∞), and show that VWATA0,∞ have PSpace -complete
emptiness checking. A language preserving reduction from TPTL0,∞ to VWATA0,∞, similar
to [10, 24, 34], completes the proof. To our knowledge, VWATA0,∞ is amongst the first
known fragment of multi-clock alternating timed automata (ATA) with efficiently decidable
emptiness checking. Thus, we believe that TPTL0,∞ and VWATA0,∞ are interesting novel
additions to logics and automata for real-time behaviours.

One of the key challenges in establishing the decidability of VWATA0,∞ is to show that
the configuration sizes can be bounded. In an ATA, a configuration can be unboundedly large
owing to several conjunctive transitions, each spawning a state with a new clock valuation.
We provide a framework for compressing the configuration sizes of VWATA0,∞ based on
simulation relations amongst states of the VWATA0,∞. We then prove that such compression
yields a simulation-equivalent transition system whose configuration sizes are bounded. This
bound allows us to give a subset-like construction resulting in a simulation equivalent (hence,
language equivalent) timed automata with polynomially many clocks.

The paper is organized as follows. Section 2 defines the TPTL and ATA, and (0,∞)
fragments of these formalisms. In Section 3, we prove the PSpace emptiness checking of
TPTL0,∞. Section 4 discusses the expressiveness of TPTL0,∞. Section 5 concludes our
work with a discussion on the implication of our work in the field of timed logics and some
interesting problems that we leave open.
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2 Preliminaries

Let Z,Z≥0,N,R,R≥0 respectively denote the set of integers, non-negative integers, natural
numbers (excluding 0), real numbers, and non-negative real numbers. Given a sequence
a = a1a2 . . ., a[i] = ai denotes the ith element of the sequence, a[i..j] represents aiai+1 . . . aj ,
a[i..] represents aiai+1 . . . and a[..i] represents = a1a2 . . . ai. Let Iint be the set of all the
open, half-open, or closed intervals (i.e. convex subsets of real numbers), such that the
endpoints of these intervals are in N∪ {0,∞}. Intervals of the form [x, x] are called punctual;
a non-punctual interval is one which is not punctual. For, ⟨∈{(, [} and ⟩∈{], )}, an interval
of the form ⟨0, u⟩ for u > 0 is called right-sided while an interval of the form ⟨l,∞) is
called left-sided. A unilateral interval is either left-sided or right-sided. Let I0

int, I∞
int ⊆ Iint

respectively be the set of all right sided and left sided intervals of the form ⟨0, u⟩, ⟨l,∞), for
any l, u ∈ Z≥0. Let I0,∞

int = I0
int ∪ I∞

int . For τ∈R and interval ⟨a, b⟩, τ + ⟨a, b⟩ stands for the
interval ⟨τ + a, τ + b⟩.

Timed Words. Let Σ be a finite alphabet. A finite (infinite) word over Σ is a finite (infinite)
sequence over Σ. The set of all the finite (infinite) words over Σ is denoted by Σ∗ (Σω). A finite
timed word ρ over Σ is a finite sequence of pairs (σ, τ ) ∈ (Σ×R≥0)∗ : ρ = (σ1, τ1), . . . , (σn, τn)
where τi ≤ τj for all 1 ≤ i ≤ j ≤ n. Let dom(ρ) = {1, 2, . . . n} be the set of points in ρ.
Likewise, an infinite timed word is an infinite sequence ρ = (σ1, τ1)(σ2, τ2) . . . ∈ (Σ × R≥0)ω,
where σ1σ2 . . . ∈ Σω, and τ1τ2 . . . is a monotonically increasing infinite sequence of real
numbers approaching ∞ (i.e. non-zeno). A finite (infinite) timed language is a set of all
finite (infinite) timed words over Σ denoted TΣ∗ (TΣω).

Timed Propositional Temporal Logic (TPTL). The logic TPTL extends LTL with freeze
quantifiers and is evaluated on timed words. Formulae of TPTL are built from a finite
alphabet Σ using Boolean connectives, as well as the temporal modalities of LTL. In
addition, TPTL uses a finite set of real-valued variables called freeze variables or clocks
X = {x1, . . . , xn}. Let ν : X → R≥0 represent a valuation assigning a non-negative real
value to each clock. Without loss of generality, we work with TPTL in the negation normal
form, where all the negations appear only with atomic formulae. Formulae of TPTL are
defined as follows.

φ ::= a | ¬a |⊤ | ⊥ | x.φ | T − x ∈ I | φ ∧ φ | φ ∨ φ | φUφ | Gφ

where x ∈ X, a ∈ Σ, I ∈ Iint. T denotes the time stamp of the position where the formula is
evaluated. The construct x.φ is called a freeze quantifier, which stores in x, the time stamp
of the current position and then evaluates φ. T − x ∈ I is a constraint on the clock variable
x, which checks if the time elapsed since the time x was frozen is in the interval I. Duals
of Until; “Unless” and “Release” operators can be expressed using a G and an U operator
without compromising on succinctness. Notice that, in aid of brevity, we will typically
abbreviate subformula T − x ∈ I to x ∈ I. For a timed word ρ = (σ1, τ1) . . . (σn, τn),
i ∈ dom(ρ) and a TPTL formula φ, we define the satisfiability ρ, i, ν |= φ at a position i of
ρ, given a valuation ν of the clock variables.

ρ, i, ν |= a ⇐⇒ σi = a,

ρ, i, ν |= x.φ ⇐⇒ ρ, i, ν[x← τi] |= φ,

ρ, i, ν |= T − x ∈ I ⇐⇒ τi − ν(x) ∈ I,

ρ, i, ν |= Gφ ⇐⇒ ∀j > i, ρ, j, ν |= φ,

ρ, i, ν |= φ1Uφ2 ⇐⇒ ∃j > i, ρ, j |= φ2, and ∀i < k < j, ρ, k |= φ1.
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The F and Next operator is defined in terms of U; Fϕ = ⊤Uϕ and Nextϕ = ⊥Uϕ. 0
denotes a valuation that maps every variable to 0. A TPTL formula φ is said to be closed iff
every variable x used in the timing constraint is quantified (or bound) by a freeze quantifier.
A formula that is not closed is open. Similarly, in any formula φ, a constraint of the form
x ∈ I is open if x is not quantified. For example, x.y.(aU(b ∧ x ∈ (1, 2) ∧ y ∈ (2, 3))) is a
closed formula while x.(a ∧ y ∈ (2, 3))Uy.(b ∧ x ∈ (1, 2)) is open as the clock y used in the
underlined clock constraint is not in the scope of a freeze quantifier for y. Moreover, the
underlined constraint y ∈ (2, 3)) is an open constraint. Notice that open constraints appear
only (and necessarily) in open formulae. Satisfaction of closed formulae is independent of
the clock valuation; that is, if ψ is a closed formula, then for a timed word ρ and a position i
in ρ, either for every valuation ν, ρ, i, ν |= ψ; or for every valuation ν, ρ, i, ν ̸|= ψ. Hence,
for a closed formula ψ, we drop the valuation ν while evaluating satisfaction, and simply
write ρ, i |= ψ. As an example, the closed formula φ=x.(aU(bU(c ∧ x∈[1, 2]))) is satisfied
by the timed word ρ=(a, 0)(a, 0.2)(b, 1.1)(b, 1.9)(c, 1.91)(c, 2.1) since ρ, 1 |= φ. The word
ρ′ = (a, 0)(a, 0.3)(b, 1.4)(c, 2.1)(c, 2.5) does not satisfy φ. However, ρ′, 2 |= φ: if we start
from the second position of ρ′, the value 0.3 is stored in x by the freeze quantifier, and when
we reach the position 4 of ρ′ with τ4 = 2.1 we obtain T − x = 2.1 − 0.3 ∈ [1, 2].

Given any closed TPTL formula φ, its language, L(φ) = {ρ|ρ, 1 |= φ}, is set of all the
timed words satisfying it. We say that a closed formula φ is satisfiable iff L(φ) ̸= ∅.

Size of a TPTL formula. Given a TPTL formula φ, the size of φ denoted by |φ| is defined
as B+M+C where B is the number of Boolean operators in φ, M is the number of temporal
modalities (G,U,Next,F) and freeze quantifiers in φ, and C is obtained by multiplying the
number of time constraints in φ with 2×(⌊log(cmax)⌋+1) where cmax is the maximal constant
appearing in the time constraints of φ. For example, for φ = x.(a ∧ bU(c ∨ x ≤ (1, 2))),
|φ| = 2 + 2 + 2 × (1 + 1) = 8 as it contains two boolean operators, one temporal modality,
one freeze quantifier and one timing constraint where cmax = 2.

The subclass of TPTL that uses only k-clock variables is known as k-TPTL. By
[10] [25], satisfiability checking for 1-TPTL is decidable over finite models but non-primitive
recursive hard, and undecidable over infinite models. Satisfiability checking for 2-TPTL is
undecidable over both finite and infinite models [6] [18]. Towards the main contribution of
this paper, we propose a “non-punctual” fragment of TPTL with unilateral intervals, called
TPTL0,∞, and show that its satisfiability checking is decidable with multiple variables over
both finite and infinite timed words (PSpace -complete). Further, 1-TPTL0,∞ is already
more expressive than MITL, which has an ExpSpace -complete satisfiability checking.

2.1 Multi-clock TPTL with unilateral intervals: TPTL0,∞

We say that a formula φ is of the type ≤ (≥), iff all the intervals appearing in the open
constraints of φ are in I0

int (I∞
int). Notice that a closed formula belongs to both types ≤

and ≥. There are open formulae that are neither of type ≤ nor ≥. A TPTL formula φ

in negation normal form is a TPTL0,∞ formula iff every subformula of φ is either of the
type ≤ or ≥. For example, x.y.(aU(bU(c ∧ x < 3 ∧ y ≤ 2 ∧ x.(Next(c ∧ x > 1))))) is a
TPTL0,∞ formula since there is no subformula that doesn’t belong to either types ≤ or ≥.
However, x.y.(aU(b ∧ x ≤ 3 ∧ y ≥ 5)) is not TPTL0,∞, since (b ∧ x ≤ 3 ∧ y ≥ 5) is of neither
type ≤ or ≥ as the open constraints within this subformula use both left-sided as well as
right-sided intervals. This restriction is inspired by that of MITL0,∞. Any MITL0,∞ formula
can be expressed in 1-TPTL0,∞ by applying the same reduction from MITL to 1-TPTL (see
Remark 15). Next, we introduce alternating timed automata which are useful in proving the
main result, i.e., Theorem 2.
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2.1.1 Alternating Timed Automata
An Alternating Timed Automata (ATA) is a 7-tuple A = (Q,Σ, δ, q0,Qacc, X,G), where, Q is
a finite set of locations, X is a finite set of clock variables, G is a finite set of guards of the
form x ∈ I where I ∈ Iint and x ∈ X, δ is a transition function, q0 ∈ Q is the initial location,
and Qacc ⊆ Q is a set of accepting locations. The transition function is defined as δ : Q×Σ 7→
Φ(Q,G) where Φ(Q,G) is defined by the grammar φ ::= ⊤|⊥|φ1 ∧ φ2|φ1 ∨ φ2|q|x ∈ I|Y.q
with q ∈ Q, x ∈ X, (x ∈ I) is a guard in G, Y ⊆ X, Y is not the empty set. ⊤,⊥ respectively
denote True and False. Y.q is a binding construct which resets all clocks in Y to zero after
taking the transition. Let p, q ∈ Q and Y ⊆ X. We say that there is a transition from p to
q iff q appears in δ(p, b) for some b ∈ Σ. We say that there is a strong reset transition,
non-reset transition, and a Y-reset transition from location p to q iff for some b ∈ Σ, X.q,
q, and Y.q, respectively, appears in δ(p, b) for some b ∈ Σ. The 1-clock restriction of ATA
has been considered in [24] and [21].

Evaluation of Φ(Q, G). Given an ATA A, a state s is defined as a pair consisting of a
location and a valuation over X, i.e., s ∈ Q× VX . A configuration C of an ATA is a finite
set of states. Let S and C respectively denote the set of all states and configurations of A. A
configuration C and a clock valuation ν define a Boolean valuation for Φ(Q,G) as follows:

C |=ν q iff (q, ν) ∈ C, C |=ν Y.q iff (q, ν) ∈ C, and ∀x ∈ Y.ν(x) = 0,

C |=ν x ∈ I iff ν(x) ∈ I, C |=ν φ1 ∧ φ2 iff C |=ν φ1 ∧ C |=ν φ2,

C |=ν ⊤ for all C ∈ C, C |=ν φ1 ∨ φ2 iff C |=ν φ1 ∨ C |=ν φ2.

Finally, C ̸|=ν ⊥ for all possible configurations. We say that C is a minimal model for
φ ∈ Φ(Q,G) with respect to ν (denoted by C |=min

ν φ) iff C |=ν φ and no proper subset C ′ of
C is such that C ′ |=ν φ. See Figure 1 in the full version for the graphical representation of
the ATA.

Semantics of ATA. Given a state s = (q, ν), a time delay t ∈ R≥0 and a ∈ Σ, the successors
of s = (q, ν) on time delay t followed by a is any configuration C such that C |=min

ν+t δ(q, a).
Succst

A(s, t, a) is the set of all such successors. The notion of a successor is extended to a
configuration in a straightforward manner. A configuration C ′ is a successor of configuration
C = {s1, s2, . . . sk} on time delay t and a ∈ Σ (denoted by C (t,a)−−−→A C ′) iff C ′ = C1 ∪ . . .∪Ck

such that ∀1 ≤ i ≤ k, Ci ∈ Succst
A(si, t, a). We denote by Succδ(C, t, a) set of all such

successors C ′.
The initial configuration is defined by Cinit = {(q0,0)}, and a configuration C is accepting

iff for all s ∈ C, s is an accepting state, that is s = (q, ν) for q ∈ Qacc. Let Cacc be the set of
all the accepting configurations. Hence, the empty configuration is an accepting configuration.
We define the semantics of ATA using a Labelled Transition System (LTS). An LTS is a
5-tuple T = (S, s0,Σ, δ, Sf ), where S is a finite or infinite set of states, s0 ∈ S is the initial
state, Σ is set of symbols, δ : S × Σ × S is a transition relation, and Sf ⊆ S is a set of final
states. A (finite) run R of an LTS is a (finite) sequence of the form s0, a1, s1, a2, s2, a3 . . .

where s1, s2, . . . ∈ S are states of T , and a1, a2, . . . are symbols in Σ such that for all i > 0,
si ∈ δ(si−1, ai). We say that a run R = s0, a1, s1, a2, s2, a3 . . . visits a state s (or visits a
set of states S′) iff the sequence R contains s (or contains states in S′). A run is said to
be accepting iff it ends in some state s ∈ Sf . Similarly, an infinite run is said to be Büchi
accepting iff it visits Sf infinitely often.
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Runs of A = (Q,Σ, δ, q0,Qacc, X,G) starting from a configuration C are the runs of
LTS TS(A, C) = (C, C,R≥0 × Σ,→, Cacc ). Notice that the states of LTS TS(A, C) are
configurations of A (i.e., a set of states of A and not just the states of A). Let ρ =
(a1, τ1)(a2, τ2) . . . be any timed word over Σ. We say that a run R = C, (t1, a1), C1, (t2, a2) . . .
is produced by A on ρ starting from a configuration C iff C

(t1,a1)−−−−→ C1
(t2,a2)−−−−→ C2 . . . where

ti = τi − τi−1 for i > 0 and τ0 = 0. Let A(ρ, C) be the set of all the runs produced by A
on ρ, starting from the configuration C. We denote TS(A, Cinit) as simply TS(A). A run
starting from the initial configuration Cinit is called an initialized run. We denote A(ρ, Cinit)
by A(ρ). ρ, i is said to be accepted (Büchi accepted) by A starting with configuration C,
denoted by ρ, i |= A, C, iff there exists a run in A(ρ[i..], C) accepted (Büchi accepted) by
TS(A) (i.e., simulating A on the suffix of ρ starting at position i we obtain an accepting
run). We say that ρ is accepted by A iff ρ, 1 |= Cinit.

We define the finite (infinite) language of A, denoted by Lfin(A) (Linf (A)), as a set of
all the finite (infinite) timed words accepted by A. When clear from context, we drop the
subscript in Lfin and Linf .

Non-Deterministic Timed Automata (NTA) is a subclass of ATA where Φ(Q,G) is
restricted to be in disjunctive normal form (DNF), where each disjunct is of the form
(q ∧ x ∈ I) or (X ′.q ∧ x ∈ I). Hence, for any s ∈ S, t ≥ 0, a ∈ Σ and any configuration
C ∈ Succst

δ (s, t, a) implies C ≤ 1.
We call the ATA A a Very Weak ATA (VWATA) iff (1) there is a partial order

≪A⊆ Q × Q such that there is a transition from p to q iff q ≪A p, (2) all the self-loop
transitions (transitions entering and exiting into the same location) are non-reset transitions,
and (3) For every location q, there is at most one location p ̸= q such that there is a transition
from p to q. Moreover, all the transitions from p to q reset the same set of clocks. This
makes the transition diagram of VWATA a tree and not a DAG (excluding self-loops).

▶ Remark 1. In the literature, VWATA (also called Partially-Ordered Alternating Timed
Automata in [20]) and their corresponding untimed version [9, 32](also called as Linear [22],
Linear-Weak [11], 1-Weak [28], and Self-Loop [33] Alternating Automata) are required to
satisfy only conditions (1) and (2). It can be shown that condition (3) does not affect the
expressiveness of the machine. We notice that this version of VWATA is enough to express
TPTL formulae efficiently (linear in the size of TPTL formulae). In case of translation
from TPTL to VWATA satisfying condition (3) the number of locations in the resulting
ATA will depend on the size of the formula tree. On the other hand, the total number
of locations depends on the formula DAG on similar translation from TPTL to VWATA
satisfying only (1) and (2) making it exponentially more succinct. Hence, we consider a
less succinct representation (i.e., tree or string, which is standard) of TPTL formulae for
computing its size as compared to the DAG representation.

2.1.2 ATA with Unilateral Intervals: ATA0,∞

Similar to the unilateral version of TPTL (i.e. TPTL0,∞), we define a unilateral version
of ATA, i.e., ATA0,∞ as follows. Let A = (Q,Σ, δ, q0,Qacc, X,G) be any ATA. Let G≥ (G≤)
be the subset of G containing all the guards of the form x ∈ I where I ∈ I∞

int (I ∈ I0
int). A

is said to be an ATA0,∞ iff, Q can be partitioned into Q≥ and Q≤ any transition exiting
from any location q ∈ Q≥ (q ∈ Q≤) is guarded by a guard in G≥ (G≤), and any transition
from any location in Q≥ to a location in Q≤, or vice-versa, is a strong reset transition. A is
said to be VWATA0,∞ iff it is an ATA0,∞, and a VWATA. From this point onwards, for any
set of locations Q of ATA0,∞, Q≥ and Q≤ will denote partitions of Q satisfying the above
condition.
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q0 ∧ a
x := 0

q1 q2 ⊤

b a, b

x ≤ 2
y := 0

b x ≤ 3
y ≤ 2

a, b

a

Figure 1 VWATA0,∞ equivalent to φ. Location qi corresponds to the subformula φi: ρ, i, ν |= φi

iff ρ, i |= (qi, ν).

3 Satisfiability Checking for TPTL0,∞

This section is dedicated to proving the following main theorem of this paper.

▶ Theorem 2. Satisfiability Checking for TPTL0,∞ is PSpace -Complete

PSpace hardness follows from the hardness of satisfiability checking of the sublogics LTL and
MITL0,∞ (see section 4.1 for the details on MITL0,∞). To show membership in PSpace we
propose the following steps: (1) We reduce any given k-TPTL0,∞ formula φ, to an equivalent
VWATA0,∞, A, with k clock variables and at most |φ| + 1 number of locations. (2) We give
a novel on-the-fly construction from any VWATA0,∞ to simulation equivalent NTA A with
exponential blow-up in the number of locations and polynomial blow-up in the number of
clocks. Hence, the region automata corresponding to A has at most exponentially many
states, and thus each state can be represented in polynomial space. 1

▶ Remark 3. Notice that while the reduction from VWATA0,∞ to timed automata results
in an exponential blow-up in the number of locations we can directly construct the region
automaton of the corresponding timed automaton on-the-fly making sure that we need at
most polynomial space to solve its emptiness checking problem.

We demonstrate our steps of construction using a running example. For the formal construc-
tions please refer to the full version. In our running example, we start with the given formula
φ = G(¬a ∨ x.(F(a ∧ T − x ≤ 2 ∧ y.Next(b ∧ T − x ≤ 3 ∧ T − y ≤ 2))).

3.1 TPTL0,∞ to VWATA0,∞

This step is a straightforward multi-clock generalization of translation from MTL and 1-
TPTL to 1-ATA in [24] and [10], respectively, (which are themselves timed generalization of
reduction from LTL to Very Weak Alternating Automata [34] [9]). We give the reduction in
the full version for completeness. The proof of equivalence is identical to that in [24] and [10]
resulting in the following Theorem 4. We give the VWATA0,∞ corresponding to the formula
φ of the running example in Figure 1. Hence, to prove the main theorem it suffices to show
that emptiness checking for VWATA0,∞ is in PSpace (i.e. Theorem 5).

▶ Theorem 4. Any k variable TPTL formula φ over Σ can be reduced to an equivalent
VWATA, A = (Q, 2Σ, δ, init,Qacc, X,G), with |X| = k, |Q| ≤ |φ| + 1, and G is the set of all
the guards appearing in φ. Moreover, if φ is a TPTL0,∞ formula, then the A is VWATA0,∞.

1 While one can argue about existence of a simple reduction from TPTL0,∞ to Recursive Memory Event
Clock Logic of [17] using projections, we would still need to show that such a reduction requires
only bounded memory which can be non-trivial, especially with multiple clocks. We believe that the
automata-theoretic argument in this paper is a clean technique for proving such bounds.
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3.2 Emptiness Checking for VWATA0,∞

The following theorem is the main technical result.

▶ Theorem 5. Emptiness Checking for VWATA0,∞ is in PSpace .

We give a translation from VWATA0,∞ A = (Q,Σ, δ, q0,Qacc, X,G) to an equivalent timed
automaton, A = (Q,Σ,∆, q0,Qacc,X ,G), such that the transition system of A (i.e., TS(A))
is simulation equivalent to that of A (i.e., TS(A)). Hence, by the Proposition 6, L(A) = L(A).

Moreover, Q = O(2P oly(Q)) and |X | = |X| × |Q|. Hence, the number of states in the
corresponding region automaton is exponential to the size of A (i.e. O(2P oly(|Q|,|X|)) × (2 ×
cmax + 1) where cmax is the maximum constant used in the constraints appearing in G).
Hence, each state of the region automata (when encoded in binary) can be represented
in polynomial space proving membership in PSpace . We prove the above by giving a
translation from VWATA0,∞ to timed automata with polynomial blowup in the number of
clocks and exponential blowup in the set of locations. As a side-effect, we also show that
emptiness checking for 1-ATA0,∞ is in PSpace (using the same construction) generalizing
the result of [16]. We first briefly discuss the concept of simulation relations and preorders.

3.2.1 Simulation Relations and Preorder
We fix a pair of labeled transition system, TS1=(S1, s1

0,Σ, δ1, S1
f ) and TS2=(S2, s2

0,Σ, δ2, S2
f ).

A relation ⪯ ⊆ S1 × S2 is a simulation relation iff (1) s1
0⪯s2

0, (2) for every s1 ⪯ s2, (2.1)
if s1 ∈ S1

f then s2 ∈ S2
f , and (2.2) for every a ∈ Σ, for every s′

1 ∈ δ(s1, a) there exists
s′

2 ∈ δ(s2, a) such that s′
1 ⪯ s′

2. If s1 ⪯ s2, then we say that s2 simulates s1 wrt ⪯.
Let S = S1 ∪ S2. Notice that simulation relations are closed under union. Hence, there is

a unique maximal simulation relation, ≤ ⊆ S × S, which is the union of all the simulation
relations amongst states of TS1 and TS2 (i.e. all the simulation relations between TS1 and
itself, between TS2 and itself, and from TS1 to TS2 and vice-versa). Notice that ≤ is a
preorder relation (i.e. reflexive and transitive), and hence also called simulation preorder.
Similarly, simulation equivalence relation, ∼= is defined as the largest symmetric subset of
simulation preorder, ≤. I.e., s ∼= s′ iff s ≤ s′ and s′ ≤ s. Hence, it is clear that ∼= is an
equivalence relation. If s ≤ s′ we say that s′ simulates s. Recall that the states of TS(A, C)
for any ATA A and its configuration C are configurations of A. Then,

▶ Proposition 6. Let A and A′ be any ATA, and s0, s
′
0 be their initial states, respectively.

TS(A, {s}) ≤ TS(A′, {s′}) implies Lfin(A) ⊆ Lfin(A′) and Linf (A) ⊆ Linf (A′). Hence,
TS(A, {s}) ∼= TS(A′, {s′}) implies Lfin(A) = Lfin(A′) and Linf (A) = Linf (A′)

We fix an ATA A = (Q,Σ, δ, q0,Qacc, X,G). Let C and C ′ be arbitrary configurations of A.
Let ≤A, ∼=A be the simulation preorder and simulation equivalence amongst configurations
of A. That is, C ≤A C ′ iff C ′ simulates C, and C ∼=A C ′ iff C is simulation equivalent to C ′

in TS(A), the transition system corresponding to ATA A. Then, by Proposition 6:

▶ Remark 7. For any configuration C and C ′ of A, C ≤A C ′ implies L(A, C) ⊆ L(A, C ′)
and C ∼=A C ′ implies L(A, C) = L(A, C ′).

▶ Remark 8. C ⊇ C ′ implies C ≤A C ′. Hence, for any timed word ρ, if ρ, i |= A, C then
ρ, i |= A, C ′. Intuitively, the additional states in C (which are not appearing in C ′) impose
extra obligations in addition to that imposed by states common in both C and C ′ which
makes reaching the accepting configuration (hence accepting a timed word) harder from C.
For formal proof, please refer to the full version.
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▶ Remark 9. If D′ ⊆ C and D ≤A D′, then (C \ D′) ∪ D ≤A C. In other words, we can
replace the states in D′ with that in D in any configuration C, and get a configuration that
is simulated by C. Hence, L(A, (C \D′) ∪D) ⊆ L(A, C).

Proof outline of Remark 9. First, show that for any configurations E1, E2, and E if both
E1and E2 individually simulate E, then (E1 ∪ E2) simulates E. Second, substitute E1 =
C \D′, E2 = D′, and E = (C \D′) ∪D. By Remark 8, E1 and D individually simulate E.
E2 = D′ simulates D is given. Hence, E2 simulates E by transitivity of preorders. Thus,
(E1 ∪ E2) simulates E proving our remark. For full proof please refer to the full version. ◀

Both the above remarks imply the following Proposition. We abuse the notation by
writing {s} ≤A {s′} as s ≤A s′.

▶ Proposition 10. If s, s′ ∈ C and s ≤A s′ then C \ {s′} ∼=A C.

Proof. Notice that (C \ {s′}) ∪ {s} = C \ {s′}. Hence, by Remark 9, (C \ {s′}) ≤A C. By
Remark 8, C ≤A C \ {s′}. Hence proved. ◀

We use the above Proposition 10 and Lemma 14 (which holds for VWATA0,∞ and 1-ATA0,∞)
to bound the cardinality of the configuration preserving simulation equivalence. This bound
on the cardinality of configurations will imply that we need to remember only a bounded
number of clock values to simulate these configurations. Hence, we use this bound on
the cardinality of the configurations to bound the number of clock copies required while
constructing the required timed automaton.

3.2.2 Bounding Cardinality of Configurations
Intuition

We now discuss the intuition for the decidability of VWATA0,∞. The main reason for the
undecidability of ATA or VWATA is due to the unboundedness of the configuration size.
That is, the cardinality of the configurations could depend on the length of the timed word
prefix read so far. Hence, we need to keep track of an unbounded number of clocks. This
happens, because we can reset a clock x in one branch and not reset x in another branch while
taking transitions. This is a result of transitions containing clauses of the form (Xi.qi ∧Xj .qj)
where Xi ̸= Xj and Xi, Xj ⊆ X. That is, we get two states in the successive configuration
each resetting a different set of clocks. Hence, we need to remember multiple values for clock
variables that are reset in one branch and not in another. In case of ATA0,∞, we observe the
following:

Observation 1 – Let q ∈ Q≥. Due to the nature of constraints, i.e. xi ∈ (l,∞), if
we have a pair of states (q, ν1), (q, ν2) in a configuration C, such that ν1 ≤ ν2 (i.e.
∀x ∈ X.ν1(x) ≤ ν2(x)), then any timing constraint that is satisfied by ν1 will also be
satisfied by ν2. Hence, any transition that can be taken by (q, ν1) can also be taken by
(q, ν2). Moreover, after taking the same transition (time delay followed by event-based
transition) both (q, ν1) and (q, ν2) get states of the form (q′, ν′

1) and (q′, ν′
2), respectively,

in their successor configurations, such that ν′
1 ≤ ν′

2 if q′ ∈ Q≥ and ν′
1 = ν′

2 = 0 if q′ ∈ Q≤

Hence, by Proposition 10, we can delete (q, ν2) from C preserving simulation equivalence
(and hence the language). A similar argument applies for q ∈ Q≤.
Observation 2 – In 1-ATA, for any pair of valuations ν1, ν2, either ν1 ≤ ν2 or ν2 ≤ ν1.
Hence, on applying the reduction using Proposition 10 (and discussed in the previous
bullet, i.e., Observation 1), we will always get a configuration, where each location appears
at most once. Hence, the configuration size is bounded by the number of locations.
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Observation 3 – But this is not necessarily the case for multiple clocks. This is because
there could be unboundedly many incomparable valuations. For example, for 2-clocks
X = {x, y}, consider the following family of configurations parameterized by m, Cm =
{(q, x = 0.1 + nk, y = 0.9 − nk)|n ∈ {0, . . . ,m − 1}} and k = 0.8/m. |Cm| = m and all
the clock valuations are incomparable. Notice
C8 = {(q, x = 0.1, y = 0.9), (q, x = 0.2, y = 0.8) . . . (q, x = 0.9, y = 0.1)}.
Hence, as the second main step we show that, if A is a VWATA0,∞, and if we conservatively
keep on compressing the configurations as discussed in Observation 1 (using Proposition
10), we will have boundedly many incomparable clock valuations. To be precise, we will
have at most one copy of each location in the configuration. This is shown in Lemma 14.

Bounding Lemma

In this section, we will use the intuition in Observation 1 for constructing a simulation
equivalent transition system for a given 1-ATA0,∞ and VWATA0,∞ whose states are con-
figurations of given ATA A with bounded cardinality. For the 1-ATA0,∞, the intuition in
Observation 2 guarantees the case. For the multi-clock VWATA0,∞, the issues discussed in
Observation 3 must be resolved. This is resolved in Lemma 14, the main contribution of
this section. In what follows, assume A to be an ATA0,∞. We define relation ⪯ amongst
states of A. For ∼ ∈ {≤,≥}, let ⪯ be defined between states such that s ⪯ s′ iff s = (q, ν),
s′ = (q, ν′), and if q ∈ Q∼ then ν′ ∼ ν. By Observation 1 we have Proposition 11. The
formal proof appears in the full version.

▶ Proposition 11. s ⪯ s′ implies s ≤A s′.

Given any configuration C, we define Red⪯(C) as a configuration C ′ obtained from C, by
deleting all states s′ ∈ C ′ if there exists a state s ∈ C ′, such that s ≠ s′, and s ⪯ s′.
Intuitively, we delete some information from a configuration that is redundant in deciding
whether a timed behaviour from that state is accepted or not.

Let C0 be the initial configuration of A. Let TS(A) = (C, C0, (R≥0 × Σ),→A) be the
transition system corresponding to A. We define Tred(A) as a transition system Tred(A) =
(C, C ′

0, (R≥0 × Σ),→A,red) such that C ′
0 = Red⪯(C0) and for any C,C ′, D,D′ ∈ C, a ∈ Σ,

and t ∈ R≥0, C (t,a)−−−→A C ′ iff D
(t,a)−−−→A,red D

′, D = Red⪯(C), and D′ = Red⪯(C ′). By
Proposition 12, TS(A) is simulation equivalent to Tred(A). The following Proposition is
implied by Proposition 10 and 11.

▶ Proposition 12. C ∼=A Red⪯(C). Hence, TS(A) and Tred(A) are simulation equivalent.

▶ Remark 13. Any run R′ is a run of Tred(A) iff R′ = Img(R) for some run R of A, where
Img(R) is defined as follows. R = C0

(t0,a0)−−−−→A C1
(t1,a1)−−−−→A C2 . . ., we define Img(R) as run

R′ = C ′′
0

(t0,a0)−−−−→ C ′′
1

(t1,a1)−−−−→ C ′′
2 . . . where C ′

0 = C ′′
0 = Red⪯(C0) and ∀i ≥ 0.C ′′

i

(ti,ai)−−−−→A C ′
i

and C ′′
i = Red⪯C

′
i.

▶ Lemma 14. Let A = (Q,Σ, δ, q0,Qacc, X,G) be either an 1-ATA0,∞ or VWATA0,∞ . Let
R be a run of A, and R′ = Img(R) = C ′′

0 (t0, a0)C ′′
1 (t1, a1) . . ., then for all i ≥ 1, C ′′

i does not
contain states (q, ν) and (q, ν′) where ν ̸= ν′ for any q ∈ Q. In other words, every location
q ∈ Q appears at most once in any configuration C ′′

i for any i ≥ 1. Hence, |C ′′
i | ≤ |Q|.

Proof (sketch). Notice that if A was 1-ATA0,∞, the above statement is straightforward as
no two clock valuations are incomparable in the case of 1-clock. We now show the same
for A being a multi-clock VWATA0,∞. We just present intuition behind the proof idea. A
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formal proof is proved using DAG semantics of ATA and can be found in the full version.
We prove this by contradiction. Assumption 1 - Suppose k is the smallest number such that
C ′′

k contains two copies of some location q ∈ Q. Hence, there exists ν and ν′ such that ν′ is
incomparable to ν and (q, ν), (q, ν′) ∈ C ′′

k . Then, the following cases are possible:
Case 1 - Both (q, ν), (q, ν′) appeared from the same location p in C ′′

k−1. But, by condition
(3) of VWATA, all the transitions from location p to location q reset the same set of clocks.
Moreover, by assumption 1, location p appears at most once in C ′′

k−1. Let (p, νp) ∈ C ′′
k−1.

Then both the clock valuations ν and ν′ should be identical as they result from the same
state (p, νp) resetting the same set of clocks.
Case 2 - (q, ν), (q, ν′) appeared from distinct location (p, νk−1) and (p′, ν′

k−1) in C ′′
k−1. By

condition (3) of VWATA there is at most one location q′ ̸= q from which there are transitions
entering location q. Moreover, all these transitions reset the same set of clocks. Hence, one
of p and p′ has to be q. Wlog p = q. It suffices to show that whenever such a case occurs,
the clock valuation of the state that results from the self-loop (in this case ν) is always
greater than or equal to the valuation from the other (in this case ν′) (Statement 1). Hence,
ν′ ≤ ν which leads to a contradiction. We just present the intuition with an example. Let
ρ = (a1, τ1), (a2, τ2). Suppose, (q0,0) is the initial location of the automaton as drawn in
Figure 2. Let k = 2. Notice the run in the Figure, C1 = {(q0, ν1), (q1, ν

′
1)} where if x ∈ X ′,

ν′
1(x) = 0 ≤ ν1(x) = τ1. Else, ν1(x) = ν′

1(x) = τ1. Similarly, C2 = {(q0, ν2), (q1, ν
′), (q1, ν)},

where (q1, ν) results from the self loop and (q1, ν
′) results from the transition from q0. Hence,

if x = X ′, ν(x) = 0 ≤ ν′(x) = τ2 − τ1. Else, ν1(x) = ν′
1(x) = τ2. In other words, while

reaching both (q1, ν) and (q1, ν
′) from the initial configuration, the same set of clock X ′ was

reset. But, in the case of the former, they were reset before the latter. Hence, ν and ν′ agree
on all the clock values not in X ′ and ν ≥ ν′ for all the clocks in X. Applying this argument
inductively we can prove Statement 1. We believe it is more intuitive to prove the result
using the DAG semantics of ATA. Hence, the full proof can be found in the full version,
where we introduce the semantics too. ◀

a Y := 0q0 q1
a

(q0, 0)
(q0, ν1)
(q1, ν′ 1)

(q0, ν2)
(q1, ν′ )
(q1, ν)

(a, τ1) (a, τ2)

Y := 0
Y := 0C0

C1

C2

∧

Figure 2 The red and green transitions denote those without resets, and the blue ones with
resets. Notice the paths from C0 to C2. The Blue-Green and Red-Blue path reset the same set of
clocks Y . But the former resets the clocks earlier (in the first step) as compared to the latter (in
the second step). Hence in the former, clocks in Y get a chance to progress between C1 and C2.
Moreover, both the paths should agree on the value of clocks not in Y as they are not reset in both
these paths. Hence, ν′ ≤ ν.

3.2.3 From VWATA0,∞ to Timed Automata
In this section, we propose an on-the-fly construction from VWATA0,∞ to Timed Automata.
The termination relies on Lemma 14. The main idea is to bind the number of active clocks
using Lemma 14. Given a VWATA0,∞ or 1 − ATA0,∞, A = (Q,Σ, δ, q0,Qacc, X,G,Q≥,Q≤)
we get a timed automaton A = (Q,Σ,∆, q′

0,Qacc, X × {0, . . . , |Q| − 1},G) and at every step
we reduce the size of the location q ∈ Q preserving simulation equivalence. Let V be set of

CONCUR 2023
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q′ 0 = (q0, (x,0), (y,0), Act(x) = Act(y) = [0])

b

q′ 1 = ((q0, (x,0), (y,0)), (q1, (x,1), (y,0)), Act(x) = [0,1], Act(y) = [0])

ab

q′ 2 = ((q0, (x,0), (y,0)), (q1, (x,2), (y,0)), (q1, (x,1), (y,0)), Act(x) = [0,1, 2 ], Act(y) = [0])

a

q′ 3 = ((q0, (x,0), (y,0)), (q1, (x,2), (y,0)), (q2, (x,1), (y,1)), Act(x) = [0,1,2], Act(y) = [0,1])

a

(x,1) ≤ 2

q′ 4 = ((q0, (x,0), (y,0)), (q1, (x,2), (y,0)), Act(x) = [0,2], Act(y) = [0])

b

b
(x,1) ≤ 3,(y,1) ≤ 2

(x,1) := 0

(x,2) := 0

(x,2) := 0
(y,1) := 0

a

q′ 5 = ((q0, (x,0), (y,0)), (q1, (x,1), (y,0)), (q2, (x,2), (y,1)), Act(x) = [0,2,1], Act(y) = [0,1])(x,2) ≤ 2

(x,1) := 0,(y,1) := 0

b (x,2) ≤ 3,(y,1) ≤ 2

a,

q′ 6 = ((q0, (x,0), (y,0)), (q1, (x,1), (y,0)),
(q1, (x,2), (y,0)), Act(x) = [0,2, 1 ], Act(y) = [0])(x,1) := 0

Figure 3 Steps in the construction of A corresponding to our running example. With the color
coding in q′

1, q′
2, it is easy to see that q′

2 is same as q′
1 on removing the circled entities in q′

2. Same
with q′

4 and q′
6.

all the functions of the form v : X 7→ {0, . . . , |Q| − 1}. Let L be a set of all the functions
from Q to V ∪ {0}. Let Active be a set of all the functions from X to a sequence (without
duplicate) over {0, 1 . . . |Q − 1|}. Then Q = L × Active. Intuitively, we replace the bunch
of conjunctive transitions C into a single transition, similar to the subset construction for
converting Alternating Finite Automata (AFA) to Non-Deterministic Finite Automata (NFA).
But notice that we can have clauses (or conjunctions) of the form q ∧X ′.q′. Hence, simple
subset construction won’t work as we need to spawn multiple copies of clocks in X ′, wherein
one of the elements of the new location {q, q′} they are reset while in another they are not. In
general, there could be an unbounded number of such clock copies required for a single clock,
x ∈ X. But due to Lemma 14, if we make sure to compress the states (and hence remove
redundant clocks), we need to keep at most |Q| copies for each clock in X. In principle, we
are constructing an NTA A whose transition system TS(A) is simulation equivalent to the
LTS Tred(A) (see the full version Proposition 19) and hence to input VWATA0,∞ TS(A).
Thus, by Proposition 6, L(A) = L(A). We present the idea via our running example.

3.2.4 Construction on Running Example
Please refer to the VWATA0,∞ of our running example Figure 1. We now illustrate the
construction on our running example. We start with location q0, with the 0th copies of clock
x and y. Hence

q′
0 = {(q0, (x, 0)(y, 0)),Active(x) = [0],Active(y) = [0]}.

This corresponds to the configuration C0 = {(q0,0X)} of A. In the input automaton, the
transitions from q0 on a is defined by δ(q0, a) = q0 ∧x.q1. Hence, we need to spawn a new copy
of clock x as it is reset in one transition and not in another. We associate this new copy of clock
x with the branch that resets x, i.e., this new clock x is associated with location q1. Hence,
we have ∆(q′

0, a) = (x, 1).q′
1 where q′

1 = {(q0, (x, 0), (y, 0)), (q1, (x, 1)(y, 0)),Active(x) =
0 ≥ 1,Active(y) = 0}. Intuitively, q′

1 corresponds to the configurations of the form
C1 = {(q0, ν

1
0), (q1, ν

1
1)} of A, where ν1

0(x) = value of (x, 0), ν1
1(x) = value of (x, 1), and
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aq′ 0

b

b

q′ 1 q′ 3

q′ 4q′ 5

a, b

a, (x,1) ≤ 2

(x,1) ≤ 3
(y,1) ≤ 2

a, b

a, (x,2) ≤ 2

b(x,2) ≤ 3
(y,1) ≤ 2

(x,2) := 0
(y,1) := 0

(x,1) := 0
(y,1) := 0

(x,1) := 0

Figure 4 Final Automata after applying the reductions.

ν1
0(y) = ν1

1(y) = value of (y, 0). We continue with this new location. Hence, we will consider
the transitions from both q0 and q1 on a. The component ((q0, (x, 0), (y, 0))) on a again spawns
a new copy of clock x as it resets the clock in one while not resetting on self-loop, hence, getting
{(q0, (x, 0), (y, 0)), (q1, (x, 2)(y, 0))} (possibility 1 from q0, the only possibility). Notice that
we spawned (x, 2) as (x, 1) is in use by q1 already. The component (q1, (x, 1)(y, 0)) will be com-
puted using the transition function of input automaton, i.e. δ(q1, a) = (y.q2∧x ≤ 2)∨q1. Here,
we either stay at q1 with the same set of clock copies as before (possibility 1 from q1), or we
need a new copy of y while simultaneously checking for the clock copy of x corresponding to loc-
ation q1 (i.e. (x, 1)) is ≤ 2 (possibility 2 from q1). Combining the possibilities 1 from q0 and q1
we get, {(q0,(x,0),(y,0),(q1,(x,2),(y,0))(q1,(x,1),y,0),Active(x)=[0≥1≥2],Active(y)=[0]}. But q ∈ Q≤. Hence,
if we can reach the accepting state from (q1, (x, 1), (y, 0)) then we can reach the accepting state
from (q1, (x, 2), (y, 0) too, as value of (x, 1) ≥ value of (x, 2) (this fact is also encoded in the
Active(x) sequence). Thus, (q1, (x, 2), (y, 0)) can be removed from the new location without
affecting simulation equivalence (and hence language equivalence). This corresponds to the
removal of redundant states in the construction of the runs of Tred(A) from T (A). Hence,
after deletion we get q′

2={(q0,(x,0),(y,0),✭✭✭✭✭✭(q1,(x,2),(y,0)),(q1,(x,1),y,0),Active(x)=[0≥1✟✟≥2],Active(y)=[0]}=q′
1.

Thus, combining result of the transition of q0 on a and possibility 1 from q1 we get
q′

1={q0,(x,0),(y,0),(q1,(x,1),y,0),Active(x)=0≥1,Active(y)=0}.
Combining results possibility 1 from q0 and possibility 2 from q1, we get
{q0,(x,0),(y,0),(q1,(x,2),(y,0)), (q2,(x,1),(y,1))Active(x)=0≥2≥1,Active(y)=0≥1.}=q′

3 if (x, 1) ≤ 2. Note that
each location from Q appears at most once in q′

3. Hence, there is no scope of reduction.
Combining the above two combination of possibilities, ∆(q′

1, a) = q′
1 ∨ (y, 1).(q′

3 ∧ x ≤ 2).
Continuing this we get the resulting NTA A equivalent to the input formula ϕ. Notice that
we are eliminating the conjunctive transitions using subset like construction and keeping
the disjunctions as it is. Hence, after eliminating all the conjunctive transitions the reduced
automata contains only disjunctions amongst different locations in the output formulae of
the transitions giving an NTA. Refer to Figures 3, 4.

3.2.5 Worst Case Complexity

By construction in [2], the number of states in the region automata of A = W ≤ |Q| ×
(|X| × |Q|)! × 2 × (cmax + 1) where cmax is the max constant used in the guards in G and
|Q| = |Q| × (|X||Q| + 1) × (|Q|!)|X|. Hence, W = O(2P oly(|A|)) implying that the emptiness
could be checked in NPSPACE = PSpace . Notice that the state containing the location
(L,Act) will only have to store the region information of active clocks, which, in practice,
could be much less than the worst case. Hence, lazily spawning clock copies may result in
NTA with much less number of clocks than the worst case (i.e. |X| × |Q|).
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4 Expressiveness of TPTL0,∞

We now compare the expressive power of 1-TPTL0,∞ with respect to that of MITL.

4.1 Metric Temporal Logic(MTL)
MTL is a real-time extension of LTL where the U modality is guarded with an interval.
Syntax of MTL is defined as follows. φ ::= a |⊤ |φ ∧ φ | ¬φ | φUIφ,

where a ∈ Σ and I ∈ Iint. For a timed word ρ = (σ1, τ1)(σ2, τ2) . . . (σn, τn) ∈ TΣ∗, a position
i ∈ dom(ρ), an MTL formula φ, the satisfaction of φ at a position i of ρ, denoted ρ, i |= φ, is
defined as follows. We discuss only the semantics of temporal modalities. Boolean operators
mean as usual. ρ, i |= φ1UIφ2 iff ∃j > i.ρ, j |= φ2, τj − τi ∈ I, and ∀i < k < j.ρ, k |= φ1.
As usual, FI(ϕ) = ⊤UIϕ, G(ϕ) = ¬FI¬ϕ , NextIϕ = ⊥UIϕ. The language of an MTL formula
φ is defined as L(φ) = {ρ|ρ, 1 |= φ}. The subclass of MTL where the intervals I in the “until”
modalities are restricted to be non-punctual is known as Metric Interval Temporal Logic
(MITL) . MITL0,∞ [1, 3, 13] is the subclass of MTL where intervals are restricted in I0,∞

int .
Satisfiability Checking for MITL (MITL0,∞) is ExpSpace -complete (PSpace -complete)
[4, 1, 3]. MITL is strictly more expressive than MITL0,∞ in pointwise semantics [12].
▶ Remark 15. Any MTL formula can be translated to an equivalent 1-TPTL (closed) formula
using the following equivalence recursively. φ1UIφ2 ≡ x.(φ1Uφ2 ∧ x ∈ I).

4.2 Expressiveness of TPTL0,∞

▶ Theorem 16. 1-TPTL0,∞ is strictly more expressive than MITL.

Proof. Both MITL and 1-TPTL0,∞ are closed under all boolean operations. Hence, we just
need to show that any formula of the form φ′UIφ is expressible in 1-TPTL0,∞. Notice that,
any MITL formula φ′U[l,u)φ ≡ [G[0,l){φ′ ∧ (φ′Uφ)}] ∧ [F[l,l+1)φ ∨ F[l+1,l+2)φ . . .F[u−1,u)φ].
(similar reduction applies for other kinds of intervals). G[0,l)(φ′ ∧ (φ′Uφ)) is already in
MITL0,∞ (and hence in 1-TPTL0,∞ by remark 15). Hence, it suffices to encode modalities
of the form F[l,l+1) using 1-TPTL0,∞ formula. Let ρ = (a1, τ1), (a2, τ2) . . . be any timed
word. Let i ∈ dom(ρ) be any point. ρ, i |= F[l,l+1)(φ) iff there exists a point i′ > i such that
τi′ − τi ∈ [l, l + 1) and ρ, i′ |= φ. ρ has a point i′ within [l, l + 1) interval from i where φ
holds iff there exist earliest such point j (j ≤ i′) within [l, l + 1) from i where φ holds iff
there is a point j′ > i such that τj′ − τi ≥ l (i.e. ρ, i |= ϕ0 = F[l,∞)φ), and let j be the first
point such that τj − τi ≥ l, and ρ, j |= φ. Such a point exists due to ϕ0. Then:

Case 1: Either there is no point strictly between i and j where φ holds. Then occurrence
of j within l + 1 can be expressed using formula, ϕ1 = ¬F[0,l)φ ∧ F[0,l+1)φ.
Case 2: Or there exists a point k such that τj − τk < 1, τk − τi ∈ [l − 1, l), and ρ, k |= φ.
Equivalently, i satisfies ϕ2 = G[l−1,l)(F[0,1](φ)),
Case 3: Or there exists a point k with i < k < j such that τj − τk ≥ 1, ρ, k |= φ, and
∀k < k′ < j.ρ, k′ ̸|= φ.
(1) Such a point k satisfies ϕapproach = φ ∧ G[0,1)(¬φ). Indeed a key property is that k,
the last point in [0, l) satisfying ϕ, satisfies ϕapproach. By the definition of k, i.e., there are
no occurrences of φ after k in [0, l).
(2) Notice that any two point k1 and k2 satisfying ϕapproach are at least a unit time
apart. Hence, there could be at most l points satisfying ϕapproach within [0, l). Then,
the following 1-TPTL0,∞ formula Countϕapproach(n) with parameter n states that there
are exactly n points, 1 ≤ n ≤ l within [0, l) of point i where ϕapproach holds. Here,
Countϕapproach(n) = ϕ≥n ∧ ¬ϕ≥n+1, where ϕ≥n = x.((¬ϕapproach)U(ϕapproach∧
((¬ϕapproach)U(ϕapproach ∧ . . .︸︷︷︸

n−3

∧((¬ϕapproach)U(ϕapproach ∧ x < l) . . .))).



S. N. Krishna, K. N. Madnani, R. Majumdar, and P. K. Pandya 23:15

Observe that for a given timed word and interval [0, l] from i, there is a unique n satisfying
this formula Countϕapproach(n).
(3) Using this n, the formula γ(n, φ) = x.(¬ϕapproachU(ϕapproach ∧ ¬ϕapproachU(ϕapproach ∧
. . .︸︷︷︸
n−3

∧((¬ϕapproach)U(ϕapproach ∧ G(x ≤ l ∨ ¬φ) ∧ F(φ ∧ x < l + 1)) . . .)) holds if after n

occurrences of ϕapproach (which gives point k), the next occurrence of φ occurs before time
l + 1.
Hence, case 3 is characterized by the formula ϕ3 =

l∨
n=1

Countϕapproach(n) ∧ γ(n, φ).

Hence, the required formula ψ = ϕ0 ∧ (ϕ1 ∨ ϕ2 ∨ ϕ3).
For strict containment of MITL, consider the formula β = x.F(b ∧ F(b ∧ x ≤ 1)). This

specifies, there exist at least two points within the next unit interval where b holds. [15, 29, 23]
show that this formula is not expressible even in MTL. ◀

5 Discussion and Conclusion

Ferrère [8] proposed an extension of LTL with Metric Interval Regular Expressions called
Metric Interval Dynamic Logic (MIDL) and showed it to be more expressive than EMITL
of [35]. We claim that our proof of PSpace completeness for 1-ATA0,∞ emptiness implies
the same for MIDL0,∞ satisfiability strictly generalizing the results and techniques of [16]
which proved the same for EMITL0,∞. This resolves one of the “future directions” of [16].

Authors in [19] generalized the notion of non-punctuality to non-adjacency for 1-TPTL.
We remark that unfortunately, this notion doesn’t help in making 2-TPTL decidable. Notice
that φ = Gx.{¬ϕ∨ Fy.(⊤∧x ∈ [1, 2] ∧ F(ϕ1 ∧x ∈ [1, 2] ∧y ∈ [1, 2]))} ≡ G[ϕ → F[1,1](F[1,1]ϕ1)].
Because, for any point i where φ holds there is a point j in the future such that τj −τi ∈ [1, 2],
and from that point j there is a point k in the future where ϕ2 holds such that τk − τj ∈ [1, 2]
and τk − τi ∈ [1, 2]. Solving the inequalities we get, τj − τi = 1 and τk − τi = 2. Hence, φ can
express some restricted form of punctual timing properties which leads to the undecidability
of satisfiability using encoding similar to [25].

MITL0,∞ was extended with Counting (TLC) and Pnueli (TLP) modalities by [15]
to increase the expressiveness, meanwhile maintaining the decidability in EXPSPACE
and PSPACE, respectively. These logics TLP and TLC have the same expressive power
in continuous semantics. While these logics were strictly more expressive than MITL
in continuous semantics, in pointwise semantics they are incomparable. This is due to
inexpressivity of arbitrary non-punctual metric constraints using unilateral metric interval
constraints in pointwise semantics (see [16]). However, TLP and TLC properties are trivially
expressible in TPTL0,∞ (one clock and nested until), making our logic strictly more expressive
than these. As one of our future works, we would like to show that TLCI and TLPI (extensions
of TLP and TLC using arbitrary non-punctual intervals) which are decidable in EXPSACE
are expressible in TPTL0,∞.

Finally, we leave open (i) the extension of this work with Past modalities, (ii) FOL-like
characterizations of TPTL0,∞, and (iii) whether adding multiple clocks in TPTL0,∞ improves
expressiveness.
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Abstract
In parametric lock-sharing systems processes can spawn new processes to run in parallel, and can
create new locks. The behavior of every process is given by a pushdown automaton. We consider
infinite behaviors of such systems under strong process fairness condition. A result of a potentially
infinite execution of a system is a limit configuration, that is a potentially infinite tree. The
verification problem is to determine if a given system has a limit configuration satisfying a given
regular property. This formulation of the problem encompasses verification of reachability as well as
of many liveness properties. We show that this verification problem, while undecidable in general, is
decidable for nested lock usage.

We show Exptime-completeness of the verification problem. The main source of complexity is
the number of parameters in the spawn operation. If the number of parameters is bounded, our
algorithm works in Ptime for properties expressed by parity automata with a fixed number of ranks.
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1 Introduction

Locks are a widely used concurrency primitive. They appear in classical programming
languages such as Java, as well as in recent ones such as Rust. The principle of creating
shared objects and protecting them by mutexes (like the “synchronized” paradigm in Java)
requires dynamic lock creation. The challenge is to be able to analyze programs with dynamic
creation of threads and locks.

Our system model is based on Dynamic Pushdown Networks (DPNs) as introduced in [7],
where processes are pushdown systems that can spawn new processes. The DPN model was
extended in [20] by adding synchronization through a fixed number of locks. Here we take
a step further and allow dynamic lock creation: when spawning a new process, the parent
process can pass some of its locks, and new locks can be created for the new thread. This
way we model recursive programs with creation of threads and locks. We call such systems
dynamic lock-sharing systems (DLSS).

The focus in both [7] and [20] is computing the Pre∗ of a regular set of configurations, and
they achieve this by extending suitably the saturation technique from [6]. Here we consider
not only reachability but also infinite behaviors of DLSS under fairness conditions. For this
we propose a different approach than saturation from [7,20] as saturation is not suited to
cope with liveness properties.
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We show that verifying regular properties of DLSS is decidable if every process follows
nested lock usage. This means that locally every process acquires and releases the locks
according to the stack discipline. Nested locking is assumed in most papers on parametric
verification of systems with synchronization over locks. It is also considered as good pro-
gramming practice, sometimes even enforced syntactically, as in Java through synchronized
blocks.

Without any restriction on lock usage we show that our problem is undecidable, even for
finite state processes and reachability properties that refer to a single process. Note that
our model does not have global variables. It is well-known that reachability is undecidable
already for two pushdown processes with one lock and one global variable.

Outline of the paper. Our starting point is to use trees to represent configurations of DLSS.
This representation was introduced in [20]. The advantage is that it does not require to talk
about interleavings of local runs of processes. Instead it represents every local run as a left
branch in a tree and the spawn operations as branching to the right. At each computation
step one or two nodes are added below a leaf of the current configuration. Thus, the result
of a run of DLSS is an infinite tree that we call a limit configuration. Our first observation is
that it is easy to read out from a limit configuration of a run if the run is strongly process-fair
(Proposition 3).

An important step is to characterize those trees that are limit configurations of runs
of a given finite state DLSS, namely where every process is a finite state system. This is
done in Lemma 11. To deal with lock creation this lemma refers to the existence of some
global acyclic relation on locks. We show that this global relation can be recovered from local
orderings in every node of the configuration tree (Lemma 12). Finally, we show that there is
a nondeterministic Büchi tree automaton verifying all the conditions of Lemmas 11 and 12.
This is the desired tree automaton recognizing limit configurations of process-fair runs.
Our verification problem is solved by checking if there is a tree satisfying the specification
and accepted by this automaton. This way we obtain the upper bound from Theorem 7.
Surprisingly the size of the Büchi automaton is linear in the size of DLSS, and exponential
only in the arity of the DLSS, which is the maximal number of locks a process can access. For
example, in the dining philosophers setting (cf. Figure 1) the arity is 3, as every philosopher
has access only to its left and right forks, implemented as locks; and there is one more fork
to close the cycle.

The extension of our construction to pushdown processes requires one more idea to get
an optimal complexity. In this case, ensuring that the limit tree represents a computation
requires using pushdown automata. Hence, the Büchi tree automaton as described in the
previous paragraph becomes a pushdown Büchi automaton on trees. The emptiness of
pushdown Büchi tree automata is Exptime-complete, which is an issue as the automaton
constructed is already exponential in the size of the input. However, we observe that the
automata we obtain are right-resetting, since new threads are spawned with empty pushdown.
Intuitively, the pushdown is needed only on left paths of the configuration tree to check
correctness of local runs. A right-resetting automaton resets its stack each time it goes to the
right child. We show that the emptiness of right-resetting parity pushdown tree automata
can be checked in Ptime if the biggest rank in the parity condition is fixed (if it is not fixed
then the problem is at least as complex as solving parity games). This gives the upper bound
from Theorem 8.

Finally, we obtain the matching lower bound by proving Exptime-hardness of checking
if a process of the DLSS has an infinite run (Proposition 22). This holds even for finite state
processes. We also show that even for finite state processes the DLSS verification problem is
undecidable if we allow arbitrary usage of locks (Theorem 5).
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Related work. Parametrized verification has remained an active research area for almost
three decades [1, 5, 13]. It has brought a steady stream of works on parametric systems with
locks. As already mentioned, the first directly relevant paper is [7] introducing Dynamic
Pushdown Networks (DPNs). These consist of pushdown processes with spawn but no
locks. The main idea is to represent a configuration as a sequence of process identifiers, each
identifier followed by a stack content. Computing Pre∗ of a regular set of configurations is
decidable by extending the saturation technique from [6].

An important step is made in [20] where the authors introduce a tree representation of
configurations. This is essentially the same representation as we use here. They extend DPNs
by a fixed set of locks, and show how to adapt the saturation technique to compute Pre∗

in this case. Their result is an Exptime decision procedure for verifying reachability of a
regular set of configurations. This work has been extended to incorporate join operations [12],
or priorities on processes [9]. Our work extends [20] in two directions: it adds lock creation,
and considers liveness properties. It is not clear how one could extend saturation methods to
deal with liveness properties.

The saturation method has been adapted to DPNs with lock creation in the recent
thesis [17]. The approach relies on hyperedge replacement grammars, and gives decidability
without complexity bounds. Our liveness conditions can express this kind of reachability
conditions.

Actually, the first related paper to deal with lock creation is probably [25]. The authors
consider a model of higher-order programs with spawn, joins, and lock creation. Apart
from nested locking, a new restriction of scope safety is imposed. Under these conditions,
reachability of pairs of states is shown to be decidable.

The works above have been followed by implementations [9, 18, 25]. In particular [9]
reports on verification of several substantial size programs and detecting an error in xvisor [8].

In all the works above nested locking is assumed. In [16] the interest of nested locking
is underlined by showing that reachability with two pushdown processes using locks is
undecidable in general, but it is decidable for nested locking. There are only few related
works without this assumption. The work [15] generalizes nested locking to bounded lock-
chain condition, and shows decidability of reachability for two pushdown processes. In [19]
the authors consider contextual locking where arbitrary locking may occur as long as it does
not cross procedure boundaries. This condition is incomparable with nested locking.

Finally, we comment on shared state and global variables. These are not present in the
above models because reachability for two pushdown processes with one lock and one global
variable is already undecidable. There is an active line of study of multi-pushdown systems
where shared state is modeled as global control. In this model decidability is recovered
by imposing restrictions on stack usage such as bounded context switching and variations
thereof [2,22–24]. Observe that these are restrictions on global runs, and not on local runs of
processes, as we consider here. Another approach to recover decidability is to have shared
state but no locks [10, 11, 14, 21]. Finally, there is a very interesting model of threaded
pools [3, 4], without locks, where verification is decidable once again assuming bounded
context switching. But the complexity of this model is as high as Petri net coverability [4].

Structure of the paper. The next section presents the main definitions and results. The
main proof for finite state processes is outlined is Sections 3 and 4. Section 5 describes the
extension to pushdown processes. Missing proofs can be found in the appendix of the full
version on arXiv.
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2 Definitions and results

A dynamic lock-sharing system is a set of processes, each process has access to a set of locks
and can spawn other processes. A spawned process can inherit some locks of the spawning
process and can also create new locks. All processes run in parallel. A run of the system
must be fair, meaning that if a process can move infinitely many times then it eventually
does.

More formally, we start with a finite set of process identifiers Proc. Each process identifier
p ∈ Proc has an arity ar(p) ∈ N telling how many locks the process uses. The process can
refer to these locks through the variables Var(p) = {xp

1, . . . , xp
ar(p)}. At each step a process

can do one of the following operations:

Op(p) ={nop} ∪ {getx, relx | x ∈ Var(p)}
∪ {spawn(q, σ) | q ∈ Proc, σ : Var(q) → (Var(p) ∪ {new})}

Operation nop does nothing. Operation getx acquires the lock designated by x, while relx

releases it. Operation spawn(q, σ) spawns an instance of process q where every variable of
q designates a lock determined by the substitution σ; this can be a lock of the spawning
process or a new lock, if σ(xq) = new. We require that the mapping σ is injective on Var(p).
This is important for the definition of nested stack usage.

A dynamic lock-sharing system (DLSS for short) is a tuple

S = (Proc, ar , (Ap)p∈Proc, pinit , Locks)

where Proc, and ar are as described above. For every process p, Ap is a transition system
describing the behavior of p. Process pinit ∈ Proc is the initial process. Finally, Locks is an
infinite pool of locks.

Each transition system Ap is a tuple (Sp, Σp, δp, opp, initp) with Sp a finite set of states,
initp the initial state, Σp a finite alphabet, δp : Sp × Σp → Sp a partial transition function,
and opp : Σp → Op(p) an assignment of an operation to each action. We require that the
Σp are pairwise disjoint, and define Σ =

⋃
p∈Proc Σp. We write op(b) instead of opp(b) for

b ∈ Σp, as b determines the process p.
For simplicity, we require that pinit is of arity 0. In particular, process pinit has no get

or rel operations.
An example in Figure 1 presents a DLSS modeling an arbitrary number of dining

philosophers. The system can generate a ring of arbitrarily many philosophers, but can also
generate infinitely many philosophers without ever closing the ring.

A configuration of S is a tree representing the runs of all active processes. The leftmost
branch represents the run of the initial process pinit , the left branches of nodes to the right
of the leftmost branch represent runs of processes spawned by pinit etc. So a leaf of a
configuration represents the current situation of a process that is started at the first ancestor
above the leaf that is a right child. A node of a configuration is associated with a process,
and tells in what state the process is, which locks are available to it, and which of them it
holds.

More formally, a configuration is a, possibly infinite, tree τ ⊆ {0, 1}∗, with each node ν

labeled by a tuple (p, s, a, L, H) where p ∈ Proc is the process executing in ν, s ∈ Σp the
state of p, a ∈ Σp the action p executed at ν, or ⊥ ̸∈ Σ if ν is a root, L : Var(p) → Locks
an assignment of locks to variables of p, and H ⊆ L(Var(p)) the set of locks p holds before
executing a. We use p(ν), s(ν), a(ν), L(ν) and H(ν) to address the components of the label
of ν. For ease of notation we will write Var(ν) instead of Var(p(ν)).
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pinit : spawn(first, new, new)
first(xl, xr) : spawn(phil, xl, xr); spawn(next, xr, new, xl)

next(xl, xr, xlfirst) : or
{

spawn(phil, xl, xlfirst)
spawn(phil, xl, xr); spawn(next, xr, new, xlfirst)

phil(xl, xr) : repeat-forever or
{

getxl
; getxr

; eat; relxr
; relxl

getxr
; getxl

; eat; relxl
; relxr

Figure 1 Dining philosophers: process first starts the first philosopher and an iterator process
next starts successive philosophers. The forks, modeled as locks, are passed via variables xl and
xr. The third variable xlfirst of next is the left fork of the first philosopher used also by the last
philosopher. The system is nested as phil takes and releases forks in the stack order. The arity of
the system is 3.

We write H(τ) for the set of locks ultimately held by some process in τ , that is, H(τ) =
{ℓ : for some ν, ℓ ∈ H(ν′) for all ν′ on the leftmost path from ν}. If τ is finite this is the
same as to say that H(τ) is the union of H(ν) over all leaves ν of τ .

The initial configuration is the tree τinit consisting only of the root ε labeled by
(pinit , initp, ⊥, ∅, ∅). Suppose that ν is a leaf of τ labeled by (p, s, b, L, H), and there is
a transition s

a−−→ s′ for some s′ in Ap. A transition between two configurations τ
ν,a−−→ τ ′ is

defined by the following rules.
If op(a) = spawn(q, σ) then τ ′ is obtained from τ by adding two children ν0, ν1 of
ν. The label of the left child ν0 is (p, s′, a, L, H). The label of the right child ν1 is
(q, initq, ⊥, L′, ∅) where L′(xq) = L(σ(xq)) if σ(xq) ̸= new and L′(xq) = ℓν,xq is a fresh
lock, otherwise.
Otherwise, τ ′ is obtained from τ by adding a left child ν0 to ν. The label of ν0 must be
of the form (p, s′, a, L, H ′) subject to the following constraints:

If op(a) = nop then H ′ = H,
If op(a) = getx and L(x) ̸∈ H(τ) then H ′ = H ∪ {L(x)},
If op(a) = relx and L(x) ∈ H then H ′ = H \ {L(x)}.

Note that we do not allow a process to acquire a lock it already holds, or release a lock it
does not have. We call this property soundness.

A run is a (finite or infinite) sequence of configurations τ0
ν1,a1−−−→ τ1

ν2,a2−−−→ · · · . As the trees
in a run are growing we can define the limit configuration of that run as its last configuration
if it is finite, and as the limit of its configurations if it is infinite.
▶ Remark 1. Note that in a run, at every moment distinct variables of a process are associated
with distinct locks: L(νi)(x) ̸= L(νi)(y) for all x, y ∈ Var(νi) with x ̸= y.
▶ Remark 2. The labels L and H can be computed out of the other three labels in the tree
just following the transition rules. We could have defined configurations as trees with only
three labels (p, s, a), but we preferred to include L and H for readability. Yet, later we will
work with tree automata recognizing configurations and there it will be important that the
labels come from a finite set.

A configuration τ is fair if for no leaf ν there is a transition τ
ν,a−−→ τ ′ for some a and τ ′.

We show that this compact definition of fairness captures strong process fairness of runs.
Recall that a run is strongly process-fair if whenever from some position in the run a process
is enabled infinitely often then it moves after this position.
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▶ Proposition 3. Consider a run τ0
ν1,a1−−−→ τ1

ν2,a2−−−→ · · · and its limit configuration τ . The
run is strongly process-fair if and only if τ is fair.

Objectives. Instead of using some specific temporal logic we stick to a most general
specification formalism and use regular tree properties for specifications. A regular objective
is given by a nondeterministic tree automaton B over Σ ∪ {⊥}, which defines a language of
accepted limit configurations. The trees we work with can have nodes of rank 0, 1, or 2.
So we suppose that the alphabet is partitioned into Σ0, Σ1 and Σ2. The nondeterministic
transition function reflects this with δ(q, a) ⊆ {⊤} if a ∈ Σ0, δ(q, a) ⊆ Q if a ∈ Σ1, and
δ(q, a) ⊆ Q × Q if a ∈ Σ2. A run of the automaton on a tree t is a labeling of t with states
respecting δ. In particular if ν is a leaf of t then ⊤ ∈ δ(q, a), where q is the state and a is the
letter in ν. A run is accepting if for every infinite path the sequence of states on this path
is in the accepting set of the automaton. We will work with accepting sets given by parity
conditions. We say that a configuration τ satisfies B when B accepts the tree obtained from
τ by restricting only to action labels.

Regular objectives can express many interesting properties. For example, “for every
instance of process p its run is in a regular language C”. Or more complicated “there is an
instance of p with a run in a regular language C1 and all the instances of p have runs in
the language C2”. Of course, it is also possible to talk about boolean combinations of such
properties for different processes. Observe that the resulting automaton B for these kinds
of properties can be a parity automaton with ranks 1, 2, 3 (properties of sequences can be
expressed by Büchi automata, and rank 3 is used to implement existential quantification on
process instances).

Regular objectives can express deadlock properties. Since we only consider process-fair
runs, a finite branch in a limit configuration indicates that a process is blocked forever after
some point. Hence, we can express properties such as “there is an instance of p that is
blocked forever after a finite run in a regular language C”. We can also express that all
branches are finite, which is equivalent to a global deadlock since we are considering only
process-fair runs.

Reachability properties are also expressible with regular objectives. We can check
simultaneous reachability of several states in different branches, for instance “there is a
reachable configuration in which some process p reaches s while some process p′ reaches s′”.
There are ways to do it directly, but the shortest argument is through a small modification of
the DLSS. We can simply add transitions to stop processes non-deterministically in desired
states: adding new nop transitions from s and s′ to new deadlock states. Using ideas from [19]
we can also check reachability of a regular set of configurations.

Going back to our dining philosophers example from Figure 1, we can see also other
types of properties we would like to express. For example, we would like to say that there
are finitely many philosophers in the system. This can be done simply by saying that there
are not infinitely many spawns in the limit configuration. (In this example it is equivalent
to saying that there is no branch turning infinitely often to the right.) Then we can verify
a property like “if there are finitely many processes in the system and some philosopher
eats infinitely often then all philosophers eat infinitely often”. This property holds under
process-fairness, as philosophers release both their forks after eating.

▶ Definition 4 (DLSS verification problem). Given a DLSS S and a regular objective B decide
if there is a process-fair run of S whose limit configuration τ satisfies B.

Without any further restrictions we show that our problem is undecidable:
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▶ Theorem 5. The DLSS verification problem is undecidable. The result holds even if the
DLSS is finite-state and every process uses at most 4 locks.

This result is obtained by creating an unbounded chain of processes simulating a Turing
machine. Each process memorizes the content of a position on the tape, and communicates
with its neighbours by interleaving lock acquisitions. The trick for processes to exchange
information by interleaving lock acquisitions was already used in [16], and requires a non-
nested usage of locks.

The situation improves significantly if we assume nested usage of locks.

▶ Definition 6. A process Ap is nested if it takes and releases locks according to a stack
discipline, i.e., for all x, y ∈ Var(p), for all paths s0

a1−→ · · · an−−→ sn in Ap, with op(a1) = getx,
op(an) = relx, op(am) ̸= relx for all m < n: if op(ai) = gety for some i < n then there
exists i < k < n such that op(ak) = rely. A DLSS is nested if all its processes are nested.

We can state the first main result of the paper. Its proof is outlined in the next two
sections.

▶ Theorem 7. The DLSS verification problem for nested DLSS is Exptime-complete. It
is in Ptime when the number of priorities in the specification automaton, and the maximal
arity of processes are fixed.

We can extend this result to DLSS where transition systems of each process are given by
a pushdown automaton (see definitions in Section 5). The complexity remains the same as
for finite state processes.

▶ Theorem 8. The DLSS verification problem for nested pushdown DLSS is Exptime-
complete. It is in Ptime when the number of priorities in the specification automaton, and
the maximal arity of processes is fixed.

3 Characterizing limit configurations

A configuration is a labeled tree. We give a characterization of such trees that are limit
configurations of a process-fair run of a given DLSS. In the following section we will show
that the set of limit configurations of a given DLSS is a regular tree language, which will
imply the decidability of our verification problem.

▶ Definition 9. Given a configuration τ with nodes ν, ν′ and variables x ∈ Var(ν), x′ ∈
Var(ν′), we write x ∼ x′ if L(ν)(x) = L(ν′)(x′), so if x and x′ are mapped to the same lock.
The scope of a lock ℓ is the set {ν : ℓ ∈ L(ν)(Var(ν))}.

▶ Remark 10. It is easy to see that in any configuration, the scope of a lock is a subtree.
We say that a node ν is labeled by an unmatched get if it is labeled by some getx and

there is no relx operation in the leftmost path starting from ν. Recall that H(τ) is the set
of locks ℓ for which there is some node ν with an unmatched getx and L(ν)(x) = ℓ.

We define a relation ≺H on H(τ) by letting ℓ ≺H ℓ′ if there exist two nodes ν, ν′ such
that ν is an ancestor of ν′, ν is labeled with an unmatched get of ℓ, and ν′ is labeled with a
get of ℓ′.

After these preparations we can state a central lemma giving a structural characterization
of limit configurations of process-fair runs.

▶ Lemma 11. A tree τ is the limit configuration of a process-fair run of a nested DLSS S if
and only if
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F1 The node labels in τ match the local transitions of S.
F2 For every leaf ν every possible transition from s(ν) has operation getx for some x with

L(ν)(x) ∈ H(τ).
F3 For every lock ℓ ∈ H(τ) there are finitely many nodes with operations on ℓ, and there is

a unique node labeled with an unmatched get of ℓ.
F4 The relation ≺H is acyclic.
F5 The relation ≺H has no infinite descending chain.

Before presenting the proof of the previous lemma note that the main difficulty is the
fact that some locks can be taken and never released. If H(τ) = ∅ then from τ we can
easily construct a run with limit configuration τ by exploiting the nested lock usage. This is
because any local run can be executed from a configuration where all locks are available.

Proof. We start with the left-to-right implication. Suppose that we have a process-fair run
τ0

ν1,a1−−−→ τ1
ν2,a2−−−→ · · · with limit configuration τ .

With every lock ℓ ∈ H(τ) we associate the maximal position m = mℓ such that op(am) =
getx and L(νm)(x) = ℓ, so the position mℓ where ℓ is acquired for the last time (and never
released after).

It remains to check the conditions of the lemma. The first one holds by definition of a run.
The second condition is due to process fairness and soundness, since a process can always
execute transitions other than acquiring a lock, and locks not in H(τ) are free infinitely often.
All actions involving ℓ ∈ H(τ) must happen before position mℓ, hence there are finitely many
of them. Moreover, a lock cannot be acquired and never released more than once. This shows
condition F3. Conditions F4 and F5 are both satisfied because if ℓ ≺H ℓ′ then mℓ < mℓ′ .
Thus ≺H is acyclic and it cannot have infinite descending chains.

For the right-to-left implication, let τ satisfy all conditions of the lemma. In order to
construct a run from τ we first build a total order < on H(τ) that extends ≺H and has no
infinite descending chain. Let ℓ′

0, ℓ′
1, . . . be some arbitrary enumeration of H(τ) (which exists

as τ is countable, thus so is H(τ)). For all i let ↓ ℓ′
i = {ℓ′ ∈ H(τ) | ℓ′ ≺+

H ℓ′
i}. As τ satisfies

condition F3, the set of nodes that are ancestors of a node with an operation on ℓ′
i is finite.

Since additionally by condition F5 there are no infinite descending chains for ≺H , the set
↓ ℓ′

i is finite as well (by König’s lemma). As ≺H is acyclic by condition F4, we can chose
some strict total order <i on ↓ ℓ′

i that extends ≺H . We define for all ℓ ∈ H(τ) the index
mℓ = min{i ∈ N | ℓ ∈↓ ℓ′

i}. Finally, we set ℓ < ℓ′ if either mℓ < mℓ′ or if mℓ = mℓ′ and
ℓ <mℓ

ℓ′. By definition < is a strict total order on H(τ) with no infinite descending chains.
Moreover it is easy to see that if ℓ ≺H ℓ′ then ℓ < ℓ′. This is the case because ℓ ≺H ℓ′ and
ℓ′ ≺+

H ℓi implies ℓ ≺+
H ℓi, so mℓ ≤ mℓ′ .

Using the order < on H(τ) we construct a process-fair run τ0
+−−→ τ1

+−−→ · · · with τ as
limit configuration. During the construction we maintain the following invariant for every i:

There exists ki ∈ N such that all operations on locks ℓj with j < ki are already
executed in τi (there is no operation on these locks in τ \ τi). Moreover, all other locks
are free after executing τi: Hi := H(τi) = {ℓ0, . . . , ℓki−1}.

For i = 0 the invariant is clearly satisfied as all locks are free (k0 = 0).
For i > 0 we assume that there is a run τ0

+−−→ τi and τi satisfies the invariant. Thus, all
locks ℓj with j < ki are ultimately held and all other locks are free in τi.

We say that a leaf ν of τi is available if one of the following holds:
1. either there is a descendant ν′ ̸= ν on the leftmost path from ν in τ with H(ν′) = H(ν)

in τ ,
2. or the left child ν′ of ν in τ is labeled with an unmatched get of ℓki

, and there is no
further operation on ℓki in τ \ τi.
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In particular, leaves of τ cannot be available. The strategy is to find the smallest available
node ν in BFS order, and execute the actions on the left path from ν to ν′. The execution is
possible as on this path there are no actions using locks from Hi and all other locks are free.
Let τi+1 denote the configuration thus obtained from τi. The invariant is satisfied after this
execution, with Hi+1 = Hi in the first case above, resp. Hi+1 = Hi ∪ {ℓki

} in the second
case.

It remains to show that if a node is a leaf in τi for all i after some point, then it is a leaf
in τ . This shows, in particular, that there always exists some available node.

Suppose that ν and i0 are such that ν is a leaf of τi for all i ≥ i0. If ν becomes available
at some point then it stays available in all future configurations, and there are finitely many
nodes before ν in the BFS order. Thus ν cannot be available in some τi, as otherwise it
would eventually be taken. Note that by the invariant (and soundness), no leaf of τi has
the left child labeled by some rel operation. Moreover, every leaf ν of τi with left child ν′

in τ labeled by nop, spawn(), or by some matched get, is available (the latter because we
consider nested DLSS). Hence, the left child of ν must be labeled with an unmatched get of
some ℓ ∈ H(τ). Thus there is some unmatched get on a lock of H(τ) that is never executed.

Let m be the minimal index in the enumeration of H(τ) such that an unmatched get
of ℓm in τ is never executed. By minimality of m, there exists i1 such that m = ki for all
i ≥ i1. After i1, all operations on locks ℓ < ℓm have been executed. Thus, as < extends
≺H , all unmatched get operations that have some descendant in τ with operation on ℓm,
have been executed. By the previous argument, the nodes with left child not labeled with
an unmatched get cannot stay leaves forever. Hence, all nodes whose left child has some
operation on ℓm eventually become leaves. The ones with matched get or other operations
are then available and eventually executed.

Hence, after some point the only remaining operations on ℓm are unmatched get. Fur-
thermore by the condition F3 of the lemma there is exactly one. As a result, when it is
reached and all other operations on ℓm have been executed, it becomes available, and is thus
eventually executed, contradicting the definition of m.

This proves that the limit of the run we have constructed is τ . Observe finally that the
run is process-fair because of condition F2 of the lemma. ◀

The next lemma is an important step in the proof as it simplifies condition F4 of Lemma 11.
This condition talks about the existence of a global order on some locks. The next lemma
replaces this order with local orders in each of the nodes. These orders can be guessed by a
finite automaton.

▶ Lemma 12. Suppose that τ satisfies the first three conditions of Lemma 11. The relation
≺H is acyclic if and only if there is a family of strict total orders <ν over a subset of variables
from Var(ν)such that:
F4.1 x is ordered by <ν if and only if L(ν)(x) ∈ H(τ).
F4.2 if x <ν x′, ν′ is a child of ν, and y, y′ ∈ Var(ν′) are such that x ∼ y and x′ ∼ y′ then

y <ν′ y′.
F4.3 if x, x′ ∈ Var(ν) and L(ν)(x) ≺H L(ν)(x′) then x <ν x′.

4 Recognizing limit configurations

Recall that a configuration is a possibly infinite tree with five labels p, s, a, L, H . As we
have mentioned in Remark 2, configurations need actually only three labels p, s, a. The
other two can be calculated from the tree. Hence, configurations are labeled trees with node
labels coming from a finite alphabet. Our goal in this section is to define a tree automaton
recognizing limit configurations of process-fair runs of a given DLSS.
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Our plan is to check the conditions (F1-5) of Lemma 11. Actually we will check (F1-3,5)
and the conditions of Lemma 12 that are equivalent to F4 of Lemma 11.

We first observe that since our processes are finite state it is immediate to construct a
nondeterministic tree automaton B1 verifying condition F1. This automaton just verifies local
constraints between the labeling of a node and the labelings of its children. The constraints
talk only about the labels p, s, a. The automaton does not need any acceptance condition,
every run is accepting. We will say τ is process-consistent if it is accepted by B1.

Checking condition F2 is more complicated because it refers to a set H(τ) of locks that
are ultimately held by some process. Our approach will be to define four types of predicates
and color the nodes of τ with these predicates. From a correct coloring of τ it will be easy
to read out H(τ). Then we will show that the correct coloring can be characterized by
conditions verifiable by Büchi tree automata. The coloring will be also instrumental in
checking the remaining conditions F3, F4, F5.

For a configuration τ , a node ν and a variable x ∈ Var(ν) we define four predicates.

ν |= keeps(x) if at ν process p(ν) holds the lock ℓ = L(ν)(x) and never releases it:
ℓ ∈ H(ν′) for every left descendant ν′ of ν.
ν |= ev-keeps(x) if ν ̸|= keeps(x) and there is a descendant ν′ of ν and a variable
x′ ∈ Var(ν′) with x ∼ x′ and ν′ |= keeps(x′).
ν |= avoids(x) if neither p(ν) nor any descendant takes ℓ = L(ν)(x), namely ℓ ̸∈ H(ν′)
for every descendant ν′ of ν (including ν).
ν |= ev-avoids(x) if ν ̸|= avoids(x) and on every path from ν there is ν′ such that
ν′ |= avoids(x).

Observe a different quantification used in ev-keeps and ev-avoids. In the first case we require
one ν′ to exist, in the second we want that such a ν′ exists on every path.

The next lemma shows how we can use the coloring to determine H(τ).

▶ Lemma 13. Let τ be a process-consistent configuration. A lock ℓ ∈ H(τ) if and only if
there is a node ν of τ and a variable x ∈ Var(ν) such that ν |= keeps(x) and L(ν)(x) = ℓ.

Proof. Follows from the definitions, since ν |= keeps(x) if and only if ℓ ∈ H(ν′) for every left
descendant ν′ of ν. ◀

The above conditions define a semantically correct coloring of nodes of a configuration τ

by sets of predicates

C(ν) = {P (x) : x ∈ Var(ν), ν |= P (x)}

where P (x) is one of keeps(x), ev-keeps(x), avoids(x), ev-avoids(x). Observe that the four
predicates are mutually exclusive, but it may be also the case that none of them holds. We
say that a variable x ∈ Var(ν) is uncolored in ν if C(ν) contains no predicate on x.

We now describe consistency conditions on a coloring of configurations guaranteeing that
a coloring is semantically correct.

Before moving forward we introduce one piece of notation. A node that is a right child,
namely a node of a form ν1 is due to spawn(q, σ) operation. More precisely op(ν0) =
spawn(q, σ). We refer to this σ as σ(ν1).

A coloring of a configuration τ is branch-consistent if for every node ν of τ and every
variable x ∈ Var(ν) the following conditions are satisfied.

If ν has one successor ν0 then ν0 inherits the colors from ν except for two cases depending
on op(ν0), i.e, the operation used to obtain ν0:
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If ev-keeps(x) is in C(ν) and the operation is getx then C(ν0) must have either
ev-keeps(x) or keeps(x).
If ev-avoids(x) is in C(ν) and the operation is relx then C(ν0) must have either
ev-avoids(x) or avoids(x).

If ν has two successors ν0, ν1, and there is no y with σ(ν1)(y) = x then ν0 inherits x

color from ν and there is no constraint due to x on colors in ν1.
If ν has two successors and x = σ(ν1)(y) for some y ∈ Var(ν1 ) then

If keeps(x) in C(ν) then keeps(x) in C(ν0) and avoids(y) in C(ν1).
If avoids(x) in C(ν) then avoids(x) in C(ν0) and avoids(y) in C(ν1).
If ev-keeps(x) in C(ν) then either
∗ ev-keeps(x) in C(ν0) and either avoids(y) or ev-avoids(y) in ν1, or
∗ ev-keeps(y) in C(ν1) and either avoids(x) or ev-avoids(x) in ν0.
If ev-avoids(x) is ν then ev-avoids(x) in C(ν0) and ev-avoids(y) in C(ν1).

Next we describe when a coloring is eventuality-consistent. An ev-trace is a sequence of
pairs (ν1, x1), (ν2, x2), . . . where :

ν1, ν2, . . . is a path in τ ,
xi ∈ Var(νi); moreover xi+1 = xi if νi+1 is the left successor of νi, and σ(νi+1)(xi+1) = xi

if νi+1 is the right successor of νi.
ev-keeps(xi) or ev-avoids(xi) is in C(νi).

Observe that it follows that it cannot be the case that we have ev-keeps(xi) and ev-avoids(xi+1)
or vice versa. A coloring is eventuality-consistent if every ev-trace in the coloring of a
configuration is finite.

Finally, a coloring is recurrence-consistent if for every ν and uncolored x ∈ Var(ν) the
lock ℓ = L(ν)(x) is taken and released infinitely often below ν.

A coloring is syntactically correct if it is branch-consistent, eventuality-consistent, and
recurrence-consistent. We show that syntactically correct colorings characterize semantically
correct colorings. The two implications are stated separately as the statements are slightly
different.

▶ Lemma 14. If τ is a limit configuration and C is a semantically correct coloring of τ then
C is syntactically correct.

For the other direction, we prove a more general statement without assuming that τ is a
limit configuration. This is important as ultimately we will use the consistency properties to
test if τ is a limit configuration.

▶ Lemma 15. If τ is a configuration and C a syntactically correct coloring of τ , then C is
semantically correct.

Having a correct coloring will help us to verify all conditions of Lemma 11. Condition F2
refers to L(ν)(x) ∈ H(τ). We need another labeling to be able to express this.

A syntactic H-labeling of τ assigns to every node ν a subset Hs(ν) ⊆ Var(ν). We require
the following properties:

For the root ε we have Hs(ε) = ∅.
If ν0 exists: x ∈ Hs(ν0) if and only if x ∈ Hs(ν).
If ν1 exists: y ∈ Hs(ν1) if and only if either σ(ν1)(y) = new and ν1 |= ev-keeps(y), or
σ(ν1)(y) = x and ν |= ev-keeps(x).

It is clear that every configuration tree has a unique Hs labelling.
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▶ Lemma 16. Let τ be a process-consistent configuration with syntactically correct coloring.
For every node ν and variable x ∈ Var(ν) we have: L(ν)(x) ∈ H(τ) if and only if x ∈ Hs(ν).

Thanks to Lemma 16 we obtain

▶ Lemma 17. Let τ be a process-consistent configuration with a syntactically correct coloring.
Condition F2 of Lemma 11 holds for τ if and only if for every leaf ν of τ , every possible
transition from s(ν) has some getx operation with x ∈ Hs(ν).

▶ Lemma 18. Let τ be a process-consistent configuration with a syntactically correct coloring.
Then condition F3 of Lemma 11 holds for τ .

It remains to deal with conditions F4 and F5 of Lemma 11. Condition F4 is more difficult
to check as it requires to find an acyclic relation with some properties. Fortunately Lemma 12
gives an equivalent condition talking about a family of local orders <ν for every node ν of a
configuration. An automaton can easily guess such a family of orders. We show that it can
also check the required properties.

A consistent order labeling assigns to every node ν of τ a total order <ν on some subset
of Var(ν). The assignment must satisfy the following conditions for every node ν:
1. x is ordered by <ν if and only if x ∈ Hs(ν),
2. if x <ν x′ and x, x′ ∈ Var(ν0 ) then x <ν0 x′,
3. if x <ν x′, ν1 exists, and σ(ν1)(y) = x, σ(ν1)(y′) = x′ then y <ν1 y′,
4. if ν |= keeps(x) and y <ν x then ν |= keeps(y) or ν |= avoids(y).

▶ Lemma 19. Let τ be a process-consistent configuration with a syntactically correct coloring.
A family of local orders <ν is a consistent order labeling of τ if and only if it satisfies the
conditions of Lemma 12.

We consider now condition F5. We say that a consistent order labeling of τ admits an
infinite descending chain if there exist a sequence of nodes ν1, ν2, . . . and variables (xi)i, (yi)i

such that for every i > 0: (i) νi is an ancestor of νi+1, (ii) yi ∼ xi+1, and (iii) yi <νi
xi.

▶ Lemma 20. Let τ be a process-consistent configuration with a syntactically correct coloring.
If ≺H has no infinite descending chain then there is a consistent order labeling of τ with no
infinite descending chain. If ≺H has an infinite descending chain then every consistent order
labeling of τ admits an infinite descending chain.

The next proposition summarizes the development of this section stating that all the
relevant properties can be checked by a Büchi tree automaton.

▶ Proposition 21. For a given DLSS, there is a non-deterministic Büchi tree automaton
B̂ accepting exactly the limit configurations of process-fair runs of DLSS. The size of B̂ is
linear in the size of the DLSS and exponential in the maximal arity of the DLSS.

We will show that the previous proposition yields an Exptime algorithm. We match it
with an Exptime lower bound to obtain completeness.

▶ Proposition 22. The DLSS verification problem for nested DLSS and Büchi objective is
Exptime-hard. The result holds even if the Büchi objective refers to a single process.



C. Mascle, A. Muscholl, and I. Walukiewicz 24:13

The hardness proof involves a reduction from the problem of determining whether the
intersection of the languages of k deterministic tree automata over binary trees is empty.
To achieve this, we create a DLSS that simulates all the tree automata concurrently. Each
node of the tree in the intersection is simulated by a process, which encodes a state for
each automaton through the locks it holds. So each process creates two children with whom
it shares locks. The children are able to access the states of the parent by the following
technique: Suppose processes p and q share locks 0 and 1, and p acquires one lock and retains
it indefinitely. In this scenario, q can guess the lock chosen by p and try to acquire the other
lock. If q guesses incorrectly, the system deadlocks. However, if the guess is correct, the
execution continues, and q knows about the lock held by p.

Now we have all ingredients for the proof of Theorem 7:

Proof of Theorem 7. The lower bound follows from Proposition 22.
For the upper bound we use the Büchi tree automaton B̂ recognizing limit configurations

of the DLSS (Proposition 21).
We build the product of B̂ with the regular objective automaton A, which is a parity

tree automaton. From B̂ × A we can obtain with a bit more work an equivalent parity tree
automaton C with the same number of priorities, plus one. For this we modify the rank
function in order to only store in the state the maximal priority seen between two consecutive
occurrences of Büchi accepting states, and make the maximal priority visible at the next
Büchi state. When the state of the B̂ component is not a Büchi state, the priority is odd
and lower than all the ones of A.

By Proposition 21, C is non-empty if and only if there exists a limit configuration of the
system that satisfies the regular objective A. Moreover, we know that B̂ has size linear in
the size of the DLSS and exponential only in the maximal arity of processes. So C has size
that is exponential w.r.t. the DLSS and the objective, and polynomial size if the maximal
arity is fixed.

Finally, non-emptiness of C amounts to solve a parity game of the same size as C: player
Automaton chooses transitions of C, and player Pathfinder chooses the direction (left/right
child). To sum up, we obtain a parity game of exponential size, so solving the game takes
exponential time since the number of priorities is polynomial. If both the number of priorities
and the maximal arity are fixed, the game can be solved in polynomial time. ◀

5 Pushdown systems with locks

Till now every process has been a finite state system. Here we consider the case when
processes can be pushdown automata. The definition of a pushdown DLSS is the same as
before but now each automaton Ap is a deterministic pushdown automaton.

We will reduce our verification problem to the emptiness test of a nondeterministic
pushdown automata on infinite trees. These automata will have parity acceptance conditions.
While in general testing emptiness of such automata is Exptime-complete, we will notice
that the automata we construct have a special form allowing to test emptiness in Ptime for
a fixed number of ranks in the parity condition.

We start by defining pushdown tree automata. We work with a ranked alphabet Σ =
Σ0 ∪ Σ1 ∪ Σ2, so a letter determines whether a node has zero, one or two children. Our
automaton will be quite standard but for an additional stack instruction. Apart standard
pop and push(a), we have a reset instruction that empties the stack. A pushdown tree
automaton is a tuple (Q, Σ, Γ, q0, ⊥, δ, Ω), where Q is a finite set of states, Σ an input
alphabet, Γ a stack alphabet, q0 ∈ Q an initial state, ⊥ ∈ Γ a bottom stack symbol, and
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Ω : Q → {1, . . . , d} a parity condition. Finally, δ is a partial transition function taking as
the arguments the current state q, the current input letter a, and the current stack symbol γ.
The form of transitions in δ depends on the rank of the letter a:

For a ∈ Σ0, we have δ(q, a, γ) = ⊤ for a special symbol ⊤. This means that the automaton
accepts in a leaf of the tree if δ is defined.
For a ∈ Σ1, we have δ(q, a, γ) = (q′, instr) where instr is one of the stack instructions.
For a ∈ Σ2, we have δ(q, a, γ) = ((ql, instrl), (qr, instrr)), so now we have two states,
going to the left and right, respectively, and two separate stack instructions.

A run of such an automaton on a Σ-labeled tree is an assignment of configurations to
nodes of the tree; each configuration has the form (q, w) where q ∈ Q is a state and w ∈ Γ+

is a sequence of stack symbols representing the stack (top symbol being the leftmost). The
root is labeled with (q0, ⊥). The labelling of children must depend on the labeling of the
parent according to the transition function δ. In particular, if a leaf of the tree is labeled
a and has assigned a configuration (q, w) then δ(q, a, γ) must be defined, where γ is the
leftmost symbol of w. A run is accepting if for every infinite path the sequence of assigned
states satisfies the max parity condition given by Ω: the maximum of ranks of states seen on
the path must be even.

We say that a pushdown tree automaton is right-resetting if for every transition δ(q, a, γ) =
((ql, instrl), (qr, instrr)) we have that instrr is reset.

▶ Proposition 23. For a fixed d, the emptiness problem for right-resetting pushdown tree
automata with a parity condition over ranks {1, . . . , d} can be solved in Ptime.

Proof. We consider the representative case of d = 3. Suppose we are given a right-resetting
pushdown tree automaton A = (Q, Σ, Γ, q0, ⊥, δ, Ω).

The first step is to construct a pushdown word automaton Al(G1, G2, G3) depending
on three sets of states G1, G2, G3 ⊆ Q. The idea is that Al simulates the run of A on the
leftmost branch of a tree. When A has a transition going both to the left and to the right
then Al goes to the left and checks if the state going to the right is in an appropriate Gi.
This means that Al works over the alphabet Σl that is the same as Σ but all letters from
Σ2 have rank 1 instead of 2. The states of Al(G1, G2, G3) are Q × {1, 2, 3} with the second
component storing the maximal rank of a state seen so far on the run. The transitions of
Al(G1, G2, G3) are defined according to the above description. We make precise only the
case for a transition of A of the form δ(q, a, γ) = ((ql, instrl), (qr, instrr)). In this case, Al

has a transition δl((q, i), a, γ) = ((ql, max(i, Ω(ql))), instrl) if qr ∈ Gmax(i,Ω(qr)). Observe
that instrr is necessarily reset as A is right-resetting.

The next step is to observe that for given sets G1, G2, G3 we can calculate in Ptime the
set of states from which Al(G1, G2, G3) has an accepting run.

The last step is to compute the fixpoint expression below in the lattice of subsets of
Q. What the fixpoint computation does can be described at high-level as follows. While
the word pushdown automaton Al takes care of the parity condition on tree paths that are
ultimately left paths, the sets Gi do this for paths that branch to the right infinitely often.
For such paths we need for example to guarantee through set G3 that priority 3 is seen
finitely often. We do this through a least fixpoint computation for G3. For G2 we compute
a greatest fixpoint since we want priority 2 to be seen infinitely often. Finally, for G1 we
compute a least fixpoint since priority 1 should be seen finitely often before seeing priority 2:

W = LFPX3. GFPX2. LFPX1. P (X1, X2, X3) where
P (X1, X2, X3) = {q : Al(X1, X2, X3) has an accepting run from q} .
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Observe that P : P(Q)3 → P(Q) is a monotone function over the lattice of subsets of Q.
Computing W requires at most |Q|3 computations of P for different triples of sets of states.

We claim that A has an accepting run from a state q, if and only if, q ∈ W . The proof
can be found in the full version. ◀

Proof of Theorem 8. The lower bound follows already from Theorem 7.
For the upper bound we reuse the Büchi tree automaton B̂ from Proposition 21. This

time B̂ is a pushdown tree automaton, however it is right-resetting because processes are
spawned with empty stack. We follow the lines of the proof of Theorem 7, building the
product of B̂ with the regular objective automaton A, and constructing an equivalent parity,
right-resetting pushdown tree automaton C. Proposition 23 concludes the proof. ◀

6 Conclusions

We have considered verification of parametric lock sharing systems where processes can
spawn other processes and create new locks. Representing configurations as trees, and the
notion of the limit configuration, are instrumental in our approach. We believe that we have
made stimulating observations about this representation. It is very easy to express fairness
as a property of a limit configuration. Many interesting properties, including liveness, can
be formulated very naturally as properties of limit trees (cf. page 6). Moreover, there are
structural conditions characterizing when a tree is a limit configuration of a run of a given
system (Lemma 12).

We expect that the parameters in Theorem 8 will be usually quite small. As the dining
philosophers example suggests, for many systems the maximal arity should be quite small
(cf. Figure 1). Indeed, the maximal arity of the system corresponds to the tree width of the
graph where process instances are nodes and edges represent sharing a lock. The maximal
priority will be often 3. In our opinion, most interesting properties would have the form
“there is a left path such that” or “all left paths are such that”, and these properties need
only automata with three priorities. So in this case our verification algorithm is in Ptime.

Our handling of pushdown processes is different from the literature. Most of our de-
velopment is done for finite state processes, while the transition to pushdown process is
handled through right-resetting concept. Proposition 23 implies that in our context pushdown
processes are essentially as easy to handle as finite processes.

As further work it would be interesting to see if it is possible to extend our approach
to treat join operation [12]. An important question is how to extend the model with some
shared state and still retain decidability for the pushdown case.
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Abstract
There is a large body of work on concurrent reasoning including Rely-Guarantee (RG) and Concurrent
Separation Logics. These theories are over-approximate: a proof identifies a superset of program
behaviours and thus implies the absence of certain bugs. However, failure to find a proof does
not imply their presence (leading to false positives in over-approximate tools). We describe a
general theory of under-approximate reasoning for concurrency. Our theory incorporates ideas from
Concurrent Incorrectness Separation Logic and RG based on a subset rather than a superset of
interleavings. A strong motivation of our work is detecting software exploits; we do this by developing
concurrent adversarial separation logic (CASL), and use CASL to detect information disclosure
attacks that uncover sensitive data (e.g. passwords) and out-of-bounds attacks that corrupt data. We
also illustrate our approach with classic concurrency idioms that go beyond prior under-approximate
theories which we believe can inform the design of future concurrent bug detection tools.

2012 ACM Subject Classification Theory of computation → Separation logic; Theory of computation
→ Programming logic; Theory of computation → Program analysis; Security and privacy → Logic
and verification

Keywords and phrases Under-approximate reasoning, incorrectness logic, bug detection, software
exploits, separation logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.25

Related Version Extended Version: https://www.soundandcomplete.org/papers/CONCUR2023/
CASL/appendix.pdf

Funding Azalea Raad: UKRI Future Leaders Fellowship under grant number MR/V024299/1

1 Introduction

Incorrectness Logic (IL) [16] presents a formal foundation for proving the presence of bugs
using under-approximation, i.e. focusing on a subset of behaviours to ensure one detects only
true positives (real bugs) rather than false positives (spurious bug reports). This is in contrast
to verification frameworks proving the absence of bugs using over-approximation, where a
superset of behaviours is considered. The key advantage of under-approximation is that tools
underpinned by it are accompanied by a no-false-positives (NFP) theorem for free, ensuring
all bugs reported are real bugs. This has culminated in a successful trend in automated
static analysis tools that use under-approximation for bug detection, e.g. RacerD [3] for data
race detection in Java programs, the work of Brotherston et al. [4] for deadlock detection,
and Pulse-X [13] which uses the under-approximate theory of ISL (incorrectness separation
logic, an IL extension) [17] for detecting memory safety bugs such as use-after-free errors. All

© Azalea Raad, Julien Vanegue, Josh Berdine, and Peter O’Hearn;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azalea.raad@imperial.ac.uk
https://www.soundandcomplete.org
https://orcid.org/0000-0002-2319-3242
mailto:julien.vanegue@gmail.com
mailto:josh@berdine.net
mailto:p.ohearn@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.CONCUR.2023.25
https://www.soundandcomplete.org/papers/CONCUR2023/CASL/appendix.pdf
https://www.soundandcomplete.org/papers/CONCUR2023/CASL/appendix.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 A General Approach to Under-Approximate Reasoning About Concurrent Programs

three tools are currently industrially deployed and are state-of-the art techniques: RacerD
significantly outperforms other race detectors in terms of bugs found and fixed, while Pulse-X
has a higher fix-rate than the industrial Infer tool [7] used widely at Meta, Amazon and
Microsoft. IL and ISL, though, only support bug detection in sequential programs.

We present concurrent adversarial separation logic (CASL, pronounced “castle”), a
general, under-approximate framework for detecting concurrency bugs and exploits, including
a hitherto unsupported class of bugs. Inspired by adversarial logic [22], we model a vulnerable
program Cv and its attacker (adversarial) Ca as the concurrent program Ca || Cv, and use
the compositional principles of CASL to detect vulnerabilities in Cv. CASL is a parametric
framework that can be instantiated for a range of bugs/exploits. CASL combines under-
approximation with ideas from RGSep [20] and concurrent separation logic (CSL) [15] – we
chose RGSep rather than rely-guarantee [11] for compositionality (see p. 7). However, CASL
does not merely replace over- with under-approximation in RGSep/CSL: CASL includes an
additional component witnessing (under-approximating) the interleavings leading to bugs.

CASL builds on concurrent incorrectness separation logic (CISL) [18]. However, while
CISL was designed to capture the reasoning in cutting-edge tools such as RacerD, CASL
explicitly goes beyond these tools. Put differently, CISL aspired to be a specialised theory of
concurrent under-approximation, oriented to existing tools (and inheriting their limitations),
whereas CASL aspires to be more general. In particular, in our private communication
with CISL authors they have confirmed two key limitations of CISL. First, CISL can detect
certain bugs compositionally only by encoding buggy executions as normal ones. While this
is sufficient for bugs where encountering a bug does not force the program to terminate (e.g.
data races), it cannot handle bugs with short-circuiting semantics, e.g. null pointer exceptions,
where the execution is halted on encountering the bug (see §2 for details). Second and
more significantly, CISL cannot compositionally detect a large class of bugs, data-dependent
bugs, where a bug occurs only under certain interleavings and concurrent threads affect the
control flow of one another. To see this, consider the program P ≜ x := 1 || a := x; if (a) error,
where the left thread, τ1, writes 1 to x, the right thread, τ2, reads the value of x in a and
subsequently errors if a ̸=0. That is, the error occurs only in interleavings where τ1 is executed
before τ2, and the two threads synchronise on the value of x; i.e. τ1 affects the control flow
of τ2 and the error occurrence is dependent on the data exchange between the threads.

Such data-dependency is rather prevalent as threads often synchronise via data exchange.
Moreover, a large number of security-breaking software exploits are data-dependent bugs.
An exploit (or attack) is code that takes advantage of a bug in a vulnerable program to cause
unintended or erroneous behaviours. Vulnerabilities are bugs that lead to critical security
compromises (e.g. leaking secrets or elevating privileges). Distinguishing vulnerabilities
from benign bugs is a growing problem; understanding the exploitability of bugs is a
time-consuming process requiring expert involvement, and large software vendors rely on
automated exploitability analysis to prioritise vulnerability fixing among a sheer number
of bugs. Rectifying vulnerabilities in the field requires expensive software mitigations (e.g.
addressing Meltdown [14]) and/or large-scale recalls. It is thus increasingly important to
detect vulnerabilities pre-emptively during development to avoid costly patches and breaches.

To our knowledge, CASL is the first under-approximate theory that can detect all
categories of concurrency bugs (including data-dependent ones) compositionally (by reasoning
about each thread in isolation). CASL is strictly stronger than CISL and supports all CISL
reasoning principles. Moreover, CASL is the first under-approximate and compositional
theory for exploit detection. We instantiate CASL to detect information disclosure attacks
that uncover sensitive data (e.g. Heartbleed [8]) and out-of-bounds attacks that corrupt data
(e.g. zero allocation [21]). Thanks to CASL soundness, each CASL instance is automatically
accompanied by an NFP theorem: all bugs/exploits identified by it are true positives.
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Contributions and Outline. Our contributions (detailed in §2) are as follows. We present
CASL (§3) and prove it sound, with the full proof given in the accompanying technical
appendix [19]. We instantiate CASL to detect information disclosure attacks on stacks (§4)
and heaps [19, §C] and memory safety attacks [19, §D]. We also develop an under-approximate
analogue of RG that is simpler but less expressive than CASL [19, §E and §F]. We discuss
related work in §5.

2 Overview

CISL and Its Limitations. CISL [18] is an under-approximate logic for detecting bugs in
concurrent programs with a built-in no-false-positives theorem ensuring all bugs detected
are true bugs. Specifically, CISL allows one to prove triples of the form [p] C [ϵ :q], stating
that every state in q is reachable by executing C starting in some state in p, under the (exit)
condition ϵ that may be either ok for normal (non-erroneous) executions, or ϵ ∈ ErExit
for erroneous executions, where ErExit contains erroneous conditions. The CISL authors
identify global bugs as those that are due to the interaction between two or more concurrent
threads and arise only under certain interleavings. To see this, consider the examples below
[18], where we write τ1 and τ2 for the left and right threads in each example, respectively:

l: free(x) l′: free(x) (DataAgn) free(x);
[z] := 1;

a := 0; a := [z];
if (a=1) l: [x] := 1 (DataDep)

In an interleaving of DataAgn in which τ1 is executed after (resp. before) τ2, a double-free
bug is reached at l (resp. l′). Analogously, in a DataDep interleaving where τ2 is executed
after τ1, value 1 is read from z in a, the condition of if is met and thus we reach a use-after-free
bug at l. Raad et al. [18] categorise global bugs as either data-agnostic or data-dependent,
denoting whether concurrent threads contributing to a global bug may affect the control
flow of one another. For instance, the bug at l in DataDep is data-dependent as τ1 may
affect the control flow of τ2: the value read in a := [z], and subsequently the condition of if
and whether l: [x] := 1 is executed depend on whether τ2 executes a := [z] before or after τ1
executes [z] := 1. By contrast, the threads in DataAgn cannot affect the control flow of one
another; hence the bugs at l and l′ are data-agnostic.

CISL-Par[
P1

]
C1

[
ok :Q1

] [
P2

]
C2

[
ok :Q2

][
P1 ∗ P2

]
C1 || C2

[
ok : Q1 ∗ Q2

]
In certain cases, CISL can detect data-agnostic bugs compositionally (i.e. by analysing

each thread in isolation) by encoding buggy executions as normal (ok) ones and then using
the CISL-Par rule shown across. In particular, when the targeted bugs do not manifest
short-circuiting (where bug encounter halts execution, e.g. a null-pointer exception), then
buggy executions can be encoded as normal ones and subsequently detected compositionally
using CISL-Par. For instance, when a data-agnostic data race is encountered, execution is not
halted (though program behaviour may be undefined), and thus data races can be encoded
as normal executions and detected by CISL-Par. By contrast, in the case of data-agnostic
errors such as null-pointer exceptions, the execution is halted (i.e. short-circuited) and thus
can no longer be encoded as normal executions that terminate. As such, CISL cannot detect
data-agnostic bugs with short-circuiting semantics compositionally.

CONCUR 2023
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dom(G1) = {α1, α2} dom(G2) = {α′
1, α′

2} R1 ≜ G2 R2 ≜ G1 θ ≜ [α1, α2, α′
1, α′

2]
G1(α1)≜(x Z⇒ lx∗ lx 7→vx, ok, x Z⇒ lx∗ lx ̸7→) G2(α′

1)≜(z Z⇒ lz ∗ lz 7→1, ok, z Z⇒ lz ∗ lz 7→1)
G1(α2)≜(z Z⇒ lz ∗ lz 7→vz, ok, z Z⇒ lz ∗ lz 7→1) G2(α′

2)≜(x Z⇒ lx∗ lx ̸7→ , er , x Z⇒ lx∗ lx ̸7→)

∅, G1 ∪ G2, {[ ]} ⊢
[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
// Par

R1, G1,

{[ ]} ⊢
[

x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
1. free(x); // Atom, MS-Free

{[α1]} ⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→vz

]
2. [z] := 1; // Atom, MS-Write

{[α1, α2]} ⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→1

]
3. // EnvR

{[α1, α2, α′
1]}⊢

[
ok: x Z⇒ lx∗ lx ̸7→

∗z Z⇒ lz ∗ lz 7→1

]
4. // EnvR

{θ} ⊢
[
er : x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]

R2, G2,

{[ ]} ⊢
[
a Z⇒va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz

]
5. // EnvL

{[α1]} ⊢
[
ok: a Z⇒va ∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→vz

]
6. // EnvL

{[α1,α2]}⊢
[
ok: a Z⇒va∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
7. a := 0; // AtomLocal, MS-AssignVal

{[α1,α2]}⊢
[
ok: a Z⇒0∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
8. a := [z]; // Atom, MS-Read

{[α1,α2,α′
1]}⊢

[
ok: a Z⇒1∗ x Z⇒ lx∗ lx ̸7→ ∗ z Z⇒lz ∗ lz 7→1

]
9. if (a = 1) [x] := 1 // Atom, MS-WriteUAF

{θ} ⊢
[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
∅, G1 ∪ G2, {θ} ⊢

[
er : a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1

]
Figure 1 CASL proof of DataDep; the // denote CASL rules applied at each step. The R1, G1

and R2, G2 are not repeated at each step as they are unchanged.

More significantly, however, CISL is altogether unable to detect data-dependent bugs
compositionally. Consider the data-dependent use-after-free bug at l in DataDep. As
discussed, this bug occurs when τ2 is executed after τ1 is fully executed (i.e. 1 is written to z

and x is deallocated). That is, for τ2 to read 1 for z it must somehow infer that τ1 writes 1
to z; this is not possible without having knowledge of the environment. This is reminiscent
of rely-guarantee (RG) reasoning [11], where the environment behaviour is abstracted as a
relation describing how it may manipulate the state. As RG only supports global and not
compositional reasoning about states, RGSep [20] was developed by combining RG with
separation logic to support state compositionality. We thus develop CASL as an under-
approximate analogue of RGSep for bug catching (see p. 7 for a discussion on RGSep/RG).

2.1 CASL for Compositional Bug Detection
In CASL we prove under-approximate triples of the form R, G, Θ ⊢ [P ] C [ϵ :Q], stating that
every post-world wq ∈Q is reached by running C on some pre-world wp ∈P , with R, G and
Θ described shortly. Each CASL world w is a pair (l, g), where l∈State is the local state
not accessible by the environment, while g ∈ State is the shared (global) state accessible
by all threads. We define CASL in a general, parametric way that can be instantiated for
different use cases. As such, the choice of the underlying states, State, is a parameter to be
instantiated accordingly. For instance, in what follows we instantiate CASL to detect the
use-after-free bug in DataDep, where we define states as State ≜ Stack × Heap (see §3),
i.e. each state comprises a variable store and a heap.
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For better readability, we use P, Q, R as meta-variable for sets of worlds and p, q, r for
sets of states. We write p ∗ q for sets of worlds (l, g) where the local state is given by p

(l∈p) and the shared state is given by q (g ∈q). Given P and Q describing e.g. the worlds
of two different threads, the composition P ∗ Q is defined component-wise on the local and
shared states. More concretely, as local states are thread-private, they are combined via
the composition operator ∗ on states in State (also supplied as a CASL parameter). On
the other hand, as shared states are globally visible to all threads, the views of different
threads of the shared state must agree and thus shared states are combined via conjunction
(∧). That is, given P ≜ p ∗ p′ and Q ≜ q ∗ q′ , then P ∗ Q ≜ p ∗ q ∗ p′∧ q′ .

The rely relation, R, describes how the environment threads may access/update the
shared state, while the guarantee relation, G, describes how the threads in C may do so.
Specifically, both R and G are maps of actions: given G(α)≜(p, ϵ, q), the α denotes an action
identifier and (p, ϵ, q) denotes its effect, where p, q are sets of shared states and ϵ is an exit
condition. Lastly, Θ denotes a set of traces (interleavings), such that each trace θ∈Θ is a
sequence of actions taken by the threads in C or the environment, i.e. the actions in dom(G)
and dom(R). In particular, R, G, Θ ⊢ [P ] C [ϵ :Q] states that for all traces θ∈Θ, each world
in Q is reachable by executing C on some world in P culminating in θ, where the effects of
the threads in C (resp. in the environment of C) on the shared state are given by G and R,
respectively. We shortly elaborate on this through an example.

CASL for Detecting Data-Dependent Bugs. Although CASL can detect all bugs identified
by Raad et al. [18], we focus on using CASL for data-dependent bugs as they cannot
be handled by the state-of-the-art CISL framework. In Fig. 1 we present a CASL proof
sketch of the bug in DataDep. Let us write τ1 and τ2 for the left and right threads in
Fig. 1, respectively. Variables x and z are accessed by both threads and are thus shared,
whereas a is accessed by τ2 only and is local. Similarly, heap locations lx and lz (recorded
in x and z) are shared as they are accessed by both threads. This is denoted by P2 ≜
a Z⇒ va ∗ x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz in the pre-condition of τ2 in Fig. 1, describing
worlds in which the local state is a Z⇒ va (stating that stack variable a records value va),
and the global state is x Z⇒ lx ∗ lx 7→ vx ∗ z Z⇒ lz ∗ lz 7→ vz – note that we use the Z⇒ and 7→
arrows for stack and heap resources, respectively. By contrast, the τ1 precondition is P1 ≜
x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , comprising only shared resources and no local resources.

The actions in G1 (resp. G2), defined at the top of Fig. 1, describe the effect of τ1 (resp. τ2)
on the shared state. For instance, G1(α1) describes executing free(x) by τ1: when the shared
state contains x Z⇒ lx ∗ lx 7→vx, i.e. a sub-part of the shared state satisfies x Z⇒ lx ∗ lx 7→vx, then
free(x) terminates normally (ok) and deallocates x, updating this sub-part to x Z⇒ lx ∗ lx ̸7→,
denoting that lx is deallocated. Dually, the actions in R1 (resp. R2) describe the effect of
the threads in the environment of τ1 (resp. τ2); e.g. as the environment of τ1 comprises τ2
only and G2 describes the effect of τ2 on the shared state, we have R1≜G2.

Let us first consider analysing τ2 in isolation, ignoring the // annotations for now (these
become clear once we present the CASL proof rules in §3). Recall that in order to detect
the use-after-free bug at l, thread τ2 must account for an interleaving in which τ1 executes
both its instructions before τ2 proceeds with its execution. That is, τ2 may assume that
τ1 executes the actions associated with α1 and α2, as defined in R2. Note that after each
environment action (in R2) we extend the trace to record the associated action (we elaborate
on why this is needed below): starting from the empty trace [], we subsequently update it to
[α1] and [α1, α2] to record the environment actions assumed to have executed. Thread τ2
then executes the (local) assignment instruction a := 0 (line 7) which accesses its local state
(a Z⇒va) only. Subsequently, it proceeds to execute its instructions by accessing/updating
the shared state as prescribed in G2: it 1) takes action α′

1 associated with executing a := [z],
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whereby it reads from the heap location pointed to by z (i.e. lz) and stores it in a; and
then 2) takes action α′

2 associated with executing [x] := 1, where it attempts to write to
location lx pointed to by x and arrives at a use-after-free error as lx is deallocated, yielding
Q2 ≜ a Z⇒ 1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that after each G2 action α the trace is
extended with α, culminating in trace θ (defined at the top of Fig. 1). That is, each time a
thread accesses the shared state it must do so through an action in its guarantee and record
it in its trace. By contrast, when the instruction effect is limited to its local state (e.g. line 7
of τ2), it may be executed freely, without consulting the guarantee or recording an action.

We next analyse τ1 in isolation: τ1 executes its two instructions as given by α1 and α2 in
G1, updating the trace to [α1, α2]. It then assumes that τ2 in its environment executes its
actions (in R1), resulting in θ and yielding Q1 ≜ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 . Note that
τ1 may assume that the environment action α′

2 executes erroneously, as described in R1(α′
2).

Finally, we reason about the full program using the CASL parallel composition rule, Par (in
Fig. 3), stating that if we prove R1, G1, Θ1 ⊢ [P1] C1 [ϵ :Q1] and separately R2, G2, Θ2 ⊢ [P2]
C2 [ϵ :Q2], then we can prove R1 ∩ R2, G1 ∪ G2, Θ1 ∩ Θ2 ⊢ [P1 ∗ P2] C1 || C2 [ϵ :Q1 ∗ Q2] for
the concurrent program C1 || C2. In other words, (1) the pre-condition (resp. post-conditions)
of C1 || C2 is given by composing the pre-conditions (resp. post-conditions) of its constituent
threads, namely P1 ∗ P2 (resp. Q1 ∗ Q2); (2) the effect of C1 || C2 on the shared state is the
union of their respective effect (i.e. G1 ∪ G2); (3) the effect of the C1 || C2 environment on the
shared state is the effect of the threads in the environment of both C1 and C2 (i.e. R1 ∩ R2);
and (4) the traces generated by C1 || C2 are those generated by both C1 and C2 (i.e. Θ1 ∩ Θ2).

Returning to Fig. 1, we use Par to reason about the full program. Let C1 and C2 denote
the programs in the left and right threads, respectively. (1) Starting from P ≜ a Z⇒ va∗
x Z⇒ lx ∗ lx 7→vx ∗ z Z⇒ lz ∗ lz 7→vz , we split P as P1 ∗ P2 (i.e. P = P1 ∗ P2) and pass P1 (resp.
P2) to τ1 (resp. τ2). (2) We analyse C1 and C2 in isolation and derive R1, G1, {θ}⊢ [P1] C1
[er :Q1] and R2, G2, {θ} ⊢ [P2] C2 [er :Q2]. (3) We use Par to combine the two triples and
derive ∅, G1 ∪ G2, {θ}⊢ [P ] C1 || C2 [er : Q] with Q ≜ a Z⇒1 ∗ x Z⇒ lx ∗ lx ̸7→ ∗ z Z⇒ lz ∗ lz 7→1 .

CISL versus CASL. In contrast to CISL-Par where we can only derive normal (ok) triples
(and thus inevitably must encode erroneous behaviours as normal ones if possible), the CASL
Par rule makes no such stipulation (ϵ=ok or ϵ∈ErExit) and allows deriving both normal
and erroneous triples. More significantly, a CISL triple [P ] C [ϵ :Q] executed by a thread τ

only allows τ to take actions (updating the state) by executing C, i.e. only allows actions
executed by τ itself and not those of other threads in the environment (executing another
program C′). This is also the case for all correctness triples in over-approximate settings,
e.g. RGSep and RG. By contrast, CASL triples additionally allow τ to take a particular
action by an environment thread, as specified by rely, thereby allowing one to consider a
specific interleaving (see the EnvL, EnvR and EnvEr rules in Fig. 3). This ability to assume
a specific execution by the environment is missing from CISL. This is a crucial insight for
data-dependent bugs that depend on certain data exchange/synchronisation between threads.

Recording Traces. Note that when taking a thread action (e.g. at line 1 in Fig. 1), the
executing thread τ must adhere to the behaviour in its guarantee and additionally witness
the action taken by executing corresponding instructions; this is captured by the CASL Atom
rule. That is, the guarantee denotes what τ can do, and provides no assurance that τ does
carry out those actions. This assurance is witnessed by executing corresponding instructions,
e.g. τ1 in Fig. 1 must execute free(x) on line 1 when taking α1. By contrast, when τ takes
an environment action (e.g. at line 3 in Fig. 1), it simply assumes the environment will
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take this action without witnessing it. That is, when reasoning about τ in isolation we
assume a particular interleaving and show a given world is reachable under that interleaving.
Therefore, the correctness of the compositional reasoning is contingent on the environment
fulfilling this assumption by adhering to the same interleaving. This is indeed why we record
θ, i.e. to ensure all threads assume the same sequence of actions on the shared state. As
mentioned above, R, G specify how the shared state is manipulated, and have no bearing on
thread-local states. As such, we record no trace actions for instructions that only manipulate
the local state (e.g. line 7 in Fig. 1); this is captured by the CASL AtomLocal rule.

Note that the Θ component of CASL is absent in its over-approximate counterpart RGSep.
This is because in the correctness setting of RGSep one must prove a program is correct for
all interleavings and it is not needed to record the interleavings considered. By contrast, in
the incorrectness setting of CASL our aim is to show the occurrence of a bug under certain
interleavings and thus we record them to ensure their feasibility: if a thread assumes a given
interleaving θ, we must ensure that θ is a feasible interleaving for all concurrent threads.

RGSep versus RG. We develop CASL as an under-approximate analogue of RGSep [20]
rather than RG [11]. We initially developed CASL as an under-approximate analogue of RG;
however, the lack of support for local reasoning led to rather verbose proofs. Specifically, as
discussed above and as we show in §4, the CASL AtomLocal rule allows local reasoning on
thread-local resources without accounting for them in the recorded traces. By contrast, in
RG there is no thread-local state and the entire state is shared (accessible by all threads).
Hence, were we to base CASL on RG, we could only support the Atom rule and not the local
AtomLocal variant, and thus every single action by each thread would have to be recorded
in the trace. This not only leads to verbose proofs (with long traces), but it is also somewhat
counter-intuitive. Specifically, thread-local computations (e.g. on thread-local registers) have
no bearing on the behaviour of other threads and need not be reflected in the global trace.
We present our original RG-based development [19, §E and §F] for the interested reader.

2.2 CASL for Compositional Exploit Detection
In practice, software attacks attempt to escalate privileges (e.g. Log4j) or steal credentials (e.g.
Heartbleed [8]) using an adversarial program written by a security expert. That is, attackers
typically use an adversarial program to interact with a codebase and exploit its vulnerabilities.
Therefore, we can model a vulnerable program Cv and its adversary (attacker) Ca as the
concurrent program Ca || Cv, and use CASL to detect vulnerabilities in Cv. Vulnerabilities
often fall into the data-dependent category, where the vulnerable program Cv receives an
input from the adversary Ca, and that input determines the next steps in the execution
of Cv, i.e. Ca affects the control flow of Cv. Hence, existing under-approximate techniques
such as CISL cannot detect such exploits, while the compositional techniques of CASL for
detecting data-dependent bugs is ideally-suited for them. Indeed, to our knowledge CASL is
the first formal, under-approximate theory that enables exploit detection. Thanks to the
compositional nature of CASL, the approaches described here can be used to build scalable
tools for exploit detection, as we discuss below. Moreover, by virtue of its under-approximate
nature and built-in no-false-positives theorem, exploits detected by CASL are certified in
that they are guaranteed to reveal true vulnerabilities.

In what follows we present an example of an information disclosure attack. Later we show
how we use CASL to detect several classes of exploits, including: 1) information disclosure
attacks on stacks (§4) and 2) heaps in the technical appendix [19, §C] to uncover sensitive
data, e.g. Heartbleed [8]; and 3) memory safety attacks [19, §D], e.g. zero allocation [21].
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Hereafter, we write Ca and Cv for the adversarial and vulnerable programs, respectively;
and write τa and τv for the threads running Ca and Cv, respectively. We represent exploits
as Ca || Cv, positioning Ca and Cv as the left and right threads, respectively. As we discuss
below, we model communication between τa and τv over a shared channel c, where each party
can transmit (send/receive) information over c using the send and recv instructions.

send(c, 8);
recv(c, y);

local sec := ∗;
local w[8] :={0};
recv(c, x);
if (x ≤ 8)

z := w[x];
send(c, z);

(InfDis)

Information Disclosure Attacks. Consider the InfDis example on the right, where τv (the
vulnerable thread) allocates two variables on the stack: sec, denoting a secret initialised with
a non-deterministic value (∗), and array w of size 8 initialised to 0. As per stack allocation,
sec and w are allocated contiguously from the top of the stack. That is, when the top of the
stack is denoted by top, then sec occupies the first unitof the stack (at top) and w occupies
the next 8 units (between top−1 and top−8). In other words, w starts at top−8 and thus
w[i] resides at top−8+i.

The τv then receives x from τa, retrieves the xth entry in w and sends it to τa over c.
Specifically, τv first checks that x is valid (within bounds) via x ≤ 8. However, as arrays
are indexed from 0, for x to be valid we must have x < 8 instead, and thus this check is
insufficient. That is, when τa sends 8 over c (send(c, 8)), then τv receives 8 on c and stores it
in x (recv(c, x)), i.e. x=8, resulting in an out-of-bounds access (z := w[x]). As such, since
w[i] resides at top−8+i, x=8 and sec is at top, accessing w[x] inadvertently retrieves the
secret value sec, stores it in z, which is subsequently sent to τa over c, disclosing sec to τa!

CASL for Scalable Exploit Detection. In the over-approximate setting proving correctness
(absence of bugs), a key challenge of developing scalable analysis tools lies in the need to
consider all possible interleavings and establish bug freedom for all interleavings. In the
under-approximate setting proving incorrectness (presence of bugs), this task is somewhat
easier: it suffices to find some buggy interleaving. Nonetheless, in the absence of heuristics
guiding the search for buggy interleavings, one must examine each interleaving to find buggy
ones. Therefore, in the worst case one may have to consider all interleavings.

When using CASL to detect data-dependent bugs, the problem of identifying buggy
interleavings amounts to determining when to account for environment actions. For instance,
detecting the bug in Fig. 1 relied on accounting for the actions of the left thread at lines 5
and 6 prior to reading from z. Therefore, the scalability of a CASL-based bug detection tool
hinges on developing heuristics that determine when to apply environment actions.

In the general case, where all threads may access any and all shared data (e.g. in DataDep),
developing such heuristics may require sophisticated analysis of the synchronisation patterns
used. However, in the case of exploits (e.g. in InfDis), the adversary and the vulnerable
programs operate on mostly separate states, with the shared state comprising a shared
channel (c) only, accessed through send and recv. In other words, the program syntax (send
and recv instructions) provides a simple heuristic prescribing when the environment takes an
action. Specifically, the computation carried out by τv is mostly local and does not affect
the shared state c (i.e. by instructions other than send/recv); as discussed, such local steps
need not be reflected in the trace and τa need not account for them. Moreover, when τv
encounters a recv(c, −) instruction, it must first assume the environment (τa) takes an action
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and sends a message over c to be subsequently received by τv. This leads to a simple heuristic:
take an environment action prior to executing recv. We believe this observation can pave
the way towards scalable exploit detection, underpinned by CASL and benefiting from its
no-false-positives guarantee, certifying that the exploits detected are true positives.

3 CASL: A General Framework for Bug Detection

We present the general theory of the CASL framework for detecting concurrency bugs. We
develop CASL in a parametric fashion, in that CASL may be instantiated for detecting
bugs and exploits in a multitude of contexts. CASL is instantiated by supplying it with the
specified parameters; the soundness of the instantiated CASL reasoning is then guaranteed
for free from the soundness of the framework (see Theorem 2). We present the CASL
ingredients as well as the parameters it is to be supplied with upon instantiation.

CASL Programming Language. The CASL language is parametrised by a set of atoms,
Atom, ranged over by a. For instance, our CASL instance for detecting memory safety
bugs [19, §D] includes atoms for accessing the heap. This allows us to instantiate CASL
for different scenarios without changing its underlying meta-theory. Our language is given
by the C grammar below, and includes atoms (a), skip, sequential composition (C1; C2),
non-deterministic choice (C1 + C2), loops (C⋆) and parallel composition (C1 || C2).

Comm ∋ C ::= a | skip | C1; C2 | C1 + C2 | C⋆ | C1 || C2

CASL States and Worlds. Reasoning frameworks [12, 18] typically reason at the level of
high-level states, equipped with additional instrumentation to support diverse reasoning
principles. In the frameworks based on separation logic, high-level states are modelled
by a partial commutative monoid (PCM) of the form (State, ◦, State0), where State
denotes the set of states; ◦ : State × State ⇀ State denotes the partial, commutative and
associative state composition function; and State0 ⊆ State denotes the set of unit states.
Two states l1, l2 ∈ State are compatible, written l1 # l2, if their composition is defined:
l1 # l2

def⇐⇒ ∃l. l=l1 ◦ l2. Once CASL is instantiated with the desired state PCM, we define
the notion of worlds, World, comprising pairs of states of the form (l, g), where l ∈ State is
the local state accessible only by the current thread(s), and g ∈ State is the shared (global)
state accessible by all threads (including those in the environment), provided that (l, g) is
well-formed. A pair (l, g) is well-formed if the local and shared states are compatible (l # g).

▶ Definition 1 (Worlds). Assume a PCM for states, (State, ◦, State0). The set of worlds
is World≜

{
(l, g)∈State × State l# g

}
. World composition, • : World × World ⇀

World, is defined component-wise, • ≜ (◦, ◦=), where g ◦= g′ ≜ g when g =g′, and is other-
wise undefined. The world unit set is World0≜

{
(l0, g)∈World l0 ∈State0 ∧ g ∈State

}
.

Notation. We use p, q, r as metavariables for state sets (in P(State)), and P, Q, R as
metavariables for world sets (in P(World)). We write P ∗ Q for

{
w • w′ w∈P ∧ w′∈Q

}
;

P ∧ Q for P ∩ Q; P ∨ Q for P ∪ Q; false for ∅; and true for P(World). We write p ∗ q for{
(l, g)∈World l∈ p∧ g ∈q

}
. When clear from the context, we lift p, q, r to sets of worlds

with arbitrary shared states; e.g. p denotes a set of worlds (l, g), where l∈p and g ∈State.

CONCUR 2023



25:10 A General Approach to Under-Approximate Reasoning About Concurrent Programs

α∈AId R, G ∈AMap ≜ AId ⇀ P(State) × Exit × P(State) Θ∈P(Trace)

θ ∈ Trace ≜ List⟨AId⟩ Θ0 ≜ {[ ]} Θ1 ++ Θ2 ≜
{

θ1 ++ θ2 θ1 ∈ Θ1 ∧ θ2 ∈ Θ2
}

α :: Θ ≜
{

α :: θ θ ∈ Θ
}

dsj(R, G) def⇐⇒ dom(R)∩dom(G)=∅

R1 ⊆R2
def⇐⇒ dom(R1)⊆dom(R2) ∧ ∀α∈dom(R1).R1(α)=R2(α)

R′ ≼θ R def⇐⇒ ∀α ∈ θ ∩ dom(R′). R′(α) = R(α) R′ ≼Θ R def⇐⇒ ∀θ ∈ Θ. R′ ≼θ R

wf(R, G) def⇐⇒ dsj(R, G) ∧ ∀α∈dom(R), p, q, l.R(α)=(p, −, q) ∧ q ∗ {l} ̸= ∅ ⇒ p ∗ {l} ̸= ∅

Figure 2 The CASL model definitions.

Error Conditions and Atomic Axioms. CASL uses under-approximate triples [16, 17, 18]
of the form R, G, Θ ⊢ [p] C [ϵ :q], where ϵ ∈ Exit≜{ok} ⊎ ErExit denotes an exit condition,
indicating normal (ok) or erroneous execution (ϵ∈ErExit). Erroneous conditions in ErExit
are reasoning-specific and are supplied as a parameter, e.g. npe for a null pointer exception.

We shortly define the under-approximate proof system of CASL. As atoms are a CASL
parameter, the CASL proof system is accordingly parametrised by their set of under-
approximate axioms, Axiom ⊆ P(State) × Atom × Exit × P(State), describing how they
may update states. Concretely, an atomic axiom is a tuple (p, a, ϵ, q), where p, q ∈P(State),
a∈Atom and ϵ∈Exit. As we describe shortly, atomic axioms are then lifted to CASL proof
rules (see Atom and AtomLocal), describing how atomic commands may modify worlds.

CASL Triples. A CASL triple R, G, Θ ⊢ [P ] C [ϵ :Q] states that every world in Q can be
reached under ϵ for every witness trace θ∈Θ by executing C on some world in P . Moreover,
at each step the actions of the current thread (executing C) and its environment adhere to G
and R, respectively. The R, G are defined as action maps in Fig. 2, mapping each action
α∈AId to a triple describing its behaviour. Compared to original rely/guarantee relations
[20, 11], in CASL we record two additional components: 1) the exit condition (ϵ) indicating
a normal or erroneous step; and 2) the action id (α) to identify actions uniquely. The latter
allows us to construct a witness interleaving θ∈Trace as a list of actions (see Fig. 2). As
discussed in §2, to avoid false positives, if we detect a bug assuming the environment takes
action α, we must indeed witness the environment taking α. That is, if we detect a bug
assuming the environment takes α but the environment cannot do so, then the bug is a false
positive. Recording traces ensures each thread fulfils its assumptions, as we describe shortly.

Intuitively, each α corresponds to executing an atom that updates a sub-part of the shared
state. Specifically, G(α)=(p, ϵ, q) (resp. R(α)=(p, ϵ, q)) denotes that the current thread
(resp. an environment thread) may take α and update a shared sub-state in p to one in q

under ϵ, and in doing so it extends each trace in Θ with α. Moreover, the current thread
may take α with G(α)=(p, ϵ, q) only if it executes an atom a with behaviour (p, ϵ, q), i.e.
(p, a, ϵ, q)∈Axiom, thereby witnessing α. By contrast, this is not required for an environment
action. As we describe below, this is because each thread witnesses the G actions it takes,
and thus when combining threads (using the CASL Par rule described below), so long as
they agree on the interleavings (traces) taken, then the actions recorded have been witnessed.
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Lastly, we require R, G to be well-formed (wf(R, G) in Fig. 2), stipulating that: 1) R
and G be disjoint, dsj(R, G); and 2) the actions in R be frame-preserving: for all α with
R(α) = (p, −, q) and all states l, if l is compatible with q (i.e. q ∗ {l} ≠ ∅), then l is also
compatible with p (i.e. p ∗ {l} ≠ ∅). Condition (1) allows us to attribute actions uniquely to
threads (i.e. distinguish between R and G actions). Condition (2) is necessary for the CASL
Frame rule (see below), ensuring that applying an environment action does not inadvertently
update the state in such a way that invalidates the resources in the frame. Note that we
require no such condition on G actions. This is because as discussed, each G action taken is
witnessed by executing an atom axiomatised in Axiom; axioms in Axiom must in turn be
frame-preserving to ensure the soundness of CASL. That is, a G action is taken only if it is
witnessed by an atom which is frame-preserving by definition (see SoundAtoms in [19, §A]).

CASL Proof Rules. We present the CASL proof rules in Fig. 3, where we assume the
rely/guarantee relations in triple contexts are well-formed. Skip states that executing skip
leaves the worlds (P ) unchanged and takes no actions, yielding a single empty trace Θ0 ≜ {[ ]}.
Seq, SeqEr, Choice, Loop1, Loop2 and BackwardsVariant are analogous to those of IL [16]
with S : N → P(World). Note that in Seq, the set of traces resulting from executing C1; C2
is given by Θ1++Θ2 (defined in Fig. 2) by point-wise combining the traces of C1 and C2.

Atom describes how executing an atom a affects the shared state: when the local state is
in p′ and the shared state is in p ∗ f , i.e. a sub-part of the shared state is in p, then executing
a with (p′ ∗p, a, ϵ, q′ ∗q)∈Axiom updates the local state from p′ to q′ and the shared sub-part
from p to q, provided that the effect on the shared state is given by a guarantee action α

(G(α)=(p, ϵ, q)). That is, the G action only captures the shared state, and the thread may
update its local state freely. In doing so, we witness α and record it in the set of traces
({[α]}). By contrast, AtomLocal states that so long as executing a does not touch the shared
state, it may update the local state arbitrarily, without recording an action.

EnvL, EnvR and EnvEr are the Atom counterparts in that they describe how the
environment may update the shared state. Specifically, EnvL and EnvR state that the
current thread may be interleaved by the environment. Given α ∈ dom(R), the current
thread may execute C either after or before the environment takes action α, as captured by
EnvL and EnvR, respectively. In the case of EnvL we further require that α (in dom(R))
denote a normal (ok) execution step, as otherwise the execution would short-circuit and the
current thread could not execute C. Note that unlike in Atom, the environment action α in
EnvL and EnvR only updates the shared state; e.g. in EnvL the p sub-part of the shared
state is updated to r and the local state p′ is left unchanged. Analogously, EnvEr states
that executing C may terminate erroneously under er if it is interleaved by an erroneous
step of the environment under er . That is, if the environment takes an erroneous step, the
execution of the current thread is terminated, as per the short-circuiting semantics of errors.

Note that Atom ensures action α is taken by the current thread (in G) only when the
thread witnesses it by executing a matching atom. By contrast, in EnvL, EnvR and EnvEr
we merely assume the environment takes action α in R. As such, each thread locally ensures
that it takes the guarantee actions in its traces.As shown in Par, when joining the threads
via parallel composition C1 || C2, we ensure their sets of traces agree: Θ1 ∩ Θ2 ≠∅. Moreover,
to ensure we can attribute each action in traces to a unique thread, we require that G1 and G2
be disjoint (dsj(G1, G2), see Fig. 2). Finally, when τ1 and τ2 respectively denote the threads
running C1 and C2, the R1 ⊆G2∪R2 premise ensures when τ1 attributes an action α to R1
(i.e. α is in R1), then α is an action of either τ2 (i.e. α is in G2) or its environment (i.e. of a
thread running concurrently with both τ1 and τ2); similarly for R2 ⊆G1∪R1.
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Skip
R, G, Θ0 ⊢

[
P

]
skip

[
ok : P

] Seq
R, G, Θ1 ⊢

[
P

]
C1

[
ok : R

]
R, G, Θ2 ⊢ [R] C2 [ϵ :Q]

R, G, Θ1 ++ Θ2 ⊢ [P ] C1; C2 [ϵ :Q]

SeqEr
R, G, Θ ⊢ [P ] C1 [er :Q] er ∈ErExit

R, G, Θ ⊢ [P ] C1; C2 [er : Q]

Atom
G(α)=(p, ϵ, q) (p′ ∗ p, a, ϵ, q′ ∗ q) ∈ Axiom
R, G, {[α]} ⊢

[
p′ ∗ p ∗ f

]
a

[
ϵ :q′ ∗ q ∗ f

]
R, G, Θ0

Loop1
⊢

[
P

]
C⋆

[
ok : P

] Loop2
R, G, Θ ⊢ [P ] C⋆; C [ϵ :Q]
R, G, Θ ⊢ [P ] C⋆ [ϵ :Q]

AtomLocal
(p, a, ok, q) ∈ Axiom

R, G, {[ ]} ⊢
[
p
]

a
[
ok : q

]
BackwardsVariant
∀k. R, G, Θ⊢

[
S(k)

]
C

[
ok : S(k+1)

]
∀n>0. Θn =Θ++Θn−1

R, G, Θn ⊢
[
S(0)

]
C

[
ok : S(n)

]
Choice
R, G, Θ⊢ [P ] Ci [ϵ :Q] for some i∈{1, 2}

R, G, Θ ⊢ [P ] C1 + C2 [ϵ :Q]

Comb
R,G,Θ1 ⊢ [P ] C [ϵ :Q] R,G,Θ2 ⊢ [P ] C [ϵ :Q]

R, G, Θ1 ∪ Θ2 ⊢ [P ] C [ϵ :Q]

EnvL
R(α)=(p,ok,r) R,G,Θ⊢

[
p′∗ r∗f

]
C [ϵ :Q]

R, G, α :: Θ ⊢
[
p′ ∗ p ∗ f

]
C [ϵ :Q]

EnvR
R,G,Θ⊢

[
P

]
C

[
ok :r′∗ r∗f

]
R(α)=(r,ϵ,q)

R, G, Θ ++ {[α]} ⊢ [P ] C
[
ϵ :r′∗ q ∗ f

]
EnvEr
R(α) = (p, er , q) er ∈ ErExit

R, G, {[α]} ⊢
[

p ∗ f
]

C
[
er : q ∗ f

] Frame
R,G,Θ⊢ [P ] C [ϵ :Q] stable(R, R∪G)

R, G, Θ ⊢ [P ∗ R] C [ϵ :Q ∗ R]

ParEr
R, G, Θ ⊢ [P ] Ci [er : Q] for some i∈{1, 2}

er ∈ ErExit Θ ⊑ G
R, G, Θ ⊢ [P ] C1 || C2 [er : Q]

Cons
P ′⊆P R′, G′, Θ′⊢

[
P ′] C

[
ϵ :Q′] Q⊆Q′

R≼Θ R′ G≼Θ G′ Θ⊆Θ′

R, G, Θ ⊢ [P ] C [ϵ :Q]

Par
R1,G1,Θ1⊢ [P1] C1[ϵ :Q1] R2,G2,Θ2 ⊢ [P2] C2[ϵ :Q2]

R1 ⊆G2∪R2 R2 ⊆G1∪R1 dsj(G1,G2) Θ1∩Θ2 ̸=∅
R1 ∩ R2, G1 ∪ G2, Θ1 ∩ Θ2 ⊢ [P1 ∗ P2] C1 || C2 [ϵ :Q1 ∗ Q2]

with Θ ⊑ G def⇐⇒ ∀θ ∈Θ. θ ⊆ dom(G)
and stable(R, R) def⇐⇒ ∀(l,g)∈R, α. ∀(p, −, q)∈R(α), gq ∈q, gp ∈p, g′. g =gq ◦ g′ ⇒ (l, gp ◦ g′)∈R

Figure 3 The CASL proof rules, where R/G relations in contexts are well-formed.

Observe that Par can be used for both normal and erroneous triples (i.e. for any ϵ)
compositionally. This is in contrast to CISL, where only ok triples can be proved using
CISL-Par, and thus bugs can be detected only if they can be encoded as ok (see §2). In other
words, CISL cannot compositionally detect either data-agnostic bugs with short-circuiting
semantics or data-dependent bugs altogether, while CASL can detect both data-agnostic
and data-dependent bugs compositionally using Par, without the need to encode them as
ok. This is because CASL captures the environment in R, enabling compositional reasoning.
In particular, even when we do not know the program in parallel, so long as its behaviour
adheres to R, we can detect an error: R,G,Θ⊢ [P ] C [er :Q] ensures the error is reachable as
long as the environment adheres to R, without knowing the program run in parallel to C.
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ParEr is the concurrent analogue of SeqEr, describing the short-circuiting semantics
of concurrent executions: given i∈{1, 2}, if running Ci in isolation results in an error, then
running C1 || C2 also yields an error. The Θ ⊑ G premise (defined in Fig. 3) ensures the
actions in Θ are from G, i.e. taken by the current thread and not assumed to have been
taken by the environment. Comb allows us to extend the traces: if the traces in both Θ1 and
Θ2 witness the execution of C, then the traces in Θ1 ∪ Θ2 also witness the execution of C.

Cons is the CASL rule of consequence. As with under-approximate logics [16, 17, 18],
the post-worlds Q may shrink (Q ⊆ Q′) and the pre-worlds P may grow (P ′ ⊆ P ). The
traces may shrink (Θ ⊆ Θ′): if traces in Θ′ witness executing C, then so do the traces in
the smaller set Θ. Lastly, R ≼Θ R′ (resp. G ≼Θ G′) defined in Fig. 2 states that the rely
(resp. guarantee) may grow or shrink so long as it preserves the behaviour of actions in Θ.
This is in contrast to RG/RGSep where the rely may only shrink and the guarantee may
only grow. This is because in RG/RGSep one must defensively prove correctness against all
environment actions at all program points, i.e. for all interleavings. Therefore, if a program
is correct under a larger environment (with more actions) R′, then it is also correct under a
smaller environment R. In CASL, however, we show an outcome is reachable under a set of
witness interleavings Θ. Hence, for traces in Θ to remain valid witnesses, the rely/guarantee
may grow or shrink, so long as they faithfully reflect the behaviours of the actions in Θ.

Lastly, Frame states that if we show R, G, Θ ⊢ [P ] C [ϵ :Q], we can also show R, G, Θ ⊢
[P ∗ R]C [ϵ :Q ∗ R], so long as the worlds in R are stable under R, G (stable(R, R ∪ G), defined
in Fig. 3), in that R accounts for possible updates. That is, given (l, g) ∈ R and α with
(p, −, q)∈R(α) ∪ G(α), if a sub-part gq of the shared g is in q (g =gq ◦ g′ for some gq ∈ q and
g′), then replacing gq with an arbitrary gp ∈p results in a world (i.e. (l, gp ◦ g′)) also in R.

CASL Soundness. We define the formal interpretation of CASL triples via semantic triples
of the form R, G, Θ |= [P ] C [ϵ :Q] (see [19, §A]). We show CASL is sound by showing its
triples in Fig. 3 induce valid semantics triples. We do this in the theorem below, with its
proof in [19, §B].

▶ Theorem 2 (Soundness). For all R, G, Θ, p, C, ϵ, q, if R, G, Θ ⊢ [p] C [ϵ :q] is derivable
using the rules in Fig. 3, then R, G, Θ |=[p] C [ϵ :q] holds.

4 CASL for Exploit Detection

We present CASLID, a CASL instance for detecting stack-based information disclosure exploits.
In the technical appendix [19] we present CASLHID for detecting heap-based information
disclosure exploits [19, §C] and CASLMS for detecting memory safety attacks [19, §D].

The CASLID atomics, AtomID, are below, where l∈N is a label, x, y are (local) variables,
c is a shared channel and v is a value. They include assume statements and primitives
for generating a random value ∗ (local x :=τ ∗) used to model a secret value (e.g. a private
key), declaring an array x of size n initialised with v (local x[n] :=τ {v}), array assignment
l: x[k] :=τ y, sending (send(c, x) and send(c, v)) and receiving (recv(c, x)) over channel c. As
is standard, we encode if (b) then C1 else C2 as (assume(b); C1) + (assume(¬b); C2).

AtomID ∋ a ::= l: assume(b) | l: local x :=τ ∗ | l: local x[k] :=τ {v} | l: x :=τ y[k]
| l: send(c, x)τ | l: send(c, v)τ | l: recv(c, x)τ

CASLID States. A CASLID state, (s, h, h), comprises a variable stack s ∈Stack ≜ Var⇀

Ṽal, mapping variables to instrumented values; a heap h ∈Heap ≜ Loc⇀(Ṽal∪List⟨Ṽal⟩),
mapping shared locations (e.g. channel c) to (lists of) instrumented values; and a ghost
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ID-VarSecret[
sτ 799K n

]
l: local x :=τ ∗

[
ok : sτ 799K(n+1) ∗ x= top−n ∗ x Z⇒(v, τ, 1)

]
ID-VarArray[
sτ 799Kn∗k >0

]
l: local x[k]:=τ {v}

[
ok :sτ 799K(n+k)∗x= top−(n+k−1)∗∗k−1

j=0 (x+j Z⇒(v,τ,0))∗k >0
]

ID-ReadArray[
k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒−

]
l: x :=τ y[k]

[
ok : k Z⇒(v, τv, b) ∗ y+v Z⇒Vy ∗ x Z⇒Vy

]
ID-SendVal[
c 7→L

]
l: send(c,v)τ

[
ok :c 7→L++[(v,τ,0)]

] ID-Send[
c 7→L∗x Z⇒V

]
l: send(c,x)τ

[
ok :c 7→L++[V ]

]
ID-Recv[
c 7→ [(v,τt,ι)]++L ∗ x Z⇒−∗(ι=0 ∨τ ∈Trust)

]
l: recv(c, x)τ

[
ok :c 7→L ∗ x Z⇒(v,τt,ι)∗(ι=0 ∨τ ∈Trust)

]
ID-RecvEr
[c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust] l: recv(c, x)τ [er : c 7→ [(v, τt, 1)] ++ L ∗ τ /∈Trust]

Figure 4 The CASLID axioms.

heap h∈GHeap ≜ ({s} × TId)⇀Val, tracking the stack size (s). An instrumented value,
(v, τ, ι) ∈ Ṽal ≜ Val × TId × {0, 1}, comprises a value (v), its provenance (τ , the thread
from which v originated), and its secret attribute (ι∈{0, 1}) denoting whether the value is
secret (1) or not (0). We use x, y as metavariables for local variables, c for shared channels,
v for values, L for value lists and V for instrumented values. State composition is defined
as (⊎, ⊎, ⊎), where ⊎ denotes disjoint function union. The state unit set is {(∅, ∅, ∅)}. We
write x Z⇒V for states in which the stack comprises a single variable x mapped on to V and
the heap and ghost heaps are empty, i.e. {([x 7→ V ], ∅, ∅)}. Similarly, we write c 7→ L for
{(∅, [c 7→L], ∅)}, and sτ 799Kv for {(∅, ∅, [(s, τ) 7→v])}.

CASLID Axioms. We present the CASLID atomic axioms in Fig. 4. We assume that each
variable declaration (via local x :=τ ∗ and local x[n] :=τ {v}) defines a fresh name, and thus
avoid the need for variable renaming at declaration time. We assume the stack top is given by
the constant top; thus when the stack of thread τ is of size n (i.e. sτ 799K n), the next empty
stack spot is at top−n. Executing l: local x :=τ ∗ in ID-VarSecret increments the stack size
(sτ 799K n+1), reserves the next empty spot for x and initialises x with a value (v) marked
secret (1) with its provenance (thread τ). Analogously, ID-VarArray describes declaring
an array of size k, where the next k spots are reserved for x (the ∗ denotes ∗-iteration:∗n

j=1(x+j Z⇒V ) ≜ x+1 Z⇒V ∗ · · · ∗ x+n Z⇒V ). When k holds value v, ID-ReadArray reads
the vth entry of y (at y+v) in x. ID-SendVal extends the content of c with (v, τ, 0). ID-Recv
describes safe data receipt (not leading to information disclosure), i.e. the value received is
not secret (ι=0) or the recipient is trusted (τ ∈Trust≜TId\{τa}). By contrast, ID-RecvEr
describes when receiving data leads to information disclosure, i.e. the value received is secret
and the recipient is untrusted (τ ̸∈Trust), in which case the state is unchanged.

Example: InfDis. In Fig. 5 we present a CASLID proof sketch of the information disclosure
exploit in InfDis. The proof of the full program is given in Fig. 5a. Starting from Pa ∗Pv with
a singleton empty trace (Θ0, defined in Fig. 2), we use Par to pass Pa and Pv respectively
to τa and τv, analyse each thread in isolation, and combine their results (Qa and Qv) into
Qa ∗ Qv, with the two agreeing on the trace set Θ generated. Figures 5b and 5c show the
proofs of τa and τv, respectively, where we have also defined their pre- and post-conditions.
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Rv(α′
1) ≜ (c 7→ [], ok, c 7→ [(n, τa, 0)]) Rv(α′

2) ≜ (c 7→ [(v, τ, 1)], ok, c 7→ []) Ra ≜ Gv Ga ≜ Rv

Gv(α1) ≜ (c 7→ [(n, τa, 0)], ok, c 7→ []) Gv(α2) ≜ (c 7→ [], ok, c 7→(v, τ, 1)) Θ ≜ {[α′
1, α1, α2, α′

2]}

∅, Ga ∪ Gv, Θ0 ⊢ [Pa ∗ Pv] // Par

Ra, Ga, Θ0 ⊢ [Pa]
l′

1: send(c, 8)τa

l′
2: recv(c, y)τa

Ra, Ga, Θ ⊢ [er : Qa]

Rv, Gv, Θ0 ⊢ [Pv]
l1: local sec :=τv ∗
l2: local w[8] :=τv{v}
l3: recv(c, x)τv

l4: z :=τv w[x]
l5: send(c, z)τv

Rv, Gv, Θ ⊢ [er : Qv]
∅, Ga ∪ Gv, Θ ⊢ [er : Qa ∗ Qv]

(a)

Ra, Ga, Θ0 ⊢
[
Pa ≜ c 7→ [] ∗ τa ̸∈Trust

]
l′

1: send(c, 8)τa // Atom + ID-SendVal
Ra, Ga, {[α′

1]}⊢
[
ok: c 7→ [(8, τa, 0)] ∗ τa ̸∈Trust

]
// EnvL × 2

Ra,Ga,{[α′
1, α1, α2]}⊢

[
ok: c 7→[(v, τv, 1)] ∗τa̸∈Trust

]
l′

2: recv(c, t)τa // Atom + ID-RecvEr
Ra, Ga, Θ ⊢

[
er : Qa ≜ c 7→[(v, τv, 1)] ∗ τa ̸∈Trust

]
(b)

Rv, Gv,

Θ0 ⊢
[
P ≜ sτv 799K 0 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ []

]
l1: local sec :=τv ∗ // AtomLocal+ID-VarSecret

Θ0 ⊢
[
ok: sτv 799K1 ∗ x Z⇒− ∗ z Z⇒− ∗ c 7→ [] ∗ sec=top ∗ sec Z⇒(vs, τv, 1)

]
l2: local w[8] :=τv {v}; // AtomLocal + ID-VarArray

Θ0 ⊢
[
ok: sτv 799K9∗ x Z⇒−∗z Z⇒−∗ c 7→ [] ∗sec=top∗sec Z⇒(vs,τv,1)∗ w=top−8∗ ∗7

j=0(w+j Z⇒(v,τv))
]

// Frame
Θ0 ⊢

[
ok: x Z⇒−∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs, τv, 1)∗ w=top−8

]
// EnvL

{[α′
1]}⊢

[
ok: x Z⇒−∗ z Z⇒−∗ c 7→ [(8,τa,0)] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l3: recv(c, x)τv ; // (Atom + ID-Recv)

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=top∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
// Cons

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒−∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
if (x ≤ 8) l4: z :=τv w[x] // AtomLocal+ID-ReadArray

{[α′
1, α1]}⊢

[
ok: x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
l5: send(c, z)τv // Atom+ID-Send

{[α′
1,α1,α2]}⊢

[
ok: x Z⇒(8,τa,0)∗z Z⇒(vs,τv,1)∗ c 7→[(vs,τv,1)] ∗sec=w+8∗sec Z⇒(vs,τv,1)∗w=top−8

]
// EnvEr
Θ⊢

[
er : x Z⇒(8,τa,0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs,τv,1)∗ w=top−8

]
Θ⊢

[
er : Qv ≜ sτv 799K 9∗ x Z⇒(8, τa, 0)∗ z Z⇒(vs, τv, 1)∗ c 7→ [(vs, τv, 1)] ∗ sec=w+8∗ sec Z⇒(vs, τv, 1)

∗w=top−8 ∗ ∗7
j=0(w+j Z⇒(v, τv))

]
(c)

Figure 5 Proofs of InfDis (a), its adversary (b) and vulnerable (c) programs.

All stack variables are local and channel c is the only shared resource. As such, rely/guar-
antee relations describe how τa and τv transmit data over c: α1 and α2 capture the recv and
send in τv, while α′

1 and α′
2 capture the send and recv in τa. Using AtomLocal and CASLID

axioms, τv executes its first two instructions. It then uses Frame to frame off unneeded
resources and applies EnvL to account for τa sending (8, τa, 0) over c. Using Atom with
ID-Recv it receives this value in x. After using Cons to rewrite sec = top ∗ w = top−8
equivalently to sec=w+8 ∗ w= top−8, it applies AtomLocal with ID-ReadArray to read

CONCUR 2023



25:16 A General Approach to Under-Approximate Reasoning About Concurrent Programs

from w[x] (i.e. the secret value at sec=w+8) in z. It then sends this value over c, arriving
at an error using EnvEr as the value received by the adversary τa is secret. The last line
then adds on the resources previously framed off. The proof of τa in Fig. 5b is analogous.

5 Related Work

Under-Approximate Reasoning. CASL builds on and generalises CISL [18]. As with IL
[16] and ISL [17], CASL is an instance of under-approximate reasoning. However, IL and ISL
support only sequential programs and not concurrent ones. Vanegue [22] recently developed
adversarial logic (AL) as an under-approximate technique for detecting exploits. While we
model Cv and Ca as Ca || Cv as with AL, there are several differences between AL and CASL.
CASL is a general, under-approximate framework that can be 1) used to detect both exploits
and bugs in concurrent programs, while AL is tailored towards exploits only; 2) instantiated
for different classes of bugs/exploits, while the model of AL is hard-coded. Moreover, CASL
borrows ideas from CISL to enable 3) state-local reasoning (only over parts of the state
accessed), while AL supports global reasoning only (over the entire state); and 4) thread-local
reasoning (analysing each thread in isolation), while AL accounts for all threads.

Automated Exploit Generation. Determining the exploitability of bugs is central to pri-
oritising fixes at large scale. Automated exploit generation (AEG) tools craft an exploit
based on predetermined heuristics and preconditioned symbolic execution of unsafe binary
programs [2, 5]. Additional improvements use random walk techniques to exploit heap buffer
overflow vulnerabilities reachable from known bugs [9, 1, 10]. Exploits for use-after-free
vulnerabilities [23] and unsafe memory write primitives [6] have also been partially automated.

As with CASL, AEG tools are fundamentally under-approximate and may not find all
attacks. Assumptions made by AEG tools are hard-coded in their implementation, in contrast
to CASL which can be instantiated for new classes of vulnerabilities without redesigning the
core logic from scratch. Finally, traditional AEG tools have no notion of locality and require
global reasoning, making existing tools unable to cope with the path explosion problem and
large targets without compromising coverage. By contrast, CASL mostly acts on local states,
making it more suitable for large-scale exploit detection than current tools.
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Abstract
Deep neural networks (DNNs) are increasingly being deployed to perform safety-critical tasks. The
opacity of DNNs, which prevents humans from reasoning about them, presents new safety and
security challenges. To address these challenges, the verification community has begun developing
techniques for rigorously analyzing DNNs, with numerous verification algorithms proposed in recent
years. While a significant amount of work has gone into developing these verification algorithms, little
work has been devoted to rigorously studying the computability and complexity of the underlying
theoretical problems. Here, we seek to contribute to the bridging of this gap. We focus on two
kinds of DNNs: those that employ piecewise-linear activation functions (e.g., ReLU), and those that
employ piecewise-smooth activation functions (e.g., Sigmoids). We prove the two following theorems:

(i) the decidability of verifying DNNs with a particular set of piecewise-smooth activation functions,
including Sigmoid and tanh, is equivalent to a well-known, open problem formulated by Tarski;
and

(ii) the DNN verification problem for any quantifier-free linear arithmetic specification can be
reduced to the DNN reachability problem, whose approximation is NP-complete.

These results answer two fundamental questions about the computability and complexity of DNN
verification, and the ways it is affected by the network’s activation functions and error tolerance;
and could help guide future efforts in developing DNN verification tools.
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1 Introduction

The use of artificial intelligence, and specifically that of deep neural networks (DNNs), is
becoming extremely widespread – as DNNs are often able to solve complex tasks more success-
fully than any other computational approach. These include critical tasks in healthcare [14],
autonomous driving [8], communication networks [11], and also the task of communicating
with humans through text [10] – which seems to bring DNNs closer and closer to passing the
famous Turing test [55].
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However, it has been shown that even state-of-the-art DNNs are susceptible to various
errors. In one infamous example, known as adversarial perturbations, small input perturba-
tions that are imperceivable to the human eye are crafted to fool modern DNNs, causing
them to output incorrect results selected by an attacker [21]. Adversarial perturbations thus
constitute a safety and security threat, to which most DNNs are susceptible [50]. Other
issues, such as privacy concerns and bias against various groups, have also been observed,
making it clear that a high bar of trustworthiness must be met before stakeholders can fully
accept DNNs [29].

Overcoming these weaknesses of DNNs is a significant challenge, due to their size and
complexity. This is further aggravated by the fact that DNNs are machine-generated
(automatically trained over many examples). Consequently, they are opaque to human
engineers, and often fail to generalize their results to examples sufficiently different from the
set of examples used for training [32]. This has sparked much interest in the verification
community, which began studying verification techniques for DNNs, in order to guarantee
their compliance with given specifications. In recent years, the verification community has
designed and implemented multiple verification algorithms for DNNs, relying on techniques
such as SMT solving [25, 28, 59], abstract interpretation [18, 22], convex relaxation [33],
adversarial search [23], and many others [2, 4, 6, 17, 40, 41, 47, 49, 54, 57, 61]. Indeed, DNN
verification technology has been making great strides recently [35].

Modern verification algorithms depend heavily on the structure of the DNN being verified,
and specifically on the type of its activation functions. Initial efforts at DNN verification
focused almost exclusively on DNNs with piecewise-linear (PWL) activation functions. It
has been shown that the verification of such networks is an NP-complete problem [28,45],
and multiple algorithms have been proposed for solving it [18, 28, 31]. Although more recent
approaches can handle DNNs with smooth activation functions, these algorithms are often
approximate and/or incomplete [23,36,49]; in fact, to the best of our knowledge, there is not
a single algorithm that is guaranteed to terminate with a correct answer when verifying such
DNNs. This raises two important questions:

(i) does there exist a non-approximating algorithm that can always solve verification
queries involving DNNs with non-PWL activation functions? Or, in other words, is the
verification problem of DNNs with smooth and piecewise-smooth activation functions
decidable? and

(ii) when introducing approximations, how difficult does the verification problem become
with respect to the DNN, the specification, and the size of the approximation? In other
words, what is the computational complexity of DNN verification with smooth and
piecewise-smooth activation functions and with ϵ-error tolerance?

In this paper, we provide a partial answer for the first question, by showing that the
verification problem of DNNs with smooth and piecewise-smooth activation functions is
equivalent to a well-known, open problem from the field of model theory – Tarski’s exponential
function problem [52]. We do so by introducing a constructive bijection between verification
queries of such DNNs, and instances of Tarski’s open problem.

In addition, we provide a partial answer to the second question, by studying the relations
between DNN verification and DNN reachability problems, and ultimately proving that they
are equivalent. Even though this equivalence result was previously used [13], as far as we
know, we are the first to provide a formal reduction. This enables further investigation of
DNN verification with any quantifier-free linear arithmetic specification formula as a specific
case of DNN reachability, without loss of generality. The latter problem is known to be
NP-complete when ϵ-error tolerance is introduced in the result [44].
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Formally, we prove the two following theorems:
1. The DNN verification problem for DNNs with smooth and piecewise-smooth activation

functions is equivalent to Tarski’s exponential function problem [52], which is a well-known
open problem.

2. The DNN verification problem, with any quantifier-free linear arithmetic specification
formula, can be reduced to the DNN reachability problem, which is NP-complete when
some ϵ-error tolerance is allowed [44].

Our results imply a fundamental difference between the hardness of verification of DNNs
with piecewise-smooth and with piecewise-linear activation functions. As far as we know, we
are the first to provide any proof of this difference.

The rest of the paper is organized as follows. In Section 2 we provide background on
DNNs, verification and other necessary mathematical concepts. In Section 3 and Section 4
we formally prove the two main results mentioned above. In Section 5 we discuss related
work, and in Section 6 we describe our conclusions and directions for future work.

2 Background

2.1 Deep Neural Networks
Deep neural networks (DNNs) [20] are directed graphs whose nodes (neurons) are organized
into layers, and whose nodes and edges are labeled with rational numbers. Nodes in the first
layer, called the input layer, are assigned values matching the input to the DNN; and then
the values of nodes in each of the subsequent layers are computed as functions of the values
assigned to neurons in the preceding layer. More specifically, each node value is computed by
first applying an affine transformation (linear transformation and addition of a constant) to
the values from the preceding layer, and then applying a non-linear activation function [12]
to the result. The final (output) layer, which corresponds to the output of the network, is
computed without applying an activation function.

Three of the most common activation functions are the rectified linear unit (ReLU), which
is defined as:

ReLU(x) =
{
x x > 0
0 otherwise;

the Sigmoid function, defined as:

σ(x) : R → (0, 1) = exp(x)
exp(x) + 1

where exp is the exponential function; and the hyperbolic tangent, defined as:

tanh(x) : R → (−1, 1) = exp(x) − exp(−x)
exp(x) + exp(−x)

The latter two activation functions are both injective, and their inverses are defined as
follows:

∀x ∈ (0, 1) : σ−1(x) = ln( x

1 − x
)

∀x ∈ (−1, 1) : tanh−1(x) = 1
2 ln(1 + x

1 − x
)

CONCUR 2023
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where ln is the natural logarithm function. In addition, we consider the NLReLU activation
function [12,30], denoted τ for short, which is defined as:

NLReLU(x) = τ(x) = ln(ReLU(x) + 1)

A simple DNN with four layers appears in Figure 1, where all biases are set to zero and
are ignored. For input ⟨1, 2, 1⟩, the first node in the second layer evaluates to ReLU(1 · 1 +
2 · (−1)) = ReLU(−1) = 0; the second node in the second layer evaluates to ReLU(2 · 1 + 1 ·
(−1)) = ReLU(1) = 1; and the node in the third layer evaluates to σ(0 − 1) = σ(−1). Thus,
the node in the fourth (output) layer evaluates to 4 · σ(−1).

x1

x2

x3

v1

v2

v3 y

1

−1
1

−1

1

−1
4

ReLU

ReLU

σ

Figure 1 A toy DNN.

Formally, a DNN N : Rm → Rk is a sequence of n layers L0, ..., Ln−1 where each layer
Li consists of si ∈ N nodes, denoted v1

i , ..., v
si
i , and biases pji ∈ Q for each vji . Each directed

edge in the DNN is of the form (vli−1, v
j
i ) and is labeled with wi,j,l ∈ Q. The assignment to

the nodes in the input layer is defined by vj0 = xj , where x ∈ Rm is the input vector, and the
assignment for the jth node in the 1 ≤ i < n− 1 layer is computed as

vji = f ji

(
si−1∑
l=1

wi,j,l · vli−1 + pji

)

for some activation function f ji : R → R. Finally, neurons in the output layer are computed
as:

vjn−1 =
sn−2∑
l=1

wn−1,j,l · vln−2 + pjn−1

where wi,j,l and pji are (respectively) the predetermined weights and biases of N . The size of
a network |N | is defined as the overall number of its neurons.

2.2 Formal Analysis of DNNs

The formal methods community has tackled the formal analysis of DNNs primarily along
two axes: DNN verification, and DNN reachability. These are two related formulations, as
reachability problems may be expressed as verification problems in a straightforward manner.
In this paper, we further study the connections between these two formulations.
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DNN Verification. Let N : Rm → Rk be a DNN and P : Rm+k → {⊤,⊥} be a property,
where ⊤,⊥ represent the values for which the property does and does not hold, respectively.
The DNN verification problem is to decide whether there exist x ∈ Rm and y ∈ Rk such
that (N (x) = y) ∧ P (x, y) holds. In particular, a verification query is always expressed as
an existential formula. If such x and y exist, we say that the verification query ⟨N , P ⟩ is
satisfiable (SAT); and otherwise, we say that it is unsatisfiable (UNSAT).

A verification algorithm is sound if it does not return UNSAT for satisfiable queries, and
does not return SAT for unsatisfiable queries (in other words, if its answers are always correct);
and is complete if it always terminates, for any query.

So far, there have been several efforts at studying the complexity-theoretical aspects
of DNN verification [15,24,27,28,44–46]. Most previous work was focused on DNNs with
piecewise-linear activation function (specifically, ReLUs), while leaving many open questions
about the complexity-theoretical aspects of verifying DNNs with smooth and piecewise-
smooth activation functions.

DNN Reachability. Given a DNN N : Rm → R, a function o : R → R and an input set
X ⊆ [0, 1]m, the DNN reachability problem is to compute sup

x∈X
o(N (x)) and inf

x∈X
o(N (x)),

perhaps up to some ϵ-error tolerance. For DNNs with Lipschitz-continuous activation
functions, either smooth or piecewise-linear, (such as σ and ReLU), the reachability problem
with some ϵ-error tolerance is NP-complete, in the size of the network and ϵ [44]. In this
work, we consider a decision version for the problem where o is the identity, deciding whether
sup
x∈X

N (x) ≥ 0 is achieved for some x ∈ X . This decision version with some ϵ-error tolerance

is then to decide whether sup
x∈X

N (x) ≥ −ϵ is achieved for some x ∈ X . In addition, we may

assume that the input of N is within [0, 1]m, as the input domain may be normalized before
the network is evaluated.

For example, consider the DNN depicted in Figure 1. A possible verification query for
this DNN is given by a property P that returns ⊤ if and only if (x1, x2, x3) ∈ [0, 1]3 ∧
(y ∈ [0.5, 0.75] ∨ y ∈ [0, 0.25]); i.e., if there exists an input in the [0, 1]3 cube, for which
y ∈ [0.5, 0.75] ∨ y ∈ [0, 0.25]. A possible reachability query is to check whether there exists
an input in the domain [0, 1] × [0, 0.5] × [0.5, 1], for which y ≥ 0. This reachability query
can trivially be represented as a verification property P ′, which returns ⊤ if and only if
(x1, x2, x3) ∈ [0, 1] × [0, 0.5] × [0.5, 1] ∧ y ≥ 0. For any ϵ > 0, the equivalent reachability query
with ϵ tolerance is to decide if there exists an input in the domain [0, 1] × [0, 0.5] × [0.5, 1],
for which y ≥ −ϵ.

2.3 Decidability and Mathematical Logic
Mathematical Logic. In mathematical logic, a signature Σ is a set of symbols, representing
functions and relations. A Σ-formula is a formula, comprised of atoms and relations that
appear in Σ, the usual logical operators (∧,¬,∨,→,↔), and the quantifiers ∀ (universal)
and ∃ (existential). A variable affixed with a quantification symbol is a bounded variable;
and otherwise it is a free variable. A formula without free variables is called a sentence,
and a formula without bounded variables is called a quantifier-free formula. A formula with
variables x = (x1, ..., xn) of the form ∃(x).φ where φ is quantifier-free is called an existential
formula. A Σ-theory is a set of Σ-sentences. A Σ-model M is comprised of a set of elements,
denoted |M|, and an interpretation for all Σ functions and relations; that is, a definition
fM : |M|n → |M| for every n-ary function f ∈ Σ, and a definition rM ⊆ |M|m or every
m-ary relation r ∈ Σ. If the interpretation of a Σ-sentence φ is true within a model M, we
say that M satisfies φ, and denote M |= φ. If M satisfies all sentences in a Σ-theory T ,

CONCUR 2023
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then M is a T -model, denoted M |= T . Given some model M over signature Σ, we define
the theory Th(M) as the set of all Σ-sentences φ such that M |= φ. It is then trivial that
M |= Th(M).

For example, let Σ be the set {+,−, ·, 0, 1, <} where +,−, · are 2-ary functions, 0, 1 are
0-ary functions and < is a 2-ary relation. Let M be a model defined over R with addition,
subtraction, multiplication, the constants 0,1 and the usual order. Then Th(M) is the set of
all Σ-sentences that M satisfies, such as ∀x : x · 0 = 0.

Theory Decidability. For a Σ-theory T and a Σ-sentence φ, we say that φ is T -valid and
denote T ⊢ φ, if every model of T satisfies φ. Furthermore, we say that φ is T -satisfiable if
there exists a model M of T , for which M |= φ; and that φ is T -unsatisfiable if M ̸|= φ

for all models M of T . Satisfiability and validity are closely connected, as φ is T -valid if
and only if ¬φ is T -unsatisfiable. A theory T is decidable if there exists an algorithm that,
for any sentence φ, decides whether T ⊢ φ, within a finite number of steps. If φ is valid,
the algorithm returns ⊤; and otherwise, it returns ⊥. Due to the connection of satisfiability
and validity, validity-checking algorithms may also be used to decide satisfiability, and vice
versa. In particular, for any theory Th(M) for some model M, all Th(M)-models satisfy
exactly the same sentences, so validity and satisfiability are equivalent. Thus, throughout
this paper we use decision procedures to decide the Th(M)-satisfiability of formulas. In
addition, when considering quantifier-free formulas (i.e., a formula where all variables are
free), all of the formula’s variables are implicitly existentially quantified. In this case, for
any quantifier-free formula φ(x) with variable vector x, the satisfiability problem of φ(x)
with respect to a model M is equivalent to deciding whether M |= ∃x.φ(x). Similarly, the
satisfiability problem of φ(x) with respect to a theory T is equivalent to deciding whether
∃x.φ(x) is T -satisfiable.

It has previously been shown that the theory of the real field Th(R,+,−, ·, 0, 1, <) is
decidable [51], and that the theory of the real field with the transcendental functions
exp, sin and the constants log 2, π is undecidable [42]. The question of the decidability of
Th(R,+,−, ·, 0, 1, <, exp) has remained an open problem since the 1950’s [52], and it is
commonly known as Tarksi’s exponential function problem.

A theory T is stably-infinite if for every quantifier-free formula φ, the satisfiability of φ
in T implies that φ is satisfiable in some infinite model of T . It is then immediate that for
any infinite model M, Th(M) is stably-infinite.

Given two decidable, stably-infinite theories T1 and T2 defined over disjoint sets of symbols,
for any quantifier-free formulas F1 ∈ T1, F2 ∈ T2, the formula F1 ∧F2 is decidable as well [38].
The Nelson-Oppen method [38] is a well-known method for combining two decision procedures
for two theories into a decision procedure for the quantifier-free fragment of their union.

Equisatisfiability. Two formulas φ and ψ are equisatisfiable if φ is satisfiable if and only
if ψ is satisfiable. For example, the formulas φ := (a + b) ∗ (a − b) = 0 and ψ := c ∗ d =
0 ∧ c = a+ b∧d = a− b are equisatisfiable. Note that φ and ψ may be formulated in different
theories, T1 and T2, respectively. In this case, we say that the formulas are equisatisfiable if
φ is T1-satisfiable if and only if ψ is T2-satisfiable.

Function Definability. For any signature Σ and an n-ary function f , not necessarily in Σ, we
say that f is definable in a Σ-model M if there exists a Σ-formula ψ(x1, ..., xn, y, z1, ..., zm)
over the variables x1, ..., xn, y such that for any elements a1, ..., an, b in M we have that
M |= ∃z1, ..., zm.ψ(a1, ..., an, b, z1, ..., zm) if and only if b = f(a1, ..., an). We say that f is
definable in a Σ-theory T if it is definable in all models of T .
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Model-Completeness. In model theory, the concept of model-completeness has several
equivalent definitions. For our purposes, a theory T is model-complete if and only if any
formula in the theory has an equivalent existential formula (modulo T ). This means that
the existential formulas in T can express all the formulas in it. Th(R,+,−, ·, 0, 1, <, exp) is
known to be model-complete [58].

3 Decidability of DNN Verification

In this section, we prove our first main result: the decidability of verifying a DNN with the ac-
tivation functions ReLU, σ, tanh and τ is equivalent to the decidability of
Th(R,+,−, ·, 0, 1, <, exp). The decidability of this theory is an open problem [52]. Thus, the
equivalence implies that the decidability of DNN verification for DNNs with the activation
functions ReLU, σ, tanh and τ is an open problem as well.

For simplicity, we denote TR = Th(R,+,−, ·, 0, 1, <), Texp = Th(R,+,−, ·, 0, 1, <, exp),
and Tσ = Th(R,+,−, ·q∈Q, 0, 1, <, σ, tanh, τ), where ·q is an unary function, interpreted as
the multiplication with a constant q ∈ Q. We use Σσ,Σexp and ΣR to denote the signatures
of Tσ, Texp and TR, respectively. Note that for any DNN, weights and biases are in Q, and can
thus be expressed as TR-terms. Therefore, we can express the affine constraints of the network
as TR-formulas. In addition, any constraint of the form f = ReLU(b) can be expressed as the
formula (f = b ↔ b > 0) ∧ (f = 0 ↔ b ≤ 0), and thus ReLU is definable in TR, Texp and Tσ.
Therefore, without loss of generality, we need not add a function symbol to Σσ to express
DNNs with ReLU activation functions (or any other piecewise-linear function). Our goal is
then to show that the decidability of Texp is equivalent to the decidability of all existential
formulas of Tσ.

▶ Example. We begin with an example that illustrates this equivalence. For the first
direction, consider the toy DNN depicted in Figure 1, and let x1, x2, x3, b1, f1, b2, f2, b3, f3,
and y be the variables of the network. Variables x1, x2, x3 represent the input variables,
variables b1, f1, b2, f2, b3, f3 represent the inputs and outputs of nodes v1, v2, v3, respectively,
and variable y represents the network’s output. Let P be the property restricting the input
to be within [0, 1]3 and the output to be in [1, 2]. The verification query for the network
in Figure 1 and P is then:∧

i∈1,2,3
[(xi ≥ 0) ∧ (xi ≤ 1)]∧

(x1 − x2 = b1) ∧ (x2 − x3 = b2)∧∧
i∈1,2

[(fi = bi) ↔ (bi > 0)] ∧ [(fi = 0) ↔ (bi ≤ 0)]∧

(f1 − f2 = b3) ∧ (f3 = σ(b3)) ∧ (4 · f3 = y)∧
(1 ≤ y) ∧ (y ≤ 2)

This is a Tσ query, which can be expressed as a query in Texp, since σ(x) = exp(x)
1+exp(x) . The

equivalent Texp query is:∧
i∈1,2,3

[(xi ≥ 0) ∧ (xi ≤ 1)]∧

(x1 − x2 = b1) ∧ (x2 − x3 = b2)∧∧
i∈1,2

[(fi = bi) ↔ (bi > 0)] ∧ [(fi = 0) ↔ (bi ≤ 0)]∧

(f1 − f2 = b3) ∧ [(exp(b3) + 1) · f3 =
exp(b3)] ∧ (4 · f3 = y)

(1 ≤ y) ∧ (y ≤ 2)
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For the second direction, we begin by demonstrating a purification process of a given formula
φ := exp(a+ b) = exp(a) · exp(b) into a formula in Tσ. We assume that we can define ψc=a·b
and ψy=exp(x) in Σσ, which are defined over the variables a, b, c and x, y, respectively, and
that witness the definability of the functions · and exp in Tσ. Therefore, the formula

ψp=exp(a) ∧ ψq=exp(b) ∧ ψr=exp(a+b) ∧ ψr=p·q

is equisatisfiable to exp(a+ b) = exp(a) · exp(b).

Formally, we prove the following theorem:

▶ Theorem 1. The decidability of verifying DNNs with σ, tanh, τ and ReLU activation
functions is equivalent to the decidability of Th(R,+,−, ·, 0, 1, <, exp).

Proof. The first direction of the proof is similar to a technique proposed by Ivanov et al. [27].
Assume there exists a decision procedure for Texp, and let F ∈ Σσ be a DNN verification
query. For any appearance of σ(t) for some term t, we replace t, σ(t) with the fresh variables
x, y, respectively and add the conjunction:

(exp(x) + 1) · y = exp(x) ∧ x = t

to the resulting formula. This is done in a way similar to the one described in the example.
Similarly, for any appearance of tanh(t) for some term t, we replace t, tanh(t) with the fresh
variables x, y, respectively and add the conjunction:

(exp(x) + exp(−x)) · y = exp(x) − exp(−x) ∧ x = t

to the resulting formula. For defining τ , we first define:

ψf=ReLU(b) := (f = b ↔ b > 0) ∧ (f = 0 ↔ b ≤ 0)

Now, for any appearance of τ(t) = ln(ReLU(t) + 1) for some term t, we replace t, τ(t) with
the fresh variables x, y, respectively and add the conjunction:

ψz=ReLU(x) ∧ exp(y) = z + 1 ∧ x = t

to the resulting formula, where z is an additional fresh variable. After repeating this process
iteratively, we convert any F ∈ Σσ to an equisatisfiable formula F ′ ∈ Σexp. We then use the
decision procedure to decide the satisfiability of F ′.

The second direction of the proof is more complex. Assume we have a sound and complete
verification procedure for DNNs with σ, tanh and τ activation functions; that is, a decision
procedure for deciding the satisfiability of quantifier-free Σσ-formulas in Tσ.

Since Texp is model-complete, it is tempting to try and construct a decision procedure for
the existential formulas of Texp. However, to the best of our knowledge, given a general formula
in Texp it is not known how to effectively derive its equivalent existential formula. In order
to circumvent this issue, we consider instead a fourth theory, Te = Th(R,+,−, ·, 0, 1, <, e),
defined over the signature Σe, where e : R → R with e(x) = exp( 1

1+x2 ) is the restricted
exponential function. It has been shown by Macintyre and Wilkie [34] that the decidability
of this theory implies the decidability of Texp, and that given any formula in the language of
Te, one can effectively find an equivalent existential formula (in Te). Therefore, it is enough
for our purpose to consider any existential formula ∃x.φ ∈ Σe, and decide the satisfiability of
φ in Te.
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Let ∃x.φ ∈ Σe be an existential formula, where φ is a quantifier-free formula. We
construct a Σσ-formula ψ, equisatisfiable to φ. In this construction, all variables are
implicitly existentially quantified. In order to do so, it is enough to define formulas ψc=a·b
and ψy=e(x) over the variables a, b, c and x, y respectively, and witness the definability of the
functions · and e in Tσ. In this case, given any formula φ ∈ Σe, we can iteratively replace any
occurrence of terms of the form t · s with the fresh variable p and add the conjunction ψp=t·s,
and occurrences of terms of the form e(x) with the fresh variable q and add the conjunction
ψq=e(x). This process terminates with a Σσ-formula ψ equisatisfiable to φ, allowing us to
apply the decision procedure to ψ.

To complete the proof, it remains to show how ψc=a·b and ψy=e(x) can be defined using
the formula ψy=ln(x). We show the construction of ψy=ln(x) later, in Lemma 2, and we use it
here to define both ψc=a·b and ψy=e(x).

We start by defining ψc=a·b. Note that ∀a, b > 0, it holds that ln(a · b) = ln(a) + ln(b);
and so a · b = exp(ln(a) + ln(b)), assuming a, b > 0. This equality can be expressed using the
formula:

θc=a·b := ψp=ln(a) ∧ ψq=ln(b) ∧ ψp+q=ln(c),

where c represents the value of a · b, and p, q are fresh variables. For defining ψc=a·b for all
a, b ∈ R, we split into cases, and write:

ψc=a·b := [(a > 0 ∧ b > 0) → θc=a·b]∧
[(a < 0 ∧ b > 0) → θ−c=−a·b]∧
[(a > 0 ∧ b < 0) → θ−c=a·−b]∧
[(a < 0 ∧ b < 0) → θc=−a·−b]∧
[(a = 0 ∨ b = 0) ↔ c = 0],

which represents the function · and witnesses its definability in Tσ.
We now define ψy=e(x). Recall that e(x) = exp( 1

x2+1 ), so in order to define ψy=e(x) we
use both ψc=a·b and ψy=ln(x):

ψy=e(x) := ψa=ln(y) ∧ ψ1=a·(b+1) ∧ ψb=x·x

where a, b are fresh variables.
We have defined both ψc=a·b and ψy=e(x), which concludes our proof. ◀

For the completeness of this section, we provide now the proof of Lemma 2, which shows
the construction of ψy=ln(x):

▶ Lemma 2. The natural logarithm function ln is definable in Tσ.

Proof. First, observe that for any x ≥ 1 we have that τ(x − 1) = ln(ReLU(x− 1) + 1) =
ln(x− 1 + 1) = ln(x). Second, observe that ∀x ∈ (0, 1), the inverses of σ and tanh are defined
and are equal to:

σ−1(x) = ln( x

1 − x
) = ln(x) − ln(1 − x)

and

tanh−1(x) = 1
2 ln(1 + x

1 − x
) = 1

2(ln(1 + x) − ln(1 − x))

We conclude that:

CONCUR 2023
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∀x ∈ (0, 1) : σ−1(x)−2 tanh−1(x)+τ(x) = ln(x)−ln(1−x)−ln(1+x)+ln(1−x)+ln(x+1) = ln(x)

We can express this relation using the following formula, and the fresh variables a, b, c:

θx,y := [x = σ(a)] ∧ [x = tanh(b)] ∧ [c = τ(x)] ∧ [y = a− 2b+ c]

Where 2b is syntactic sugar for ·2(b). Thus, we can define:

ψy=ln(x) := [(1 < x) → (y = τ(x−1))]∧ [(x = 1) ↔ (y = 0)]∧ [(0 < x < 1) → θx,y]∧ [0 < x]

which concludes the proof. ◀

4 DNN Verification is DNN Reachability

The two main formal analysis approaches for DNNs, verification and reachability, are
closely connected: a DNN reachability instance can be formulated as DNN verification in a
straightforward manner, as in the example in Section 2.2. Presently, DNN analysis algorithms
and tools typically support one of the two formulations. Here, we prove that DNN verification
and DNN reachability are in fact equivalent.

In this part, we consider DNNs that use both piecewise-linear and Sigmoidal activation
functions. We formally prove that any instance of the DNN verification problem, with any
specification expressible by a quantifier-free linear arithmetic formula, can be reduced to an
instance of the DNN reachability problem. Since the reachability problem is a specific case of
verification, we ultimately prove that for DNNs, reachability and verification are equivalent.
Since it was shown that approximation of DNN reachability queries with Lipschitz-continuous
activation functions (such as σ and ReLU) is NP-complete [44], we deduce that the DNN
verification problem is reducible to a problem whose approximation is NP-complete. The
reduction involves adding an additional input, denoted ϵ, and we use (x, ϵ) to denote the
concatenation of ϵ to the input vector x. Formally, we prove the following theorem:

▶ Theorem 3. Let N : Rm → Rk be a neural network, let φ be a quantifier-free property
with atoms expressing affine constraints over variables yi of N , and let X ⊆ Rm. There
exists a neural network N ′ : Rm+1 → R, with |N ′| = O(|N | + |φ|) such that the two following
conditions are equivalent:

∃x ∈ X. N (x) |= φ

∃(x, ϵ) ∈ X × (0, 1] . N ′(x, ϵ) ≥ 0

▶ Example. We begin with an example for constructing N ′, given some DNN N , and a
property φ. Consider first N : R4 → R2 as depicted in Figure 2a and φ := (y1 > 0)∧(y1 ≥ y2).
We denote θ := y1 ≥ y2 and ψ := y1 > 0 ≡ ¬(−y1 ≥ 0). In Figure 2 we start with the
initial DNN N , and then iteratively add new nodes to N . In particular, we show how to
add neurons that are active if and only if N |= θ and N |= ψ, respectively in Figure 2b
and Figure 2c. Lastly, in Figure 2d we show how to add the output neuron, such that
∃x ∈ X. N (x) |= φ if and only if ∃(x, ϵ) ∈ X × (0, 1] . N ′(x, ϵ) ≥ 0. This concludes our
example.

We now prove the theorem by induction on the generating sequence of φ; that is, a
sequence of sub-formulas of φ: φ1, ..., φn such that ∀i, j if j > i then φj cannot be a sub-
formula of φi, and φn = φ. This allows inductive proofs over the formulas [48]. For example,
a generating sequence for the formula
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(a) The initial network.
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(b) Adding a construct for y1 ≥ y2.
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(c) Adding a construct for y2 > 0.
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(d) Adding a construct for φ, as a conjunction.

Figure 2 Construction of a reachability problem for N |= φ.

φ := ∃x, y.(3x ≥ 7) ∧ ¬(y ≥ x)

is:

y ≥ x, 3x ≥ 7,¬(y ≥ x), (3x ≥ 7) ∧ ¬(y ≥ x), ∃x, y.(3x ≥ 7) ∧ ¬(y ≥ x)

Proof. Without loss of generality, assume that φ is composed of atoms, negations, and
conjunctions. In addition, assume that each variable yj is an output variable (otherwise,
we may add neurons with the identity as activation function from the neuron outputting
yj to the output layer). For every step i in the generating sequence φ1, ..., φk = φ, we add
a constant number of output neurons, such that for any x ∈ Rm, the resulting DNN N ′

i ,
satisfies N ′

i ≥ 0 (for the last constructed output neuron) if and only if N (x) |= φi. Below
we explain the construction and prove its correctness; and in Figure 3 we show its visual
representation.
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Base Cases.
1. Let φ := ⊤. In this case, N ′ is constructed from N by adding a single affine neuron with

no activation function, and with its input edges with weight 0 from all output nodes of
N . This also maintains the convention that the output layer does not have an activation
function. Therefore, ∀x ∈ Rm : N ′(x, ϵ) ≥ 0 if and only if

∑
i

0 ≥ 0, which is equivalent to

⊤. The case of ⊥ is covered by our handling of negations.
2. Let φ :=

∑
i

ci · yi + b ≥ 0. In this case, N ′ is constructed from N by adding a single

affine neuron with no activation function, with its input edges with weight ci from every
output neuron yi of N , and a bias b. Therefore, ∀x ∈ Rm and N (x) = y we have that∑
i

ci · yi + b ≥ 0 if and only if N ′(x, ϵ) ≥ 0. We note that equality can be handled using

conjunctions, while strict inequalities can be handled using negations.

Inductive step.
1. Let φ := ψ ∧ θ, and let yψ, yθ be the values of the neurons such that yψ ≥ 0, yθ ≥ 0 if

and only if N (x) |= ψ, θ, respectively. Consider:

yφ = −ReLU(−yψ) − ReLU(−yθ)

In this case, we have that yφ ≥ 0 if and only if yψ ≥ 0 ∧ yθ ≥ 0. We can see this since
if yψ ≥ 0 ∧ yθ ≥ 0 then both −ReLU(−yψ) and −ReLU(−yθ) equal zero. Otherwise, at
least one of −ReLU(−yψ) and −ReLU(−yθ) is negative (and the other is non-positive).
Thus, we add two ReLU neurons, with a single −1 input edge from each of the nodes
corresponding to yψ, yθ, respectively. We then add a third neuron with two −1 edges
from the ReLU nodes and no activation function.

2. Let φ := ¬ψ, and let yψ be the value of the neuron such that yψ ≥ 0 if and only if
N (x) |= ψ. In this case, we first need to add a new ϵφ input neuron, and restrict it to
ϵφ > 0. Then, observe that ¬(yψ ≥ 0) ≡ yψ < 0 if and only if there exists some ϵ > 0
s.t. ϵ+ yψ ≤ 0, or equivalently −ϵ− yψ ≥ 0. Therefore, we add a new neuron with no
activation function, with a skip connection from the ϵφ neuron with weight −1, and with
a −1 weight from yψ, resulting in yφ = −ϵφ − yψ. We note that since there are finitely
many such constructions, we can choose the minimal ϵ implied by all of them, and again
choose the minimum of it and 1. Thus, a single ϵ ∈ (0, 1] suffices. In addition, the use of
the skip connections can be replaced with a line of ReLU neurons, starting with the ϵ
neuron and feed-forwarding to a neuron on every layer. This construction does not affect
the asymptotic size of N ′.

On every step of the recursion, we added a constant number of neurons to the network,
such that ∀x ∈ Rm, N ′(x, ϵ) ≥ 0 if and only if N (x) |= φi. This concludes our proof. ◀

5 Related Work

The complexity of DNN verification has been studied mainly for DNNs with piecewise-linear
activation functions – specifically, the ReLU function. It has previously been shown that
DNN verification is NP-complete, even for simple specifications [28, 45]. However, when
certain restricted classes of DNN architectures and specifications are considered, DNNs
with ReLUs only can be verified in polynomial time [15]. The verification complexity and
computability in the case of reactive systems controlled by ReLU DNNs (i.e., the DNN acts as
an agent that repeatedly interacts with an environment) has also been studied recently [2, 3].
One recent work showed that verifying CTL properties in this context is undecidable [1]. In
our work, however, we consider DNNs as stand-alone functions.
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Figure 3 Constructs for each step of the induction.

When considering realistic implementations of the ReLU function, e.g., in quantized
neural networks [24], the DNN verification problem for bit-vector specifications is PSPACE-
hard, introducing a big complexity gap from the case of ideal mathematical form. When
specific models of graph neural networks [62] are considered, the verification problem is
undecidable [46].

For DNNs with Sigmoidal activation functions, two main results are presently known.
First, it was shown that reachability analysis with some error tolerance ϵ, for any Lipschitz-
continuous activation function, is NP-complete in the size of the network and of ϵ [44].
Second, it was shown that the decidability of Texp implies the decidability of verifying DNNs
with Sigmoidal activation functions, and that verifying such DNNs with a single hidden
layer is decidable [27]. Our work here is another step towards a better understanding of the
complexity of verifying such DNNs. The computational power of Recurrent Neural Networks
with Sigmoidal activation functions has been studied as well, with Turing completeness results
for Sigmoidal RNNs [9]. This can be further used to study the verification of Sigmoidal
RNNs.

The complexity of formal analysis of DNNs with other functions, such as Gaussian and
arctan has also been studied, showing the verification problem is at least as hard as deciding
formulas in TR [60].

The connections between DNN verification and DNN reachability have also been studied
before. Most prominently, it was shown that any local-robustness verification query can be
reduced to a DNN reachability query [44]. In addition, a similar construction showing the
equivalence between verification and reachability has been used before [13], though for a
specific example without a formal proof.

6 Conclusion and Future Work

Our results show that for DNNs with ReLU, σ, tanh and NLReLU activation functions, the
decidability of the verification problem is equivalent to a well-known open problem; and that
it can be reduced to a problem whose approximation is decidable, and for whose complexity
an upper bound is known. This was achieved by reducing the verification problem to the
corresponding reachability problem. These results show a significant difference between the
verification problem for DNNs with piecewise-smooth activation functions and for DNNs
with piecewise-linear activation functions, which is known to be NP-complete [28,45].
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Moving forward, one goal that we plan to pursue is a version of our first result that
does not rely on the NLReLU function, which is not as mainstream as the other functions
that we considered. Although discarding this function does not alter the first direction
of the proof, the second reduction currently requires it; and we plan to circumvent this
requirement by defining a reduction from a Σexp-formula to a formula in the signature of
TR∪Th(R,+,−, ·q∈Q, 0, 1, <, σ, tanh), and then using a combination of the decision procedures
for these two theories. It is noteworthy that the Nelson-Oppen method [38] cannot be directly
applied here, since it requires the combined theories to be disjoint, which is not the case.
Several generalizations of the Nelson-Oppen method for non-disjoint theories have previously
been proposed [19,39,43,53], and we speculate that these could be useful in this context.

Another interesting direction that we plan to pursue is to combine our work with
approaches for switching between different kinds of machine learning models. For example, it
would be intriguing to study whether DNNs with smooth activation functions can be reduced
to decision trees or to neural networks with a fixed number of layers, as can apparently
be done for piecewise-linear DNNs [5, 56]. Equivalently, fundamental differences between
piecewise-linear DNNs and smooth DNNs might imply similar differences between other
classes of machine learning models.

Our second result could also be generalized, in two different manners. First, our construc-
tion could be applied to verification queries that involve multiple DNNs, e.g., verification
queries used for proving DNN equivalence [37]. This is true since for two DNNs N1,N2

operating on the same domain, the verification query N1(x) ?= N2(x) can be reduced to
N ′(x) ?= 0, where N ′ is constructed from copies of N1,N2 with outputs y1, y2, and where
additional neurons are used to stipulate that y3 ≥ 0 ⇐⇒ y1 = y2, using our construction.
In this case, we have that N ′ = O(|N1| + |N2|). An illustration of this construction appears
in Figure 4. These results, in turn, could be generalized to queries that involve any finite
number of DNNs.

x1

x2

x3

v1

v2

y1

1

−1
1

−1

1

−1

ReLU

ReLU

x5

x6

x7

x8

u1

u2

u3

y2

1

−5
1

−5
1

−5

4

4

4

ReLU

ReLU

ReLU

yy1≤y2

yy1≥y2

y3

−1

1

1

−1 −1

−1

−1

−1

ReLU

ReLU

ReLU

ReLU

Figure 4 Reducing DNN equivalence to DNN reachability.
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Second, similar constructions can support specification formulas over arithmetics that
include any activation function (even piecewise-smooth). In this case, the number of added
neurons is proportional not only to the sizes of the original network and the formula, but
also to the number of activation functions composing the atoms. This construction is
straightforward, and is omitted.

Our second result provides a notion of estimation for the DNN verification problem in
general. That is, we could relax any DNN verification query to its equivalent ϵ-tolerant
reachability query. This effectively allows an error tolerance in the value of the output
neuron of the resulting network. However, the intuitive definition for approximating DNN
verification is to introduce error tolerance to the values of all neurons. To that end, we plan
to investigate the connections between these two definitions of relaxation, and the advantages
of using each one.

A final line of work that we intend to pursue in the future is to consider a more
realistic framework of verification, with a concrete implementation of σ, rather than its
pure mathematical form. This is similar to what was done for DNNs with ReLU activation
functions [24]. In addition, we intend to characterize decidable fragments of the DNN
verification problem, by restricting specifications and/or architectures; that is, we plan to
identify sufficient conditions on the DNNs and specifications, which would render the resulting
verification problem decidable. For such decidable fragments, studying the computational
complexity of the verification problem is yet another intriguing line of work. Similar research
was conducted in the context of differential privacy [7], and it is interesting to study whether
the decidable fragments identified in this research could be useful for DNN verification as
well. We also intend to further explore implications of the Quasi-Decidability of Texp [16] on
DNN verification.
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Abstract
Byzantine Fault-Tolerant (BFT) protocols that are based on Directed Acyclic Graphs (DAGs) are
attractive due to their many advantages in asynchronous blockchain systems. These DAG-based
protocols can be viewed as a simulation of some BFT protocol on a DAG. Many DAG-based BFT
protocols rely on randomization, since they are used for agreement and ordering of transactions,
which cannot be achieved deterministically in asynchronous systems. Randomization is achieved
either through local sources of randomness, or by employing shared objects that provide a common
source of randomness, e.g., common coins.

A DAG simulation of a randomized protocol should be faithful, in the sense that it precisely
preserves the properties of the original BFT protocol, and in particular, their probability distributions.
We argue that faithfulness is ensured by a forward simulation. We show how to faithfully simulate
any BFT protocol that uses public coins and shared objects, like common coins.
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1 Introduction

Asynchronous distributed computation is naturally captured by a directed acyclic graph
(DAG), whose nodes describe local computation and edges correspond to causal dependency
between computation at different processes. Lamport’s happens-before relation [14] is an
example of such DAG, where each node is a single local computation event, and each edge is
a single message delivery event. Block DAGs [21] go one step further and incorporate more
than one local computation step in each block (node); these steps may even belong to several
independent protocols.

By exchanging blocks in a manner that preserves their dependencies, a distributed
protocol can now be abstracted as a joint computation of a block DAG. In particular, a
general Byzantine fault-tolerant (BFT) DAG-based algorithm combines two components:
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one component builds the DAG using a communication protocol that tolerates malicious
failures, and the other component performs the local computation embodied in each node of
the DAG. The first component can be used to separate the task of injecting user input to
the system, such as transactions, from the task of processing these inputs and producing an
output, e.g., an ordering of those transactions.

This generality makes block DAGs an attractive approach for designing coordination
protocols for, e.g., Byzantine Atomic Broadcast [10,13,20], consensus [4, 16] and cryptocur-
rencies [6]. (For a survey of the techniques used in block DAG approaches, see [21].) A block
DAG can be seen as a strict extension of a blockchain, which is a DAG where all blocks
are totally ordered, i.e., a directed path. The DAG approach was shown to achieve high
throughput [19] due to the flexibility it provides over the standard blockchain approach.

Schett and Danezis [17] show that any deterministic BFT protocol can be simulated as a
block DAG. They provide generic mechanisms for processes to maintain a consistent view of
the block DAG, and to individually interpret the DAG as an execution of some protocol.

The restriction to deterministic protocols, however, handicaps the applicability of this
result, since many algorithms in the asynchronous domain are necessarily non-deterministic,
due to the FLP impossibility result [9]. For example, DAG-based agreement protocols with
provable security, like Aleph [10] or DAG-Rider [13], are either randomized or assume the
existence of a shared source of randomness. This calls for a framework that can handle
randomized BFT protocols; those that either utilize local randomness or even a shared object.

The problem of using or defining block DAG simulations in the context of randomized
protocols has two aspects: (1) using a block DAG simulation of a deterministic protocol
as a building block of a randomized protocol, and (2) defining block DAG simulations of
randomized protocols.

Concerning the first aspect above, we aim to enable modular reasoning when using such
simulations instead of the original protocols (Section 2 describes a concrete example). Schett
and Danezis [17] establish that the traces of the block DAG simulation are included in
the set of traces of the original protocol (for some notion of trace which is not important
for this discussion). However, as shown in other contexts, e.g., concurrent objects [2, 11],
such a notion of refinement is not sufficient to conclude that relevant specifications of a
randomized protocol that builds on some other deterministic protocol are preserved when
the latter is replaced by the block DAG simulation. Indeed, the specifications of randomized
protocols characterize sets (probabilistic distributions) of executions and are instances of
hyper-properties which are not preserved by standard trace inclusion [2].

Therefore, we establish a stronger notion of refinement between a block DAG simulation
and the original protocol, namely, that there exists a forward simulation between the two.
(A forward simulation maps every step of one protocol to a sequence of steps of the other
protocol, starting from the initial state of the first and advancing in a forward manner; a
backward simulation is similar, but it goes in the reverse direction, from end states back to
initial states.). Based on the results in [2], this implies that any finite-trace specification of
a randomized protocol against an adaptive adversary is preserved when a sub-protocol is
replaced by its block DAG simulation. We recall that an adaptive adversary is a scheduler
that resolves all the non-determinism introduced by the interleaving semantics and which
can observe everything about the local state of a process or the messages in transit.

Armed with this understanding of the precise nature of block DAG simulation, we present
an extension of the construction of Schett and Danezis [17], which applies also to protocols
using randomization and shared objects. Specifically, we consider randomized protocols in
which the local coin flips of each process may be public, we call those protocols public-coin
protocols. We prove that any public-coin protocol that uses shared objects, e.g., common
coins, can be simulated on a block DAG, preserving its usage of shared objects.
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Algorithm 1 Binary consensus using a common coin.

Input: x

1: r := 0; est := x;
2: while true do
3: r++;
4: val := r.BCA(est);
5: c := r.Toss();
6: if val ̸= ⊥ and c = val then
7: output val;
8: est := val;
9: else if val ̸= ⊥ then

10: est := val;
11: else
12: est := c;

call r.BCA(0)

ret 

ret cr 

call r.BCA(1)

ret 1-cr 
call r.Toss()
ret cr 

est = cr est = 1-cr 

call r.Toss()

Figure 1 A randomized consensus algorithm on the left, and an execution template (c0 ∈ {0, 1})
on the right, which represents the executions of an adaptive adversary which disallows termination.

A relationship based on a forward simulation allows to conclude that probabilistic
specifications of a randomized protocol, e.g., termination time, are preserved by its block
DAG simulation. Such a simulation precisely preserves the finite trace distribution and the
probabilistic relationship between inputs and outputs. This means that whatever “adverse”
effects can occur in the simulation, can already be demonstrated in the original protocol.

Organization. Section 2 presents an example that demonstrates why simulations should
preserve hyperproperties. Sections 3 and 4 describe the model and introduce important
definitions and notations. Section 5 formally defines block DAGs. Our results are presented
and proved in Section 6. The relation of our simulation to the work of Schett and Danezis [17],
and some applications appear in Section 7. We summarize with future work, in Section 8.

2 Motivating Example

We describe a class of protocols solving Binary Crusader Agreement, and a hyperproperty
about them, called binding [1], which is assumed when such protocols are used to solve
randomized consensus. This motivates the need for establishing a notion of refinement
for block DAG simulations that is stronger than trace inclusion and which enables the
preservation of such hyperproperties.

Randomized consensus based on Binary Crusader Agreement. Let us consider the
consensus protocol listed in Algorithm 1 (from [1]). This is a randomized protocol based
on two sub-protocols, Binary Crusader Agreement, invoked as BCA, and a common coin,
invoked via Toss. Every process participating in this consensus protocol goes through a
sequence of asynchronous rounds (the current round is stored in the variable r), and each
round consists of one instance of BCA followed by one instance of Toss. We prefix invocations
with the value of r in order to emphasize that these instances are different from one round
to another.
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Binary Crusader Agreement [7] is a weak form of consensus, where processes start with a
value in {0, 1} and can return a value in {0, 1, ⊥} (note the special value ⊥). The requirements
are: (1) validity: if all non-faulty processes start with the same input, then this is the only
output, (2) agreement: no two non-faulty processes output two distinct non-⊥ values, and
(3) termination: every non-faulty process eventually outputs a value. It is weaker than
consensus because a process can output the “don’t know” value ⊥ instead of one of the inputs.
The common coin protocol allows to implement a shared source of uniform randomness, it
guarantees that all processes receive the same output in {0, 1} (drawn with equal probability)
and that this output is unpredictable to an outsider (adversary).

Each round of the consensus protocol starts with a round of BCA where each process
inputs the current estimation of the agreement value est (initially, this is the input x),
followed by a round of the common coin. If BCA returns a non-⊥ value then this will be
the value of est in the next round. Otherwise, the value of est is the value returned by the
coin protocol. Furthermore, if the values returned by BCA and Toss are the same, then the
process outputs the decision value. A process continues running the protocol after outputting
the decision in order to “help” other processes reach a decision (e.g., so that future instances
of BCA and the common coin satisfy honest super majority assumptions).

Termination under binding. We say that the protocol terminates when all non-faulty
processes output a decision. It has been shown [1] that the protocol of Figure 1 terminates
against an adaptive adversary with probability 1, provided that BCA satisfies a property
called binding. The binding property states that for every execution prefix of BCA that ends
with a process returning ⊥, there is a single non-⊥ value that can be returned by a process
in any future extension of this prefix. It is important to note that this is an instance of a
hyperproperty because it characterizes sets of executions, i.e., all possible extensions of a
prefix, instead of individual executions as in standard safety or liveness properties.

To explain the usefulness of binding, we use the execution template on the right of Figure 1.
This defines non-terminating executions of the consensus protocol against a specific adaptive
adversary assuming a “worst-case” BCA protocol, which satisfies the specification described
earlier but does not satisfy binding. Therefore, assuming two processes with different inputs,
for every round r, the adversary schedules BCA so that a first process returns ⊥ and the
second process’s return value is not yet fixed. Then, it schedules the first process to get a
value cr ∈ {0, 1} from the common coin and after observing this value, it resumes BCA so
that the second process gets the value 1 − cr (this is admitted by the BCA specification).
The conditional at lines 6–12 implies that the first process will enter the next round with
est being the outcome of the coin toss, and the second process with est being the value
returned by BCA. Therefore, they enter the next round with different estimations of the
agreement value, and the same can be repeated infinitely often. Since this repeats for all
possible outcomes of the coin tosses, non-termination happens with probability 1.

Note that this would not be possible for both outcomes cr ∈ {0, 1} of the coin toss if
BCA satisfies binding. Indeed, after the first process gets ⊥ from BCA (and before the coin
toss), the value returned by BCA to the second process is fixed in any possible extension, i.e.,
it is the same no matter the outcome of the coin toss. Therefore, for one of the two possible
outcomes of the coin toss, this return value equals that outcome, and the two processes will
enter with equal values of est in the next round.

When binding holds, an adaptive adversary can not impose the schedule described above
and the protocol terminates with probability 1. In every round, if the BCA value is not ⊥,
then it equals the outcome of the coin toss with probability 1/2, which leads to outputting a
decision. If all processes get ⊥ from BCA, then the common coin leads directly to agreement.
Therefore, the protocol terminates within a constant expected number of rounds.
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Preserving binding. In the context of this consensus protocol, we discuss the possibility
of replacing a given BCA protocol with a block DAG simulation as defined by Schett and
Danezis [17]. The results in [17] are not sufficient to deduce that the block DAG simulation
satisfies binding if the original protocol did, because, as mentioned above, binding is an
instance of a hyper-property and hyper-properties are not preserved by standard trace
inclusion [2]. Therefore, based on the results in [17], the proof of termination that assumed
binding is not applicable to the block DAG simulation.

In this work, we present a block DAG simulation that handles protocols that use public-
coins and shared objects (including a common coin like Toss). We establish that it is a
forward simulation, which by previous work [2], implies that the set of traces defined by an
adaptive adversary of the consensus protocol with the original BCA protocol is the same
when the latter is replaced with the block DAG simulation (the results in [2] were applied in
the context of concurrent objects and programs using such objects, but they are stated in
terms of LTSs models of such programs and apply more generally to distributed protocols
as well). Therefore, if one satisfies binding, then the other one satisfies it as well. This is
enough to conclude that the termination argument used for the original protocol holds for
the block DAG simulation as well.

3 Preliminaries

For any n ∈ N, we denote [n] = {1, . . . , n}. For any two strings s1 and s2, we denote by
s1 ◦ s2 the concatenation of the two strings.

We consider an asynchronous network with n processes p1, . . . , pn. Each process pi has
a local process state PSi, and buffers Inj→i and Outi→j , for each j ∈ [n], that serve for
communicating with pj , as well as a buffer Rqstsi that contains incoming user requests. A
schedule consists of two types of events:

A compute(i) event lets process pi receive all the messages in the buffers Inj→i, as well as
the requests in Rqstsi, and update the local state PSi. The local computation performed
to update PSi may result in new messages being deposited in the outgoing buffers Outi→j

and indications being sent to the user.
A deliver(i, j) event moves the oldest message in Outi→j to Inj→i.

We assume a computationally bounded adversary that may adaptively corrupt up to f

processes, and also controls the scheduling of the system. Initially, all n processes are correct
and honestly follow the protocol. Once a process is corrupted, it may behave arbitrarily.
The adversary can also read all messages in the system, even those sent by correct processes.
Although the scheduling of message delivery is adversarial, we assume eventual delivery, i.e.,
every message sent is eventually delivered.

In a randomized protocol, the local computation of a process can depend on the result of
local coin flips. To model this, we assume each process pi has access to a random tape, from
which it can draw a random string at each compute(i) event. Our simulation can be applied
to public-coin protocols, which are randomized protocols that do no require processes to keep
secrets, i.e., they can broadcast the random string they draw as soon as they use it. This
definition captures protocols in the full-information model such as [12].

To allow for easy composition, we define shared objects. A shared object is an implemen-
tation of an interface that is accessible by all processes. For example, in the context of the
randomized consensus protocol in Fig. 1 we used a shared object called common coin with
a method Toss. For any shared object o, each process pi can invoke o as it performs any
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local computation. Invocations are non-blocking, and o may at any point return a value in a
designated buffer o.buff i. Whenever a compute(i) event is scheduled, the contents of o.buff i

are dequeued and may affect the local computation.

4 Modeling protocols with Labeled Transition Systems

We model a protocol as a Labeled Transition System (LTS), which is a tuple L =
(Q, Σ, qstart, δ) where Q is a (possibly infinite) set of states, Σ is a set of (transition) labels,
qstart is the starting state, and δ ⊆ Q × Σ × Q is a (possibly infinite) set of transitions,
written as q1

l−→ q2 for any (q1, l, q2) ∈ Q × Σ × Q.
An execution of L is an alternating sequence of states and transition labels α =

q0, l0, q1, l1, . . . s.t. qi
li−→ qi+1 for any i ≥ 0. If there is a partial execution qi, li, . . . , lj−1, qj

then we write qi
li,...,lj−1−−−−−−→ qj . We define a subset of labels ΣE ⊆ Σ as the external actions,

and define a trace of L to be the projection of an execution over ΣE . Typically, external
actions correspond to requests and indications in the interface of a protocol, and define the
“observable” behavior of a protocol. For instance, the external actions of a consensus protocol
are about setting the input of each process and outputting their decisions.

LTSs can easily be used to model deterministic protocols. Essentially, LTS states
correspond to tuples of states of participating processes and communication channels, and
each transition corresponds to a step of some process (more details are given below).

Randomized protocols can be modeled using an extension of LTSs called (simple) proba-
bilistic automata [18] where a transition from a state q leads to a probability distribution over
states instead of a single state. The semantics of a probabilistic automaton is formalized in
terms of probabilistic executions, which are probability distributions over executions defined by
a deterministic scheduler that resolves the non-determinism. Probabilistic traces are defined
as projections of probabilistic executions to external actions (similarly to the non-probabilistic
case). The deterministic scheduler corresponds to the notion of adaptive adversary described
above which controls message delivery and process scheduling. To simplify the formalization,
we model randomized protocols using LTSs instead of probabilistic automata by including
results of random choices in the transition labels. The transition labels corresponding to
random choices are defined as external actions. The relevance of this modeling choice will be
detailed later when discussing forward simulations.

Let P be a public-coin protocol and O be a set of shared objects used by P . We define the
LTS of P as follows L = (Q, Σ, qstart, δ). A state q ∈ Q consists of the local state PSi, the
incoming messages (Inj→i)j∈[n], the outgoing messages (Outi→j)j∈[n] and the incoming object
return values (o.buff i)o∈O of each process pi. For convenience, we assume that incoming user
requests are stored in Ini→i and outgoing user indications are stored in Outi→i. Overall,
q =

(
PSi, (Inj→i)j∈[n], (Outi→j)j∈[n], (o.buff i)o∈O

)
i∈[n]. We use register notation to refer to

the components of each state, e.g., q.Inj→i refers to the incoming messages buffer from j to
i in the state q. In the initial state qstart, all of the processes have the initial local state and
all of the message buffers are empty. For the consensus protocol in Fig. 1, local states are
valuations of r, val, c, and est, and the buffer for incoming object return values will contain
values returned by Toss. User indications are decision values outputted at line 7.

The transition labels Σ correspond to the different types of steps in a protocol execution,
namely, local computation, message delivery, return values from objects in O, or user requests
and indications. Observe that we do not need to label sending requests to o ∈ O as this is
done in an ordinary local computation event. In addition, the local computation label would
include the randomness (if any) that is used by the process in the said computation event.
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Formally, the labels in Σ are as follows:
1. compute(i, ρ) denotes a transition where process pi performs a local computation with ρ

as its randomness. For the consensus protocol in Fig. 1, a local computation step would
consist in assigning a value to est depending on the conditions starting with line 6.

2. deliver(i → j) denotes a transition where all messages in Outi→j are moved to Ini→j .
3. o.indicate(i, w) denotes a transition where the value w has been added to o.buff i. In

Fig. 1, this would correspond to the common coin object returning a value for Toss.
4. request(i, x) denotes a transition where process pi receives x as input. In Fig. 1, this

models a process receiving an input value to use in the consensus protocol.
5. indicate(i, y) denotes a transition where process pi returns y as output. In Fig. 1, this

corresponds to the output at line 7.
The external actions in ΣE ⊆ Σ are user requests (request(i, x)) and indications (indicate(i, y)),
and local computation events (compute(i, ρ)). The latter are included in ΣE in order to
be able to relate probability distributions in different protocols, as discussed hereafter. A
transition (q1, l, q2) ∈ Q × Σ × Q is in δ if and only if the protocol can get from state q1 to
state q2 by executing the step denoted by the label l.

Showing that a block DAG protocol is a “correct” simulation of some other protocol relies
on the notion of forward simulation between the LTSs modeling the two protocols.

▶ Definition 1 (forward simulation). Let L = (Q, Σ, qstart, δ) and L′ = (Q′, Σ′, q′
start, δ′) be

two LTSs with the same set of external actions ΣE. A relation R ⊆ Q × Q′ is a forward
simulation from L to L′ if both of the following hold:

(qstart, q′
start) ∈ R

For any (q1, l, q2) ∈ δ and any q′
1 such that (q1, q′

1) ∈ R, there exists q′
2 ∈ Q′ such that:

(q2, q′
2) ∈ R,

q′
1

σ−→ q′
2 is a partial execution of L′ (σ is a sequence of labels in Σ′), and

if l ∈ ΣE, then the projection of the label sequence σ over ΣE is exactly l.

When L is an LTS modeling a block DAG simulation of a deterministic protocol P that
is modeled as an LTS L′, the existence of a forward simulation R from L to L′ implies
that the set of traces of L is included in the set of traces of L′ [15]. It also implies the
preservation of (hyper-)properties of finite probabilistic traces of randomized protocols when
some sub-protocol P is replaced by a block DAG simulation of it [2] (a concrete example
was given in Section 2). If the forward simulation is weak progressive [8], i.e., there exists a
well-founded order such that if σ = ϵ in Definition 1 then either q2 is smaller than q1 in this
order or there exists an infinite execution from q′

2 with empty trace, then (hyper-)properties
of infinite probabilistic traces are also preserved.

These results extend to randomized protocols as well. Assuming that the random choices
follow the uniform distribution, a forward simulation would imply that any random choice in
L is mimicked in precisely the same manner by L′. This is because the label of every step
that includes a random choice is an external action and the result of that random choice is
included in the label itself. This holds even for non-uniform random sampling as long as
probabilities are recorded in transition labels. More formally, it will imply the existence of a
weak probabilistic simulation which is known to imply that the probability distributions over
traces of L defined by a deterministic scheduler are included in the probability distributions
over traces of L′ defined by a deterministic scheduler [18]. Moreover, it will also imply
the preservation of probability distributions over executions of programs that use the block
DAG simulation instead of the original protocol (this is a consequence of weak probabilistic
simulations being sound for the trace distribution precongruence [18]).
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It follows that any standard specification of a protocol, e.g., safety or (almost-sure)
termination against an adaptive adversary, is preserved by a block DAG simulation provided
the existence of a forward simulation. Moreover, typical specifications of programs using the
DAG simulation instead of the original protocol will also be preserved.

5 Block DAGs

A block is the main type of message that is exchanged in DAG-based protocols and our block
DAG simulations. A block issued by some process pi allows pi to: (1) inject data into the
system, e.g., user inputs or shared object outputs, and (2) establish a dependency between
events of different processes. To that end, the main fields of a block B are the identity of the
issuing process B.p, injected data B.d, and references to other blocks B.preds (on which B

directly depends). The reference of B is denoted by ref(B).
We require that each reference must uniquely identify a specific block. One way to achieve

this is using cryptographic collision resistant hash functions: the reference ref(B) consists of
a hash of the block B. By the collision resistance of the hash function, it is infeasible for a
computationally bounded adversary (or correct processes) to issue two distinct blocks that
hash to the same value and this ensures that the reference identifies a unique block.

Since blocks are supposed to represent local computation, and local computation steps of
any one process are always totally ordered, then each block B must include one reference to
a parent block which we denote by B.parent, except for one genesis block for each process
which does not have a parent. In addition, all of the blocks issued by one honest process
should form a chain, i.e., a directed path that starts with the genesis block.

We define the ancestors of a block B to be all of the predecessors of B, and their
predecessors and so on; this set is denoted ancestors(B).

A block B is authentic if it was issued by the process B.p. It is crucial to ensure the
authenticity of each block before allowing it into the system. Otherwise, faulty processes can
impersonate honest processes and sabotage safety properties. We can ensure authenticity by
using a cryptographic digital signature scheme. That is each process must sign each block it
issues, and other processes validate the block by checking the signature attached to it.

Ensuring that each individual block is authentic is not enough to ensure that only
authentic blocks enter the system. We should also require that a block depends only on
authentic blocks, that is ancestors(B) must all be authentic in order for B to enter. We say
that a block is valid if it is authentic and all of B.preds are valid. Note that this recursive
definition is equivalent to requiring ancestors(B) all be authentic. Following this discussion,
to ensure safety, only valid blocks would be considered by correct processes. When a process
pi validates a block B, we write valid(pi, B).

Each process pi maintains a local DAG Gi consisting of the valid blocks that pi receives
as nodes and includes a directed edge B′ → B if and only if B′ ∈ B.preds. Note that we
need a mechanism for pi to ensure that Gi is a DAG. A simple mechanism would be for pi to
validate B only after it has validated B.preds and not validate multiple blocks “atomically”.
This alongside the fact that each reference identifies a unique block, would ensure that no
block in a directed cycle would ever be considered valid. Formally, a Block DAG of a correct
process pi is a graph G = (VG , EG) such that

VG ⊆ {B : valid(pi, B)}.
If B ∈ VG then for all B′ ∈ B.preds it holds that B′ ∈ VG .
EG = {(B′, B) ∈ VG × VG : B′ ∈ B.preds}.
G is acyclic.

Observe that by the definition of G, for every B ∈ VG it holds that ancestors(B) ⊆ VG . When
B′ ∈ ancestors(B), we write path(B′, B).
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6 Simulating Public-Coin Protocols That Use Shared Objects

Simulating a protocol on a block DAG consists of two components: first, a mechanism
that allows processes to build and maintain a joint block DAG and second, an algorithm to
interpret this joint block DAG as an execution of the original protocol. Given those two
ingredients, we can execute an instance of the protocol without sending any actual messages
that are specific to the protocol itself. Of course, maintaining the joint block DAG would
require exchanging one type of message (block), but those messages are agnostic to the
protocol being simulated. This means that we can use the same joint block DAG to interpret
multiple instances of the same protocol or even instances of different protocols.

Figure 2 describes how to simulate a public-coin protocol P using the components
mentioned above. We refer to this protocol as the block DAG simulation of P and denote it
by BD(P). We allow BD(P) to access the same shared objects as P.

Simulation of Public-Coin Protocols on Block DAGs
From the perspective of process pi, user requests go directly to Rqstsi.
Initially, Gi = ({Bj}j∈[n], Ei), where Bj is a dummy genesis block for process pj .
On every compute(i) event:
1. Run genBlock(Gi, blks).
2. If new blocks were added to Gi, then run interpret(Gi, P).
3. Run exchangeBlocks(Gi, blks).

Figure 2 The simulation algorithm for public-coin protocols.

Interpreting the block DAG as an execution of P is done using the interpret algorithm,
described in Section 6. This algorithm runs locally and involves no communication, yet
guarantees that if two correct processes are interpreting the same (partial) block DAG, then
their interpretations would be identical.

Maintaining the joint block DAG is done using the genBlock and exchangeBlocks al-
gorithms (discussed in Section 6): genBlock is responsible for creating new blocks and
exchangeBlocks is responsible for passing those blocks around to ensure that all correct
processes receive the same blocks even if the process that issued the block is corrupted.

The aforementioned components, together, ensure that correct processes have consistent
views of the execution of P at all times. However, this does not guarantee that the execution
is useful, e.g., it might give the adversary more power or it might be a “liveless” execution
where the correct processes are not making any progress. For that reason, we prove in
Section 6 that the execution (defined by the views) is faithful in the sense that there exists a
forward simulation towards the original protocol. This guarantees that the simulation of P
on the block DAG preserves P’s original specification.

Common Interpretation. Given a block DAG G = (V, E), we want to interpret it as an
execution of the protocol. We call this execution the simulated execution. Furthermore, we
need the interpretation to be consistent among all correct processes doing it.

The idea is to view G as a causality graph, where a block in G issued by some process pi

corresponds to a node that belongs to pi in the causality graph, and the node corresponds to
a compute(i) in the simulated execution. In order to interpret G, we interpret each block
separately, where the interpretation of the block consists of the local process state and its
outgoing messages after the corresponding compute(i) event. For convenience, we also treat
the incoming messages (right before the event) as part of the interpretation. Formally:
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▶ Definition 2 (Block Interpretation). The interpretation of a block B has the following fields:
1. A local process state B.PS .
2. A list of incoming messages B.Min.
3. A list of outgoing messages B.Mout. For convenience, we denote by Mout [j] the outgoing

messages in Mout that are designated to pj.

Note that the interpretation of a block is not sent over the network. This is crucial
because we do not want the size of the block sent over the network to increase with the
number of protocol instances being interpreted, and instead we only want the block to
include information that processes cannot locally compute unambiguously. As such, it is the
responsibility of each process to interpret each block it has locally.

In a regular execution of a deterministic protocol, whenever a compute(i) event is
scheduled, the process pi performs the following: it passes all of the message in Inj→i to
the local state of its protocol instance PSi and performs a local computation. This updates
the local state PSi, produces new outgoing messages that are deposited into Outi→j and
may return user indications. Our interpretation protocol tries to mimic the execution by
assigning to B.PS the local state of the process after the corresponding event, B.Mout [j] the
messages that would be deposited in Outi→j , and B.Min the messages that would have been
in Inj→i before the event. In addition, if the block B was issued by the process doing the
interpretation and B.PS produces a user indication, then the process must actually return
the indication to the user. The way to compute B.PS is as follows: B.PS is initially copied
from the parent block (or initialized as an initial state for genesis blocks), and then we feed
it all of the relevant outgoing messages from the interpretation of the predecessor blocks,
that is all messages in B′.Mout [i] for all B′ ∈ B.preds, where B.p = pi.

When extending this approach to randomized protocols, we need to account for the local
randomness. In this case, the process state expects to additionally receive a random tape. It
is the responsibility of the issuing process to include the tape in the block B and attach it as
a part of the block in a data field B.rand. The interpretation is thus similar to that of a
deterministic protocol, but B.rand is now also passed to the process state as randomness.

When further extending this to protocols with shared objects, we need to handle object
invocations and object indications. In a regular execution of a protocol with a shared objects
o, a process pi might invoke o following a compute(i) event. Similarly, when interpreting a
block, B.PS might dictate that B.p should invoke o. In this case, the interpreting process
pi actually performs the invocation only if it is the issuing process of the block pi = B.p.
The process states in the original protocol expect to receive indications from o, so these
indications should be passed to B.PS when interpreting B. When o returns an indication
to pi, it is the responsibility of pi to attach the indications to the block in a special buffer
B.buff [o]. The contents of B.buff [o] are passed to B.PS when interpreting B. This concludes
the high level description of block interpretation. In order to interpret an entire block DAG,
we interpret blocks in a topological order since the interpretation of each block B depends
on the interpretation of its predecessors. Since the graph is a DAG, such an order exists and
every block can be interpreted. The full algorithm interpret(G, P) is presented in Algorithm 2.
The main guarantee of interpret(G, P) is the fact that the interpretation of B is independent
of G. This is formalized in the following lemma (proved in the full version [3]):

▶ Lemma 3. For any two block DAGs G1 and G2, if B ∈ G1 and B ∈ G2 then the
interpretation of B in both interpret(G1, P) and interpret(G2, P) is identical.
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Algorithm 2 interpret(Gi, P) for process pi.
Gi = (Vi, Ei) is a block DAG and P is a public-coin protocol.
Gi is process-local variable that maintains its value across different invocations

1: while ∃B ∈ Gi s.t. B is not interpreted s.t. ∀B′ ∈ B.preds : B′ is interpreted do
2: if B.k = 0 then
3: Initialize B.PS as a new state according to the protocol P and process B.p

4: else
5: B.PS := B.parent.PS
6: for all B′ ∈ B.preds do
7: Copy messages from B′.Mout [B.p] to B.Min

8: Pass the user requests B.rqsts, messages B.Min , random tape B.rand and the object
indications B.buff to the state B.PS

9: Overwrite the new state in B.PS
10: Store the outgoing messages in B.Mout
11: if B.p = i then
12: Return user indications produced by B.PS to the user
13: Perform object invocations as dictated by B.PS

Joint Block DAG. We now explain how processes build and maintain the block DAGs.
Algorithm 3 presents the genBlock(Gi) algorithm, which allows a process to generate

blocks and inject data into the system. The algorithm gets a valid block DAG Gi of pi.
It then generates a new block B and assigns it a parent in Gi, then adds to B.preds all
references to blocks in Gi that do not have a path to B.parent. Note that since B.preds ⊆ Vi,
then B.pred only includes blocks B′ s.t. valid(pi, B′). This guarantees that B is a valid
block. Next the external data is filled into the block: this includes moving the user requests
from Rqstsi to B.rqsts, moving the object indications from o.buff i to B.buff [o] for each
relevant o ∈ O and finally assigning a random string ρ to B.rand. Note that we do not know
exactly how long ρ needs to be until B is actually interpreted. Since all B′ ∈ B.preds are
already in Gi, process pi can already interpret B and generate ρ while generating B.

Next, we describe the communication component that is responsible for exchanging blocks
and growing the DAGs. We have shown that processes that interpret the same blocks reach
the same conclusion. But for this to be useful, the communication component must ensure
correct processes eventually interpret the same blocks. That is, if a correct process pi adds
some B to Gi, then every correct process pj eventually adds B to Gj . This can be viewed as
a consistency property between two processes.

Note that a naive approach of having each process simply send its blocks to everyone
does not guarantee consistency, since an honest process pi may add a block B∗ by some
corrupted process B∗ as a predecessor for its own block B. pi naturally considers B valid
and adds it to its block DAG, but for any other honest process pj , B will never be considered
valid until it receives B∗ from p∗.

Consistency can be achieved with the following simple echoing mechanism. For each
block B that pi issues using genBlock, pi generates a signature for B which we denote by
B.σ, and sends (B, B.σ) to everyone. When pi receives a block B by some other process,
it first ensures B is authentic (by verifying the signature). After collecting all authentic
blocks, pi tries to validate as many of them as possible. The validation fails only if some
B′ ∈ B.preds of B is missing, so pi requests B′ from the process B.p that issued B, using a
forward request message which we denote by FWD(ref(B′)). The idea is that if B.p is correct
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Algorithm 3 genBlock(Gi) for process pi.
Gi = (Vi, Ei) is a block DAG.

1: Initialize a new block B as follows B.p := pi, B.preds := ∅, B.rqsts := ∅
2: Assign to B.parent the reference of the most recent block in Gi issued by pi.
3: B.k := B.parent.k + 1
4: for all B′ ∈ Vi s.t. ¬path(B′, B.parent) do
5: B.preds := B.preds ∪ {ref(B′)}
6: Fill the external data fillData(B).
7: return B

Algorithm 4 exchangeBlocks(Gi) for process pi.
Gi = (Vi, Ei): a block DAG
toValidate, isSent: process-local variables, maintain their values across invocations
Initialize toV alidate := ∅ and isSent := ∅

1: for all B ∈ Gi s.t. B.p = pi and B /∈ isSent do
2: Sign B and denote the signature by B.σ

3: Send (B, B.σ) to everyone
4: Move all authentic blocks from all Inj→i to a set auth

5: toV alidate := toV alidate ∪ auth ▷ Throw inauthentic blocks
6: while ∃B ∈ toV alidate s.t. valid(pi, B) do
7: Gi.insert(B)
8: toV alidate := toV alidate \ {B}
9: auth := auth \ {B}

10: for all B ∈ auth do ▷ Try to validate all authentic blocks
11: for all B′ ∈ B.preds s.t. B′ /∈ Gi do
12: Send FWD(ref(B′)) to B.p ▷ Request missing blocks from B.p

13: for all FWD(ref(B′)) in some Inj→i do ▷ Respond to forward requests
14: If B′ ∈ Gi, send (B′, B′.σ) to pj

15: Empty all Inj→i.

then it must have those blocks, so it will eventually send them to pi, allowing pi to validate
the block B.p. Finally, pi of course has to respond to the forward requests it has received.
The consistency guarantee ensured by exchangeBlocks is formalized in the following lemma:

▶ Lemma 4. For any two correct processes pi and pj executing the protocol of Figure 2, if
pi adds a block to its block DAG Gi, then pj eventually inserts B into Gj.

We note that Lemma 4 really refer to any protocol in which Algorithms 3 and 4 are
continuously run, and are not specific to Figure 2. The proof is deferred to the full version [3].

Correctness Proof. Combining Lemma 4 with Lemma 3 and assuming eventual delivery of
blocks, we get eventual delivery of simulated messages. In other words, if a correct process
pi wants to send a message m to some correct process pj , then this is expressed in the block
DAG framework as a block B issued by pi, such that B.Mout[j] contains the message m.
Delivering the message m to pj is expressed by pj creating a block B′ such that m ∈ B′.Min.
Note that referring to unambiguous interpretations of B and B′ is only possible through
Lemma 3. By Lemma 4, we know that if pi issues the block B then pj eventually receives
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B and considers it valid. By the algorithm in Algorithm 3, eventually pj creates a new
block B′ such that B ∈ B′.preds and by Algorithm 2, m will be added to B.Min. This
discussion demonstrates that the block DAG framework guarantees eventual delivery of
simulated messages, if we assume eventual delivery of blocks. This guarantees the liveness of
the block DAG simulation.

We show that the block DAG simulation of a protocol P is faithful in the sense that
there exists a forward simulation from the block DAG simulation denoted as BD(P) to P
(modeled as LTSs). As mentioned after 1, this implies that the block DAG simulation inherits
finite-trace probability distributions of P and that typical specifications of programs using
the DAG simulation instead of P are preserved.

Section 3 describes the modeling of P using LTSs. We describe below a modeling of BD(P)
using an LTS L′ = (Q′, Σ′, q′

start , δ′) which simplifies the forward simulation proof. A state
q′ ∈ Q′ contains the block DAG Gi of each process pi and (InB

j→i)j∈[n] and (OutB
i→j)j∈[n]

for each process pi, where InB
j→i is the incoming buffer of process i with blocks sent by

process j and OutB
i→j is the outgoing buffer with blocks sent by i to j. As before, we assume

that incoming user requests are stored in InB
i→i and outgoing user indications are stored in

OutB
i→i. The shared object indications are stored in separate buffers (o.buff i)o∈O as before.

Overall, q′ =
(
Gi, (InB

j→i)j∈[n], (OutB
i→j)j∈[n](o.buff i)o∈O

)
i∈[n]. In the initial state q′

start , all
of the block DAGs and the buffers are empty. The transition labels correspond to computing
and validating blocks, exchanging blocks, and user requests or indications. In comparison to
the “standard” model described in Section 3 we decompose a compute step of a process as
defined in Figure 2 into a sequence of steps. This simplifies the forward simulation proof.
As before, we include the randomness (that is attached to the newly created block) in the
computation label. Formally, the transition labels are as follows:
1. validateBlock(i → j) denotes a transition where pj validates a block issued by pi (inside

the genBlock algorithm).
2. compute(i, ρ) denotes a transition where process pi produces and disseminates a new

block (inside the genBlock algorithm) with ρ as its randomness, and then runs interpret
to interpret the new block (and other previously uninterpreted blocks).

3. sendFWD(i → j) denotes a transition where pi sends a FWD request to pj .
4. replyFWD(i → j) denotes a transition where pi sends a reply to a FWD sent by pj .
5. deliverBlocks(i → j) is a transition where all the blocks in OutB

i→j are moved to InB
i→j .

6. o.indicate(i, w) denotes a transition where the value w has been added to o.buff i.
7. labels for user requests (request(i, x)) or indications (indicate(i, y)) are used as in Section 3.

The external actions ΣE are defined exactly as for the LTS L modeling P, presented
in Section 3 (ΣE includes request(i, x), indicate(i, y), and compute(i, ρ)). A transition
(q′

1, e, q′
2) ∈ Q′ × Σ′ × Q′ (denoted q′

1
e−→ q′

2) is in δ′ if and only if the protocol BD(P)
can get from state q′

1 to state q′
2 by executing the step denoted by the label e. Theorem 5 is

proved in the full version [3].

▶ Theorem 5. There exists a forward simulation from the LTS L′ modeling BD(P) to the
LTS L modeling P.

7 Relation to Prior Work

Comparison with the deterministic simulation. We can now discuss how our simulation
and proof are related to the work of Schett and Danezis [17]. They show how block DAGs
can be used to simulate deterministic protocols, which are a special case of the protocols
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that we handle here. Readers that are familiar with their work will notice that we were able
to achieve a simulation that is a natural extension of theirs. We emphasize, however, that
our techniques for proving the faithfulness of our simulation are novel and different from
theirs. This is necessary because their techniques do not capture the probabilistic guarantees
of randomized protocols.

Our network component which consists of genBlock and exchangeBlocks algorithms is a
natural extension of the gossip algorithm of [17]. Indeed, the code responsible for generating
new blocks and echoing them is almost identical to that of gossip. The difference is that
because we want to exchange only blocks, they should carry enough information to resolve
the randomized decisions that can come from local randomness or shared objects. In our
protocol, each process is responsible to pass along its local randomness or the indications it
got from the shared object in the blocks that it creates. Lemma 4 is proved in a manner
similar to [17, Lemma 3.7].

Our interpretation algorithm is the natural extension of interpret algorithm of [17] for our
context. That is, when interpreting a deterministic protocol, the computation of each process
is only determined by the incoming messages and its state prior to processing those messages.
When interpreting a randomized protocol with shared objects, the local computation may
depend on local randomness and object indications. Our interpretation algorithm used those
fields that were already attached to each block by our genBlock. Lemma 3 that states the
common interpretation of block DAGs, is analogous to [17, Lemma 4.2]. However, the proof
of the latter had a minor mistake and our proof is slightly different.

Finally, the guarantees of randomized protocols, unlike those of deterministic protocols,
cannot always be expressed as trace properties. Particularly, for our simulation to be faithful
to the original protocol, we need a more careful and precise statement and proof. Therefore,
the modeling in Sections 3 and 6 as well as the proof of Theorem 5 are totally different from
what appears in [17].

Analyzing existing protocols. Several recent works rely on the block DAG approach, e.g.,
Aleph [10], DAG-Rider [13] and Bullshark [20]. All of these protocols are randomized. While
each of these works presents a new protocol, we provide a formal and systematic framework
for analyzing DAG-based protocols, especially randomized block DAG protocols.

Here we discuss how our simulation applies to existing protocols, concentrating on
Aleph [10] and DAG-Rider [13]. These protocols aim to order the blocks of the DAG, so
as to implement Byzantine Atomic Broadcast (BAB). A BAB protocol allows all processes
to receive the same messages in the same order. One natural way of implementing a BAB
protocol using a block DAG is by having each process attach the messages it wants to
broadcast to a block and then broadcast the block to everyone. The processes then just need
to agree on an order of the blocks, which would induce an order of the messages. Like our
simulation, both Aleph and DAG-Rider have a communication component that is responsible
for building and maintaining the common DAG. In both protocols, each block in the DAG
belongs to a specific round, and each correct process has a single block in each round.

Aleph orders the blocks in the DAG by electing a leader block in each round, and then
having that leader block (deterministically) dictate the order of its ancestor blocks that have
not been ordered yet.

DAG-Rider divides the DAG into waves. Each wave consists of four consecutive rounds,
and a leader block is elected for each wave. The block leader election is done by interpreting
the (same) block DAG as a consensus protocol and utilizing a shared object for generating
randomness, namely, a common coin. It is critical to note that our simulation preserves the



H. Attiya, C. Enea, and S. Nassar 27:15

properties of the shared object, for example the unpredictability of the common coin. This is
because our forward simulation preserves the compute events, in which the object invocations
happen. This means that the object cannot distinguish if it is being used in the context of
the original protocol or in the context of the block DAG simulation of the protocol. This
means that its properties are preserved.

Aleph and DAG-Rider can be analyzed using our framework. The consensus protocol
used can be analyzed independently of Aleph or DAG-Rider, while assuming it has access
to a common coin. By Theorem 5, the simulation of the consensus protocol on the block
DAG is faithful to the original consensus protocol. This not only simplifies reasoning about
safety and liveness of Aleph and DAG-Rider, but also supports modularity: the simulated
consensus protocol in Aleph or DAG-Rider can be seamlessly replaced using Theorem 5.

8 Discussion

We have presented a faithful simulation of DAG-based BFT protocols, which use public coins
and shared objects, including protocols that utilize a common source of randomness, e.g., a
common coin. Being faithful, the simulation precisely preserves properties of the original
BFT protocol, and in particular, their probability distributions.

One of the appealing properties of our block DAG framework is that it allows to minimize
the communication when running multiple instances of potentially different protocols. This
can be done by using the same joint block DAG to interpret multiple protocol instances.
The logic of the communication layer does not change, other than the need to specify the
associated instance for each user request and object indication that is attached to the blocks.
Each process would then run multiple interpretation instances, one for each protocol instance.
We note that a process does not necessarily need to attach a separate randomness tape
for each instance, and can instead attach a small random seed. Processes can then use a
pseudorandom generator to expand the seed to a large enough pseudorandom string that
can be used for all of the instances. This ensures that block size does not grow beyond the
size of the user requests and the object indications.

Our simulation relies on the fact that it is safe to reveal the randomness to the adversary
as soon as it is used. We can similarly define private-coin protocols, whose security relies
on processes ability to keep secrets from the adversary. A classical example would be any
Asynchronous Verifiable Secret Sharing scheme (e.g. [5]). From a theoretical point of view, it
would be interesting to demonstrate how we can simulate such algorithms on block DAGs.
However, we note that some protocols are entirely public-coin other than a dedicated private-
coin sub-protocol, such as Aleph-Beacon in Aleph [10] (which is used to implement a common
coin). In this case, the dedicated sub-protocol can be encapsulated as a shared object, thus
factoring out the use of private-coin simulations.
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Abstract
We introduce the notion of a Real Equation System (RES), which lifts Boolean Equation Systems
(BESs) to the domain of extended real numbers. Our RESs allow arbitrary nesting of least and
greatest fixed-point operators. We show that each RES can be rewritten into an equivalent RES
in normal form. These normal forms provide the basis for a complete procedure to solve RESs.
This employs the elimination of the fixed-point variable at the left side of an equation from its
right-hand side, combined with a technique often referred to as Gauß-elimination. We illustrate
how this framework can be used to verify quantitative modal formulas with alternating fixed-point
operators interpreted over probabilistic labelled transition systems.
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1 Introduction

The modal mu-calculus is a logic that allows to formulate and verify a very wide range
of properties on behaviour, far more expressive than virtually any other behavioural logic
around [3, 2]. For instance, CTL and LTL can be mapped to it, but the reverse is not
possible. By allowing data parameters in the fixed point variables in modal formulas, this
can even be done linearly, without loss of computational effectiveness [5]. Using alternating
fixed-points, the modal mu-calculus can intrinsically express various forms of fairness, which
in other logics can often only be achieved by adding special fairness operators.

An effective way to evaluate a modal property on a labelled transition system is by
translating both to a single Boolean Equation System (BES) with alternating fixed-points [20,
22]. Exactly if the initial boolean variable of the obtained BES has the solution true, the
property is valid for the labelled transition system. A BES with alternating fixed-points is
equivalent to a parity game [21, 2]. There are many algorithms to solve BESs and parity
games [26, 4, 17, 25]. Although, it is a long standing open problem whether a polynomial
algorithm exists to solve BESs [4, 17], the existing algorithms work remarkably well in
practical contexts.

For a while now, it has been argued that modal logics can become even more effective
if they provide quantitative answers [15, 16], such as durations, probabilities and expected
values. In this paper we lift boolean equation systems to real numbers to form a framework
for the evaluation of quantitative modal formulas, and call the result Real Equation Systems
(RESs), i.e., fixed-point equation systems over the domain of the extended reals, R∪{−∞, ∞}.
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Conjunction and disjunction are interpreted as minimum and maximum, and new operators
such as addition and multiplication with positive constants are added. A typical example of
a real equation system is the following

µX = ( 1
2 X + 1) ∨ ( 1

5 Y + 3),
νY = (( 1

10 Y − 10) ∨ (2X + 5)) ∧ 17.

Based on Tarski’s fixed-point theorem, this real equation system has a unique solution.
Using the method provided in this paper we can determine this solution using algebraic
manipulation. In the case above, see Section 4, the second fixed-point equation can be
simplified to νY = − 100

9 ∨ ((2X + 5) ∧ 17). It is sound to substitute this in the first equation,
which becomes µX = ( 1

2 X + 1) ∨ 7
9 ∨ (( 2

5 X + 4) ∧ 32
5 ). This equation can be solved for X

yielding X = 32
5 , from which it directly follows that Y = 17.

Concretely, this paper has the following results. We define real equation systems with
alternating fixed-points. The base syntax for expressions is equal to that of [7] with constants,
minimum, maximum, addition and multiplication with positive real constants. We add four
additional operators, namely two conditional operators, and two tests for infinity, which turn
out to be required to algebraically solve arbitrary real equation systems.

We provide algebraic laws that allow to transform any expression to conjunctive/disjunctive
normal form. Based on this normal form we provide rules that allow to eliminate each variable
bound in the left-hand side of an equation from the right-hand side of that equation. This
enables “Gauß-elimination”, developed for BESs, using which any real equation system can
be solved.

We provide a quantitative modal logic, and define how a quantitative formula and a
(probabilistic) labelled transition system ((p)LTS) can be transformed into a RES. The
solution of the initial variable of this equation system is equal to the evaluation of the
quantitative formula on the labelled transition system. We also briefly touch upon the
embedding of BESs into RESs.

The approach in this paper follows the tradition of boolean equation systems [19, 20, 21].
By allowing data parameters in the fixed-point variables we obtain Parameterised Boolean
Equation Systems (PBESs) which is a very expressive framework that forms the workhorse
for model checking [22, 13, 11]. In this paper we do not address such parametric extensions,
as they are pretty straightforward, but in combination with parameterised quantitative modal
logic, it will certainly provide a very versatile framework for quantitative model checking.

There are a number of extensions of the boolean equation framework to the setting of
reals but these typically limit themselves to only single fixed-points. In [7] the minimal
integer solutions for a set of equations with only minimal fixed-points is determined. In [8]
a polynomial algorithm is provided to find the minimal solution for a set of real equation
systems. In [1] convex lattice equation systems are introduced, also restricted to a single
fixed-point. In that paper a proof system is given to show that all models of the equations
are consistent, meaning that the evaluation of a quantitative modal formula is limited by
some upper-bound.

In [24], the Łukasiewicz µ-calculus is studied, which resembles RESs restricted to the
interval [0, 1]. This logic does allow minimal and maximal fixed-points. They provide two
algorithmic ways of computing the solutions for formulas in their logic, viz. an indirect
method that builds formulas in the first-order theory of linear arithmetic and exploits
quantifier elimination, and a method that uses iteration to refine successive approximations
of conditioned linear expressions. Embedding our logic in the Łukasiewicz µ-calculus can be
done by mapping the extended reals onto the interval [0, 1] using an appropriate sigmoid
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function. But such a mapping does not map our addition and constant multiplication to
available counterparts in the Łukasiewicz µ-calculus, which prevents using algorithms for
Łukasiewicz µ-terms [18, 24] to our setting. However, as the Łukasiewicz µ-calculus is directly
encodable into the RES framework, all our results are directly applicable to the Łukasiewicz
µ-calculus.

2 Expressions and normal forms

We work in the setting of extended real numbers, i.e., R∪{∞, −∞}, denoted by R̂. We assume
the normal total ordering ≤ on R̂ where −∞ ≤ x and x ≤ ∞ for all x ∈ R̂. Throughout
this text we employ a set X of variables and valuations η : X → R̂ that map variables to
extended reals. We write η(X) to apply η to X, and η[X := r] to adapt valuations by:

η[X := r](Y ) =
{

r if X = Y,

η(Y ) otherwise.

We consider expressions over the set X of variables with the following syntax.

e ::= X | d | c·e | e + e | e ∧ e | e ∨ e | e ⇒ e ⋄ e | e → e ⋄ e | eq∞(e) | eq−∞(e)

where X ∈ X , d ∈ R̂ is a constant, c ∈ R>0 a positive constant, + represents addition, ∧
stands for minimum, ∨ for maximum, _ ⇒ _ ⋄ _ and _ → _ ⋄ _ are conditional operators,
and eq∞ and eq−∞ are auxiliary functions to check for ±∞. The conditional operators and
the checks for infinity occur naturally while solving fixed-point equations and therefore, we
made them part of the syntax. We apply valuations to expressions, as in η(e), where η

distributes over all operators in the expression.
The interpretation of these operators on the domain R̂ is largely obvious. A variable

X gets a value by a valuation. Multiplying expressions with a constant c is standard, and
yields ±∞ if applied on ±∞. The conditional operators, addition and infinity operators are
defined below where e, e1, e2, e3 ∈ R̂.

e1 + e2 =


e1 + e2 if e1, e2 ∈ R, i.e., apply normal addition,

∞ if e1 = ∞ or e2 = ∞,

−∞ if ei=−∞ and e3−i ̸= ∞ for i = 1, 2.

e1 ⇒ e2 ⋄ e3 =
{

e2 ∧ e3 if e1 ≤ 0,

e3 if e1 > 0.
e1 → e2 ⋄ e3 =

{
e2 if e1 < 0,

e2 ∨ e3 if e1 ≥ 0.

eq∞(e) =
{

∞ if e = ∞,

−∞ if e ̸= ∞.
eq−∞(e) =

{
∞ if e ̸= −∞,

−∞ if e = −∞.

Note that all defined operators are monotonic on R̂. We have the identity eq∞(e) = e + −∞,
and so, we do not treat eq∞ as a primary operator. We write e[X := e′] for the expression
representing the syntactic substitution of e′ for X in e. We write occ(e) for the set of variables
from X occurring in e. Table 1 contains many useful algebraic laws for our operators.

The addition operator + has as property that −∞ + ∞ = ∞ + −∞ = ∞. One may
require the other natural addition operator +̂, as used in [8], satisfying that −∞+̂∞ =
∞+̂ − ∞ = −∞. It can be defined as follows:

e1+̂e2 = eq−∞(e1) ⇒ −∞ ⋄ (eq−∞(e2) ⇒ −∞ ⋄ (e1 + e2)).

CONCUR 2023
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We can extend the syntax with unary negation −e with its standard meaning, and,
provided no variable occurs in the scope of its definition within an odd number of negations,
negation can be eliminated using standard simplification rules. Therefore, we do not consider
it as a primary part of our syntax. At the end of Table 1 we list several identities involving
negation. Note that operators + and +̂ are each other’s dual with regard to negation.

We introduce normal forms, crucial to solve real equation systems, where the sum,
conjunction and disjunction over empty domains of variables equal 0, ∞ and −∞, respectively.

▶ Definition 1. Let X be a set of variables. An expression e is in simple conjunctive normal
form iff it has the shape∧

i∈I

∨
j∈Ji

((
∑

X∈Xij

cX
ij ·X) + (

∑
X∈X ′

ij

eq−∞(X)) + dij)

and it is in simple disjunctive normal form iff it has the shape∨
i∈I

∧
j∈Ji

((
∑

X∈Xij

cX
ij ·X) + (

∑
X∈X ′

ij

eq−∞(X)) + dij)

where Xij ⊆ X and X ′
ij ⊆ X are finite sets of variables, cX

ij ∈ R>0, and dij ∈ R̂.
An expression e is in conjunctive, resp. disjunctive normal form iff

1. e is in simple conjunctive, resp. disjunctive normal form, or
2. e has the shape e1 ⇒ e2 ⋄ e3 or e1 → e2 ⋄ e3 where e1 is in simple conjunctive, resp.

disjunctive normal form and e2 and e3 are conjunctive resp. disjunctive normal forms.

▶ Lemma 2. Each expression e not containing the conditional operators e1 ⇒ e2 ⋄ e3 or
e1 → e2 ⋄ e3 can be rewritten to a simple conjunctive or disjunctive normal form using the
equations in Table 1.

▶ Lemma 3. Expression of the forms e1 ⇒ e2 ⋄ e3 and e1 → e2 ⋄ e3 can be rewritten to
equivalent expressions where the first argument of such a conditional operator is a simple
conjunctive or disjunctive normal form using the equations in Table 1.

▶ Theorem 4. Each expression e can be rewritten to both a conjunctive and a disjunctive
normal form using the equations in Table 1.

3 Real equation systems and Gauß-elimination

In this section we introduce Real Equation Systems (RESs) as sequences of fixed-point
equations, introduce a natural equivalence between RESs, and provide a generic solution
method, known as Gauß-elimination [20].

▶ Definition 5. Let X be a set of variables. A Real Equation System (RES) E is a finite
sequence of (fixed-point) equations

σ1X1=e1, . . . , σnXn=en

where σi is either the minimal fixed-point operator µ or the maximal fixed-point operator
ν, Xi ∈ X are variables and ei are expressions. We write bnd(E) for the set of variables
occurring in the left-hand side, i.e., bnd(E) = {X1, . . . , Xn}.
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Table 1 Algebraic laws.

I∨ e ∨ e = e I∧ e ∧ e = e

D+
+ (e1 + e2) + e3 = e1 + (e2 + e3) C+ e1 + e2 = e2 + e1

D∨
∨ (e1∨2) ∨ e3 = e1 ∨ (e2 ∨ e3) C∨ e1 ∨ e2 = e2 ∨ e1

D∧
∧ (e1 ∧ e2) ∧ e3 = e1 ∧ (e2 ∧ e3) C∧ e1 ∧ e2 = e2 ∧ e1

D⇒
⇒ (e1 ⇒ e2 ⋄ e3) ⇒ f1 ⋄ f2 = ((e1 ∨ e2) ∧ e3) ⇒ f1 ⋄ f2

D⇒
→ (e1 ⇒ e2 ⋄ e3) → f1 ⋄ f2 = e1 → (e2 ⇒ f1 ⋄ f2) ⋄ (e2 ∨ e3 ⇒ f1 ⋄ f2)

Dc
⇒ c·(e1 ⇒ e2 ⋄ e3) = e1 ⇒ c·e2 ⋄ c·e3

D+
⇒ (e1 ⇒ e2 ⋄ e3) + f = e1 ⇒ (e2 + f) ⋄ (e3 + f)

D∧
⇒ (e1 ⇒ e2 ⋄ e3) ∧ f = e1 ⇒ (e2 ∧ f) ⋄ (e3 ∧ f)

D∨
⇒ (e1 ⇒ e2 ⋄ e3) ∨ f = e1 ⇒ (e2 ∨ f) ⋄ (e3 ∨ f)

D→
→ (e1 → e2 ⋄ e3) → f1 ⋄ f2 = (e2 ∨ (e1 ∧ e3)) → f1 ⋄ f2

D⇒
→ (e1 → e2 ⋄ e3) ⇒ f1 ⋄ f2 = e1 ⇒ (e2 ∧ e3 → f1 ⋄ f2) ⋄ (e3 → f1 ⋄ f2)

Dc
→ c·(e1 → e2 ⋄ e3) = e1 → c·e2 ⋄ c·e3

D+ (e1 → e2 ⋄ e3) + f = e1 → (e2 + f) ⋄ (e3 + f)
D∧

→ (e1 → e2 ⋄ e3) ∧ f = e1 → (e2 ∧ f) ⋄ (e3 ∧ f)
D∨

→ (e1 → e2 ⋄ e3) ∨ f = e1 → (e2 ∨ f) ⋄ (e3 ∨ f)
D+

∧ e1 + (e2 ∧ e3) = (e1 + e2) ∧ (e1 + e3) D+
∨ e1 + (e2 ∨ e3) = (e1 + e2) ∨ (e1 + e3)

Dc
+ c·(e1 + e2) = c·e1 + c·e2

Dc
∧ c·(e1 ∧ e2) = c·e1 ∧ c·e2 Dc

∨ c·(e1 ∨ e2) = c·e1 ∨ c·e2

D∧
∨ e1 ∧ (e2 ∨ e3) = (e1 ∧ e2) ∨ (e1 ∧ e3) D∨

∧ e1 ∨ (e2 ∧ e3) = (e1 ∨ e2) ∧ (e1 ∨ e3)

D∞
∞ eq∞(eq∞(e)) = eq∞(e) D−∞

∞ eq−∞(eq∞(e)) = eq∞(e)
D∞

−∞ eq∞(eq−∞(e)) = eq−∞(e) D−∞
−∞ eq−∞(eq−∞(e)) = eq−∞(e)

D∞
c eq∞(c·e) = eq∞(e) D−∞

c eq−∞(c·x) = eq−∞(x)
D∞

+ eq∞(e1 + e2) = eq∞(e1) + eq∞(e2) = eq∞(e1) ∨ eq∞(e2)
D−∞

+ eq−∞(e1 + e2) = (eq−∞(e1) ∨ eq∞(e2)) ∧ (eq∞(e1) ∨ eq−∞(e2))
D∞

∨ eq∞(e1 ∨ e2) = eq∞(e1) ∨ eq∞(e2) D−∞
∨ eq−∞(e1 ∨ e2) = eq−∞(e1) ∨ eq−∞(e2)

D∞
∧ eq∞(e1 ∧ e2) = eq∞(e1) ∧ eq∞(e2) D−∞

∧ eq−∞(e1 ∧ e2) = eq−∞(e1) ∧ eq−∞(e2)
E∧

∞ eq∞(e) ∧ eq−∞(e) = eq∞(e) E∨
−∞ eq∞(e) ∨ eq−∞(e) = eq−∞(e)

D∞
⇒ eq∞(e1 ⇒ e2 ⋄ e3) = e1 ⇒ eq∞(e2) ⋄ eq∞(e3)

D−∞
⇒ eq−∞(e1 ⇒ e2 ⋄ e3) = e1 ⇒ eq−∞(e2) ⋄ eq−∞(e3)

D∞
→ eq∞(e1 → e2 ⋄ e3) = e1 → eq∞(e2) ⋄ eq∞(e3)

D−∞
→ eq−∞(e1 → e2 ⋄ e3) = e1 → eq−∞(e2) ⋄ eq−∞(e3)

D−
c −c·e = c· −e

D−
+ −(e1 + e2) = −e1+̂ −e2 D−

+̂ −(e1+̂e2) = −e1+ −e2

D−
∨ −(e1 ∨ e2) = −e1 ∧ −e2 D−

∧ −(e1 ∧ e2) = −e1 ∨ −e2

D−
⇒ −(e1 ⇒ e2 ⋄ e3) = −e1 → −e3 ⋄ −e2 D−

→ −(e1 → e2 ⋄ e3) = −e1 ⇒ −e3 ⋄ −e2

D−
∞ −eq∞(e) = eq−∞(−e) D−

−∞ −eq−∞(e) = eq∞(−e)
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The empty sequence of equations is denoted by ε.
The semantics of a real equation system is a valuation giving the solutions of all variables,

based on an initial valuation η giving the solution for all variables not bound in E .

▶ Definition 6. Let X be a set of variables and E be a real equation system over X . The
solution [[E ]]η : X → R̂ yields an extended real number for all X ∈ X , given a valuation
η : X → R̂ of E. It is inductively defined as follows:

[[ε]]η = η,

[[σX=e, E ]]η = [[E ]](η[X := σ(X, E , η, e)])

where σ(X, E , η, e) is defined as

µ(X, E , η, e) =
∧

{r ∈ R̂ | r ≥ [[E ]](η[X := r])(e)} and
ν(X, E , η, e) =

∨
{r ∈ R̂ | [[E ]](η[X := r])(e) ≥ r}.

It is equivalent to write = instead of ≥ in the above sets. This makes the fixed-points
easier to understand. Note that if the real equation system is closed, i.e., all variables in the
right-hand sides occur in bnd(E), the value [[E ]]η(X) is independent of η for all X ∈ bnd(E).

Following [14], we introduce the notion of equivalency between equation systems. We use
the symbol ≡ to distinguish this equivalence from “=” used in equation systems.

▶ Definition 7. Let E , E ′ be real equation systems. We say that E ≡ E ′ iff [[E , F ]]η = [[E ′, F ]]η
for all valuations η and real equation systems F with bnd(F) ∩ (bnd(E) ∪ bnd(E ′)) = ∅.

In [14] it was observed that defining E ≡ E ′ as [[E ]]η = [[E ′]]η for all η is not desirable, as the
resulting equivalence is not a congruence. With this alternative notion, we find that µX=Y

and νX=Y are equivalent. But µX=Y, νY =X and νX=Y, νY =X are not as the first one
has solution X = Y = −∞ and the second one has X = Y = ∞.

However, if the fixed-point symbol is the same, it is not necessary to take surrounding
equations into account. This is a pretty useful lemma which makes the proofs in this paper
much easier, and of which we are not aware that it occurs elsewhere in the literature.

▶ Lemma 8. Let X be a variable, e and f be expressions and σ either the minimal or the
maximal fixed-point symbol. If for any valuation η it holds that [[σX = e]]η = [[σX = f ]]η
then σX = e ≡ σX = f .

The proof of the main Theorem 11 is quite involved and heavily uses the following two
lemmas, which we only give for the minimal fixed-point. The formulations for the maximal
fixed-point are dual.

▶ Lemma 9. Let X ∈ X be a variable and e, f be expressions. It holds that µX = e ≡ µX =
f if for every valuation η:
1. for the smallest r ∈ R̂ such that r = η[X := r](e) it holds that there is an r′ ∈ R̂ satisfying

that r′ ≤ r and r′ ≥ η[X := r′](f), and, vice versa,
2. for the smallest r ∈ R̂ such that r = η[X := r](f) it holds that there is an r′ ∈ R̂ satisfying

that r′ ≤ r and r′ ≥ η[X := r′](e).

▶ Lemma 10. If µX = e ≡ µX = f , then for any valuation η it holds that
1. for any r ∈ R̂ such that r ≥ η[X := r](e), there is an r′ ∈ R̂ such that r′ ≤ r and

r′ = η[X := r′](f), and, vice versa,
2. for any r ∈ R̂ such that r ≥ η[X := r](f), there is an r′ ∈ R̂ such that r′ ≤ r and

r′ = η[X := r′](e).
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Table 2 Properties of the equivalence ≡ on RESs.

E1 E ≡ E ′

F , E ≡ F , E ′ . E2 E ≡ E ′

E , F ≡ E ′, F
.

E3 σX=e, E , σ′Y =e′ ≡ σX=e[Y := e′], E , σ′Y =e′ if X, Y ̸∈ bnd(E).

E4 σX=e, E ≡ E , σX=e if occ(e) = ∅ and X ̸∈ bnd(E).

E5 σX=e, σY =e′ ≡ σY =e′, σX=e.

E6 µX = e1 ≡ µX = f1 and µX = e2 ≡ µX = f2

µX = e1 ∧ e2 ≡ µX = f1 ∧ f2
.

E7 νX = e1 ≡ νX = f1 and νX = e2 ≡ νX = f2

νX = e1 ∨ e2 ≡ νX = f1 ∨ f2
.

The notion of equivalence of Definition 7 is an equivalence relation on RESs and it satisfies
the properties E1-E7 in Table 2. E1-E5 are proven for boolean equation systems in [14] and
the proofs carry over to our setting. In the table, σ and σ′ stand for the fixed-point symbols
µ and ν. The equivalences E3 and E4 above give a method to solve arbitrary equation
systems, provided a single equation can be solved. Here, solving a single equation σX=e

means replacing it by an equivalent equation σX=e′ where X does not occur in e′, which is
the topic of the next section. This method is known as Gauß-elimination as it resembles the
well-known Gauß-elimination procedure for sets of linear equations [20].

The idea behind Gauß-elimination for a real equation system E is as follows. First, the
last equation σnXn=en of E is solved for Xn. Assume the solution is σnXn=e′

n, where Xn

does not occur in e′
n. Using E3 the expression e′

n is substituted for all occurrences Xn in
right-hand sides of E removing all occurrences of Xn except in the left hand side of the last
equation. Subsequently, this process is repeated for the one but last equation of E up to the
first equation. Now the first equation has the shape X1=e1 where no variable X1 up till
Xn occurs in e1. Using E4 this equation can be moved to the end of E , and by applying E3
all occurrences of X1 are removed from the right-hand sides of E . This is then repeated for
X2, which now also does not contain X1, . . . , Xn, until all variables X1, . . . , Xn have been
removed from all right-hand sides of E .

A concrete, but simple example is the following. Consider the real equation system

µX=Y, νY =(X + 1) ∧ Y.

We can derive:

µX=Y, νY =(X + 1) ∧ Y
(†)
≡ µX=Y, νY =X + 1 E3≡ µX=X + 1, νY =X + 1

(‡)
≡

µX= − ∞, νY =X + 1 E4≡ νY =X + 1, µX= − ∞,
E3≡ νY = − ∞, µX= − ∞.

Solving the equation νY = (X + 1) ∧ Y at (†) above, and µX=X + 1 at (‡) can be done
with simple fixed-point iteration. In νY = (X + 1) ∧ Y fixed-pointed iteration starts with
Y = ∞. This yields in the first iteration Y = X + 1, and this iteration is stable, and hence
it is the maximal fixed-point solution. For µX=X + 1, the initial approximation X = −∞ is
also a solution, and hence the minimal solution. Unfortunately, fixed-point iteration does
not terminate always. For instance, µX=(X + 1) ∨ 0 has minimal solution X = ∞, which
can only be obtained via an infinite number of iteration steps.
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4 Solving single equations

In this section we show that it is possible to solve each fixed-point equation σX = e in a
finite number of steps. First assume that e does not contain conditional operators. If we
have a minimal fixed-point equation µX=e, we know via Theorem 4 that we can rewrite e

to simple conjunctive normal form. We want to explicitly expose occurrences of the variable
X in the normal form of e and do this by denoting the normal form of e as shown in (1).
Here, all expressions containing variables different from X are moved to fij or mi.∧

i∈I

(
∨

j∈Ji

(cij ·X + c′
ij ·eq−∞(X) + fij) ∨ mi). (1)

The expressions fij and mi do not contain X. Subexpressions cij ·X are optional, i.e., abusing
notation, we allow cij to be 0 if this sub-term is not present. Likewise, eq−∞(X) is optional
and therefore, c′

ij is either 0 or 1, where 0 means that the expression is not present. Constants
cij and c′

ij cannot both be 0, as in that case the conjunct does not contain X and is hence
part of mi.

We define the solution of µX=e, in which e is assumed to be of shape (1), as µX = Solµ
X=e

where:

Solµ
X=e =

∧
i∈I

((eq∞(
∨

j∈Ji

fij))

⇒ (eq−∞(mi) ⇒ −∞ ⋄ ((
∨

j∈Ji|cij≥1

fij + (cij − 1)·Ui) ∨
∨

j∈Ji|c′
ij

=1

∞ ⇒ Ui ⋄ ∞))

⋄ ∞)

(2)

where Ui = mi ∨
∨

j∈Ji|cij<1

1
1 − cij

·fij .

Note that we use the notation
∨

j∈Ji|cond where cond is a condition. This means that the
disjunction is only taken over elements j that satisfy the condition. Also observe that we
use expressions such as 1

1−cij
·fij . This is an ordinary multiplication with 1

1−cij
as positive

constant. It is worth noting that if only rational numbers are used in the equations, the
solutions to the variables are restricted to −∞, ∞ and rationals.

It can be understood that (2) is a solution of (1) as follows. First observe that due to
property E6 the solution of a minimal fixed-point distributes over the initial conjunction

∧
i∈I

of clauses. This means that we can fix some i ∈ I and only concentrate on understanding how
one single clause

∨
j∈Ji

(cij ·X + c′
ij ·eq−∞(X) + fij) ∨ mi must be solved. If fij is equal to ∞

for some j ∈ Ji, the solution must be infinite. This is ensured by the outermost conditional
operator in (2). Now, assuming that no fij is equal to ∞, we inspect mi. If mi equals
−∞, then the minimal solution for the given i ∈ I is also −∞. This explains the nested
conditional operator in (2).

Next consider the innermost conditional operator of (2) and additionally assume mi > −∞.
If there is some c′

ij that is equal to 1, then the minimal solution is at least mi due to the
disjunct mi that appears in the clause. But then it must also be at least 1·eq−∞(mi) = ∞.
Hence, in this case the solution is ∞, which is ensured by the expression in the condition of
the innermost conditional

∨
j∈Ji|c′

ij
=1 ∞. Otherwise, all c′

ij equal 0, and both the right-hand
side of (1) and the solution (2) can be simplified to∨

j∈Ji

(cij ·X + fij) ∨ mi and (
∨

j∈Ji|cij≥1

fij + (cij − 1)·Ui) ⇒ Ui ⋄ ∞.
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Figure 1 Solving a simple minimal fixed-point equation/An LTS with an infinite sequence of b’s.

This resulting situation is best explained using Figure 1 (left). The simple conjunctive normal
form consists of a number of disjunctions of the shape cij ·X + fij . These characterise lines
of which we are interested in their intersection with the line x = y. In Figure 1 such lines
are drawn as l1, . . . , l4, and h1 and h2. Due to the disjunction, we are interested in the
maximal intersection point. If we first concentrate on those lines with cij < 1, then we see
that (Ui, Ui) is the maximal intersection point of these lines above mi. This intersection
point is the solution for the equation unless there is a steep line, with cij ≥ 1 which at x = Ui

lies above (Ui, Ui). In the figure there is such a line, viz. h2. In such a case the fixed-point
lies at the intersection of h2 with the line x = y for x > Ui. As this point does not exist in
R, the solution is ∞. The expression

∨
j∈Ji|cij≥1 fij + (cij − 1)·Ui in (2) takes care of this

situation. Steep lines, like h1 which lie below (Ui, Ui) at x = Ui can be ignored, as they do
not force the minimal fixed-point Ui to become larger.

In case of a maximal fixed-point equation, νX=e where e is a simple disjunctive normal
form, it is useful to again expose the occurrences of X. We can denote the normal form of e

in the following way:∨
i∈I

(
∧

j∈Ji

(cij ·X + c′
ij ·eq−∞(X) + fij) ∧ mi) (3)

where cij ·X and eq−∞(X) are optional, i.e., cij can be 0, and c′
ij is either 0 or 1, where 0

means that the expression is not present. One of cij and c′
ij is not equal to 0. Again, the

expressions fij and mi do not contain X.
The solution of νX=e, where e is of the shape (3), is νX = Solν

X=e with

Solν
X=e =

∨
i∈I

(eq∞(mi)

⇒ (
∧

j∈Ji|cij≥1∧c′
ij

=0

(fij + (cij − 1))·Ui) → −∞ ⋄ Ui

⋄ ∞)

(4)

where Ui = mi ∧
∧

j∈Ji|cij<1∧c′
ij

=0

1
1 − cij

·fij .

The two fixed-point solutions are not syntactically dual which is due to the fact that simple
conjunctive and disjunctive normal forms are not each other’s dual, because of the presence of
+ and eq−∞. We refrain from sketching the intuition underlying the solution to the maximal
fixed-point as it is similar to that of the minimal fixed-point.
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A full normal form can contain the conditional operators e1 ⇒ e2 ⋄ e3 and e1 → e2 ⋄ e3.
Suppose we have an equation σX = e1 ⇒ e2 ⋄ e3 with σ either µ or ν. For the minimal
fixed-point the right-hand side of the solution is Solµ

X=e1⇒e2⋄e3
= (e1[X := Solµ

X=e2
∧

Solµ
X=e3

]) ⇒ Solµ
X=e2

⋄ Solµ
X=e3

. For the maximal fixed-point we find the right-hand side
Solν

X=e1⇒e2⋄e3
= (e1[X := Solν

X=e3
]) ⇒ Solν

X=e2∧e3
⋄ Solν

X=e3
.

In case of the other conditional operator σX = e1 → e2 ⋄ e3 we obtain for the right side of
the minimal fixed-point Solµ

X=e1→e2⋄e3
= (e1[X := Solµ

X=e2
]) → Solµ

X=e2
⋄ Solµ

X=e2∨e3
, and

for the right side of the maximal fixed-point Solν
X=e1→e2⋄e3

= (e1[X := Solν
X=e2

∨Solν
X=e3

]) →
Solν

X=e2
⋄ Solν

X=e3
.

The following theorem summarises that these solutions solve fixed-point equations.

▶ Theorem 11. For any fixed-point symbol σ, variable X ∈ X and expression e, it holds that

σX = e ≡ σX = Solσ
X=e

and X /∈ occ(Solσ
X=e), where Solσ

X=e is defined above.

Proof. By Theorem 4 we can assume that e is in normal form. The proof follows induction
on the number of conditional operators. It is straightforward to see that, by construction, X

does not occur in Solσ
X=e.

We only consider the case with a minimal fixed-point where e is a conjunctive normal
form. Using property E6 it is possible to solve all conjuncts separately. So, without loss of
generality, we assume that e has the shape

e =
∨
j∈J

(cj ·X + c′
j ·eq−∞(X) + fj) ∨ m (5)

where cj ≥ 0 and c′
j ∈ {0, 1} are constants such that cj and c′

j are not both 0, and fj and m

are expressions in which X does not occur. We show that the right-hand side of equation (2)
without the initial conjunction provides the required term Solµ

X=e in this theorem. Concretely,

Solµ
X=e = (eq∞(

∨
j∈J

fj))

⇒ (eq−∞(m) ⇒ −∞ ⋄ (((
∨

j∈J|cj≥1

fj + (cj − 1)·U) ∨
∨

j∈J|c′
j
=1

∞) ⇒ U ⋄ ∞))

⋄ ∞

(6)

where U = m ∨
∨

j∈J|cj<1

1
1 − cj

·fj .

Using Lemma 9 we must prove case 1 and 2 for a valuation η. We start with case 1. So,
consider the smallest r = η[X := r](e). We define r′ = η(Solµ

X=e) automatically satisfying
the first proof obligation of Lemma 9, where it should be noted that X does not occur in
Solµ

X=e. Hence, we only need to show that r′ ≤ r. We distinguish a number of cases.
Suppose there is some fj such that η[X := r](fj) = ∞. In that case both r = ∞ and
r′ = ∞. So, clearly, r′ ≤ r. Below we can now assume that there is no j ∈ J such that
η[X := r](fj) = ∞.
Now assume η(m) = −∞. By the previous case we know that fj ≠ ∞. In that case
r′ = η(Solµ

X=e) = −∞, as η(eq−∞(m)) = −∞ ≤ 0, and hence, r′ ≤ r. Below we assume
that η(m) ̸= −∞.
If there is at least one j ∈ J such that c′

j = 1, then r = η[X := r](e) = ∞. The
reason for this is that r > −∞, as r at least has the value η(m). But then r = ∞ as
η[X := r](c′

j ·eq−∞(X)) = ∞. Clearly, r′ ≤ r. So, below we can assume that c′
j = 0 for

all j ∈ J .
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With the assumptions above, we can write e more compactly.

e =
∨
j∈J

(cj ·X + fj) ∨ m.

We know that r is the smallest value satisfying

r = η[X := r](e) = η[X := r](
∨
j∈J

(cj ·X + fj) ∨ m).

Consider r1 = η(m ∨
∨

j∈J|cj<1( fj

1−cj
)).

First assume that there is no j ∈ J with cj ≥ 1 such that r1 < η[X := r1](cj ·X + fj).
We show that r1 is the solution, i.e., r1 = r.
Consider the case where η(m) ≥ η(fj)

1−cj
for all j ∈ J with cj < 1. So, r1 = η(m). In

this case η(m) is a solution as (i) for those j ∈ J for which cj < 1, it holds that
η(m) ≥ cj ·η(m) + η(fj), and (ii) by the assumption of this item for those j ∈ J such
that cj ≥ 1, also η(m) < cj ·η(m) + η(fj). It is obvious that η(m) must be the smallest
solution.
Now consider the case where η(m) <

η(fj)
1−cj

for some j ∈ J . In this case r1 =∨
j∈J|cj<1( η(fj)

1−cj
) = η(fj′ )

1−cj′
for some j′ ∈ J , where j′ is the index of the largest solution.

It is straightforward to check that η(fj′ )
1−cj′

is a solution. It is also the smallest solution,

which can be seen as follows. Suppose there were a smaller solution r2 <
η(fj′ )
1−cj′

. Hence,

r2 = η(m) ∧
∧

j∈J (cj ·r2 + η(fj)) ≥ cj′ ·r2 + η(fj′). From this it follows that r2 ≥ η(fj′ )
1−cj′

contradicting that it is a smaller solution.
It follows that r1 = r is the smallest solution. Furthermore, r′ = η(Solµ

X=e) = η(U) =
η(m ∨

∨
j∈J|cj<1

fj

1−cj
) = r1 = r. Obviously, r′ ≤ r.

Now assume that there is a j ∈ J with cj ≥ 1 such that r1 < η[X := r1](cj ·X + fj).
We show that r = ∞. Using the argumentation of the previous item, the smallest
solution r is at least r1. But clearly, r1 is larger than the non-infinite solution of
X = η[X := r1](cj ·X + fj) as by the assumption r1 >

η(fj)
1−cj

. Note that if cj > 1, this
solution exists, and if cj = 1 there is only a finite solution if fj = 0, but in this latter
case the assumption of this item is invalid. Hence, the only remaining minimal solution
is r = ∞. Clearly, for any choice of r′ it holds that r′ < r.

Now we concentrate on case 2 for the minimal fixed-point of Lemma 9. We know that
r = η(Solµ

X=e) is the minimal solution for η(Solµ
X=e) and we must show that there is an

r′ ≤ r such that r′ ≥ η[X := r′](e). We take r′ = r leaving us with the obligation to show
that r ≥ η[X := r](e).

We distinguish the following cases.
Assume that there is some fj such that η(fj) = ∞. In that case r = ∞, which satisfies
∞ ≥ η[X := ∞](e). Below we assume that η(fj) < ∞ for all j ∈ J .
Now assume that η(m) = −∞. Note that for any j ∈ J it is the case that cj ̸= 0 or
c′

j ̸= 0. In this case, r = −∞ is the solution as η[X := −∞](e) = −∞ and this implies
our proof obligation. So, in the steps below we assume that η(m) > −∞.
With the conditions above, if there is at least one j ∈ J such that c′

j = 1, then r = ∞
is the fixed-point satisfying our proof obligation. Below we assume that for all j ∈ J it
holds that c′

j = 0.
As all c′

j can be assumed to be 0, we can simplify the equation for X to:

µX =
∨
j∈J

(cj ·X + fj) ∨ m.

CONCUR 2023
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We find η(U) = η(m ∨
∨

j∈J|cj<1
fj

1−cj
). If there is no j ∈ J with cj ≥ 1 such that

η(fj −(1−cj)·U) > 0 we find that r = η(Solµ
X=e) = η(U). We show that r ≥ η[X := r](e).

If η(m) ≥
∨

j∈J|cj<1
η(fj)
1−cj

then r = η(m). For a j ∈ J with cj < 1 we find that
cj ·η(m) + η(fj) ≤ η(m) as η(m) ≥ η(fj)

1−cj
. For a j ∈ J with cj ≥ 1, we find by the

condition above that η(fj + cj ·U) ≤ η(U), or in other words η(fj + cj ·m) ≤ η(m). So,
r = η(m) = η[X := r](e) as we had to show.
Otherwise, there is some j′ ∈ J with cj′ < 1 such that η(fj′ )

1−cj′
=

∨
j∈J|cj<1

η(fj)
1−cj

. In this

case r = η(fj′ )
1−cj′

. From the conditions, we can see that r = η[X := r](e) as we had to show.
Now assume that there is a j ∈ J with cj ≥ 1 such that η(fj − (1 − cj)·U) > 0. In this
case r = η(Solµ

X=e) = ∞, clearly satisfying our proof obligation.
This finishes our proof for a minimal fixed-point equation. ◀

5 Relation to boolean equation systems

A boolean equation system (BES) is a restricted form of a real equation system where
solutions can only be true or false [20]. Concretely, the syntax for expressions is

e ::= X | true | false | e ∨ e | e ∧ e

where X is taken from some set X of variables [20]. A boolean equation system is a sequence
of fixed-point equations σ1X1 = e1, . . . , σnXn = en where σi are fixed-point operators, Xi

are variables from X ranging over true and false, and ei are boolean expressions.
We do not spell out the semantics of boolean equation systems, as it is similar to that

of RESs. However, we believe that it is useful to indicate the relation with real equation
systems.

The simplest embedding is where a given BES is literally transformed to a RES and true
and false are interpreted as ∞ and −∞. We consider a minimal fixed-point equation. The
right-hand side can be rewritten to a simple conjunctive normal form. We write this in the
shape of equation (1). So, cij = 1, c′

ij = 0, fij is absent and mi does not contain X and can
only be interpreted as ±∞. Exactly if Ji is not empty, X is present in conjunct i.

µX =
∧
i∈I

((
∨

j∈Ji

X) ∨ mi).

The solution is given by equation (2), which can be simplified to:∧
i∈I

(eq−∞(mi) ⇒ −∞ ⋄ ((
∨

j∈Ji

0) ⇒ mi ⋄ ∞)) =
∧
i∈I

mi =
∧
i∈I

((
∨

j∈Ji

−∞) ∨ mi).

The latter exactly coincides with the Gauß-elimination rule for BESs that says that in an
equation µX = e, any occurrence of X in e can safely be replaced by false. For the maximal
fixed-point operator, dual reasoning applies. As Gauß-elimination is a complete way to solve
a BES with true and false, and exactly the same reduction works with the corresponding
RES with ∞ and −∞, this confirms that this interpretation works.

An alternative interpretation is given by taking two arbitrary constants ctrue and cfalse with
as only constraint that ctrue > cfalse. A boolean equation system σ1X1 = e1, . . . , σnXn = en

is translated into σ1X1 = cfalse ∨ (ctrue ∧ e1), . . . , σnXn = cfalse ∨ (ctrue ∧ en) of which the
validity can be established in the same way as above.
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6 Quantitative modal formulas and their translation to RESs

We can write quantitative modal formulas that yield a value instead of true and false. In the
next section we provide examples of what can be expressed. Our formulas have the syntax

ϕ ::= X | d | c·ϕ | ϕ + ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ⟨a⟩ϕ | [a]ϕ | µX.ϕ | νX.ϕ.

Here d ∈ R̂ and c ∈ R with c > 0 are constants, X ∈ X is a variable, and a ∈ A is an action
from some set of actions A. Although there are many similar logics around, we have not
encountered this exact form before.

We evaluate these modal formulas on probabilistic LTSs. For a finite set of states S, we
use distributions d : S → [0, 1] where d(s) is the probability to end up in state s. Distributions
satisfy that

∑
s∈S d(s) = 1. The set of all distributions over S is denoted by D(S).

▶ Definition 12. A probabilistic labelled transition system (pLTS) is a four-tuple M =
(S, A, → , d0) where S is a finite set of states, A is a finite set of actions, the relation
→ ⊆ S×A×D(S) represents the transition relation, and d0 ∈ D(S) is the initial distribution.

We leave out the definition of the interpretation of quantitative modal formulas on probabilistic
LTSs, as it is standard. Instead, we define the real equation system that is generated given a
modal formula ϕ and a probabilistic labelled transition system M = (S, A, → , d0), following
the translations in [20, 14, 21, 11]. The function Eq(ϕ) generates the required sequence of
RES equations for ϕ and rhs(s, ϕ) yields the expression for the right-hand side of such an
equation representing the value of ϕ in state s.

Eq(X) = ϵ,

Eq(d) = ϵ,

Eq(c·ϕ) = Eq(ϕ),
Eq(ϕ1 + ϕ2) = Eq(ϕ1), Eq(ϕ2),
Eq(ϕ1 ∨ ϕ2) = Eq(ϕ1), Eq(ϕ2),
Eq(ϕ1 ∧ ϕ2) = Eq(ϕ1), Eq(ϕ2),
Eq(⟨a⟩ϕ) = Eq(ϕ),
Eq([a]ϕ) = Eq(ϕ),
Eq(µX.ϕ) = ⟨µXs = rhs(s, ϕ) | s ∈ S⟩, Eq(ϕ),
Eq(νX.ϕ) = ⟨νXs = rhs(s, ϕ) | s ∈ S⟩, Eq(ϕ).

rhs(s, X) = Xs,

rhs(s, d) = d,

rhs(s, c·ϕ) = c·rhs(s, ϕ),
rhs(s, ϕ1 + ϕ2) = rhs(s, ϕ1) + rhs(s, ϕ2),
rhs(s, ϕ1 ∨ ϕ2) = rhs(s, ϕ1) ∨ rhs(s, ϕ2),
rhs(s, ϕ1 ∧ ϕ2) = rhs(s, ϕ1) ∧ rhs(s, ϕ2),
rhs(s, ⟨a⟩ϕ) =

∨
{d∈D(S)|s a→ d}

∑
s′∈S d(s′)·rhs(s′, ϕ),

rhs(s, [a]ϕ) =
∧

{d∈D(S)|s a→ d}
∑

s′∈S d(s′)·rhs(s′, ϕ),
rhs(s, µX.ϕ) = Xs,

rhs(s, νX.ϕ) = Xs.

We use the notation ⟨σXs = es | s ∈ S⟩ for the sequence of all equations σXs = es for all
states s ∈ S.

The evaluation of a modal formula ϕ in M with initial distribution d0 is the solution in R̂
of variable Xinit in the RES µXinit = (

∑
s∈S d0(s)·rhs(s, ϕ)), Eq(ϕ). The use of the minimal

fixed-point for the initial variable is of no consequence as Xinit does not occur elsewhere in
the equation system. A maximal fixed-point could also be used.

7 Applications

7.1 The longest a-sequence to a b-loop
We are interested in the longest sequence of actions a to reach a state where an infinite
sequence of actions b can be done. The modal formula that expresses this is the following:

µX.(1 + ⟨a⟩X) ∨ (0 ∧ νY.⟨b⟩Y ).

CONCUR 2023
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s1

d1 d2

s2 s3 s4 s5

a a

1
3

2
3

1
2

1
2

b b

s1 s2
a: R := R − 1

b: R := 1
2 R + 5

c: R := 9
10 R + 2

Figure 2 A probabilistic LTS with a loop/An LTS with rewards.

The last part with the maximal fixed-point 0 ∧ νY.⟨b⟩Y when evaluated in a state equals
−∞ if no infinite sequence of b’s is possible. Otherwise, it evaluates to 0. The first part
1 + ⟨a⟩X yields 1 plus the maximum values of the evaluation of X in all states reachable by
an action a. If no infinite b-sequence can be reached from such a state, this value is −∞, and
otherwise it represents the maximal number of steps to reach such an infinite b-sequence.

We evaluate this formula in the labelled transition system given at the right in Figure 1.
This leads to the following real equation system where Xi and Yi correspond to the value of
X, resp. Y in state si. The solution of the equation system is written behind each equation.

µX1 = (1 + (X2 ∨ X3 ∨ X4 ∨ X6)) ∨ (0 ∧ Y1) 2 νY1 = −∞ −∞
µX2 = (1 + X3) ∨ (0 ∧ Y2) 1 νY2 = −∞ −∞
µX3 = (1 + −∞) ∨ (0 ∧ Y3) 0 νY3 = Y3 ∞
µX4 = (1 + X5) ∨ (0 ∧ Y4) −∞ νY4 = −∞ −∞
µX5 = (1 + X6) ∨ (0 ∧ Y5) −∞ νY5 = −∞ −∞
µX6 = (1 + −∞) ∨ (0 ∧ Y6) −∞ νY6 = −∞ −∞

We find that the longest sequence of actions a is 2, which matches our expectation.

7.2 The probability to reach a loop

We are interested in the probability to reach a b-loop. We apply it to the LTS at the left
in Figure 2. Due to the non-determinism there are more paths to such loops, and we are
interested in the path with the highest probability. This is expressed by the modal formula

µX.⟨a⟩X ∨ ⟨b⟩X ∨ ((νY.⟨b⟩Y ∨ 0) ∧ 1).

As we want a probability, we use _ ∧ 1 and _ ∨ 0 to enforce that the solution is in [0, 1]. The
formula νY.⟨b⟩Y ∨0 yields ∞ if an infinite sequence of actions b is possible and 0 otherwise.

The translation of this formula on the labelled transition system in Figure 2 yields the
following real equation system.

µX1 = ( 1
3 ·X2 + 2

3 ·X3) ∨ ( 1
2 ·X4 + 1

2 ·X5) ∨ (Y1 ∧ 1) νY1 = −∞ ∨ 0 = 0,

= 1
3 ∨ 1

2 ∨ 0 = 1
2 ,

µX2 = X2 ∨ (Y2 ∧ 1) = X2 ∨ 1 = 1, νY2 = Y2 = ∞,

µX3 = −∞ ∨ (Y3 ∧ 1) = −∞ ∨ 0 = 0, νY3 = −∞ ∨ 0 = 0,

µX4 = X4 ∨ (Y4 ∧ 1) = X4 ∨ 1 = 1, νY4 = Y4 = ∞,

µX5 = −∞ ∨ (Y5 ∧ 1) = −∞ ∨ 0 = 0, νY5 = −∞ ∨ 0 = 0.

This shows that the maximal probability to reach a b-loop is 1
2 .
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7.3 Determining the reward of process behaviour
In Figure 2 at the right a labelled transition system is drawn, where a reward R is changed
when a transition takes place. The transition labelled with action a costs one unit, b yields
1
2 R + 5 units, and the transition c adapts the reward by 9

10 R + 2. We want to know what
the maximal stable reward is. This is expressed by the following formula:

µR.⟨a⟩(R − 1) ∨ ⟨b⟩( 1
2 ·R + 5) ∨ ⟨c⟩( 9

10 ·R + 2) ∨ 0.

Note that we express this as the minimal reward larger than 0, which is the maximum of all
individual rewards. Translating this to a real equation system yields

µR1 = (R2 − 1) ∨ −∞ ∨ −∞ ∨ 0, µR2 = −∞ ∨ ( 1
2 ·R1 + 5) ∨ ( 9

10 R1 + 2) ∨ 0.

We solve this using Gauß-elimination. This means that the second equation is substituted in
the first, which, after some straightforward simplifications, gives us

µR1 = ( 1
2 ·R1 + 4) ∨ ( 9

10 ·R1 + 1) ∨ 0.

We solve this equation using the technique of Section 4, leading to:

R1 = 4
1 − 1

2
∨ 1

1 − 9
10

∨ 0 = 10.

8 Conclusions and outlook

We introduce real equation systems (RESs) as the pendant of Boolean Equation Systems
with solutions in the domain of the reals extended with ±∞. By a number of examples we
show how this can be used to evaluate a wide range of quantitative properties of process
behaviour.

We provide a complete method to solve RESs using an extension of what is called
“Gauß-elimination” [21] to solve boolean equation systems. It shows that any RES can be
solved by carrying out a finite number of substitutions. As solving RESs generalises solving
BESs, and Gauß-elimination on BESs is exponential, our Gauß-elimination technique can
also lead to exponential growth of intermediate terms. A prototype implementation shows
that depending on the nature of the system being analysed, this may or may not be an issue.
For instance, analysing the Game of the Goose [12] or The Ant on a Grid [6], are practically
undoable with the method proposed here, while the Lost Boarding Pass Problem [10] is easily
solved, even for planes with 100,000 passengers.

We believe that the next step is to come up with algorithms that are more efficient in
practice than Gauß-elimination. This is motivated by the situation with BESs where for
instance the recursive algorithm [23, 26] turns out to be practically far more efficient than
Gauß-elimination [9].
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Abstract
We introduce the class of tree constraint automata with data values in Z (equipped with the less
than relation and equality predicates to constants), and we show that the nonemptiness problem is
ExpTime-complete. Using an automata-based approach, we establish that the satisfiability problem
for CTLpZq (CTL with constraints in Z) is ExpTime-complete, and the satisfiability problem for
CTL˚

pZq is 2ExpTime-complete (only decidability was known so far). By-product results with
other concrete domains and other logics, are also briefly discussed.
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1 Introduction

In this paper, we study the satisfiability problem for the branching-time temporal logics
CTLpZq and CTL˚pZq, extending the classical temporal logics CTL and CTL˚ in that atomic
formulae express constraints about the relational structure pZ,ă,“, p“dqdPZq. Formulae in
these logics are interpreted over Kripke structures that are annotated with values in Z. A
typical CTL˚pZq formula is the formula AGFpx ă Xxq stating that on all paths infinitely often
the value of the variable x at the current position is strictly smaller than the value of x at the
next position. Formalisms defined over relational structures, also known as concrete domains,
are considered in many works, including works on temporal logics [40, 13, 54, 48, 19, 35],
description logics [50, 51, 52, 53, 16, 45, 3], and automata [38, 61, 43, 71, 65, 57]. Combining
reasoning in your favourite logic with reasoning in a relevant concrete domain reveals to
be essential for numerous applications, for instance for reasoning about ontologies, see
e.g. [52, 46], or data-aware systems, see e.g. [28, 34]. A brief survey can be found in [26].

Decidability results for concrete domains handled in [53, 38, 3] exclude the ubiquitous
concrete domain pZ,ă,“, p“dqdPZq. By contrast, decidability results for logics with concrete
domain Z require dedicated proof techniques, see e.g. [11, 23, 61, 46]. In particular, fragments
of CTL˚pZq are shown decidable in [11] using integral relational automata from [17], and
the satisfiability problem for existential and universal CTL˚ with gap-order constraints
(more general than the ones in this paper) can be solved in PSpace [12, Theorem 14].
Another important breakthrough came with the decidability of CTL˚pZq [15, Theorem 32]
(see also [14]) by designing a reduction to a decidable second-order logic, whose formulae are
made of Boolean combinations of formulae from MSO and from WMSO+U [10], where U is
the unbounding second-order quantifier, see e.g. [8, 9]. This is all the more remarkable as
the decidability result is part of a powerful general approach [15], but no sharp complexity
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29:2 Constraint Automata on Infinite Data Trees

upper bound can be inferred. More recently, the condition CZ [23] to approximate the set
of satisfiable symbolic models of a given LTLpZq formula is extended to the branching case
in [46] leading to the ExpTime-easiness of a major reasoning task for the description logic
ALCFPpZcq. However, no elementary complexity upper bounds for the satisfiability problem
for CTLpZq nor CTL˚pZq were known since their decidability was established in [13, 15].

In this paper, we prove that the satisfiability problem for CTLpZq is ExpTime-complete,
and the satisfiability problem for CTL˚pZq is 2ExpTime-complete. We pursue the automata-
based approach for solving decision problems for temporal logics, following seminal works
for temporal logics, see e.g. [68, 69, 44]. This popular approach consists of reducing logical
problems (satisfiability, model-checking) to automata-based decision problems while taking
advantage of existing results and decision procedures from automata theory, see e.g. [67].

It is well-known that decision procedures for CTL˚ are difficult to design, and the
combination with the concrete domain Z is definitely challenging. Moreover, we aim at
proposing a general framework: we do not wish for every new logic with concrete domain
to study again and again what is the proper way to define products of automata leading
to optimal complexity. That is why our main goal in this work is to investigate a new
class of tree constraint automata, understood as a target formalism in the pure tradition
of the automata-based approach, and easy to reuse. The structures accepted by such tree
constraint automata are infinite trees in which nodes are labelled by a letter from a finite
alphabet and a tuple in Zβ for some β ě 1 (this excludes the automata designed in [36, 37]
dedicated to finite trees where no predicate ă is involved). Decision problems for alternating
automata over infinite alphabets are often undecidable, see e.g. [56, 47, 25, 41], and therefore
we advocate the introduction of nondeterministic constraint automata without alternation.
Our definition of tree constraint automata naturally extends the definition of constraint
automata for words (see e.g. [17, 59, 61, 43, 57]) and as far as we know, the extension to
infinite trees in the way done herein has not been considered earlier in the literature.

As a key result, we show that the nonemptiness problem for tree constraint automata
over pZ,ă,“, p“dqdPZq is ExpTime-complete. In order to obtain the ExpTime upper
bound, we adapt results from [46, 45] (originally expressed in the context of interpretations
for description logics) and we take advantage of several automata-based constructions for
Rabin/Streett tree automata. As a corollary, we establish that the satisfiability problem for
CTLpZq is ExpTime-complete (Theorem 14), which is one of the main results of the paper.
As a by-product, it also allows us to conclude that the concept satisfiability problem w.r.t.
general TBoxes for ALCFPpZcq is in ExpTime, a result known since [46].

Our main contribution is the characterisation of the complexity for CTL˚pZq satisfiability,
which is an open problem evoked in [15, Section 9] and [46, Section 5] (decidability was
established ten years ago in [14]). In Section 6, we show that the satisfiability problem for
CTL˚pZq is in 2ExpTime by using Rabin tree constraint automata (introduced herein).
We have to check that the essential steps for CTL˚ can be lifted to CTL˚pZq to get the
optimal upper bound. In general, our contributions stem from the cross-fertilisation of
automata-based techniques for temporal logics and reasoning about (infinite) structures
made of Z-constraints.

A complete version with all the proofs can be found in [27].
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2 Temporal Logics with Numerical Domains

2.1 Concrete Domain pZ, ă, “, p“dqdPZq and Kripke Structures
In the sequel, we consider the concrete domain pZ,ă,“, p“dqdPZq (also written Z), where “d

is a unary predicate stating the equality with the constant d and, ă and “ are the usual
relations on Z. Let VAR “ tx, y, . . .u be a countably infinite set of variables. A term t
over VAR is an expression of the form Xix, where x P VAR and Xi is a (possibly empty)
sequence of i symbols “X”. A term Xix should be understood as a variable (that needs to be
interpreted) but, later on, we will see that the prefix Xi will have a temporal interpretation.
We write TVAR to denote the set of all terms over VAR. For all i P N, we write Tďi

VAR to
denote the subset of terms of the form Xjx, where j ď i. For instance, Tď0

VAR “ VAR. An
atomic constraint θ over TVAR is an expression of one of the forms below:

t ă t1 t “ t1 “d ptq (also written t “ d),

where d P Z and t, t1 P TVAR. A constraint Θ is defined as a Boolean combination of
atomic constraints. Constraints are interpreted on valuations v : TVAR Ñ Z that assign
elements from Z to the terms in TVAR, so that v satisfies θ, written v |ù θ, if and only if, the
interpretation of the terms in θ makes θ true in Z in the usual way. The Boolean connectives
are interpreted as usual. A constraint Θ is satisfiable def

ô there is a valuation v : TVAR Ñ Z
such that v |ù Θ. Similarly, a constraint Θ1 entails a constraint Θ2 (written Θ1 |ù Θ2) def

ô

for all valuations v, we have v |ù Θ1 implies v |ù Θ2. The satisfiability problem restricted
to finite conjunctions of atomic constraints can be solved in PTime (see e.g. [17, Lemma
5.5]) and entailment is in coNP. In the sequel, quite often, the valuations v are of the form
tx1, . . . , xβu Ñ Z when we are only interested in the values for the variables in tx1, . . . , xβu.

Kripke structures. In order to define logics with the concrete domain Z, the semantical
structures of such logics are enriched with valuations that interpret the variables by elements
in Z. A Z-decorated Kripke structure (or Kripke structure for short) K is a triple pW, R, vq,
where W is a non-empty set of worlds, R Ď W ˆ W is the accessibility relation and
v : W ˆ VAR Ñ Z is a valuation function. A Kripke structure K is total whenever for all
w P W, there is w1 P W such that pw, w1q P R. Given a Kripke structure K “ pW, R, vq

and a world w P W, an infinite path π from w is an ω-sequence w0, w1 . . . wn, . . . such that
w0 “ w and for all i P N, we have pwi, wi`1q P R. Finite paths are defined accordingly.

Labelled trees. Given D ě 1, a labelled tree of degree D is a map t : domptq Ñ Σ where Σ
is some (potentially infinite) alphabet and domptq is an infinite subset of r0, D ´ 1s˚ such
that n P domptq and n ¨ i P domptq for all 0 ď i ă j whenever n ¨ j P domptq for some
n P r0, D ´ 1s˚ and j P r0, D ´ 1s. The elements of domptq are called nodes. The empty
word ε is the root node of t. For every n P domptq, the elements n ¨ i (i P r0, D ´ 1s) are
called the children nodes of n, and n is called the parent node of n ¨ i. We say that the tree
t is a full D-ary tree if every node n has exactly D children n ¨ 0, . . . , n ¨ pD ´ 1q. Given a
tree t and a node n in domptq, an infinite path in t starting from n is an infinite sequence
n ¨ j1 ¨ j2 ¨ j3 . . . , where ji P r0, D ´ 1s and n ¨ j1 . . . ji P domptq for all i ě 1.

A tree Kripke structure K is a Kripke structure pW, R, vq such that pW, Rq is a tree
(not necessarily a full D-ary tree). Tree Kripke structures pW, R, vq such that pW, Rq
is isomorphic to the tree induced by r0, D ´ 1s˚ are represented by maps of the form
t : r0, D ´ 1s˚ Ñ Zβ . This assumes that we only care about the value of the variables
x1, . . . , xβ and tpnq “ pd1, . . . , dβq encodes that for all i P r1, βs, we have vpn, xiq “ di.
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2.2 The Logic CTL˚pZq

We introduce the logic CTL˚pZq extending the temporal logic CTL˚ from [29] but with
constraints over Z. State formulae ϕ and path formulae Φ of CTL˚pZq are defined below

ϕ :“ ␣ϕ | ϕ^ ϕ | EΦ Φ :“ ϕ | t “ d | t1 “ t2 | t1 ă t2 | ␣Φ | Φ^ Φ | XΦ | ΦUΦ,

where t, t1, t2 P TVAR. The size of a formula is understood as its number of symbols with
integers encoded with a binary representation. We use also the universal path quantifier A
and the standard temporal connectives R and G (AΦ def

“ ␣E␣Φ, Φ1RΦ2
def
“ ␣p␣Φ1U␣Φ2q,

and GΦ def
“K R Φ with K equal to Epx ă xq). No propositional variables occur in CTL˚pZq

formulae, but it is easy to simulate them with atomic formulae of the form Epx “ 0q. We say
that a formula in CTL˚pZq is in simple form if it is in negation normal form (using A, R and
_ as primitive) and all terms occurring in the formula are from Tď1

VAR. State formulae are
interpreted on worlds from a Kripke structure, whereas path formulae are interpreted on
infinite paths. The two satisfaction relations are defined as follows (we omit the clauses for
Boolean connectives), where K “ pW, R, vq is a total Kripke structure, and w P W.

K, w |ù EΦ def
ô there is an infinite path π from w such that K, π |ù Φ.

Let π “ w0, w1, . . . be an infinite path of K. Let us define vpπ, Xjxq def
“ vpwj , xq, for all terms

of the form Xjx. For every n, πrn,`8q is the suffix of π truncated by the n first worlds.
K, π |ù t “ d

def
ô vpπ, tq “ d; K, π |ù t1 „ t2

def
ô vpπ, t1q „ vpπ, t2q for all „P tă,“u,

K, π |ù ΦUΨ def
ô there is j ě 0 such that K, πrj,`8q |ù Ψ and for all j1 P r0, j ´ 1s, we

have K, πrj1,`8q |ù Φ;
K, π |ù XΦ def

ô K, πr1,`8q |ù Φ.
Let us define two fragments of CTL˚pZq. Formulae in the logic CTLpZq are of the form

ϕ :“ E Θ | A Θ | ␣ϕ | ϕ^ ϕ | ϕ_ ϕ | EXϕ | EϕUϕ | EϕRϕ | AXϕ | AϕUϕ | AϕRϕ,

where Θ is a constraint. LTLpZq formulae are defined from path formulae for CTL˚pZq
according to Φ :“ Θ | Φ^ Φ | Φ_ Φ | XΦ | ΦUΦ | ΦRΦ, where Θ is a constraint. Negation
occurs only in constraints since the LTL logical connectives have their dual in LTLpZq. In
contrast to CTL˚pZq and CTLpZq, LTLpZq formulae are evaluated over infinite paths of
valuations v : VAR Ñ Z (no branching involved).

The satisfiability problem for CTL˚pZq, written SATpCTL˚pZqq, is defined as follows.
Input: A CTL˚pZq state formula ϕ.
Question: Is there a total Kripke structure K and a world w such that K, w |ù ϕ?
The satisfiability problem SATpCTLpZqq for CTLpZq is defined analogously; for LTLpZq,
SATpLTLpZqq is the problem to decide whether there exists an infinite sequence of valuations
v : VAR Ñ Z for a given LTLpZq formula Φ.

Decidability, and, more precisely, PSpace-completeness of SATpLTLpZqq is shown in [24].
For some strict fragments of CTL˚pZq, decidability is shown in [11, 12]. It is only recently
in [14, 13, 15], that decidability is established for the full logic using a translation into a
decidable second-order logic:

▶ Proposition 1 ([14, 15]). SATpCTL˚pZqq is decidable.

The proof in [14, 15] does not provide a complexity upper bound as the target decidable
2nd-order logic admits an automata-based decision procedure with open complexity [10, 8, 9].

Let us shortly explain why the satisfiability problem is challenging. First of all, observe
that CTL˚pZq has atomic formulae in which integer values at the current and successor states
are compared. This prevents us from using a simple translation from CTL˚pZq to CTL˚
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with new propositions. Models of CTL˚pZq formulae can be viewed as an infinite network
of constraints on Z; even if a formula contains only a finite set of constants, a model may
contain an infinite set of values, as it is the case for, e.g., the formula EGpx ă Xxq. Hence
a direct Boolean abstraction does not work. On the other hand, CTL˚pZq has no freeze
quantifier and no data variable quantification, and hence no way to directly compare values
at unbounded distance (but this can only be done by propagating local constraints), unlike
e.g. the formalisms in [21, 63, 5, 1]. Hence, the lower bounds from [42] cannot apply either.

A problem related to satisfiability is the model-checking problem. Fragments of the
model-checking problem involving a temporal logic similar to CTL˚pZq are investigated
in [17, 11, 12, 34] (see also [39, 20, 70, 2]). However, model-checking problems with CTL˚pZq-
like languages are easily undecidable, see e.g. [17, Theorem 1] and [54, Theorem 4.1] (more
general constraints are used in [54] but undecidability proof uses only the constraints involved
herein). The difference between model-checking and satisfiability is subtle and underlines
that decidability/complexity of CTLpZq/CTL˚pZq satisfiability is not immediate.

In this paper, we prove the precise computational complexity of SATpCTL˚pZqq and
SATpCTLpZqq. We follow the automata-based approach, that is, we translate formulae in
our logics into equivalent automata – tree constraint automata for CTLpZq, and Rabin tree
constraint automata for CTL˚pZq – so that we can reduce the satisfiability problem for the
logics to the nonemptiness problem for the corresponding automata.

3 Tree Constraint Automata

In this section, we introduce the class of tree constraint automata that accept sets of infinite
trees of the form t : r0, D ´ 1s˚ Ñ pΣ ˆ Zβq for some finite alphabet Σ and some β ě 1.
The transition relation of such automata states constraints between the β integer values
at a node and the integer values at its children nodes. The acceptance condition is a
Büchi condition (applied to the infinite branches of the input tree), but this can be easily
extended to more general conditions (which we already consider by the end of this section).
Moreover, our definition is specific to the concrete domain Z but it can be easily adapted to
other concrete domains. Formally, a tree constraint automaton (TCA, for short) is a tuple
A “ pQ, Σ, D, β, Qin, δ, F q, where

Q is a finite set of locations; Σ is a finite alphabet,
D ě 1 is the (branching) degree of (the trees accepted by) A,
β ě 1 is the number of variables (a.k.a. registers),
Qin Ď Q is the set of initial locations; F Ď Q encodes the Büchi acceptance condition,
δ is a finite subset of Q ˆ Σ ˆ pTreeConspβq ˆ QqD, the transition relation. Here,
TreeConspβq denotes the constraints (Boolean combinations of atomic constraints) built
over the terms x1, . . . , xβ , x1

1, . . . , x1
β , where x1

i denotes the term Xxi. δ consists of
tuples pq, a, pΘ0, q0q, . . . , pΘD´1, qD´1qq, where q P Q is called the source location, q0,. . . ,
qD´1 P Q, a P Σ, and Θ0, . . . , ΘD´1 are constraints.

Runs. Let t : r0, D ´ 1s˚ Ñ pΣˆ Zβq be an infinite full D-ary tree over Σˆ Zβ . A run of
A on t is a mapping ρ : r0, D ´ 1s˚ Ñ δ satisfying the following conditions:

ρpεq “ pqin, . . . q such that qin P Qin;
for every n P r0, D´ 1s˚ with ρpnq “ pq, a, pΘ0, q0q, . . . , pΘD´1, qD´1qq, tpn ¨ iq “ pai, ziq,
and ρpn ¨ iq starts by the location qi for all 0 ď i ă D, we have tpnq of the form
pa, zq and Z |ù Θipz, ziq for all 0 ď i ă D. Here, Z |ù Θipz, ziq is a shortcut for
r⃗x Ð z, x⃗1 Ð zis |ù Θi where r⃗x Ð z, x⃗1 Ð zis is a valuation v on the variables
txj , x1

j | j P r1, βsu with vpxjq “ zpjq and vpx1
jq “ zipjq for all j P r1, βs.
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We show an example of a run ρ on t in Figure 1. Suppose ρ is a run of A. Given a path
π “ j1 ¨j2 ¨j3 . . . in ρ starting from ε, we define infpρ, πq to be the set of locations that appear
infinitely often as the source locations of the transitions in ρpεqρpj1qρpj1 ¨ j2qρpj1 ¨ j2 ¨ j3q . . . .
A run ρ is accepting if for all paths π in ρ starting from ε, we have infpρ, πq X F ‰ H. We
write LpAq to denote the set of trees t that admit an accepting run.

Nonemptiness problem. As usual, the nonemptiness problem for TCA asks whether a
TCA A satisfies LpAq ‰ H. To define the size of A in a reasonably succinct encoding, we
need to consider the size of constraints from TreeConspβq. Indeed, unlike (plain) Büchi tree
automata [68], the number of transitions in a tree constraint automaton is a priori unbounded
(TreeConspβq is infinite) and the maximal size of a constraint occurring in transitions is
unbounded too. In particular, this means that cardpδq is a priori unbounded, even if Q and
Σ are fixed. We write MCSpAq to denote the maximal size of a constraint occurring in A
(with binary encoding of the integers). The complexity of the nonemptiness problem should
take into account these parameters. Note also that our automaton model differs from the
Presburger Büchi tree automata from [62, 6] for which, in the runs, arithmetical expressions
are related to constraints between numbers of children labelled by different locations. Herein,
the arithmetical expressions state constraints between integer values.

Next, we introduce a variant of TCA by considering the Rabin acceptance condition (as
opposed to the Büchi acceptance condition). A Rabin tree constraint automaton (Rabin
TCA, for short) is a tuple A “ pQ, Σ, D, β, Qin, δ, Fq defined as for TCA except that F is a
set of pairs of the form pL, Uq, where L, U Ď Q. All the definitions about TCA apply except
that a run ρ : r0, D ´ 1s˚ Ñ δ is accepting iff for all paths π in ρ starting from ε, there is
some pL, Uq P F such that infpρ, πq X L ‰ H and infpρ, πq X U “ H.

Finite alphabet. The set Σ in data trees t : r0, D ´ 1s˚ Ñ pΣˆ Zβq plays no specific role
herein, especially that it could be encoded with simple constraints of the form x‹ “ d, where
x‹ is a distinguished variables. Its inclusion is more handy when the logical atomic formulae
include constraints on variables and propositional variables, as done in [27, Section 5.2]
dedicated to description logics (developments on description logics are very little in this
paper, due to lack of space).

4 Complexity of the Nonemptiness Problem for TCA

This section is dedicated to prove the ExpTime-completeness of the nonemptiness problem
for TCA (Theorem 11) and Rabin TCA (Theorem 13) (we make a distinction between TCA
and Rabin TCA because the complexity bounds differ slightly, see Lemma 10 and Lemma 12).
Before we prove the ExpTime upper bound, let us drop a few words on the lower bound.
We show ExpTime-hardness of the nonemptiness problem for TCA by reduction from the
acceptance problem for alternating Turing machines running in polynomial space, see e.g. [18,
Corollary 3.6]. Indeed, the polynomial-space tape using a finite alphabet Σ can be encoded
by a polynomial amount of variables taking values in r1, cardpΣqs, details can be found
in [27, Section 4.1]. ExpTime-hardness for Rabin TCA follows, as every TCA with set F of
accepting locations can be encoded as a Rabin TCA with a single Rabin pair pF,Hq.

The proof of the ExpTime upper bound is divided into two parts. In order to determine
whether LpAq is nonempty for a given TCA A, we first reduce the existence of some tree
t P LpAq to the existence of some regular symbolic tree that is satisfiable, that is, it admits a
concrete model (Sections 4.1 and 4.2). Second, we characterise the complexity of determining
the existence of such satisfiable regular symbolic trees (Section 4.3). The result for Rabin
TCA is presented in Section 4.4.
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From now on, we assume a fixed TCA A “ pQ, Σ, D, β, Qin, δ, F q with the constants
d1, . . . , dα occurring in A such that d1 ă ¨ ¨ ¨ ă dα (we assume there is at least one constant).

4.1 Symbolic Trees
A type over the variables z1, . . . , zn is an expression of the form

p
ľ

i

ΘCST
i q ^ p

ľ

iăj

zi „i,j zjq, where

for all i P r1, ns, ΘCST
i is equal to either zi ă d1, or zi ą dα or zi “ d for some d P rd1, dαs.

This definition goes a bit beyond the constraint language in Z (because of expressions of
the form zi ă d1 and zi ą dα), but this is harmless in the sequel. What really matters in
a type is the way the variables are compared to each other and to the constants.
„i,jP tą,“,ău for all i ă j.

Checking the satisfiability of a type can be done in polynomial-time, based on a standard
cycle detection, see e.g. [17, Lemma 5.5]. The set of satisfiable types built over the variables
x1, . . . , xβ , x1

1, . . . , x1
β is written SatTypespβq (n above is equal here to 2β). Observe that

cardpSatTypespβqq ď ppdα ´ d1q ` 3q2β ˆ 3β2 . The restriction of the type Θ to some set
of variables X Ď txi, x1

i | i P r1, βsu is made of all the conjuncts in which only variables in
X occur. The type Θ restricted to tx1

i | i P r1, βsu agrees with the type Θ1 restricted to
txi | i P r1, βsu iff Θ and Θ1 are logically equivalent modulo the renaming for which xi and x1

i

are substituted, for all i P r1, βs. For instance, in Figure 1, Θ restricted to tx1
1, x1

2u agrees
with Θ0 restricted to tx1, x2u. The main properties we use about satisfiable types are stated
below.

(I) Let z, z1 P Zβ . There is a unique Θ P SatTypespβq such that Z |ù Θpz, z1q.
(II) For every constraint Θ built over the variables x1, . . . , xβ , x1

1, . . . , x1
β and the constants

d1, . . . , dα there is a disjunction Θ1 _ ¨ ¨ ¨ _Θγ logically equivalent to Θ and each Θi

belongs to SatTypespβq (empty disjunction stands for K).
(III) For all Θ ‰ Θ1 P SatTypespβq, the constraint Θ^Θ1 is not satisfiable.

The proof is by an easy verification and this justifies the term “type” used in this context.

Abstraction with types. A symbolic tree t is a map t : r0, D ´ 1s˚ Ñ Σ ˆ SatTypespβq.
Symbolic trees are intended to be abstractions of trees labelled with concrete values in Z.
Given a tree t : r0, D ´ 1s˚ Ñ Σˆ Zβ , its abstraction is the symbolic tree tt : r0, D ´ 1s˚ Ñ
Σˆ SatTypespβq such that for all n ¨ i P r0, D´ 1s˚ with tpnq “ pa, zq and tpn ¨ iq “ pai, ziq,
ttpn ¨ iq

def
“ pai, Θiq for the unique Θi P SatTypespβq such that Z |ù Θipz, ziq. Note that

the primed variables in Θi refer to the β values at the node n ¨ i, whereas the unprimed
ones refer to the β values at the parent node n. At the root ε with tpεq “ pa, zq, we have
ttpεq

def
“ pa, Θq for the unique Θ P SatTypespβq such that Z |ù Θp0, zq, where 0 P Zβ is

arbitrary as there are actually no parent values at the root. A symbolic tree t is satisfiable
def
ô there is t : r0, D´1s˚ Ñ ΣˆZβ such that tt “ t. We say that t witnesses the satisfaction

of t, also written t |ù t. A symbolic tree t is regular if its set of subtrees is finite.

A-consistency. In our quest to decide whether LpAq ‰ H, we are interested in symbolic trees
that satisfy certain properties that we subsume under the name A-consistent. A symbolic
tree t : r0, D´1s˚ Ñ ΣˆSatTypespβq is A-consistent if the following conditions are satisfied:

t is locally consistent: for every node n, the type Θ labelling n restricted to x1
1, . . . , x1

β

agrees with all types Θi labelling its children nodes n ¨ i restricted to x1, . . . , xβ , and
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ρ
Ta

Tb Ta

Tb Ta

...

...
...

t a, p3, 7q

b, p0, 0q a, p2, 7q

b, p0, 0q a, p1, 7q
...

...
...

tt a, Θ

b, Θ0 a, Θ1

b, Θ0 a, Θ1

...

...
...

Θ def
“ d1 “ x1 “ x2 ă x1

1 ă x1
2

Θ0
def
“ d1 “ x1

1 “ x1
2 ă x1 ă x2

Θ1
def
“ d1 ă x1

1 ă x1 ă x2 “ x1
2

Figure 1 A tree t (middle), a run ρ of some TCA on t (left), where, Ta “ pq, a, pΘ0, qq, pΘ1, qqq

and Tb “ pq, b, pΘ0, qq, pΘ1, qqq, and the symbolic tree tt (abstraction of t) (right).

there is an accepting run ρ of A (but ignoring the conditions on data values) such that
for all n P r0, D ´ 1s˚ with tpnq “ pa, Θq, tpn ¨ iq “ pai, Θiq for all i P r0, D ´ 1s, and
ρpnq “ pq, a, pΘ1

0, q0q . . . pΘ1
D´1, qD´1qq, we have Θi |ù Θ1

i for all i P r0, D ´ 1s.

▶ Example 2. In Figure 1, we show a tree t with concrete values in Zβ for β “ 2 (middle)
and its abstraction tt (right). We assume that d1 “ 0 is the only constant; consequently, tt
uses constraints in SatTypespβq that are built with variables x1, x2, their primed variants
x1

1, x1
2, and the constant d1. We underline constraints to illustrate the property of local

consistency.
It is not hard to prove that the set of all A-consistent symbolic trees is ω-regular, that is, it
can be accepted by a classical tree automaton without constraints. In the following, we use
the standard letter A to distinguish automata without constraints from TCA.

▶ Lemma 3. There exists a Büchi tree automaton (without constraints) Acons(A) such that
LpAcons(A)q is equal to the set of A-consistent symbolic trees.

The locations in Acons(A) are from SatTypespβq ˆ Q and the transition relation for Acons(A)

can be decided in polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.
However, not every A-consistent symbolic tree admits a concrete model. Thus the more

important property is to check whether LpAcons(A)q contains some satisfiable symbolic tree
(and we explain how to do this in the next two subsections). The result below is a variant
of many similar results relating symbolic models and concrete models in logics for concrete
domains, see e.g. [23, Corollary 4.1], [38, Lemma 3.4], [16, Theorem 25], [46, Theorem 11].

▶ Lemma 4. LpAq ‰ H iff there is a satisfiable symbolic tree in LpAcons(A)q.

4.2 Satisfiability for Regular Locally Consistent Symbolic Trees
Below, we focus on deciding when LpAcons(A)q contains a satisfiable symbolic tree, while
evaluating the complexity to check its existence. Given a locally consistent symbolic tree
t : r0, D ´ 1s˚ Ñ Σ ˆ SatTypespβq, we introduce an infinite labelled graph that contains
exactly the same types as t but expressed in a tree-like graph from which it is convenient
to characterize satisfiability in terms of paths, under the premise that t is regular. Similar
symbolic structures are introduced in [49, 23, 14, 46]. The graph is equal to the structure

GC
t “ pVt,

“
ÝÑ,

ă
ÝÑ, Uăd1 , pUiqiPrd1,dαs, Uądα

q,

where Vt “ r0, D´ 1s˚ˆptx1, . . . , xβuY td1, dαuq,
“
ÝÑ and ă

ÝÑ are two binary relations over Vt,
and tUăd1 , Ud1 , Ud1`1, . . . , Udα

, Uądα
u is a partition of Vt. Elements in tx1, . . . , xβuYtd1, dαu

are denoted by xd, xd1, xd2, . . . (variables or constants). Moreover, V β
t

def
“ r0, D ´ 1s˚ ˆ

tx1, . . . , xβu. The rationale behind the construction of GC
t is to reflect the constraints between

parent and children nodes as well as the constraints regarding constants, in such a way that,
if t witnesses the satisfaction of t, then, e.g., tpnqpxdq ă tpn1qpxd1q if pn, xdq ă

ÝÑ pn1, xd1q, and
tpnqpxdq “ d1 if pn, xdq P Ud1 . Here are all conditions for building GC

t .
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(VAR) For all pn, xiq, pn1, xi1q P V β
t , for all „P tă,“u, pn, xiq

„
ÝÑ pn1, xi1q iff either n1 “ n ¨ j

and xi „ x1
i1 in Θ with tpn1q “ pa, Θq, or n “ n1 and x1

i „ x1
i1 in Θ with tpn1q “ pa, Θq, or

n “ n1 ¨ j and x1
i „ xi1 in Θ with tpnq “ pa, Θq.

(P1) For all d P rd1, dαs and pn, xjq P V β
t , pn, xjq P Ud iff x1

j “ d in Θ with tpnq “ pa, Θq.
(P2) For all pn, xjq P V β

t , pn, xjq P Uăd1 iff x1
j ă d1 in Θ with tpnq “ pa, Θq.

(P3) For all pn, xjq P V β
t , pn, xjq P Uądα iff x1

j ą dα in Θ with tpnq “ pa, Θq.
(P4) For all n P r0, D ´ 1s˚, pn, d1q P Ud1 and pn, dαq P Udα

.
(CONS) This is about elements of Vt labelled by constants and how the edge labels reflect the

relationships between the constants. Formally, for all ppn, xdq, pn1, xd1qq P pVtˆVtqzpV
β

t ˆ

V β
t q, for all d:, d:: in “ă d1”, d1, . . . , dα, “ą dα” s.t. pn, xdq P Ud: and pn1, xd1q P Ud:: ,

for all „P tă,“u, pn, xdq „
ÝÑ pn1, xd1q iff either d:, d:: P rd1, dαs and d: „ d::, or d: “

“ă d1”, d:: ‰ “ă d1” and „ is equal to ă or d: ‰ “ą dα”, d:: “ “ą dα” and „ is equal
to ă.

Below, we illustrate the definition of the graph GC
tt for the symbolic tree tt in Figure 1.

The edges labelled with “ or ă reflect the constraints (we omit edges if they can be inferred
from the other edges). For instance, p1, x1q

ă
ÝÑ pε, x1q corresponds to the constraint x1

1 ă x1.
Grey nodes are in Ud1 , all other nodes are in Uąd1 (no nodes in Uăd1).

pε, d1q pε, x1q pε, x2q

p0, d1q p0, x1q p0, x2q p1, d1q p1, x1q p1, x2q

p10, d1q p10, x1q p10, x2q p11, d1q p11, x1q p11, x2q

...
...

ă ă

“ “

“ ą“

“

ă ă

“

“

“ “

ă ă

“ ą

A map p : N Ñ Vt is a path map in GC
t

def
ô for all i P N, either ppiq

“
ÝÑ ppi ` 1q or

ppiq
ă
ÝÑ ppi ` 1q in GC

t . Similarly, r : N Ñ Vt is a reverse path map in GC
t

def
ô for all i P N,

either rpiq
“
ÝÑ rpi ` 1q or rpi ` 1q ă

ÝÑ rpiq. A path map p (resp. reverse path map r) is
strict def

ô ti P N | ppiq
ă
ÝÑ ppi ` 1qu (resp. ti P N | rpi ` 1q ă

ÝÑ rpiqu) is infinite. An infinite
branch B is an element of r0, D ´ 1sω. We write Bri, js with i ď j to denote the subsequence
Bpiq ¨ Bpi` 1q ¨ ¨ ¨Bpjq. Given pn, xdq P Vt, a path map p from pn, xdq along B is such that
pp0q “ pn, xdq and for all i ě 0, ppiq is of the form pn ¨ Br0, is, ¨q. A reverse path map r from
pn, xdq along B admits a similar definition. We present the condition p‹Cq that is the central
property for characterising regular symbolic trees in LpAcons(A)q that are satisfiable, following
the remarkable result established in [46, Lemma 22] that non-satisfiability of a symbolic tree
can be witnessed along a single branch.
p‹Cq There are no elements pn, xdq, pn, xd1q in GC

t (same node n from r0, D ´ 1s˚) and no
infinite branch B such that
1. there exists a path map p from pn, xdq along B,
2. there exists a reverse path map r from pn, xd1q along B,
3. p or r is strict, and
4. for all i P N, ppiq

ă
ÝÑ rpiq.

The following proposition states a key property: non-satisfaction of a regular locally consistent
symbolic tree can be witnessed along a single branch by violation of p‹Cq.

▶ Proposition 5. For every regular locally consistent symbolic tree t, GC
t satisfies p‹Cq iff t

is satisfiable.

CONCUR 2023
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A proof can be found in [27, Section 7].

▶ Example 6. Assume that every node along the rightmost branch in the symbolic tree
tt in Figure 1 is labelled with pa, Θ1q. Then tt is not satisfiable: in order to satisfy Θ1’s
conjunct x1

1 ă x1, the value of x1 must inevitably become finally smaller than d1, violating
the conjunct d1 ă x1. Consequently, the rightmost branch of GC

tt presented above does not
satisfy p‹Cq: there exists a path map p from pε, d1q along 1ω, there exists a strict reverse
path map r from pε, x1q along 1ω, and for all i P N we have ppiq

ă
ÝÑ rpiq.

New constant nodes. Proposition 5 above is a variant of [46, Lemma 22]. Before going any
further, let us in short explain the improvement of our developments compared to what is
done in [46, 45]. The framified constraint graphs defined in [46, Definition 14] correspond to
the above defined graph GC

t without r0, D´1s˚ˆtd1, dαu and corresponding edges. However,
Example 6 illustrates the importance of taking into account these elements when deciding
satisfiability (without d1, the graph would satisfy p‹Cq). Actually, Example 6 invalidates p‹q
as used in [46, 45] because the constants are missing to apply properly [15]. The problematic
part in [46, 45] is due to the proof of [45, Lemma 5.18] whose main argument takes advantage
of [15] but without the elements related to constant values (see also [24, Lemma 8]). With
Proposition 5, we also propose a proof to characterise satisfiability of symbolic trees that
is independent of [15]. Note also that the condition p‹q in [46, Section 3.3] generalises the
condition CZ from [23, Section 6] (see also the condition C in [24, Definition 2] and a similar
condition in [32, Section 2]). A condition similar to p‹q is also introduced recently in [7,
Lemma 18] to decide a realizability problem based on LTLpZ,ă,“q.

We recall that there are nonregular locally consistent symbolic trees t such that GC
t

satisfies p‹Cq (see e.g. [23, 46]) but t is not satisfiable; indeed, satisfiability of symbolic trees is
not an ω-regular property. The next result states that p‹Cq is ω-regular; hence, satisfiability
of symbolic trees can be overapproximated advantageously.

▶ Lemma 7. There is a Rabin tree automaton A‹C such that LpA‹Cq “ tt | GC
t satisfies p‹Cqu,

the number of Rabin pairs is bounded above by 8pβ ` 2q2 ` 3, the number of locations is
exponential in β, the transition relation can be decided in polynomial-time in

maxprlogp|d1|qs, rlogp|dα|qsq ` β ` cardpΣq `D.

Proof sketch. The proof of Lemma 7 is structured as follows (see [27, Section 4.3]). (1)
We construct a Büchi word automaton AB accepting the complement of p‹Cq for D “ 1.
(2) AB is nondeterministic, but we can determinize it and get a deterministic Rabin word
automaton ABÑR such that LpABq “ LpABÑRq (using the determinisation construction
from [60, Theorem 1.1]). (3) By an easy construction, we obtain a deterministic Street word
automaton AS accepting the complement of LpABÑRq; it accepts words that satisfy p‹Cq for
D “ 1. (4) By [60, Lemma 1.2], we construct a deterministic Rabin word automaton AR s.t.
LpASq “ LpARq. (5) Finally, we construct a Rabin tree automaton A‹C , the intuitive idea is
to “let run the automaton AR” along every branch of a run of A‹C , doable thanks to the
determinism of AR. Since p‹Cq states a property on every branch, we are done. ◀

Differences with [46]. Lemma 7 is similar to [46, Proposition 26] but there is an essential
difference: the number of Rabin pairs in Lemma 7 is not a constant but a value depending on
β, an outcome of our investigations. It is important to know the number of Rabin pairs in A‹C

for our complexity analysis as checking nonemptiness of Rabin tree automata is exponential
in the number of Rabin pairs [30, Theorem 4.1]. Our proof of Lemma 7 also proposes a slight
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novelty compared to the construction in [46]: we design A‹C without firstly constructing a
tree automaton for the complement language (as done in [46]) and then using results from [55]
(elimination of alternation in tree automata). Our new approach shall be rewarding: not
only we can better understand how to express the condition p‹Cq, but also we control the
size parameters of A‹C involved in our forthcoming complexity analysis. Furthermore, it
may be useful to implement the decision procedure for solving the satisfiability problem
for CTLpZq (resp. for CTL˚pZq). Note also that the above analysis about the number of
Rabin pairs is independent from the question discussed above about having the elements in
r0, D ´ 1s˚ ˆ td1, dαu within GC

t .
Summarizing the developments so far, we can conclude this subsection as follows:

▶ Lemma 8. LpAq ‰ H iff LpAcons(A)q X LpA‹Cq ‰ H.

For its proof, by way of example, if LpAcons(A)qXLpA‹Cq is non-empty, then as LpAcons(A)qX

LpA‹Cq is regular, it contains a regular A-consistent symbolic tree t (see e.g. [58] and [64,
Section 6.3] for the existence of regular trees) and by Proposition 5, t is satisfiable. By
Lemma 4, we get LpAq ‰ H. For the other direction, we use Lemma 3 as well as the property
that for every satisfiable symbolic tree t, GC

t satisfies the condition p‹Cq.

4.3 ExpTime Upper Bound for TCAs
Lemma 8 justifies why deciding the nonemptiness of LpAcons(A)q X LpA‹Cq is crucial. In the
proof of Lemma 9 below (see [27, Section 4.4]), we propose a construction for the intersection
of Rabin tree automata that only performs an exponential blow-up for the number of locations,
which is fine for our purposes.

▶ Lemma 9. There is a Rabin tree automaton A such that LpAq “ LpAcons(A)qXLpA‹Cq and the
number of Rabin pairs is polynomial in β, the number of locations is in OpcardpSatTypespβqqˆ
cardpQq ˆ 2P pβqq for some polynomial P p¨q and the transition relation can be decided in
polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.

Nonemptiness of Rabin tree automata is polynomial in the cardinality of the transition
relation and exponential in the number of Rabin pairs, see e.g. [30, Theorem 4.1]. More
precisely, it is in time pmˆ nqOpnq, where m is the number of locations and n is the number
of Rabin pairs, see the statement [30, Theorem 4.1]. However, this is not exactly what we
need herein, as the complexity expression above concerns binary trees, and it assumes that
the transition relation δ can be decided in constant time. If, as in our case, D ě 1 and
deciding whether a tuple belongs to δ requires γ time units, checking nonemptiness is actually
in time pcardpδq ˆ γ ˆ nqOpnq (by scrutiny of the proof of [30, Theorem 4.1], page 144).
Here, γ may depend on parameters related to A and in Lemma 10 below, γ takes the value
cardpδq ` β ` cardpΣq `D ` MCSpAq (by Lemma 9). Hence the following result:

▶ Lemma 10. The nonemptiness problem for TCA can be solved in time in OpR1
`

cardpQqˆ
cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβq

˘R2pβqˆR3pDq
q for some polynomials R1, R2 and R3.

Assuming that the size of the TCA A “ pQ, Σ, D, β, Qin, δ, F q, written sizepAq, is polynomial
in cardpQq`cardpδq`D`β`MCSpAq (which makes sense for a reasonably succinct encoding),
from the computation of the bound in Lemma 10, the nonemptiness of LpAq can be checked in
time OpRpsizepAqqR1

pβ`Dqq for some polynomials R and R1. The ExpTime upper bound of
the nonemptiness problem for TCA is now a consequence of the above complexity expression.

▶ Theorem 11. Nonemptiness problem for tree constraint automata is ExpTime-complete.
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4.4 Rabin Tree Constraint Automata
We can prove the ExpTime upper bound of the nonemptiness problem for Rabin TCA
(Theorem 13) and follow the same lines of arguments as for TCA. Given a Rabin TCA
A “ pQ, Σ, D, β, Qin, δ, Fq, we define a Rabin tree automaton A1

cons(A) such that LpAq ‰ H
iff there is t P LpA1

cons(A)q that is satisfiable (cf. Lemma 4 for TCA). Moreover, we take
advantage of A‹C so that LpAq ‰ H iff LpA1

cons(A)q X LpA‹Cq is non-empty (cf. Lemma 8). It
remains to determine the cost for testing nonemptiness of LpA1

cons(A)q X LpA‹Cq. Here is the
counterpart of Lemma 9 (same kind of arguments).

▶ Lemma 12. There is a Rabin tree automaton A s.t. LpAq “ LpA1
cons(A)q X LpA‹Cq,

the number of Rabin pairs is polynomial in β ` cardpFq, the number of locations is in
OpcardpSatTypespβqq ˆ cardpQq ˆ 2P pβ`cardpFqqq for some polynomial P p¨q, and the trans-
ition relation can be decided in polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.

As for Lemma 10, we conclude that the nonemptiness problem for Rabin TCA can be solved in
time OpR1

`

cardpQq ˆ cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβ ` cardpFqq
˘R2pβ`cardpFqqˆR3pDq

q

for polynomials R1, R2 and R3. The nonemptiness problem for Rabin TCA is also in
ExpTime.

▶ Theorem 13. The nonemptiness problem for Rabin TCA is ExpTime-complete.

This result is mainly useful to characterize the complexity of SATpCTL˚pZqq in Section 6.

5 Tree Constraint Automata for CTLpZq

Below, we harvest the first results from what is achieved in the previous section: SATpCTLpZqq
is in ExpTime. So, enriching the CTL models with numerical values interpreted in Z does
not cause a complexity blow-up. We follow the automata-based approach and (after proving
a refined version of the tree model property for CTLpZq) the key step is to translate CTLpZq
formulae into equivalent TCA. Theorem 14 below is one of our main results.

▶ Theorem 14. The satisfiability problem for CTLpZq is ExpTime-complete.

Sketch. ExpTime-hardness is inherited from CTL. For ExpTime-easiness, let ϕ be a CTLpZq
formula. A first step is to preprocess the formula into a formula in simple form (see definition
in Section 2.2). Then, we can construct from a formula ϕ in simple form a TCA Aϕ s.t. ϕ is
satisfiable iff LpAϕq ‰ H and Aϕ satisfies the following properties.

The degree D and the number of variables β are bounded by sizepϕq.
The number of locations is bounded by pD ˆ 2sizepϕqq ˆ psizepϕq ` 1q.
The number of transitions is in Op2P psizepϕqqq for some polynomial P p¨q.
The finite alphabet Σ in Aϕ is unary; MCSpAϕq is quadratic in sizepϕq.

By Lemma 10, the nonemptiness problem for TCA can be solved in time

OpR1
`

cardpQq ˆ cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβq
˘R2pβqˆR3pDq

q.

Since the transition relations of the automata Acons(A) and A‹C can be built in polynomial-time,
we get that nonemptiness of LpAϕq can be solved in exponential-time. ◀

Let N be the concrete domain pN,ă,“, p“dqdPNq for which we can also show that nonemptiness
of TCA with constraints interpreted on N has the same complexity as for TCA with constraints
interpreted on Z. Let CTLpNq be the variant of CTLpZq with constraints interpreted
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on N. As a corollary, SAT(CTLpNq) is ExpTime-complete. With the concrete domain
pQ,ă,“, p“dqdPQq, all the trees in LpAcons(A)q are satisfiable (no need to intersect Acons(A) with
a hypothetical A‹C , see e.g. [49, 4, 23, 38]), and therefore SATpCTLpQqq is in ExpTime too.
TCA can be also used to show that the concept satisfiability w.r.t. general TBoxes for the
description logic ALCFPpZcq is in ExpTime [46, 45], see more details in [27, Section 5.2].

6 Complexity of the Satisfiability Problem for the Logic CTL˚pZq

We show that SATpCTL˚pZqq can be solved in 2ExpTime. We follow the automata-based
approach for CTL˚, see e.g. [31, 30], but adapted to Rabin TCA. The main challenge here
is to carefully check that essential steps for CTL˚ can be lifted to CTL˚pZq, but also that
computationally we are in a position to provide an optimal complexity upper bound.

Let us explain in short all steps necessary to obtain the result. We start by establishing a
special form for CTL˚pZq formulae from which Rabin TCA will be defined, following ideas
from [31] for CTL˚. A CTL˚pZq state formula ϕ is in special form if it has the form below

E px “ 0q ^
`

ľ

iPr1,D´1s
AGE Φi

˘

^
`

ľ

jPr1,D1s

A Φ1
j

˘

,

where the Φi’s and the Φ1
j ’s are LTLpZq formulae in simple form (see Section 2), for some

D ě 1, D1 ě 0. We can restrict ourselves to CTL˚pZq state formulae in special form (see the
proof of [27, Proposition 6]).

▶ Proposition 15. For every CTL˚pZq formula ϕ, one can construct in polynomial time in
the size of ϕ a CTL˚pZq formula ϕ1 in special form s.t. ϕ is satisfiable iff ϕ1 is satisfiable.

So ϕ1 is also of polynomial size in the size of ϕ. Let us state a tree model property of special
formulae, with a strict discipline on the witness paths. Proposition 16 below is a counterpart
of [31, Theorem 3.2] but for CTL˚pZq instead of CTL˚, see also the variant [38, Lemma 3.3].

▶ Proposition 16. Let ϕ be a CTL˚pZq formula in special form built over x1, . . . , xβ. ϕ is
satisfiable iff there is a tree t : r0, D´ 1s Ñ Zβ such that t, ε |ù ϕ and for each i P r1, D´ 1s,
t satisfies AGE Φi via i, that is, if t, n |ù E Φi, then Φi is satisfied on the path n ¨ i ¨ 0ω.

Proposition 16 justifies our restriction to infinite trees and to TCA in the rest of this section.
Proposition 15 allows us to restrict our attention to constructing automata for formulae of
(only) the form AGE Φ and A Φ, where Φ is a simple formula in LTLpZq. The first step is to
translate simple formulae in LTLpZq into equivalent word constraint automata (TCA with
degree D “ 1). Adapting the standard automata-based approach for LTL [69], we can show
the following proposition (see the proof of [27, Proposition 8]).

▶ Proposition 17. Let Φ be an LTLpZq formula in simple form. There is a constraint word
automaton AΦ such that tw : NÑ Zβ | w |ù Φu “ LpAΦq, and the following conditions hold.

(I) The number of locations in AΦ is bounded by sizepΦq ˆ 22ˆsizepΦq.
(II) The cardinality of δ in AΦ is in Op2P psizepΦqqq for some polynomial P p¨q.

(III) The maximal size of a constraint in AΦ is quadratic in sizepΦq.

We can now construct, for every i P r0, D ´ 1s, a TCA Ai such that LpAiq “ tt :
r0, D ´ 1s˚ Ñ Zβ | t |ù AGE Φi and t satisfies AGE Φi via iu. The idea is to construct Ai so
that it starts off the word constraint automaton AΦi

at each node n of the tree and runs it
down the designated path n ¨ i ¨ 0ω to check whether Φi actually holds along this path. This
can be easily done for AGE Φi; however, for formulas of the form A Φ1

j , for this construction
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to be correct, the underlying constraint word automaton A1
j must be deterministic, that

is, for all locations s, letters a and pairs of valuations pz, z1q P Z2β , there exists in A1
j at

most a single transition ps, a, Θ, s1q such that Z |ù Θpz, z1q. A well-known construction to
transform nondeterministic Büchi automata to equivalent deterministic Rabin automata
is due to Safra [60, Theorem 1.1]. An important step towards the optimal complexity for
CTL˚pZq is to show that it is possible to lift this construction to word constraint automata,
which is a result of its own interest. A special attention is given to the cardinality of the
transition relation and to the size of the constraints in transitions, as these two parameters
are, a priori, unbounded in constraint automata but essential to perform a forthcoming
complexity analysis.

▶ Theorem 18. Let A “ pQ, Σ, β, Qin, δ, F q be a Büchi word constraint automaton involving
the constants d1, . . . , dα. There is a deterministic Rabin word constraint automaton A1 “

pQ1, Σ, β, Q1
in, δ1, Fq such that LpAq “ LpA1q verifying the following quantitative properties.

(I) cardpQ1q is exponential in cardpQq and the number of Rabin pairs in A1 is bounded by
2 ¨ cardpQq (same bounds as in [60, Theorem 1.1]).

(II) The constraints in the transitions are from SatTypespβq, are of size cubic in β `

maxprlogp|d1|qs, rlogp|dα|qsq and cardpδ1q ď cardpQ1q2ˆcardpΣqˆppdα´d1q`3q2βˆ3β2 .

This and Proposition 17 lead us to the result below on LTLpZq formulae in simple form.

▶ Corollary 19. Let Φ be an LTLpZq formula in simple form built over the variables x1, . . . , xβ

and the constants d1, . . . , dα. There exists a deterministic Rabin word constraint automaton
AΦ such that tw : NÑ Zβ | w |ù Φu “ LpAΦq, and the following conditions hold.

(I) The number of locations in AΦ is bounded by 22P:psizepΦqq for some polynomial P :p¨q.
(II) The number of Rabin pairs is bounded by 2ˆ sizepΦq ˆ 22ˆsizepΦq.

(III) The cardinality of δ in AΦ is bounded by cardpSatTypespβqq ˆ 22P:psizepΦqq`1 .
(IV) MCSpAΦq is cubic in β `maxprlogp|d1|qs, rlogp|dα|qsq, i.e. polynomial in sizepΦq.

This enables us to use the idea illustrated above for formulas of the form AGE Φi also for
formulas of the form A Φ1

j , and define Rabin TCA A1
j such that LpA1

jq “ tt : r0, D ´ 1s˚ Ñ
Zβ | t satisfies A Φ1

ju. We are now ready to perform the final step towards the main result
of this section. Let us recapitulate what we have so far.

One can define a TCA A0 with two locations such that LpA0q is the set of trees t :
r0, D´ 1s˚ Ñ Zβ such that tpεqpx1q “ 0, to handle Epx1 “ 0q in formulae in special form.
For all 1 ď i ă D, there are (Büchi) TCA Ai such that LpAiq is the set of trees
t : r0, D ´ 1s˚ Ñ Zβ such that t, ε |ù AGE Φi and t satisfies AGE Φi via i. Recall that
TCA can be seen as Rabin TCA with a single Rabin pair.
For all 1 ď j ď D1, there are Rabin TCA A1

j such that LpA1
jq is the set of trees t such

that t satisfies A Φj , with an exponential number of Rabin pairs in sizepΦq.

To define a Rabin TCA A such that LpAq “ LpA0q
Ş

iPr1,D´1s LpAiq
Ş

jPr1,D1s LpA1
jq, and

then use the complexity bounds previously established, we need the result below (see the full
proof in [27, Section 6.5]).

▶ Lemma 20. Let pAkq1ďkďn be a family of Rabin TCA such that Ak “

pQk, Σ, D, β, Qk,in, δk, Fkq, cardpFkq “ Nk and N “ Π
k

Nk. There is a Rabin TCA A
such that LpAq “

Ş

k LpAkq and
the number of Rabin pairs is equal to N ; MCSpAq ď n` MCSpA1q ` ¨ ¨ ¨ ` MCSpAnq,
the number of locations (resp. transitions) is less than

`

Π
k

cardpQkq
˘

p2nqN (resp.
Π
k

cardpδkq).
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Putting all results together, the nonemptiness of LpAq can be checked in double-exponential
time in sizepϕq, leading to Theorem 21 below, which is the main result of the paper. It
answers open questions from [11, 15, 16, 46].

▶ Theorem 21. SATpCTL˚pZqq is 2ExpTime-complete.

2ExpTime-hardness is from SAT(CTL˚) [66, Theorem 5.2]. As a corollary,
SATpCTL˚pNqq is also 2ExpTime-complete. Furthermore, assuming that ăpre is the
prefix relation on t0, 1u˚, we can use the reduction from [22, Section 4.2] to conclude
SATpCTL˚pt0, 1u˚,ăpreqq is 2ExpTime-complete too. Furthermore, as observed earlier,
when the concrete domain is pQ,ă,“, p“dqdPQq, all the trees in LpAcons(A)q are satisfiable,
and therefore SATpCTL˚pQqq is also in 2ExpTime, which is already known from [38, The-
orem 4.3].

7 Concluding Remarks

We developed an automata-based approach to solve SAT(CTLpZq) and SAT(CTL˚pZq), by
introducing tree constraint automata that accept infinite data trees with data domain Z. The
nonemptiness problem for tree constraint automata with Büchi acceptance conditions (resp.
with Rabin pairs) is ExpTime-complete, see Theorem 11 (resp. Theorem 13). The difficult
part consists in proving the ExpTime-easiness for which we show how to substantially adapt
the material in [45, Section 5.2] that guided us to design the correctness proof of p‹Cq. The
work [46] was indeed a great inspiration but we adjusted a few statements from there (see
also [27]). We recall that p‹q in [46] is not fully correct (see Section 4.2) as we need to
add constants (leading to the variant condition p‹Cq). Moreover, our construction of the
automaton in Lemma 7 does depend on the number of variables unlike [46, Proposition 26].
This is crucial for complexity, as it is related to the number of Rabin pairs. We also use [30]
more precisely than [46, p.621] as we handle non-binary trees. In short, we introduced
TCA for which we characterise complexity of the non-emptiness problem (providing a few
improvements to [46]). We left aside the question of the expressiveness of TCA, which is
interesting but out of the scope of this paper.

This lead us to show that SATpCTLpZqq is ExpTime-complete (Theorem 14), and
SATpCTL˚pZqq is 2ExpTime-complete (Theorem 21). The only decidability proof for
SATpCTL˚pZqq done so far, see [15, Theorem 32], is by reduction to a decidable second-order
logic. Our complexity characterisation for SATpCTL˚pZqq provides an answer to several
open problems related to CTL˚pZq fragments, see e.g. [11, 38, 15, 16, 46]. We believe that
our results on TCA can help to establish complexity results for other logics (see also Section 6
about a domain for strings and [33, Section 4] to handle more concrete domains).
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Abstract
Linearizability is a standard correctness criterion for concurrent algorithms, typically proved by
establishing the algorithms’ linearization points (LP). However, LPs often hinder abstraction, and
for some algorithms such as the timestamped stack, it is unclear how to even identify their LPs.
In this paper, we show how to develop declarative proofs of linearizability by foregoing LPs and
instead employing axiomatization of so-called visibility relations. While visibility relations have
been considered before for the timestamped stack, our study is the first to show how to derive
the axiomatization systematically and intuitively from the sequential specification of the stack.
In addition to the visibility relation, a novel separability relation emerges to generalize real-time
precedence of procedure invocation. The visibility and separability relations have natural definitions
for the timestamped stack, and enable a novel proof that reduces the algorithm to a simplified form
where the timestamps are generated atomically.
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1 Introduction

A concurrent data structure is linearizable [11] if in every concurrent execution history of
the structure’s exportable methods, the method invocations can be ordered linearly just by
permuting overlapping invocations, so that the obtained history is sequentially sound; that
is, executing the methods sequentially in the linear order produces the same outputs that the
methods had in the concurrent history. In other words, every concurrent history is equivalent
to a sequential one where methods execute without interference, i.e., atomically.

While linearizability is a standard correctness criterion, proving that sophisticated data
structures are linearizable is far from trivial. The most common approach is to first describe
the linearization points (LPs) of the methods that the data structure exports. Given an
execution of a method (henceforth, event), its LP is the moment at which the event’s effect
can be considered to have occurred abstractly, in the sense that the linearization order
of the events is determined by the real-time order of the chosen LPs. LPs are described
operationally by indicating the line in the code together with a run-time condition under
which the line applies. The proof then proceeds by a simulation argument to show that the
effect of the invocation abstractly occurs at the declared line.
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While LPs lead to a complete proof method [16], the operational nature of the LP
description leads to very low-level proofs. Sometimes, it may even be unclear how to describe
the position of the LPs in the first place. An alternative, more declarative approach, that
offers higher levels of abstraction, has been proposed by Henzinger et al. [10]. It advocates
foregoing LPs in favor of axiomatizing how the events of the structure depend on each other.
Such dependence relation has since been termed visibility relation in the literature [17], and
has been used to axiomatize concurrent queues [10], stacks [3, 7], and snapshot algorithms [14].
In these cases, the higher abstraction capabilities of visibility relations (compared to LPs)
enabled that linearizability proofs of different implementations of a data structure can share
significant proof components, or that a linearizability proof can be developed in the first
place where an LP-based proof did not exist. Nevertheless, despite these recent successes,
developing visibility-based proofs remains an undeveloped area, with every proof approaching
the axiomatization in its own manner, without any specific systematization.

This paper advances the visibility approach by proposing that the axiomatization of
concurrent structures should rely on a separability relation between events, in addition to
the visibility relation. Separability relation partially characterizes when two events are
abstractly non-overlapping, with one event logically preceding the other. Thus, it is the
abstract counterpart to the “returns-before” relation, which is standard in the literature, and
holds between two events if, in real time, the first event terminates before the second begins.

We employ the visibility and separability relations in tandem to derive a new axiomatiza-
tion and linearizability proof for the concurrent structure of the timestamped stack, initially
designed and proved linearizable by Dodds et al. [3] and Haas [7]. Since its inception, the
timestamped stack has achieved some notoriety for the difficulty of its linearizability proof,
as it has so far resisted an operational description of its LPs, and simulation-based proof at-
tempts. For example, Khyzha et al. [12] verified the timestamped queue by a simulation-based
approach, but did not scale to the stack. Bouajjani et al. [1] employed forward simulation
on a simplified variant of the stack where timestamps are allocated atomically, but did not
attempt the general variant, where the timestamp allocation is a more complex non-atomic
operation that produces behaviors not observed in the atomic case. The original proof by
Dodds et al. is a large case analysis that mixes visibility relations with approximate LP
descriptions, and then adapts and corrects both as the proof advances. However, the axioms
and the definitions of the visibility relations have been justified only technically, and have
remained unconnected to the intuition behind the structure’s design.

By axiomatizing both separability and visibility relations, we derive the following contri-
butions: (1) We obtain a linearizability proof that elides LPs, and is thus more declarative
than the proof of Dodds et al.; (2) The proof’s declarative nature allows us to first consider
the simpler variant of the algorithm with atomic timestamp allocation, and then show that
the general variant reduces to the atomic case. The staged proof is more intuitive than if we
attempted the general case directly, which is what Dodds et al. do.; (3) Our contribution
goes beyond a new proof for the timestamped stack, as it suggests a systematic way to
axiomatize concurrent data structures in the visibility style. More specifically, we show
that the visibility relation naturally emerges when one transforms an obvious state-based
sequential axiomatization of stacks to the concurrent setting with histories. In the process, the
separability relation also naturally emerges, because one is immediately forced to generalize
the returns-before relation. So obtained axioms identify the abstractions that are essential for
understanding the algorithm, and strongly guide the remaining proof. Finally, our approach
to axiomatization applies to other concurrent algorithms as well, and we comment in Section 5
how we did so for RDCSS and MCAS of Harris et al. [8] and some other structures. Of
course, the generality of the approach remains to be evaluated on a wider set of examples.
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1: pools : Node[maxT hreads];
2: T S, ID : Int = 0;
3:
4: proc push (v : Val)
5: Node n =
6: Node{v, ∞, pools[TID], false, ID++ };
7: pools[TID] = n;
8: Stamp ts = newTimestamp();
9: n.stamp = ts;

10:
11: proc newTimestamp ()
12: Int ts1 = T S;
13: pause();
14: Int ts2 = T S;
15: if ts1 ̸= ts2 then
16: return [ts1, ts2 − 1];
17: else if CAS(T S, ts1, ts1 + 1) then
18: return [ts1, ts1];
19: else
20: return [ts1, T S − 1];

21: record Node:
22: val : Val; stamp : Stamp; next : Node;
23: taken : Bool; id : Int ;
24:
25: proc pop ()
26: Bool suc = false; Node chosen;
27: while not suc do
28: Stamp maxT = −∞;
29: chosen = null;
30: for i from 0 to maxT hreads − 1 do
31: Node n = pools[i];
32: while n.taken and n.next ̸= n do
33: n = n.next;
34: Stamp ts = n.stamp;
35: if maxT <T ts then
36: chosen = n; maxT = ts;
37: if chosen ̸= null then
38: suc = CAS(chosen.taken, false, true);
39: return chosen.val;

Figure 1 Pseudocode of a simplified TS-stack.

2 The Timestamped Stack and its Timestamps

The timestamped stack (TS-stack) keeps an array of pools, indexed by thread IDs; one pool
for each thread. A pool is a linked list of nodes. The array index identifying the pool (line 1
in Figure 1) stores the head node of the pool list, and each node (lines 22-23) stores a value
val, timestamp stamp, the next node in the list, a boolean taken indicating if the value has
been taken by some pop, and a unique identifier id for the node.1 Each thread can only
insert values in its own pool by allocating a node at the head of the list. A value is logically
removed from the pool once its taken flag is set to true.2

The push procedure inserts a new node containing the pushed value v into the pool of
the executing thread with thread id TID. More specifically, in line 6, push allocates a new
node with the value v, infinite timestamp, next pointing to the current head of the pool,
taken flag set to false, and fresh unique identifier, where ID++ denotes an atomic fetch and
increment on the global counter ID. Then, the new node is set as the new head of the TID
pool (line 7), a new timestamp is generated (line 8) and assigned to the node (line 9) as a
replacement for the original infinity timestamp. We will discuss infinity timestamps and the
newTimestamp procedure further below.

The pop procedure traverses the pools (loop at line 30), searching for an untaken node
with a maximal timestamp in the partial order <T, updating the current maximum in the
variable maxT (lines 35-36). Once a maximal node is found, pop attempts to remove it by
CAS-ing on its taken flag at line 38. The pop procedure restarts (loop at line 27) if it was
not able to take a maximal node at line 38.

The role of <T is to endow TS-stack with a LIFO discipline whereby an element with a
larger timestamp (i.e, the more recently pushed element), is popped first. In the concurrent
setting, however, the meaning of “more recent” is not as straightforward as in the sequential
setting, as the definition of linearizability allows that overlapping operations can be linearized

1 Unique identifiers id are ghost code (gray color in Figure 1), introduced solely for use in proofs.
2 For presentation purposes, we simplified the original algorithm, but treat a more general form in

Appendix B.2 [5]. The two versions exhibit the same challenges, and use the sames axiomatization and
definitions of visibility and separability. The differences between them are discussed in Section 5.
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in either order. In particular, if two invocations of push overlapped, they can actually be
popped in either order. To reflect this property of linearizability, the order <T is partial as
opposed to total. However, to be sequentially sound, it is of essence that if two pushes did not
overlap, then the more recent push is indeed popped first.3 This is why the implementation of
newTimestamp should satisfy the property that two non-overlapping calls to newTimestamp
produce timestamps that actually are ordered by <T.

There are several ways in which one can implement newTimestamp to satisfy this property,
and Figure 1 shows the particularly efficient variant proposed by Dodds et al. [3]. We will
return to this variant promptly. However, for purposes of understanding and proving the
algorithm linearizable, one may consider a simpler version whereby timestamps are integers,
and newTimestamp is implemented to keep a global counter that is atomically fetch-and-
incremented on each call, returning the current count as the fresh timestamp. Such an atomic
implementation results in <T that is actually a total order, and much simpler to analyze
than the efficient variant in Figure 1. We will use the atomic implementation as a stepping
stone in our proof; we will prove it linearizable first, and then show that the linearizability
argument for the efficient variant reduces to the atomic case.

The reason to consider a non-atomic implementation at all is that the atomic one suffers
from a performance issue that threads contend on the global timestamp counter. The efficient
variant from Figure 1 improves on this by introducing interval timestamps of the form
[a, b] for integers a ≤ b, where [a, b] <T [c, d] holds if b < c in the standard integer order.
Obviously, so defined <T is only a partial order, as it does not order every two interval
timestamps. Nevertheless, it still suffices for linearizability, because if two push events are
assigned overlapping interval timestamps, such events must overlap as well, and thus do not
constrain the order in which they are popped in a linearization.

The newTimestamp from Figure 1 still keeps a global counter TS, as the atomic variant
would, but it does not always synchronize accesses to it. In particular, TS is first read twice
into ts1 and ts2 (lines 12 and 14, respectively). In the common case when some thread
interfered on TS (i.e., ts1 ̸= ts2), the method generates an interval with endpoint ts2 − 1,
and terminates without having performed any synchronization. Some synchronization is
required only when no interference is detected (i.e., ts1 = ts2). In that case, newTimestamp
CAS-es over TS (line 17), to atomically increment TS. As CAS is an expensive operation,
invoking pause() in line 13 increases the probability of interference, and thus decreases the
need for CAS. If the CAS succeeds, an interval with endpoint ts1 is returned. If the CAS
fails, some other thread increased TS, and the method returns an endpoint TS − 1. In
all cases, when newTimestamp terminates, TS has been increased either by the executing
thread or by another thread, and the generated interval’s endpoint is strictly smaller than
the current value of TS. Thus, a subsequent non-overlapping invocation of newTimestamp
will produce an interval that is strictly larger in <T. This ensures that two sequentially
non-overlapping pushes generate non-overlapping interval timestamps.

Note that newTimestamp could return the same interval timestamp for two different
overlapping invocations. For example, with initial TS = 0, a thread T1, after reading TS the
first time at line 12 (returning 0), waits at line 13 while another thread T2 fully executes
newTimestamp, meaning that T2 increased TS at line 17 and returned timestamp [0, 0].
When T1 resumes, it again reads TS at line 14 (returning 1), and so returns [0, 0].

3 Further assuming that the pops also did not overlap among themselves or with the pushes.
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(A1) Non-empty pop

v :: S
pop() ⟨v⟩−−−−−−→ S

(A2) Empty pop

[ ] pop() ⟨EMPTY⟩−−−−−−−−−−→ [ ]
(A3) push

S
push(v) ⟨tt⟩−−−−−−−−→ v :: S

(a) State-based sequential specification.

(B1) LIFO
u1 ⋖ o1 ∧ u1 ❁ u2 ❁ o1 =⇒ ∃o2. u2 ⋖ o2 ∧ o2 ❁ o1

(B2) Pop uniqueness
u ⋖ o1 ∧ u ⋖ o2 =⇒ o1 = o2

(B3) Dependences occur in the past
u ⋖ o =⇒ u ❁ o

(B4.1) Non-empty pop

o = pop() ⟨v⟩ ∧ v ̸= EMPTY =⇒ ∃u. u ⋖ o ∧ v = u.in
(B4.2) Empty pop

o1 = pop() ⟨EMPTY⟩ =⇒ ∀u. u ❁ o1 =⇒ ∃o2. u ⋖ o2 ∧ o2 ❁ o1

(B4.3) push

u = push(_) ⟨v⟩ =⇒ v = tt

(b) History-based sequential specification. Relation ⋖ : Ev × Ev is abstract, and u.in is event u’s input.

Figure 2 State-based and history-based sequential specifications for stacks. Variables u, o, and
their indexed variants, range over pushes and pops, respectively.

Finally, <T is formally augmented with infinite timestamps −∞ and ∞, so that −∞ <T
t <T ∞ for any timestamp t generated by newTimestamp. This enables pop to start its search
with minimum timestamp −∞ (line 28). Similarly, push can assign maximum timestamp ∞
to a fresh node (line 6) before assigning it a finite timestamp; an intervening pop could take
such a fresh node immediately, as the node is the most recent.

3 Axiomatizing Visibility and Separability

3.1 Sequential History Specifications and Visibility Relations
Following Henzinger et al. [10], we start the development of visibility relations by introducing
history-based specifications for our data structure. History-based specifications describe
relationships between the data structure’s procedures in an execution history. They are
significantly different from the perhaps more customary state-based specifications that
describe the actions of a procedure in terms of input and output state. However, history-
based specifications scale better to the concurrent setting, which is why concurrent consistency
criteria such as linearizability are invariably defined in terms of execution histories.

In this section we focus on sequential histories in order to introduce the idea of visibility
relation in a simple way, before generalizing to concurrent histories in Section 3.2. A
sequential history is a sequence of the form [proc(in1)⟨out1⟩, . . . , proc(inn)⟨outn⟩], where
proc(ini)⟨outi⟩ means that proc(ini) executed atomically and produced output outi. We
term event each element in a sequential history h, and Ev denotes the set of all events in h.

Figure 2 illustrates the distinction between sequential state-based and history-based
specifications for stacks. For the state-based specification in Figure 2a, let us denote by
S

proc(in) ⟨out⟩−−−−−−−−−→ S′ the statement that event proc with input in executes atomically on stack
S, produces output out and modifies the stack into S′. Axiom A1 says that a pop removes
the top element v from a non-empty stack and returns v. Axiom A2 says that pop returns
EMPTY when the stack is empty, leaving the stack unchanged. Axiom A3 says push(v)
inserts v into the stack as the new top element, returning the trivial value tt.
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Figure 2b shows the history-based sequential specification for stacks. The specification
utilizes the visibility relation ⋖ to capture a push-pop causal dependence between events. In
particular, u ⋖ o means that “event o pops a value that event u pushed onto the stack”. We
usually say that u is visible to o, or that o observes u. Under this interpretation, axioms
B1, ..., B4.3 state the following expected properties.4

Axiom B1 (LIFO) states that more recent pushes are popped first. More specifically,
if o1 observes u1 (i.e, u1 ⋖ o1) and u2 is a later push executing between u1 and o1 (i.e.,
u1 ❁ u2 ❁ o1), then u2 must be popped before o1 pops u1, otherwise the value pushed by u1
would not be at the top of the stack for o1 to take. Relation ❁ is the returns-before relation
(with ⊑ its reflexive closure), where x ❁ y means that x terminated before y started. Note
that ❁ is a total order on events, as in a sequential execution, different events cannot overlap.

Axiom B2 (Pop uniqueness) says that a push is observed by at most one pop.
Axiom B3 (Dependences occur in the past) says that if a pop depends on a push, then

the push executes before the pop.
Axioms B4.1 (Non-empty pop), B4.2 (Empty pop), and B4.3 essentially are the counterparts

of the state-based sequential axioms A1-A3, respectively, as we show next.
Axiom B4.1 says that a pop() ⟨v⟩ event o observes a push u that pushed v. This axiom,

along with B1-B3, ensures that o relates to u as in the following diagram.

S v :: S . . . v :: S . . . v :: S S
u ui oj uk ol o=pop()⟨v⟩

⋖

⋖ ⋖

In particular: (i) u executes before o (by axiom B3, because u ⋖ o), (ii) every push between
u and o is popped before o (by axiom B1), and each push is popped exactly once (by axiom
B2). Thus, once o executes, the value v pushed by the observed u, is actually the most recent
unpopped value, i.e., it is on the top of the stack. Subsequent pops cannot observe this value
anymore either (again by axioms B1 and B2), thus the stack is modified from v :: S to S.
This explains that B4.1 is essentially a history-based version of A1.

Similarly, axiom B4.2 states that if a pop() ⟨EMPTY⟩ event o occurs, then every push
before o must have been popped before o, as this ensures that the stack is empty when o is
reached. Hence, the axiom is counterpart to A2.

Finally, axiom B4.3 says that the output of a push event is the trivial value tt. The
axiom imposes no conditions on the stack, as a value can always be pushed. In this, B4.3 is
the counterpart to A3 which also imposes no conditions on the input stack, and posits that
push’s output value is trivial. However, unlike A3, B4.3 does not directly says that the value
is pushed on the top of the stack, as that aspect is captured by the relationships between
pushes and pops described by B4.1.

3.2 Concurrent Specifications and Separability Relations
Concurrent execution histories do not satisfy the sequential axioms in Figure 2b for two
related reasons. First, concurrent events can overlap in real time. As a consequence, the
axioms B1 (LIFO), B3 (Dependencies occur in the past), and B4.2 (Empty pop) are too

4 Our paper will make heavy use of several different relations. To help the reader keep track of them, we
denote the relations by symbols that graphically associate to the relation’s meaning. For example, we
use ⋖ for the visibility relation, because the symbol graphically resembles an eye.
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(C1) Concurrent LIFO
u1 ⋖ o1 ∧ o1 ̸⋉− u2 ̸⋉− u1 =⇒ ∃o2. u2 ⋖ o2 ∧ o2 ⋉ o1

(C2) Pop uniqueness
u ⋖ o1 ∧ u ⋖ o2 =⇒ o1 = o2

(C3) No future dependences
x ≺+ y =⇒ y ̸⊑ x

(C4) Return value completion
∃v. Qx,v ∧ (x ∈ T =⇒ v = x.out)

(a) Concurrent specification. Relations ⋖,⋉ : Ev × Ev are abstract.

Constraint relation
≺ =̂ ⋖ ∪ ⋉

Returns-before relation
e1 ❁ e2 =̂ e1.end <N e2.start

Set of terminated events
T =̂ {e | e.end ̸= ⊥}

Closure of terminated events
T =̂ {e | ∃t ∈ T. e ≺∗ t}

Qo1,v =̂

{
∃u. u ⋖ o1 ∧ v = u.in if v ̸= EMPTY
∀u. o1 ̸⋉− u =⇒ ∃o2. u ⋖ o2 ∧ o2 ⋉ o1 if v = EMPTY

Qu,v =̂ v = tt

(b) Defined notions.

Figure 3 Concurrent history-based specification for stacks. Variables u, o, and their indexed
variations, range over pushes and pops in T , respectively. Variables x, y range over T . Variable e,
and its indexed variations, range over Ev. x.out denotes x’s output.

restrictive, as they force events to be non-overlapping (i.e., disjoint in time) due to the use of
the returns-before relation ❁. Second, events can no longer be treated as atomic; thus event’s
start and end times (if the event terminated) must be taken into account. As a consequence,
axioms B4.1, B4.2, and B4.3 must be modified to account for the output of an unfinished
event not being available yet. We continue using Ev for the set of events in the concurrent
history. We denote by e.start and e.end the start and end time of event e, respectively; for
example, for the implementation in Figure 1, a push event starts when line 5 executes, and
ends when line 9 executes. We use the standard order relation on natural numbers <N to
compare start and end times.

Figure 3 shows the modified axioms that address the above issues. Importantly, in
addition to the visibility relation, the axioms utilize the separability relation x ⋉ y to capture
that “event x is separable before y”, i.e., x should be linearized before y.5 The reason for the
separation depends on the particular stack implementation, but is kept abstract in the axioms.
Correspondingly, the relation ⋉ is also kept abstract. We now explain how the concurrent
axioms in Figure 3 are systematically obtained from the sequential ones in Figure 2b.

Axiom C1 is obtained from B1 by replacing ❁ with ⋉ or with the (negation of the)
reflexive closure ⋉−, following the rules below. The goal is to relax the real-time strong
separation imposed by ❁ with a more permissive separation of ⋉.

If subformula a ❁ b occurs in a condition of an implication (negative occurrence), it is
replaced with b ̸⋉− a. Notice the flip in the arguments and the negation.
If subformula a ❁ b occurs in the conclusion of an implication (positive occurrence), it is
replaced with a ⋉ b.

These rules have the following justification. Let us suppose we have a formula ϕ =̂ a ❁

b =⇒ c ❁ d in some sequential axiom. In the sequential case, ❁ is a total order, which
means that ϕ is equivalent to b ⊑ a ∨ c ❁ d. After directly replacing ❁ for ⋉, we obtain

5 The symbol ⋉ twists ❁, suggesting that ⋉ relaxes (i.e., is a twist on) returns-before relation ❁.
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b ⋉− a ∨ c ⋉ d, which is further equivalent to ψ =̂ b ̸⋉− a =⇒ c ⋉ d. Comparing ϕ and
ψ, we see that ψ’s condition is flipped, replaced, and negated, while its conclusion is only
replaced. An important aspect of our procedure is that negative occurrences of ⋉ in ψ are
themselves negated. Thus, intuitively, ψ as a whole remains positive with respect to ⋉.
Positive formulas remain true under extensions of ⋉, which is crucial, as the linearizability
proof will involve extending ⋉ until reaching a total order.

Axiom C2 is unchanged compared to B2.
Axiom C3 is obtained from B3 as follows. In the sequential specification, ⋖ was the

only relation encoding dependences between events, but now we have two relations encoding
dependences, ⋖ and ⋉. To collect them, we define a new relation ≺ =̂ ⋖ ∪ ⋉ which we call
constraint relation.6 We can consider modifying Axiom B3 into x ≺ y =⇒ x ❁ y to say that
any dependence x of y must terminate before y starts. However, such a modification of B3 is
too stringent, as it does not allow x to overlap with y. Instead, we relax the conclusion to
say that an event cannot depend on itself or events from the future, i.e., x ≺ y =⇒ y ̸⊑ x.
Finally, we get axiom C3 by replacing ≺ with its transitive closure ≺+ to account for indirect
dependences of y; e.g., in x1 ≺ x2 ≺ y, event x1 is an indirect dependence of y. Hence, C3
reads “any direct or indirect dependence does not execute in the future, and events do not
depend on themselves”.

To understand Axiom C4, we need to consider the set T of all terminated events and its
closure under the constraint relation T =̂ {e ∈ Ev | ∃t ∈ T. e ≺∗ t}. As usual, ≺∗ is the
reflexive-transitive closure of ≺. The reason for considering this set is that the variable x
over which the axiom implicitly quantifies ranges over T .

It is standard in linearizability that the linearization order contains all the terminated
events, plus selected unterminated events with fictitious, but suitable, outputs. The selected
unterminated events are typically those that executed their effect, which then influenced
others, and must thus be included for sequential soundness. The set T precisely determines
the events to be included by saturating the set of terminated events T under ≺.

Axiom C4 then codifies when an output v is suitable for an event x by means of the
postcondition predicate Qx,v. In particular, C4 says that v exists such that Qx,v. If x ∈ T

is unterminated, we use that v as the fictitious output. If x is terminated (x ∈ T ), then v

must be x’s actual output. The postcondition predicate Qx,v describes how x and v relate
in the case of stacks. It is obtained by coalescing the axioms B4.1, B4.2 and B4.3, which
themselves describe the outputs of stack events in the sequential setting, and which we first
modify according to the systematic transformation outlined above.

We henceforth call the axioms in Figure 3, visibility-style axioms. These axioms imply
linearizability of any stack implementation satisfying them,

▶ Theorem 3.1. Let D be an arbitrary implementation of a concurrent stack. If there are
relations ⋉ and ⋖ definable using D such that the visibility-style axioms hold, then D is
linearizable.

The proof starts with the relation ◁ =̂ (≺ ∪ ❁)+, i.e, the transitive closure of the union
of ≺ and ❁. Then, it shows that ◁ is a partial order that can be extended to a sequentially
sound total order ≤ by using the visibility-style axioms. Since ≤ contains ≺, this means that
relations ⋖ and ⋉ define ordering constraints that linearization respects.

6 The symbol ≺ is like an eye with no iris; thus, “blinder” than ⋖, reflecting that ≺ is a superset of ⋖.
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4 Visibility and Separability for the TS-stack

By Theorem 3.1, to prove linearizability for the TS-stack, it suffices to define the relations
⋖ and ⋉ and show that they satisfy the axioms from Figure 3. We carry out this proof
in two stages: In Section 4.2 we prove linearizability when the newTimestamp procedure
is implemented by an atomic fetch-and-increment operation on a global counter TS, as
discussed in Section 2. In Section 4.3 we show how the general case of interval timestamps
reduces to the atomic case. The lifting exploits that the difference between the atomic and
interval cases is only in the implementation of newTimestamp.

For simplicity, in both cases we explicitly exclude elimination pairs from the discussion.
An elimination pair consists of a push and an overlapping pop event that takes the value
pushed. The elision allows the discussion to only consider pushes with finite timestamps.
Indeed, every push is first assigned an infinite timestamp (line 6 in Figure 1), which is then
refined into a finite one in line 9. If a push u, having not yet reached line 9, is taken by some
pop o, then u and o overlap, and hence form an elimination pair.7

Also, in both cases, we utilize the abstraction we call spans, to define the visibility and
separability relations. A span of an event is the interval in which the event accesses the
shared state of the stack. We could trivially take the span to be the whole interval of the
event, but in the case of TS-stack we can tighten it as discussed below. In this sense, a
span is a generalization of LPs; being an interval, rather than a single point, it approximates
where the LP of an event lies, but allows for some uncertainty as to the LPs exact position.

The span of the push procedure starts when the new node is linked as the first node of
the pool (line 7), as this is the moment when the new node becomes available for other events
to see. The span ends when a finite timestamp is assigned to the new node (line 9). Notice
how the span encompasses all the commands of push that change the pool or the new node.

The span of the pop procedure starts at the infinity stamp assignment (line 28) of the
last iteration of the pools scan. The span ends at the successful CAS at line 38 which takes
the node for the pop to return. Again, the span covers all the commands of pop that change
the pools or the taken node. These are all included in the last iteration of the pools scan,
because in all the prior iterations, the CAS modifying the pools must have failed.

We formalize spans as pairs of rep events (a, b), where a and b are the initial and final rep
event in the span, respectively. We denote by start (b) and end (b) the standard projection
functions for span b. Rep events are generated by the invocation of a code line inside a
procedure. For example, invoking line 7 in Figure 1 produces a rep event. The set of all rep
events in an execution history is denoted as Rep. The distinction between events (Ev) and
rep events is standard in linearizability [11]. We denote by < the real-time order between
rep events. We consider only fully-formed spans; for example, if pop has not executed its
successful CAS, then it has no span.

We also extend our notion of timestamp into abstract timestamp. An abstract timestamp
is a pair (i, t), where i is the (ghost) id of a node, and t is a (plain) timestamp. The extension
is motivated by the observation explained in Section 2 that two pushes may actually generate

7 Eliding elimination pairs when dealing with stacks is justified because such pairs can be linearized simply
as a push that is immediately followed by a pop. The idea was originated by Hendler et al. [9] and was
also employed in Haas’ PhD dissertation [7], though with a different motivation from us and with a
different soundness proof. For example, to prove the elimination sound, Haas shows how elimination
pairs could be put back into the histories from which they have been removed. In contrast, we define
visibility and separability relations that exclude elimination pairs, and show in Appendix B.1 [5], how
to extend the relations iteratively, one elimination pair at a time. The extension adds some bulk, but
does not change the structure of the proof that we illustrate in this section.
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the same (plain) timestamp. By attaching the node id i to the timestamp t, we differentiate
such cases. We use “timestamp” to refer to abstract timestamps or plain timestamps when
the adjective can be inferred from the context.

We also utilize the following notation.
Given event e, S e is the unique span executed by e. The function is undefined if the
argument event has not completed its span.
Given spans a, b, the relation a ❁S b means that a finished before b started. ⊑S denotes
its reflexive closure.
For a push u, id u is the unique id of the node that u inserted into the pool in line 7.
Similarly, for a pop o, id o is the unique id of the node that o took at the successful CAS
in line 38. If u and o have not executed the mentioned lines, id is undefined.
For a push u, ts u is the abstract timestamp (id u, t), combining id u with the timestamp
t that u assigned at line 9. In particular, t is always finite, because newTimestamp only
generates finite timestamps. Similarly, for a pop o, ts o is the abstract timestamp (id o, t),
combining id o with the timestamp t of the taken node that o read in line 34. Generally,
ts o may return an infinite plain timestamp; however, if elimination pairs are excluded,
then timestamps are finite, as explained before. If an event x has not executed its span,
ts x is undefined.
Abstract timestamps admit the following partial order defined out of <T on plain
timestamps, where we overload the symbol <T without confusion.

(i1, t1) <T (i2, t2) =̂ t1 <T t2

We define when push u and pop o form an elimination pair.

u Elim o =̂ id u = id o ∧ u ̸❁ o

In English: (1) o pops the node that u pushed (id u = id o), and (2) u and o overlap.
Events u and o overlap if u ̸❁ o and o ̸❁ u, but it is not necessary to explicitly check
o ̸❁ u, as that follows from id u = id o and a structural invariant that o cannot pop a
node that has not been pushed yet (Appendix B.1 [5]).
The set of events that occur in elimination pairs is E =̂ {x | ∃y. x Elim y ∨ y Elim x}.
As we explicitly exclude elimination pairs from the presentation, we assume that each
event variable x occurring in the forthcoming definitions is such that x /∈ E. In Section 5
we comment how elimination pairs are placed back into consideration.

4.1 Key Abstractions and Invariants
When pop misses a push. The key for understanding TS-stacks is explaining what it means
for a pop o to have missed a push u. Informally, a miss occurs when o, in its scan of the
pools, takes a push u′ with a smaller timestamp than that of u (hence, u′ is less recent than
u). This is critical, because o taking a less recent push than available is seemingly a violation
of the LIFO order. However, this does not actually have to be so in the case of TS-stacks,
where, for example, it is fine for u to insert into the pool after o has already scanned past
the point of insertion. We can say that u occurred too late to really be available for o to
pop, and we simply linearize u after o. The following definition formalizes when o misses u
(i.e., when u occurs too late for o), focusing on the atomic timestamp case.

Miss o u =̂ ts o <T ts u ∧
∀o′. ts u = ts o

′ =⇒ end (S o) < end (S o′)
(1)
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Figure 4 Possible execution showing three atomic timestamp generation rep events for push
events u1, u2, u3, labeled by their generated timestamps; and two pop spans for pop events o1 and
o3. Spans are shown as line segments and rep events (being atomic) as dots. The timestamps are
strictly increasing ts u1 <T ts u2 <T ts u3. Event o1 took u1, while o3 took u3. The events will be
linearized as u1, o1, u2, u3, o3. In particular, o1 must be linearized before u2.

The first conjunct directly says that for o to miss u, it must be that o takes a node with
a smaller timestamp than that of u. The second conjunct adds that, intuitively, u remains
untaken during the execution of o. Indeed, if u is taken by o′ (ts u = ts o

′), the definition
requires that the span of o′ finishes after the span of o (end (S o) < end (S o′)). That is, the
CAS that sets the taken flag in the node of u executes after the span of o. In other words, if
u is taken at all, then it is taken after the span of o.

Figure 4 shows a push u2 that overlaps with a pop o1, but o1 takes a push u1 whose
timestamp is smaller than that of u2. In our definition, Miss o1 u2 holds because u2 remains
untaken on the stack after o1 terminates. Miss o1 u2 indicates that we must linearize o1
before u2. And indeed, this is consistent with the situation in the figure, as any order where
u2 appears before o1 violates some linearizability requirement. For example, the order u1,
u2, o1 is sequentially unsound because o1 pops u1 while u2 is the top of the stack, while u2,
u1, o1 does not respect the ordering of the timestamps of u1 and u2.8

Continuing with Figure 4, o1 does not miss u3, even though u3 also overlaps with o1,
and o1 takes u1 whose timestamp is smaller than that of u3. In our definition, ¬Miss o1 u3
because the span of o3 ends before the span of o1. ¬Miss o1 u3 indicates no restrictions on
the ordering between o1 and u3. For example, the only linearization order of Figure 4 is u1,
o1, u2, u3, o3, but this is forced by the existence of u2. Removing u2, the orders u1, u3, o3,
o1 (where u3 appears before o1) and u1, o1, u3, o3 (where u3 appears after o1) are both valid.

Misses start late. Having defined Miss o u, we can now explain the most important
invariants of the TS-stack, again focused on the atomic timestamps. The first invariant says
that a push u missed by a pop o has a span that starts after the pop’s span starts. In other
words, a missed push starts after the pop that missed it.

Miss o u =⇒ start (S o) < start (S u) (2)

To intuit why (2) is an invariant, consider a situation when o misses u but u’s span starts
before o’s. In that case, u’s pool contains u’s node before o even starts its scan. Thus o’s
scan will encounter u and proceed to either take u, or take an even more recent push. At
any rate, o will not take a push with a timestamp below that of u; thus, ¬(Miss o u).

8 We linearize pushes by the order of their timestamps.
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Disjoint pushes order timestamps. The next invariant is that pushes with disjoint spans,
produce ordered timestamps. Intuitively, this is so because disjoint push spans make disjoint
calls to newTimestamp, which in turn generate ordered timestamps as explained in Section 2.

S u1 ❁S S u2 =⇒ ts u1 <T ts u2 (3)

4.2 Case: Atomic Timestamps

We next define the visibility ⋖ and separability ⋉ relations for atomic timestamps.

u ⋖ o =̂ ts u = ts o (4)
u1 ⋉ u2 =̂ ts u1 <T ts u2 (5)
o ⋉ u =̂ ∃u′. Miss o u′ ∧ ts u

′ ≤T ts u (6)
o2 ⋉ o1 =̂ ts o1 <T ts o2 ∧ ¬∃u′. Miss o1 u

′ ∧ ts u
′ ≤T ts o2 (7)

The definition of ⋖ relates u and o if they have the same timestamp (i.e., o took u).
The definition of ⋉ comes with three clauses, motivated by the form of the axioms from

Figure 3. In particular, we need to separate a push from a push (u1 ⋉ u2), a pop from a
push (o ⋉ u), and a pop from a pop (o2 ⋉ o1), but not a push from a pop, as only the first
three clauses of ⋉ appear in the axioms.

The clause u1 ⋉ u2 naturally orders push events according to their timestamps.
The clause o ⋉ u extends Miss o u′ to account for pushes being ordered by their

timestamps, as per the previous clause. It says that pop o is separated before push u, if
there is a push u′ that was missed by o, and the timestamp of u′ is below (or equals) that of
u. For example, in Figure 4 we have o1 ⋉ u2 and o1 ⋉ u3.

The clause o2 ⋉ o1 separates pops inversely to the order of the taken timestamps, or
equivalently, inversely to the order of the taken pushes, but under the condition that o1
did not miss any push with a timestamp below o2. The last requirement is important. For
example, if we ignored it in Figure 4, we would obtain o3 ⋉ o1 since ts u1 <T ts u3. But this
order is sequentially unsound; the pushes being ordered as u1, u2, u3, after o3 takes u3, the
value pushed by u2 is at the top of the stack. But then o1 cannot execute next, as we need
an intervening pop to remove u2.

It is worth mentioning that we arrived at the definition of the clause o2 ⋉ o1 by formal
symbol manipulation aimed at fulfilling axiom C1 (Concurrent LIFO) after the definitions of
the other clauses have been unfolded in C1. In hindsight, this may have been expected, as
the clauses u1 ⋉ u2 and o ⋉ u are hypotheses of C1, while o2 ⋉ o1 is in the conclusion.

The engineering of the (uniquely determined) definition of the clause o2 ⋉ o1 thus makes
the proof of axiom C1 out of definitions (4)-(7) quite straightforward, but for one important
observation. Because the axiom contains negations of several clauses of ⋉, unfolding the
definitions of these clauses reveals comparisons of the form ts x ̸<T ts y, where the relation
<T appears negated. The proof then crucially relies on <T being total, so that we can flip
the negated comparisons into the form ts y ≤T ts x. It is the requirement of totality of
<T that makes the described development specific to atomic timestamps. In Section 4.3, we
shall see how to adapt to interval timestamps where <T is not total.

▶ Theorem 4.1. Given ⋖ and ⋉ as in (4)–(7), the TS-stack with atomic timestamps
satisfies the invariants in Section 4.1 and the axioms in Figure 3, and is thus linearizable by
Theorem 3.1.
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The characteristic part of the proof is showing that the axiom C3 (no future dependences)
holds, which is where we rely on the invariants (2) and (3). This proof generates obligations,
one of which is that o⋉ u ❁ o for some push u and pop o is impossible, as such u depends
on o which is in u’s future. The proof proceeds by contradiction: suppose o ⋉ u ❁ o. By
definition of o⋉ u, there exists a push u′ missed by o such that ts u′ ≤T ts u. By invariant
(2), u′ starts after o starts, and since u ❁ o, it must also be u ❁ u′. But then, by invariant
(3), it is also ts u <T ts u

′. In other words, ts u <T ts u
′ ≤T ts u, a contradiction.

4.3 Case: Interval Timestamps
The proof from Section 4.2 does not directly apply to the interval timestamps because
proving axiom C1 (Concurrent LIFO) relies on the totality of <T in order to flip the negated
inequalities ts x ̸<T ts y into positive facts ts y ≤T ts x. The relation <T is total in the
atomic case, but not in the interval case.

The key observation that allows us to recover the argument is that whenever <T is used
to compare the timestamps of two push events in the proofs of the atomic case, at least one
of the push events is invariably popped. In other words, the proof does not actually require
totality, but only the following weaker property of pop-totality. Formally, if R is a partial
order on abstract timestamps, then R is pop-total if:

∀u1 u2 o. (ts u1 = ts o) ∨ (ts u2 = ts o) =⇒
(ts u1) R (ts u2) ∨ (ts u2) R (ts u1) ∨ (ts u1 = ts u2)

(8)

In English: if at least one of the pushes is taken, then the timestamps generated by the
pushes are totally comparable under R.

As an illustration why the weaker property suffices, consider the hypotheses of the axiom
C1: these are u1 ⋖ o1, o1 ̸⋉− u2 and u2 ̸⋉− u1. Let us further assume that <T in all the
definitions is replaced by an arbitrary pop-total R. A common pattern throughout the proof
of Theorem 4.1 is that three conjuncts of the above form appear together. Such combination
entails that u1 and u2 are both popped, thus allowing us to flip any negated relation R in
which ts u1 or ts u2 may appear.

Indeed, that u1 is popped, and by o1, follows from u1 ⋖ o1, which is defined as ts o1 = ts u1.
To see that u2 must also be popped consider the following. First, note that o1 ̸⋉− u2 implies
¬Miss o1 u2, by an easy derivation. Pushing the negation inside the definition of Miss and
substituting ts o1 = ts u1 derives ¬(ts u1) R (ts u2) ∨ ∃o′. ts u2 = ts o

′ ∧ . . .. The second
disjunct directly says that u2 is popped by some o′. By pop-totality of R, the first disjunct
implies (ts u2) R (ts u1)∨(ts u2) = (ts u1), and thus ts u2 = ts u1, because ¬(ts u2) R (ts u1)
by u2 ̸⋉− u1. Thus, u1 and u2 are the same push, and u2 is popped as well.

It follows that we could replicate the atomic case proof to the interval case, if we could
replace <T with some pop-total relation over interval timestamps throughout the definitions
and proofs in Sections 4.1 and 4.2. We next define such a relation ≪ that includes <T.

t2 ≪ t1 =̂ t2 <T t1 ∨ ∃u1, u2. ts u1 ̸<T ts u2 ∧ Tb u1 u2 ∧
t2 ≤T ts u2 ∧ ts u1 ≤T t1

Tb u1 u2 =̂ ∃o1. ts u1 = ts o1 ∧ ∀o2. ts u2 = ts o2 =⇒ end (S o1) < end (S o2)

The key insight of the definition is that if two pushes u1 and u2 are not already ordered
by <T, i.e., ts u1 ̸<T ts u2, we could order their timestamps in ≪ in the order in which the
pushes are popped. Indeed, if u1 is taken before u2 (Tb u1 u2), then LIFO warrants that u2

CONCUR 2023



30:14 Visibility and Separability for a Declarative Proof of the Timestamped Stack

is linearized before u1. We thus order u2’s timestamp before u1’s timestamp in ≪. It follows
that u2 ⋉ u1 (assuming ≪ substitutes <T in the definition of u2 ⋉ u1), and consequently
that u2 is linearized before u1. The definition of ≪ further saturates the relation to include
any t2 ≪ t1 where t2 ≤T ts u2 and ts u1 ≤T t1, as then t2 ≪ t1 is forced by ts u2 ≪ ts u1.

Returning to taken-before, we define Tb u1 u2 to hold of two pops u1 and u2 if: (1) u1 is
taken and u2 is not, or (2) both are taken by pops o1 and o2, respectively. In the case (2) we
require that the span of o1 ends before the span of o2, i.e., o1 took its push before o2 did.

One can now proceed to prove that ≪ is a strict partial order that is pop-total, that
the invariants “Misses start late” and “Disjoint pushes order timestamps” from Section 4.1,
continue to hold for the TS-stack with interval timestamps, after substituting <T := ≪
in the definition of Miss (1), and definitions (2), (3) of the invariants. The visibility and
separability relations for the TS-stack with interval timestamps are exactly as in (4)-(7)
but with substitution <T := ≪, and our final theorem about the correctness of TS-stack is
obtained simply by retracing the proof of Theorem 4.1.

▶ Theorem 4.2. Let ⋖ and ⋉ defined as in (4)–(7) but under the substitution <T := ≪.
The TS-stack with interval timestamps satisfies the invariants in Section 4.1 under the
substitution, and the axioms in Figure 3, and is thus linearizable by Theorem 3.1.

5 Discussion, Related and Future Work

Dealing with elimination pairs. To handle elimination pairs that were excluded in Section 4,
we recursively define indexed families of visibility and separability relations, where ⋖i and
⋉i means that the first i elimination pairs have been added (Appendix B.1 [5]). At level 0,
⋖0 and ⋉0 are the relations from Section 4. At some limit level n, where n is the number of
elimination pairs, we have the final relations ⋖n and ⋉n that consider all the events.

The theorems in Section 4 show that the visibility-style axioms in Figure 3 hold for
events in T \ E, i.e., T without elimination pairs. They are the base case of our proof in
Appendix B.1 [5], which proceeds to inductively show that if the visibility-style axioms hold
for the first i pairs, they continue to hold when the pair i+ 1 is added.

Differences with the original algorithm. Figure 1 is a simplified version of the algorithm
from Appendix B.2 [5]. The latter further treats elimination pair detection and node
unlinking (i.e., node deallocation from memory). We consider the simplified version solely
for presentation reasons, as the simplification still presents the same verification challenges
and suffices to motivate the visibility and separability relations in Section 4. The definitions
of these relations transfer to Appendix B.1 [5], where they serve as a basis for defining a
family of augmented relations that deal with elimination pairs, as described above.

Having said this, the program that we treat in Appendix B.2 [5] still differs in a relatively
minor way from the original program of Dodds et al. [3] in that we elide empty stack detection
(i.e. pops returning EMPTY). This can be treated separately as an extra independent step
in the proof [7], which means that considering empty pops changes neither the analysis we
already presented in Section 4 nor the proof for elimination pairs in Appendix B.1.3 [5].
Nevertheless, we plan to augment the proof with an extra step that considers empty pops.

Related proofs. Dodds et al. [3] proof is also based on a visibility relation (their val),
in addition to several other relations. However, our two axiomatizations and proofs differ
significantly. Our axiomatization arises from a systematic transformation of a state-based
sequential specification of stacks into a history-based concurrent specification, while that
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of Dodds et al. does not seem to derive from such prior principles, though it does suffice
for the linearizability proof. The different axiomatizations give rise to different relations
on histories as well. For example, their insert-remove (ir) relation is defined in terms of
LPs of submodules. The objective in using LPs of submodules is to start with a definition
for that may have linearizability violations, which then gets adjusted along the proof to
remove such violations. In contrast, the definitions of our relations in Section 4 require no
adjustments since they already lead to a correct linearization, albeit by eliding LPs. As a
result, our relations are quite a bit more direct, and support better proof decomposition. In
particular, our proof transfers from the easier atomic timestamp case to the more difficult
interval timestamp case, whereas Dodds et al. immediately consider the interval case.

Bouajjani et al. [1] employs forward simulation on the atomic timestamp variant of the TS-
stack, but do not attempt the interval timestamp variant. Our proof (Appendix B.2.2 [5]) does
not employ simulations, and also lifts the atomic timestamp case to the interval timestamp
case. The lifting exploits that the difference between the atomic and interval timestamp
cases is not in the program structure, but only in the implementation of newTimestamp.

Visibility relations in other contexts. Our approach uses visibility and separability relations
to model ordering dependencies between events. A general survey of the use of visibility
relations in concurrency and distributed systems is given by Viotti and Vukolić [17]. Visibility
relations and declarative proofs have also been utilized to specify consistency criteria weaker
than linearizability (Emmi and Enea [6]), to introduce a specification framework for weak
memory models (Raad et al. [15]), and to specify the RC11 memory model (Lahav et al. [13]).

In contrast to the above papers that focus on the semantics of consistency criteria, our
use of visibility relations focuses on verifying specific algorithms and data structures, and is
thus closer to the following work where visibility relations are applied to concurrent queues
(Henzinger et al. [10, 2]), concurrent stacks (Dodds et al. [3] and Haas [7]), and memory
snapshot algorithms (Öhman and Nanevski [14]). We differ from these in the addressed
structures, or in the case of Dodds et al. in the structure of the proof and its components.

Our key innovation compared to these works is the introduction of the separability relation
and its utilization to systematically axiomatize the stack structure in a novel way.

Visibility and separability as a general methodology. The pattern suggested by Sections 3.1
and 3.2, whereby one transforms a history-based sequential specification into a concurrent
specification, by replacing the returns-before relation ❁ with a separability relation ⋉, points
towards a general methodology for axiomatizing concurrent structures.

To test the generality of the approach, we have applied it – successfully ([4] and Ap-
pendix C.1 [5]) – to the RDCSS and MCAS algorithms of Harris et al. [8]. These algorithms
write descriptors (a record with information about the task that a thread requires help
with) into pointers, so that a thread that reads a descriptor can provide help by executing
the described task. These algorithms implicitly “bunch” their help requests into related
groups, and the separability relation models gaps between such bunches. On the other
hand, the visibility relation models a writer-reader dependency, similarly to the push-pop
dependency in this paper. We have also applied the approach to queues, where it derived
a mildly streamlined variant of the queue axioms of Henzinger et al. [10, 2], and to locks,
including readers-writers locks. In the future, we plan to study if this pattern applies to
other concurrent data structures (e.g., memory snapshots, trees, lists, sets, etc.).
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Abstract
Parikh automata extend finite automata by counters that can be tested for membership in a
semilinear set, but only at the end of a run. Thereby, they preserve many of the desirable properties
of finite automata. Deterministic Parikh automata are strictly weaker than nondeterministic ones,
but enjoy better closure and algorithmic properties.

This state of affairs motivates the study of intermediate forms of nondeterminism. Here, we
investigate history-deterministic Parikh automata, i.e., automata whose nondeterminism can be
resolved on the fly. This restricted form of nondeterminism is well-suited for applications which
classically call for determinism, e.g., solving games and composition.

We show that history-deterministic Parikh automata are strictly more expressive than determ-
inistic ones, incomparable to unambiguous ones, and enjoy almost all of the closure properties of
deterministic automata.
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1 Introduction

Some of the most profound (and challenging) questions of theoretical computer science are
concerned with the different properties of deterministic and nondeterministic computation,
the P vs. NP problem being arguably the most important and surely the most well-known
one. However, even in the more modest setting of automata theory, there is a tradeoff
between deterministic and nondeterministic automata with far-reaching consequences for,
e.g., the automated verification of finite-state systems. In the automata-based approach
to model checking, for example, one captures a finite-state system S and a specification φ

by automata AS and Aφ and then checks whether L(AS) ⊆ L(Aφ) holds, i.e., whether
every execution of S satisfies the specification φ. To do so, one tests L(AS) ∩ L(Aφ) for
emptiness. Hence, one is interested in expressive automata models that have good closure
and algorithmic properties. Nondeterminism yields conciseness (think DFA’s vs. NFA’s) or
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even more expressiveness (think pushdown automata) while deterministic automata often
have better algorithmic properties and better closure properties (again, think, e.g., pushdown
automata).

Limited forms of nondeterminism constitute an appealing middle ground as they often
combine the best of both worlds, e.g., increased expressiveness in comparison to determin-
istic automata and better algorithmic and closure properties than nondeterministic ones.
A classical, and well-studied, example are unambiguous automata, i.e., nondeterministic
automata that have at most one accepting run for every input. For example, unambiguous
finite automata can be exponentially smaller than deterministic ones while unambiguous
pushdown automata are more expressive than deterministic ones [25].

Another restricted class of nondeterministic automata is that of residual automata [12],
automata where every state accepts a residual language of the automaton’s language. For
every regular language there exists a residual automaton. While there exist residual automata
that can be exponentially smaller than DFA, there also exist languages for which NFA can
be exponentially smaller than residual automata [12].

More recently, another notion of limited nondeterminism has received considerable
attention: history-deterministic automata [9, 24]1 are nondeterministic automata whose
nondeterminism can be resolved based on the run constructed thus far, but independently of
the remainder of the input. This property makes history-deterministic automata suitable
for the composition with games, trees, and other automata, applications which classically
require deterministic automata. History-determinism has been studied in the context of
regular [1, 24, 28], pushdown [22, 29], quantitative [3, 9], and timed automata [23]. For
automata that can be determinized, history-determinism offers the potential for succinctness
(e.g., co-Büchi automata [28]) while for automata that cannot be determinized, it even
offers the potential for increased expressiveness (e.g., pushdown automata [22, 29]). In the
quantitative setting, the exact power of history-determinism depends largely on the type
of quantitative automata under consideration. So far, it has been studied for quantitative
automata in which runs accumulate weights into a value using a value function such as
Sum, LimInf, Average, and that assign to a word the supremum among the values of its
runs. For these automata, history-determinism turns out to have interesting applications
for quantitative synthesis [2]. Here, we continue this line of work by investigating history-
deterministic Parikh automata, a mildly quantitative form of automata.

Parikh automata, introduced by Klaedtke and Rueß [27], consist of finite automata,
augmented with counters that can only be incremented. A Parikh automaton only accepts a
word if the final counter-configuration is within a semilinear set specified in the automaton.
As the counters do not interfere with the control flow of the automaton, that is, counter values
do not affect whether transitions are enabled, they allow for mildly quantitative computations
without the full power of vector addition systems or other more powerful models.

For example the language of words over the alphabet {0, 1} having a prefix with strictly
more 1’s than 0’s is accepted by a Parikh automaton that starts by counting the number of
0’s and 1’s and after some prefix nondeterministically stops counting during the processing
of the input. It accepts if the counter counting the 1’s is, at the end of the run, indeed
larger than the counter counting the 0’s. Note that the nondeterministic choice can be
made based on the word processed so far, i.e., as soon as a prefix with more 1’s than 0’s
is encountered, the counting is stopped. Hence, the automaton described above is in fact
history-deterministic.

1 There is a closely related notion, good-for-gameness, which is often, but not always equivalent [2]
(despite frequently being used interchangeably in the past).
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Klaedtke and Rueß [27] showed Parikh automata to be expressively equivalent to a
quantitative version of existential weak MSO that allows for reasoning about set cardinalities.
Their expressiveness also coincides with that of reversal-bounded counter machines [27],
in which counters can go from decrementing to incrementing only a bounded number of
times, but in which counters affect control flow [26]. The weakly unambiguous restriction
of Parikh automata, that is, those that have at most one accepting run, on the other hand,
coincide with unambiguous reversal-bounded counter machines [4]. Parikh automata are also
expressively equivalent to weighted finite automata over the groups (Zk, +, 0) [11, 31] for
k ⩾ 1. This shows that Parikh automata accept a natural class of quantitative specifications.

Despite their expressiveness, Parikh automata retain some decidability: nonemptiness, in
particular, is NP-complete [14]. For weakly unambiguous Parikh automata, inclusion [7] and
regular separability [8] are decidable as well. Figueira and Libkin [14] also argued that this
model is well-suited for querying graph databases, while mitigating some of the complexity
issues related with more expressive query languages. Further, they have been used in the
model checking of transducer properties [16].

As Parikh automata have been established as a robust and useful model, many variants
thereof exist: pushdown (visibly [10] and otherwise [32]), two-way with [10] and without
stack [15], unambiguous [6], and weakly unambiguous [4] Parikh automata, to name a few.

Our contribution. We introduce history-deterministic Parikh automata (HDPA) and study
their expressiveness, their closure properties, and their algorithmic properties.

Our main result shows that history-deterministic Parikh automata are more expressive
than deterministic ones (DPA), but less expressive than nondeterministic ones (PA). Further-
more, we show that they are of incomparable expressiveness to both classes of unambiguous
Parikh automata found in the literature, but equivalent to history-deterministic reversal-
bounded counter machines, another class of history-deterministic automata that is studied
here for the first time. These results show that history-deterministic Parikh automata indeed
constitute a novel class of languages capturing quantitative features.

Secondly, we show that history-deterministic Parikh automata satisfy almost the same
closure properties as deterministic ones, the only difference being non-closure under comple-
mentation. This result has to be contrasted with unambiguous Parikh automata being closed
under complement [6]. Thus, history-determinism is a too strong form of nondeterminism to
preserve closure under complementation, a phenomenon that has already been observed in
the case of pushdown automata [22, 29].

Finally, we study the algorithmic properties of history-deterministic Parikh automata.
Most importantly, safety model checking for HDPA is decidable, as it is for PA. The problem
asks, given a system and a set of bad prefixes specified by an automaton, whether the system
has an execution that has a bad prefix. This allows, for example, to check properties of an
arbiter of some shared resource like “the accumulated waiting time between requests and
responses of client 1 is always at most twice the accumulated waiting time for client 2 and
vice versa”. Note that this property is not ω-regular.

Non-emptiness and finiteness are also both decidable for HDPA (as they are for non-
deterministic automata), but universality, inclusion, equivalence, and regularity are not.
This is in stark contrast to unambiguous Parikh automata (and therefore also deterministic
ones), for which all of these problems are decidable. Finally, we show that it is undecid-
able whether a Parikh automaton is history-deterministic and whether it is equivalent to a
history-deterministic one.
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Note that we consider only automata over finite words here, but many of our results
can straightforwardly be transferred to Parikh automata over infinite words, introduced
independently by Guha et al. [21] and Grobler et al. [18, 19].

All proofs omitted due to space restrictions can be found in [13].

2 Definitions

An alphabet is a finite nonempty set Σ of letters. As usual, ε denotes the empty word, Σ∗

denotes the set of finite words over Σ, Σ+ denotes the set of finite nonempty words over Σ,
and Σω denotes the set of infinite words over Σ. The length of a finite word w is denoted by
|w| and, for notational convenience, we define |w| = ∞ for all infinite words w. Finally, |w|a
denotes the number of occurrences of the letter a in a finite word w.

Semilinear Sets. We denote the set of nonnegative integers by N. Given vectors v⃗ =
(v0, . . . , vd−1) ∈ Nd and v⃗ ′ = (v′

0, . . . , v′
d′−1) ∈ Nd′ , we define their concatenation v⃗ · v⃗ ′ =

(v0, . . . , vd−1, v′
0, . . . , v′

d′−1) ∈ Nd+d′ . We lift the concatenation of vectors to sets D ⊆ Nd and
D′ ⊆ Nd′via D · D′ = {v⃗ · v⃗ ′ | v⃗ ∈ D and v⃗ ′ ∈ D′}.

Let d ⩾ 1. A set C ⊆ Nd is linear if there are vectors v⃗0, . . . , v⃗k ∈ Nd such that

C =
{

v⃗0 +
∑k

i=1
civ⃗i

∣∣∣∣ ci ∈ N for i = 1, . . . , k

}
.

Furthermore, a subset of Nd is semilinear if it is a finite union of linear sets.

▶ Example 1. The sets {(n, n) | n ∈ N} = {(0, 0) + c(1, 1) | c ∈ N} and {(n, 2n) |
n ∈ N} = {(0, 0) + c(1, 2) | c ∈ N} are linear, so their union is semilinear. Further, the
set {(n, n′) | n < n′} = {(0, 1) + c1(1, 1) + c2(0, 1) | c1, c2 ∈ N} is linear and thus also
semilinear.

▶ Proposition 2 ([17]). If C, C ′ ⊆ Nd are semilinear, then so are C ∪ C ′, C ∩ C ′, Nd \ C,
as well as Nd′ · C and C · Nd′ for every d′ ⩾ 1.

Finite Automata. A (nondeterministic) finite automaton (NFA) A = (Q, Σ, qI , ∆, F ) over
Σ consists of the finite set Q of states containing the initial state qI , the alphabet Σ, the
transition relation ∆ ⊆ Q × Σ × Q, and the set F ⊆ Q of accepting states. The NFA is
deterministic (i.e., a DFA) if for every state q ∈ Q and every letter a ∈ Σ, there is at most
one q′ ∈ Q such that (q, a, q′) is a transition of A.

A run of A is a (possibly empty) sequence (q0, a0, q1)(q1, a1, q2) · · · (qn−1, an−1, qn) of
transitions with q0 = qI . It processes the word a0a1 · · · an−1 ∈ Σ∗. The run is accepting if
it is either empty and the initial state is accepting or if it is nonempty and qn is accepting.
The language L(A) of A contains all finite words w ∈ Σ∗ such that A has an accepting run
processing w.

Parikh Automata. Let Σ be an alphabet, d ⩾ 1, and D a finite subset of Nd. Further-
more, let w = (a0, v⃗0) · · · (an−1, v⃗n−1) be a word over Σ × D. The Σ-projection of w is
pΣ(w) = a0 · · · an−1 ∈ Σ∗ and its extended Parikh image is Φe(w) =

∑n−1
j=0 v⃗j ∈ Nd with the

convention Φe(ε) = 0⃗, where 0⃗ is the d-dimensional zero vector.
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a, (1, 0)
b, (0, 1)

b, (0, 1)

Figure 1 The automaton for Example 3.

A Parikh automaton (PA) is a pair (A, C) such that A is an NFA over Σ × D for some
input alphabet Σ and some finite D ⊆ Nd for some d ⩾ 1, and C ⊆ Nd is semilinear. The
language of (A, C) consists of the Σ-projections of words w ∈ L(A) whose extended Parikh
image is in C, i.e.,

L(A, C) = {pΣ(w) | w ∈ L(A) with Φe(w) ∈ C}.

The Parikh automaton (A, C) is deterministic if for every state q of A and every a ∈ Σ, there
is at most one pair (q′, v⃗) ∈ Q × D such that (q, (a, v⃗), q′) is a transition of A. Note that this
definition does not coincide with A being a DFA: As mentioned above, A accepts words over
Σ × D while (A, C) accepts words over Σ. Therefore, determinism is defined with respect to
Σ only.

Note that the above definition of L(A, C) coincides with the following alternative definition
via accepting runs: A run ρ of (A, C) is a run

ρ = (q0, (a0, v⃗0), q1)(q1, (a1, v⃗1), q2) · · · (qn−1, (an−1, v⃗n−1), qn)

of A. We say that ρ processes the word a0a1 · · · an−1 ∈ Σ∗, i.e., the v⃗j are ignored, and that
ρ’s extended Parikh image is

∑n−1
j=0 v⃗j . The run is accepting if it is either empty and both

the initial state of A is accepting and the zero vector (the extended Parikh image of the
empty run) is in C, or if it is nonempty, qn is accepting, and ρ’s extended Parikh image is in
C. Finally, (A, C) accepts w ∈ Σ∗ if it has an accepting run processing w.

▶ Example 3. Consider the deterministic PA (A, C) with A in Figure 1 and C = {(n, n) |
n ∈ N}∪{(n, 2n) | n ∈ N} (cf. Example 1). It accepts the language {anbn | n ∈ N}∪{anb2n |
n ∈ N}.

3 History-deterministic Parikh Automata

In this section, we introduce history-deterministic Parikh automata and give examples.
Let (A, C) be a PA with A = (Q, Σ × D, qI , ∆, F ). For a function r : Σ+ → ∆ we define

its iteration r∗ : Σ∗ → ∆∗ via r∗(ε) = ε and r∗(a0 · · · an) = r∗(a0 · · · an−1) · r(a0 · · · an). We
say that r is a resolver for (A, C) if, for every w ∈ L(A, C), r∗(w) is an accepting run of
(A, C) processing w. Further, we say that (A, C) is history-deterministic (i.e., an HDPA) if
it has a resolver.

▶ Example 4. Fix Σ = {0, 1} and say that a word w ∈ Σ∗ is non-Dyck if |w|0 < |w|1. We
consider the language N ⊆ Σ+ of words that have a non-Dyck prefix. It is accepted by
the PA (A, C) where A is depicted in Figure 2 and C = {(n, n′) | n < n′} (cf. Example 1).
Intuitively, in the initial state qc, the automaton counts the number of 0’s and 1’s occurring
in some prefix, nondeterministically decides to stop counting by moving to qn (this is the
only nondeterminism in A), and accepts if there are more 1’s than 0’s in the prefix.
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The nondeterministic choice can be made only based on the prefix processed so far, i.e.,
as soon as the first non-Dyck prefix is encountered, the resolver proceeds to state qn, thereby
ending the prefix. Formally, the function

wb 7→


(qc, (b, (1 − b, b)), qc) if wb has no non-Dyck prefix,
(qc, (b, (1 − b, b)), qn) if wb is non-Dyck, but w has no non-Dyck prefix,
(qn, (b, (0, 0)), qn) if w has a non-Dyck prefix,

is a resolver for (A, C).

▶ Remark 5. As a resolver resolves nondeterminism and a DPA has no nondeterminism to
resolve, every DPA is history-deterministic.

4 Expressiveness

In this section, we study the expressiveness of HDPA by comparing them to related automata
models, e.g., deterministic and nondeterministic Parikh automata, unambiguous Parikh
automata (capturing another restricted notion of nondeterminism), and reversal-bounded
counter machines (which are known to be related to Parikh automata). Overall, we obtain
the relations shown in Figure 3, where the additional classes of languages and the separating
languages will be introduced throughout this section.

We begin by stating and proving a pumping lemma for HDPA. The basic property used
here, just as for the pumping lemmata for PA and DPA [5], is that shuffling around cycles of
a run does not change whether it is accepting or not, as acceptance only depends on the last
state of the run being accepting and the vectors (and their multiplicity) that appear on the
run, but not the order of their appearance.

▶ Lemma 6. Let (A, C) be an HDPA with L(A, C) ⊆ Σ∗. Then, there exist p, ℓ ∈ N such
that every w ∈ Σ∗ with |w| > ℓ can be written as w = uvxvz such that

0 < |v| ⩽ p, |x| > p, and |uvxv| ⩽ ℓ, and
for all z′ ∈ Σ∗: if uvxvz′ ∈ L(A, C), then also uv2xz′ ∈ L(A, C) and uxv2z′ ∈ L(A, C).

Proof. Fix some resolver r for (A, C). Note that the definition of a resolver only requires
r∗(w) to be a run processing w for those w ∈ L(A, C). Here, we assume without loss
of generality that r∗(w) is a run processing w for each w ∈ Σ∗. This can be achieved
by completing A (by adding a nonaccepting sink state and transitions to the sink where
necessary) and redefining r where necessary (which is only the case for inputs that cannot
be extended to a word in L(A, C)).

A cycle is a nonempty finite run infix

(q0, a0, q1)(q1, a1, q2) · · · (qn−1, an−1, qn)(qn, an, q0)

starting and ending in the same state and such that the qj are pairwise different. Now, let p

be the number of states of A and let m be the number of cycles of A. Note that every run
infix containing at least p transitions contains a cycle.

qc qn
0, (1, 0)
1, (0, 1)

0, (1, 0)
1, (0, 1) 0, (0, 0)

1, (0, 0)

Figure 2 The automaton for Example 4.



E. Erlich, S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 31:7

PA/RBCM/HDRBCM

WUPA
UCA

DPA

HDPA/1-HDRBCM

E N ′ ∪ E

E′

N ′

T

T ∪ E

Figure 3 The classes of languages accepted by different models of Parikh automata.

We define ℓ = (p + 1)(2m + 1), consider a word w ∈ Σ∗ with |w| > ℓ, and let ρ = r∗(w)
be the run of A induced by r which processes w. We split ρ into ρ0ρ1 · · · ρ2mρ′ such that
each ρj contains p + 1 transitions. Then, each ρj contains a cycle and there are j0, j1 with
j1 > j0 + 1 such that ρj0 and ρj1 contain the same cycle. Now, let

ρv be the cycle in ρj0 and ρj1 ,
ρu be the prefix of ρ before the first occurrence of ρv in ρj0 , and
ρx be the infix of ρ between the first occurrences of ρv in ρj0 and ρj1 .

Furthermore, let u, v, x ∈ Σ∗ be the inputs processed by ρu, ρv, and ρx respectively. Then,
we indeed have 0 < |v| ⩽ p (as we consider simple cycles), |x| > p (as j1 > j0 + 1), and
|uvxv| ⩽ ℓ.

Note that ρuρvρxρv, ρuρ2
vρx, and ρuρxρ2

v are all runs of A which process uvxv, uv2x,
and uxv2 respectively. Furthermore, all three runs end in the same state and their extended
Parikh images are equal, as we only shuffled pieces around.

Now, consider some z′ such that uvxvz′ ∈ L(A, C). Then r∗(uvxvz′) is an accepting
run, and of the form ρuρvρxρvρz′ for some ρz′ processing z′. Now, ρuρ2

vρxρz′ , and ρuρxρ2
vρz′

are accepting runs of (A, C) (although not necessarily induced by r) processing uv2xz′ and
uxv2z′, respectively. Thus, uv2xz′ ∈ L(A, C) and uxv2z′ ∈ L(A, C). ◀

It is instructive to compare our pumping lemma for HDPA to those for PA and DPA [5]:
The pumping lemma for PA states that every long word accepted by a PA can be
decomposed into uvxvz as above such that both uv2xz and uxv2z are accepted as well.
This statement is weaker than ours, as it only applies to the two words obtained by
moving a v while our pumping lemma applies to any suffix z′. This is possible, as the
runs of an HDPA on words of the form uvxvz′ (for fixed uvxv), induced by a resolver,
all coincide on their prefixes processing uvxv. This is not necessarily the case in PA.
The pumping lemma for DPA states that every long word (not necessarily accepted
by the automaton) can be decomposed into uvxvz as above such that uvxv, uv2x, and
uxv2 are all equivalent with respect to the Myhill-Nerode equivalence. This statement is
stronger than ours, as Myhill-Nerode equivalence is concerned both with the language of
the automaton and its complement. But similarly to our pumping lemma, the one for
DPA applies to all possible suffixes z′.

Now, we apply the pumping lemma to compare the expressiveness of HDPA, DPA, and
PA.

▶ Theorem 7. HDPA are more expressive than DPA, but less expressive than PA.
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Proof. First, we consider the separation between DPA and HDPA. The language N from
Example 4, which is accepted by an HDPA, is known to be not accepted by any DPA: DPA
are closed under complementation [27] while the complement of N is not even accepted by
any PA [6].

To show that PA are more expressive than HDPA, consider the language E = {a, b}∗ ·
{anbn | n > 0}, which can easily be seen to be accepted by a PA. We show that E is not
accepted by any HDPA2 via an application of the pumping lemma.

To this end, assume there is some HDPA (A, C) accepting E, and let p, ℓ as in the
pumping lemma. We pick w = (ap+1bp+1)ℓ, which we decompose as uvxvz with the
properties guaranteed by the pumping lemma. In particular, we have |v| ⩽ p, therefore
v ∈ a∗b∗ + b∗a∗. We consider two cases depending on the last letter of v. In each one, we
show the existence of a word z′ such that the word uvxvz′ is in the language E, yet either
uv2xz′ or uxv2z′ is not. This yields the desired contradiction to the pumping lemma.

1. First, assume that the last letter of v is an a. Since |x| > p and x appears between
two copies of v in (ap+1bp+1)ℓ, the infix xv contains at least one full b-block: we have
xv = x′bp+1ak with x′ ∈ {a, b}∗ and 0 < k ⩽ p + 1. We set z′ = ap+1−kbp+1. Hence,
uvxvz′ = uvx′bp+1ap+1bp+1 ∈ E. We show that uv2xz′ ̸∈ E by differentiating two cases:
a. If v = ai for some i, which must satisfy 0 < i ⩽ k, then uv2xz′ is not in E as it ends

with bp+1ap+1−ibp+1.
b. Otherwise, we must have v = biak with 0 < i < p. Then, uv2xz′ is not in E as it ends

with bp+1−iap+1−kbp+1.
2. Otherwise, the last letter of v is a b. Since |x| > p and x appears between two copies of

v in (ap+1bp+1)ℓ, the infix xv contains at least one full a-block: we have xv = x′ap+1bk

with x′ ∈ {a, b}∗ and 0 < k ⩽ p + 1. This time we set z′ = bp+1−k. Thus, uvxvz′ =
uvx′ap+1bp+1 ∈ E, and we differentiate two cases to show that uxv2z′ /∈ E:
a. If v = bi for some i, which must satisfy 0 < i ⩽ p, then uxv2z′ ends with bp+i+1.

However, each of its a-blocks has length p + 1, as moving v = bi with i ⩽ p does not
merge any a-blocks. Hence, uxv2z′ is not in E.

b. Otherwise, we must have v = aibk with 0 < i < p. Then, uxv2z′ is not in E as it ends
with v2z′ = aibkaibp+1. ◀

4.1 History-determinism vs. Unambiguity
After having placed history-deterministic Parikh automata strictly between deterministic and
nondeterministic ones, we now compare them to unambiguous Parikh automata, another class
of automata whose expressiveness lies strictly between that of DPA and PA. In the literature,
there are two (nonequivalent) forms of unambiguous Parikh automata. We consider both of
them here.

Cadilhac et al. studied unambiguity in Parikh automata in the guise of unambiguous
constrained automata (UCA) [6]. Constrained automata are a related model and effectively
equivalent to PA. Intuitively, an UCA (A, C) over an alphabet Σ consists of an unambiguous
ε-NFA A over Σ, say with d transitions, and a semilinear set C ⊆ Nd, i.e., C has one
dimension for each transition in A. It accepts a word w ∈ Σ∗ if A has an accepting run
processing w (due to unambiguity this run must be unique) such that the Parikh image of
the run (recording the number of times each transition occurs in the run) is in C.

2 Note that the related language {a, b}∗ · {an#an | n ∈ N} is not accepted by any DPA [5].



E. Erlich, S. Guha, I. Jecker, K. Lehtinen, and M. Zimmermann 31:9

On the other hand, Bostan et al. introduced so-called weakly-unambiguous Parikh
automata (WUPA) [4]. Intuitively, a WUPA (A, C) over Σ is a classical PA as introduced
here where every input over Σ has at most one accepting run (in the sense of the definition
in Section 2). Bostan et al. discuss the different definitions of unambiguity and in particular
show that every UCA is a WUPA, but that WUPA are strictly more expressive [4]. Here, we
compare the expressiveness of HDPA to that of UCA and WUPA.

The language E from the proof of Theorem 7 is accepted by an UCA [6] and a WUPA [4],
but not by any HDPA (see Theorem 7). On the other hand, the language

T = {cn0dcn1d · · · cnk d | k ≥ 1, n0 = 1, and nj+1 ̸= 2nj for some 0 ≤ j < k}

is not accepted by any WUPA, and hence also not by any UCA [4], but there is an HDPA
accepting it. Hence, these two languages show that these three classes of automata have
incomparable expressiveness.

▶ Theorem 8. The expressiveness of HDPA is neither comparable with that of UCA nor
with that of WUPA.

Finally, we show that all intersections between the different classes introduced above are
nonempty.

▶ Theorem 9.
1. There is a language that is accepted by an HDPA and by an UCA, but not by any DPA.
2. There is a language that is accepted by an HDPA and by a WUPA, but not by any UCA.
3. There is a language that is accepted by a PA, but not by any HDPA nor by any WUPA.
4. There is a language that is accepted by a WUPA, but not by any HDPA nor by any UCA.

Here, we give proof sketches, full proofs can be found in [13].
Recall that the language E = {a, b}∗ · {anbn | n > 0} from Theorem 7 is accepted by an

UCA, but not by any HDPA. However, a slight modification allows it to be accepted by both
types of automata, but not by a deterministic automaton: We show that

E′ = {cm{a, b}m−1banbn | m, n > 0}

has the desired property. Intuitively, the prefix cm allows us to resolve the nondeterminism
on-the-fly, but nondeterminism is still required.

The second separation relies on a similar trick: The language

N ′ = {cnw | w = a0 · · · ak ∈ {0, 1}∗, |w| ≥ n > 0, and a0 · · · an−1 is non-Dyck},

which is a variation of the language N of words that have a non-Dyck prefix, was shown to
be accepted by a WUPA, but not by any UCA [4]. It is straightforward to show that it is
also accepted by an HDPA.

The last two results follow easily from closure properties: The union T ∪ E is neither
accepted by any HDPA nor by any WUPA, as both models are closed under intersection3,
i.e., (T ∪ E) ∩ {a, b}∗ = E and (T ∪ E) ∩ {c, d}∗ = T yield the desired separation. A similar
argument works for N ′ ∪ E, which is accepted by some WUPA (as WUPA are closed under
disjoint unions) but not by any HDPA nor by any UCA, as both classes are closed under
intersection.

3 For WUPA, this was shown by Bostan et al. [4], for HDPA this is shown in the next section.
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4.2 History-deterministic Reversal-bounded Counter Machines
There is one more automaton model that is closely related to Parikh automata, i.e., reversal-
bounded counter machines, originally introduced by Ibarra [26]. These are, in their most
general form, two-way automata with multiple counters that can be incremented, decremented,
and tested for zero, but there is a constant bound on the number of reversals of the reading
head and on the number of switches between increments and decrements (on each counter).
It is known that Parikh automata and nondeterministic reversal-bounded counter machines
are equivalent [27], while deterministic reversal-bounded counter machines are strictly more
expressive than deterministic Parikh automata [5]. Here, we compare history-deterministic
reversal-bounded counter machines and history-deterministic Parikh automata (and, for
technical reasons, also history-deterministic Parikh automata with ε-transitions).

We begin by introducing counter machines and then their reversal-bounded variant.
A (two-way) counter machine is a tuple M = (k, Q, Σ,▷,◁, qI , ∆, F ) where k ∈ N is the

number of counters, Q is the finite set of states, Σ is the alphabet, ▷,◁ /∈ Σ are the left and
right endmarkers respectively, qI ∈ Q is the initial state,

∆ ⊆ (Q × Σ▷◁ × {0, 1}k) × (Q × {−1, 0, 1} × {−1, 0, 1}k)

is the transition relation, and F ⊆ Q is the set of accepting states. Here, we use the
shorthand Σ▷◁ = Σ ∪ {▷,◁}. Intuitively, a transition ((q, a, g⃗), (q′, m, v⃗)) is enabled if the
current state is q, the current letter on the tape is a, and for each 0 ≤ j ≤ k − 1, the j-th
entry in the guard g⃗ is nonzero if and only if the current value of counter j is nonzero. Taking
this transition updates the state to q′, moves the head in direction m, and adds the j-th
entry of v⃗ to counter j.

We require that all transitions ((q, a, g⃗), (q′, m, v⃗)) ∈ ∆ satisfy the following properties:
If a = ▷, then m ≥ 0: the head never leaves the tape to the left.
If a = ◁, then m ≤ 0: the head never leaves the tape to the right.
g⃗ and v⃗ are compatible, i.e. if the j-th entry of g⃗ is zero, then the j-th entry of v⃗ is
nonnegative: a zero counter is not decremented.

For the sake of brevity, we refer the formal definition of the semantics to the full
version [13].

In the following, we just need the definition of configurations: A configuration of M on
an input w ∈ Σ∗ is of the form (q,▷w◁, h, c⃗) where q ∈ Q is the current state, ▷w◁ is the
content of the tape (which does not change during a run), 0 ≤ h ≤ |w| + 1 is the current
position of the reading head, and c⃗ ∈ Nk is the vector of current counter values.

We say that a two-way counter machine is reversal-bounded, if there is a b ∈ N such
that on each run, the reading head reverses its direction at most b times and each counter
switches between incrementing and decrementing at most b times. We write RBCM for
reversal-bounded counter machines and 1-RBCM for RBCM that do not make a reversal
of the reading head (i.e., they are one-way). Their deterministic variants are denoted by
DRBCM and 1-DRBCM, respectively.

Ibarra [26] has shown that every RBCM can be effectively turned into an equivalent
1-RBCM and that every RBCM can be effectively turned into an equivalent one where the
number of reversals of each counter is bounded by 1. The latter construction preserves
determinism and one-wayness. Hence, in the following, we assume that during each run of
an RBCM, each counter reverses at most once.

In terms of expressiveness, Klaedtke and Rueß [27] showed that RBCM are equivalent to
Parikh automata while Cadilhac et al. [5] showed that 1-DRBCM are strictly more expressive
than DPA.
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In the following, we determine the relation between history-deterministic RBCM and
HDPA. To this end, we first have to define the notion of history-determinism for RBCM,
which is slightly technical due to the two-wayness of these machines.

Let M = (k, Q, Σ,▷,◁, qI , ∆, F ) be an RBCM. Given a sequence τ0 · · · τj of transitions
inducing a run ρ, let pos(τ0 · · · τj) be the position of the reading head at the end of ρ, so in
particular pos(ε) = 0. Hence, (▷w◁)pos(τ0τ1···τj) is the letter the reading head is currently
pointing to.

A resolver for M is a function r : ∆∗ × Σ▷◁ → ∆ such that if w is accepted by M, there
is a sequence of transitions τ0τ1 · · · τn−1 such that

τj+1 = r(τ0τ1 · · · τj , (▷w◁)pos(τ0τ1···τj)) for all 0 ≤ j < n − 1, and
the run of M on w induced by the sequence of transitions τ0τ1 · · · τn−1 is accepting.

An RBCM M is history-deterministic (an HDRBCM) if there exists a resolver for M.
One-way HDRBCM are denoted by 1-HDRBCM.

Now, we are able to state the main theorem of this subsection: History-deterministic
two-way RBCM are as expressive as RBCM and PA while history-deterministic one-way
RBCM are as expressive as history-deterministic PA.

▶ Theorem 10.
1. HDRBCM are as expressive as RBCM, and therefore as expressive as PA.
2. 1-HDRBCM are as expressive as HDPA.

The proof of the first equivalence is very general and not restricted to RBCM: A two-way
automaton over finite inputs can first read the whole input and then resolve nondeterministic
choices based on the whole word. Spelt out more concisely: two-wayness makes history-
determinism as powerful as general nondeterminism.

For the other equivalence, both directions are nontrivial: We show how to simulate a PA
using an RBCM while preserving history-determinism, and how to simulate a 1-RBCM by
a PA, again while preserving history-determinism. Due to the existence of transitions that
do not move the reading head in a 1-RBCM, this simulation takes a detour via PA with
ε-transitions.

Finally, let us remark that HDPA (or equivalently 1-HDRBCM) and deterministic RBCM
have incomparable expressiveness. Indeed, the language E, which is not accepted by any
HDPA (see Theorem 7), can easily be accepted by a deterministic RBCM while the language N

(see Example 4) is accepted by an HDPA, but not by any deterministic RBCM [6]. The
reason is that these machines are closed under complement, but the complement of N is not
accepted by any PA as shown in [6], and therefore also not by any RBCM.

5 Closure Properties

In this subsection, we study the closure properties of history-deterministic Parikh automata,
i.e., we consider Boolean operations, concatenation and Kleene star, (inverse) homomorphic
image, and commutative closure. Let us begin by recalling the last three notions.

Fix some ordered alphabet Σ = (a0 < a1 < · · · < ad−1). The Parikh image of a word w ∈
Σ∗ is the vector Φ(w) = (|w|a0 , |w|a1 , . . . , |w|ad−1) and the Parikh image of a language L ⊆ Σ∗

is Φ(L) = {Φ(w) | w ∈ L}. The commutative closure of L is {w ∈ Σ∗ | Φ(w) ∈ Φ(L)}.
Now, fix some alphabets Σ and Γ and a homomorphism h : Σ∗ → Γ∗. The homomorphic

image of a language L ⊆ Σ∗ is h(L) = {h(w) | w ∈ L} ⊆ Γ∗. Similarly, the inverse
homomorphic image of a language L ⊆ Γ∗ is h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.
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Table 1 Closure properties of history-deterministic Parikh automata (in grey) and comparison
to other types of Parikh automata (results for other types are from [5, 6, 27]).

∪ ∩ · ∗ h h−1 c

DPA Y Y Y N N N Y Y
HDPA Y Y N N N N Y Y
UCA Y Y Y N N N ? Y
PA Y Y N Y N Y Y Y

▶ Theorem 11. HDPA are closed under union, intersection, inverse homomorphic im-
ages, and commutative closure, but not under complement, concatenation, Kleene star, and
homomorphic image.

Proof Sketch. Closure under union and intersection is shown by a product construction,
while closure under inverse homomorphic images is shown by lifting the construction for
finite automata (just as for DPA and PA). Finally closure under commutative closure follows
from previous work: Cadilhac et al. proved that the commutative closure of any PA (and
therefore that of any HDPA) is accepted by some DPA, and therefore also by some HDPA.

The negative results follow from a combination of expressiveness results proven in Section 4
and nonexpressiveness results in the literature [5, 6]:

Complement: In the first part of the proof of Theorem 7, we show that the language N

is accepted by an HDPA, but its complement is known to not be accepted by any PA [6].
Concatenation: The language E is the concatenation of the languages {a, b}∗ and {anbn |
n ∈ N}, which are both accepted by a DPA, but itself is not accepted by any HDPA (see
the proof of Theorem 7).
Kleene star: There is a DPA (and therefore also an HDPA) such that the Kleene star of
its language is not accepted by any PA [5], and therefore also by no HDPA.
Homomorphic image: There is a DPA (and therefore also an HDPA) and a homomorphism
such that the homomorphic image of the DPA’s language is not accepted by any PA [5],
and therefore also by no HDPA. ◀

Table 1 compares the closure properties of HDPA with those of DPA, UCA, and PA.
We do not compare to RBCM, as only deterministic ones differ from Parikh automata and
results on these are incomplete: However, Ibarra proved closure under union, intersection,
and complement [26].

6 Decision Problems

Next, we study various decision problems for history-deterministic PA. First, let us mention
that nonemptiness and finiteness are decidable for HDPA, as these problems are decidable
for PA [27, 5]. In the following, we consider universality, inclusion, equivalence, regularity,
and model checking. We start with the universality problem.

▶ Theorem 12. The following problem is undecidable: Given an HDPA (A, C) over Σ, is
L(A, C) = Σ∗?

Proof Sketch. The result is shown by turning (deterministic) Minsky machines into HDPA
such that the machine does not terminate if and only if the automaton is universal. As
nontermination of Minsky machines is undecidable [30], the same is true for HDPA univer-
sality.
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Intuitively, the automaton processes sequences of instructions of the Minsky machine
and checks whether they are prefixes of the unique run of the machine or not, employing
the counters of the automaton to simulate the counter of the Minsky machine. Finally,
history-determinism can be employed to find a position in the sequence of instructions where
it differs from the unique run of the machine. ◀

The next results follow more or less immediately from the undecidability of universality.

▶ Theorem 13. The following problems are undecidable:
1. Given two HDPA (A0, C0) and (A1, C1), is L(A0, C0) ⊆ L(A1, C1)?
2. Given two HDPA (A0, C0) and (A1, C1), is L(A0, C0) = L(A1, C1)?
3. Given an HDPA (A, C), is L(A, C) regular?
4. Given an HDPA (A, C), is L(A, C) context-free?

Proof Sketch. The first two items follow directly from the undecidability of universality (cf.
Theorem 12), so let us consider the latter two. They are both shown by a variation of the
construction proving Theorem 12: Given a Minsky machine we construct an HDPA such that
the machine terminates if and only if the automaton accepts a regular language (respectively,
a context-free language). ◀

Table 2 compares the decidability of standard problems for HDPA with those of DPA,
UCA, and PA.

Finally, we consider the problems of deciding whether a Parikh automaton is history-
deterministic and whether it is equivalent to some HDPA. Both of our proofs follow arguments
developed for similar results for history-deterministic pushdown automata [29].

▶ Theorem 14. The following problems are undecidable:
1. Given a PA (A, C), is it history-deterministic?
2. Given a PA (A, C), is it equivalent to some HDPA?

Finally, let us introduce the model-checking problem (for safety properties): A transition
system T = (V, vI , E, λ) consists of a finite set V of vertices containing the initial state vI ∈ V ,
a transition relation E ⊆ V × V , and a labeling function λ : V → Σ for some alphabet Σ.
A (finite and initial) path in T is a sequence v0v1 · · · vn ∈ V + such that v0 = vI and
(vi, vi+1) ∈ E for all 0 ≤ i < n. Infinite (initial) paths are defined analogously. The trace of
a path v0v1 · · · vn is λ(v0)λ(v1) · · · λ(vn) ∈ Σ+. We denote the set of traces of paths of T by
tr(T ).

The model-checking problem for HDPA asks, given an HDPA A and a transition system T ,
whether tr(T ) ∩ L(A) = ∅? Note that the automaton specifies the set of bad prefixes, i.e., T
satisfies the specification encoded by A if no trace of T is in L(A).

Table 2 Decision problems for history-deterministic Parikh automata (in grey) and comparison
to other types of Parikh automata (results are from [5, 6, 27]).

̸= ∅? finite? = Σ∗? ⊆? =? regular? MC

DPA Y Y Y Y Y Y Y
HDPA Y Y N N N N Y
UCA Y Y Y Y Y Y Y
PA Y Y N N N N Y
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As the model-checking problem for PA is decidable, so is the model-checking problem
for HDPA, which follows from the fact that a transition system T can be turned into an
NFA and hence into a PA AT with L(AT ) = tr(T ). Then, closure under intersection and
decidability of nonemptiness yields the desired result.

▶ Theorem 15. The model-checking problem for HDPA is decidable.

Let us conclude by mentioning that the dual problem, i.e., given a transition system T
and an HDPA A, does every infinite path of T have a prefix whose trace is in L(A), is
undecidable. This follows from recent results on Parikh automata over infinite words [21],
i.e., that model checking for Parikh automata with reachability conditions is undecidable.
Such automata are syntactically equal to Parikh automata over finite words and an (infinite)
run is accepting if it has a prefix ending in an accepting state whose extended Parikh image
is in the semilinear set of the automaton.

7 Conclusion

In this work, we have introduced and studied history-deterministic Parikh automata. We have
shown that their expressiveness is strictly between that of deterministic and nondeterministic
PA, incomparable to that of unambiguous PA, but equivalent to history-deterministic 1-
RBCM. Furthermore, we showed that they have almost the same closure properties as DPA
(complementation being the notable difference), and enjoy some of the desirable algorithmic
properties of DPA.

An interesting direction for further research concerns the complexity of resolving non-
determinism in history-deterministic Parikh automata. It is straightforward to show that
every HDPA has a positional resolver (i.e., one whose decision is only based on the last
state of the run constructed thus far and on the extended Parikh image induced by this
run) and that HDPA that have finite-state resolvers (say, implemented by a Mealy ma-
chine) can be determinized by taking the product of the HDPA and the Mealy machine. In
fact, both proofs are simple adaptions of the corresponding ones for history-deterministic
pushdown automata [22, 29]. A more interesting question is whether there is a notion of
Parikh transducer such that every HDPA has a resolver implemented by such a transducer.
Note that the analogous result for history-deterministic pushdown automata fails: not every
history-deterministic pushdown automaton has a pushdown resolver [22, 29].

Good-for-gameness is another notion of restricted nondeterminism that is very tightly
related to history-determinism. In fact, both terms were used interchangeably until very
recently, when it was shown that they do not always coincide [2]. Formally, an automaton A
is good-for-games if every two-player zero-sum game with winning condition L(A) has the
same winner as the game where the player who wins if the outcome is in L(A) additionally
has to construct a witnessing run of A during the play. This definition comes in two forms,
depending on whether one considers only finitely branching (weak compositionality) or all
games (compositionality).

Recently, the difference between being history-deterministic and both types of composi-
tionality has been studied in detail for pushdown automata [20]. These results are very general
and can easily be transferred to PA and 1-RBCM. They show that for PA, being history-
deterministic, compositionality, and weak compositionality all coincide, while for 1-RBCM,
being history-deterministic and compositionality coincide, but not weak compositionality.

The reason for this difference can be traced back to the fact that 1-RBCM may contain
transitions that do not move the reading head (which are essentially ε-transitions), but that
have side-effects beyond state changes, i.e., the counters are updated. This means that an
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unbounded number of configurations can be reached by processing a single letter, which
implies that the game composed of an arena and a 1-RBCM may have infinite branching. So,
while HDPA and 1-HDRBCM are expressively equivalent, they, perhaps surprisingly, behave
differently when it comes to compositionality. We plan to investigate these differences in
future work.
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Abstract
We study the problem of computing minimal distinguishing formulas for non-bisimilar states in
finite LTSs. We show that this is NP-hard if the size of the formula must be minimal. Similarly,
the existence of a short distinguishing trace is NP-complete. However, we can provide polynomial
algorithms, if minimality is formulated as the minimal number of nested modalities, and it can
even be extended by recursively requiring a minimal number of nested negations. A prototype
implementation shows that the generated formulas are much smaller than those generated by the
method introduced by Cleaveland.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Distinguishing behaviour, Hennessy-Milner logic, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.32

Related Version Full Version: https://arxiv.org/abs/2307.05265

Supplementary Material Software: https://github.com/jjmartens/distinguishing-hml
archived at swh:1:dir:c38076d88d2e9cc0bf081739203a2474ba87b7d3

Funding AVVA project NWO 612.001.751/TOP1.17.002.

1 Introduction

Hennessy-Milner Logic (HML) [11] can be used to explain behavioural inequivalence. If two
states are not bisimilar there is a distinguishing formula that is valid in one state but not
in the other. As the reason for the states not being bisimilar can be very subtle, such a
distinguishing formula is of great help to pinpoint the cause of the inequivalence.

Cleaveland [6] introduces an efficient algorithm to calculate distinguishing formulas by
back-tracking the partition refinement sequence that decides bisimilarity. He states that the
formulas are minimal “in a precisely defined sense”. This method is used in the mCRL2
toolset [5]. However, the generated formulas are unexpectedly large. This leads to the
question in which sense distinguishing formulas are minimal and how difficult it is to obtain
them. Similar questions were posed throughout the literature. Some also questioned the
size of the formulas – in the setting of CTL [4], others explicitly stated that they were not
minimal [25, 3], and there are even suggestions that minimisation could be NP-hard [26].

In this work we answer the question by proving that in general calculating minimal
distinguishing Hennessy-Milner formulas is NP-hard. Minimality can be taken rather broadly,
as having a minimal number of symbols, modalities, or logical connectives. As observed
in [8] a distinguishing formula can be exponential in size. However, as was already noted in
[6], when using sharing in the representation of formulas, for instance by formulating the
distinguishing formula as a set of equations or a directed acyclic graph, the representation is
polynomial. Calculating a minimal shared distinguishing formula is NP-complete.
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The proof of this result uses a reduction directly from CNF-SAT and the construction is
similar to the construction used by Hunt [13] where it is shown that deciding equivalence
of acyclic non-deterministic automata is NP-complete. We show via the NP-hardness of
deciding whether there is a distinguishing trace for an acyclic non-deterministic LTS, that
computing minimal HML formulas is also NP-hard.

As distinguishing formulas are very useful, we are wondering whether a variant of
minimality of distinguishing formulas exists that leads to concise formulas and that can
effectively be calculated. We answer this positively by providing efficient algorithms to
construct distinguishing formulas that are minimal with respect to the observation-depth,
i.e., the number of nested modalities. Within this we can even guarantee in polynomial time
that the negation-depth, i.e., the number of nested negations, or equivalently the number of
nested alternations of box and diamond modalities, is minimal. These algorithms strictly
improve upon the method by Cleaveland [6]. A prototype implementation of our algorithm
shows that our formulas are indeed much smaller and more pleasant to use. In order to
obtain these results we employ the notions of k-bisimilarity [19] and m-nested similarity [10].

Distinguishing formulas have been the topic of studies in many papers, more than we
can mention. A recent impressive work introduces a method to find minimal distinguishing
formulas for various classes of behavioural equivalences [3]. The algorithm translates the
problem to determining the winning region in a reachability game. These games can grow
super-exponentially in size. In the context of distinguishing deterministic finite automata, an
algorithm is given that from a splitting tree finds pairwise minimal distinguishing words [23].
In a more generalized setting [25, 15] a co-algebraic method is given to generate distinguishing
modal formulas. The notion of distinguishing formulas is also used in the setting with
abstractions for branching bisimilarity [16, 9].

This document is structured as follows. In Section 2 the required preliminaries on LTSs
and HML formulas are given. In Section 3, we show that decision problems related to
finding minimal distinguishing formulas are NP-hard. Next, in Section 4 we give a procedure
that generates a minimal observation- and negation-depth formula. Additionally, in this
section, we give a partition refinement algorithm inspired by [23, 20] which can be used
to determine minimal observation-depth distinguishing formulas. In the full version, an
appendix is included containing proofs omitted here due to space constraints.

2 Preliminaries

For the numbers i, j ∈ N, we define [i, j]={c ∈ N | i ⩽ c ⩽ j}, the closed interval from i to j.

2.1 LTSs, k-bisimilarity & m-nested similarity

We use Labelled Transition Systems (LTSs) as our behavioural models. Strong bisimilarity is
a widely used behavioural equivalence [19, 22], which we define in the classical inductive way.

▶ Definition 1. A labelled transition system (LTS) L = (S,Act,−→) is a three-tuple containing:
a finite set of states S,
a finite set of action labels Act, and
a transition relation −→ ⊆ S ×Act× S.

We write s a−→ s′ iff (s, a, s′) ∈−→. We call s′ an a-derivative of s iff s a−→ s′.
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x3 x2 x1 x0
a a a

(a) The LTS A3 = ({x0, . . . , x3}, {a}, −→).

x3 x2 x1 x0

y3 y2 y1 y0

aaa

aaa

aa a
a

(b) The LTS B3 = ({xi, yi | 0 ⩽ i ⩽ 3}, {a}, −→).

Figure 1 Two example LTSs.

▶ Definition 2 (k-bisimilar [19]). Let L = (S,Act,−→) be an LTS. For every k ∈ N, k-
bisimilarity written as -k is defined inductively:

-0 = {(s, t) | s, t ∈ S}, and
-k+1 = {(s, t) | ∀s a−→ s′.∃t a−→ t′ such that s′ -k t

′, and
∀t a−→ t′.∃s a−→ s′ such that t′ -k s

′}.

Bisimilarity, denoted as -, is defined as the intersection of all k-bisimilarity relations for all
k ∈ N: - =

⋂
k∈N -k. As our transition systems are finite, and therefore finitely branching,

- coincides with the more general co-inductive definition of bisimulation [22]. The intuition
behind -i is that within i (atomic) observations there is no distinguishing behaviour. We
sketch a rather simple example that showcases this behaviour.

▶ Example 3. For every n ∈ N, we define the LTS An = (S, {a},−→) with a singleton action
set, and the set of states S = {x0, . . . , xn}. The transition function contains a single path
xi

a−→ xi−1 for all 1 ⩽ i ⩽ n.
In Figure 1a the LTS A3 is shown. A state xi can perform i a-transitions ending in

a deadlock state. All states in A3 are behaviourally inequivalent. Intuitively, we see that
distinguishing the states x3 and x2 takes at least 3 observations.

In general, it holds that for n ∈ N, the states xn and xn−1 of the LTS An are n−1-bisimilar
but not n-bisimilar, i.e. xn -n−1 xn−1 but xn ̸-n xn−1. In order to distinguish these states
we require n (atomic) observations. This intuition is formalized in Theorem 10.

▶ Fact 4. We state these well-known facts for an LTS L = (S,Act,−→), and k ∈ N:
1. The relation -k is an equivalence relation.
2. If two states are k-bisimilar, they are l-bisimilar for every l ⩽ k.
3. If -k = -k+1 then -k = -k+u = -, for all u ∈ N.

For technical reasons we also define m-nested similarity [10] which uses the concept of
similarity.

▶ Definition 5 (Similarity). Given an L = (S,Act,−→), we define similarity →− ⊆ S × S as
the largest relation such that if s →− t then for all transitions s a−→ s′ there is a t a−→ t′ such
that s′ →− t′.

We say a state s is simulated by t iff s →− t.

▶ Definition 6 (cf. Def. 8.5.2. [10]). Let L = (S,Act,−→) be an LTS, and m ∈ N a number.
We inductively define m-nested similarity inclusion as follows: →−0 = →−, and for every i ∈ N,
the relation →−i+1⊆ S × S is the largest relation such that for all (s, t) ∈ →−i+1 it holds that:

s →−i t and t →−i s, and
if s a−→ s′ then there is a t a−→ t′ such that s′ →−i+1 t′.
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We write →←m as the symmetric closure of m-nested similarity inclusion, i.e. →←m = →−m ∩
(→−m)−1, which we call m-nested similarity. Note that we deviate slightly from the definition
in [10], where 1-nested simulation equivalence coincides with simulation equivalence.

▶ Example 7. For every n ∈ N, we define the LTS Bn = (S, {a},−→) with a singleton action
set, the set of states S = {x0, . . . , xn, y0, . . . , yn}, and the transition relation containing the
transition y0

a−→ y0 and, for every i ∈ [1, n], the transitions:
yi

a−→ yi−1 and xi
a−→ xi−1, and

yi
a−→ xi−1 if i is even, or xi a−→ yi−1 if i is odd.

In Figure 1b the LTS B3 is shown. We observe that x0 is simulated by y0, since x0 has no
outgoing transitions. So it is the case that x0 →−0 y0, but y0 ̸→−0 x0, and hence x0 ̸→←0 y0. In
general, for all n ≥ 1 it holds in the LTS Bn that xn →←n−1 yn, but xn ̸→←n yn.

2.2 Hennessy-Milner logic (HML)
We use Hennessy-Milner Logic (HML) [11] to distinguish states. For some finite set of actions
Act, the syntax of HML is defined as

ϕ ::= tt | ⟨a⟩ϕ | ¬ϕ | ϕ ∧ ϕ,

where a ∈ Act. The logic consists of three necessary elements:
Observations ⟨a⟩ϕ, the state witnesses an observation a to a state that satisfies ϕ.
Negations ¬ϕ, the state does not satisfy ϕ.
Conjunctions ϕ1 ∧ ϕ2, the state satisfies both ϕ1 and ϕ2.

The set F is defined to contain all HML formulas. It is common to use the abbreviations
ff = ¬tt, [a]ϕ = ¬⟨a⟩¬ϕ and ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2).

Given an LTS L = (S,Act,−→), we define the semantics of this logic J−KL : F → 2S ,
inductively as follows:

JttKL = S,
J⟨a⟩ϕKL = {s ∈ S | ∃s′ ∈ S s.t. s a−→ s′ and s′ ∈ JϕKL},
J¬ϕKL = S \ JϕKL, and

Jϕ1 ∧ ϕ2KL = Jϕ1KL ∩ Jϕ2KL,

for a ∈ Act and ϕ, ϕ1, ϕ2 ∈ F . This function yields for a formula ϕ ∈ F the subset of S
where ϕ is true. Often we omit the reference to the LTS L when it is clear from the context.

We use HML formulas to describe distinguishing behaviour. Let L = (S,Act,−→) be an
LTS, s ∈ S and t ∈ S states, and ϕ ∈ F a HML formula. We write s ∼ϕ t iff s ∈ JϕK⇔ t ∈ JϕK,
and conversely s ̸∼ϕ t iff s ∈ JϕK⇔ t ̸∈ JϕK. Additionally, we write s ⩽ϕ t if s ∈ JϕK⇒ t ∈ JϕK.
Given a set of HML formulas G we write s ∼G t iff for every ψ ∈ G, it holds that s ∼ψ t.
Similarly, we write s ⩽G t iff s ⩽ψ t for all ψ ∈ G.

▶ Definition 8. Given an LTS L = (S,Act,−→) and two states s, t ∈ S, then a formula ϕ ∈ F
distinguishes s and t iff s ̸∼ϕ t.

2.2.1 Metrics
To express the size of a formula we use three different metrics:

size the total number of observations,
observation-depth the largest number of nested observation in the formula, and
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s0 s1 s2
a a

b

Figure 2 The LTS M = (S, Act, −→), Act = {a, b} and S = {s0, s1, s2}.

negation-depth the largest number of nested negations in the formula.
For these metrics we inductively define the functions | · | : F → N for size, d⋄ : F → N for
observation-depth and d¬ : F → N for negation-depth, as follows:

|tt| = 0, d⋄(tt) = 0, d¬(tt) = 0,
|⟨a⟩ϕ| = |ϕ|+ 1, d⋄(⟨a⟩ϕ) = d⋄(ϕ) + 1, d¬(⟨a⟩ϕ) = d¬(ϕ),
|¬ϕ| = |ϕ|, d⋄(¬ϕ) = d⋄(ϕ), d¬(¬ϕ) = d¬(ϕ) + 1,
|ϕ1∧ϕ2| = |ϕ1|+|ϕ2|. d⋄(ϕ1∧ϕ2) = max(d⋄(ϕ1), d⋄(ϕ2)). d¬(ϕ1∧ϕ2) = max(d¬(ϕ1), d¬(ϕ2)).

Given natural numbers n,m ∈ N we define the sets Fn and Fm as the fragment of HML
formulas with bounded observation- and respectively negation-depth, i.e. Fn = {ϕ | d⋄(ϕ) ⩽
n}, and Fm = {ϕ | d¬(ϕ) ⩽ m}.

We write Fmn for the set Fmn = Fn ∩ Fm. Based on these metrics we define multiple
notions of minimal distinguishing formulas.

▶ Definition 9. Given an LTS L = (S,Act,−→), let ϕ ∈ F be an HML formula that
distinguishes s ∈ S and t ∈ S. Then in distinguishing s and t, the formula ϕ is called:

to have minimal observation-depth iff ϕ has the least nested modalities, i.e. for all ϕ′ ∈ F
if s ̸∼ϕ′ t then d⋄(ϕ) ⩽ d⋄(ϕ′);
to have minimal negation-depth iff ϕ has the least nested negations, i.e., for all ϕ′ ∈ F if
s ̸∼ϕ′ t then d¬(ϕ) ⩽ d¬(ϕ′);
to be minimal iff ϕ has the least number of modalities, i.e., for all ϕ′ ∈ F if s ̸∼ϕ′ t then
|ϕ| ⩽ |ϕ′|;
to have minimal observation- and negation-depth iff it is minimal in the lexicographical
order of observation and negation-depth, i.e., iff for all ϕ′ ∈ F if s ̸∼ϕ′ t then d⋄(ϕ) ⩽
d⋄(ϕ′) and if d⋄(ϕ) = d⋄(ϕ′) then d¬(ϕ) ⩽ d¬(ϕ′);
irreducible [6, Def. 2.5] iff no ϕ′ obtained by replacing a non-trivial subformula of ϕ with
the formula tt distinguishes s from t.

The first three notions correspond directly to the metrics we defined. The notion of
irreducible distinguishing formulas corresponds to the minimality notion used in the work
by Cleaveland [6]. The different notions are not comparable. This is witnessed by the LTS
M pictured in Figure 2. The formula ϕ1 = ⟨a⟩⟨a⟩tt distinguishes s0 and s1 since s0 ∈ Jϕ1K
and s1 ̸∈ Jϕ1K. Additionally, ϕ1 is irreducible, since any formula obtained by replacing a
subformula by tt is not a distinguishing formula. However, the formula ϕ1 is not minimal
since the formula ϕ2 = ⟨b⟩tt also distinguishes s0 and s1.

2.2.2 Representation
A note has to be made on the representation of distinguishing formulas. It is known that
distinguishing formulas can grow very large. In fact there is a family of LTSs that showcases
an exponential lower bound on the size of the minimal distinguishing formula [8, 25]. This
exponential lower bound is not in contradiction with the polynomial-time algorithm from
Cleaveland [6] since [6] uses equations to represent the subformulas. For example the formula
⟨a⟩⟨b⟩⟨c⟩tt∧⟨b⟩⟨c⟩tt can be represented using the equations ϕ1 = ⟨a⟩ϕ2∧ϕ2 and ϕ2 = ⟨b⟩⟨c⟩tt,
or as the term in Figure 3.
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∧ ⟨b⟩
⟨a⟩

⟨c⟩ tt

Figure 3 A HML formula represented as a shared term.

The shared representation does not change the observation-depth and the negation-depth.
The size of a formula is influenced, but it does not affect the NP-hardness result.

2.2.3 Correspondences
There are strong correspondences between different fragments of HML on the one hand and
m-nested similarity and bisimilarity on the other hand. We use these to obtain minimal
distinguishing formulas. The first theorem states that those HML formulas that have at most
k-nested observations exactly capture k-bisimilarity.

▶ Theorem 10 ((cf. [11, Theorem 2.2])). Given an LTS L = (S,Act,−→) and two states
s, t ∈ S. For every k ∈ N,

s -k t ⇐⇒ s ∼Fk
t.

In this work we are mainly interested in the contraposition of this theorem. For every
k ∈ N, two states s, t ∈ S are not k-bisimilar iff there is a ϕ ∈ Fk that distinguishes s and t,
i.e. s ̸∼ϕ t. For this reason for every k ∈ N we call s and t k-distinguishable iff s ̸-k t. We
call the states s and t distinguishable iff they are k-distinguishable for some k ∈ N.

▶ Corollary 11. Given an LTS L = (S,Act,−→) and two states s, t ∈ S. For every k ∈ N,

s ̸-k t ⇐⇒ there is a formula ϕ ∈ Fk such that s ̸∼ϕ t.

In [10] it is shown that fragments of HML with bounded negation-depth allow a similar
relational classification. The following theorem relates the fragment Fm to m-nested similarity
inclusion.

▶ Theorem 12 ((cf. [10, Corollary 8.7.6])). Let L = (S,Act,−→) be an LTS, then for all
m ∈ N, and states s, t ∈ S:

s →−m t ⇐⇒ s ⩽Fm t.

The main use for our work is that if two states are not m-nested similar, then there is a
distinguishing formula with at most m nested negations.

▶ Corollary 13. Let L = (S,Act,−→) be an LTS, then for all m ∈ N, and states s, t ∈ S:

s ̸→−m t ⇐⇒ there is a formula ϕ ∈ Fm s.t. s ∈ JϕK and t ̸∈ JϕK.

Let us recall the LTS A3 from Example 3 drawn in Figure 1a. In this LTS we see that
x3 -2 x2, but x3 ̸-3 x2. As a result of Corollary 11 we know that there is a formula ϕ ∈ F3
that distinguishes x3 and x2. This is witnessed by the formula ϕ = ⟨a⟩⟨a⟩⟨a⟩tt ∈ F3, which
is a distinguishing formula, since x3 ∈ JϕK and x2 ̸∈ JϕK. We also see that x3 ∼F2 x2, hence
there is no such formula in F2.

For the LTS B3 from Example 7, we aim to distinguish the states x3 and y3. According
Corollary 13 there is a distinguishing formula ϕ ∈ F3, since x3 ̸→−3 y3. This is witnessed by
the formula ϕ = ⟨a⟩¬⟨a⟩¬⟨a⟩¬⟨a⟩tt. This is a distinguishing formula as x3 ∈ JϕK and y3 ̸∈ JϕK.
Corollary 13 also shows that this is the minimal negation-depth formula distinguishing x3
and y3, as x3 →←

2 y3.
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2.2.4 Traces
Let Act be a finite set of action labels. We denote by Act∗ :=

⋃
i∈NAct

i the set of all finite
sequences on the action labels Act. We write ε for the empty sequence. For sequences
w, u ∈ Act∗, we denote with |w| its length and w · u the concatenation of w and u, which is
sometimes also written as wu.

▶ Definition 14. Given an LTS L = (S,Act,−→). The set of traces Tr(s) ⊆ Act∗ of a state
s ∈ S is the smallest set satisfying:
1. ε ∈ Tr(s), and
2. for an action a ∈ Act, and state s′ ∈ S if a trace w ∈ Tr(s′) and s a−→ s′, then aw ∈ Tr(s).

Inductively, we define the formula ϕw for every word w ∈ Act∗, such that ϕε = tt, and
ϕaw = ⟨a⟩ϕw. We call a formula ϕ ∈ F a trace-formula iff there is a sequence w ∈ Act∗ such
that ϕ = ϕw.

▶ Lemma 15. Let L = (S,Act,−→) be an LTS, and w ∈ Act∗ a trace. Then for all s ∈ S:

s ∈ JϕwK ⇐⇒ w ∈ Tr(s).

Two states s ∈ S and t ∈ S in an LTS L = (S,Act,−→) are said to be trace-equivalent iff
Tr(s) = Tr(t). Bisimilarity is a more fine-grained equivalence than trace equivalence. Two
states s ∈ S and t ∈ S can be trace-equivalent, while not being bisimilar. In this case there
is a formula ϕ ∈ F such that s ̸∼ϕ t and we know that ϕ is not a trace-formula. However,
ϕ contains traces that are both traces of s and t. To make this more precise we define the
traces of a formula by induction for formulas ϕ, ϕ1, ϕ2 ∈ F as follows:

Tr(tt) = {ε},
Tr(⟨a⟩ϕ) = {a} ∪ {a · w | w ∈ Tr(ϕ)},

Tr(¬ϕ) = Tr(ϕ),
Tr(ϕ1 ∧ ϕ2) = Tr(ϕ1) ∪ Tr(ϕ2).

The traces of a formula allow us to state the correspondence between k-distinguishability
and the length of shared traces. We formulate this using the minimal observation depth
that, given two distinguishable states, yields the smallest i ∈ N such that the states are
i-distinguishable:

▶ Definition 16. Let L = (S,Act,−→) be an LTS. We define the minimal observation depth
∆ : S × S → N ∪ {∞} by

∆(s, t) =
{
i if s ̸-i t, and s -i−1 t,

∞ if s - t.

The next lemma says that if states have minimal observation depth i, then any distin-
guishing formula contains a trace of length at least i.

▶ Lemma 17. Let L = (S,Act,−→) be an LTS and s, t ∈ S two distinguishable states such
that ∆(s, t) = i for some i ∈ N. For all ϕ ∈ F , if s ̸∼ϕ t then there is a trace w ∈ Tr(ϕ) such
that |w| ≥ i and w ∈ Tr(s) ∪ Tr(t).

Proof sketch. Proven by induction on the shape of ϕ. The only interesting case is if ϕ = ⟨a⟩ϕ′

for some a ∈ Act and ϕ′ ∈ F . Assume without loss of generality that s ∈ JϕK and t ̸∈ JϕK.
This means that there is a transition s a−→ s′ such that s′ ∈ Jϕ′K. Since ∆(s, t) = i there is
also a t a−→ t′ such that ∆(s′, t′) = i− 1.
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Since t ̸∈ JϕK also t′ ̸∈ Jϕ′K, and thus we can apply our induction hypothesis to conclude
that there is a w′ ∈ Tr(ϕ′) such that |w′| ≥ i − 1 and w′ ∈ Tr(s′) ∪ Tr(t′). From w′ we
construct aw′ and observe that aw′ ∈ Tr(ϕ), aw′ ∈ Tr(s)∪Tr(t) and |aw′| ≥ i, which finishes
the proof. ◀

3 NP-hardness results

In this section we show that finding minimal distinguishing formulas is NP-hard.
We first show that the existence of a short trace is NP-complete similar to a result of

Hunt [13, Sec. 2.2] on acyclic NFAs. A corollary of the construction is that finding the
minimal size distinguishing formula is NP-hard.

We define the decision problems TRACE-DIST and MIN-DIST. Given an LTS L =
(S,Act,−→), two states s, t ∈ S such that s ̸-i t for i = |S|, and a number l ∈ N.
TRACE-DIST : There is a trace-formula ϕ ∈ Fi, such that ϕ distinguishes s and t.
MIN-DIST : There is a formula ϕ ∈ Fi, such that ϕ distinguishes s and t, and |ϕ| ⩽ l.
We point out that TRACE-DIST is not the same as deciding trace-equivalence. The problem
TRACE-DIST decides whether there is a distinguishing trace of length i, and i is smaller
than the number of states, and a minimal distinguishing trace might be super-polynomial in
size [7, Sec. 5].

3.1 Reduction
We prove that TRACE-DIST is NP-complete and MIN-DIST is NP-hard by a reduction from
the decision problem CNF-SAT. This decision problem decides whether a given propositional
formula C in conjunctive normal form (CNF) is satisfiable. For this we define an LTS LC ,
based on the CNF formula C.

▶ Definition 18. Let C = C1 ∧ . . . ∧ Cn be a CNF formula over the set of proposition letters
Prop = {p1, . . . , pk}. We define the LTS LC = (S,Act,−→) as follows:

The set of states S is defined as

S ={unsatCi | C ∈ {C1, . . . , Cn}, i ∈ [0, k]} ∪ {sati | i ∈ [0, k]}
∪ {⊥i | i ∈ [0, k]} ∪ {s, t, δ}.

The set of actions Act is defined as

Act = {p, p | p ∈ Prop} ∪ {init, false}.

The relation −→ contains for each C ∈ {C1, . . . , Cn} and i ∈ [1, k]:

unsatCi−1
pi−→

{
sati if pi is a literal of C,
unsatCi otherwise,

unsatCi−1
pi−→

{
sati if ¬pi is a literal of C,
unsatCi otherwise,

sati−1
x−→ sati for x ∈ {pi, pi}, and

⊥i−1
x−→ ⊥i for x ∈ {pi, pi}.

Additionally, it contains the auxiliary transitions

unsatCk
false−−−→ δ for C ∈ {C1, . . . , Cn},

⊥k false−−−→ δ,
t init−−−→ unsatC0 for C ∈ {C1, . . . , Cn},
t init−−−→ sat0,
s init−−−→ sat0, and
s init−−−→ ⊥0.
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Figure 4 The LTS LC for the formula C = (¬p1 ∨ ¬p2) ∧ (p2 ∨ p3).

The LTS LC for the CNF formula C = C1 ∧ C2 with clauses C1 = ¬p1 ∨ ¬p2 and
C2 = p2 ∨ p3 is depicted in Figure 4.

In this construction an interpretation of the propositions Prop = {p1, . . . , pk} is directly
related to a word w = a1 . . . ak, where ai ∈ {pi, pi} for every i ∈ [1, k]. The set of truth
assignments encoded as words is defined as:

Truths = {a1 . . . ak | ai ∈ {pi, pi} for all i ∈ [1, k]}.

Given a truth assignment ρ : Prop → B, we define wρ as wρ = a1 . . . ak, where ai = pi
if ρ(pi) = true and ai = pi, otherwise. Conversely, for a word w = a1 . . . ak, a trace from
Truths, it represents the truth assignment ρw defined for each i ∈ [1, k] as:

ρw(pi) =
{

true if ai = pi,

false if ai = pi.

The idea of the construction of LC is that it contains a ⊥ component, a sat component,
and an unsatC component for every clause C. All components are deterministic and acyclic,
and hence describe a finite set of traces. All the traces of these components start by a
truth assignment w ∈ Truths. By construction, for every truth assignment w ∈ Truths,
w ·false ∈ Tr(⊥0). In this way the ⊥ component represents falsehood. Conversely, the state
sat0 represents a tautology, since for any truth assignment w ∈ Truths, w ·false ̸∈ Tr(sat0).
For every clause C, and truth assignment w ∈ Truths the state unsatC0 contains w · false
as trace iff ρw does not satisfy C.

▶ Lemma 19. Let LC = (S,Act,−→) be the LTS for a CNF formula C = C1 ∧ . . . ∧ Cn with
propositions {p1, . . . , pk}, then:

Tr(sat0) = {u ∈ Act∗ | ∃w ∈ Truths. u is a prefix of w},
Tr(⊥0) = Tr(sat0) ∪ {w·false | w ∈ Truths}, and

Tr(unsatC0 ) = Tr(sat0) ∪ {w·false | w ∈ Truths and ρw does not satisfy C}.

This lemma is easily verified from the construction of LC .
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▶ Corollary 20. Let w ∈ Truths be a trace, and LC the LTS for the CNF formula C =
C1 ∧ . . . ∧ Cn. Then for any clause C ∈ {C1, . . . , Cn}:

w·false ∈ Tr(unsatC0 ) ⇐⇒ C is not satisfied under ρw.

The following lemma contains the main idea for the reduction of the main theorem
showing TRACE-DIST is NP-complete.

▶ Lemma 21. Given the LTS LC = (S,−→, Act) for a CNF formula C = C1 ∧ . . . ∧ Cn, with
propositions Prop = {p1, . . . , pk}. Then there is a trace w ∈ Actk+1 such that w ∈ Tr(⊥0),
and w ̸∈ Tr(unsatC0 ) for every C ∈ {C1, . . . , Cn} if and only if C is satisfiable.

Proof. We prove this in both directions separately.
(⇒) As a witness, we obtain a trace w ∈ Tr(⊥0) of length at most k+1 such that w ̸∈

Tr(unsatC0 ) for all clauses C ∈ {C1, . . . , Cn}. Since w ∈ Tr(⊥0) by Lemma 19 either
w ∈ Tr(sat0) or w ∈ {v · false | v ∈ Truths}. Since Tr(sat0) ⊆ Tr(unsatC0 ), and
w ̸∈ Tr(unsatC0 ), there is a trace v ∈ Truths such that w = v · false. By Corollary 20
all clauses C are satisfied by ρw. This means ρw is a satisfying assignment for C.

(⇐) If there is a satisfying assignment ρ for C then we show that wρ · false witnesses the
implication. First observe that by definition wρ · false ∈ Tr(⊥0). Let C ∈ {C1, . . . , Cn}
be any clause. Since ρ is a satisfying assignment, C is satisfied under ρ. This means by
Corollary 20 that wρ ̸∈ Tr(unsatC0 ). ◀

Now we are ready to prove the main theorem of this section.

▶ Theorem 22. Deciding TRACE-DIST is NP-complete.

Proof. First we verify that TRACE-DIST is in NP. Given an LTS L = (S,Act,−→), and two
states s, t ∈ S. As a witness we get a formula ϕ ∈ F|S|, which is a trace-formula. Since
d⋄(ϕ) ⩽ |S| this is polynomial in size. It is well known that given a formula ϕ we can check
in polynomial time whether s ∼ϕ t.

To show TRACE-DIST is NP-hard we reduce CNF-SAT to TRACE-DIST. Let C =
C1 ∧ . . . ∧ Cn be a CNF formula over the propositions Prop = {p1, . . . , pk}. Then for the
LTS LC we show there is a distinguishing trace smaller than |S| for s ∈ S and t ∈ S if and
only if C is satisfiable.

We begin by observing the sets Tr(s),Tr(t):

Tr(s) = {ε, init} ∪ {init · w | w ∈ Tr(⊥0) ∪ Tr(sat0)},

Tr(t) = {ε, init} ∪ {init · w | w ∈ Tr(sat0) ∪
⋃

i∈[1,n]

Tr(unsatCi
0 )}.

Since for every C ∈ {C1, . . . , Cn}, Tr(unsatC0 ) ⊆ Tr(⊥0) and Tr(sat0) ⊆ Tr(unsatC0 ), we
know that if there is a distinguishing trace it has to be init ·w ∈ Tr(s) for a w ∈ Tr(⊥0). By
Lemma 21 this trace w exists iff C is satisfiable. Hence, the states s and t are in TRACE-DIST
if and only if C is in CNF-SAT. The LTS LC can be computed in polynomial time, as it has
(n+ 2)(k + 1) + 3 states and 2k(n+ 2) + 2n+ 4 transitions. This concludes the proof that
TRACE-DIST is NP-complete. ◀

In the reduction a distinguishing trace is also a minimal distinguishing formula. Which
means we can generalise our NP-hardness result.

▶ Corollary 23. Deciding MIN-DIST is NP-hard.
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Proof. We prove this by a similar reduction as in the proof of Theorem 22. The intuition is
that, given a CNF formula C = C1 ∧ . . . ∧ Cn with propositions Prop = {p1, . . . , pk}, in the
LTS LC a distinguishing formula ϕ ∈ F such that |ϕ| = k + 2 necessarily is a trace-formula.

We reduce CNF-SAT to MIN-DIST. Let C = C1 ∧ . . . ∧ Cn be a CNF formula over the
propositions Prop = {p1, . . . , pk}. Then for the LTS LC we show there is a distinguishing
formula ϕ ∈ F for s ∈ S and t ∈ S such that |ϕ| ⩽ k + 2 if and only if C is satisfiable.

For the direction ⇒, assume a formula ϕ ∈ F exists such that |ϕ| ⩽ k + 2 and s ̸∼ϕ t.
We show that this means C is satisfiable. We observe by the deterministic behaviour that
s -k+1 t. Hence, by Theorem 10 we know d⋄(ϕ) ≥ k + 2. Since we assume |ϕ| ⩽ k + 2
we know that d⋄(ϕ) = k + 2 and so, there are no non-trivial conjunctions, and we see that
we can rewrite ¬¬ϕ 7→ ϕ. Hence, there is a formula ψ = △1 . . .△k+2tt such that for each
i ∈ [1, k + 2], △i ∈ {⟨ai⟩,¬⟨ai⟩}, for some a1, . . . , ak+2 ∈ Act, such that JϕK = JψK.

By Lemma 17 there is a trace w ∈ Tr(ψ), such that |w| ≥ k + 2 and, w ∈ Tr(s) ∪ Tr(t).
The only trace of this length of s or t is in the shape w = init · p̂1 . . . p̂k · false, where
p̂i ∈ {pi, pi} for each i ∈ [1, k]. This means that a1 = init, aj+1 = p̂j for each j ∈ [1, k] and
ak+2 = false. We are going to show that the associated truth value ρ = ρp̂1...p̂k

satisfies C
by reductio ad absurdum.

If ρ does not satisfy C then there is a clause C such that C is not satisfied by ρ. We
claim for this clause unsatC0 ∼∆2...∆k+1tt ⊥0, and since both s and t have a init-transition
to sat0 this means ψ does not distinguish any of the derivatives. Hence s ∼ψ t which is a
contradiction.

For the other direction if C is satisfiable then by Lemma 21 there is a w ∈ Actk+1 such that
w ∈ Tr(⊥0) and w ̸∈ Tr(unsatC0 ) for all clauses C ∈ {C1, . . . , Cn}. Using w we construct the
distinguishing trace w′ = init · w. Since w ∈ Tr(⊥0), w ̸∈ Tr(unsatC0 ) and by construction
also w ̸∈ Tr(sat0), it is the case that w′ ∈ Tr(s) and w′ ̸∈ Tr(t). This means the formula ϕw′

is a distinguishing formula and |ϕw′ | = k+ 2, which finishes the second part of the proof. ◀

The problem MIN-DIST is not a member of NP since a polynomially sized witness
might not exist. However, there is always a “shared” distinguishing formula of polynomial
size. Since we can compute in polynomial time if a shared formula is a distinguishing
formula, the decision problem MIN-DIST formulated in terms of total “shared” modalities is
NP-complete.

4 Efficient algorithms

In this section we explain that despite the NP-hardness results from the previous section it
is still possible to efficiently generate distinguishing formulas with minimal observation- and
negation-depth. First, we introduce the method ϕ(s, t) listed in Algorithm 1 that generates a
minimal observation-depth distinguishing formula for the states s and t. We extend ϕ(s, t) to
the function ψi(s, t) listed in Algorithm 2. This method computes a distinguishing formula
with observation-depth of at most i and minimal negation-depth. Additionally, this procedure
also prevents unnecessary conjuncts to be added. Finally, we indicate how to compute the
equivalences -1, . . . ,-k, and the minimal observation- and negation-depth.

4.1 The algorithm
For every i ∈ N, we define a function δi : S × S → 2Act×S that gives all distinguishing
observations. More precisely, given two i-distinguishable states s ∈ S and t ∈ S, δi(s, t)
returns all pairs (a, s′), where a ∈ Act, s′ ∈ S, such that s a−→ s′ and s′ is (i−1)-distinguishable
from all targets t a−→ t′. The definition of δi(s, t) is:

δi(s, t) = {(a, s′) | s a−→ s′ and ∀t a−→ t′. ∆(s′, t′) ⩽ i− 1}.
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Algorithm 1 Minimal-depth distinguishing formula.

input : Two states s, t ∈ S such that s ̸-i t

output : A formula ϕ ∈ F s.t. s ∈ JϕK and t ̸∈ JϕK
1 Function ϕ(s, t) is
2 i := ∆(s, t);
3 if δi(s, t) = ∅ then
4 return ¬ϕ(t, s)
5 Select (a, s′) ∈ δi(s, t);
6 T := {t′ | t a−→ t′};
7 return ⟨a⟩

( ∧
t′∈T ϕ(s′, t′)

)
;

8 end

Using the function δi(s, t), we can compute a minimal observation-depth formula using the
procedure listed as Algorithm 1. The procedure selects an action state pair (a, s′) ∈ δi(s, t)
and recursively distinguishes s′ from all a-derivatives of t. If δi(s, t) is empty the negated
ϕi(t, s) is calculated and in this case δi(t, s) is necessarily not empty.

▶ Lemma 24. Given an LTS L = (S,Act,−→) and two states s, t ∈ S. If s ̸-i t then:
δi(s, t) ̸= ∅ or δi(t, s) ̸= ∅.

Proof. As s ̸-i t there either is an s a−→ s′ such that s′ ̸-i−1 t
′ for all t a−→ t′, or vice-versa

there is a t a−→ t′ such that t′ ̸-i−1 s
′ for all s a−→ s′. In the first case (a, s′) ∈ δi(s, t), in the

second case (a, t′) ∈ δi(t, s). ◀

4.2 Minimal negation-depth
In order to minimize the number of negations within the minimal observation-depth formula
we combine the notions of k-bisimilar and m-nested similarity inclusion.

▶ Definition 25. Let L = (S,Act −→) be an LTS, and k,m ∈ N. We define m-nested
k-similarity inclusion, denoted ⇝−mk , inductively by for all s, t ∈ S, s ⇝−m0 t and if s ⇝−mk t then
1. if s a−→ s′ there is a t a−→ t′ such that s′ ⇝−mk−1 t

′, and
2. if m > 0 and t a−→ t′, then there is a s a−→ s′ such that t′ ⇝−m−1

k−1 s′.

Similarly to the original Hennessy-Milner correspondences, we observe the correspondence
between the fragment Fmk and the relation ⇝−mk .

▶ Theorem 26. Let L = (S,Act,−→) be an LTS. For any k,m ∈ N and states s, t ∈ S:

s ⩽Fm
k
t ⇐⇒ s ⇝−mk t.

Related to the distance measure ∆, we define the directed minimal negation-depth measure
for the relation ⇝−mk , for states that are not m-nested k-similar for some k,m ∈ N.

▶ Definition 27. Let L = (S,Act,−→) be an LTS and i ∈ N be a number. We define the
directed minimal negation-depth

−→
∆i : S × S → N ∪ {∞} by

−→
∆i(s, t) =

{
j if s ⇝̸−ji t, and s ⇝−j−1

i t,

∞ if s -i t.
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Algorithm 2 Generate a distinguishing formula with minimal observation- and negation-
depth.

input : Two states s, t ∈ S such that s ̸-i t for some i ∈ N
output : A formula ϕ ∈ Fi such that s ∈ JϕK and t ̸∈ JϕK

1 Function ϕi(s, t) is
2 j :=

−→
∆i(s, t);

3 X := δ̂ji (s, t);
4 if X = ∅ then
5 return ¬ϕi(t, s)
6 Select (a, s′) ∈ X ;
7 T := {t′ | t a−→ t′};
8 while T ̸= ∅ do
9 Select tmax ∈ T such that

−→
∆i−1(s′, tmax) ≥

−→
∆i−1(s′, t′) for all t′ ∈ T ;

10 ϕtmax := ϕi−1(s′, tmax);
11 Φ := Φ ∪ {ϕtmax};
12 T := T ∩ Jϕtmax K;
13 end
14 return ⟨a⟩

( ∧
ϕ∈Φ ϕ

)
15 end

For every i, j ∈ N we define a function δ̂ji : S × S → 2Act×S that is similar to the function δi.
It adds an extra limitation on the number of negations needed to distinguish the pairs from
all observations from t.

δ̂ji (s, t) = {(a, s′) | (a, s′) ∈ δi(s, t) and ∀t a−→ t′.
−→
∆i−1(s′, t′) ⩽ j}.

The next lemma guarantees that a suitable distinguishing observation exists.

▶ Lemma 28. Given an LTS L = (S,Act,−→) and two states s, t ∈ S. Then for all i, j ∈ N,
if s ̸⇝−ji t then δ̂ji (s, t) ̸= ∅ or δ̂j−1

i (t, s) ̸= ∅.

In Algorithm 2 we give the method ψi(s, t) that given an LTS L = (S,Act,−→) and
i-distinguishable states s, t ∈ S generates a formula such that s ∈ Jψi(s, t)K and t ̸∈ Jψi(s, t)K
with observation depth at most i and minimal negation-depth.

The algorithm attempts to find an action label a ∈ Act and an a-derivative s a−→ s′, such
that all a-derivatives t′, such that t a−→ t′ are distinguishable with a formula with at most
i−1 nested observations and j nested negations. These pairs (a, s′) are given by the function
δ̂ji (s, t). In Line 6 one of these witnesses is chosen. If there is more than one suitable derivate,
one is chosen at random.

The next theorem states that Algorithm 2 yields a valid distinguishing formula.

▶ Theorem 29. Let L = (S,Act,−→) be an LTS, and s, t ∈ S be states. If s and t are
k-distinguishable for some k ∈ N then s ∈ Jψk(s, t)K and t ̸∈ Jψk(s, t)K.

The next theorem states that if ∆(s, t) = k, then ψk(s, t) yields a formula that has
minimal observation-depth, and there is no formula ϕ with a smaller number of nested
negations such that s ̸⩽ϕ t.

▶ Theorem 30. Let L = (S,Act,−→) be an LTS, and s, t ∈ S be states, such that s ̸- t

and ∆(s, t) = k. Then for all ϕ ∈ F , if s ̸⩽ϕ t then d⋄(ψk(s, t)) ⩽ d⋄(ϕ) and if d¬(ϕ) <
d¬(ψk(s, t)) then d⋄(ϕ) > d⋄(ψk(s, t)).
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Algorithm 3 Iterative partition refinement.

1 Function Refine(π) is
2 π′ := π;
3 foreach a ∈ Act,B′ ∈ π do
4 foreach B ∈ π′ do
5 C := splita(B,B′);
6 if C ̸= B and C ̸= ∅ then
7 π′ := (π′ \ {B}) ∪ {C,B \ C};
8 return π′;
9 i := 0; π0 := {S};

10 while πi ̸= Refine(πi) do
11 πi+1 := Refine(πi);
12 i := i+ 1;

4.3 Partition refinement
In order to execute Algorithm 2, we need to compute the functions ∆ and

−→
∆ . In this section

we propose a simple partition refinement algorithm that does exactly this by first computing
the relations -0,-1, . . . ,-k iteratively. The pseudocode is listed in Algorithm 3. In contrast
to the more efficient partition refinement algorithms [12, 21, 24], we guarantee that older
blocks are used first as splitter. This method is inspired by [23] where pairwise minimal
distinguishing words are computed.

Most algorithms deciding bisimilarity are so-called partition refinement algorithms [14, 21].
Our algorithms are also based on partition refinement. A partition π of a set S is a disjoint
cover of S, i.e. a set of non-empty subsets of S and every element of S is in exactly one subset.
The elements B ∈ π are called blocks. A partition π induces the equivalence relation ∼π: S×S
in which the blocks are the equivalence classes, i.e. ∼π= {(s, t) | ∃B ∈ π and s, t ∈ B}. In
the algorithm we filter a set of states U on a distinguishing observation with respect to a set
of given states V , and an action a ∈ Act, i.e.: splita(U, V ) = {s ∈ U | ∃s′ ∈ V.s a−→ s′}.

The next theorem states that the procedure listed as Algorithm 3 produces a sequence of
partitions, in which the i-th partition induces i-bisimilarity.

▶ Theorem 31. Given an LTS L = (S,Act,−→) and partitions π0, . . . , πk produced by
Algorithm 3. Then ∼πi = -i, for all 0 ⩽ i ⩽ k.

It is possible to compute the function
−→
∆i(s, t) in polynomial time from the computed k-

bisimilarity relations calculated in Algorithm 3. It is important to use dynamic programming
such that

−→
∆i(s, t) for every i, s and t is only calculated once.

4.4 Evaluation
The computation of Algorithm 2 needs to account for redundancies to guarantee a polynomial
time algorithm. We use dynamic programming to achieve this. For any pair of states s, t ∈ S
if the function ψi(s, t) is invoked, it stores the generated shared formula. Whenever the
function is called again, the previously generated formula is used, with only constant extra
computing and memory usage. Hence, given an LTS L = (S,Act,−→) the number of recursive
calls is limited to the combination of states and level k ⩽ |S|, i.e. O(|S|3) calls.

▶ Corollary 32. Given an LTS L = (S,Act,−→) and a pair of distinguishable states s, t ∈ S,
then the following is computable in polynomial time:

A minimal observation-depth distinguishing formula,
A minimal observation- and negation-depth distinguishing formula.
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A naive implementation of the algorithms requires quadratic memory. This could be a
bottleneck for large state spaces. Representing the equivalences -k as a splitting tree [17]
is more memory efficient. In addition, an optimization is to generate only distinguishing
formulas between equivalence classes of the generated equivalences, instead of individual
states.

Table 1 Results from prototype implementation Algorithm 1.

Max Average

Benchmark d⋄(ϕ) |ϕ| d¬(ϕ) d⋄(ϕ) |ϕ| d¬(ϕ)
Our Cleav. Our Cleav. Our Cleav. Our Cleav. Our Cleav. Our Cleav.

ieee-1394-1 64 891 69 1355 0 886 64,0 247,2 69,0 373,7 0,0 243,2
ieee-1394-2 37 224 42 320 1 219 37,0 92,0 42,0 120,0 1,0 88,2
ieee-1394-3 102 698 102 1092 2 696 102,0 299,1 102,0 465,4 2,0 295,7
ieee-1394-4 76 363 83 506 2 360 76,0 196,6 80,9 276,5 2,0 194,5
ieee-1394-5 18 155 18 214 2 146 18,0 36,0 18,0 44,8 2,0 30,4

We implemented a prototype of the method introduced here. We also implemented the
method proposed by Cleaveland [6] in which we decided bisimilarity by a partition refinement
algorithm in which the splitter selected is the latest created block, since heuristically this has
the best runtime [1, 2]. For Cleaveland’s method the strategy for splitter selection matters
for the size of the formulas generated. However, regardless of strategy chosen, the formulas
that our method generates are always more concise in all metrics.

We post-processed the formulas to ensure both implementations resulted in formulas that
are irreducible. For the benchmark we used the model from [18] containing 188.568 states
and 340.607 transitions. We compared this model to 5 modified versions where we omitted
one randomly chosen transition. In Table 1 the results of running the algorithms 10 times
are shown. Under “Max”, the worse-case of the different runs for each metric is listed for our
method (“Our”), next to the result of the implementation of Cleaveland (“Cleav.”). Under
“Average” the average of the 10 runs is shown.

We see that our new method consistently outputs a minimal observation- and negation-
depth formula, and the generated formulas only rarely deviates in size. It outperforms the
method of Cleaveland in all cases. In some cases the depth is improved a factor 10.

5 Conclusions & Future work

In this work we studied the problem of computing minimal distinguishing formulas. We
introduced three metrics: size, observation-depth, and negation-depth. Using a reduction
directly from CNF-SAT we showed that finding a minimal sized distinguishing formula is NP-
hard. However, for observation- and negation-depth, we introduce polynomial time algorithms
that compute minimal formulas. A prototype demonstrates the potential improvement over
the method introduced by Cleaveland [6]. A more rigorous version is implemented in the
mCRL2 toolset [5].

For future work it would be interesting to extend our algorithms for equivalences beyond
strong bisimilarity. For instance, a more generic coalgebraic treatment, extending [25], or
computing smaller witnesses for equivalences with abstractions like branching and weak
bisimilarity, improving upon the work of Korver [16].
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Abstract
We study the complexity relationship between three models of unbounded memory automata: nu-
automata (ν-A), Layered Memory Automata (LaMA)and History-Register Automata (HRA). These
are all extensions of finite state automata with unbounded memory over infinite alphabets. We prove
that the membership problem is NP-complete for all of them, while they fall into different classes for
what concerns non-emptiness. The problem of non-emptiness is known to be Ackermann-complete
for HRA, we prove that it is PSPACE-complete for ν-A.
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1 Introduction

We study unbounded memory automata for words over an infinite alphabet, as introduced in
[13, 17]. Such automata model essentially dynamic generative behaviours, i.e., programs that
generate an unbounded number of distinct resources each with its own unique identifier (e.g.
thread creation in Java, XML). For a detailed survey, we refer the reader to [4, 15]. We focus,
in particular, on three formalisms, ν-automata (ν-A) [9, 5, 8], Layered Memory Automata
(LaMA) [4] and HRA for History-Register Automata [11]. All these models are extensions
of finite state automata with memory-storing letters. The memory for HRA is composed
of registers (that can store only one letter) and histories (that can store an unbounded
number of letters). Whereas the memory for the other two models consists of a finite set
of variables. Among the distinctive features of HRA, they can reset registers and histories,
and select, remove and transfer individual letters. In ν-A and LaMA, variables must satisfy
an additional constraint, referred to as injectivity, meaning that they cannot store shared
letters. Moreover, variables can be emptied (reset) but single letters cannot be removed. We
know that LaMA are more expressive than ν-A as the former are closed under intersection
while it is not the case for the latter ones.
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Bounded memory Unbounded memory

FMA[13]

VFA [12]

FRA [19]

GRA [14]

ν-A [8, 5] LaMA [4] HRA [11] DA[7]
CMA [6]

[19]

[12]

[14]

[4]

[4]
[11]

[4]

[8]

[4]
[12]

[11]

[11]

[12]

Figure 1 A classification of memory automata from [4]. Arrows represent strict language inclusion,
while dotted lines denote language incomparability. The formalisms studied here are in yellow.

We tackle two problems: membership and non-emptiness. From a practical point of
view, automata over infinite alphabets can be used to identify patterns in link-stream
analysis [5]. In such a scenario, the alphabet is not known in advance (open systems) and
runtime verification can help to recognize possible attacks on a network by looking for
specific patterns. This problem corresponds to checking whether a pattern (word) belongs
to a language (the membership problem). Concerning non-emptiness, this is the “standard”
problem to address while considering automata in general.

Fig. 1 depicts the unbounded memory automata known in the literature (to the best of our
knowledge). An implementation exists for ν-A and LaMA which includes an implementation
of the membership algorithm, but we have not found anything neither for Data Automata
(DA) nor Class Memory Automata (CMA). Both DA and CMA are incomparable classes wrt
to HRA, hence we chose not to consider them. Fresh-Register automata (FRA), ν-A, LaMA
and HRA are instead related from the expressiveness point of view. Given the similarities
between those formalisms, the existence of implementations and the lack of complexity results
we find it natural to consider these classes of automata.

Application-wise, ν-A, called resource graphs in [9], model the use of unbounded resources
in the π-calculus, aiming at minimizing them. Then, runtime verification on link-streams
was the initial motivation for the introduction of (timed)ν-A [5]. In subsequent works, LaMA
have been introduced to be able to construct the synchronous product, hence being able
to express the synchronization of resources. This entails the closure by intersection, which
is interesting when one wants to define a language of expressions, an extension of (timed)
regular expressions, which was proposed in the PhD thesis of Clément Bertrand [2].

For a precise discussion on the relations among these formalisms see [4], here we just
recall the hierarchy: cfr. Fig. 1. Apart from expressiveness, a number of questions concerning
complexity remains open. We know that checking whether the language recognized by an
HRA is empty or not (referred to as the non-emptiness problem) is Ackermann-complete [11].
But the question has not been addressed for ν-A and LaMA. For finite-memory automata
(FMA), it is known that membership (testing whether a word belongs to the language) and
non-emptiness are NP-complete [18]. Knowing whether a language is included in another is
undecidable for FMA when considering their non-deterministic version, but it is PSPACE-
complete for deterministic ones [16]. In [12] it is shown that the non-emptiness problem
for Variable Finite Automata (VFA) is NL-complete, while membership is NP-complete.
For FRA and Guessing-Register Automata (as they are called in [15]) we only know that
both problems are decidable but we do not know the accurate complexity class. Finally, for
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data-languages where data-words are sequences of pairs of a letter from a finite alphabet
and an element from an infinite set and the latter can only be compared for equality, the
non-emptiness problem for FMA is PSPACE-complete [10], for DA and CMA, membership
and non-emptiness are only shown to be decidable, but no complexity is given [7, 6].

Contributions. In this paper, we close some open problems on the complexity of membership
and non-emptiness. We first prove that testing membership for HRA, ν-A and LaMA is an
equivalent problem. Then we address complexity and show that the problem is NP-complete
with a reduction of 3-SAT to LaMA. Non-emptiness appears to be a much harder problem.
We show that the non-emptiness problem is PSPACE-complete for ν-A by reducing TQBF
(True Fully Quantified Boolean Formula) to ν-A.

The paper is organized as follows. The three formalisms are introduced and the main
differences are recalled quickly in Section 2. Section 3 presents the complexity of the
membership problem and Section 4 the non-emptiness one. Finally, Section 5 concludes with
some remarks. Proofs and additional material can be found in [3].

2 Formalisms

All three formalisms are generalizations of finite state automata with memory over an infinite
alphabet U . For all of them, configurations (q, M) are pairs of a state of the automaton
plus a memory context. A memory context assigns a set of letters to each identifier of the
memory, variable or history depending on the formalism under consideration.

▶ Definition 1 (Memory context). Given a finite set of memory identifiers or variables V

and an infinite alphabet U , we define a memory context M as an assignment: M : V → 2U

where M(v) ⊂ U is the finite set of letters assigned to v.

The definition of accepted language common to the three formalisms is, as customary:

▶ Definition 2 (Accepted language). For an automaton A (LaMA, ν-A or HRA), the language
of A is the set of words recognized by A: L(A) = {w ∈ U∗ | (q0, M0) w=⇒

A
(qf , M) s.t. qf ∈ F},

where w=⇒
A

is the extension to sequences of transitions of u−→
A

.

2.1 n-Layered Memory Automata
We start with n-Layered Memory Automata (n-LaMA). The idea is that finite state automata
are enriched with n layers each containing a finite number of variables. Variables on the
same layer satisfy the injectivity constraint: variables on a given layer l ∈ [1, n] (denoted
vl) do not share letters of the alphabet: ∀v1 ̸= v2 ∈ V, M(vl

1) ∩ M(vl
2) = ∅. Upon reading a

letter, a transition can test if the letter is already stored in a set of variables and add a letter
to a set of variables. The non-observable transition (ε-transition) empties a set of variables.

▶ Definition 3 (n-LaMA). An n-LaMA A is defined by the tuple (Q, q0, F, ∆, V, n, M0), where:
Q is a finite set of states,
q0 ∈ Q and F ⊆ Q are respectively an initial state and a set of final states,
∆ is a finite set of transitions,
n is the number of layers, and V is a finite set of variables, denoted vl with l ∈ [1, n],
M0 : V 7→ 2U is an initial memory context.

CONCUR 2023
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q1 q2 q3 q4 q5 q6
♯ (X1, w) (Y 2, w) (X1, w) ♯

(X1, w), (Y 2, w)

Figure 2 A 2-LaMA Ap recognizing P(2) ∩ P(3) from Example 8.

A fresh letter at layer l, is a letter that is associated with no variable of this layer. The
set of transitions ∆ = ∆o ∪ ∆ε encompasses two kinds of transitions with ∆o the set of
observable transitions that consume a letter of the input and ∆ε the set of non-observable
transitions, that do not consume any letter of the input but can reset a set of variables.

▶ Definition 4 (Observable transition). An observable transition is a tuple of the form:
δ = (q, α, q′) ∈ ∆o where:

q, q′ ∈ Q are the source and destination states of the transition,
α : [1, n] → (V × {r, w}) ∪ {♯}, such that α(l) = (vl, x) for x ∈ {r, w} and for some
vl ∈ V indicates for each layer l which variable is examined by the transition.

Notice that only one variable per layer can be examined, and it is not possible to have
α(l) = (vk, x) with l ̸= k. The special symbol ♯ indicates that no variable is to be read or
written for a specific layer.
▶ Remark 5 (Any-letter transition). If ∀l ∈ [1, n], α(l) = ♯ (i.e., no variable is examined) then
the transition is executed consuming whatever letter is in input.

▶ Definition 6 (Non-observable transition). A non-observable transition is a tuple of the form
δε = (q, reset, q′) ∈ ∆ε where:

q, q′ ∈ Q are the source and destination states of δε,
reset ⊆ 2V is the set of variables reset (i.e., emptied) by the transition.

▶ Definition 7. The semantics of an n-LaMA A = (Q, q0, F, ∆, V, n, M0) is defined as:
An observable transition (q, α, q′) can be executed on an input letter u from memory
context M leading to M ′: (q, M) u−→

A
(q′, M ′) if for each α(l) ̸= ♯ such that α(l) = (vl, x):

if x = r, then u ∈ M(vl) and M ′(vl) = M(vl) ;
if x = w, then u is fresh for layer l and u is added to vl in the reached memory context:
M ′(vl) = M(vl) ∪ {u}.

All variables vl not labeled through α remains associated to the same letters : if α(l) = ♯

or α(l) = (vl
1, x) and vl

1 ̸= vl then M ′(vl) = M(vl).
A non-observable transition (q, reset, q′) can be executed from memory context M without
reading any input letter leading to M ′: (q, M) ε−→

A
(q′, M ′), where ∀vl ∈ reset : M ′(vl) = ∅

and otherwise M ′(vl) = M(vl).

▶ Example 8. Let P(p) = {u1 . . . us | ∀j, k > 0, j ̸= k, uj·p ̸= uk·p}, be the language
recognizing words where the letters at positions, which are multiples of p are all different
whereas the others are not constrained. Fig. 2 depicts a 2-LaMA for P(2) ∩ P(3).

2.2 ν-automata
ν-automata (ν-A) can be seen as a restricted version of LaMA with only one layer. Hence,
each variable is constrained under the injectivity property, and no letter can be stored in
more than one variable.
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▶ Definition 9 (ν-A). A ν-A is defined as a tuple (Q, q0, F, ∆, V, M0), where
Q is a finite set of states containing an initial state q0 ∈ Q and a set of final ones F ⊆ Q,
V is a finite set of variables that may initially be storing a finite amount of letters from
the infinite alphabet U , as specified by the initial memory context M0,
and ∆ is a finite set of transitions.

As before, ∆ = ∆o ∪ ∆ε where ∆o is the set of observable transitions and ∆ε is the set of
non-observable ones. Differently from LaMA, observable transitions are decoupled in read
and write transitions.

▶ Definition 10 (Observable transition). An observable transition can be of two kinds:
(q, v, r, q′) and (q, v, w, q′) (r for read and w for write) where q, q′ ∈ Q are the source and
destination states and v ∈ V .

▶ Definition 11 (Non-observable transition). A non-observable transition is a tuple of the
form δε = (q, reset, q′) ∈ ∆ε where: q, q′ ∈ Q are the source and destination states of δε,
reset ⊆ 2V is the set of variables reset by the transition.

▶ Definition 12. The semantics of a ν-A A = (Q, q0, F, ∆, V, M0) is defined as:
An observable transition (q, v, x, q′) reading input letter u can be executed from memory
context M leading to M ′: (q, M) u−→

A
(q′, M ′) if for each v:

if x = r, then u ∈ M(v) and M ′(v) = M(v);
if x = w, then u is fresh in M and u is added to v in the reached memory context:
M ′(v) = M(v) ∪ {u}.

All other variables v1 ̸= v, remains associated to the same letters M ′(v1) = M(v1).
A non-observable transition (q, reset, q′) ∈ ∆ε can be executed from memory context M

leading to M ′: (q, M) ε−→
A

(q′, M ′) without reading any input letter, where ∀v ∈ reset :
M ′(v) = ∅ and otherwise M ′(v) = M(v).

▶ Remark 13. Analogously to LaMA, we consider any-letter transitions, denoted by (q, ♯, q′)
with ♯ ̸∈ U , which are enabled whenever a letter is read and the memory context of the target
configuration is the same as the origin’s one.

Notice that any-letter transitions do not alter the expressive power of ν-A nor the
complexity of its problems. Indeed, it is a sort of macro that can be encoded by a set of
transitions searching for the presence of a letter or its freshness over the whole set V . To do
so, one needs as many reading transitions as variables to allow the firing with any letter in
memory. For fresh letters, one needs a transition writing in an extra variable, which is reset
immediately after.

2.3 History-Register Automata
HRA are automata provided with a finite set H of histories, i.e., variables storing a finite
subset of letters of the infinite alphabet U . To simplify the presentation, we consider
HRA defined only with histories and no registers. The latter does not provide additional
expressiveness [11]. An essential distinction between HRA and LaMA or ν-A is that different
histories are allowed to store the same letter (i.e., there is no injectivity constraint). Thus,
an observable transition is annotated with the exact set of histories that should contain the
letter read to enable it. This entails that for each observable transition the whole memory
has to be explored while LaMA allow ignoring some layers using symbol ♯ (this can be crucial
while implementing the formalisms2).

2 Implemented in tool available at https://github.com/clementber/MaTiNA/tree/master/LaMA
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qow qew qer qor

∅/O

∅/E

E/O

O/E

E/O

O/E

Figure 3 Example of an HRA Ah.

▶ Definition 14 (HRA). A History-Register Automata is defined as a tuple of the form
A = (Q, q0, F, ∆, H, M0) where Q is the set of states, q0 the initial one, F the set of final
ones, ∆ the set of transitions, H a finite set of histories and M0 the initial memory context.
The set of transitions ∆ = ∆o ∪ ∆ε are of the form:

(q, Hr, Hw, q′) ∈ ∆o where Hr, Hw ⊆ H (for read and write), which is an observable
transition and
(q, H∅, q′) ∈ ∆ε where H∅ ⊆ H, which is a non-observable transition.

An observable transition (q, Hr, Hw, q′) is enabled if letter u is present in exactly all the
histories in Hr and not present in H \ Hr. After the transition, u is present only in the
histories in Hw. Notice that this allows moving an input letter from one set of histories to
another, or even forgetting it if Hw = ∅. This is not possible in ν-A and LaMA. Finally, if
Hr = ∅ then the input letter has to be fresh (absent from every history).

▶ Definition 15. The semantics of an HRA A = (Q, q0, F, ∆, H, M0) is defined as:
an observable transition (q, Hr, Hw, q′) is enabled for memory context M when reading
letter u ∈ U : (q, M) u−→

A
(q′, M ′) if u ∈ M(hr) ⇔ hr ∈ Hr and ∀hw ∈ Hw : M ′(hw) =

M(h) ∪ {u} and ∀h ̸∈ Hw: M ′(h) = M(h) \ {u};
a non-observable transition (q, H∅, q′) is enabled for any memory context M and allows
to move from configuration (q, M) to (q′, M ′): (q, M) ε−→

A
(q′, M ′), where all the histories

in H∅ have been reset in M ′.

▶ Example 16. Fig. 3 depicts an HRA that, with an initially empty memory context,
recognizes the language

{u1u2 . . . un | ∃k < n, ∀i, j ∈ [1, k], ui = uj ⇔ i = j,

∀m ∈]k, n], ∃p < m, up = um, p mod 2 ̸= m mod 2, ̸ ∃q ∈]p, m[, um = uq}

The two transitions looping between states qow and qew allow us to recognize words where
the first k letters are all different from each other. Letters are stored in histories O (odd) and
E (even) to remember the parity of the position they are read at. The transitions between
states qer and qor allow us to recognize words whose suffix is only composed of repetitions of
the k first letters, with the additional constraint that they can only occur at a position with
opposed parity wrt the previous occurrence. Thus, if a letter was read for the last time at an
even position, it is stored in history E and can only be read in an odd position. Once it is
read, it is transferred to the O history to remember it can only be read at an even position
the next time.



C. Bertrand, C. Di Giusto, H. Klaudel, and D. Regnault 33:7

3 Complexity of the membership problem

We know that each ν-A can be encoded into a LaMA and respectively each LaMA can be
encoded into an HRA both recognizing the same language [4]. The encoding from LaMA to
HRA is exponential in the number of layers, hence we know that the complexity of problems
for HRA gives an upper bound to the complexity of the same problem for LaMA and ν-A.
In this section, we show that the complexity of the membership problem (i.e., given an
automaton A and a word w decide whether w ∈ L(A)) falls in the same class for these
three automata models. To do so, we show that the membership problem for LaMA can be
simulated using ν-A, and the same can be done for HRA using LaMA.

Simulating the membership for LaMA in ν-automata. The idea is to represent an n-LaMA
as a product of n ν-A, one for each layer. The main limitation is that having just one layer
makes the injectivity constraint stronger. Indeed, it is not possible to trivially treat a same
letter stored on different layers. To cope with this difficulty, we rename the word under
consideration, replacing consistently each letter with a sequence of new ones - one per layer
of the LaMA: i.e., for an n-LaMA the letter u ∈ w is replaced by the letters u1, ..., un where
all the ui are different in order to have the letters belonging to different layers all distinct
from each other. This renaming is always possible as the alphabet U is infinite. For example,
for the word aba, a consistent renaming, for a 2-LaMA, could produce a1 a2 b1 b2 a1 a2.

▶ Definition 17 (Renaming). ξn : U → Un is a renaming function that given a letter u ∈ U
generates a new sequence of n letters u1 . . . un with for all i ̸= j ∈ [1, n] ui ̸= uj and such
that if u1 ̸= u2 then for all i, j ∈ [1, n], ui

1 ̸= uj
2. ξn(u1 . . . um) = u1

1 . . . un
1 . . . u1

m . . . un
m is its

pointwise extension to words .

Let A = (Q, q0, F, ∆, V, n, M0) be an n-LaMA and w = u1 . . . um ∈ U∗. We know that
w ∈ L(A) if and only if there is a finite sequence of transitions such that for some Mf ,
(q0, M0) w=⇒

A
(qf , Mf ) with qf ∈ F . It is then possible to construct a ν-A that accepts ξn(w),

which simulates the recognition process of the n-LaMA over the word w. To do so, we encode
every observable transition of A into a sequence of transitions successively simulating the
constraints applied to variables of each layer. Moreover, we apply the renaming function ξn

to the initial memory context. In order to simplify the notations, in the following, we denote
by x⌊k the projection onto the k-th element of tuple x, e.g., (a, b, c)⌊2 = b.

▶ Definition 18 (Encoding of a memory context). Let M be the memory context over the
set of variables V over n layers, then ∀vl ∈ V , its renaming through ξn, is defined as
JMKξ(vl) = {ξn(u)⌊l | u ∈ M(vl)}.

▶ Definition 19 (Encoding of a LaMA). Let A = (Q, q0, F, ∆, V, n, M0) be an n-LaMA, then
the ν-A JAKξ = (Q′, q′

0, F ′, ∆′, V ′, M ′
0) is the encoding of A through the renaming ξn, where:

Q′ = Q ∪ Qo and the set of states Qo = {ql
δ | δ = (q, α, q′) ∈ ∆, l ∈ [2, n]} is used by the

sequence of transitions simulating each observable transition of A, q0
′ = q0 and F ′ = F ;

V ′ = V is the set of variables of A flattened on one layer;
M0

′ = JM0Kξ is the initial memory context of A renamed in case it is not initially empty;
∆′ = ∆′

o ∪∆ε where ∆ε is the set of all non-observable transitions of A, and ∆′
o contains

the encoding of every observable transition δ = (q, α, q′) of A, which is a sequence of
transitions with q1

δ = q and qn+1
δ = q′ such that

∆′
o = {(ql

δ, vl, x, ql+1
δ ) | δ = (q, α, q′) ∈ ∆, l ∈ [1, n], α(l) = (vl, x)}

∪ {(ql
δ, ♯, ql+1

δ ) | δ = (q, α, q′) ∈ ∆, l ∈ [1, n], α(l) = ♯}.
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Notice that the language accepted by the encoded ν-A JAKξ of a LaMA A is an over-
approximation of the language accepted by A: ξ(L(A)) ⊆ L(JAKξ). They are equal only
when the LaMA has one layer (i.e., n = 1). Nonetheless, this construction may be used to
test the membership of a word w to L(A). The proof is a simple induction on the length of
the derivation of w and ξn(w) [3].

▶ Theorem 20. Let A be an n-LaMA. w ∈ L(A) if and only if ξn(w) ∈ L(JAKξ).

Simulating the membership for HRA in LaMA. This section presents how to solve the
membership problem for HRA using LaMA. The difference in expressiveness between HRA
and LaMA comes from the ability of HRA of removing letters from histories when they are
read. We resort to an encoding of words where each letter is duplicated and annotated with
a number representing how many occurrences of that letter have been encountered so far. In
detail, the first copy of the letter keeps the information on the number of occurrences of the
letter seen so far and the second one the number of occurrences including the present one.

▶ Example 21. Take w = abaca then the encoded word is w′ = a0a1 b0b1 a1a2 c0c1 a2a3

The idea behind the encoding of observable transitions is to use the first copy to check
the presence and absence of the letter in every variable (simulating the role of Hr) while
the second one (that is always fresh) can be used to simulate writing and removal (hence
simulating Hw). More precisely, once we add an annotated letter to a variable, the encoded
automaton will ensure that the variable always stores the last seen occurrence of that letter.
Thus, removing a letter from a history consists in not storing the last seen occurrence of
the letter in the corresponding encoded variable. Clearly, all the letters annotated with a
number smaller than the current one will not be used in any of the transitions, representing
a form of garbage.

We consider a renaming function ζi : U → U2 which replaces u by a pair of letters
ui−1ui for any i ∈ N+. Then, we define the encoding of words ζ : U∗ → U∗ as follows
ζ(u1 . . . um) = ζiu1

(u1) . . . ζium
(um) where each iuj is the number of occurrences of uj seen

in the prefix u1 . . . uj . Notice that when considering the word up to letter uj , ζiuj
(uj)⌊2 is

always a new letter (e.g., a fresh letter with respect to those in ζ(u1 . . . uj)).

▶ Definition 22 (Encoding of an HRA). Let A = (Q, q0, F, ∆o ∪ ∆ε, {h1, . . . hn}, M0) be an
HRA, its encoding into an n-LaMA is JAKζ = (Q′, q′

0, F ′, ∆′, V ′, n, M ′
0) where:

Q′ = Q ∪ Qo and the set of states Qo = {qδ | q ∈ Q, δ = (q, Hr, Hw, q′) ∈ ∆} is used by
the sequence of transitions simulating each observable transition of A;
q′

0 = q0 and F ′ = F ;
V ′ = {hl, ωl | l ∈ [1, n]} and for each layer l ∈ [1, n], hl plays the role of history hl and
ωl is used to check the absence of letters in hl.
M ′

0(hl) = {ζ1(u)⌊1 | u ∈ M0(hl)} and M ′
0(ωl) = ∅ for all l ∈ [1, n] meaning that M ′

0 is as
M0 with all letters renamed with ζ1 and empty for all extra variables;
∆′ = ∆′

ε ∪ ∆′
o with

∆′
ε = {(q, {hl | hl ∈ H∅}, q′) | (q, H∅, q′) ∈ ∆ε}, is the direct translation of the

ε-transitions in A.
∆′

o = {(q, αHr
, qδ), (qδ, αHw

, q′) | δ = (q, Hr, Hw, q′) ∈ ∆o} with for all l ∈ [1, n]

αHr
(l) =

{
(hl, r) if hl ∈ Hr

(ωl, w) if hl ̸∈ Hr
and αHw

(l) =
{

(hl, w) if hl ∈ Hw

♯ if hl ̸∈ Hw

the first simulating the guard part of the observable transition and the second the
writing/relocation.
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Figure 4 The 2-LaMA JAhKζ , encoding of the HRA Ah from Example 16.

▶ Example 23. Fig. 4 depicts the encoding applied to the HRA of Example 16. Given the
word w = abcabb and its renaming ζ(w) = a0a1b0b1c0c1a1a2b1b2b2b3, we present how the
encoding works. Ah has two histories: H = {O, E}, thus the set of variables V of JAhKζ

is {O1, ω1} on layer 1 and {E2, ω2} on layer 2. Let (qow, M∅) be the initial state for both
automata, with M∅ the memory context where all variables/histories are empty.

When reading the first letter a in Ah, only transition (qow, M∅) a−−→
Ah

(qew, M1) is enabled as
a is not stored in any of the histories in M∅, as a consequence, a is added to O in M1. In JAhKζ ,
this transition is encoded with the sequence (qow, M∅) a0

−−−−→
JAhKζ

(q′
ow, M ′) a1

−−−−→
JAhKζ

(qew, M ′
1).

The first transition when reading a0, checks if a0 is absent from both O1 and E2 using ω1

and ω2 with the injectivity constraint. When reading a1 the transition q′
ow → qew writes the

letter in O1. Note that a0 is still stored in ω1 and ω2, but it will never be read again (as the
renaming ζ always increases the index of letters).

Then, when Ah read the first occurrence of b, the only enabled transition is (qew, M1) b−−→
Ah

(qow, M2), where b is stored in E is M2. And when reading c the only transition enabled is
(qow, M2) c−−→

Ah

(qew, M3) with O storing both a and c while E only stores b. In JAhKζ , this

sequence of transitions is encoded by enabling the sequence of transitions (qew, M ′
1) b0

−−−−→
JAhKζ

(q′
ew, M ′′

1 ) b1

−−−−→
JAhKζ

(qow, M ′
2) c0

−−−−→
JAhKζ

(q′
ow, M ′′

2 ) c1

−−−−→
JAhKζ

(qew, M ′
3). With M ′

2 storing b1 in E2

and M ′
3 storing c1 in O3 in addition to a1. This is the only sequence of transition that can

be enabled as b0 was not stored in O1 in the state (qew, M ′
1) and c0 was not stored in E2 in

(qow, M ′
2).

When reading the second occurrence of a, the only enabled transition is (qew, M3) a−−→
Ah

(qor, M4) where a is transferred from O to E in M4. In JAhKζ this is encoded by the sequence
of transitions (qew, M ′

3) a1

−−−−→
JAhKζ

(q′′
ew, M ′′

3 ) a2

−−−−→
JAhKζ

(qor, M ′
4). The first transition is the only one

enabled in configuration (qew, M ′
3) as a1 is already stored in O1, thus it would be impossible

to write it in ω1 to enable the transition to q′
ew. In M ′

4, the letter a2 is stored in E2 along
with b1, while a1 is still stored in O1 but will never be read again in ζ(w), so it can be
ignored. This is how the transfer mechanism is encoded in this construction.

Reading bb, the last two letters of w, will enable in Ah the sequence (qor, M4) b−−→
Ah

(qer, M5)

transferring b from E to O in M5 and then enabling (qer, M5) b−−→
Ah

(qor, M6) transferring

b back from O to E in M6. In JAhKζ , this is encoded by reading the letters b1b2b2b3 and
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q0 qf

(Xi, w)

(Xi, w)

(a) The gadget for the existentially
quantified variable xi.

q0 qf

(L1
j , r)

(L2
j , r)

(L3
j , r)

(b) The 3SAT clause gadget for Cj = (L1
j ∨ L2

j ∨ L3
j ).

Figure 5 Gadgets used for showing NP-hardness of the membership problem.

enabling the loop of transition between states qor, q′
or, qer and q′

er. Looking if the previous
occurrence of b, here b2 (resp. b3), is stored in E2 (resp. O1) by reading in the variable.
Also checking if it is absent from O1 (resp. E2) by writing in the ω of the same layer. Then
writing the next occurrence of b, here b3 (resp. b4), in O1 (resp. E2) to encode its transfer.

Notice that, as before, the language recognized by JAKζ is actually larger than L(A).
▶ Remark 24. In [11], HRA are presented with a set of registers able to store only one letter at
a time. Their content is overwritten whenever a letter is written into it. The authors proved
that HRA using only histories are as expressive as the ones using both histories and register.
However, the construction presented to remove registers is exponential in their number. This
is caused by the need of decoupling the overwriting into two phases, first, one uses the content
to verify if an observable transition is enabled and then erases the content of histories. The
exponential construction comes from the fact that to keep the languages equivalent, for each
phase, one can use only one observable transition. Instead, to show membership we do not
need to prove the equivalence of languages and the construction in Definition 22, already
splits transitions into these two phases, using two observable transitions. Hence, it can be
extended to registers avoiding the exponential cost.

▶ Theorem 25. Let A be an HRA. w ∈ L(A) if and only if ζ(w) ∈ L(JAKζ).

Complexity. The two previous encodings give polynomial reductions of the membership
problem from HRA to LaMA and from LaMA to ν-A. Therefore, there is a polynomial
reduction of the problem for HRA to ν-A. The expressiveness results from [4] give a linear
construction from ν-A to LaMA and an exponential construction, in the number of layers,
from LaMA to HRA. As ν-A are 1-LaMA, the same construction can be used to translate a
ν-A into an HRA of polynomial size. This implies an equivalence of complexity class of the
membership problem for ν-A and HRA, as well as for ν-A and LaMA. By transitivity, we get
the same equivalence between LaMA and HRA. Next, we show that the membership problem
for LaMA is NP-complete. For the hardness part, this is shown by resorting to a reduction
from the 3SAT problem, while the completeness part follows by observing what would be the
cost of executing a word on an automaton. Fig. 5 depicts the intuition behind the encoding
of a 3SAT instance. The idea is that the gadget in Fig. 5a chooses non-deterministically
the truth assignment of Xi or Xi and the one in Fig. 5b checks that this assignment indeed
satisfies the given clauses.

▶ Theorem 26. The membership problem for LaMA is NP-complete.

Hence we can conclude that:

▶ Corollary 27. The membership problems for ν-A, LaMA and HRA is NP-complete.
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As a direct consequence and looking at the expressiveness hierarchy in Fig. 1 we can also
give a complexity class for the membership problem in FRA. Indeed, since FMA can be
encoded into FRA [19], we can deduce NP-hardness, and completeness follows from their
encoding into LaMA [4].

▶ Corollary 28. The membership problem for FRA is NP-complete.

4 Complexity of the non-emptiness problem

The non-emptiness problem consists in deciding whether the language accepted by an
automaton is non-empty, or in other words checking if there is a path from the initial
configuration to a final configuration. As mentioned before, in [11], it has been shown
that deciding the non-emptiness for HRA is Ackermann-complete. Still, the complexity for
non-emptiness is known neither for LaMA nor for ν-A. We start with the non-emptiness
Problem for ν-A. We show that the problem is PSPACE-complete. To do so, we reduce
the TQBF problem (true fully quantified Boolean formula) to ν-A non-emptiness. TQBF is
known to be PSPACE-complete (Meyer-Stockmeyer theorem [1]).

▶ Lemma 29. The non-emptiness problem is PSPACE-hard for ν-A.

Proof. Let νNEP be the short for non-emptiness Problem for ν-A.
We show that TQBF can be reduced to νNEP. Let Q1x1 . . . Qnxn(C1 ∧ . . . ∧ Cm), be a

fully quantified Boolean formula, where each Qi ∈ {∀, ∃} and each Cj is a clause comprising
at most n literals (xi or xi). We assume that literals in clauses are ordered according to
the order of variable declarations and at most one literal per variable is present. To encode
TQBF in ν-A we consider:

for each existentially quantified xi, variables Xi and Xi, and the gadget depicted in
Fig. 5a, used in the proof of Theorem 26;
for each universally quantified xi, variables Xi, Xi and X̃i, and the gadget depicted in
Fig. 6a. Variable X̃i is used as a flag to indicate that all possible truth assignments of xi

have been considered. The initial transition of the gadget initializes variable Xi to 1i.
The dashed automaton connected between states q1 and q2, handling other variables and
the clauses, is constructed recursively. The looping part starting in state q2 writes letter
2i into variable X̃i, which is used after browsing once again the dashed part to reach the
final state qf . After this, variable Xi is reset and then variable Xi is initialized to 1i to
consider the other truth assignment of xi. From state q5 to q1 all the variables for xj ,
with j from i + 1 to n are reset to reinitialize their truth assignments;
for each clause Cj , a clause gadget depicted in Fig. 6b. It tests literals one after the
other and takes the oblique transition for the first which makes the clause satisfied, which
means that the remaining literals are just read up to the end of the clause, which is
satisfied if qf is reached.

In order to construct the ν-A A encoding the instance of TQBF we connect first the
clause gadgets by merging the final state of a clause gadget with the initial state of the next
one. Let C be the resulting automaton. Then, we connect to C the gadgets for variable
declarations starting from the nth, i.e., the last in the order of declarations. If the variable
is under an existential quantifier, we connect the existential variable gadget in front of the
automaton obtained so far by merging its final state with the initial state of C. If the variable
is under a universal quantifier, we connect the corresponding gadget by merging the initial
state of C with state q1 of the gadget, and the final state of C with state q2 of the gadget.
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(X̃i, w)

(Xi, w)

(X̃i, r)

reset(Xi)

reset({Xj , Xj , X̃j | j > i})

(a) The gadget for universally quantified variable xi.
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(b) The gadget for TQBF clause Cj = (Lj1 ∨ . . . ∨ Ljk ).

Figure 6 Gadgets used for showing NP-hardness of the emptiness problem for ν-A.

We connect this way, i.e., following the inverse order of declarations, the gadgets for all the
remaining variable declarations. The initial state of the first declared variable gadget is the
initial state of A and the unique state qf of the final construction is the unique final state of
A. Finally, the input word w is obtained recursively for each TQBF instance by the function
input(ϕ) defined in Algorithm 1. The construction of the word follows the intuition given
above (for the construction of the automaton), that is: it unfolds the loops generating the
letters needed at each step.

Algorithm 1 Function to generate the word accepted by TQBF automaton.
1: function input(ϕ) ▷ ϕ = Q1x1 . . . Qnxn C1 . . . Cm

2: ∀i ∈ [1, n] : init(xi) = 1i

3: ∀i ∈ [1, n] : end(xi) = 2i

4: ∀j ∈ [1, m] : wj ▷ contains exactly one 1i for each xi or xi present in clause Cj

5: if ϕ = ∅ then return ϵ

6: else if ϕ = ∃xi ϕ′ then return init(xi).input(ϕ′)
7: else if ϕ = ∀xi ϕ′ then return init(xi).input(ϕ′).end(xi).init(xi).input(ϕ′).end(xi)
8: else if ϕ = Ci ϕ′ then return wi.input(ϕ′)

Example: for the TQBF instance ∃x1 ∀x2 ∀x3 ∃x4((x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)), Fig. 7
represents a general construction schema of the corresponding ν-A, and the input word is
1112131411141213142313141114121314232212131411141213142312131411141213142322.

Note that every gadget of the automaton is deterministic, except for the existential
variable gadget. The size of A is polynomial in the size of the TQBF expression. The length
of the word generated by Algorithm 1 is in Ω(2n) but it is not a parameter of the construction
of A. Clearly, only a word generated by Algorithm 1 (or a consistent renaming) can be
accepted by A starting with an empty memory context. Such a word can be accepted if and
only if there is a solution to the TQBF instance. ◀
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init(x1) init(x2) init(x3) init(x4) C1 C2 end(x3) end(x2)
end(x3)

reset(x3)init(x3)

reset(x4) end(x2)

reset(x2)

init(x2)

reset(x3, x4)

Figure 7 Schema of construction for TQBF instance ∃x1 ∀x2 ∀x3 ∃x4 ((x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)).

It remains to show that the non-emptiness problem for ν-A is in PSPACE. This accounts
for showing that if the language recognized by an ν-A is non-empty then it contains a
word whose size together with the length of the transition path needed to accept it, are
exponentially bounded with respect to the size of the ν-A. To this aim, we “build” a finite
state machine (FSM) characterizing an abstraction of the state space of the ν-A.

If one can choose the letters to read, the idea is that observable transitions that write a
letter in a variable are never blocking. Since the alphabet is infinite there is always a fresh
letter that can be added, which we call a token. Instead, observable transitions that read a
letter from a variable are blocking, in the sense that concerned variables must contain at least
a letter (that we call a key). The first step towards the construction of the FSM is to build a
canonical ν-A such that a word accepted by the canonical automaton will also be accepted by
the initial ν-A A and each word accepted by A will have a corresponding canonical version.
Consider a ν-A A = (Q, q0, F, ∆, V, M0), its canonical version cano(A) = (Q, q0, F, ∆, V, M ′

0)
is an ν-A over the alphabets K and T , where:

K ⊂ U , such that |K| = |V |, is the set of keys kv, each of them being associated with
a variable v ∈ V . If M0(v) ̸= ∅, we select kv in M0(v). Also, if M0(v) = ∅, we select kv

such that ∀v′ ∈ V, kv ̸∈ M0(v′). The presence of a key in a variable v denotes the fact
that v is non-empty.
T = {t1, t2, . . .} ⊂ U , K ∩T = ∅, is an infinite set containing letters called tokens intended
to be used only once, which are never stored in memory. Hence, no letter in T is present
in the initial memory context of A, ∀v ∈ V : M0(v) ∩ T = ∅.
For each v ∈ V , the initial memory context M ′

0(v) of cano(A) is either empty if M0(v) = ∅,
or if M0(v) ̸= ∅, it only contains its key kv.

Notice that a word w is accepted by cano(A) if the following conditions hold:
1. w ∈ (K ∪ T )∗, and if ti ∈ T appears in w then it occurs at most once,
2. let (q0, M ′

0) w=====⇒
cano(A)

(qf , Mf ) with qf ∈ F be the accepting path for w then for each

intermediate configuration (q, M) in the path and for each kv ∈ K either kv ∈ M(v) or
for all v′ ∈ V , kv /∈ M(v′).

Observe that cano(A) is actually the same automaton as A but over a subset of the
alphabet U and where for each v ∈ V , M ′

0(v) ⊆ M0(v), hence it is easy to conclude that the
language of cano(A) is included in the one of A.

▶ Lemma 30. Let A and cano(A) be a ν-A and its canonical version. If a word w ∈
L(cano(A)) then w ∈ L(A).

We want to show that the language accepted by a ν-A A is empty if and only if the
language accepted by cano(A) is empty. The if part is the most involved and is the content
of the following lemma.
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▶ Lemma 31. Let A be a ν-A and cano(A) and its canonical version. If w ∈ L(A) then
there exists w′ ∈ L(cano(A)).

Proof. Let w = u1 . . . un ∈ L(A). Then there exists an accepting path (q0, M ′
0) w=⇒

A
(qf , Mf )

with qf ∈ F and intermediate configurations (qi, Mi)i≥0. Depending on those intermediate
configurations we build a new word w′ = u′

1 . . . u′
n and the corresponding path in cano(A)

accepting w′. For each configuration (qi, Mi), the construction maintains an invariant:
∀v ∈ V, M ′

i(v) = {kv} if and only if Mi(v) ̸= ∅. The proof proceeds by induction:
Base case: By construction the initial configuration of cano(A) satisfies the invariant.
Inductive step: We examine the transition (qi, Mi)

δi−→
ui

(qi+1, Mi+1). By inductive hypo-

thesis, we know that there exists a sequence of transitions (q0, M ′
0)

u′
1...u′

i−1======⇒
cano(A)

(qi, M ′
i) such

that ∀v ∈ V, M ′
i(v) = {kv} if and only if Mi(v) ̸= ∅. We prove there is a letter u′

i leading
to the configuration (qi+1, M ′

i+1) satisfying this property, through δi (by construction A

and cano(A) are defined on the same set of transitions), we list all possible cases:
- δi = (qi, reset, qi+1): then ui = u′

i = ε and δi will lead to a configuration with
M ′

i+1(v) = ∅ if v ∈ reset or M ′
i+1(v) = M ′

i(v) otherwise. Hence satisfying the
invariant.

- δi = (qi, v, r, qi+1): then Mi(v) ̸= ∅ otherwise the transition could not be enabled, so
u′

i = kv and by inductive hypothesis M ′
i(v) = {kv}. Since the memory context does

not change for both automata, the invariant is satisfied;
- δi = (qi, v, w, qi+1): if Mi(v) = ∅, then u′

i = kv, and kv will be written in variable v

in M ′
i+1 satisfying the invariant.

If Mi(v) ̸= ∅, then u′
i = ti ∈ T is a token and M ′

i(v) = M ′
i+1(v) since tokens are not

stored in memory. By inductive hypothesis we know that M ′
i(v) = {kv} and as δi is a

writing transition, then Mi+1 ̸= ∅, satisfying the invariant.
From the previous construction, it follows immediately that w′ ∈ L(cano(A)). ◀

Observe that, when reading a word w ∈ L(cano(A)), we only need to store the letters
belonging to K. Indeed, tokens in T may occur only once in w. This entails that tokens can
only enable a write observable transition, while for read transitions keys are sufficient. Hence,
in practice, tokens do not need to be added to the memory context. Hence the number of
different configurations in cano(A) is bounded by |Q| · 2|K| as:

we have |Q| states that can be encoded on log|Q| bits, and
there are 2|K| possibilities to store the presence or not in the memory of letters in K (2
possibilities per letter encoded on 1 bit since each kv can only be stored in v), so in total
we need |K| bits.

This shows that the number of configurations is finite. On top of this, as remarked above,
transitions over letters in T do not add constraints on the memory context and they can be
ignored. Hence the alphabet is now finite and we can reduce the non-emptiness of FSM to
the non-emptiness problem of ν-A.

▶ Lemma 32. The non-emptiness problem for ν-A is in PSPACE

Proof. Given a ν-A A = (Q, q0, F, ∆, V, M0), its canonical form has at most |Q|2|K| con-
figurations. The state space of cano(A) could be constructed as an FSM by merging all
transitions of A writing a token from T going from state q to q′ into a unique transition. This
way, the FSM would have O(|∆|2|K|) transitions as each configuration (q, M ′) of cano(A)
has at most as many outgoing transitions as q in A. A formal definition of the construction
is in [3].
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Moreover, if the underlying FSM is non-empty it implies that there is a sequence of at
most O(|∆|2|K|) transitions from an initial state of A to one of its accepting state. Recall that
finding a path between two vertexes/states in a graph (V, E) is a problem called PATH which
is NL-complete [1]. The algorithm for PATH, in logarithmic space, could be adapted to find
whether there exists a sequence of transitions from an initial state of A to an accepting state.
Since this sequence of transitions is exponential in the size of A, we prove that the problem
is in NPSPACE for ν-A. Since PSPACE=NPSPACE [1] we show that the non-emptiness
problem for ν-A is in PSPACE.

The PATH algorithm adapted to our problem memorizes a state of A, the memory context
of cano(A) and a counter on O(log(|∆|)+ |K|) bits. Each time that the counter is augmented
by one, a transition starting in the memorized state will be chosen randomly and applied as
follows: if this transition is a reset, then the state is updated and the memory is reset. If this
transition is a write, then the state is updated and the corresponding key is added to the
memory (if not already present). If the transition is a read then either the key is not in the
memory and the algorithm halts and rejects or the state is updated. As soon as an accepting
state is reached then the algorithm halts and accepts. If the counter reaches its maximum
then the algorithm halts and rejects. Note that the FSM is not actually constructed in this
algorithm, but only one of its paths is explored dynamically. ◀

▶ Theorem 33. The non-emptiness problem for ν-A PSPACE-complete.

Proof. By Lemmata 29 and 32. ◀

5 Conclusions

We have discussed the complexity of membership and non-emptiness for three formalisms
ν-A, LaMA and HRA. We showed that concerning the membership problem, all three kinds
of automata fall in the NP-complete class. Non-emptiness is more delicate. We proved that
the non-emptiness problem for ν-A is PSPACE-complete.

For LaMA, we know the lower bound and the upper bound of the complexity class of
the non-emptiness problem. As a consequence of Theorem 33 and from the expressiveness
results in [4], the complexity is PSPACE-hard. However, it is a strict lower bound as we are
able to construct a LaMA where the shortest accepted word is of size in O(22n) with n the
number of variables. In our previous work [4], we showed an exponential encoding of LaMA
into HRA for which the non-emptiness problem is shown to be Ackermann-complete in [11].
This also gives us the Ackermann class membership. As one of the reviewers suggested, we
believe that we could adapt to LaMA the proof in [11] to show that the problem is actually
Ackermann-complete.

As for future work, apart from formally showing the Ackermann-completeness of the
non-emptiness problem for LaMA, we plan to address other expressiveness issues of LaMA.
Indeed the number of layers seems to create a hierarchy of expressiveness and complexity.
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Abstract
We revisit the logical characterisations of various bisimilarity relations for the finite fragment of the
π-calculus. Our starting point is the early and the late bisimilarity, first defined in the seminal work
of Milner, Parrow and Walker, who also proved their characterisations in fragments of a modal logic
(which we refer to as the MPW logic). Two important refinements of early and late bisimilarity,
called open and quasi-open bisimilarity, respectively, were subsequently proposed by Sangiorgi and
Walker. Horne, et. al., showed that open and quasi-bisimilarity are characterised by intuitionistic
modal logics: OM (for open bisimilarity) and FM (for quasi-open bisimilarity). In this work, we
attempt to unify the logical characterisations of these bisimilarity relations, showing that they can be
characterised by different sublogics of a unifying logic. A key insight to this unification derives from a
reformulation of the four bisimilarity relations (early, late, open and quasi-open) that uses an explicit
name context, and an observation that these relations can be distinguished by the relative scoping
of names and their instantiations in the name context. This name context and name substitution
then give rise to an accessibility relation in the underlying Kripke semantics of our logic, that is
captured logically by an S4-like modal operator. We then show that the MPW, the OM and the FM
logics can be embedded into fragments of our unifying classical modal logic. In the case of OM and
FM, the embedding uses the fact that intuitionistic implication can be encoded in modal logic S4.
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1 Introduction

The π-calculus [14] is a process calculus originally developed by Milner, Parrow and Walker,
aimed at modelling a notion of process mobility (called link mobility). It can be seen as an
extension of the Calculus of Communicating Systems (CCS) [13], that allows the creation of
channel names, and exchanges of names between processes. Unlike CCS, where there is a
canonical notion of (strong/weak) bisimilarity defining process equivalence, there are several
notions of (strong/weak) bisimilarity for the π-calculus that arise from different ways in
which name quantification is scoped in the bisimulation game. We consider four important
notions of bisimilarity in this work: the early and the late bisimilarity, that were first defined
in [14], the open bisimilarity [20] and the quasi-open bisimilarity [22]. The latter two are
chosen for our study for two reasons: they are full congruence relations (closed under all
process constructs, something which is not true for early/late bisimilarity), and they are
more amenable for automation, especially open bisimilarity. Quasi-open bisimilarity implies
early bisimilarity and is implied by open bisimilarity, but is incomparable to late bisimilarity.
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Our main interest is in the problem of characterising bisimilarity using (modal) logic.
For a modal logic to characterise a notion of bisimilarity, bisimilar processes should satisfy
precisely the same formulas (soundness), and conversely two processes satisfying the same
formulas should be bisimilar (completeness). This type of results was pioneered by Hennessy
and Milner, who characterised bisimilarity for CCS using a classical normal multi-modal
logic [9]. Modal logics characterising early and late bisimilarity for the π-calculus were
developed by Milner, Parrow and Walker [15]. The authors of that work show that early
and late bisimilarity are characterised by the modal logic EM and LM, respectively. Both
EM and LM are sublogics of a classical modal logic, which we refer to here as MPW logic.
Such a logical characterisation for open and quasi-open bisimilarity remained open until
recently. In 2017, a characterisation of open bisimilarity was given using an intuitionistic
modal logic OM [4, 5]. The intuitionistic nature of their logic, as opposed to MPW classical
modal logic, was motivated by the fact that closure under certain name substitutions acts
like intuitionistic persistence. Not long after, quasi-open bisimilarity was characterised using
yet another intuitionistic modal logic called FM [10].

Early and late bisimilarity are distinguished in one important case involving an input
transition. In a bisimulation game between a process P and another process Q, if P makes an
input transition, e.g., P a(x)−−−→ P ′(x), then the move that Q plays can depend, or not depend,
on the choice of the name x. In early bisimulation, the choice that Q makes is dependent
on x, whereas in late bisimulation, it is independent of x. In open bisimulation, which
refines late bisimulation, the choice of x is further delayed indefinitely – technically this is
formalised by allowing input names to be instantiated at any point in the bisimulation game.
In quasi-open bisimulation, the choice that Q makes is dependent on the name x, just like in
early bisimulation. However, like open bisimulation, input names can be further instantiated
at any point in the bisimulation game. Both open and quasi-open bisimulation impose a
restriction on name substitutions, permitting only substitutions that do not identify certain
pairs of names (typically those arising from names generated from bound-output transitions);
they differ only in the extent on how certain names must remain distinct throughout the
bisimulation game. The open nature of name instantiations is essentially what gives both
open and quasi-open bisimiliarty their intuitionistic character: in the bisimulation game,
equality between two (input) names cannot generally be decided, i.e. the classical tautology
(x = y) ∨ (x ̸= y) does not necessarily hold at every point in the bisimulation game [5, 10].

While the difference between early and late bisimilarity is reflected in MPW logic by
the use of two modalities that capture precisely the difference in the scope of the name
quantification arising from input transitions, the same cannot be said about OM and FM,
at least in their current formulations in [5, 10]. An obvious reason is that OM and FM
are entirely separate logics, so not sublogics of a unifying logic like MPW logic. Another
is a more fundamental one: the notions of name distinctions used in open and quasi-open
bisimilarity are quite different, at least superficially, with open bisimulation adopting a more
relax notion (that allows more names to be identified). This fundamental difference gives rise
to seemingly incompatible logics and it is not obvious how they can be viewed as sublogics of
a unifying logic. In this work, we show that these differences can be reconciled if the context
in which these names are instantiated is taken into account. A (name) context here refers to
information about how a name is created (as part of an input or a bound output), and the
relative order in which names are created in a trace of a process. We refer to such a context as
a history. By reformulating all four bisimilarity relations by explicitly accounting for histories
of names, we are able to obtain a unifying (classical) modal logic, whose sublogics characterise
all four bisimilarity relations. This reconciliation needs to account for the difference between
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intuitionistic and classical modal logics. We achieve this by viewing name substitutions
as giving rise to an accessibility relation in a Kripke model, with a corresponding modal
operator that behaves like a modal operator in the modal logic S4 (i.e., normal modal
logics with reflexive and transitive frames). We can then encode intuitionistic implication
(or negation) using this modal operator and classical implication. In particular, the notion
of inequality x ̸= y in the intuitionistic logic FM becomes the modal formula ¬(x = y)
in our logic. One notable consequence of our unifying logic, in the context of quasi-open
bisimilarity, is that we obtain a much simpler construction of the distinguishing formulas for
processes that are not quasi-bisimilar, in comparison to [10].

Our contributions can be summarised as follows:
We give a uniform reformulation of four bisimilarity relations (early, late, open and
quasi-open) using explicit name contexts.
We give a unifying logic, whose sublogics characterise all four bisimilarity relations
mentioned above.
We provide a new construction of distinguishing formulae for quasi-open bisimilarity,
simplifying a similar construction in [10], by making essential use of classical negation.

Outline of the paper. We set the stage in Section 2, where we recall the π-calculus, its
late operational semantics with respect to a history, and the definitions of late, early, open
and quasi-open bisimilarity. In Section 3 we introduce the logic that lies at the heart of this
paper, together with its semantics. We showcase the distinguishing power by examples, and
we state the main theorem of the paper, giving four fragments of the logic each of which
characterises a notion of bisimilarity. Section 4 is devoted to proving the completeness part
of the main theorem. Our results currently are established for the finite π-calculus with the
match operator, but without the mismatch operator. In Section 5 discuss some key ideas
on how to extend our results to handle the mismatch operator, leaving the details to future
work. In Section 6 we discuss related work and we conclude in Section 7. Some detailed
proofs are omitted but will be made available in a forthcoming technical report.

2 π-calculus and four notions of bisimulations

We give a brief overview of the operational semantics of the finite fragment of the π-
calculus [14], and reformulate four notions of bisimulation: early [14], late [14], open [20] and
quasi-open [22] bisimulation.

We assume a countably infinite set of channel names N , elements of which are ranged
over by lower-case letters such as x, y and z. Each name x has its dual co-names, denoted by
x̄. Informally, a name represents a communication channel where input can be received, and
a co-name represents a channel where output can be sent. Processes can synchronise along
channels with complementary names, i.e., a process inputting on channel x can synchronise
with another process outputting on channel x̄.

▶ Definition 1. Processes are defined by the grammar

P ::= 0 | τ.P | x̄y.P | x(z).P | νx.P | (P | P ) | P + P | [x = y]P.

A process of the form x̄y.P is an output-prefixed process, representing a process capable
of outputting a free name y along channel x. We adopt here a syntactic sugar of the form
x̄(z).P as an abbreviation of νx.x̄z.P. Semantically, this represents a process capable of
outputting a bound name z along channel x. A process of the form x(z) is an input-prefixed
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process, with z acting as a placeholder for the received name. The prefix τ is a silent prefix,
meaning that the transition can act without interaction with the environment, and νx.P

turns x into a bound name in P . The processes P | Q, P +Q and [x = y]P represent parallel
processes, choice, and match, respectively.

▶ Definition 2. We recall some basic definitions.
A name z in a prefix π is binding if π is of the form x̄(z) or x(z). We write bn(π) for the
binding names and fn(π) for all other names in π.
An occurrence of a name z in a process P is bound if it lies in the scope of a prefix of
the form x̄(z), x(z), or of νz. Occurrences of names that are not bound are called free.
We write bn(P ) and fn(P ) for the sets of bound and free names of a process, and we
abbreviate fn(P,Q) = fn(P ) ∪ fn(Q).
A substitution σ is a map that sends names to names such that the support supp(σ) :=
{x | σ(x) ̸= x} of σ is finite. We sometimes write {z1,...,zn/x1,...,xn} for the substitution
σ with supp(σ) = {x1, . . . , xn} and xiσ = zi for all i ∈ {1, . . . , n}. The application of a
substitution to a variable x, prefix π or process P is defined as expected and denoted by xσ,
πσ and Pσ. The composition σ · θ of two substitutions is defined by (σ · θ)(x) = θ(σ(x)).

2.1 History and operational semantics
Before defining our operational semantics of the π-calculus, we introduce the notion of a
history and a respectful substitution, adapting the same notion from [20].

▶ Definition 3 (Histories). A history h is a list of names annotated with either i (denoting
an input name) or o (denoting an output name). If x is any name then we write x ∈ h if xi

or xo appears in h, and if X is a set of names then we write X ⊆ h if x ∈ h for all x ∈ X.

When enumerating the list of annotated names in a history, we separate each name in the
list with dots, e.g., xi · yo · zi.

Intuitively, a history h represents the list of names that a process sends and receives
during its transitions. The o-annotated names (denoted by zo) correspond to output names
extruded by a process in its bound output transitions. The names marked as input (denoted
by zi) represent symbolic inputs (i.e., variables) received by a process. The difference between
these annotations is captured in the following definition of respectful substitutions.

▶ Definition 4 (Respectful substitutions). A substitution σ respects h if, for all h′, h′′ and x

such that h = h′ · xo · h′′, we have xσ = x and yσ ̸= x for all y ∈ h′. If h = xp1
1 · · ·xpn

n is a
history, where p1, . . . , pn ∈ {i, o}, then we let hσ := (x1σ)p1 · · · (xnσ)pn be the application of
a respectful substitution σ to h.

▶ Example 5. Let h = ai · bo · co ·xi · yi. Then σ1 = {b/x, y/a} is a substitution that respects
h, and applying σ1 to h results in hσ1 = ai · bo · co · bi · ai. (Notice that we allow names to be
repeated in a history). On the other hand, σ2 = {a/b} is not an h-respectful substitution, as
it violates the condition that o-annotated names cannot be substituted, i.e., that bσ1 = b fails
to hold. The substitution σ3 = {c/a} also does not respect h, as it substitutes an i-annotated
name a with an o-annotated name that appears later in the history.

As the above example illustrates, the o-annotated names act like constants, while i-
annotated names act like scoped variables, with their scoping determined by their relative
positions in the history. Intuitively, when we consider a history as a trace of names inputted
and outputted by a process, this scoping enforces the fact that a name received earlier in the



T. Liu, A. Tiu, and J. de Groot 34:5

h : π.P π−→ P
(Act) h · zo : P π−→ Q z ̸∈ h ∪ bn(π) ∪ fn(π)

h : νz.P π−→ νz.Q
(Res)

h · zo : P x̄z−→ Q z /∈ {x} ∪ h

h : νz.P x̄(z)−−−→ Q
(Open) h : P x̄(z)−−−→ P ′ h : Q x(z)−−−→ Q′

h : P |Q τ−→ νz.(P ′|Q′)
(Close)

h : P π−→ R

h : P +Q
π−→ R

(Sum) h : P π−→ Q bn(π) ∩ fn(R) = ∅
h : P |R π−→ Q|R

(Par)

h : P π−→ R

h : [x = y]P π−→ R
(Match) h : P x̄y−→ P ′ h : Q x(z)−−−→ Q′

h : P |Q τ−→ P ′|Q′{y/z}
(L-Com)

Figure 1 The late transition semantics of the π-calculus with histories. Their symmetric variants
are omitted. We require that fn(P ) ⊆ h whenever h : P

π−→ Q.

trace cannot be identified with a fresh name outputted later. The meaning of the annotations
of names in a history and respectful substitutions will become clearer later when we define
various notions of bisimilarity (Section 2.2).

We next define two orderings that will be useful later in the definitions of bisimulation.
These orderings intend to constrain the possible identification of names in a history as a
result of applying a respectful substitution.

▶ Definition 6 (Orderings on histories). We write h ⊆o h
′ if h′ can be obtained from h by

adding o-annotated names to the end. Similarly, we write h ⊆i h
′ if h′ can be obtained from

h by adding i-annotated names in front of h.

The ordering h ⊆i h
′ is intended to capture the fact that the new i-annotated names in h′

cannot be identified with any o-annotated names in h (but may be identified with i-annotated
names) after applying an h′-respectful substitution. This fact will be important later when
defining quasi-open bisimulation. In the ordering h ⊆o h

′ the new o-annotated names cannot
be identified with any names appearing in h. This will be used later in the definition of early-
and late-bisimulation.

The operational semantics of the π-calculus is given in Figure 1. Note that we use the late
variant of the semantics [14], where bound input is not instantiated directly in the transition
relation; its instantiation is defined in the definitions of bisimulation (see Section 2.2). Our
semantics differs slightly from the standard late transition semantics, as each transition is
indexed by a history. The history is strictly speaking not needed for the semantics in Figure 1.
However, it will be important later when we discuss the handling of the mismatch operator
(see Section 5). Note that in the Open and Res, the ν-binder in the process expression is
interpreted as an o-annotated name in the history, reflecting the fact that this name is not
affected by respectful substitutions.

We now state several lemmas for future reference.

▶ Lemma 7. Let h be a history and suppose σ, θ are substitutions such that σ respects h.
Then θ respects hσ if and only if σ · θ respects h.

▶ Lemma 8. Suppose h : P π−→ Q. If π is of the form τ or x̄y then fn(Q) ⊆ fn(P ). If π is
of the form x(z) or x̄(z) then fn(Q) ⊆ fn(P ) ∪ {z}.

The following lemma helps prove that (quasi-)open bisimulations are closed under re-
spectful substitutions. In a given transition h : P π−→ Q, without loss of generality, we may
assume that bn(π) are chosen to be sufficiently fresh.
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▶ Lemma 9 (monotonicity). Suppose h : P π−→ Q. Then hσ : Pσ πσ−−→ Qσ for all σ that
respect h and satisfy for all x ∈ bn(π), yσ = x iff x = y.

2.2 Four notions of bisimilarity
We augment early, late, open and quasi-open bisimilarity with histories. In each case, we
first define a notion of bisimulation as a collection of relations indexed by the collection of
histories. We write H for the collection of all histories, Ho for those consisting entirely of
o-annotated names, and we similarly define Hi. We let Hi-o denote the collection of histories
in which every i-annotated name comes before all o-annotated names.

▶ Definition 10 (Early bisimilarity). An early bisimulation is a family of symmetric relation
{Bh

e | h ∈ Ho} such that whenever PBh
eQ we have:

If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh
eQ

′, where α is of the form τ or x̄y.
If h : P x̄(z)−−−→ P ′ and z is fresh then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

e Q′.
If h : P x(z)−−−→ P ′ and z is fresh then for all h′ ⊇o h and y ∈ h′ there exists some Q′ such
that h : Q x(z)−−−→ Q′ and P ′{y/z}Bh′

e Q
′{y/z}.

We write {∼h
e | h ∈ H} for the pointwise union of all early bisimulations and refer to ∼h

e

as early h-bisimilarity. Two processes P and Q are called early bisimilar if they are early
h-bisimilar for some h ∈ Ho.

The third clause allows us to substitute z for any name y, including a name that does
not appear in h (hence the need for the extension h′ ⊇o h). The fact that we use only
o-annotated histories in early (and late) bisimulation reflects the fact that names in these
bisimulations cannot be instantiated, i.e., they are essentially constants. The definition of
late bisimulation is similarly adapted from its original definition as follows.

▶ Definition 11 (Late bisimilarity). A late bisimulation is a family {Bh
ℓ | h ∈ Ho} of symmetric

relations indexed by a history consisting only of o-annotated names such that whenever
PBh

ℓ Q, we have:
If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh

ℓ Q
′, where α is of the form τ or x̄y;

If h : P x̄(z)−−−→ P ′ and z is fresh then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

ℓ Q′;

If h : P x(z)−−−→ P ′ and z is fresh then ∃Q′ s.t. h : Q x(z)−−−→ Q′ and for all y ∈ h′ with h′ ⊇o h

we have P ′{y/z}Bh′

ℓ Q
′{y/z}.

We write {∼h
ℓ | h ∈ H} for the pointwise union of all late bisimulations and refer to ∼h

ℓ as
late h-bisimilarity. Two processes P and Q are called late bisimilar if they are late h-bisimlar
for some h ∈ Ho.

The notions of a late and early bisimilarity were originally defined in [14] without reference
to a history. The original definition can be obtained from the above ones simply by omitting
reference to the history, and in the third items letting y be an arbitrary name. We refer
to this as MPW late/early bisimulation, and to the induced notion of bisimilarity as MPW
late/early bisimilarity. The next proposition explains the connection between late/early
bisimulations and MPW late/early bisimulations.

▶ Proposition 12. Two processes are MPW late (resp. early) bisimilar if and only if they
are late (resp. early) bisimilar.

We now define analogues of open and quasi-open bisimulations [20, 22].
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▶ Definition 13 (Open bisimilarity). An open bisimulation is a history-indexed collection
{Bh

o | h ∈ H} of symmetric relations on processes such that whenever PBh
eQ:

For all substitutions σ respecting h, we have PσBhσ
o Qσ.

If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh
oQ

′, where α is of the form τ or x̄y;
If h : P x̄(z)−−−→ P ′ and z is fresh, then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

o Q′;
If h : P x(z)−−−→ P ′ and z is fresh, then ∃Q′ s.t. h : Q x(z)−−−→ Q′ and P ′Bh·zi

o Q′.
The pointwise union of all open bisimulations is denoted by {∼h

o | h ∈ H}. We refer to ∼h
o as

open h-bisimilarity. We write P ∼h′

o Q if there exists an open bisimulation {Bh
o | h ∈ H} and

a history h′ with only i-annotated names such that PBh′

o Q and fn(P,Q) ⊆ h′. We call P
and Q open bisimilar.

Augmenting open bisimulations to account for a history does not affect the resulting
notion of bisimilarity compared to the original definition, as was shown in [26, Corollary 22].

Quasi-open bisimilarity was originally defined in [22] using the early transition semantics.
We adapt the original definition into late transition semantics indexed by history.

▶ Definition 14 (Quasi-open bisimilarity). A quasi-open bisimulation is a history-indexed
family {Bh

q | h ∈ Hi-o} of symmetric relations on processes such that whenever PBh
qQ:

For all substitutions σ respecting h, we have PσBhσ
q Qσ;

If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh
qQ

′, where α = τ, x̄y;

If h : P x̄(z)−−−→ P ′ and z is fresh, then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

q Q′;

If h : P x(z)−−−→ P ′ and z is fresh, then for all h′ ⊇i h and all y ∈ h′, ∃Q′ s.t. h : Q x(z)−−−→ Q′

and P ′{y/z}Bh′

q Q
′{y/z}.

We write {∼h
q | h ∈ H} for the pointwise union of all quasi-open bisimulations and refer to

∼h
q as quasi-open h-bisimilarity. Two processes P and Q are called quasi-open bisimilar if

there exists a history h with only i-annotated names such that P ∼h
q Q and fn(P,Q) ⊆ h.

The first three conditions of an open and quasi-open bisimulation coincide. The last con-
dition captures a subtle but important difference between open and quasi-open bisimulations:
in quasi-open bisimulation, a bound output name must remain distinct from all other names
produced during the bisimulation game, whereas in open bisimulation, the same bound
output name only needs to be kept distinct from existing names in the history and future
output names. This difference is captured technically by restricting the class of histories in
quasi-open bisimulation to those where input names are always added to the front of output
names, thereby preventing respectful substitutions from ever identifying output names with
other (input/output) names.

Our definition relates to the original one in [22] as follows:

▶ Proposition 15. Two processes are quasi-open bisimilar if and only if they are quasi-open
bisimilar in the sense of [22].

We use an example from [22] that distinguishes open and quasi-open bisimilarity to
illustrate how to use histories.

▶ Example 16. Consider the processes

P = νux̄u.(x(z) + x(z).τ + x(z).[z = u]τ) Q = νux̄u.(x(z) + x(z).τ)

We claim that P and Q are quasi-open bisimilar but not open bisimilar under the history
h = xi. After taking the transitions x̄(u)−−−→ x(z)−−−→ through the definition of open bisimilarity,
we end up with the history xi · uo · zi, while quasi-open bisimilarity yields history yi · xi · uo

(if y /∈ {x, u}) or xi · uo (if y ∈ {x, u}).
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P |=h tt P |=h x = x P |=h ¬φ iff P ̸|=h φ.

P |=h φ1 ∧ φ2 iff P |=h φ1 and P |=h φ2

P |=h φ iff ∃σ respecting h, Pσ |=hσ φσ

P |=h ⟨α⟩φ iff ∃Q s.t. h : P α−→ Q and Q |=h φ, where α = τ, x̄y

P |=h ⟨x̄(z)⟩φ iff ∃Q s.t. h : P x̄(z)−−−→ Q and Q |=h·zo

φ

P |=h ⟨x(z)⟩φ iff ∃Q s.t. h : P x(z)−−−→ Q and ∃y ∈ h′(h′ ⊇o h), Q{y/z} |=h′
φ{y/z}

P |=h ⟨x(z)⟩ℓφ iff ∃Q s.t. h : P x(z)−−−→ Q and ∀y ∈ h′(h′ ⊇o h), Q{y/z} |=h′
φ{y/z}

P |=h ⟨x(z)⟩eφ iff ∀y ∈ h′(h′ ⊇o h), ∃Q s.t. h : P x(z)−−−→ Q and Q{y/z} |=h′
φ{y/z}

P |=h ⟨x(z)⟩oφ iff ∃Q, h : P x(z)−−−→ Q and Q |=h·zi

φ

P |=h ⟨x(z)⟩qφ iff ∀y ∈ h′(h′ ⊇i h), ∃Q s.t. h : P x(z)−−−→ Q and Q{y/z} |=h′
φ{y/z}

Figure 2 The semantics of logic U. In each clause we require z to be fresh for h and σ, and that
fn(P ) ∪ fn(φ) ⊆ h.

History h = xi · uo · zi indicates xσ ̸= u for all σ respecting it, while the substitution
{u/z} is allowed. After the transitions x̄(u)−−−→ x(z)−−−→, P can reach the state [z = u]τ and Q can
reach either 0 or τ . Applying the substitution {u/z} yields [z = u]τ ̸∼h

o 0, and applying {z/z}
gives [z = u]τ ̸∼h

o τ . Therefore P ̸∼h
o Q.

When considering quasi-open bisimilarity, if after the transitions x̄(u)−−−→ x(z)−−−→, P ′ = 0 or
τ , then it is straightforward to show that P ′, Q′ are quasi-open bisimilar. If P ′ = [z = u]τ ,
we need to show that for all h′ ⊇i h and for all y ∈ h′, there exists a Q′ such that P ′{y/z}
is bisimilar to Q′{y/z}. Suppose h′ = h and y ∈ {x, u}. Then if y = x, we have that P ′ is
bisimilar to Q′ = 0, and if y = u then P ′ is bisimilar to Q′ = τ . If h′ = yi · h and y /∈ {x, u}
then P ′ is bisimilar to Q′ = 0 because y ̸= u. Therefore P ∼h

q Q.

3 A universal logic

We define a universal logic U that characterises the four bisimilarities mentioned above.

▶ Definition 17. Let U be the language generated by the following grammar:

φ ::= tt | x = y | φ ∧ φ | ¬φ | φ | ⟨α⟩φ | ⟨x̄(z)⟩φ
| ⟨x(z)⟩φ | ⟨x(z)⟩ℓφ | ⟨x(z)⟩eφ | ⟨x(z)⟩oφ | ⟨x(z)⟩qφ

▶ Definition 18. Given a process P , a U-formula φ and a history h, the satisfaction relation
P |=h φ is defined in Figure 2.

▶ Remark. The modalities ⟨x(z)⟩φ, ⟨x(z)⟩ℓφ and ⟨x(z)⟩eφ correspond to the operators in
MPW logic defined in [15]. The former is not used for our characterisations.

The dual logical propositional and modal connectives are defined as usual, via negation.

▶ Definition 19 (Logical equivalence). Two processes P and Q are logically equivalent with
respect to some S ⊆ U and history h, notation: P ≡h

S Q, if fn(P ) ∪ fn(Q) ⊆ h and for all
φ ∈ S with fn(φ) ⊆ h we have P |=h φ iff Q |=h φ.
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We say that S characterises a history-indexed family {Rh | h ∈ H} of relations if: P ≡h
U Q

iff PRhQ. We define sublogics E, L, Q and O of U to characterise the late, early, open and
quasi-open bisimilarity.

▶ Definition 20 (Sublogics of U). The logics E, L, Q and O are the sublogics of U generated
by the grammars with tt,¬,∧ and the modalities specified in Table 1.

Table 1 The modalities defining the logics E,L,Q and O.

Logic Modalities Characterises

E ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩e early bisimilarity
L ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩ℓ late bisimilarity
Q , ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩q quasi-open bisimilarity
O , ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩o open bisimilarity

▶ Theorem 21. The various notions of bisimilarity can be characterised as follows:

1. P ≡h
E Q iff P ∼h

e Q

2. P ≡h
L Q iff P ∼h

ℓ Q

3. P ≡h
Q Q iff P ∼h

q Q

4. P ≡h
O Q iff P ∼h

o Q

Proof. We postpone the completeness proofs (i.e. P ≡h Q implies P ∼h Q) to Section 4. The
soundness proofs are straightforward. As an example, we demonstrate part of the soundness
proof for open bisimilarity.

Suppose P ∼h
o Q. Then by definition fn(P,Q) ⊆ h. Let φ be an O-formula such that

fn(φ) ⊆ h and assume P |=h φ. We prove that Q |=h φ by induction on the structure
of φ. The propositional cases are routine. We showcase the modal cases for φ = ψ

and φ = ⟨x̄(z)⟩ψ. If φ = ψ then there exists a substitution σ respecting h such that
Pσ |=hσ ψσ. By definition of open bisimulation we have Pσ ∼hσ

o Qσ. Besides, fn( ψ) ⊆ h

implies fn(ψ) ⊆ h, so the induction hypothesis gives Qσ |=hσ ψσ and hence Q |=h ψ.
If φ = ⟨x̄(z)⟩ψ then there exists a P ′ such that h : P x̄(z)−−−→ P ′ and P ′ |=h·zo

ψ. By
definition of |= the name z is fresh for h. Therefore we can invoke the definition of open
bisimulations to find a process Q′ such that h : Q x̄(z)−−−→ Q′ and P ′ ∼h·zo

o Q′. Since
fn(⟨x̄(z)⟩ψ) ⊆ h we have fn(ψ) ⊆ h · zo, so we can use the induction hypothesis to derive
Q′ |=h·zo

ψ. Therefore Q |=h ⟨x̄(z)⟩ψ, as desired. ◀

We say a logic is sound and complete for a bisimilarity when: if two processes are bisimilar,
then they satisfy the same set of formulas in the logic; and if two processes are not bisimilar,
there exist some formulae in the logic that separate them, which we call the distinguishing
formulae. A distinguishing formula holds for one process but not for the other, thus revealing
a difference in their behavior. The distinguishing formulae can be used as efficiently checkable
evidences to explain why two processes are not bisimilar.

The next examples illustrate how the modalities ⟨−⟩e, ⟨−⟩ℓ, ⟨−⟩q and ⟨−⟩o can be used
to recognise non-bisimilar processes.

▶ Example 22 (Distinguishing processes that are not late bisimilar). Consider the processes

P = x(z) + x(z).τ + x(z).[z = u]τ Q = x(z) + x(z).τ
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P and Q are early bisimilar but not late bisimilar (see e.g. [15, Section 2.3]). An induction
on the structure of φ shows that we have P |=h φ iff Q |=h φ for all h ∈ Ho containing xo

and uo and for all φ ∈ E. However, if we bring ⟨x(z)⟩ℓ into the picture then we can construct
a formula which only holds at one of P and Q. For example, the formula

φ := ⟨x(z)⟩ℓ

(
[τ ](z = u) ∧ ((z = u) → ⟨τ⟩tt)

)
is true at P but not at Q.

To show that P |=xo·uo

φ we need to find a process P ′ such that xo · uo : P x(z)−−−→ P ′ and
for all h′ ⊇o x

o · uo and all y ∈ h′ we have P ′ |=h′ ([τ ](z = u) ∧ ((z = u) → ⟨τ⟩tt)
)
{y/z}. To

this end, take P ′ = [z = u]τ . Then we have P ′{y/z} |=h′ [τ ](z = u){y/z}, because if there
is a τ -transition then we must have (z = u){y/z}, and P ′{y/z} |=h′ ((z = u) → ⟨τ⟩tt){y/z}
because if (z = u){y/z} is true then there must exists a τ -transition from P ′.

To see that Q ̸|=xo·uo

φ, note that there are only two processes that Q can x(z)-transition
to, namely Q′ = 0 and Q′ = τ . In the first case we have 0{u/z} ̸|=xo·uo [τ ](z = u) ∧

(
(z =

u) → ⟨τ⟩tt
)

because the second conjoint is false, while in the second case we can take any
y ̸= u to find τ ̸|=xo·uo·yo [τ ](z = u) ∧

(
(z = u) → ⟨τ⟩tt

)
because the first conjoint is false.

▶ Example 23. Recall from Example 16 that the processes

P = νux̄u.(x(z) + x(z).τ + x(z).[z = u]τ), Q = νux̄u.(x(z) + x(z).τ)

are quasi-open bisimilar but not open bisimilar. We construct a distinguishing formula using
the modality ⟨x(z)⟩o. First observe the difference between [z = u]τ and τ . The latter can
always make a τ -transition while the former cannot do that without a suitable substitution.
Therefore [z = u]τ ̸|=xi·uo·zi ⟨τ⟩tt while τ |=xi·uo·zi ⟨τ⟩tt. Similarly, the processes 0 and
[z = u]τ can be distinguished by [z = u]τ |=xi·uo·zi ⟨τ⟩tt while 0 ̸|=xi·uo·zi ⟨τ⟩tt. Observe
that both P and Q both can perform the transitions x̄(u)−−−→ x(z)−−−→ to arrive at states that are
distinguishable by a formula. Thus, if we define φ := ⟨x̄(u)⟩⟨x(z)⟩o(¬⟨τ⟩tt ∧ ⟨τ⟩tt) then
we have P |=xi

φ while Q ̸|=xi φ.

4 Completeness for quasi-open and open bisimilarity

We now detail completeness for quasi-open bisimilarity. We first list here some useful lemmas
that will be used in the main completeness proof. Most of these are straightforward to prove,
except for Lemma 26, for which we outline a proof.

▶ Definition 24. Let h be a history and σ a substitution. Then we define

e(h, σ) :=
∧

{(x = y) | x, y ∈ h distinct, σ(x) = σ(y)}∧
∧

{(x ̸= y) | x, y ∈ h, σ(x) ̸= σ(y)}

This is a finite conjunction because h is finite.

▶ Lemma 25. Let P be a process, h a history such that fn(P ) ⊆ h and θ a renaming that
respects h. Then for all formulas φ such that fn(φ) ⊆ h we have P |=h φ iff Pθ |=hθ φθ.

▶ Lemma 26. Let P be a process, h a history and σ a substitution that respects h. Then
Pσ |=hσ φσ if and only if P |=h (e(h, σ) ∧ φ).

Proof. Suppose Pσ |=hσ φσ. Since σ respects h, by definition of e(h, σ) we have Pσ |=hσ

e(h, σ)σ. Therefore Pσ |=hσ (e(h, σ) ∧ φ)σ, hence P |=h (e(h, σ) ∧ φ).
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For the conversely, suppose P |=h (e(h, σ) ∧ φ). Then by definition of , there exists
substitution θ respecting h such that Pθ |=hθ e(h, σ)θ ∧ φθ. Then we have Pθ |=hθ e(h, σ)θ
and Pθ |=hθ φθ. By Pθ |=hθ e(h, σ)θ we have xσ = yσ iff xθ = yθ for all x, y ∈ h, and hence
we can find a renaming θ′ such that σ coincides with θ · θ′ on h (i.e. zσ = (zθ)θ′ for all
z ∈ h). Moreover we may assume that θ′ respects h. Then we can use Lemma 25 and the
assumption Pθ |=hθ φθ to find that Pσ |=hσ φσ. ◀

▶ Lemma 27.
1. If hσ : Pσ π−→ P ′, then there exists an action π′ such that π = π′σ.
2. If Pσ |=hσ φ then there exists a formula φ′ using the same connectives as φ s.t. φ′σ = φ.

▶ Lemma 28 (image finiteness). For any process P and action π there are finitely many Pi,
up to renaming of bn(π), such that P π−→ Pi.

To prove the completeness is equivalent to prove that if two processes are not bisimilar
then there must be some distinguishing formulae that can be satisfied by one of the processes
but by not the other. The proof will provide a strategy on constructing distinguishing
formulae for any processes that are not quasi-open bisimilar. On the basis of the image
finiteness, we are able to define distinguishability, which is a negation of bisimilarity. Note
that the subscript of ∼0 below is the number zero instead of the letter o for open bisimilarity.

▶ Definition 29 (distinguishability). Let ̸∼h
0 be the smallest symmetric relation satisfying

P ̸∼h
0 Q whenever there exists a substitution σ respecting h and an action π such that

There exists a P ′ such that hσ : Pσ π−→ P ′ but no Q′ satisfying hσ : Qσ π−→ Q′.
If π is of the shape x̄(z) or x(z) then we assume that z is fresh for h and σ.

We inductively define ̸∼h
n+1 as the smallest symmetric relation containing ̸∼h

n such that
P ̸∼h

n+1 Q holds if there exists a σ respecting h and a process P ′ such that either
hσ : Pσ α−→ P ′ and for all Q′ such that hσ : Qσ α−→ Q′ we have P ′ ̸∼hσ

n Q′, where α is of
the form τ or x̄y; or
hσ : Pσ x̄(z)−−−→ P ′ for some z /∈ h and for all Q′ such that hσ : Qσ x̄(z)−−−→ Q′ we have
P ′ ̸∼hσ·zo

n Q′; or
hσ : Pσ x(z)−−−→ P ′ for some z /∈ h and there exists some h′ ⊇i h and y ∈ h′ such that for
all Q′ with hσ : Qσ x(z)−−−→ Q′ we have P ′{y/z} ̸∼h′σ

n Q′{y/z}.
Again, if π is of the shape x̄(z) or x(z) then we assume that z is fresh for h and σ.

▶ Lemma 30. Let P and Q be processes and h ∈ Hi-o a history such that fn(P,Q) ⊆ h.
Then P ̸∼h

q Q if and only if there exists some n such that P ̸∼h
n Q.

Theorem 21(3), that is, completeness of quasi-open bisimilarity with respect to Q, follows
immediately from the next lemma.

▶ Lemma 31. If P ̸∼h
q Q, then there exists φ ∈ Q such that P |=h

Q φ and Q ̸|=h
Q φ.

Proof. If P ̸∼h
q Q then there exists some n such that P ̸∼h

n Q by Lemma 30. We now
construct a distinguishing formula using induction on n. The base case is straightforward.
We show here a non-trivial inductive case.

Suppose P ̸∼h
n+1 Q. Without loss of generality assume that there exists a substitution σ

respecting h and a process P such that on of the three cases from Definition 29 holds.
Case 1: Pσ α−→ P ′ and for all Q′ that satisfy hσ : Qσ α−→ Q′ we have P ′ ̸∼hσ

n Q′, where α
is of the form τ or x̄y. The case is similar to case 2 below.
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Case 2: Pσ x̄(z)−−−→ P ′ for some z /∈ h and for all Q′ that satisfy hσ : Qσ x̄(z)−−−→ Q′ we have
P ′ ̸∼hσ·zo

n Q′. By Lemma 28 there are finitely many such Q′ (up to renaming of bound names
in π) such that Qσ x̄(z)−−−→ Q′, so we can enumerate them Q′

1, . . . , Q
′
m. Since P ′ ̸∼hσ·zo

n Q′
i, the

induction hypothesis yields a formula φi such that P ′ |=hσ·zo

φi while Q′
i ̸|=hσ·zo

φi, for all
i ∈ {1, . . . ,m}. We claim that

P |=h (e(h, σ) ∧ ⟨x̄(z)⟩
∧

i

φ′
i) and Q ̸|=h (e(h, σ) ∧ ⟨x̄(z)⟩

∧
i

φ′
i)

where φ′
iσ = φi. By Lemma 27, we have Pσ xσ(z)−−−→ P ′, and P ′ |=hσ·zo

φ′
iσ, where φ′

iσ = φi.
Then Pσ |=hσ ⟨xσ(z)⟩φ′

iσ. Since the above holds for all i, Pσ |=hσ ⟨xσ(z)⟩
∧

i φ
′
iσ. Lemma 26

then gives we have P |=h (e(h, σ) ∧ ⟨x̄(z)⟩
∧

i φ
′
i).

For the latter, assume otherwise that Q |=h (e(h, σ) ∧ ⟨x̄(z)⟩
∧

i φ
′
i), then by Lemma 26,

Qσ |=hσ ⟨xσ(z)⟩
∧

i φ
′
iσ), then there exists Q′

i such that Qσ xσ(z)−−−→ Q′
i and Q′

i |=hσ·zo ∧
i φi,

contradicting the condition that no such Q′
i exists.

Case 3: hσ : Pσ x(z)−−−→ P ′ for some z /∈ hσ and there exists a h′ ⊇i hσ and a y0 ∈ h′

such that for all Q′ that satisfy hσ : Qσ x(z)−−−→ Q′ we have P ′{y0/z} ̸∼h′

n Q′{y0/z}. We may
assume that h′ = hσ if y0 ∈ hσ and h′ = yi

0 · hσ otherwise. By Lemma 28 there are finitely
many such Q′ (up to renaming of bound names in π), so we can enumerate them Q′

1, . . . , Q
′
m.

Since P ′{y0/z} ̸∼h′σ
n Q′

i{y0/z} by the induction hypothesis we can find a formula φi such that

P ′{y0/z} |=h′
φi while Q′

i{y0/z} ̸|=h′
φi,

for all i ∈ {1, . . . ,m}. Let φ′
i = φi{z/y0} (so obviously φi = φ′

i{y0/z}).
Setting φ := φ′

1 ∧ · · · ∧ φ′
m, we have

P ′{y0/z} |=h′
φ{y0/z} while Q′

i{y0/z} ̸|=h′
φ{y0/z}, (1)

for all i ∈ {1, . . . ,m}. We now consider two subcases:
Case 3A: y0 ∈ hσ. We now claim that

Pσ |=hσ ⟨x(z)⟩q((z = y0) → φ) but Qσ ̸|=hσ ⟨x(z)⟩q((z = y0) → φ). (2)

For the former, let h′′ be any history such that h′′ ⊇i hσ and let y ∈ h′′. We need to find
some P ′′ such that hσ : P x(z)−−−→ P ′′ and P ′′ |=h′′ ((z = y0) → φ){y/z}. Again, we may
assume that h′′ = h if y ∈ h and h′′ = yi · h otherwise. Take P ′′ = P ′. Then we know
that hσ : Pσ x(z)−−−→ P ′, so we only need to show that P ′ |=h′′ (z = y0){y/z} → φ{y/z}. If
y ̸= y0 then (z = y0){y/z} is false so the implication is true. If y = y0 then h′′ = h′ and
φ{y/z} = φ{y0/z} so that (1) implies P ′{y/z} |=h′′

φ{y/z}, as desired.
Now for the latter, consider history h′ and y0 ∈ h′. Then (clearly) for all Q′

i we have
Q′

i |=h′ (z = y0){y0/z}. But Q′
i ̸|=h′

φ{y0/z} by (1), so Q′
i ̸|=h′ ((z = y0) → φ){y0/z}. Since

the Q′
i range over the x(z)-successors of Q (up to renaming of bound names in π), this

implies Q ̸|=hσ ⟨x(z)⟩q((y0 = z) → φ).
Now by Lemma 27 we can find a ψ such that ψσ = ⟨x(z)⟩q((x = y0) → φ), so Pσ |=hσ ψσ

and Qσ ̸|=hσ ψσ. Lemma 26 then a distinguishing formula which is true at P but false at Q.
Case 3B: y0 /∈ hσ. Let φ′ be φ{z/y0}. We now claim that

Pσ |=hσ ⟨x(z)⟩q(z ̸∈ hσ → φ) but Qσ ̸|=hσ ⟨x(z)⟩q(z ̸∈ hσ → φ). (3)

where z ̸∈ hσ refers to
∧

{z ̸= w | w ∈ hσ}. This case follows a similar reasoning as in 3A,
with the inequality guard (z ̸∈ hσ) replacing the role of (z = y0) in 3A.

The symmetric cases, with the role of P and Q reversed, can be obtained by taking the
negated distinguishing formula constructed above. ◀
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The proofs for early and late bisimilarity resemble the one above. For open bisimilarity,
the definition for P ̸∼h

n+1 Q (Definition 29) differs in the third clause, which is changed to

∃P ′, hσ : Pσ xσ(z)−−−→ P ′ and ∀Qi such that hσ : Qσ xσ(z)−−−→ Qi, P
′ ̸∼hσ·zi

n Qi

as the name zi is added at a different location in history compared to quasi-open bisimilarity.
The remainder of the proof proceeds along the line of the completeness proof for quasi-open
bisimulation, but with all three inductive steps resembling cases 1 and 2. In fact, the proof
can also be derived from the connection with [5] outlined in Section 6 below.

5 Handling mismatch

So far our language does not include the mismatch prefix [x ̸= y], with the interpretation that
[x ̸= y]P can proceed as P only if x and y are not equal. Adding mismatch is problematic
because doing so naively may invalidate Lemma 9 (monotonicity), which requires that “any
name-substitution to a process does not diminish its capabilities for action” [23, Chapter
1.1]. In the context of open and quasi-open bisimulation, since names in a process may be
subjected to instantiations, the operational semantics for mismatch need to account for all
possible instantiations. This is easy to accommodate when the semantics is augmented with
histories. The following rule for mismatch is an adaptation of a similar rule in [10]:

h : P π−→ Q h |= x ̸= y

h : [x ̸= y]P π−→ Q
(Mismatch)

where h |= x ̸= y iff xσ ̸= yσ for all substitutions σ respecting h.
The monotonicity lemma (Lemma 9) still holds even in the presence of the Mismatch

rule. We sketch here a proof for the inductive step. Let σ be any substitution which is
respectful with respect to h. First observe that Lemma 7 implies that hσ |= xσ ̸= yσ. (Indeed,
if hσ ̸|= xσ ̸= yσ then there exists a respectful substitution θ such that (xσ)θ = (yσ)θ, but
then σθ respects h and identifies x and y, a contradiction.) By induction hypothesis we have
hσ : Pσ πσ−−→ Qσ. Thus we can use the mismatch rule to find hσ : ([x ̸= y]P )σ πσ−−→ Qσ.

Monotonicity aside, there is still a problem with mismatch: closure of (quasi-)open
bisimilarity under restriction no longer holds. For example, under current definitions, the
process [x ̸= y]τ under the history h = xi · yi is open and quasi-open bisimilar with 0,
since there is a respectful substitution that could invalidate x ̸= y (i.e., {x/y}) so that the
τ -transition is not possible from [x ̸= y]τ . But neither open-bisimilarity nor quasi-open
bisimilarity holds for νy.[x ̸= y]τ and 0 under the history h′ = xi, since [x ̸= y] is always true
when y is restricted. To solve this problem, we need to close the (quasi-)open bisimilarity
with rigidisation of names, i.e., turning an i-annotated name into o-annotated. We extend
our logic U with another accessibility relation that is induced by rigidisation, in addition to
the accessibility relation induced by respectful substitution.

We first define the rigidisation relations.

▶ Definition 32 (Rigidisation relations). The relations ⊆ro and ⊆rq are the smallest relations
on histories such that:

h ⊆ro h
′ iff h = h1 · xi · h2 and h′ = h1 · xo · h2.

h ⊆rq h
′ iff h = h1 · xi · h2 and h′ = h1 · h2 · xo.

h ⊆ro h ⊆rq h.

Both ⊆ro and ⊆rq are transitively closed.

CONCUR 2023
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We extend our logic U with new modal operators ro and rq for rigidisation of names
in open and quasi-open bisimilarities respectively. The semantics are defined as follows.

P |=h
roφ iff ∃h′ ⊇ro h, P |=h′

φ

P |=h
rqφ iff ∃h′ ⊇rq h, P |=h′

φ

Accordingly, the definitions of open and quasi-open bisimilarity also need to be extended.
For open bisimilarity, we add an additional clause to Definition 13:

For any h′ ⊇ro h, we have PBh′

o Q.

For quasi-open bisimilarity, we add an additional clause to Definition 14:

For any h′ ⊇rq h, we have PBh′

q Q.

We conjecture that the extensions of bisimilarities we defined here are the same as the
definitions given by [10], and that they are characterised by our extended logic U.

6 Related work

The idea of accounting of history of names in process transitions has been considered in other
settings, notably in the automata theoretic model called history-dependent automata [16, 17].
In the case of bisimilarity relations, indexing the relations with a context more general
than distinctions has also been considered in work on environmental bisimulation [21], and
bisimulations for cryptographic calculi,e.g., [3, 6, 24]. In particular, our notion of histories is
a special instance of that used in [24]. None of these works consider specifically the problem
of characterising bisimulations via logic. We discuss next two other closest related works.

Relations between sublogic O and the intuitionistic modal logic OM

In [5], open bisimilarity is characterised OM, which extends intuitionistic logic with modalities
of the form ⟨π⟩φ and [π]φ where π is of the form τ , x̄y, x̄(z) or x(z). The diamonds are
interpreted with respect to a process and a history as in Definition 18 above, with ⟨x(z)⟩
being interpreted as ⟨x(z)⟩o. The box operators are interpreted as the duals of the diamonds,
with the additional condition that they be closed under respectful substitutions. For example,

P |=h
OM [x̄(z)]φ iff ∀σ respecting h, ∀Q, Pσ xσz−−→ Q implies Q |=hσ

OM φσ.

The logic OM can faithfully be embedded in O via a variation of the Gödel-McKinsey-Tarski
translation of intuitionistic logic into the modal logic S4 (see e.g. [7, §3.9]).

▶ Definition 33. Define the translation t : OM → O on propositional connectives as the
Gödel-McKinsey-Tarski translation:

t(tt) = tt t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2) t(x = y) = (x = y)
t(ff) = ff t(φ1 ∨ φ2) = t(φ1) ∨ t(φ2) t(φ1 ⊃ φ2) = (t(φ1) → t(φ2))

This is extended to modalities as follows:

t(⟨π⟩φ) = ⟨π⟩t(φ) t([π]φ) = ([π]t(φ)) for π = τ, x̄y, x̄(z)
t(⟨π⟩φ) = ⟨π⟩ot(φ) t([π]φ) = ([π]ot(φ)) for π = x(z)
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The correctness of the translation relies of the following lemma.

▶ Lemma 34. For all P and all φ ∈ OM we have P |=h
OM φ iff P |=h t(φ).

Completeness for open bisimilarity now follows from [5, Theorem 3.3]: If P ̸∼h
o Q then there

exists a formula φ ∈ OM such that P |=h
OM φ while Q ̸|=h

OM φ or vice versa. Lemma 34
implies that t(φ) ∈ O satisfies P |=h t(φ) while Q ̸|=h t(φ) (or vice versa), so that P ̸≡h

o Q.

Modal logics for nominal transition systems

In [18], Parrow et. al., defines a general framework for defining transition systems, called
nominal transition systems, that subsumes most of name-passing calculi, including the
π-calculus. They then define a general modal logic that characterises bisimilarity relations
defined on nominal transition systems. They show several examples of how their framework
can be instantiated to provide logical characterisations of bisimilarity relations; these include
the π-calculus (without mismatch) and early, late and open bisimilarity. Of particular
interests in the context of the current paper is the way in which they capture the notion of
respectful substitutions, which is formalised as a notion of effects. In the modal logic for
open bisimilarity, their logic considers an operator @ that applies an effect to the state (i.e., a
process) of their semantic judgment, e.g., P |= f@φ iff f(P ) |= φ. This resembles our operator

, however there are a couple of crucial differences: we apply the substitution (effect f in
this example) to both the state and the modal formula, and our logic contains the equality
predicate whereas their logic (for this particular example involving the π-calculus) does not
allow equality (or any state predicates). The equality predicate becomes quite crucial when
mismatch is present and at this stage, it is not clear whether quasi-open bisimilarity with
mismatch can be similarly defined in the framework of nominal transition systems.

7 Conclusion

In this paper we considered early, late, open and quasi-open bisimilarity for the finite fragment
of the π-calculus extended with the mismatch operator. We provided a unified presentation of
each of these notions in the late transition semantics, using the notion of a history to capture
the name context of a process. We then defined a unifying modal logic, and identified four
fragments charaterising the four notions of bisimilarity. That is, for each type of bisimilarity
we gave a sublogic of the unifying logic such that two processes are bisimilar if and only if
they satisfy precisely the same formulas in the fragment.

As a consequence of the fact that our unifying logic is classical, we obtain a simple
construction of distinguishing formulas for non-bisimilar processes in the context of open
and quasi-open bisimilarity, compared to [5, 10].

An interesting direction for further research is to investigate to what extend our unifying
logic can be used for extensions of our fragment of the π-calculus to include e.g. replication or
recursion, or to cryptographic calculi such as the spi-calculus [2] or the applied π-calculus [1].
Some work in this direction can be found in [8, 12, 19, 25, 11].
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Abstract
Nondeterministic good-for-MDPs (GFM) automata are for MDP model checking and reinforcement
learning what good-for-games automata are for reactive synthesis: a more compact alternative to
deterministic automata that displays nondeterminism, but only so much that it can be resolved
locally, such that a syntactic product can be analysed. GFM has recently been introduced as a
property for reinforcement learning, where the simpler Büchi acceptance conditions it allows to
use is key. However, while there are classic and novel techniques to obtain automata that are
GFM, there has not been a decision procedure for checking whether or not an automaton is GFM.
We show that GFM-ness is decidable and provide an EXPTIME decision procedure as well as a
PSPACE-hardness proof.
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1 Introduction

Omega-automata [20, 12] are formal acceptors of ω-regular properties, which often result
from translating a formula from temporal logics like LTL [14], as a specification for desired
model properties in quantitative model checking and strategy synthesis [3], and reinforcement
learning [19].

Especially for reinforcement learning, having a simple Büchi acceptance mechanism
has proven to be a breakthrough [8], which led to the definition of the “good-for-MDPs”
property in [9]. Just like for good-for-games automata in strategy synthesis for strategic
games [10], there is a certain degree of nondeterminism allowed when using a nondeterministic
automaton on the syntactic product with an MDP to learn how to control it, or to apply
quantitative model checking. Moreover, the degree of freedom available to control MDPs is
higher than the degree of freedom for controlling games. In particular, this always allows
for using nondeterministic automata with a Büchi acceptance condition, both when using
the classically used suitable limit deterministic automata [21, 6, 7, 17, 8] and for alternative
GFM automata like the slim automata from [9].
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This raises the question of whether or not an automaton is good-for-MDPs. While [9]
has introduced the concept, there is not yet a decision procedure for checking the GFM-ness
of an automaton, let alone for the complexity of this test.

We will start by showing that the problem of deciding GFM-ness is PSPACE-hard by a
reduction from the NFA universality problem [18]. We then define the auxiliary concept of
qualitative GFM, QGFM, which relaxes the requirements for GFM to qualitative properties,
and develop an automata based EXPTIME decision procedure for QGFM. This decision
procedure is constructive in that it can provide a counter-example for QGFM-ness when
such a counter-example exists. We then use it to provide a decision procedure for GFM-ness
that uses QGFM queries for all states of the candidate automaton. Finally, we show that the
resulting criterion for GFM-ness is also a necessary criterion for QGFM-ness, which leads
to a collapse of the two concepts. This entails that the EXPTIME decision procedure we
developed to test QGFM-ness can be used to decide GFM-ness, while our PSPACE-hardness
proofs extend to QGFM-ness.

2 Preliminaries

We write N for the set of nonnegative integers. Let S be a finite set. We denote by
Distr(S) the set of probability distributions on S. For a distribution µ ∈ Distr(S) we write
support(µ) = {s ∈ S | µ(s) > 0} for its support. The cardinal of S is denoted |S|. We use Σ
to denote a finite alphabet. We denote by Σ∗ the set of finite words over Σ and Σω the set of
ω-words over Σ. We use the standard notions of prefix and suffix of a word. By wα we denote
the concatenation of a finite word w and an ω-word α. If L ⊆ Σω and w ∈ Σ∗, the residual
language (left quotient of L by w), denoted by w−1L is defined as {α ∈ Σω | wα ∈ L}.

2.1 Automata
A nondeterministic Büchi word automaton (NBW) is a tuple A = (Σ, Q, q0, δ, F ), where Σ
is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q× Σ → 2Q is the
transition function, and F ⊆ Q is the set of final (or accepting) states. An NBW is complete
if δ(q, σ) ̸= ∅ for all q ∈ Q and σ ∈ Σ. Unless otherwise mentioned, we consider complete
NBWs in this paper. A run r of A on w ∈ Σω is an ω-word q0, w0, q1, w1, . . . ∈ (Q × Σ)ω

such that qi ∈ δ(qi−1, wi−1) for all i > 0. An NBW A accepts exactly those runs, in which
at least one of the infinitely often occurring states is in F . A word in Σω is accepted by the
automaton if it has an accepting run, and the language of an automaton, denoted L(A), is
the set of accepted words in Σω. An example of an NBW is given in Figure 1.

Let C ⊂ N be a finite set of colours. A nondeterministic parity word automaton (NPW)
is a tuple P = (Σ, Q, q0, δ, π), where Σ, Q, q0 and δ have the same definitions as for NBW,
and π : Q → C is the priority (colouring) function that maps each state to a priority (colour).
A run is accepting if and only if the highest priority (colour) occurring infinitely often in
the infinite sequence is even. Similar to NBW, a word in Σω is accepted by an NPW if it
has an accepting run, and the language of the NPW P , denoted L(P ), is the set of accepted
words in Σω. An NBW is a special case of an NPW where π(q) = 2 for q ∈ F and π(q) = 1
otherwise with C = {1, 2}.

A nondeterministic word automaton is deterministic if the transition function δ maps
each state and letter pair to a singleton set, a set consisting of a single state.

A nondeterministic automaton is called good-for-games (GFG) if it only relies on a limited
form of nondeterminism: GFG automata can make their decision of how to resolve their
nondeterministic choices on the history at any point of a run rather than using the knowledge
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Figure 1 A nondeterministic Büchi word automaton over {a, b}. This NBW is complete and
accepts the language {aω, abω}.
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Figure 2 (a) An MDP with initial state s0. The set of labels is {a, b} and the labelling function
for the MDP is as follows: ℓ(s0) = ℓ(s1) = a, ℓ(s2) = b. The labels are indicated by different
colours. Since each state has only one available action m, the MDP is actually an MC. There are
two end-components in this MDP labelled with the two dashed boxes. (b) The tree that stems from
unravelling of the MC with initial state s0 on the left, while disregarding probabilities.

of the complete word as a nondeterministic automaton normally would without changing
their language. They can be characterised in many ways, including as automata that simulate
deterministic automata. The NBW in Figure 1 is neither GFG nor good-for-MDPs (GFM)
as shown later.

2.2 Markov Decision Processes (MDPs)
A (finite, state-labelled) Markov decision process (MDP) is a tuple ⟨S, Act, P, Σ, ℓ⟩ consisting
of a finite set S of states, a finite set Act of actions, a partial function P : S × Act 7→ Distr(S)
denoting the probabilistic transition and a labelling function ℓ : S → Σ. The set of available
actions in a state s is Act(s) = {m ∈ Act | P(s, m) is defined}. An MDP is a (labelled)
Markov chain (MC) if |Act(s)| = 1 for all s ∈ S.

An infinite run (path) of an MDP M is a sequence s0m1 . . . ∈ (S × Act)ω such that
P(si, mi+1) is defined and P(si, mi+1)(si+1) > 0 for all i ≥ 0. A finite run is a finite
such sequence. Let Ω(M) (Paths(M)) denote the set of (finite) runs in M and Ω(M)s

(Paths(M)s) denote the set of (finite) runs in M starting from s. Abusing the notation
slightly, for an infinite run r = s0m1s1m2 . . . we write ℓ(r) = ℓ(s0)ℓ(s1) . . . ∈ Σω.

A strategy for an MDP is a function µ : Paths(M) → Distr(Act) that, given a finite
run r, returns a probability distribution on all the available actions at the last state of r. A
memoryless (positional) strategy for an MDP is a function µ : S → Distr(Act) that, given a
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s0, q0
(m, q1) (m, q2)

s1, q1
(m, q1)

1

s2, q1
(m, q3)

s2, q3
(m, q3)

1

s1, q2
(m, q3)

s1, q3
(m, q3)

1

s2, q2
(m, q2)

1

1
3

2
31

1
3

2
3

1

Figure 3 An example of a product MDP M × N with initial state (s0, q0) and F × =
{(s1, q1), (s2, q1), (s1, q2), (s2, q2)} where M is the MDP (MC) in Figure 2(a) and N is the NBW
in Figure 1. The states (s0, q0), (s1, q1), (s1, q2) and (s1, q3) are labelled with a while all the other
states are labelled with b. Again, the four end-components of the MDP are labelled with dashed
boxes; the upper left and lower right end-components are accepting (highlighted in thick dashed
boxes).

state s, returns a probability distribution on all the available actions at that state. The set
of runs Ω(M)µ

s is a subset of Ω(M)s that correspond to strategy µ and initial state s. Given
a memoryless/finite-memory strategy µ for M, an MC (M)µ is induced [3, Section 10.6].

A sub-MDP of M is an MDP M′ = ⟨S′, Act′, P′, Σ, ℓ′⟩, where S′ ⊆ S, Act′ ⊆ Act is such
that Act′(s) ⊆ Act(s) for every s ∈ S′, and P′ and ℓ′ are analogous to P and ℓ when restricted
to S′ and Act′. In particular, M′ is closed under probabilistic transitions, i.e. for all s ∈ S′

and m ∈ Act′ we have that P′(s, m)(s′) > 0 implies that s′ ∈ S′. An end-component [1, 3] of
an MDP M is a sub-MDP M′ of M such that its underlying graph is strongly connected
and it has no outgoing transitions. An example MDP is presented in Figure 2(a).

A strategy µ and an initial state s ∈ S induce a standard probability measure on sets of
infinite runs, see, e.g., [3]. Such measurable sets of infinite runs are called events or objectives.
We write Prµ

s for the probability of an event E ⊆ sSω of runs starting from s.

▶ Theorem 1 (End-Component Properties [1, 3]). Once an end-component E of an MDP is
entered, there is a strategy that visits every state-action combination in E with probability
1 and stays in E forever. Moreover, for every strategy the union of the end-components is
visited with probability 1.

2.3 The Product of MDPs and Automata
Given an MDP M = ⟨S, Act, P, Σ, ℓ⟩ with initial state s0 ∈ S and an NBW N =
⟨Σ, Q, δ, q0, F ⟩, we want to compute an optimal strategy satisfying the objective that the
run of M is in the language of N . We define the semantic satisfaction probability for
N and a strategy µ from state s ∈ S as: PSemM

N (s, µ) = Prµ
s {r ∈ Ωµ

s : ℓ(r) ∈ L(N )}
and PSemM

N (s) = supµ

(
PSemM

N (s, µ)
)
. In the case that M is an MC, we simply have

PSemM
N (s) = Prs{r ∈ Ωs : ℓ(r) ∈ L(N )}.

The product of M and N is an MDP M×N = ⟨S×Q, Act×Q, P×, Σ, ℓ×⟩ augmented with
the initial state (s0, q0) and the Büchi acceptance condition F × = {(s, q) ∈ S × Q | q ∈ F}.
The labelling function ℓ× maps each state (s, q) ∈ S × Q to ℓ(s).

We define the partial function P× : (S × Q) × (Act × Q) 7→ Distr(S × Q) as follows: for all
(s, m) ∈ support(P), s′ ∈ S and q, q′ ∈ Q, we have P×(

(s, q), (m, q′)
)(

(s′, q′)
)

= P(s, m)(s′)
for all q′ ∈ δ(q, ℓ(s))1.

1 When N is complete, there always exists a state q′ such that q′ ∈ δ(q, ℓ(s)).
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We define the syntactic satisfaction probability for the product MDP and a strategy
µ× from a state (s, q) as: PSynM

N
(
(s, q), µ×)

= Prµ×

s,q {r ∈ Ωµ×

s,q : ℓ×(r) ∈ L(N )}2 and
PSynM

N (s) = supµ×(PSynM
N

(
(s, q0), µ×)

)
. The set of actions is Act in the MDP M while it

is Act × Q in the product MDP. This makes PSem and PSyn potentially different. In general,
PSynM

N (s) ≤ PSemM
N (s) for all s ∈ S, because accepting runs can only occur on accepted

words. If N is deterministic, PSynM
N (s) = PSemM

N (s) holds for all s ∈ S.
End-components and runs are defined for products just like for MDPs. A run of M × N

is accepting if it satisfies the product’s acceptance condition. An accepting end-component
of M × N is an end-component which contains some states in F ×.

An example of a product MDP is presented in Figure 3. It is the product of the MDP in
Figure 2(a) and the NBW in Figure 1. Since ℓ(r) is in the language of the NBW for every
run r of the MDP, we have PSemM

N (s0) = 1. However, the syntactic satisfaction probability
PSynM

N (s0) = 2
3 is witnessed by the memoryless strategy which chooses the action (m, q2) at

the initial state. We do not need to specify the strategy for the other states since there is
only one available action for any remaining state. According to the following definition, the
NBW in Figure 1 is not GFM as witnessed by the MDP in Figure 2(a).

▶ Definition 2 ([9]). An NBW N is good-for-MDPs (GFM) if, for all finite MDPs M with
initial state s0, PSynM

N (s0) = PSemM
N (s0) holds.

3 PSPACE-Hardness

We show that the problem of checking whether or not a given NBW is GFM is PSPACE-
hard. The reduction is from the NFA universality problem, which is known to be PSPACE-
complete [18]. Given an NFA A, the NFA universality problem asks whether A accepts every
string, that is, whether L(A) = Σ∗.

We first give an overview of how this reduction works. Given a complete NFA A, we first
construct an NBW Af (Definition 4) which can be shown to be GFM (Lemma 6). Using
this NBW Af , we then construct another NBW fork(Af ) (Definition 7). We complete the
argument by showing in Lemma 8 that the NBW fork(Af ) is GFM if, and only if, A accepts
the universal language.

We start with the small observation that “for all finite MDPs” in Definition 2 can be
replaced by “for all finite MCs”.

▶ Theorem 3. An NBW N is GFM iff, for all finite MCs M with initial state s0,
PSynM

N (s0) = PSemM
N (s0) holds.

Proof.
“if”: This is the case because there is an optimal finite memory control for an MDP M,

e.g. by using a language equivalent DPW P [13] and using its memory structure as finite
memory. That is, we obtain an MC M′ by applying an optimal memoryless strategy for
M × P [4]. Naturally, if N satisfies the condition for M′, then it also satisfies it for M.

“only if”: MCs are just special cases of MDPs. ◀

Given a complete NFA A, we construct an NBW Af by introducing a new letter $ and a
new state. As an example, given an NFA (DFA) B in Figure 4(a), we obtain an NBW Bf in
Figure 4(b). It is easy to see that L(B) = Σ∗ where Σ = {a, b}.

2 Let inf(r) be the set of states that appears infinite often in a run r. We also have PSynM
N ((s, q), µ×) =

Prµ×

s,q{r ∈ Ωµ×

s,q : inf(r) ∩ F × ̸= ∅}.
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q0 a, b

(a) A universal NFA B

q′
0 f ′

a, b $

$

a, b

(b) An NBW Bf

Figure 4 (a) B is a complete universal NFA. Let Σ = {a, b}. We have L(A) = Σ∗. (b) On the
right is the corresponding complete NBW Bf . The new final state f and the added transitions are
highlighted in red. We have L(Bf ) = {w1$w2$w3$ . . .} where wi ∈ Σ∗.

▶ Definition 4. Given a complete NFA A = (Σ, Q, q0, δ, F ), we define the NBW Af =
(Σ$, Qf , q0, δf , {f}) with Σ$ = Σ ∪ {$} and Qf = Q ∪ {f} for a fresh letter $ /∈ Σ and a
fresh state f /∈ Q, and with δf (q, σ) = δ(q, σ) for all q ∈ Q and σ ∈ Σ, δf (q, $) = {f} for all
q ∈ F , δf (q, $) = {q0} for all q ∈ Q \ F , and δf (f, σ) = δf (q0, σ) for all σ ∈ Σ$.

The language of Af consists of all words of the form w1$w′
1$w2$w′

2$w3$w′
3$ . . . such that,

for all i ∈ N, wi ∈ Σ$
∗ and w′

i ∈ L(A). This provides the following lemma.

▶ Lemma 5. Given two NFAs A and B, L(B) ⊆ L(A) if, and only if, L(Bf ) ⊆ L(Af ).

The following lemma simply states that the automaton Af from the above construction
is GFM. This lemma is technical and is key to prove Lemma 8, the main lemma, of this
section.

▶ Lemma 6. For every complete NFA A, Af is GFM.

Proof. Consider an arbitrary MC M with initial state s0. We show that Af is good for M,
that is, PSemM

Af
(s0) = PSynM

Af
(s0). It suffices to show PSynM

Af
(s0) ≥ PSemM

Af
(s0) since by

definition the converse PSemM
Af

(s0) ≥ PSynM
Af

(s0) always holds.
First, we construct a language equivalent deterministic Büchi automaton (DBW) Df

by first determinising the NFA A to a DFA D by a standard subset construction and then
obtain Df by Definition 4. Since L(Af ) = L(Df ), we have that PSemM

Af
(s0) = PSemM

Df
(s0).

In addition, since Df is deterministic, we have PSemM
Df

(s0) = PSynM
Df

(s0).
It remains to show PSynM

Af
(s0) ≥ PSynM

Df
(s0). For that, it suffices to show that for

an arbitrary accepting run r of M × Df , there is a strategy for M × Af such that r′ (the
corresponding run in the product) is accepting in M × Af where the projections of r and r′

on M are the same.
Consider an accepting run of M × Df . Before entering an accepting end-component of

M × Df , any strategy to resolve the nondeterminism in M × Af (thus Af ) can be used.
This will not block Af , as it is a complete automaton, and Af is essentially re-set whenever
it reads a $. Once an accepting end-component of M × Df is entered, there must exist a
word of the form $w$, where w ∈ L(D) (and thus w ∈ L(A)), which is a possible initial
sequence of letters produced from some state m of M × Df in this end-component. We fix
such a word $w$; such a state m of the end-component in M × Df from which this word
$w$ can be produced; and strategy of the NBW Af to follow the word w$ from q0 (and f)
to the accepting state f . (Note that the first $ always leads to q0 or f .)

In an accepting end-component we can be in two modes: tracking, or not tracking. If
we are not tracking and reach m, we start to track $w$: we use Af to reach an accepting
state after reading $w$ (ignoring what happens in any other case) with the strategy we have
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qF

qA qB

q0 q′
0 f ′

a, b $

$

a, b

Af Bf

a, b, $ a, b, $

a, b, $ $

Figure 5 Given a complete NFA A, an NBW
Af and an NBW fork(Af ) are constructed. In
this example, Σ = {a, b} and Σ$ = {a, b, $}.
From the state qA (resp. qB), the NBW fork(Af )
transitions to the initial state of Af (resp. Bf ).

s0

s1 s2

generate wa·$
repeatedly with
probability one

generate wb·$
repeatedly with
probability one

1
2

1
2

1
2 1

2

1
21

2

Figure 6 An example MC in the proof of
Lemma 8. Assume Σ$ = {a, b, $}. The labelling
of the MC is as follows: ℓ(s0) = ℓ(s1) = a and
ℓ(s2) = $.

fixed. Note that, after reading the first $, we are in either q0 or f , such that, when starting
from m, it is always possible, with a fixed probability p > 0, to read $w$, and thus to accept.
If we read an unexpected letter (where the “expected” letter is always the next letter from
$w$) or the end of the word $w$ is reached, we move to not tracking.

The automata choices when not tracking can be resolved arbitrarily.
Once in an accepting end-component of M × Df , tracking is almost surely started

infinitely often, and it is thus almost surely successful infinitely often. Thus, we have
PSynM

Af
(s0) ≥ PSynM

Df
(s0). ◀

Let B be an universal NFA in Figure 4(a) and Bf = (Σ$, Q′
f , q′

0, δ′
f , {f ′}) be the NBW

in Figure 4(b). Assume without loss of generality that the state space of Af , Bf , and
{qF , qA, qB} are pairwise disjoint. We now define the fork operation. An example of how to
construct an NBW fork(Af ) is shown in Figure 5.

▶ Definition 7. Given an NBW Af = (Σ$, Qf , q0, δf , {f}), we define the NBW fork(Af ) =
(Σ$, QF , qF , δF , {f, f ′}) with

QF = Qf ∪ Q′
f ′ ∪ {qF , qA, qB};

δF (q, σ) = δf (q, σ) for all q ∈ Qf and σ ∈ Σ$;
δF (q, σ) = δf ′(q, σ) for all q ∈ Q′

f ′ and σ ∈ Σ$;
δF (qF , σ) = {qA, qB} for all σ ∈ Σ$;
δF (qA, σ) = {q0} for all σ ∈ Σ$;
δF (qB, $) = {q′

0}, and δF (qB, σ) = ∅ for all σ ∈ Σ.

Following from Lemma 5 and Lemma 6, we have:

▶ Lemma 8. The NBW fork(Af ) is GFM if, and only if, L(A) = Σ∗.

Proof. We first observe that L
(
fork(Af )

)
= {σσ′w | σ, σ′ ∈ Σ$, w ∈ L(Af )} ∪ {σ$w | σ ∈

Σ$, w ∈ L(Bf )}.

CONCUR 2023



35:8 Deciding What Is Good-For-MDPs

“if”: When L(A) = Σ∗ = L(B) holds, Lemma 5 provides {σσ′w | σ, σ′ ∈ Σ$, w ∈ L(Af )} ⊃
{σ$w | σ ∈ Σ$, w ∈ L(Bf )}, and therefore L(fork(Af )) = {σσ′w | σ, σ′ ∈ Σ$, w ∈
L(Af )}.
As Af is GFM by Lemma 6, this provides the GFM strategy “move first to qA, then to
q0, and henceforth follow the GFM strategy of Af for fork(Af )”. Thus, fork(Af ) is GFM
in this case.

“only if”: Assume L(A) ̸= Σ∗ = L(B), that is, L(A) ⊂ L(B). There must exist words
wa ∈ L(A) and wb ∈ L(B) \ L(A). We now construct an MC which witnesses that
fork(Af ) is not GFM.

The MC emits an a at the first step and then either an a or a $ with a chance of 1
2 at the

second step. An example is provided in Figure 6.
After these two letters, it then moves to one of two cycles (independent of the first two

chosen letters) with equal chance of 1
2 ; one of these cycles repeats a word wa·$ infinitely

often, while the other repeats a word wb·$ infinitely often, where wa ∈ L(A).
It is easy to see that the semantic chance of acceptance is 3

4 – failing if, and only if, the
second letter is a and the word wb$ is subsequently repeated infinitely often – whereas the
syntactic chance of satisfaction is 1

2 : when the automaton first moves to qA, it accepts if,
and only if, the word wa$ is later repeated infinitely often, which happens with a chance
of 1

2 ; when the automaton first moves to qB, it will reject when $ is not the second letter,
which happens with a chance of 1

2 . ◀

It follows from Lemma 8 that the NFA universality problem is polynomial-time reducible
to the problem of whether or not a given NBW is GFM.

▶ Theorem 9. The problem of whether or not a given NBW is GFM is PSPACE-hard.

Using the same construction of Definition 4, we can show that the problem of minimising
a GFM NBW is PSPACE-hard. The reduction is from a problem which is similar to the NFA
universality problem.

▶ Theorem 10. Given a GFM NBW and a bound k, the problem whether there is a language
equivalent GFM NBW with at most k states is PSPACE-hard. It is PSPACE-hard even for
(fixed) k = 2.

Proof. Using the construction of Definition 4, PSPACE-hardness follows from a reduction
from the problem whether a nonempty complete NFA accepts all nonempty words. The
latter problem is PSPACE-complete, following the PSPACE-completeness of the universality
problem of (general) NFAs [18].

The reduction works because, for a nonempty complete NFA A the following hold:
(a) A GFM NBW equivalent to Af must have at least 2 states, one final and one nonfinal.

This is because it needs a final state (as some word is accepted) as well as a nonfinal one
(words that contain finitely many $s are rejected).

(b) For a 2-state minimal GFM NBW equivalent to Af , there cannot be a word w ∈ Σ+

that goes from the final state back to it as this would produce an accepting run with
finitely many $s (as there is some accepting run). Therefore, when starting from the
final state, any finite word can only go to the nonfinal state and stay there or block. But
blocking is no option, as there is an accepted continuation to an infinite word. Thus, all
letters in Σ lead from either state to the nonfinal state (only).

In order for a word starting with a letter in Σ to be accepted, there must therefore be a $
transition from the nonfinal to the final state.

These two points imply that for a nonempty complete NFA A such that there is a 2-state
GFM NBW equivalent to Af iff A accepts all nonempty words. ◀
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determinise
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G D′
G

strategy
explicit
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L(C) = L(G),
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Υ
free

would be 2-EXPTIME
L(T̃C) ∩ L(TG) ?= ∅ L(DC) ∩ L(D′

G) ?= ∅
overall EXPTIME

Figure 7 Flowchart of the algorithms. The first algorithm is in 2-EXPTIME, which is to check
the nonemptiness of the intersection of T̃C and TG . The second algorithm is in EXPTIME, which
is to check the nonemptiness of the intersection of DC and D′

G . The steps that have exponential
blow-up are highlighted in red.

4 Decision Procedure for Qualitative GFM

In this section, we first define the notion of qualitative GFM (QGFM) and then provide an
EXPTIME procedure that decides QGFM-ness.

The definition of QGFM is similar to GFM but we only need to consider MCs with which
the semantic chance of success is one:

▶ Definition 11. An NBW N is qualitative good-for-MDPs (QGFM) if, for all finite MDPs
M with initial state s0 and PSemM

N (s0) = 1, PSynM
N (s0) = 1 holds.

Similar to Theorem 3, we can also replace “MDPs” by “MCs” in the definiton of QGFM:

▶ Theorem 12. An NBW N is QGFM iff, for all finite MCs M with initial state s0 and
PSemM

N (s0) = 1, PSynM
N (s0) = 1 holds.

To decide QGFM-ness, we make use of the well known fact that qualitative acceptance,
such as PSemM

N (s0) = 1, does not depend on the probabilities for an MC M. This can, for
example, be seen by considering the syntactic product PSynM

D (s0) = 1 with a deterministic
parity automaton D (for a deterministic automaton, PSemM

D (s0) = PSynM
D (s0) trivially

holds), where changing the probabilities does not change the end-components of the product
MC M × D, and the acceptance of these end-components is solely determined by the
highest colour of the states (or transitions) occurring in it, and thus also independent of the
probabilities: the probability is 1 if, and only if, an accepting end-component can be reached
almost surely, which is also independent of the probabilities. As a result, we can search for
the (regular) tree that stems from the unravelling of an MC, while disregarding probabilities.
See Figure 2(b) for an example of such a tree.

This observation has been used in the synthesis of probabilistic systems before [15]. The
set of directions (of a tree) Υ could then, for example, be chosen to be the set of states of
the unravelled finite MC; this would not normally be a full tree.

In the following, we show an exponential-time algorithm to decide whether a given NBW
is QGFM or not. This procedure involves transformations of tree automata with different
acceptance conditions. Because this is quite technical, we only provide an outline in the
main paper. More notations (Section A.1) and details of the constructions (Section A.2) are
provided in the full version [16].

For a given candidate NBW C, we first construct a language equivalent NBW G that
we know to be GFM, such as the slim automaton from [9] or a suitable limit deterministic
automaton [21, 6, 7, 17, 8]. For all known constructions, G can be exponentially larger than
C. We use the slim automata from [9]; they have O(3|Q|) states and transitions.
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We then construct a number of tree automata as outlined in Figure 7. In a first
construction, we discuss in the full version [16] how to build, for an NBW N , a (symmetric)
alternating Büchi tree automaton (ABS) TN that accepts (the unravelling of) an MC (without
probabilities, as discussed above) M if, and only if, the syntactic product of N and M
almost surely accepts. This construction is used twice: once to produce TG for the GFM
automaton G we have constructed, and once to produce TC for our candidate automaton
C. Since G is QGFM, TG accepts all the MCs M that almost surely produce a run in L(G)
(which is the same as L(C)), that is, PSemM

G (s0) = PSemM
C (s0) = 1.

Therefore, to check whether or not our candidate NBW C is QGFM, we can test language
equivalence of TC and TG , e.g. by first complementing TC to T̃C and then checking whether or
not L(T̃C) ∩ L(TG) = ∅ holds: the MCs in the intersection of the languages witness that C
is not QGFM. Thus, C is QGFM if, and only if, these languages do not intersect, that is,
L(T̃C) ∩ L(TG) = ∅. This construction leads to a 2-EXPTIME procedure for deciding QGFM:
we get the size of the larger automaton (G) and the complexity of the smaller automaton
C. The purpose of the following delicate construction is to contain the exponential cost
to the syntactic material of the smaller automaton, while still obtaining the required level
of entanglement between the structures and retaining the size advantage from the GFM
property of G.

Starting from T̃C , we make a few transformations by mainly controlling the number of
directions the alternating tree automaton needs to consider and the set of decisions player
accept 3 has to make. This restricts the scope in such a way that the resulting intersection
might shrink, but cannot become empty4.

We rein in the number of directions in two steps: in a first step, we increase the number
of directions by widening the run tree with one more direction than the size of the state space
of the candidate automaton C. The larger amount of directions allows us to concurrently
untangle the decisions of player accept within and between T̃C and TG , which intuitively
creates one distinguished direction for each state q of T̃C used by player accept, and one
(different) distinguished direction for TG . In a second step, we only keep these directions,
resulting in an automaton with a fixed branching degree (just one bigger than the size of the
state space of C), which is easy to analyse with standard techniques.

The standard techniques mean to first make the remaining choices of player accept in T̃C
explicit, which turns it into a universal co-Büchi automaton (UC). The automaton is then
simplified to the universal co-Büchi automaton U ′

C which can easily be determinised to a
deterministic parity automaton DC .

For TG , a sequence of similar transformations are made; however, as we do not need to
complement here, the automaton obtained from making the decisions explicit is already
deterministic, which saves the exponential blow-up obtained in the determinisation of a
universal automaton (determinising U ′

C to DC).
Therefore, DC and D′

G can both be constructed from C in time exponential in C, and
checking their intersection for emptiness can be done in time exponential in C, too. With
that, we obtain the membership in EXPTIME for QGFM-ness:

▶ Theorem 13. The problem of whether or not a given NBW is QGFM is in EXPTIME.

3 The acceptance of a tree by a tree automaton can be viewed as the outcome of a game played by player
accept and player reject. We refer to the full version [16] for details.

4 It can be empty to start with, of course, and will stay empty in that case. But if the intersection is not
empty, then these operations will leave something in the language.
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5 Membership in EXPTIME for GFM

In this section, we start out with showing a sufficient (Lemma 14) and necessary (Lemma 15)
criterion for a candidate NBW to be GFM in Section 5.1.

We show in Section 5.2 that this criterion is also sufficient and necessary for QGFM-ness.
This implies that GFM-ness and QGFM-ness collapse, so that the EXPTIME decision
procedure from Section 4 can be used to decide GFM-ness, and the PSPACE hardness from
Section 3 extends to QGFM.

5.1 Key Criterion for GFM-ness

In order to establish a necessary and sufficient criterion for GFM-ness, we construct two
safety automata5 S and T .

Given a candidate NBW C, we define some notions for the states and transitions. We
say a state q of C is productive if L(Cq) ̸= ∅ where Cq is the automaton obtained from C by
making q the initial state. A state q of the NBW C is called QGFM if the automaton Cq

is QGFM. A transition (q, σ, r) is called residual if L(Cr) = σ−1L(Cq) [11, 2]. In general,
L(Cr) ⊆ σ−1L(Cq) holds. See Figure 1 for an example of non-residual transitions. Selecting
either of the two transitions from q0 will lose language: when selecting the transition to the
left, the word a · bω is no longer accepted. Likewise, when selecting the transition to the right,
the word aω is no longer accepted. Thus, this automaton cannot make the decision to choose
the left or the right transition, and neither (q0, a, q1) nor (q0, a, q2) is a residual transition.

Now we are ready to define S and T . In the NBW S, we include the states from the
candidate NBW C that are productive and QGFM at the same time. We only include
the residual transitions (in C) between those states. In the NBW T , we include only the
productive states of C and the transitions between them. We then make both S and T safety
automata by marking all states final. We first show that the criterion, L(S) = L(T ) and S
is GFG6, is sufficient for C to be GFM. Similar to the proof of Lemma 6, to show the NBW
C is GFM, we show there exists a strategy for C such that the syntactic and semantic chance
of winning are the same for any MC.

▶ Lemma 14. If L(S) = L(T ) and S is GFG, then the candidate NBW C is GFM.

Proof. As T contains all states and transitions from S, L(S) ⊆ L(T ) always holds. We
assume that L(S) ⊇ L(T ) holds and S is GFG.

By Theorem 3, to show C is GFM, it suffices to show that C is good for an arbitrary MC
M with initial state s0. We first determinise C to a DPW D [13]. Since D is deterministic
and L(D) = L(C), we have PSynM

D (s0) = PSemM
D (s0) = PSemM

C (s0). Since PSemM
C (s0) ≥

PSynM
C (s0) always holds, we establish the equivalence of syntactic and semantic chance of

winning for M × C by proving PSynM
C (s0) ≥ PSynM

D (s0) = PSemM
C (s0).

For that, we show for an arbitrary accepting run r of M × D, there is a strategy for
M × C such that r′ (the corresponding run in the product) is accepting in M × C where the
projections of r and r′ on M are the same.

5 A safety automaton is one where all states are final. These automata can be viewed as NFAs where
convenient.

6 GFG as a general property is tricky, but S is a safety automaton, and GFG safety automata are, for
example, determinisable by pruning, and the property whether or not a safety automaton is GFG can
be checked in polynomial time [5].
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Figure 8 An example MC in the proof of Lemma 15. In this example, Σ = {a, b}. Also, the state
q of the candidate NBW C is the only state that is not QGFM and the transition t of the NBW C is
the only non-residual transition. We have ℓ(sa) = a and ℓ(sb) = b. The states sa and sb and the
transitions between them form MΣ.

We define the strategy for M × C depending on whether an accepting end-component of
M × D has been entered. Since r is accepting, it must enter an accepting end-component
of M × D eventually. Let the run r be (s0, qD

0 )(s1, qD
1 ) · · · and it enters the accepting

end-component on reaching the state (sn, qD
n ). Before r enters an accepting end-component

of M × D, C follows the GFG strategy for S to stay within the states that are productive
and QGFM. Upon reaching an accepting end-component of M × D, the run r is in state
(sn, qD

n ), assume the run for M × C is in state (sn, qC
n) at this point. We then use the QGFM

strategy of CqC
n

from here since qC
n is QGFM.

We briefly explain why this strategy for M × C would lead to PSynM
C (s0) ≥ PSynM

D (s0).
Since (sn, qD

n ) is in the accepting end-component of M × D, we have PSemM
D

qD
n

(sn) =

PSynM
D

qD
n

(sn) = 1 by Theorem 1. We show PSemM
C

qC
n

(sn) = 1 so that PSynM
C

qC
n

(sn) =

PSemM
C

qC
n

(sn) = 1 as qC
n is QGFM. For that, it suffices to show L(CqC

n
) = L(DqD

n
) = w−1L(C)

where w = ℓ(s0s1 · · · sn−1). This can be proved by induction in [16] over the length of the
prefix of words from L(S). ◀

In order to show that this requirement is also necessary, we build an MC witnessing that
C is not GFM in case the criterion is not satisfied. An example MC is given in Figure 8. We
produce the MC by parts. It has a central part denoted by MΣ. The state space of MΣ
is SΣ where SΣ = {sσ | σ ∈ Σ}. Each state sσ is labelled with σ and there is a transition
between every state pair.

For every state q that is not QGFM, we construct an MC Mq = ⟨Sq, Pq, Σ, ℓq⟩ from
Section 4 witnessing that Cq is not QGFM, that is, from a designated initial state sq

0,
PSynMq

Cq
(sq

0) ̸= PSemMq

Cq
(sq

0) = 1, and for every non-residual transition t = (q, σ, r) that
is not in S due to L(Cr) ̸= σ−1L(Cq), we construct an MC Mt = ⟨St, Pt, Σ, ℓt⟩ such that,
from an initial state st

0, there is only one ultimately periodic word wt produced, such that
wt ∈ σ−1L(Cq) \ L(Cr).

Finally, we produce an MC M, whose states are the disjoint union of the MCs MΣ, Mq

and Mt from above. The labelling and transitions within the MCs Mq and Mt are preserved
while, from the states in SΣ, M also transitions to all initial states of the individual Mq

and Mt from above. It remains to specify the probabilities for the transitions from SΣ: any
state in SΣ transitions to its successors uniformly at random.

▶ Lemma 15. If L(S) ̸= L(T ) or S is not GFG, the candidate NBW C is not GFM.
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M′
Σ

sa, p sb, p

Mp,a Mp,b

· · ·

sq
0 st

0

Mq

· · ·
Mt

· · ·

Figure 9 An illustration of the MC in the proof of Lemma 16. In this example, we have Σ = {a, b}.
The new central part M′

Σ is obtained by removing the states that have no outgoing transitions in
the cross product of MΣ and D′. For the states (sa, p) and (sb, p) of M′

Σ, we have ℓ
(
(sa, p)

)
= a

and ℓ
(
(sb, p)

)
= b. For each state (sσ, p) of the central part, we construct an MC Mp,σ using D′.

There is a transition from each state (sσ, p) of M′
Σ to the initial state of Mp,σ. The MCs Mq and

Mt are as before. Whether there is a transition from a state from M′
Σ to the MCs Mq and Mt is

determined by the overestimation provided by D′.

Proof. Assume L(S) ̸= L(T ). There must exist a word w = σ0, σ1, . . . ∈ L(T ) \ L(S).
Let us use M with initial state sσ0 as the MC which witnesses that C is not GFM. We first

build the product MDP M×C. There is a non-zero chance that, no matter how the choices of C
(thus, the product MDP M×C) are resolved, a state sequence (sσ0 , q0), (sσ1 , q1), . . . , (sσk

, qk)
with k ≥ 0 is seen, and C selects a successor q such that (qk, σk, q) is not a transition in S.

For the case that this is because Cq is not QGFM, we observe that there is a non-zero
chance that the product MDP moves to (sq

0, q), such that PSynM
C (sσ0) < PSemM

C (sσ0)
follows.

For the other case that this is because the transition t = (qk, σk, q) is non-residual, that
is, L(Cq) ̸= σk

−1L(Cqk
), we observe that there is a non-zero chance that the product MDP

moves to (st
0, q), such that PSynM

C (sσ0) < PSemM
C (sσ0) follows.

For the case that S is not GFG, no matter how the nondeterminism of C is resolved, there
must be a shortest word w = σ0, . . . , σk (k ≥ 0) such that w is a prefix of a word in L(S),
but the selected control leaves S. For this word, we can argue in the same way as above. ◀

Lemma 14 and Lemma 15 suggest that GFM-ness of a NBW can be decided in EXPTIME
by checking whether the criterion holds or not. However, as shown in the next section that
QGFM = GFM, we can apply the EXPTIME procedure from Section 5 to check QGFM-ness,
and thus, GFM-ness.

5.2 QGFM = GFM
To show that QGFM = GFM, we show that the same criterion from the previous section
is also sufficient and necessary for QGFM. By definition, if an NBW is GFM then it is
QGFM. Thus, the sufficiency of the criterion follows from Lemma 14. We are left to show the
necessity of the criterion. To do that, we build an MC M′ witnessing that C is not QGFM
in case the criterion of Lemma 15 is not satisfied. We sketch in Figure 9 the construction of
M′.

The principle difference between the MC M′ constructed in this section and M from
the previous section is that the new MC M′ needs to satisfy that PSemM′

C (s0) = 1 (s0 is
the initial state of M′), while still forcing the candidate NBW C to make decisions that lose
probability of success, leading to PSynM′

C (s0) < 1. This makes the construction of M′ more
complex, but establishes that qualitative and full GFM are equivalent properties.
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The MC will also be constructed by parts and it has a central part. It will also have the
MCs Mq for each non QGFM state q and Mt for each non-residual transition t from the
previous section. We now describe the three potential problems of M of the previous section
and the possible remedies.

The first potential problem is in the central part as it might contain prefixes that cannot
be extended to words in L(C). Such prefixes should be excluded. This can be addressed
by building a cross product with a deterministic safety automaton that recognises all the
prefixes of L(C) (the safety hull of the language of C) and removing the states that have no
outgoing transitions in the product.

The second problem is caused by the transitions to all MCs Mq and Mt from every state
in the central part. This can, however, be avoided by including another safety automaton in
the product that tracks, which of these transitions could be used by our candidate NBW C at
the moment, and only using those transitions. Note that this retains all transitions used in
the proof to establish a difference between PSemM′

C (s0) and PSynM′

C (s0) while guaranteeing
that the semantic probability of winning after progressing to Mq or Mt is 1.

Removing the transitions to some of the Mq and Mt can potentially create a third
problem, namely that no transitions to Mq and Mt are left so that there is no way leaving
the central part of the MC. To address this problem, we can create a new MC for each state
in the central part so that a word starting from the initial state of the MC can always be
extended to an accepting word in L(C) by transitioning to this new MC. How such MCs can
be constructed is detailed later.

Zooming in on the construction, the MC M should satisfy that all the finite runs that
start from an initial state s0, before transitioning to Mq or Mt, can be extended to a word
in the language of C are retained. The language of all such initial sequences is a safety
language, and it is easy to construct an automaton that (1) recognises this safety language
and (2) retains the knowledge of how to complete each word in the language of C. To create
this automaton, we first determinise C to a deterministic parity word automaton D [13]. We
then remove all non-productive states from D and mark all states final, yielding the safety
automaton7 D′.

The two automata D′ and D can be used to address all the problems we have identified.
To address the first problem, we build a cross product MC of MΣ (the central part of M in
last section) and D′. We then remove all the states in the product MC without any outgoing
transitions and make the resulting MC the new central part denoted by M′

Σ. Every state in
M′

Σ is of the form (sσ, p) where sσ ∈ SΣ is from MΣ and p ∈ D′.
The states of the deterministic automaton D (and thus those of D′) also provide informa-

tion about the possible states of C that could be after the prefix we have seen so far. To
address the second problem, we use this information to overestimate whether C could be in
some state q, or use a transition t, which in turn is good enough for deciding whether or not
to transition to the initial states of Mq resp. Mt from every state of the new central part.

To address the third problem, we build, for every state p of D′ and every letter σ ∈ Σ
such that σ can be extended to an accepted word from state p, an MC Mp,σ that produces
a single ω-regular word (sometimes referred to as lasso word) wp,σ with probability 1. The
word σ·wp,σ will be accepted from state p (or: by Dp). From every state (sσ, p) of the central
part, there is a transition to the initial state of Mp,σ.

7 From every state p in D′, we can construct an extension to an accepted word by picking an accepted
lasso path through D that starts from p. Note that D′ is not complete, but every state has some
successor.



S. Schewe, Q. Tang, and T. Zhanabekova 35:15

The final MC transitions uniformly at random, from a state (sσ, p) in M′
Σ, to one of its

successor states, which comprise the initial state of Mp,σ and the initial states of some of
the individual MCs Mq and Mt.

▶ Lemma 16. If L(S) ̸= L(T ) or S is not GFG, the candidate NBW C is not QGFM.

Proof. The proof of the difference in the probability of winning in case L(S) ̸= L(T ) or in
case S is not GFG are the same as in Lemma 15.

We additionally have to show that PSemM′

C (s0) = 1. But this is easily provided by the
construction: when we move on to some Mp,σ, Mq, or Mt, we have sure, almost sure, and
sure satisfaction, respectively, of the property by construction, while staying for ever in the
central part of the new MC happens with probability 0. ◀

By definition, if a candidate NBW C is GFM, it is QGFM. Together with Lemma 14 and
Lemma 16, we have that L(S) = L(T ) and S is GFG iff the candidate NBW C is QGFM.
Thus, we have

▶ Theorem 17. The candidate NBW C is GFM if, and only if, C is QGFM.

By Theorem 13 and Theorem 17, we have:

▶ Corollary 18. The problem of whether or not a given NBW is GFM is in EXPTIME.

Likewise, by Theorem 9, Theorem 10, and Theorem 17, we have:

▶ Corollary 19. The problem of whether or not a given NBW is QGFM is PSPACE-hard.
Given a QGFM NBW and a bound k, the problem whether there is a language equivalent
QGFM NBW with at most k states is PSPACE-hard. It is PSPACE-hard even for (fixed)
k = 2.

6 Discussion

We have started out with introducing the prima facie simpler auxiliary concept of qualitative
GFM-ness.

We have then established that deciding GFM-ness is PSPACE-hard by a reduction from
the NFA universality problem and developed an algorithm for checking qualitative GFM-ness
in EXPTIME.

We then closed with first characterising GFM-ness with a heavy use of QGFM-ness
tests, only to find that this characterisation also proves to be a necessary requirement for
QGFM-ness, which led to a collapse of the qualitative and full GFM-ness. The hardness
results for GFM-ness therefore carry over to QGFM-ness, while the decision procedure for
QGFM-ness proves to be a decision procedure for GFM-ness by itself.
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Ackermann-Complete for Petri Nets
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Abstract
A set of configurations H is a home-space for a set of configurations X of a Petri net if every config-
uration reachable from (any configuration in) X can reach (some configuration in) H. The semilinear
home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations X,
H, if H is a home-space for X. In 1989, David de Frutos Escrig and Colette Johnen proved that
the problem is decidable when X is a singleton and H is a finite union of linear sets with the same
periods. In this paper, we show that the general (semilinear) problem is decidable. This result is
obtained by proving a duality between the reachability problem and the non-home-space problem.
In particular, we prove that for any Petri net and any linear set of configurations L we can effectively
compute a semilinear set C of configurations, called a non-reachability core for L, such that for
every set X the set L is not a home-space for X if, and only if, C is reachable from X. We show
that the established relation to the reachability problem yields the Ackermann-completeness of
the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial
marking, the set of minimal reachable markings can be constructed in Ackermannian time.
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1 Introduction

Petri nets provide a popular formal method for modelling and analysing parallel processes.
The standard model is not Turing-complete, and thus many analyzed properties are decidable;
we can refer to [6] as to one of the first survey papers on this issue.

A central algorithmic problem for Petri nets is reachability: given a Petri net A and
two configurations x and y, decide whether there exists an execution of A from x to y. In
fact, many important computational problems in logic and complexity reduce or are even
equivalent to this problem (we can refer, e.g., to [19, 9] to exemplify this). It was nontrivial
to show that the reachability problem is decidable [16], and recently the complexity of this
problem was proved to be extremely high, namely Ackermann-complete (see [15] for the
upper-bound and [3, 14, 4] for the lower-bound).

The reachability problem for Petri nets can be generalized to semilinear sets, a class of
geometrical sets that coincides with the sets definable in Presburger arithmetic [8]. The
semilinear reachability problem for Petri nets asks, given a Petri net A and (presentations
of) semilinear sets of configurations X,Y, if there exists an execution from a configuration
in X to a configuration in Y. Denoting by post∗

A(X) the set of configurations reachable
from X and by pre∗

A(Y) the set of configurations that can reach a configuration in Y, the
semilinear reachability problem thus asks, in fact, if the intersection post∗

A(X) ∩ pre∗
A(Y)

is nonempty. This problem can be easily reduced to the classical reachability problem for
Petri nets (where X and Y are singletons).
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36:2 The Semilinear Home-Space Problem Is Ackermann-Complete for Petri Nets

The semilinear home-space problem is a problem that seems to be similar to the semilinear
reachability problem at a first sight. This problem asks, given a Petri net A, and two semilinear
sets X, H, if every configuration reachable from X can reach H, hence if post∗

A(X) ⊆
pre∗

A(H). In 1989, David de Frutos Escrig and Colette Johnen [5] proved that the semilinear
home-space problem is decidable for instances where X is a singleton set and H is a finite
union of linear sets using the same periods; they left the general case open. In fact, the
general problem seems close to the decidability/undecidability border, since the reachability
set inclusion problem, which can be viewed as asking if post∗

A(x) ⊆ pre∗
B(y) where A, B are

Petri nets of the same dimension (i.e., with the same sets of places), is undecidable [1, 10],
even when the dimension of A, B is fixed to a small value [11].

Our contribution. In this paper, we show that the general semilinear home-space problem
is decidable. This result is obtained by proving a duality between the reachability problem
and the non-home-space problem. A crucial point consists in proving that for any Petri
net A and for any linear set of configurations L, we can effectively compute a semilinear
“non-reachability core” C such that for every set X the set L is not a home-space for X if, and
only if, C is reachable from X. By a technical analysis using the known complexity results
for reachability we show that the (semilinear) home-space problem is Ackermann-complete.
As an ingredient, we also show that, given a Petri net with an initial marking, the set of
minimal reachable markings can be constructed in Ackermannian time.

Organization of the paper. Section 2 states our theorems, after some preliminaries. Sec-
tion 3 shows the hardness results, and Sections 4 and 5 give a decidability proof. Sections 6
and 7 contain the complexity analysis, and Section 8 adds some concluding remarks.

2 Basic Notions, and Main Results

In this section, we introduce basic notions and notation, and state the main results.

Notation for Vectors of Nonnegative Integers

By N we denote the set {0, 1, 2, . . . } of nonnegative integers. For i, j ∈ N, by [i, j] we denote
the set {i, i+1, . . . , j}.

For (a dimension) d ∈ N, the elements of Nd are called (d-dimensional) vectors; they
are denoted in bold face, and for x ∈ Nd we put x = (x(1), x(2), . . . , x(d)) so that we can
refer to the vector components. We use the component-wise sum x + y of vectors, and their
component-wise order x ≤ y. For c ∈ N, we put c · x = (c · x(1), c · x(2), . . . , c · x(d)). By the
norm of x, denoted ∥x∥, we mean the sum of components, i.e., ∥x∥ =

∑d
i=1 x(i).

By 0 we denote the zero vector whose dimension is always clear from its context. Occa-
sionally we slightly abuse notation by presenting a vector as a mix of subvectors and integers;
in particular, given x ∈ Nd and y1, y2, . . . , ym ∈ N, we might write (x, y1, y2, . . . , ym) to
denote the (d+m)-dimensional vector (x(1), x(2), . . . , x(d), y1, y2, . . . , ym).

Given a set X ⊆ Nd, by X we denote its complement, i.e., X = Nd ∖ X.

Linear and Semilinear Sets of Vectors

A set L ⊆ Nd is linear if there are d-dimensional vectors b, the basis, and p1, p2, . . . , pk, the
periods (for k ∈ N), such that L = {x ∈ Nd | x = b + u(1) · p1 + u(2) · p2 · · ·+ u(k) · pk for
some u ∈ Nk}. In this case, by a presentation of L we mean the tuple (b, p1, p2, . . . , pk).
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A set S ⊆ Nd is semilinear if it is a finite union of linear sets, i.e. S = L1 ∪ L2 · · · ∪ Lm

where Li are linear sets (for all i ∈ [1, m]). In this case, by a presentation of S we mean the
sequence of presentations of L1, L2, . . . , Lm. When we say that a semilinear set S is given,
we mean that we are given a presentation of S; when we say that S is effectively constructible
in some context, we mean that there is an algorithm computing its presentation (in the
respective context).

We recall that a set S ⊆ Nd is semilinear if, and only if, it is expressible in Presburger
arithmetic [8]; the respective transformations between presentations and formulas are effective.
Hence if S ⊆ Nd is semilinear, then also its complement S is semilinear, and S is effectively
constructible when (a presentation of) S is given.

Petri Nets

We use a concise definition of (unmarked place/transition) Petri nets. By a d-dimensional
Petri-net action we mean a pair a = (a−, a+) ∈ Nd×Nd. With a = (a−, a+) we associate the
binary relation a−→ on the set Nd by putting (x+a−) a−→ (x+a+) for all x ∈ Nd. The relations
a−→ are naturally extended to the relations σ−→ for finite sequences σ of (d-dimensional Petri
net) actions.

A Petri net A of dimension d (with d places in more traditional definitions) is a finite
set of d-dimensional Petri-net actions (transitions). Here the vectors x ∈ Nd are also called
configurations (markings). On the set Nd of configurations we define the reachability relation
A∗

−−→: we put x A∗

−−→ y if there is σ ∈ A∗ such that x σ−→ y. For x ∈ Nd and X ⊆ Nd we put
post∗

A(x) = {y ∈ Nd | x A∗

−−→ y}, and post∗
A(X) =

⋃
x∈X post∗

A(x). Symmetrically, for
y ∈ Nd and Y ⊆ Nd we put pre∗

A(y) = {x ∈ Nd | x A∗

−−→ y} and pre∗
A(Y) =

⋃
y∈Y pre∗

A(y).

By X A∗

−−→ Y we denote that x A∗

−−→ y for some x ∈ X and y ∈ Y, i.e. that post∗
A(X)∩Y ̸= ∅,

or equivalently X ∩ pre∗
A(Y) ̸= ∅.

(Semilinear) Reachability Problem

By the (semilinear) reachability problem we mean the following decision problem:

Instance: a d-dimensional Petri net A and presentations of two semilinear sets
X, Y ⊆ Nd, to which we concisely refer as to the triple A, X, Y.
Question: does X A∗

−−→ Y hold?

In the standard definition of the reachability problem the sets X, Y are singletons; the problem
is decidable [16], and it has been recently shown to be Ackermann-complete [15, 14, 4]. It is
well-known (and easy to show) that the above more general version (the semilinear reachability
problem) is tightly related to the standard version, and has thus the same complexity.

▶ Remark 1. We can sketch this tight relation as follows. If X and Y are linear, with
presentations (b, p1, p2, . . . , pk) and (b′, p′

1, p′
2, . . . , p′

k′) respectively, then it suffices to ask
whether b (A′)∗

−−−→ b′ where A′ arises from A by adding the actions (0, pi) for all i ∈ [1, k]
and (p′

i, 0) for all i ∈ [1, k′]. Now if X = L1 ∪ L2 · · · ∪ Lm and Y = L′
1 ∪ L′

2 · · · ∪ L′
m′ ,

then it suffices to check if Li
A∗

−−→ L′
j for some i ∈ [1, m] and j ∈ [1, m′]. (In fact, there

is a polynomial reduction of the general version to the standard one, which increases the
dimension and uses the added vector components to mimic control states.)
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Semilinear Home-Space Problem

For a Petri net A of dimension d and two sets X, H ⊆ Nd, we call H a home-space for (A, X),
or just for X when A is clear from context, if post∗

A(X) ⊆ pre∗
A(H). (A trivial observation

is that post∗
A(X) is a home-space for X.)

We note that the above (semilinear) reachability problem in fact asks, given A, X, Y, if
post∗

A(X) ∩ pre∗
A(Y) ̸= ∅. The semilinear home-space problem is defined as follows:

Instance: a triple A, X, H where A is a Petri net, of dimension d, and X, H are two
(finitely presented) semilinear subsets of Nd.
Question: is post∗

A(X) ⊆ pre∗
A(H) (i.e., is H a home-space for X) ?

Our main result is stated by Theorem 3. Nevertheless, we first prove the weaker claim,
Theorem 2, that answers an open question from [5] and does not need the technicalities
related to the complexity analysis.

▶ Theorem 2. The semilinear home-space problem is decidable.

▶ Theorem 3. The semilinear home-space problem is Ackermann-complete.

We remark that by [5] we know that the home-space problem is decidable for the instances
A, X, H where X is a singleton set, and H is a finite union of linear sets with the same periods;
this was established by a Turing reduction to the reachability problem. The decidability in
the case where H is a general semilinear set was left open in [5]; this more general problem
indeed looks more subtle but we manage to provide a solution here. Before doing this, we
note in Section 3 that the problem has also a high computational complexity, and can be
naturally viewed as residing at the decidability/undecidability border.

3 Home-Space Problem is Hard

We first note that even a simple version of the home-space problem is at least as hard as
(non)reachability, and thus Ackermann-hard. We use a polynomial reduction that increases
the Petri net dimension, by additional vector components that can be viewed as control
states. (It would be natural to use the model of vector addition systems with states but we
do not introduce them formally in this paper.)

▶ Proposition 4. The non-reachability problem is polynomially reducible to the home-space
problem restricted to the instances A, X, H where X and H are singletons.

Proof. Let us consider a Petri net A of dimension d and two vectors x, y ∈ Nd, as an instance
of the (non)reachability problem. We create the (d+3)-dimensional Petri net A′ so that each
action a = (a−, a+) of A is transformed to the action a′ = ((a−, 1, 0, 0), (a+, 1, 0, 0)) of A′,
and A′ has also the additional actions ((y, 1, 0, 0), (0, 0, 1, 0)), ((0, 1, 0, 0), (0, 0, 0, 1)), and
the actions ((ij , 0, 1, 0), (0, 0, 0, 1)), ((ij , 0, 0, 1), (0, 0, 0, 1)) for all j ∈ [1, d], where ij ∈ Nd

satisfies ij(j) = 1 and ij(i) = 0 for all i ̸= j.
We verify that x A∗

−−→ y if, and only if, {(0, 0, 0, 1)} is not a home-space for
(A′, {(x, 1, 0, 0)}):

if x A∗

−−→ y, then (x, 1, 0, 0) (A′)∗

−−−→ (y, 1, 0, 0) (A′)∗

−−−→ (0, 0, 1, 0), and (0, 0, 0, 1) is not
reachable from (0, 0, 1, 0);
if x ̸ A

∗

−−→ y, then any configuration reachable from (x, 1, 0, 0) in A′ is in one of the forms
(y′, 1, 0, 0), (z, 0, 1, 0), (z′, 0, 0, 1) where y′ ̸= y and z ̸= 0, and (0, 0, 0, 1) is clearly
reachable from all of them. ◀
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Now we note that a slight generalization of the semilinear home-space problem is unde-
cidable; it is the case when instead of semilinear sets H in the instances A, X, H we allow H
to be reachability sets of Petri nets (that are a special case of so called almost semilinear
sets [13]).

▶ Proposition 5. Given Petri nets A, B of the same dimension d, and two vectors x, y ∈ Nd,
it is undecidable if post∗

B(y) is a home-space for (A, {x}).

Proof. We recall that the reachability set inclusion problem is undecidable for Petri nets (and
for the equivalent model of vector addition systems); see [1, 10, 11]. Hence it is undecidable,
given Petri nets A, B of the same dimension d and x, y ∈ Nd, whether post∗

A(x) ⊆ post∗
B(y).

If A′ arises from A by replacing each action a = (a−, a+) with a′ = ((a−, 1), (a+, 1)) and
by adding the action ((0, 1), (0, 0)), and B′ arises from B by replacing each b = (b−, b+)
with b′ = ((b−, 0), (b+, 0)), then we obviously have that post∗

B′((y, 0)) is a home-space for
(A′, (x, 1)) if, and only if, post∗

A(x) ⊆ post∗
B(y). ◀

▶ Remark 6. Since [11] shows, in fact, that the reachability set inclusion (or equality)
problem is undecidable even for some fixed five-dimensional vector addition systems with
states (VASSs), we could appropriately strengthen Proposition 5; but we do not pursue this
technical issue here.

We can note that the undecidability of the question if post∗
B(x) ⊆ post∗

A(y) entails
that the question if post∗

B(x) ⊆ pre∗
A(y) is also undecidable (since post∗

A(y) is equal to
pre∗

Arev
(y) where Arev arises from A by reversing each action (a−, a+) to (a+, a−)). On

the other hand, in the next sections we show that the question if post∗
A(x) ⊆ pre∗

A(y) is
decidable. We will show that, given a d-dimensional Petri net A and y ∈ Nd, we can effectively
construct a semilinear set (a “non-reachability core”) C ⊆ Nd such that post∗

A(x) ̸⊆ pre∗
A(y)

if, and only if, post∗
A(x) intersects C. The equality of the nets on both sides is crucial, since

if post∗
B(x) does not intersect C, then this does not entail post∗

B(x) ⊆ pre∗
A(y).

4 Decidability of Home-Space via Semilinear Non-Reachability Cores

Now we start to discuss how to decide the semilinear home-space problem. We assume a fixed
Petri net A of dimension d if not said otherwise.

We first note that the home-space property can be naturally formulated in terms of
“reachability of non-reachability”. To this aim we introduce a technical notion and make
a related observation.

Given a set H ⊆ Nd, we say that a set C ⊆ Nd is a non-reachability core for H if
1. C ̸ A

∗

−−→ H (hence C ⊆ pre∗
A(H) where pre∗

A(H) = Nd ∖ pre∗
A(H)), and

2. for each x ∈ Nd, if x ̸ A
∗

−−→ H then x A∗

−−→ C (hence pre∗
A(H) ⊆ pre∗

A(C)).

▶ Proposition 7. If C is a non-reachability core for H, then for every X ⊆ Nd we have that

H is not a home-space for X if, and only if, X A∗

−−→ C.

Proof. If X A∗

−−→ C, then x A∗

−−→ c for some x ∈ X and c ∈ C; since c ̸ A
∗

−−→ H by condition 1,
H is not a home-space for X.

If H is not a home-space for X, then we have x A∗

−−→ x′ ̸ A
∗

−−→ H for some x ∈ X and some
x′. By condition 2, x′ A∗

−−→ C; hence x A∗

−−→ C, which entails X A∗

−−→ C. ◀
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We note that pre∗
A(H) is clearly a non-reachability core for H, and the question whether

X A∗

−−→ pre∗
A(H) asks, in fact, whether H is not a home-space for X. To decide the question

whether X A∗

−−→ pre∗
A(H) when H is a semilinear set (given by a standard presentation),

a natural idea is to look if there is an effectively constructible semilinear non-reachability core
C for H (where C ⊆ pre∗

A(H)); we recall that the question whether X A∗

−−→ C is decidable
for semilinear sets X, C. In fact, we manage to realize this idea directly only in the case
when H is a linear set:

▶ Lemma 8. Given a Petri net A of dimension d, and (a presentation of) a linear set
L ⊆ Nd, there is an effectively constructible semilinear non-reachability core C for L.

This crucial lemma will be proved in the next section (Section 5). Here we show the
decidability of the semilinear home-space problem when assuming the lemma. To this aim
we first note a useful fact captured by the following proposition.

▶ Proposition 9. Assuming a Petri net A of dimension d, if H = H1 ∪H2 · · · ∪Hm and
C1, C2, . . . , Cm are such that Ci is a non-reachability core for Hi for each i ∈ [1, m], then
for each X ⊆ Nd we have that H is not a home-space for X if, and only if, there is an
execution

x0
A∗

−−→ x1
A∗

−−→ x2 · · ·
A∗

−−→ xm (1)

where x0 ∈ X, and xi ∈ Ci for each i ∈ [1, m]. (We do not exclude the cases xi = xi+1.)

Proof. Given an execution (1), the facts that xi ∈ Ci and Ci is a non-reachability core
for Hi (hence Ci ⊆ pre∗

A(Hi)) entail xi ̸
A∗

−−→ Hi, for all i ∈ [1, m]. The facts xi ̸
A∗

−−→ Hi

and xi
A∗

−−→ xm entail that xm ̸
A∗

−−→ Hi (for all i ∈ [1, m]). Hence xm ̸
A∗

−−→ H (where
H = H1 ∪H2 · · · ∪Hm), and the facts x0 ∈ X and x0

A∗

−−→ xm ̸
A∗

−−→ H entail that H is not
a home-space for X.

Conversely, we assume a set X ⊆ Nd for which H is not a home-space. Hence there exist
configurations x0, x′

0 such that x0 ∈ X and x0
A∗

−−→ x′
0 ̸

A∗

−−→ H. In particular x′
0 ̸

A∗

−−→ H1, and
thus H1 is not a home-space for {x′

0}. Since C1 is a non-reachability core for H1, we have
x′

0
A∗

−−→ x1 for some x1 ∈ C1. Since x′
0 ̸

A∗

−−→ H and x′
0

A∗

−−→ x1, we have x1 ̸
A∗

−−→ H, and in
particular x1 ̸

A∗

−−→ H2. Since H2 is not a home-space for {x1} and C2 is a non-reachability
core for H2, we get x1

A∗

−−→ x2 for some x2 ∈ C2. Continuing in this way, we successively
derive the existence of an execution (1). ◀

The next proposition gives us the final ingredient for showing an algorithm deciding the
semilinear home-space problem.

▶ Proposition 10. Given a Petri net A of dimension d, and (presentations of) semilinear
subsets X0, X1, . . . , Xm of Nd, the existence of an execution

x0
A∗

−−→ x1
A∗

−−→ x2 · · ·
A∗

−−→ xm (2)

where xi ∈ Xi for each i ∈ [0, m] is decidable (by a reduction to reachability).

Proof. By a standard construction, we can build a Petri net with a bigger dimension and
an initial configuration that first generates m copies of some x0 ∈ X0, then performs an
execution of A from x0 on all these copies, while at some moment it freezes some configuration
x1 reached in the first copy, later it freezes some x2 reached in the second copy, etc.; at the
end it starts a “testing part” that enables to reach the zero configuration if, and only if,
x1 ∈ X1, x2 ∈ X2, . . ., xm ∈ Xm. ◀



P. Jančar and J. Leroux 36:7

We note that a proof of Theorem 2 is now clear: Given a Petri net A of dimension d and
two semilinear sets X, H ⊆ Nd, we use that H = H1 ∪H2 . . . ∪Hm where Hi are linear sets,
and by Lemma 8 we can construct a semilinear non-reachability core Ci for Hi, for each
i ∈ [1, m]. Then we ask if there is an execution (1) from Proposition 9; this can be decided
effectively by Proposition 10 (since (1) is a particular case of (2) in this case).

5 Effective Semilinear Non-Reachability Core for Linear Set

Before proving Lemma 8 in Section 5.2, in Section 5.1 we recall an important ingredient
dealing with computing the minimal elements in some sets X ⊆ Nd; its use in Petri nets
originates in the work by Valk and Jantzen [20].

5.1 Computing min(X) for X ⊆ Nd

For X ⊆ Nd we call a vector m ∈ X minimal in X if there is no vector x ∈ X such that
x ≤ m and x ̸= m. (We recall that x ≤ y denotes that x(i) ≤ y(i) for all i ∈ [1, d].) By
min(X) we denote the set of minimal elements in X. Since ≤ is a well-partial-order on Nd

(by Dickson’s lemma), the set min(X) is finite and for every x ∈ X there exists (at least one)
m ∈ min(X) such that m ≤ x.

As a basis for computing min(X) (for special sets X ⊆ Nd), it is useful to extend the
ordered set (N,≤) with an extra element ω ̸∈ N so that x ≤ ω for every x ∈ Nω, where Nω

denotes N∪{ω}. By Nd
ω we denote the set of d-dimensional vectors over Nω; the (component-

wise) order ≤ on Nd is naturally extended to Nd
ω. For v ∈ Nd

ω we put ↓v = {y ∈ Nd | y ≤ v}.
Hence even when v has some ω-components, y∈ ↓v has none.

For X ⊆ Nd we trivially have min(X) = min(X∩ ↓(ω, ω, . . . , ω)). If we want to describe
min(X∩ ↓v), for v ∈ Nd

ω, and we have some y ∈ (X∩ ↓v), then we observe that

min(X∩ ↓v) = min
(
{y} ∪min

(
X∩(↓v ∖ {x | y ≤ x})

))
.

To write this more concretely, by v[i← k], where i ∈ [1, d] and k ∈ N, we denote the vector
v′ ∈ Nd

ω coinciding with v except that we have v′(i) = k, and we put

δy(v) = {w ∈ Nd
ω | w = v[i← (y(i)−1)], i ∈ [1, d], y(i) > 0}.

▶ Observation 11. For all v ∈ Nd
ω and y ∈↓v we have:

1. Each w ∈ δy(v) is strictly less than v (i.e., w ≤ v and w ̸= v).
2. ↓v∖{x | y ≤ x} =

⋃
w∈δy(v) ↓w.

▶ Observation 12. For all X ⊆ Nd, v ∈ Nd
ω, and y ∈ (X∩ ↓v) we have:

min(X∩ ↓v) = min

{y} ∪ ⋃
w∈δy(v)

min(X∩ ↓w)

 .

Since each strictly decreasing sequence v0, v1, v2, . . . of vectors in Nd
ω is finite, we easily

observe that there is an algorithm stated in the next lemma. Its inputs are special algorithms
that we call set-related algorithms. Each set-related algorithm is related to some set X ⊆ Nd

(for some d ∈ N); given v ∈ Nd
ω, the algorithm decides if (X∩ ↓v) is nonempty, and in the

positive case returns some y ∈ (X∩ ↓v).

▶ Lemma 13. There is an algorithm that, given a set-related algorithm related to X ⊆ Nd,
computes the set min(X).
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▶ Remark 14. In fact, the algorithm claimed by the lemma does not require to get a code of
a set-related algorithm; it suffices to get (black-box) access to such an algorithm.

5.2 Proof of Lemma 8
Now we prove Lemma 8:

Given a Petri net A of dimension d, and (a presentation of) a linear set L ⊆ Nd,
there is an effectively constructible semilinear non-reachability core C for L.

We assume a fixed Petri net A of dimension d, and we first prove the claim for the case where
L is a singleton; hence L = {b} (there is a basis b ∈ Nd, but no periods). We observe that if
∥x∥ > ∥b∥ (where ∥x∥ =

∑d
i=1 x(i)), then a necessary condition for reachability of b from x

is that x belongs to the set

DC = {x ∈ Nd | there is x′ such that x A∗

−−→ x′ and ∥x∥ > ∥x′∥}.

For x ∈ DC we say that x can Decrease the token-Count. Since there is no infinite sequence
x1, x2, x3, . . . in Nd where ∥x1∥ > ∥x2∥ > ∥x3∥ > · · · , for NDC = DC (the complement of
DC, i.e. Nd ∖ DC) we note the following trivial fact:

▶ Observation 15. NDC is a home-space for every X ⊆ Nd.

Proposition 16 is a crucial ingredient for Proposition 17 that finishes the proof of Lemma 8
in the special case when L is a singleton.

▶ Proposition 16. The set DC is upward closed and the set min(DC) is effectively con-
structible. Hence both DC and NDC are effectively constructible semilinear sets.

Proof. If x σ−→ x′, then x + y σ−→ x′ + y (by the monotonicity property of Petri nets). Since
∥x∥ > ∥x′∥ entails ∥x + y∥ > ∥x′ + y∥, it is clear that DC is upward closed (i.e., if x ∈ DC
and x ≤ y, then y ∈ DC).

Regarding the effective constructability of min(DC), we recall Lemma 13. The question
if (DC∩ ↓v) is nonempty, for a given v ∈ Nd

ω, can be reduced to the reachability problem
in a standard way (recall the technique sketched for Proposition 10): in the respective net
(of a bigger dimension), first some y ∈ Nd belonging to ↓v is generated, and frozen, and
then some y′ reachable from y in the original net is obtained and frozen, and in the final
phase a particular place can reach zero if, and only if, ∥y∥ > ∥y′∥. Hence in the positive
case a witness of the respective reachability also yields some y ∈ (DC∩ ↓v).

The effective semilinearity of DC and NDC follows trivially. ◀

▶ Proposition 17. Given a Petri net A of dimension d and a vector b ∈ Nd, the set

C = NDC ∩
(
{x ∈ Nd | ∥x∥ > ∥b∥} ∪ {x ∈ Nd | ∥x∥ ≤ ∥b∥ and x ̸ A

∗

−−→ b}
)

is an effectively constructible semilinear non-reachability core for {b}.

Proof. We first show that C is a non-reachability core for {b}:
1. We have C ̸ A

∗

−−→ {b}, since b is clearly not reachable from any element of C.
2. For each x ∈ Nd, if x ̸ A

∗

−−→ b, then x A∗

−−→ x′ ̸ A
∗

−−→ b for some x′ ∈ NDC (recall
Observation 15); the facts x′ ∈ NDC and x′ ̸ A

∗

−−→ b obviously entail x′ ∈ C, and thus
x A∗

−−→ C.
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The effective semilinearity of C follows from Proposition 16 and from the fact that the
finite set {x ∈ Nd | ∥x∥ ≤ ∥b∥ and x ̸ A

∗

−−→ b} can be constructed by repeatedly using an
algorithm deciding reachability. ◀

Now we proceed to prove Lemma 8 in general. We have a Petri net A of dimension d,
and a linear set L presented by a basis b ∈ Nd and periods p1, p2 . . . , pk ∈ Nd; we aim to
construct a semilinear non-reachability core for L. We would like to generalize the above
special-case proof with the upward closed set DC, which is, in fact, closely related to the
approach in [5]. But here is a subtle problem, as we already mentioned. Our solution is not
working with configurations x ∈ Nd directly, but rather via their L-like presentations.

We note that each configuration x ∈ Nd can be presented as

x = y + u(1) · p1 + u(2) · p2 · · ·+ u(k) · pk

for at least one (but often more) pairs (y, u) ∈ Nd × Nk. For y ∈ Nd and u ∈ Nk we put

conf(y, u) = y + u(1) · p1 + u(2) · p2 · · ·+ u(k) · pk.

Hence L = {conf(b, u) | u ∈ Nk}.
Let dcb-pr (determined by the Petri net A and the sequence of periods of L) be the set

of presentation pairs that present configurations that can Decrease the token-Count in the
presentation Basis:

dcb-pr = {(y, u) ∈ Nd × Nk | ∃(y′, u′) : ∥y∥ > ∥y′∥, conf(y, u) A∗

−−→ conf(y′, u′)}.

We note that if y ≥ pi, for some i ∈ [1, k], then we trivially have (y, u) ∈ dcb-pr since
conf(y, u) = conf(y− pi, u′) where u′ arises from u by adding 1 to u(i). (As expected,
we assume that all pi are nonzero vectors.)

▶ Proposition 18. dcb-pr is upward closed and the set min(dcb-pr) is effectively con-
structible.

Proof. As expected, we compare the elements of dcb-pr component-wise. To show that
dcb-pr is upward closed, we assume that (y1, u1) ∈ dcb-pr and (y1, u1) ≤ (y2, u2). To
demonstrate that (y2, u2) ∈ dcb-pr as well, we again use monotonicity of Petri nets: Since
conf(y1, u1) σ−→ conf(y′

1, u′
1) (for some sequence σ) where ∥y1∥ > ∥y′

1∥, and conf(y1, u1) ≤
conf(y2, u2), we have conf(y2, u2) σ−→ conf(y′

1+(y2−y1), u′
1+(u2−u1)); ∥y1∥ > ∥y′

1∥
entails ∥y2∥ > ∥y′

1+(y2−y1)∥.
The effective constructability of min(dcb-pr) is again based on Lemma 13, when we

identify Nd×Nk with Nd+k. It is again a technical routine to show that the question whether
(dcb-pr ∩ ↓ v) is nonempty, for a given v ∈ Nd+k

ω , can be reduced to the reachability
problem, so that in the positive case a witness of this reachability also yields some (y, u) ∈
(dcb-pr ∩ ↓v). ◀

We now define the set of configurations that can be presented so that the presentation
basis cannot be decreased:

NDCB = {x ∈ Nd | x = conf(y, u) for some (y, u) ̸∈ dcb-pr}.

▶ Observation 19. NDCB is a home-space for every X ⊆ Nd.

(Suppose there is some x ∈ Nd such that x ̸ A
∗

−−→ NDCB; we fix one such x that can be
written as x = conf(y, u) for y with the least norm ∥y∥. Since x ̸∈ NDCB, we have
(y, u) ∈ dcb-pr, which entails a contradiction by the definition of dcb-pr.)
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▶ Proposition 20. NDCB is an effectively constructible semilinear set.

Proof. By Proposition 18, dcb-pr is an effectively constructible semilinear set. Since
semilinear sets (effectively) coincide with the sets definable in Presburger arithmetic, the
claim is clear. ◀

The next proposition finishes a proof of Lemma 8, and thus also of Theorem 2.

▶ Proposition 21. Given a Petri net A of dimension d and a linear set L ⊆ Nd presented by
(b, p1, p2, . . . , pk), the set

C = {x ∈ Nd | x = conf(y, u) where (y, u) ̸∈ dcb-pr and

either ∥y∥ > ∥b∥, or ∥y∥ ≤ ∥b∥ and conf(y, u) ̸ A
∗

−−→ L}.

is an effectively constructible semilinear non-reachability core for L.

Proof. We note that C is a subset of NDCB, and we recall that x ∈ L iff x = conf(b, u)
for some u ∈ Nk. We verify that C is a non-reachability core for L:
1. By definition of C we clearly have C ̸ A

∗

−−→ L.
2. For each x ∈ Nd, if x ̸ A

∗

−−→ L, then x A∗

−−→ x′ ̸ A
∗

−−→ L for some x′ ∈ NDCB (recall
Observation 19); the facts x′ ∈ NDCB and x′ ̸ A

∗

−−→ L obviously entail x′ ∈ C, and thus
x A∗

−−→ C.

Now we aim to show that C is an effectively constructible semilinear set. We recall
Propositions 20 and 18, and the fact that for any concrete y and u we can decide if
conf(y, u) A∗

−−→ L. Though there are only finitely many y to consider, namely those
satisfying ∥y∥ ≤ ∥b∥, we are not done: it is not immediately obvious how to express
conf(y, u) ̸ A

∗

−−→ L in Presburger arithmetic, even when y is fixed. To this aim, for any fixed
y ∈ Nd we define the set

Uy = {u ∈ Nk | conf(y, u) A∗

−−→ L} = {u ∈ Nk | ∃u′ ∈ Nk : conf(y, u) A∗

−−→ conf(b, u′)}.

For each fixed y ∈ Nd, the set Uy is clearly upward closed (by monotonicity of Petri nets).
Moreover, the set min(Uy) is effectively constructible, again by using Lemma 13: Given
a fixed y, for each v ∈ Nk

ω we can decide whether (Uy ∩ ↓v) is nonempty by a reduction to
the reachability problem, so that in the positive case a witness of this reachability also yields
some u ∈ (Uy ∩ ↓v).

Now it is clear that we can effectively construct a Presburger formula defining C; hence
C is a semilinear set for which we can effectively construct a presentation. ◀

6 Minimal Reachable Configurations

In this section we provide several Ackermannian-time algorithms. The first one is given a Petri
net A of dimension d and a configuration x ∈ Nd, and it computes the set min(post∗

A(x)),
i.e. the set of minimal configurations in the respective reachability set. The second algorithm
computes min(post∗

A(x)∩S) when given (a presentation of) a semilinear set S ⊆ Nd besides
A and x. The third algorithm is given A, x, and (a presentation of) a semilinear predicate
P ⊆ Nh × Nd × Nd (for some h ∈ N), and it computes the set

min({x ∈ Nh | ∃α, β ∈ Nd : α
A∗

−−→ β ∧ (x, α, β) ∈ P}).
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The complexity of computing the above mentioned minimal configurations can be derived
by using the approach by Hsu-Chun Yen and Chien-Liang Chen in [21]; they observed that
complexity bounds on a set-related algorithm related to some set X ⊆ Nd (recall the definition
before Lemma 13) allow us to derive complexity bounds on the computation of min(X).
As a crucial ingredient here, we recall the known complexity upper bound for reachability
in Section 6.1. In Section 6.2 we derive an Ackermannian bound on the size of minimal
configurations in Petri net reachability sets, and we extend this bound in Section 6.3 and
in Section 6.4 to obtain the mentioned second algorithm and the third algorithm, respectively.

▶ Remark 22. Mayr and Meyer described in [17] a family of Petri nets that exhibits finite
reachability sets whose size grows as the Ackermann function; hence also the size of the
maximal configurations in these sets grows similarly. Concerning the size of minimal
configurations, we cannot deduce any interesting size properties using the same family.
However, by using the family of Petri nets recently introduced in [14, 4, 12] for proving
that the reachability problem is Ackermann-hard, we can observe that the maximal size
of minimal configurations in Petri net reachability sets grows at least as the Ackermann
function.

6.1 Petri Net Reachability Problem in Fixed Dimension
Here we recall some definitions in order to state that the Petri net reachability problem is
primitive-recursive when restricted to a fixed dimension, and Ackermannian in general.

The fast-growing functions Fd : N→ N, d ∈ N, are defined inductively: F0(n) = n + 1,
and Fd+1(n) = F

(n+1)
d (n); by f (n), for a function f : N→ N, we denote the iteration of f by

itself n times (i.e., f (n+1) = f (n) ◦ f). Following [18], we introduce the class Fd of functions
computable in time O(Fd(F (c)

d−1(n))) where n is the size of the input and c ∈ N is any constant.
We recall that

⋃
d∈N Fd is the class of primitive-recursive functions. We also introduce the

function Fω : N→ N defined by Fω(n) = Fn(n), which is a variant of the Ackermann function;
by Fω we denote the class of functions computable in time O(Fω(Fd(n))) where d ∈ N is
any constant and n is the size of the input. A function in Fω is said to be computable in
Ackermannian time. (We note that Ackermannian time coincides with Ackermannian space.)

For x ∈ Nd we have defined the norm of x as ∥x∥ =
∑d

i=1 x(i). Now we extend the
notion of norm to other objects. For a Petri net action a = (a−, a+), by its norm we mean
∥a∥ = max{∥a−∥, ∥a+∥}. For a Petri net A, by its norm we mean ∥A∥ = maxa∈A ∥a∥. The
norm of a linear set L ⊆ Nd implicitly given by a presentation (b, p1, p2, . . . , pk) is defined
by ∥L∥ = max{∥b∥, ∥p1∥, ∥p2∥, . . . , ∥pk∥}. The norm of a semilinear set S ⊆ Nd implicitly
given by a sequence of presentations of L1, L2, . . . , Lm is defined by ∥S∥ = max1≤n≤m ∥Ln∥.

Now we recall a result showing that the reachability problem restricted to Petri nets of
dimension d is in Fd+4, and that the general Petri net reachability problem is in Fω. (We
view a decision problem as a function with the co-domain {0, 1}.) This result is crucial for
us to derive the upper bound in Theorem 3.

▶ Theorem 23 ([15]). There is a constant c > 0 such that for all d, n, A, x, y where d, n ∈ N,
A is a Petri net of dimension d, x, y ∈ Nd, and the norms of A, x, y are bounded by n, we
have that if x A∗

−−→ y, then x σ−→ y for a word σ ∈ A∗ such that |σ| ≤ Fd+4 ◦ F
(c)
d+3(n).

We remark that in what follows we formulate some results in the form

“There is a constant c′ > 0 such that...”
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Naturally we could replace c′ with c without changing the meaning of the respective statements,
but we prefer keeping the difference in order to highlight the special role of the constant c

introduced in Theorem 23.

6.2 Minimal Reachable Configurations
We provide an algorithm computing the set of minimal reachable configurations, by following
the approach of [21]. To ease notation, we introduce the functions fd = Fd+4 ◦ F

(c)
d+3 (d ∈ N)

where c is the constant introduced in Theorem 23, and we first prove the following proposition;
for v ∈ Nd

ω, by its norm we mean ∥v∥ =
∑

i:v(i)̸=ω v(i).

▶ Proposition 24. For all d, n, A, x, v, where d, n ∈ N, A is a Petri net of dimension d,
x ∈ Nd, v ∈ Nd

ω, and the norms of A, x, v are bounded by n, we have that if (post∗
A(x)∩ ↓v)

is nonempty, then there is y ∈ (post∗
A(x)∩ ↓v) such that x σ−→ y for some σ ∈ A∗ where

|σ| ≤ fd(n).

Proof. For n = 0 the claim is trivial, so we assume n ≥ 1.
For each j ∈ [1, d] we define the Petri net action bj = (ij , 0) where ij(j) = 1 and ij(i) = 0

for all i ∈ [1, d] ∖ {j}; this action decrements the jth component of configurations. We put
Iω = {j | j ∈ [1, d], v(j) = ω}, and by B we denote the Petri net {bj | j ∈ Iω}. Since n ≥ 1,
we derive ∥A ∪B∥ ≤ n.

Let us now assume a configuration z ∈ (post∗
A(x)∩ ↓v). Let c be the configuration

arising from z by replacing the components in Iω with zero; we thus have ∥c∥ ≤ ∥v∥ ≤ n

(using the fact that c ≤ z, and thus c ∈ ↓v).
From x A∗

−−→ z and z B∗

−−→ c we derive x (A∪B)∗

−−−−−→ c. By Theorem 23 we deduce that x u−→ c
for some word u ∈ (A∪B)∗ for which |u| ≤ fd(n). Since Petri net actions in B only decrease
some components, we can assume that all these actions in u are at the end; hence u = σv

where σ ∈ A∗ and v ∈ B∗, and we have x σ−→ y v−→ c for a configuration y ∈ post∗
A(x). Since

c ≤ z, z ∈↓v, and y v−→ c only decreases the components that are ω in v, we deduce that
y ∈↓v. ◀

To ease the formulation of the next proposition, we define the functions gd : N→ N by
gd(n) = n · ( 2 + fd(n) ), for all d ∈ N.

▶ Proposition 25. For all d, n, A, x, v, m, where d, n ∈ N, A is a Petri net of dimension
d, x ∈ Nd, v ∈ Nd

ω, m belongs to min(post∗
A(x)∩ ↓ v), and the norms of A, x, v are

bounded by n, there exists a word σ ∈ A∗ such that x σ−→ m and |σ| ≤ fd ◦ g
(k)
d (n) where

k = |{i | v(i) = ω}|.

Proof. The strict version < of the relation ≤ on Nd
ω (defined by w < v if w ≤ v and w ̸= v)

is clearly well-founded. We use this property for an inductive proof.
We aim to show the claim for a considered tuple d, n, A, x, v, m, while we can assume

that the claim is valid for d, n′, A, x, w, m′ for all w < v and all m′ ∈ min(post∗
A(x)∩ ↓w).

Since m is in (post∗
A(x)∩ ↓ v), we deduce from Proposition 24 that we can fix y ∈

(post∗
A(x)∩ ↓ v) and a word σ ∈ A∗ such that x σ−→ y and |σ| ≤ fd(n); we thus have

∥y∥ ≤ ∥x∥+ ∥A∥ · |σ| ≤ gd(n)− n. If m = y, then the claim is proved; so we assume that
m ̸= y.

By Observation 12 we can fix w ∈ δy(v) such that m ∈ min(post∗
A(x)∩ ↓w); since

w ∈ δy(v), we have w < v. By the induction hypothesis, there is a word σ′ ∈ A∗ such that
x σ′

−→m and |σ′| ≤ fd ◦ g
(k′)
d (n′) where n′ = max{∥A∥, ∥x∥, ∥w∥}) and k′ = |{i | w(i) = ω}|.
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Putting k = |{i | v(i) = ω}|, we observe that k′ = k or k′ = k− 1. If k′ = k, then ∥w∥ < ∥v∥
and we are done by monotonicity of fd and gd. Otherwise k′ = k − 1 and in that case
∥w∥ ≤ ∥v∥+ ∥y∥ ≤ gd(n) since in that case w is obtained from v by replacing component i

of v for some i such that v(i) = ω and y(i) > 0 by y(i)− 1. It follows that n′ ≤ gd(n) and
we are done also in that case by monotonicity of fd and gd. ◀

Finally, by instantiating the previous proposition with v = (ω, ω, . . . , ω), and by bounding
fd◦g(d)

d (n) by Fd+5(c′n) for some constant c′ > 0 independent of d, n, we deduce the following
two corollaries.

▶ Corollary 26. There is a constant c′ > 0 such that for all d, n, A, x, m, where d, n ∈ N, A

is a Petri net of dimension d, x ∈ Nd, m belongs to min(post∗
A(x)), and the norms of A, x

are bounded by n, there exists a word σ ∈ A∗ such that x σ−→m and |σ| ≤ Fd+5(c′n).

▶ Corollary 27. There is a constant c′ > 0 such that for all d, n, A, x, where d, n ∈ N, A

is a Petri net of dimension d, x ∈ Nd, and the norms of A, x are bounded by n, the set
min(post∗

A(x)) is computable in time exponential in Fd+5(c′n) and the norms of vectors in
that set are bounded by n · (1 + Fd+5(c′n)).

Proof. In fact, the set of minimal reachable configurations can be obtained by exploring
configurations reachable from x by sequences of at most Fd+5(c′n) actions in A. We note that
the norms of configurations reachable in this way are bounded by ∥x∥+ Fd+5(c′n) · ∥A∥ ≤
n · (1 + Fd+5(c′n)). ◀

6.3 Extension to Semilinear Sets
The algorithm computing minimal reachable configurations can be also simply used for
computing the set min(post∗

A(x) ∩ S) where S is a semilinear set; we thus formulate this
fact as a corollary (though with providing a proof). We recall that the norm of a semilinear
set is the maximum norm of vectors occurring in its (implicitly assumed) presentation.

▶ Corollary 28. There is a constant c′ > 0 such that for all d, n, A, x, S, where d, n ∈ N, A is
a Petri net of dimension d, x ∈ Nd, S is (a presentation of) a semilinear set S ⊆ Nd, and the
norms of A, x, S are bounded by n, the set min(post∗

A(x)∩S) is computable in time exponential
in F2d+6(c′n) and the norms of vectors in that set are bounded by n · (1 + F2d+6(c′n)).

Proof. Let us consider a d-dimensional Petri net A, an initial configuration x, and a semilinear
set S ⊆ Nd given as the union of linear sets L1, L2, . . . , Lm. Since min(post∗

A(x) ∩ S) =
min(

⋃m
j=1 min(post∗

A(x)∩Lj)) we can reduce the problem of computing min(post∗
A(x)∩S)

to the special case of a linear set S, denoted as L in the sequel. So, let L be a linear set
presented by a basis b ∈ Nd and a sequence of periods p1, p2, . . . , pk ∈ Nd, and let us provide
an algorithm for computing min(post∗

A(x) ∩ L).
To do so, we build from A a new Petri net B of dimension 2d+1 defined as follows and an

initial configuration (x, 1, 0). We associate to each Petri net action a ∈ A of the form (a−, a+)
the action ((a−, 1, 0), (a+, 1, 0)) in B that intuitively executes a on the first d counters and
check that the middle counter (the counter d + 1) is at least 1. We also add in B for each
j ∈ [1, k] an action ((pj , 0, 0), (0, 0, pj)) that removes the period pj on the first d counters
and adds it on the last d counters. Finally, we add to B the action ((b, 1, 0), (0, 0, b)) that
decrements the middle counter and simultaneously removes b from the first d counters, and
adds b on the last d counters. Since for any set X ⊆ Nd and any set I ⊆ [1, d], the set
min({x ∈ X |

∧
i∈I x(i) = 0}) is equal to {m ∈ min(X) |

∧
i∈I m(i) = 0}), one can observe

that {0}× {0}×min(post∗
A(x)∩L) is equal to min(post∗

B(x, 1, 0))∩ ({0}× {0}×Nd). ◀
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6.4 Extension to Semilinear Predicates
By another corollary (with a proof) we also note that the algorithm computing minimal
reachable configurations can be used for computing minimal vectors in sets of the following
form

X = {x ∈ Nh | ∃α, β ∈ Nd : α
A∗

−−→ β ∧ (x, α, β) ∈ P} (3)

where P ⊆ Nh × Nd × Nd is a semilinear predicate given by a presentation. Notice that we
use Greek letters α and β in the definition of X in order to emphasise vectors that act as
configurations of the Petri net A.

▶ Corollary 29. There is a constant c′ > 0 such that for all d, h, n, A, P , where d, h, n ∈ N,
A is a Petri net of dimension d, x ∈ Nd, P is (a presentation of) a semilinear predicate
P ⊆ Nh × Nd × Nd, and the norms of A, x, P are bounded by n, the set of minimal elements
of the set X denoted by equation (3) is computable in time exponential in F2h+4d+6(c′n) and
the norms of these minimal elements are bounded by n · (1 + F2h+4d+6(c′n)).

Proof. We first introduce the set Y defined as Z ∩ P where

Z = {(x, α, β) ∈ Nh × Nd × Nd | α A∗

−−→ β}.

Since min(X) = min{x ∈ Nk | ∃α, β ∈ Nd : (x, α, β) ∈ min(Y )} it is sufficient to provide an
algorithm computing min(Y ).

Our algorithm is based on the fact that Z is the reachability set of a (h + 2d)-dimensional
Petri net B starting from the zero configuration and defined as follows from A. By ii we
denote the vector in Nh defined by ii(i) = 1 and ii(j) = 0 if j ∈ [1, h]\{i}. The Petri net
B is defined as the actions ((0, 0, 0), (ij , 0, 0)) where j ∈ [1, h] that increment the counters
corresponding to x, actions ((0, 0, 0), (0, ij , ij)) that increment simultaneously by the same
amount the counters corresponding to α and β, and actions obtained from A that simulate
the computation of A on the counters β and defined for each action a of A of the form
(a−, a+) by the action ((0, 0, a−), (0, 0, a+)) in B. Notice that Z = post∗

B(0, 0, 0) and we
are done by Corollary 28. ◀

7 Complexity of the Semilinear Home-Space Problem

In this section we provide an Ackermannian complexity upper-bound for deciding the
semilinear home-space problem; Theorem 3 will thus be proven.

So let A, X, H be an instance of the semilinear home-space problem where A is a Petri net,
of dimension d, and X, H are two (presentations of) semilinear subsets of Nd. Since H can
be decomposed, in elementary time, into a finite union of linear sets using presentations with
at most d periods [7, Lemma 6.6], we can assume that each linear set L of the presentation
of H satisfies this constraint. We put n = max{∥A∥, ∥X∥, ∥H∥}.

We first consider the problem of computing a semilinear non-reachability core for each
linear set L of the presentation of H. Such a linear set L is presented with a basis b and
a sequence of k periods p1, p2, . . . , pk with k ≤ d. As previously shown, this computation
reduces to the computation of the minimal elements of the upward closed set dcb-pr and the
upward-closed sets Uy where y belongs to the finite set of vectors in Nd satisfying ∥y∥ ≤ ∥b∥.
The computation of those minimal elements can be obtained by rewriting the definitions of
dcb-pr and Uy to match the statement of Corollary 29. To do so, we note that dcb-pr
and Uy can be described in the following way:
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dcb-pr = {(y, u) ∈ Nd × Nk | ∃α, β ∈ Nd : α
A∗

−−→ β ∧ (y, u, α, β) ∈ P}

Uy = {u ∈ Nk | ∃α, β ∈ Nd : α
A∗

−−→ β ∧ (u, α, β) ∈ Py}

where:

P =

(y, u, α, β) ∈ Nd × Nk × Nd × Nd | ∃(y′, u′) ∈ Nd × Nk :
∥y∥ > ∥y′∥∧
α = conf(y, u)∧
β = conf(y′, u′)


Py = {(u, α, β) ∈ Nk × Nd × Nd | α = conf(y, u) ∧ β ∈ L}.

Since the sets P and Py are clearly expressible by formulas in Presburger arithmetic, we
can effectively construct, in elementary time, semilinear presentations of those sets [8]. We
introduce an elementary function E (independent of any instance) corresponding to that
computation. We deduce that for some constant c′ > 0, independent of any input, we can
compute, in time exponential in F8d+6(c′E(n)), the sets min(dcb-pr) and min(Uy) for ∥y∥ ≤
∥b∥. Moreover, the norms of vectors in those sets are bounded by F8d+6(c′E(n)). It follows
from the proof of Proposition 21 that there exists an elementary function E′ (independent of
any instance) such that we can compute, in time E′(F8d+6(c′E(n))), a (presentation of a)
semilinear non-reachability core C for each linear set L of the presentation of H.

Let L1, L2, . . . , Lm be the presentation sequence of H, and let C1, C2, . . . , Cm be the
respective semilinear non-reachability cores computed for L1, L2, . . . , Lm, respectively, as
shown in the previous paragraph. Proposition 9 shows that H is not a home-space for X if,
and only if, there is an execution

x0
A∗

−−→ x1
A∗

−−→ x2 · · ·
A∗

−−→ xm (4)

where x0 ∈ X, and xi ∈ Ci for each i ∈ [1, m].

The existence of such an execution can be decided by Proposition 10, by a reduction to
the reachability problem for a Petri net of a dimension that is elementary in max{d, m, n}.
Theorem 23 thus entails that the semilinear home-space problem is decidable in Ackermannian
time, which finishes the proof of Theorem 3.

8 Concluding Remarks

There are various issues that can be elaborated and added to the presented material. One
such issue was mentioned in Remark 6, dealing with strengthening the lower bound.

We can also look for positive witnesses of the home-space property; e.g., we anticipate
that given a Petri net A of dimension d, and two semilinear sets S0, S1 ⊆ Nd, we have
post∗

A(S0) ⊆ pre∗
A(S1) (i.e., S1 is a home-space for S0) iff there is a semilinear set S′ such

that post∗
A(S0) ⊆ S′ ⊆ pre∗

A(S1).
Best and Esparza [2] consider the “existential” home-space problem that asks, given

a Petri net A of dimension d and an initial configuration x, if there exists a singleton home-
space for {x}; the main result of [2] shows that this existential problem is decidable. We
can consider a related problem that asks, given A and x, if there is a semilinear home-space
included in post∗

A(x); currently we have no answer to the respective decidability question.
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Abstract
We introduce a method for translating an alternating weak Büchi automaton (AWA), which corres-
ponds to a Linear Dynamic Logic (LDL) formula, to an unambiguous Büchi automaton (UBA). Our
translations generalise constructions for Linear Temporal Logic (LTL), a less expressive specification
language than LDL. In classical constructions, LTL formulas are first translated to alternating very
weak automata (AVAs) – automata that have only singleton strongly connected components (SCCs);
the AVAs are then handled by efficient disambiguation procedures. However, general AWAs can
have larger SCCs, which complicates disambiguation. Currently, the only available disambiguation
procedure has to go through an intermediate construction of nondeterministic Büchi automata
(NBAs), which would incur an exponential blow-up of its own. We introduce a translation from
general AWAs to UBAs with a singly exponential blow-up, which also immediately provides a singly
exponential translation from LDL to UBAs. Interestingly, the complexity of our translation is
smaller than the best known disambiguation algorithm for NBAs (broadly (0.53n)n vs. (0.76n)n),
while the input of our construction can be exponentially more succinct.
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1 Introduction

Automata over infinite words were first introduced by Büchi [8]. The automata used by
Büchi (thus called Büchi automata) accept an infinite word if they have a run over the
word that visits accepting states infinitely often. Nondeterministic Büchi automata (NBAs)
are nowadays recognized as a standard tool for model checking transition systems against
temporal specification languages like Linear Temporal Logic (LTL) [1, 11,13,26].

NBAs belong to a larger class of automata over infinite words, also known as ω-automata.
Translations between different types of ω-automata play a central role in automata theory,
and many of them have gained practical importance, too. For example, researchers have
started to pay attention to a kind of automata called alternating automata [20,22] in the 80s.
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37:2 Singly Exponential Translation of AWAs to UBAs

Alternating automata not only have existential, but also universal branching. In alternating
automata, the transition function no longer maps a state and a letter to a set of states, but to
a positive Boolean formula over states. An alternating Büchi automaton accepts an infinite
word if there is a run graph over the word, in which all traces visit accepting states infinitely
often. Every NBA can be seen as a special type of alternating Büchi automaton (ABA),
while the translation from ABAs to NBAs may incur an exponential blow-up in the number
of states [20]. Indeed, ABAs can be exponentially more succinct than their counterpart
NBAs [6]. Apart from their succinctness, another reason why alternating automata have
become popular in our community is their tight connection to specification logics. There
is a straight forward translation from Linear Dynamic Logic (LDL) [12, 25] to alternating
weak Büchi automata (AWAs), both recognizing exactly the ω-regular languages. AWAs
are a special type of ABAs in which every strongly connected component (SCC) contains
either only accepting states or only rejecting states. (AWAs have also been applied to the
complementation of Büchi automata [17].) Further, there is a one-to-one mapping [5,7,11]
between LTL and very weak alternating Büchi automata (AVAs) [23] – special AWAs where
every SCC has only one state.

Automata over infinite words with different branching mechanisms all have their place
in building the foundation of automata-theoretic model checking. This paper adds another
chapter to the success story of efficient automata transformations: we show how to efficiently
translate AWAs to unambiguous Büchi automata (UBAs) [10], and thus also the logics that
tractably reduce to AWAs, e.g., LDL. UBAs are a type of NBAs that have at most one
accepting run for each word and have found applications in probabilistic verification [2]1.

Our approach can be viewed as a generalization of earlier work on the disambiguation of
AVAs [4,14]. The property of the very weakness has proven useful for disambiguation: to
obtain an unambiguous generalized Büchi automaton (UGBA) from an AVA, it essentially
suffices to use the nondeterministic power of the automaton to guess, in every step, the
precise set of states from which the automaton accepts. There is only one correct guess
(which provides unambiguity), and discharging the correctness of these guesses is straight
forward. AVAs with n states can therefore be disambiguated to UGBAs with 2n states and
n accepting sets, and thus to UBAs with n2n states.

Unfortunately, this approach does not extend easily to the disambiguation of AWAs:
while there would still be exactly one correct guess, the straight-forward way to discharging
its correctness would involve a breakpoint construction [20], which is not unambiguous.

The technical contribution of this paper is to replace these breakpoint constructions by
total preorders, and showing that there is a unique correct way to choose these orders. We
provide two different reductions, one closer to the underpinning principles – and thus better
for a classroom (cf. Section 3.4) – and a more efficient approach (cf. Section 4).

Given that we track total preorders, the worst-case complexity arises when all, or almost
all, states are in the same component. To be more precise, if tpo(n) denotes the number of
total preorders on sets with n states, then our construction provides UBAs of size O

(
tpo(n)

)
.

As tpo(n) ≈ n!
2(ln 2)n+1 [3], we have that limn→∞

n
√

tpo(n)
n = 1

e ln 2 ≈ 0.53, which is a better
bound than the best known bound for Büchi disambiguation [16] (and complementation [24]),
where the latter number is ≈ 0.76.

1 We note that specialized model checking algorithm for Markov chains against AWAs/LDL, without
constructing UBAs, has been proposed in [9] without implementations. Nonetheless, our translation can
potentially be used as a third party tool that constructs UBA from an AWA/LDL formula for PRISM
model checker [18] without changing the underlying model checking algorithm [2].
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While it is not surprising that a direct construction of UBAs for AWAs is superior to a
construction that goes through nondeterminization (and thus incurs two exponential blow-ups
on the way), we did not initially expect a construction that leads to a smaller increase in
the size when starting from an AWA compared to starting from an NBA, as AWAs can
be exponentially more succinct than NBAs, but not vice versa (See [17] for a quadratic
transformation).

As a final test for the quality of our construction, we briefly discuss how it behaves
on AVAs, for which efficient disambiguation is available. We show that the complexity of
our construction can be improved to n2n when the input is an AVA, leading to the same
construction as the classic disambiguation construction for LTL/AVAs [4, 14] (cf. Section 5).
We also discuss how to adjust it so that it can produce the same transition based UGBA in
this case, too. The greater generality we obtain comes therefore at no additional cost.

Related work. Disambiguation of AVAs from LTL specifications have been studied in [4,
14]. Our disambiguation algorithm can be seen as a more general form of them. The
disambiguation of NBAs was considered in [15], which has a blow-up of O((3n)n); the
complexity has been later improved to O(n · (0.76n)n) in [16]. Our construction can also be
used for disambiguating NBAs, by going through an intermediate construction of AWAs from
NBAs; however, the intermediate procedure itself can incur a quadratic blow-up of states [14].
Nonetheless, if the input is an AWA, our construction improves the current best known
approach exponentially by avoiding the alternation removal operation for AWAs [6,20].

2 Preliminaries

For a given set X, we denote by B+(X) the set of positive Boolean formulas over X. These
are the formulas obtained from elements of X by only using ∧ and ∨, where we also allow tt
and ff. We use tt and ff to represent tautology and contradiction, respectively. For a set
Y ⊆ X, we say Y satisfies a formula θ ∈ B+(X), denoted as Y |= θ, if the Boolean formula
θ is evaluated to tt when we assign tt to members of Y and ff to members of X \ Y . For
an infinite sequence ρ, we denote by ρ[i] the i-th element in ρ for some i ≥ 0; for i ∈ N, we
denote by ρ[i · · · ] = ρ[i]ρ[i + 1] · · · the suffix of ρ from its i-th letter.

An alternating Büchi automaton (ABA) A is a tuple (Σ, Q, ι, δ, F ) where Σ is a finite
alphabet, Q is a finite set of states, ι ∈ Q is the initial state, δ : Q × Σ → B+(Q) is
the transition function, and F ⊆ Q is the set of accepting states. ABAs allow both non-
deterministic and universal transitions. The disjunctions in transition formulas model the
non-deterministic choices, while conjunctions model the universal choices. The existence of
both nondeterministic and universal choices can make ABAs exponentially more succinct
than NBAs [6]. We assume w.l.o.g. that every ABA is complete, in the sense that there is a
next state for each s ∈ Q and σ ∈ Σ. Every ABA can be made complete as follows. Fix a
state s ∈ Q and a letter σ′ ∈ Σ. If δ(s, σ′) = ff, we can add a sink rejecting state ⊥, and set
δ(s, σ′) = ⊥ and δ(⊥, σ) = ⊥ for every σ ∈ Σ; If δ(s, σ′) = tt, we can similarly add a sink
accepting state ⊤, and set δ(s, σ′) = ⊤ and δ(⊤, σ) = ⊤ for every σ ∈ Σ. For a state s ∈ Q,
we denote by As the ABA obtained from A by setting the initial state to s.

The underlying graph GA of an ABA A is a graph ⟨Q, E⟩, where the set of vertices is
the set Q of states in A and (q, q′) ∈ E if q′ appears in the formula δ(q, σ) for some σ ∈ Σ.
We call a set C ⊆ Q a strongly connected component (SCC) of A if, for every pair of states
q, q′ ∈ C, q and q′ can reach each other in GA.
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A nondeterministic Büchi automaton (NBA) A is an ABA where B+(Q) only contains the
∨ operator; we also allow multiple initial states for NBAs. We usually denote the transition
function δ of an NBA A as a function δ : Q × Σ → 2Q and the set of initial states as I. Let
w = w[0]w[1] · · · ∈ Σω be an (infinite) word over Σ.

A run of the NBA A over w is a state sequence ρ = q0q1 · · · ∈ Qω such that q0 ∈ I and,
for all i ∈ N, we have that qi+1 ∈ δ(qi, w[i]). We denote by inf(ρ) the set of states that occur
in ρ infinitely often. A run ρ of the NBA A is accepting if inf(ρ) ∩ F ̸= ∅. An NBA A accepts
a word w if there is an accepting run ρ of A over w. An NBA A is said to be unambiguous
(abbreviated as UBA) [10] if A has at most one accepting run for every word.

Since ABA have universal branching (or conjunctions in δ), a run of an ABA is no longer
an infinite sequence of states; instead, a run of an ABA A over w is a run directed acyclic
graph (run DAG) Gw = (V, E) formally defined below:

V ⊆ Q × N where ⟨ι, 0⟩ ∈ V .
E ⊆

⋃
ℓ>0(Q × {ℓ}) × (Q × {ℓ + 1}) where, for every vertex ⟨q, ℓ⟩ ∈ V, ℓ ≥ 0, we have that

{ q′ ∈ Q | (⟨q, ℓ⟩, ⟨q′, ℓ + 1⟩) ∈ E } |= δ(q, w[ℓ]).

A vertex ⟨q, ℓ⟩ is said to be accepting if q ∈ F . An infinite sequence ρ = ⟨q0, 0⟩⟨q1, 1⟩ · · · of
vertices is called an ω-branch of Gw if q0 = ι and for all ℓ ∈ N, we have (⟨qℓ, ℓ⟩, ⟨qℓ+1, ℓ + 1⟩) ∈
E. We also say the fragment ⟨qi, i⟩⟨qi+1, i + 1⟩ · · · of ρ is an ω-branch from ⟨qi, i⟩. We say a
run DAG Gw is accepting if all its ω-branches visit accepting vertices infinitely often. An
ω-word w is accepting if there is an accepting run DAG of A over w.

Let A be an ABA. We denote by L(A) the set of words accepted by A.
It is known that both NBAs and ABAs recognise exactly the ω-regular languages. ABAs

can be transformed into language-equivalent NBAs in exponential time [20]. In this work, we
consider a special type of ABAs, called alternating weak Büchi automata (AWAs) where, for
every SCC C of an AWA A = (Σ, Q, ι, δ, F ), we have either C ⊆ F or C ∩F = ∅. We note that
different choices of equivalent transition formulas, e.g., δ(p, σ) = q1 and δ(p, σ) = q1 ∧(q1 ∨q2),
will result in different SCCs. However, as long as the input ABA is weak2, our proposed
translation still applies.

One can transform an ABA to its equivalent AWA with only quadratic blow-up of the
number of states [17]. A nice property of an AWA A is that we can easily define its dual
AWA Â = (Σ, Q, ι, δ̂, F̂ ), which has the same statespace and the same underlying graph as
A, as follows: for a state q ∈ Q and a ∈ Σ, δ̂(q, a) is defined from δ(q, a) by exchanging the
occurrences of ff and tt and the occurrences of ∧ and ∨, and F̂ = Q \ F . It follows that:

▶ Lemma 1 ([21]). Let A be an AWA and Â its dual AWA. For every state q ∈ Q, we have
L(Aq) = Σω \ L(Âq).

In the remainder of the paper, we call a state of an NBA a macrostate and a run of an
NBA a macrorun in order to distinguish them from those of ABA.

3 From AWAs to UBAs

In this section, we will present a construction of UBA Bu from an AWA A such that
L(Bu) = L(A). We will first introduce the construction of an NBA from an AWA given in [9]
and show that this construction does not necessarily yield a UBA (Section 3.1). Nonetheless,
we extract the essence of the construction and show that we can associate a unique sequence
to each word (Section 3.2).

2 To make ABAs as weak as possible, one solution would be computing minimal satisfying assignments to
the transition formulas, which is well defined and results in minimal possible SCCs.
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We then enrich this unique sequence with additional, similarly unique, information, which
we subsequently abstract into the essence of a unique accepting macrorun of Bu. Developing
this into a UBA whose macrorun can be uniquely mapped to the sequence (Section 3.4) is
then just a simple technical exercise.

3.1 From AWAs to NBAs
As shown in [20], we can obtain an equivalent NBA N (A) from an ABA A with an exponential
blow-up of states, which is widely known as the breakpoint construction. In [9], the authors
define a different construction of NBAs B from AWAs A, which can be seen as a combination
of the NBAs N (A) and N (Â). Below we will first introduce the construction in [9] and
extract its essence as a unique sequence of sets of states for each word.

The macrostate of B is encoded as a consistent tuple (Q1, Q2, Q3, Q4) such that Q2 =
Q \ Q1, Q3 ⊆ Q1 \ F , and Q4 ⊆ Q2 \ F̂ .

The formal translation is defined as follows.

▶ Definition 2 ( [9]). Let A = (Σ, Q, ι, δ, F ) be an AWA. We define an NBA B =
(Σ, QB, IB, δB, FB) where

QB is the set of consistent tuples over 2Q × 2Q × 2Q × 2Q.
IB = { (Q1, Q2, Q3, Q4) ∈ QB | ι ∈ Q1 }3,
Let (Q1, Q2, Q3, Q4) be a macrostate in QB and σ ∈ Σ.
Then (Q′

1, Q′
2, Q′

3, Q′
4) ∈ δB((Q1, Q2, Q3, Q4), σ) if Q′

1 |= ∧s∈Q1δ(s, σ) and Q′
2 |=

∧s∈Q2 δ̂(s, σ) and either
Q3 = Q4 = ∅, Q′

3 = Q′
1 \ F and Q′

4 = Q′
2 \ F̂ ,

Q3 ̸= ∅ or Q4 ≠ ∅, there exists Y3 ⊆ Q′
1 such that Y3 |= ∧s∈Q3δ(s, σ) and Q′

3 = Y3 \ F ,
and there exists Y4 ⊆ Q′

2 such that Y4 |= ∧s∈Q4 δ̂(s, σ) and Q′
4 = Y4 \ F̂ .

FB = { (Q1, Q2, Q3, Q4) ∈ QB | Q3 = Q4 = ∅ }.

Intuitively, the resulting NBA performs two breakpoint constructions: one breakpoint
construction macrostate (Q1, Q3) for A and the other breakpoint construction macrostate
(Q2, Q4) for Â. Let w ∈ Σω. The tuple (Q1, Q3) in the construction uses Q1 to keep track of
the reachable states of A in a run DAG Gw over w and exploits the set Q3 to check whether
all ω-branches end in accepting SCCs. If all ω-branches in Q3 have visited accepting vertices,
Q3 will fall empty, as Q3 only contains non-accepting states. Once Q3 becomes empty, we
reset the set with Q′

3 = Q′
1 \ F since we need to also check the ω-branches that newly appear

in Q1. If Q3 becomes empty for infinitely many times, we know that every ω-branch in Gw is
accepting, i.e., all ω-branches visit accepting vertices infinitely often. Hence w is accepted
by A since there is an accepting run DAG from Aι. We can similarly reason about the
breakpoint construction for Â.

Besides that L(B) = L(A), Bustan, Rubin, and Vardi [9] have also shown the following:

▶ Lemma 3 ([9]). Let B be the NBA constructed as in Definition 2. Then
Let S ⊆ Q, we have that

L(B(S,Q\S,Q3,Q4)) =
⋂
s∈S

L(As) ∩
⋂

s∈Q\S

L(Âs)

where Q3 ⊆ S and Q4 ⊆ Q \ S;

3 IB is not present in [9] and we added it for the completeness of the definition.
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Figure 1 An example of an AWA A, its dual Â and incomplete part of the constructed B over
bω, where for instance the transition ((Q, {q, s}), b, (Q, {t})) is missing.

Let (Q1, Q2, Q3, Q4) and (Q′
1, Q′

2, Q′
3, Q′

4) be two macrostates of B, we have that
L(B(Q1,Q2,Q3,Q4)) ∩ L(B(Q′

1,Q′
2,Q′

3,Q′
4)) = ∅ if Q1 ̸= Q′

1, and
L(B(Q1,Q2,Q3,Q4)) = L(B(Q′

1,Q′
2,Q′

3,Q′
4)) if Q1 = Q′

1.

Let w ∈ L(B) and ρ = (Q0
1, Q0

2, Q0
3, Q0

4)(Q1
1, Q1

2, Q1
3, Q1

4) · · · be an accepting macrorun of
B over w. According to Lemma 3, it is easy to see that the Q1-set sequence Q0

1Q1
1 · · · is in

fact unique for every accepting macrorun over w. If there are two accepting macroruns, say
ρ1 and ρ2, of B over w that have two different Q1-set sequences, there must be a position
j ≥ 0 such that their Q1-sets differ. By Lemma 3, the suffix w[j · · · ] cannot be accepted
from both macrostates ρ1[j] and ρ2[j], leading to contradiction. Therefore, every accepting
macrorun of B over w corresponds to a unique sequence of Q1-sets. However, B does not
necessarily have only one accepting macrorun over w, because there is nondeterminism in
developing the breakpoints.

▶ Lemma 4. The NBA B defined as in Definition 2 is not necessarily unambiguous.

Proof. We prove Lemma 4 by giving an example AWA A for which the constructed B is not
unambiguous. The example AWA A and its dual Â are given in Figure 1 where accepting
states are depicted with double circles, initial states are marked with an incoming arrow and
universal transitions are originated from a black filled circle. The transitions are by default
labelled with Σ = {a, b} unless explicitly labelled otherwise. We let Q = {p, q, s, t, r}. First,
we can see that bω ∈ L(Ap) ∩ L(Aq) ∩ L(As) ∩ L(At) ∩ L(Ar). So the unique Q1-sequence of
all accepting macroruns in B over bω should be Qω, according to Lemma 3. We only depict an
incomplete part of B over bω where we ignore the Q2 and Q4 sets because we have constantly
Q2 = {} and Q4 = {} by definition. One of the initial macrostates is m0 = (Q, {}), which
is also accepting. When reading the letter b, we always have {p, q, s, t, r} |= ∧c∈Qδ(c, b).
Thus, the successor of m0 over b is m1 = (Q, Q \ {p, r}) = (Q, {q, s, t}) since the breakpoint
set Q′

3 needs to be reset to Q′
1 \ F when Q3 = {}. When choosing the successor set

Q′
3 for Q3 = {q, s, t} at m1, we have two options, namely {q, s} and {q, t}, since q has

nondeterministic choices upon reading letter b. Consequently, B can transition to either
m2 = (Q, {q, s}) or m3 = (Q, {q, t}), upon reading b in m1. In fact, all the nondeterminism
of B in Figure 1 is due to nondeterministic choices at q. We can continue to explore the
state space of B according to Definition 2 and obtain the incomplete part of B depicted in
Figure 1. Note that, we have ignored some outgoing transitions from (Q, {q, s}) since the
present part already suffices to prove Lemma 4. It is easy to see that B has at least two
accepting macroruns over bω. Thus we have proved Lemma 4. ◀
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In fact, based on Definition 2, it is easy to compute a unique sequence of sets of states
for each given word, which builds the foundation of our proposed construction.

3.2 Unique sequence of sets of states for each word
In the remainder of the paper, we fix an AWA A = (Σ, Q, ι, δ, F ). For every word w ∈ Σω,
we define a unique sequence of sets of states associated with it as the sequence Q0

1Q1
1Q2

1 · · ·
such that, for every i ≥ 0, we have that:
P1 Qi

1 ⊆ Q,
P2 for every state q ∈ Qi

1, w[i · · · ] ∈ L(Aq) and
P3 for every state q ∈ Q \ Qi

1, w[i · · · ] /∈ L(Aq) (or, similarly, w[i · · · ] ∈ L(Âq)).
These properties immediately entail the weaker local consistency requirements:
L2 for every state q ∈ Qi

1, Qi+1
1 |= δ(q, w[i]) (entailed by P2) and

L3 for every state q ∈ Q \ Qi
1, Q \ Qi+1

1 |= δ̂(q, w[i]) (entailed by P3).

It is obvious that, for every state s ∈ Q, Σω = L(As)⊎L(As) = L(As)⊎L(Âs) holds. We
define Qw = { s ∈ Q | w ∈ L(As) }. This clearly provides Q \ Qw = { s ∈ Q | w ∈ L(Âs) }.
For every w ∈ Σω, we therefore have

w ∈
⋂

s∈Qw

L(As) ∩
⋂

s∈Q\Qw

L(As) or, equivalently, w ∈
⋂

s∈Qw

L(As) ∩
⋂

s∈Q\Qw

L(Âs).

For every i ≥ 0, P2 and P3 are then equivalent to the requirement Qi
1 = Qw[i··· ].

To see how the local constraints L2 and L3 can be obtained from P2 and P3, respectively,
we fix an integer i ≥ 0. Let s ∈ Qi

1, so we know that As accepts w[i · · · ]. Let Si+1 be the set
of successors of s in an accepting run DAG of As over w[i · · · ], i.e., Si+1 |= δ(s, w[i]). As the
run DAG is accepting, we in particular have, for every t ∈ Si+1, that At accepts w[i + 1 · · · ],
which implies Si+1 ⊆ Qi+1

1 . With Si+1 |= δ(s, w[i]), this provides Qi+1
1 |= δ(s, w[i]), and

thus L2.
Similarly, we can also show that, for every state q ∈ Q \ Qi

1, we have Q \ Qi+1
1 |= δ̂(q, w[i]).

As before, Âq accepts w[i · · · ] for every q ∈ Q \ Qi
1 by definition. We let Si+1 be the set of

successors of q in an accepting run DAG of Âq. This implies at the same time Si+1 |= δ̂(q, w[i])
(local constraints for the run DAG) and Si+1 ⊆ Q \ Qi+1

1 (as the subgraphs starting there
must be accepting). Together, this provides Q \ Qi+1

1 |= δ̂(q, w[i]), and thus L3 also holds.
Moreover, every set Qi

1 is uniquely defined based on the word w[i · · · ]. Therefore, the
sequence Rw = Q0

1Q1
1 · · · we have defined above indeed is the unique sequence satisfying P1,

P2, and P3. Let us consider again the NBA construction of Definition 2: obviously, it enforces
the local consistency requirements L2 and L3 on the definition of the transition relation δB,
which is the necessary condition for the Q1-sequence being unique; the sufficient condition
that Qi

1 = Qw[i··· ] for all i ∈ N is guaranteed with the two breakpoint constructions.
In the remainder of the paper, we denote this unique sequence for a given word w by Rw.

The UBA we will construct has to guess (not only) this unique sequence correctly on the fly,
but also when it leaves each SCC, as shown later.

3.3 Unique distance functions
As discussed before, we have a unique sequence Rw = Q0

1Q1
1 · · · for w. However, as we have

seen in Section 3.1, Rw alone does not suffice to yield an UBA. The construction from Section
3.1, for example, validates that all rejecting SCCs can be left using breakpoints, and we
have shown how that leaves leeway w.r.t. how these breakpoints are met. In this section,
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we discuss a different, an unambiguous (but not finite) way to check the correctness of Rw

by making the minimal time it takes from a state, for the given input word, to leave the
rejecting SCC of A or Â on every branch of this run DAG. For instance, in Figure 1, it is
possible to select different successors for state q when reading a b, going to either s or t. One
of them will lead to leaving this SCC immediately, either s (when reading a b) or t (when
reading an a). For acceptance, the choice does not matter – so long as the correct choice is
eventually made. On the word bω, for example in A, we could go to t the first 20 times, and
to s only in the 21st attempt; the answer to the question ‘how long does it take to leave the
SCC starting in q on this run DAG?’ would be 42.

The shortest time, however, is well defined. In the example automaton A, it depends on
the next letter: if it is a, then the distance is 1 from t, 2 from q, and 3 from s, and when it
is b, then the distance is 1 from s, 2 from q, and 3 from t.

To reason about the minimal number of steps it takes from a state within a rejecting
SCC that needs to leave it, we will define a distance function.

Formally, we denote by R the set of states in all rejecting SCCs of A and A the set of
states in all accepting SCCs of A. For a given word w and its unique sequence Rw, we identify
the unique distance4 to leave a rejecting SCCs at each level i in Gw by defining a distance
function di : (Qi

1 ∩ R) ⊎ (A \ Qi
1) → N>0 for each i ∈ N.

▶ Definition 5. Let w be a word and Rw = Q0
1Q1

1 · · · be its unique sequence of sets of states.
We say Φw = (Q0

1, d0)(Q1
1, d1) · · · is consistent if, for every i ∈ N, we have (Qi

1, di) and
(Qi+1

1 , di+1) satisfy the following rules:
R1. For every state p ∈ R ∩ Qi

1 that belongs to a rejecting SCC C in A,

a : (Qi+1
1 \ C) ∪ {q ∈ C ∩ Qi+1

1 | di+1(q) ≤ di(p) − 1} |= δ(p, w[i]) and

b : if di(p) > 1, (Qi+1
1 \ C) ∪ {q ∈ C ∩ Qi+1

1 | di+1(q) ≤ di(p) − 2} ̸|= δ(p, w[i]) hold.

R2. For every state p ∈ A \ Qi
1 that belongs to an accepting SCC C in A,

a :
(
Q \ (Qi+1

1 ∪ C)
)

∪ {q ∈ C \ Qi+1
1 | di+1(q) ≤ di(p) − 1} |= δ̂(p, w[i]) and

b : if di(q) > 1,
(
Q\(Qi+1

1 ∪C)
)
∪{q ∈ C\Qi+1

1 | di+1(q) ≤ di(p)−2} ̸|= δ̂(p, w[i]) hold.

Intuitively, the distance function defines a minimal number of steps to escape from
rejecting SCCs over different accepting run DAGs and maximal over different branches of
one such run DAG.

For instance, when di(p) = 1, we have that Qi+1
1 \ C |= δ(p, w[i]) if p ∈ Qi

1 ∩ R, otherwise
Q \ (Qi+1

1 ∪ C) |= δ̂(p, w[i]) if p ∈ A \ Qi
1. It means that p can escape from C within one step

from an accepting run DAG Gw[i··· ] starting from ⟨p, 0⟩.

▶ Lemma 6. For each w ∈ Σω, there is a unique consistent sequence Φw =
(Q0

1, d0)(Q1
1, d2) · · · where Q0

1Q1
1Q2

1 · · · is Rw and d0d1 · · · is the sequence of distance func-
tions.

One can easily construct a consistent sequence of distance functions as follows. Let C be
a rejecting SCC of A; the case for a rejecting SCC of Â is entirely similar. Below, we describe
how to obtain a sequence of distance values for each state q ∈ C ∩ Qi

1 with i ≥ 0 in order to

4 Note that, while the distance is unique, the way does not have to be. To see this, we could just expand
the alphabet of A by adding a letter c, and by adding c to the transitions from both s and t to r. Then
there are two equally short (length 2) ways from q to r whenever the next letter is c.
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form a consistent sequence Φw. For q ∈ C ∩ Qi
1 at the level i, we first obtain an accepting run

DAG Gw[i··· ] over w[i · · · ] starting from ⟨q, 0⟩. One can define the maximal distance, say K,
over all branches from ⟨q, 0⟩ to escape the rejecting SCC C. Such a maximal distance value
must exist and be a finite value, since all branches will eventually get trapped in accepting
SCCs. For all accepting run DAGs G′

w[i··· ] over w[i · · · ] starting from the vertex ⟨q, 0⟩, there
are only finitely many run DAGs of depth K from ⟨q, 0⟩; we denote the finite set of such run
DAGs of depth K by Pq,i. We then denote the maximal distance over one finite run DAG
Gq,i,K ∈ Pq,i by KGq,i,K

. (Note that we set the distance to ∞ for a finite branch in Gq,i,K if
it does not visit a state outside C.) We then set di(q) = min{KGq,i,K

: Gq,i,K ∈ Pq,i} ≤ K.
One of Gq,i,K must provide the minimal value, so that di(q) is well defined. This way, we
can define the sequence of distance functions d = d0d1 · · · for the sequence Rw. We can also
prove that the sequence Rw × d is consistent by an induction on all the distance values k > 0;
We refer to [19] for the details.

The proof for the uniqueness of d to Rw can also be obtained by an induction on the
distance value k > 0; See [19] for details. The intuition is that every consistent sequence of
distance functions c does not have smaller distance values than d for every state q ∈ C ∩ Qi

1
(see the construction of d above), and if c does have greater distance values for some state, a
violation of the consistency constraints in Definition 5 will be found, leading to contradiction.

3.4 Unique total preorders
The range of the sequence d = d0d1d2 . . . of distance functions for Rw is not a priori bounded
by any given finite number when ranging over all infinite words. Therefore, we may need
infinite amount of memory to store d. To allow for an abstraction of d that preserves
uniqueness and needs only finite memory, we will abstract the values of each function di

as families of total preorders, {⪯i
C}C∈S , where S denotes the set of SCCs in the graph of

A. For a given SCC C ∈ S, a total preorder ⪯i
C is a relation defined over Hi × Hi, where

Hi = C ∩ Qi
1 if C ⊆ R or Hi = C \ Qi

1 if C ⊆ A; As usual, ⪯i
C is reflexive (i.e., for each

q ∈ Hi, q ⪯i
C q) and transitive (i.e., for each q, r, s ∈ Hi, q ⪯i

C r and r ⪯i
C s implies q ⪯i

C s).
We also have q ≺i

C r whenever q ⪯i
C r but r ̸⪯i

C q. We write q ⋍i
C r if we have q ⪯i

C r and
r ⪯i

C q. Since ⪯i
C is total, for every two states p, q ∈ Hi, we have p ⪯i

C q or q ⪯i
C p. Note

that ≺i
C is acyclic: it is impossible for two states q, p ∈ Hi satisfying p ≺i

C q and q ≺i
C p.

Formally, we define a consistent sequence of total preorders as below.

▶ Definition 7. Let w ∈ Σω and Rw = Q0
1Q1

1 · · · be its unique sequence of sets of states. We
say Pw = (Q0

1, {⪯0
C}C∈S)(Q1

1, {⪯1
C}C∈S) · · · is consistent if, for every i ∈ N, we have that

(Qi
1, {⪯i

C}C∈S) and (Qi+1
1 , {⪯i+1

C }C∈S) satisfy the following rules:
R1’. ∀q, q′ ∈ C ∩ Qi

1 ⊆ R, we have that q ≺i
C q′ iff there exists r ∈ C ∩ Qi+1

1 such that

a : {r′ ∈ C ∩ Qi+1
1 | r′ ≺i+1

C r} ∪ (Qi+1
1 \ C) |= δ(q, w[i]) and

b : {r′ ∈ C ∩ Qi+1
1 | r′ ≺i+1

C r} ∪ (Qi+1
1 \ C) ̸|= δ(q′, w[i]) hold,

where C ⊆ R is a rejecting SCC of A.
R2’. ∀q, q′ ∈ C \ Qi

1 ⊆ A, we have q ≺i
C q′ iff there exists r ∈ C \ Qi+1

1 such that

a : {r′ ∈ C \ Qi+1
1 | r′ ≺i+1

C r} ∪
(
Q \ (Qi+1

1 ∪ C)
)

|= δ̂(q, w[i]) and

b : {r′ ∈ C \ Qi+1
1 | r′ ≺i+1

C r} ∪
(
Q \ (Qi+1

1 ∪ C)
)

̸|= δ̂(q′, w[i]) hold,

where C ⊆ A is an accepting SCC of A.
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As the names indicate, the Rules R1’ and R2’ correspond to Rules R1 and R2, respectively,
from Definition 5. We will first show that there is a consistent sequence of total preorders
for each word.

▶ Lemma 8. For each word w ∈ Σω, there exists a consistent sequence Pw = (Q0
1, {⪯0

C

}C∈S)(Q1
1, {⪯1

C}C∈S) · · · , where Q0
1Q1

1 · · · is the unique sequence Rw.

Proof. It is simple to derive a consistent sequence Pw = (Q0
1, {⪯0

C}C∈S)(Q1
1, {⪯1

C}C∈S) · · ·
from Φw = (Q0

1, d0)(Q1
1, d1) · · · as given in Lemma 6: We can simply select, for all i ∈ N and

C ∈ S, ⪯i
C is the total preorder over C ∩ Qi

1 (if C ⊆ R) or C \ Qi
1 (if C ⊆ A) with p ⪯i

C q

iff di(p) ≤ di(q). In particular, p ≺i
C q iff di(p) < di(q).

It is easy to verify that the sequence Pw as defined above is indeed consistent. For
instance, for all q, q′ ∈ C ∩ Qi

1 ⊆ R, if q ≺i
C q′, then di(q) < di(q′) by definition. Then we

can choose the r-state in Definition 7 (Rule R1’) such that di+1(r) = di(q′) − 1. (Note that
some such a state r must exist since di(q′) > di(q) ≥ 1.)

Combining Definition 5 (R1) and Definition 7 (R1’), we have that Rule R1b now entails
R1’b, and Rule R1a entails R1’a, because {r′ ∈ C ∩ Qi+1

1 | r′ ≺i+1
C r} ⊇ {r′ ∈ C ∩ Qi+1

1 |
di+1(r′) ≤ di(q) − 1}, because di(q) − 1 ≤ di(q′) − 2 < di(q′) − 1 = di+1(r).

The argument for accepting SCCs is using rules R2 and R2’ in the same way. ◀

After discussing how such a sequence can be obtained, we now establish that it is unique.
Note, however, that it is unique for the correct sequence Rw, while there may be sequences of
total preorders that work with incorrect sequences of sets of states. (For example, a total
preorder can accommodate an infinite distance for all states, where the obligation to leave
a rejecting SCC cannot be discharged, while the local consistency constraints can be met.)
Nonetheless, a breakpoint construction ensures to obtain the unique sequence Rw.

▶ Lemma 9. Let w be a word in Σω and Φw = (Q0
1, d0)(Q1

1, d1) · · · be its unique consistent
sequence of distance functions. Let Pw = (Q0

1, {⪯0
C}C∈S)(Q1

1, {⪯1
C}C∈S) · · · be a sequence

satisfying Definition 7. Then
For every two states q, q′ ∈ C ∩ Qi

1 ⊆ R, if q ⪯i
C q′, then di(q) ≤ di(q′), and in particular

if q ≺i
C q′, then di(q) < di(q′). (C is a rejecting SCC)

For every two states q, q′ ∈ C \ Qi
1 ⊆ A, if q ⪯i

C q′, then di(q) ≤ di(q′), and in particular
if q ≺i

C q′, then di(q) < di(q′). (C is an accpting SCC)

Proof. We only prove the first claim; the proof of the second claim is entirely similar.
Let C be a rejecting SCC and i be a natural number. We let q and q′ be two states

in C ∩ Qi
1. In order to prove that q ⪯i

C q′ implies di(q) ≤ di(q′), we can just prove its
contraposition that di(q′) < di(q) implies q′ ≺i

C q for all distance values k > 0 with di(q′) ≤ k.
We can similarly prove that q ≺i

C q′ implies di(q) < di(q′).

Our goal is then to prove that, for all k > 0, di(q′) < di(q) =⇒ q′ ≺i
C q and

di(q′) ≤ di(q) =⇒ q′ ⪯i
C q when di(q′) ≤ k. In the remainder of the proof, we will prove it

by induction over the distance value k > 0. Note that our claim is quantified over all natural
numbers i.

For the induction basis (k = 1), we have di(q′) ≤ k by assumption. So, di(q′) = 1. But
then Qi+1

1 \ C |= δ(q′, w[i]). Consequently, by Rule R1’b, q′ must be a minimal element of
⪯i

C . Hence, we have q′ ⪯i
C q. Since by assumption that di(q) > di(q′) = 1, Rule R1 supplies

Qi+1
1 \ C ̸|= δ(q, w[i]). We can therefore choose r from Rule R1’ as a minimal element of ⪯i+1

C

to get Si+1 = { r′ ∈ C ∩ Qi+1
1 | r′ ≺i+1

C r } = ∅. It follows that Si+1 ∪ (Qi+1
1 \ C) |= δ(q′, w[i])

(R1’a) but Si+1 ∪ (Qi+1
1 \ C) ̸|= δ(q, w[i]) (R1’b). By Definition 7, we have q′ ≺i

C q. Hence,
for k = 1 and di(q′) ≤ k = 1, it holds that di(q′) < di(q) implies q′ ≺i

C q.



Y. Li, S. Schewe, and M. Y. Vardi 37:11

When di(q) = di(q′) = k = 1, it directly follows that q ̸≺i
C q′ and q′ ̸≺i

C q by Definition 7,
thus also q′ ≃i

C q since ⪯i
C is a total preorder. Therefore, if di(q′) ≤ di(q), then q′ ⪯i

C q,
thus also q ≺i

C q′ implies di(q) < di(q′).

For the induction step k 7→ k + 1, we have di(q′) = k + 1 and we want to prove
q′ ≺i

C q when k + 1 = di(q′) < di(q), and prove q′ ≃i
C q when di(q′) = di(q) (hence

di(q′) ≤ di(q) =⇒ q′ ⪯i
C q). We only give the high level proof idea here and refer to [19] for

details.
Recall that in the induction basis, we proved that q′ is a minimal element with respect to

⪯i
C when di(q′) ≤ k. Our key observation is that, for all k > 0, all elements in { p ∈ C ∩ Qi

1 |
di(p) = k + 1 } are minimal with respect to ⪯i

C in the set { p ∈ C ∩ Qi
1 | di(p) > k } (See [19]

for proof details). The intuition is that our claim is equivalent to that for every two states
q, q′ ∈ C ∩ Qi

1 ⊆ R, q ⪯i
C q′ if and only if di(q) ≤ di(q′) (Since ⪯i

C is a preorder, we also
have q ≺i

C q′ iff di(q) < di(q′)). Hence, the minimal elements in { p ∈ C ∩ Qi
1 | di(p) > k }

(i.e., { p ∈ C ∩ Qi
1 | di(p) = k + 1 }) must also be the minimal elements with respect to ⪯i

C ,
based on our induction hypothesis.

Let S = {p ∈ C ∩ Qi
1 | di(p) > k}. First, we know that q′ is a minimal element with

respect to ⪯i
C in the set S, as di(q′) = k + 1 by assumption. Since by assumption that

k < di(q′) = k + 1 < di(q), we know that q is also in S. Hence, q′ ⪯i
C q holds.

We still need to prove that q′ ≺i
C q under the assumption that di(q′) < di(q). By

assumption that di(q) > di(q′) = k + 1, we pick a state r′ that is minimal w.r.t. ⪯i+1
C

in the set {p ∈ C ∩ Qi+1
1 | di+1(p) > k} (and hence di+1(r′) = k + 1). We then prove

that the selected state r′ is the r-state that witnesses q′ ≺i
C q for R1’ of Definition 7. The

observation is that, by Definition 5, we have Qi+1
1 \C ∪{ p ∈ C ∩Qi+1

1 | di+1(p) ≤ di(q′)−1 =
di+1(r′)−1 } |= δ(q′, w[i]) but Qi+1

1 \C ∪{ p ∈ C ∩Qi+1
1 | di+1(p) ≤ di+1(r′)−1 } ̸|= δ(q, w[i]).

By induction hypothesis, for all states p ∈ C ∩ Qi+1
1 such that di+1(p) ≤ di+1(r′) − 1 = k

(i.e., di+1(p) < di+1(r′)), we also have p ≺i
C r′. It then follows that by Definition 7 that

q′ ≺i
C q holds. Hence, di(q′) < di(q) =⇒ q′ ≺i

C q.
To prove that q ≺i

C q′ implies di(q) < di(q′), we also prove its contraposition, i.e.,
di(q′) ≤ di(q) implies q′ ⪯i

C q for all i ∈ N. We have already shown that di(q′) < di(q)
implies q′ ≺i

C q. Moreover, if di(q′) = di(q) = k + 1, then q′ ≃i
C q, since both q′ and q are

minimal element w.r.t. ⪯i
C in the set {p ∈ C ∩ Qi

1 | di(p) > k}. It then follows that q ≺i
C q′

implies di(q) < di(q′). Hence, we have completed the proof. ◀

By Lemma 9, for states p, q ∈ Hi, we have both p ≃i
C q ⇐⇒ di(p) = di(q) and

p ≺i
C q ⇐⇒ di(p) < di(q) hold for all i ∈ N, where Hi = C ∩ Qi

1 if C ⊆ R and Hi = C \ Qi
1

if C ⊆ A. Then Corollary 10 follows immediately from Lemma 6.

▶ Corollary 10. For each w ∈ Σω, there is a unique consistent sequence of sets of states
and total preorders Pw = (Q0

1, {⪯0
C}C∈S)(Q1

1, {⪯1
C}C∈S) · · · where Q0

1Q1
1Q2

1 · · · is the unique
sequence Rw.

In order to lift this unique set to an UBA, we need to discharge the correctness of the
sequence Q0

1Q1
1Q2

1 · · · . This is, however, a relatively simple task: for the correct sequence,
the total preorders provide the same rational way of creating the same accepting runs on
the tails w[i · · · ] of w from the states marked as accepting in A by inclusion in Qi

1, or as
accepting from Â by non-inclusion in Qi

1.
To prepare such a construction, we first define an arbitrary (but fixed) order on the SCCs

of A, as well as a next operator for cycling through SCCs, and fix an initial SCC C0 ∈ S.
Recall that S is the set of all SCCs in A. Note that we assume that the graph of A has at
least one SCC. If this is not the case, we can simply build an unambiguous safety automaton
that guesses Rw. Then, our construction of UBA is formalized below.
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▶ Definition 11. Let A = (Σ, Q, ι, δ, F ) be an AWA. We define an NBA Bu =
(Σ, Qu, Iu, δu, Fu) as follows.

The macrostates of Qu are tuples (Q1, Q2, {⪯C}C∈S , S, D) such that
Q1 and Q2 partition Q, i.e., Q2 = Q \ Q1
for all C ∈ S, if C ⊆ R then ⪯C is a total preorder over Q1 ∩ C

for all C ∈ S, if C ⊆ A then ⪯C is a total preorder over Q2 ∩ C

S ∈ S is an SCC in the graph of A
D is a downwards closed set w.r.t. the total preorder ⪯S: if q ∈ D then (1) q ∈ Q1 ∩ S

if S ⊆ R resp. q ∈ Q2 ∩ S if S ⊆ A, and (2) q′ ⪯S q implies q′ ∈ D,
Iu = { (Q1, Q2, {⪯C}C∈S , S, D) ∈ Qu | ι ∈ Q1, S = C0, D = ∅ },
Let (Q1, Q2, {⪯C}C∈S , S, D) be a macrostate in Qu and σ ∈ Σ. Then we have that
(Q′

1, Q′
2, {⪯′

C}C∈S , S′, D′) ∈ δu

(
(Q1, Q2, {⪯C}C∈S , S, D), σ) if

Q′
1 |= ∧s∈Q1δ(s, σ) and Q′

2 |= ∧s∈Q2 δ̂(s, σ) (local consistency)
for all C ∈ S, (Q1, ⪯C) and (Q′

1, ⪯′
C) satisfy the requirements of Rule R1’ (if C ⊆ R)

resp. Rule R2’ (if C ⊆ A)
if D = ∅, then S′ = next(S) and D′ = Q′

1 ∩ S′ if S′ ⊆ R resp. D′ = Q′
2 ∩ S′ if S′ ⊆ A,

if D ̸= ∅, then S′ = S and D′ is the smallest downwards closed set (see above) such
that D′ ∪ (Q′

1 \ S) |= ∧s∈Dδ(s, σ) if S ⊆ R resp. D′ ∪ (Q′
2 \ S) |= ∧s∈D δ̂(s, σ) if S ⊆ A,

Fu = { (Q1, Q2, {⪯C}C∈S , S, D) ∈ Qu | D = ∅ }.

The new construction uses D as the breakpoint to ensure that the correct unique sequence
Rw for each word w is obtained. The nondeterminism of the construction lies only in
choosing Q′

1 (which entails Q′
2) and in updating the total preorders. From an accepting

macrorun of Bu over a word w, one can actually construct an accepting run DAG Gw of
A by selecting successors in the next level for each state q only the ones in the smallest
downwards closed set D satisfying δ(q, σ). This way, all branches of Gw by construction will
eventually get trapped in an accepting SCC, since D will become empty infinitely often.
Hence, L(Bu) ⊆ L(A). Moreover, one can construct from the unique sequence of preorders
Φw of a word w ∈ L(A) as given in Corollary 10 a unique infinite macrorun ρ of Bu. Wrong
guesses of the preorders for Rw will result in discontinued macroruns once a violation to R1’
(or R2’) has been detected. That is, there are no consistent ways to update the preorders
in the next macrostate. Further, by Lemma 9, we have that di(q) = di(q′) ⇔ q ≃i

C q′ and
di(q) < di(q′) ⇔ q ≺i

C q′ for all i ∈ N. So, by Definition 5 and Definition 7, one can observe
that, if Di ̸= ∅, sup{di(q) | q ∈ Di} = sup{di+1(q) | q ∈ Di+1} + 1 (choosing sup ∅ = 0),
where Di is the D-component of macrostate ρ[i] with i ∈ N. Since for every nonempty Di,
sup{di(q) | q ∈ Di} is finite and the maximal value in Di is always decreasing, the value will
eventually become 0, i.e., D always becomes empty eventually. That is, ρ must be accepting.
Hence, Theorem 12 follows; See [19] for more details.

▶ Theorem 12. Let Bu be defined as in Definition 11. Then (1) L(Bu) = L(A), and (2) Bu

is unambiguous.

▶ Example 13. Consider again the AWW A depicted in Figure 1. Recall that, in Figure 1,
the macrostate (Q, {q, s, t}) has two successors over b because of the nondeterminism in
developing breakpoints. We now apply Definition 11 to construct a UBA Bu from A. There
are three SCCs in A, namely C0 = {p}, C1 = {q, s, t} and C2 = {r}. Since C0 and C2 both
have only one state, the total preorders for them are fixed and thus ignored here. We only
need to guess the preorder over C1. Let us consider the constucted Bu over bω starting
from the macrostate m0 = (Q, {}, ⪯0

C1
, C1, C1) where ⪯0

C1
is defined as {s ≺0

C1
q ≺0

C1
t}.
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First, recall that Rbω = Qω. Obviously, m1a = (Q, {}, {s ≺1
C1

q ≺1
C1

t}, C1, {q, s}), which
corresponds to (Q, {q, s}) in Figure 1, is a valid successor of m0 over b, while m1b =
(Q, {}, {s ≺1

C1
q ≺1

C1
t}, C1, {q, t}), which corresponds to (Q, {q, t}) in Figure 1, is not. The

reason is that {q, t} is not a downwards closed set with respect to ⪯1
C1

, since we have
s ≺1

C1
t but s is missing in the breakpoint set. One may wonder whether we can change the

preorder ⪯1
C1

and consider the candidate successor m1c = (Q, {}, {q ≺2
C1

t ≺2
C1

s}, {q, t}).
Indeed, {q, t} is now a downwards closed set with respect to ⪯2

C1
. However, (Q, ⪯0

C1
) and

(Q, ⪯2
C1

) do not satisfy the local consistency as required by Definition 7. First, we have
that Q \ C1 ∪ {} |= δ(s, b). So, there do not exist r-states in C1 ∩ Q that witness q ≺2

C1
s

and t ≺2
C1

s, as required by R1’ of Definition 7. In fact, one can verify that s ≺C1 q ≺C1 t

is the only valid preorder over C1 when the input word is bω. This is due to the fact that
when reading b, the distance to escape C1 is 1 from s, 2 from q, and 3 from t. Hence, m1c

must not be a valid successor of m0. The accepting macrorun of Bu (from Definition 11)
over bω is (Q, {}, {s ≺C1 q ≺C1 t}, C0, {}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C1, {q, s, t}) b−→
(Q, {}, {s ≺C1 q ≺C1 t}, C1, {q, s}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C1, {s}) b−→ (Q, {}, {s ≺C1

q ≺C1 t}, C1, {}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C2, {}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C0, {}) · · · .

4 Improvements and Complexity

When revisiting the construction in search for improvements, it seems wasteful to keep total
preorders for all SCCs in the graph of A, given that they are not interacting with each other.
Can we focus on just one at a time? It proves to be possible to optimise the automaton
from Definition 11 in this way, with re-establishing uniqueness proving the greatest obstacle.
The resulting automaton is smaller in practice, mainly because it only keeps track of a total
preorder over only one SCC.

We provide this construction only as an improvement over the principle construction from
Definition 11 for two reasons. First, while this provides quite a significant advantage where
there are many small SCCs rather than one big SCC, this has little effect on the worst case
(which occurs when there is one SCC, cf. Theorem 16). Second, it loosens the connection
that the total preorders from Definition 11 need to be the natural abstraction of the unique
distance function from Definition 5.

▶ Definition 14. Let A = (Σ, Q, ι, δ, F ) be an AWA. We define an NBA U = (Σ, Qu, Iu, δu, Fu)
as follows.

The macrostates of Qu are tuples (Q1, Q2, ⪯C , C, D) such that
Q1 and Q2 partition Q

C is an SCC in the graph of A and
∗ if C ⊆ R then ⪯C is a total preorder of Q1 ∩ C

∗ if C ⊆ A then ⪯C is a total preorder of Q2 ∩ C

let M be the set of maximal elements of the total preorder ⪯C , and let H = C ∩ Q1 if
C ⊆ R resp. H = C ∩ Q2 if C ⊆ A; then D = H or D = H \ M

Iu = { (Q1, Q2, ⪯C , C, D) ∈ Qu | ι ∈ Q1, C = C0, D = ∅ },
Let (Q1, Q2, ⪯C , C, D) be a macrostate in Qu and σ ∈ Σ. Then we have that
(Q′

1, Q′
2, ⪯′

C′ , C ′, D′) ∈ δu

(
(Q1, Q2, ⪯C , C, D), σ) if

Q′
1 |= ∧s∈Q1δ(s, σ) and Q′

2 |= ∧s∈Q2 δ̂(s, σ) (local consistency)
if D = ∅, then C ′ = next(C) and D′ = Q′

1 ∩C ′ if C ′ ⊆ R resp. D′ = Q′
2 ∩C ′ if C ′ ⊆ A,

if D ̸= ∅ then C ′ = C,
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∗ (Q1, ⪯C) and (Q′
1, ⪯′

C) must satisfy the requirements of Rule R1’ (if C ⊆ R) resp.
Rule R2’ (if C ⊆ A) and

∗ D′ is the smallest downward closed set w.r.t. ⪯′
C such that5 D′ ∪ (Q′

1 \ C) |=
∧s∈Dδ(s, σ) if C ⊆ R resp. D′ ∪ (Q′

2 \ C) |= ∧s∈D δ̂(s, σ) if C ⊆ A,
Fu = { (Q1, Q2, ⪯C , C, D) ∈ Qu | D = ∅ }.

The nondeterminism of the construction again lies in choosing Q′
1 (which entails Q′

2) and
in updating the total preorder. One can also construct from an accepting macrorun of U
over w an accepting run DAG Gw of A, using the same way as we did for Theorem 12. So,
L(U) ⊆ L(A).

For the other direction, we first observe that the preorders of every accepting macrorun
(Q0

1, Q0
2, ⪯0, S0, D0)(Q1

1, Q1
2, ⪯1, S1, D1) · · · of U over w can be tightly related with the

distance values of states defined in d. More precisely, let Di′ = Di = ∅ with i′ < i being two
consecutive accepting positions. Then for all j ∈ (i′, i], we have that:
1. for all q ∈ Dj and all q′ ∈ Ci ∩ Qj

1. dj(q) ≤ dj(q′) ⇔ q ⪯j q′, and dj(q) ≤ i − j hold,
2. for all q ∈ Ci ∩ Qj

1 and all q′ ∈ M j = (Ci ∩ Qj
1) \ Dj . q ⪯j q′ and dj(q′) > i − j hold, and

3. mj = sup{dj(q) | q ∈ Dj} = i − j, using sup ∅ = 0,
where Ci ⊆ R is a rejecting SCC of A. Note that Cj = Ci for all i′ < j ≤ i. The case for
Ci ⊆ A can be defined similarly. Let mj = sup{dj(q) | q ∈ Dj}. The intuition is that all states
in M j = (Ci ∩ Qj

1) \ Dj = { s ∈ Ci ∩ Qj
1 | dj(s) > mi } are aggregated by construction as the

maximal elements w.r.t. ⪯j , while ⪯j orders all states in Dj = { s ∈ Ci ∩ Qj
1 | dj(s) ≤ mj }

exactly as in the preorders of Corollary 10. So, the correspondence between dj and ⪯j in the
three items then follows naturally. For technical reasons, if q ∈ Dj or q′ ∈ (Ci ∩ Qj

1) \ Dj do
not exist in above items, we say the item above still holds. See [19] for proof details.

In fact, one can construct such an accepting macrorun satisfying the three items above
for U by simulating Bu as follows. If ρ = (Q0

1, Q0
2, {⪯0

C}C∈S , S0, D0)(Q1
1, Q1

2, {⪯1
C}C∈S , S1,

D1)(Q2
1, Q2

2, {⪯2
C}C∈S , S2, D2) · · · is the accepting macrorun of Bu on a word w, then U has

an accepting macrorun ρ̂ = (Q0
1, Q0

2, ⪯0, S0, D0)(Q1
1, Q1

2, ⪯1, S1, D1)(Q2
1, Q2

2, ⪯2, S2, D2) · · ·
(that differs from ρ only in preorders), such that

if Si ⊆ R, then ⪯i is a total preorder on Si ∩ Qi
1 where ⪯i=⪯i

Si if Di = Si ∩ Qi
1 and

otherwise, the maximal elements M i of ⪯i are (Si ∩ Qi
1) \ Di, and the restriction of ⪯i

to Di × Di agrees with the restriction of ⪯i
Si to Di × Di, and

similarly, if Si ⊆ A, then ⪯i is a total preorder on Si ∩ Qi
2 where ⪯i=⪯i

Si if Di = Si ∩ Qi
2

and otherwise, the maximal elements M i of ⪯i are (Si ∩ Qi
2) \ Di, and the restriction of

⪯i to Di × Di agrees with the restriction of ⪯i
Si to Di × Di.

It is easy to verify that ρ̂ satisfies all local constraints for Rule R1’ resp. R2’. Hence,
L(A) = L(Bu) ⊆ L(U), thus also L(U) = L(A).

One can show that ρ̂ is the sole accepting macrorun of U over w by the following facts.
(i) There is only a single initial macrostate that fits Rw, and when we take a transition from
an accepting macrostate (including the first), the next SCC is deterministically selected; (ii)
Moreover, all relevant states from this SCC are in the Di component and mi = sup{di(q) |
q ∈ Di} is the distance to the next breakpoint (by Item (3) above), and thus the ⪯i and Di

up to it. With a simple inductive argument we can thus conclude that ρ̂ is the only such
accepting macrorun. Then, Theorem 15 follows.

5 Note that this is a deterministic assignment that does not necessarily lead to a set D′ that covers all of
⪯′

C or all of ⪯′
C except for the maximal elements; if it does not, then this transition is disallowed
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▶ Theorem 15. Let U be defined as in Definition 14. Then (1) L(U) = L(A) and (2) U is
unambiguous.

We now turn to the complexity of our constructions. Let tpo(n) denote the num-
ber of total preorders over a set with n states. By [3], tpo(n) ≈ n!

2(ln 2)n+1 , so that we

get limn→∞
n
√

tpo(n)
n = limn→∞

n√
n!

n · 1
n√2 ln 2 · 1

ln 2 = 1
e · 1 · 1

ln 2 = 1
e ln 2 ≈ 0.53. Hence,

tpo(n) ≈ (0.53n)n, which is a better bound than the best known bound (0.76n)n for Büchi
disambiguation [16] and complementation [24].

▶ Theorem 16. If A has n states, then the numbers of states of U and Bu are O
(
tpo(n)

)
and O

(
n · tpo(n)

)
, respectively.

Proof. For both automata, the worst case occurs when all states are in the same SCC C,
say C = R. Starting with U , each macrostate is a tuple (Q1, C \ Q1, ⪯, C, D). There are
four possibilities for the tuple, namely C = Q1 = D, C = Q1 ⊋ D, C ⊋ Q1 = D, and
C ⊋ Q1 ⊋ D. For each of these four cases, we can produce an injection from the tuple
(macrostate) onto a total preorder ⪯′ over C, so that we have at most 4 · tpo(n) macrostates.
For C = Q1 = D, for example, we can keep the ⪯ over C, i.e., we set ⪯′=⪯. When there
is strict inclusion, i.e., C ⊋ Q1, we extend the ⪯ on Q1 to a total preorder ⪯′ over C by
adding the states in C \ Q1 resp. Q1 \ D as minimal resp. maximal elements (with their
separate equivalence class). For each of the four cases, the respective mapping is injective.

As this covers all macrostates of U , U has at most 4 · tpo(n) macrostates.
For Bu, there are O(n) possible choices for D, since the maximal element in D with respect

to the preorder ⪯ has at most n possibilities. This leads to O(n · tpo(n)) macrostates. ◀

5 Discussion

We have given the first direct translation from AWAs to UBAs. The complexity of our
translation is even smaller than that of the best known disambiguation algorithm for
NBAs [16] (broadly (0.53n)n vs. (0.76n)n). We can further optimise the construction of
U slightly by moving to transition-based acceptance conditions. That is, an ω-word is now
accepted by U if one of its corresponding runs visits accepting transitions for infinitely
many times. Essentially, where (Q′

1, Q′
2, ⪯′, C, ∅) ∈ δu

(
(Q1, Q2, ⪯, C, D), σ

)
, (Q′

1, Q′
2, ⪯′

, C, ∅) would be replaced by δu

(
(Q1, Q2, ≡, C, ∅), σ

)
. (≡ identifies all states it compares; it is

the only total preorder acceptable for D = ∅.)
This is done recursively, until the only macrostates with D = ∅ left are those with

Q1 ∩ R = ∅ = Q2 ∩ A and (arbitrarily) C = C0. Note that the initial macrostate has to be
changed for this, too.

Removing most macrostates with D = ∅, this reduces the statespace slightly. It is also the
automaton obtained by de-generalising the standard LTL to transition-based unambiguous
generalized Büchi automaton construction. We can also “re-generalise”: every singleton
SCC can be removed from the round-robin at the cost of including an individual Büchi
condition that accepts when the state s is not in Q1 or Q2, respectively, or if Q1 |= δ(s, σ) or
Q2 |= δ̂(s, σ), respectively, holds. If all components are singleton, we obtain the standard
constuction for AVAs / LTL since the preorders of our construction given in Section 4 can be
omitted. This way, the D set in a macrostate degenerates to a purely breakpoint construction.
Then, the improved complexity for AVAs matches the current known bounds n2n for the
LTL-to-UBA construction [14,26].
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Abstract
We introduce contextual behavioural metrics (CBMs) as a novel way of measuring the discrepancy
in behaviour between processes, taking into account both quantitative aspects and contextual
information. This way, process distances by construction take the environment into account: two
(non-equivalent) processes may still exhibit very similar behaviour in some contexts, e.g., when
certain actions are never performed. We first show how CBMs capture many well-known notions
of equivalence and metric, including Larsen’s environmental parametrized bisimulation. We then
study compositional properties of CBMs with respect to some common process algebraic operators,
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1 Introduction

Simulation and bisimulation relations are often the methodology of choice for reasoning
relationally about the behaviour of systems specified in the form of LTSs. On the one hand,
most of them can be proved to be congruences, therefore enabling modular equivalence
proofs. On the other hand, not being based on any universal quantification (e.g. on tests
or on traces), they enable simpler relational arguments, especially when combined with
enhancements such as the so-called up-to techniques [29].

The outcome of relational reasoning as supported by (bi)simulation relations is inherently
binary: two programs or systems are either (bi)similar or not so. As an example, all pairs of
non-equivalent elements have the same status, i.e. the bisimulation game gives no information
on the degree of dissimilarity between non-equivalent states. This can be a problem in those
contexts, such as that of probabilistic systems, in which non-equivalent states can give rise
to completely different but also extremely similar behaviours.

This led to the introduction of a generalization of bisimulation relations, i.e. the so-called
bisimulation metrics [7], which rather than being binary relations on the underlying set
of states S, are binary maps from S to a quantale (most often of real numbers) satisfying
the axioms of (pseudo)metrics. In that context, the bisimulation game becomes inherently
quantitative: the defender aims at proving that the two states at hand are close to each
other, while the attacker tries to prove that they are far apart. The outcome of this game is
a quantity representing a bound not only on any discrepancy about the immediate behaviour
of the two involved states, (e.g. the fact that some action is available in s but not in t), but
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38:2 Contextual Behavioural Metrics

also providing some information about differences which will only show up in the future, all
this regardless of the actions chosen by the attacker. In this sense, therefore, bisimulation
metrics condense a great deal of information in just one number.

Notions of bisimulation metrics have indeed be defined for various sequential and concur-
rent calculi (see, e.g., [4, 9, 11, 13, 14, 33]), allowing a form of metric reasoning on program
behaviour. But when could any of such techniques be said to be compositional? This amounts
to be able to derive an upper bound on the distance δ(C[t], C[s]) between two programs in
the form C[t] and C[s] from the distance δ(s, t) between s and t. Typically, the latter is
required to be itself an upper bound on the former, giving rise to non-expansiveness as a
possible generalization of the notion of a congruence. This, however, significantly restricts
the class of environments C to which the aforementioned analysis can be applied, since
being able to amplify differences is a very natural property of processes. Indeed, an inherent
tension exists between expressiveness and compositionality in metric reasoning [14].

But there is another reason why behavioural metrics can be seen as less informative than
they could be. As already mentioned, any number measuring the distance between two states
s and t implicitly accounts for all the possible ways of comparing s and t, i.e. any context.
Often, however, only contexts that act in a certain very specific way could highlight large
differences between s and t, while others might simply see s and t as very similar, or even
equivalent. This further dimension is abstracted away in compositional metric analysis: if
the distance between s and t is very high, but C does not “take advantage” of such large
differences, C[s] and C[t] should be close to each other, but are dubbed being far away from
each other, due to the aforementioned abstraction step. It is thus natural to wonder whether
metric analysis can be made contextual. In the realm of process equivalences, this is known
to be possible through, e.g. Larsen’s environmental parametrized bisimulation [23], but not
much is known about contextual enhancements of bisimulation metrics. Other notions of
program equivalence, like logical relations or denotational semantics, have been shown to
have metric analogues [6, 30], which in some cases can be made contextual [17, 22].

In this paper, we introduce the novel notion of contextual behavioural metric (CBM in the
following) through which it is possible to fine-tune the abstraction step mentioned above and
which thus represents a refinement over behavioural metrics. In CBMs, the distance between
two states s, t of an LTS is measured by an object d having a richer structure than that of a
number. Specifically, d is taken to be an element of a metric transition system, in which the
contextual and temporal dimensions of the differences can be taken into account. In addition
to the mere introduction of this new notion of distance, our contributions are threefold:

On the one hand, we show that metric labelled transition systems (MLTSs in the following),
namely the kind of structures meant to model differences, are indeed quantales, this way
allowing us to prove that CBMs are generalized metrics. This is in Section 3.
On the other hand, we prove that some well-known methodologies for qualitative and
quantitative relational reasoning on processes, namely (strong) bisimulation relations and
metrics, and environmental parametrized bisimulations [23], can all be seen as CBMs
where the underlying MLTS corresponds to the original quantale. This is in Section 4.
Finally, we prove that CBMs have some interesting compositional properties, and that
this allows one to derive approximations to the distance between processes following their
syntactic structure. This is in Section 5.

Many of the aforementioned works about behavioural metrics are concerned with probab-
ilistic forms of LTSs. In this work, instead, we have deliberately chosen to focus on usual
nondeterministic transition systems. On the one hand, the quantitative aspects can be
handled through the so-called immediate distance between states, see below. On the other
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hand, it is well known that probabilistic transition systems can be seen as (non)deterministic
systems whose underlying reduction relation is defined between state distributions. Focusing
on ordinary LTSs has the advantage of allowing us to concentrate our attention on those
aspects related to metrics, allowing for a separation of concerns. This being said, we are
confident that most of the results described here could hold for probabilistic LTSs, too.

2 Why the Environment Matters

The purpose of this section is to explain why purely numerical quantales do not precisely
capture differences between states of an LTS and how a more structured approach to distances
can be helpful to tackle this problem. We will do this through an example drawn from the
realm of higher-order programs, the latter seen as states of the LTS induced by Abramsky’s
applicative bisimilarity [1].

Let us start with a pair of programs written in a typed λ-calculus, both of them having
type (Nat → Nat) → Nat, namely M2 and M4, where Mn ≜ λx.xn. These terms can indeed
be seen as states of an LTS, whose relevant fragment is the following one:

M2

M4

V 2

V 4

E(V 2)

E(V 4)

V

V

eval

eval

Labelled transitions correspond to either parameter passing (each actual parameter being
captured by a distinct label V ) or evaluation. It is indeed convenient to see the underlying
LTS as a bipartite structure whose states are either computations or values. The two
states E(V 2) and E(V 4) are the natural number values to which V 2 and V 4 evaluate,
respectively. Clearly, the latter are not to be considered equivalent whenever different, and
this can be captured, e.g., by either exposing the underlying numerical value through a
labelled self-transition or by stipulating that base type values, contrary to higher-order values,
can be explicitly observed, thus being equivalent precisely when equal. If one plays the
bisimulation game on top of this LTS, the resulting notion of equivalence turns out to be
precisely Abramsky’s applicative bisimilarity. For very good reasons, M2 and M4 are dubbed
as not equivalent: they can be separated by feeding, e.g. V = λx.x to them.

But now, how far apart should M2 and M4 be? The answer provided by behavioural
metrics consists in saying that M2 and M4 are at distance at most x ∈ R∞

+ iff x is an upper
bound on the differences any adversary observes while interacting with them, independently
on how the adversary behaves. As a consequence, if the underlying λ-calculus provides a
primitive for multiplication, then it is indeed possible to define values of the form Vn ≜ λx.x×n

for every n, allowing the environment to observe arbitrarily large differences of the form

| E(Vn 2) − E(Vn 4) | = | 2n − 4n | = 2n.

In other words, the distance between M2 and M4 is +∞. The possibility of arbitrarily
amplifying distances is well-known, and can be tackled, e.g., by switching to a calculus in
which all functions are non-expansive, ruling out terms such as Vn where n > 1. In other
words, the distance between M2 and M4 is indeed 2, because no input term V can “stretch”
the distance between 2 to 4 to anything more than 2. This is what happens, e.g., in Fuzz [30].

But is this the end of the story? Are we somehow losing too much information by
stipulating that M2 and M4 are, say, at distance 2? Actually, the only moment in which
the environment observes the state with which it is interacting is at the end of the dialogue,
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namely after feeding it with a function V : Nat → Nat. If, for example, the environment picks
Vq ≜ λx.(x − 3)2 + 2, then the observed difference is 0, while if it picks Vl ≜ λx.x + 2 then the
observed distance is maximal, i.e. 2. In other words, the observed distance strictly depends
on how the environment behaves and should arguably be parametrised on it. This is indeed
the main idea behind Larsen’s environmental parametrised bisimulation, but also behind our
contextual behavioural metrics. In the latter, differences can be faithfully captured by the
states of another labelled transition system, called a metric labelled transition system, in
which observed distances are associated to states. In our example, the difference between
M2 and M4 is the state s of a metric labeled transition system whose relevant fragment is:

s

tl

tq

ul

uqVq

Vl
eval

eval

Crucially, while s, ts, tl, ul are all mapped to the null observable difference, uq is associated
to 2. This allows to discriminate between those environments which are able to see large
differences from those which are not. This is achieved by allowing differences to be modelled
by the states of a transition system themselves. Using a categorical jargon, it looks potentially
useful, but also very tempting, to impose the structure of a coalgebra to the underlying space
of distances rather than taking it as a monolithical, numeric, quantale. The rest of this paper
can be seen as an attempt to make this idea formal.

3 Contextual Behavioural Metrics, Formally

This section is devoted to introducing contextual behavioural metrics, namely the concept
we aim at studying in this paper. We start with the definition of quantale [31], the canonical
codomain of generalized metrics [24]. The notion of quantale used in this paper is that of
unital integral commutative quantale:

▶ Definition 1 (Quantale). A quantale is a structure Q = (Q,
∧

,
∨

, ⊥, ⊤, +) such that∧
,
∨

: 2Q → Q, the two objects ⊥, ⊤ are in Q, and + is a binary operation on Q, where:
(Q,

∧
,
∨

, ⊥, ⊤) is a complete lattice;
(Q, +, ⊥) is a commutative monoid;
for every e ∈ Q and every A ⊆ Q it holds that e +

∧
A =

∧
{e + f | f ∈ A}.

We write e ≤ f when e =
∧

{e, f}.

Generalized metrics are maps which associate an element of a given quantale to each pair
of elements. As customary in behavioural metrics, we work with pseudometrics, in which
distinct elements may be at minimal distance:

▶ Definition 2 (Metrics). A pseudometric over a set A with values in a quantale Q is a map
m : A × A → Q satisfying:

for all a ∈ A : m(a, a) = ⊥;
for all a, b ∈ A : m(a, b) = m(b, a);
for all a, b, c ∈ A : m(a, c) ≤ m(a, b) + m(b, c).

In the rest of this paper, we refer to pseudometrics simply as metrics.

It is now time to introduce our notion of a process, namely of the computational objects
we want to compare. We do not fix a syntax, and work with abstract labelled transition
systems (LTSs in the following). In order to enable (possibly quantitative) metric reasoning,
we equip states of our LTS with an immediate metric D, namely a metric measuring the
observable distance between two states.
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▶ Definition 3 (Process LTS). We define a Q-LTS as a quadruple (P, L, −→, D) where:
P is the set of processes;
L is the set of labels;
−→ ⊆ P × L × P is the transition relation;
D : P × P → Q is a metric.

▶ Example 4. The example LTS from Section 2 should be helpful in understanding why the
metric D is needed: terms and values of distinct types are at maximal immediate distance,
while terms and values of the same type are at minimal distance, except when the type is
Nat, whereas the immediate distance is just the absolute value between the two numbers.

We now need to introduce another notion of transition system, this time meant to model
differences between computations. This kind of structure can be interpreted as a quantale,
and will form the codomain of Contextual Bisimulation Metrics. Intuitively, a Metric LTS is
an LTS endowed with a function from states to a quantale Q. This allows to keep track of
immediate distance changes. Let us start with the notion of a pre-metric LTS:

▶ Definition 5 (Pre-metric LTS). A pre-metric Q-LTS is a quadruple V = (S, L, −→, ⇓) where:
S is the set of states;
L is the set of labels;
−→ ⊆ S × L × S is the transition relation;
⇓ : S → Q is a function which assigns values in Q to states in S.

A pre-metric LTS does not necessarily form a quantale, because S does not necessarily
have, e.g. the structure of a monoid or a lattice. In order to be proper codomains for metrics,
pre-metric LTSs need to be endowed with some additional structure, which will be proved to
be enough to form a quantale.

▶ Definition 6 (Metric LTS). A metric Q-LTS V = (S, L, −→, ⇓) is a pre-metric Q-LTS
endowed with two elements ⊥V, ⊤V ∈ S, and three operators

∧
V,

∨
V : 2S → S and +V :

S × S → S, where the conditions hold for all possible values of the involved metavariables:

⊥V
ℓ−→ s ⇐⇒ s = ⊥V ⇓ ⊥V = ⊥Q

∀ℓ ∈ L : ⊤V ̸ ℓ−→ ⇓ ⊤V = ⊤Q∧
V S′ ℓ−→ s ⇐⇒ ∃s′ ∈ S′ : s′ ℓ−→ s ⇓

∧
V S′ =

∧
Q{⇓ s | s ∈ S′}∨

V S′ ℓ−→ s ⇐⇒ ∃S′′ : s =
∨

V S′′ and ⇓
∨

V S′ =
∨

Q{⇓ s | s ∈ S′}
∃ surjective f : S′ → S′′ : ∀s′ ∈ S′ : s′ ℓ−→ f(s′)

s1 +V s2
ℓ−→ s′ ⇐⇒ s′ = s′

1 +V s′
2 for some s′

1, s′
2 ⇓ (s1 +V s2) =⇓ s1+Q ⇓ s2

such that: s1
ℓ−→ s′

1 and s2
ℓ−→ s′

2

Axioms ensures that ⊥V allows every possible behaviour (somehow capturing every context),
and dually ⊤V disallows every behaviour.

∧
V S′ allows all and only the behaviours in S′

(union of contexts), while
∨

V S′ enables all and only the behaviours allowed by every element
in S′ (intersection of contexts). The sum +V has a behaviour similar to

∨
V, but it is binary

and differs on the value returned by ⇓.
▶ Remark 7 (On The Existance Of Non-Trivial MLTSs). Due to the requirements about joins
and meets over potentially infinite sets, MLTSs are not easy to define directly. We argue,
however, that an MLTS can be defined as the closure of a pre-MLTS. If the underlying
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quantale Q is boolean, one can get the desired structure by considering 22X , where X is the
carrier of the given pre-MLTS: it suffices to take subsets in “conjunctive” normal form. For

the general case, the class ∪n∈N

n times︷ ︸︸ ︷
2...2X

, which is indeed a set in ZFC, suffices.

The axiomatics above is still not sufficient to give the status of a quantale to Q-MLTSs.
The reason behind all this is that there could be equivalent but distinct states in S. We then
define a preorder ≤V on the states of any MLTS V:

▶ Definition 8. A relation R ⊆ S × S is a ≤Q-preserving simulation1 if, whenever s1 R s2,
it holds that:
1. ⇓ s1 ≤Q ⇓ s2;
2. ∀ℓ ∈ L : s2

ℓ−→ s′
2 =⇒ ∃s′

1 : s1
ℓ−→ s′

1 and s′
1Rs′

2.
We define ≤V⊆ S × S as the largest ≤Q-preserving simulation. We use the notation ≤≥V for
mutual ≤Q-preserving simulation, that is ≤≥V=≤V ∩ ≥V. We say that s is a lower (resp.
upper) bound of S′ ⊆ S if s ≤V s′ (resp. s′ ≤V s) for all s′ ∈ S′.

The forthcoming result states that, in general, MLTSs almost form quantales. We can
recover a proper quantale by quotienting S modulo ≤≥V.

▶ Proposition 9 (Properties of MLTSs). Let V = (S, L, −→, ⇓) be a MLTS. Then:
1. ≤V is a preorder relation;
2. For all s: ⊥V ≤V s and s ≤V ⊤V;
3. For all S′ ⊆ S:

∧
V S′ is a lower bound of S′, and if s′ is a lower bound of S′ then

s′ ≤V
∧

V S′.
4. For all S′ ⊆ S:

∨
V S′ is an upper bound of S′, and if s′ is an upper bound of S′ then∧

V S′ ≤V s′.
5. For all s ∈ S, S′ ⊆ S : s +V

∧
V S′ ≤≥V

∧
V{s + s′ | s′ ∈ S′}.

6. For all s ∈ S : s +V ⊥ ≤≥V s.
7. For all s, s′ ∈ S : s +V s′ ≤≥V s′ + s.
8. For all s, s′, s′′ ∈ S : (s +V s′) +V s′′ ≤≥V s′ +V (s +V s′′).
9. If ≤V is a partial order relation, then V is a quantale.

Unless stated otherwise, we assume that every MLTS V we work with is a quantale.

▶ Definition 10 (Contextual Behavioural Metrics). Let (P, L, −→, D) and V = (S, L, −→, ⇓)
be, respectively, a Q-LTS and a Q-MLTS. Then, a map m : P × P → S is a contextual
bisimulation map if:
1. D(p, q) ≤Q ⇓ m(p, q);
2. if m(p, q) ℓ−→ s′, then the following holds:

a. p
ℓ−→ p′ =⇒ ∃q′ : q

ℓ−→ q′ and m(p′, q′) ≤V s′;
b. q

ℓ−→ q′ =⇒ ∃p′ : p
ℓ−→ p′ and m(p′, q′) ≤V s′.

We say that m is a contextual bisimulation metric (CBM) if m is both a contextual bisimula-
tion map and a metric. We define the contextual bisimilarity map δ as follows:

δ(p, q) =
∧
V

{m(p, q) | m is a contextual bisimulation map}

1 Technically, it is a reverse simulation. We call it simulation for brevity.



U. Dal Lago and M. Murgia 38:7

The following result states that the contextual bisimilarity map is well behaved, being a
contextual bisimulation map upper bounding any other such map:

▶ Lemma 11. δ is a contextual bisimulation map. Moreover, for all contextual bisimulation
maps m, and processes p, q, it holds that δ(p, q) ≤V m(p, q).

We still do not know whether δ is a metric. We need a handy characterization of δ for that.

A Useful Characterization of CBMs

Larsen’s environment parametrized bisimulations [23] is a variation on ordinary bisimulation
in which the compared states are tested against environments of a specific kind, this way
giving rise to a ternary relation. We here show that CBMs can be captured along the same
lines. A formal comparison between CBMs and Larsen’s approach is deferred to Section 4.3.

▶ Definition 12 (Parametrized Bisimulation). Let (P, L, −→, D) and (S, L, −→, ⇓) be, respectively,
a Q-LTS and a Q-MLTS. An S-indexed family of relations {Rs} such that Rs ⊆ P × P is
said to be a parametrized bisimulation iff, whenever p Rs q, it holds that D(p, q) ≤Q⇓ s,
and s

ℓ−→ s′ implies:
p

ℓ−→ p′ =⇒ ∃q′ : q
ℓ−→ q′ and p′Rs′q′;

q
ℓ−→ q′ =⇒ ∃p′ : p

ℓ−→ p′ and p′Rs′q′.
Parametrized bisimilarity is the largest parametrized bisimulation, namely the largest family
{∼s} such that p ∼s q if pRsq for some parametrized bisimulation {Rs}.

The fact that {∼s} is indeed a parametrized bisimulation holds because parametrized
bisimulations are closed under unions (defined point-wise), something which can be proved
with a simple generalisation of standard techniques [26, 27]. Parametrized bisimilarity turns
out to be strongly related to δ, this way providing a simple proof technique that will be
heavily used in the rest of the paper.

▶ Proposition 13. For all p, q, s, it holds that δ(p, q) ≤V s ⇐⇒ p ∼s q.

We are finally ready to state that δ satisfies the axioms of a metric.

▶ Theorem 14. The contextual bisimulation map δ is a metric.

4 Some Relevant Examples

This section is devoted to showing how well-known and heterogeneous notions of equivalence
and distance can be recovered as CBMs for appropriate quantales and MLTSs.

4.1 Strong Bisimilarity as a CBM
We start recalling that strong bisimilarity [26, 27] is the largest strong bisimulation relation,
that is a relation R ⊆ P × P on the states of a plain LTS (P, L, −→) such that p R q implies:

p
ℓ−→ p′ =⇒ ∃q′ : q

ℓ−→ q′ and p′ R q′;
q

ℓ−→ q′ =⇒ ∃p′ : p
ℓ−→ p′ and p′ R q′.

The first thing we have to do to turn strong bisimilarity into a CBM is to define, given such
an LTS (P, L, −→), a canonical immediate distance D on the boolean quantale B, which we
call the canonical distance:

D(p, q) =
{

⊥ if ∀ℓ : p
ℓ−→ ⇐⇒ q

ℓ−→
⊤ otherwise
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That is, the immediate distance is ⊥ precisely when the processes expose the same labels.
Notice that immediate distance is not affected by possible future behavioural differences.
Any LTS like this is said to be a boolean LTS. The boolean quantale can be turned very
naturally into a MLTS: let V be ({⊥V, ⊤V}, L, −→, ⇓) where the transitions are self loops
⊥V

ℓ−→ ⊥V for every ℓ ∈ L, and ⇓ just associates ⊥Q to ⊥V and ⊤Q to ⊤V.

▶ Proposition 15. Given any boolean LTS, δ is the characteristic function of bisimilarity,
i.e. δ(p, q) = ⊥V ⇐⇒ p ∼ q.

4.2 Behavioural CBMs
Most behavioural metrics from the literature are defined on probabilistic transition systems [8,
10, 34], differently from CBMs. Some probabilistic behavioural metrics can still be captured
in our framework by using as states of the process LTS (sub)distributions of states of the
original PLTS, e.g. the distribution based metric in [12]. Non-probabilistic behavioural
metrics exist, e.g., the so-called “branching metrics” [5], which are indeed instances of
behavioural metrics as defined below. Notice that our definition has a generic quantale Q as
its codomain, while usually behavioural metrics take values in the interval R[0,1].

Let us first recall what we mean by a behavioural metric here. A metric M : P ×P → Q is
said to be a behavioural metric if, for all pairs of states p, q, it holds that D(p, q) ≤Q M(p, q)
and, whenever M(p, q) <Q ⊤Q, we have that:

p
ℓ−→ p′ =⇒ ∃q′ : q

ℓ−→ q′ and M(p, q) ≥Q M(p′, q′);
q

ℓ−→ q′ =⇒ ∃p′ : p
ℓ−→ p′ and M(p, q) ≥Q M(p′, q′).

Intuitively, behavioural metrics can be seen as quantitative variations on the theme of a
bisimulation: they associate a value from a quantale to each pair of processes (rather than
a boolean), they are coinductive in nature. Moreover, they are based on the bisimulation
game, i.e., any move of one of the two processes needs to be matched by some move of the
other, at least when their distance is not maximal. Our definition is similar to the one in [12].
However, many behavioural metrics in literature deal with non-determinism through the
Hausdorff lifting, that is by stipulating that D(p, q) ≤Q M(p, q) and for all ℓ:

M(p, q) ≥Q
∨

p
ℓ−→p′

∧
q

ℓ−→q′

M(p′, q′) and M(p, q) ≥Q
∨

q
ℓ−→q′

∧
p

ℓ−→p′

M(p′, q′)

The two notions are equivalent if the process LTS is image-finite and Q is totally ordered,
both conditions are often assumed to be true in the literature.

We now show how to interpret Q as a MLTS. Morally, we just fix Q as the set of states,
the identity as ⇓, and self loops as transitions. This however violates the requirement that
the top element has no outgoing transitions. We therefore add the element ⊤V. Notice
that we still need ⊤Q, as it ensures that V is closed under +V. Let V = (S, L, −→, ⇓) where
S = Q ⊎ {⊤V}, L is as in the underlying process LTS, transitions are the self loops of the
form s

ℓ−→ s for every ℓ ∈ L, and s ∈ Q, ⇓ is the identity on Q, and ⇓ (⊤V) = ⊤Q. Notice
that, when ⇓ s <Q ⊤Q, we have that:

⇓ s ≤Q⇓ s′ ⇐⇒ s ≤V s′. (1)

We also have that for every behavioural metric there is a CBM that “agrees” on the
quantitative distance between processes. This intuition is formalized as follows:
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▶ Proposition 16. Let M be a behavioural metric, and let mM be defined as:

mM (p, q) =
{

M(p, q) if M(p, q) <Q ⊤Q

⊤V otherwise

Then, mM is a CBM and for every p, q it holds that ⇓ mM (p, q) = M(p, q).

The agreement of M and mM holds by definition. The fact that mM is a CBM, instead is a
consequence of the fact that transitions preserve M distances (by definition of behavioural
metric), and that behavioural metrics are metrics, indeed.

4.3 On Environment Parametrised Bisimulation and CBMs
As already mentioned, the concept of a CBM is inspired by Larsen’s environment parametrized
bisimulation [23]. It should then come with no surprise that there is a relationship between
the two, which is the topic of this section.

First, let us recall what an environment parametrized bisimulation is. Let (P, L, −→)
and (E, L, −→) be LTSs. Elements of P are called processes, while elements of E are called
environments. A E-indexed family of relations {Re}, where Re ⊆ P × P is a environment
parametrized bisimulation (EPB in the following) if, whenever p Re q and e

ℓ−→ e′:
p

ℓ−→ p′ =⇒ ∃q′ : q
ℓ−→ q′ and p′Re′q′;

q
ℓ−→ q′ =⇒ ∃p′ : p

ℓ−→ p′ and p′Re′q′.
Environment parametrized bisimilarity, denoted as ∼e, is defined as p ∼e q iff p Re q for
some EPB R. It turns out that ∼e is the largest EPB [23].

EPBs can be embedded into the CBMs framework as follows:

fix Q as the boolean quantale B, and define D(p, q) =
{

⊥B if ∃ℓ : p
ℓ−→ and q

ℓ−→
⊤B otherwise

let VE = (S, L, −→, ⇓) be any MLTS such that for all s ∈ S it holds that ⇓ s = ⊥B ⇐⇒
s ≠ ⊤V, and for all e ∈ E there is se ∈ S such that e ≾≿ se. Here ≾≿ is strong mutual
similarity on the disjoint union of V (forgetting ⇓) and E. When such conditions hold,
we say that E is embedded into VE .

We remark that, for every E, there is an MLTS VE enjoying the properties above, obtained
by augmenting E with the immediate metric defined above (this gives rise to a pre-metric
LTS, Definition 5) and by closing it with respect to the operations and constants

∨
,
∧

, ⊤, ⊥
of Definition 6. The intuition is that:

Two processes should have minimal immediate distance if there is a non-empty context
in which their immediate behaviour is equivalent. This is ensured by the fact that they
exhibit at least a common label from their current state.
VE needs to precisely simulate the behaviours in E. We therefore require that every
element of E has a corresponding element in s, with “equivalent behaviour”. In this setting,
mutual simulation turns out to be the appropriate notion of behavioural equivalence.

The link between environment parametrized bisimulations and CBMs is made formal by
the following proposition.

▶ Proposition 17. Let E be an environment LTS embedded into an MLTS VE. For every
p, q and e, it holds that p ∼e q =⇒ δ(p, q) ≤VE

se.

The proposition above ultimately follows from the fact that p ∼e q ⇐⇒ p ∼se q (where
∼se

is parametrized bisimilarity Definition 12) together with Proposition 13.
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5 About the Compositionality of CBMs

One of the greatest advantages of the bisimulation proof method is its modularity, which
comes from the fact that, under reasonable assumptions, bisimilarity is a congruence. In
a metric setting, one strives to obtain similar properties [14, 16], which take the form of
non-expansiveness, or variations thereof.

In this section we study the compositionality properties of CBMs with respect to some
standard process algebraic operators. We are interested in properties that generalise the
concept of a congruence. Following the lines of [22, 28], our treatment will be contextual,
meaning that the environment in which processes are deployed can indeed contribute to
altering their distance, although in a controlled way.

In order to keep our theory syntax independent, we model operators f as functions
f : P n → P (where n is the arity of the operator). In particular, for each process operator f

of arity n we define the function f̂ : P n × Sn → S as follows:

f̂(p1, . . . , pn, s1, . . . , sn) =
∨
V

{δ(f(p1, . . . , pn), f(p′
1, . . . , p′

n)) | ∀1 ≤ i ≤ n : δ(pi, p′
i) ≤V si}

Intuitively, f̂(p⃗, s⃗) bounds δ(f(p⃗), f (⃗q)) whenever q⃗ is such that δ(pi, qi) ≤V si for every i.
Moreover, f̂(p⃗, s⃗) is the lowest among such bounds.

Of course, our compositionality results rely on some assumptions on the compositionality
of the immediate metric D. Formally, we require that, for all operators f (with arity n), the
following holds for every p1, . . . , pn, q1, . . . , qn:

D(f(p1, . . . , pn), f(q1, . . . , qn)) ≤Q D(p1, q1) +Q . . . +Q D(pn, qn). (2)

Below, we will give results about when and under which condition the value of the
operator f̂ can be upper-bounded by a function on its parameters. We remark that our
compositionality results apply to each operator independently.

For the sake of concreteness, we give some examples of processes and their metric analysis.
To this purpose, let L = {a, b}, fix Q as the boolean quantale B and let D be defined exactly
as we did in Section 4.3 (i.e., D returns ⊥ if the processes can fire some common action, ⊤
otherwise). Distances will take values from a MLTS V0 over B. Similarly to Section 4.3, we
require V0 to be such that for every s ∈ S it holds that ⇓ s = ⊥B ⇐⇒ s ̸= ⊤V0 . Moreover,
we assume that V0 is able to represent at least Milner’s synchronisation trees [25]. For
simplicity, we omit self loops of ⊥V0 from all the graphical representations of our MLTS.
Of course, these assumptions hold only in the examples, while our results hold for general
MLTSs.

5.1 Restriction
We assume restriction to be modelled by a L-indexed family of unary operators νℓ , and that
P is closed under these operators. Their semantics is standard.

▶ Example 18. Let p0 and q0 be as in the following figure. We have that p0 and q0 have the
exact same behaviour on the b branch, while we can observe differences on the a branch (q1
can perform an action, p1 is terminated). State s0 captures exactly the similarities between
p0 and q0: after a b move it reduces to ⊥; after an a move, it reduces to s1. We argue that
s1 captures the similarities between p1 and q1: since neither of the two can perform the
action a, s1 reduces to ⊥ with label a, while it does not perform b actions because p1 and q1
“disagree” on such label. So δ(p0, q0) = s0. Processes (νa)p0 and (νa)q0 exhibit equivalent
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behaviour instead. In fact, operator (νa) filters out the problematic a branch. It is therefore
the case that δ((νa)p0, (νa)q0) = ⊥.

p0

p1 p2

q0

q1 q2q3

aa b

b

b
νa p0

νa p2

νa q0

νa q2

b b

s0

s1 ⊥

a b

a

⌟

The restriction operator does not add new behaviours to the original process, as it can
only restrict it. We can then expect that the differences between any two processes do not
increase if such processes are placed in a restriction context. Proposition below indeed shows
that ν̂ℓ enjoys a property similar to non-expansiveness, that is the distance between any two
processes p and q bounds the distance between νℓ p and νℓ q.

▶ Proposition 19. ν̂ℓ(p, s) ≤V s.

5.2 Prefixing
We assume that P is closed under operator . : L × P → P , whose semantics is standard. We
proceed similarly to the case of ν: we treat the prefix operator . as an L-indexed family of
unary operators .ℓ .

▶ Example 20. Let p0 and q0 be as in Example 18. Since b.p0 and b.q0 can only reduce with
a b move to, respectively, p0 and q0, their distance δ(b.p0, b.q0) should reduce to δ(p0, q0) = s0.
Moreover, after performing an a action, δ(b.p0, b.q0) should reduce to ⊥.

p0

p1 p2

q0

q1 q2q3

aa b

b

b
s0

s1 ⊥

a b

a

b.p0 b.p0 δ(b.p0, b.q0)

b b b

a

⌟

In our contextual setting, prefixing of processes can change the distance, and the new
distance may be incomparable to the original one. Therefore properties like non-expansiveness
do not hold in general for .̂ℓ . Among the compositionality properties appeared in literature,
uniform continuity [15] seems appropriate for prefixing. Uniform continuity holds when for
all sϵ >V ⊥V there is sδ >V ⊥V such that .̂ℓ(p, sδ) ≤V sϵ. Such condition is too strong: for
instance if sϵ

ℓ−→ ⊥V the only option is to take sδ = ⊥V, hence sδ ̸>V ⊥V.
For this reason, we need a stronger property for sϵ, namely that the meet of the set of ℓ

reducts of sϵ is strictly greater than ⊥V and its immediate value is lower than that of sϵ.

▶ Proposition 21. For all sϵ >V ⊥V such that sℓ =
∧

V{s | sϵ
ℓ−→ s} > ⊥ and ⇓ sℓ ≤Q⇓ sϵ,

there is sδ >V ⊥V such that .̂ℓ(p, sδ) ≤V sϵ.

5.3 Non-deterministic Sum
We assume that P is closed under binary operator +, whose semantics is again standard.

CONCUR 2023
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▶ Example 22. Let p0, q0 and s0 be as in Example 18, and r0 as in the picture below. We
have that δ(p0 + r0, q0 + r0) = s0: it reduces to ⊥ after a b move (both processes indeed
terminate after a b action). An a action instead leads to a state that can only perform a
a action towards ⊥. This is because q0 + r0 can reduce to q1 with a a move, while p0 + r0
cannot match that action exactly: it can reduce to p1 or r1, that are not bisimilar to q1.

r0

r1

p0 + r0

p1 r1p2

a aba

q0 + r0

q1 r1q2

a ab

q3 b

⌟

Intuitively, the non-deterministic sum of two precesses can behave as the former process
or as the latter (but not as both). Therefore we can expect that the distance between two
sums is bounded by the join of the distances of the components. This is however not always
the case, as the immediate distance is not necessarily non-expansive. The sum operator +V
from Definition 6, instead, turns out to be sufficient for our purposes. Proposition below
indeed shows that +̂ is non-extensive.

▶ Proposition 23. For every p1, p2, s1, s2 : it holds that +̂(p1, p2, s1, s2) ≤V s1 +V s2.

5.4 Parallel Composition

We assume P to be closed under the binary operator |, whose semantics is defined below:

p
ℓ−→ p′

p|q ℓ−→ p′|q

p
ℓ−→ p′ q

ℓ−→ q′

p|q ℓ−→ p′|q′

q
ℓ−→ q′

p|q ℓ−→ p|q′

The notion of synchronisation considered in this paper is the one pioneered in CSP [19, 35].
This choice is motivated by the fact that, in comparison with CCS-like communication [25]
(which requires dual actions to synchronise resulting in an invisible τ -action), CSP notion
does not change the label: this simplifies the technical development and enables stronger
compositionality properties. Most of the works on compositionality of metrics for parallel
composition we are aware of use CSP synchronisation, e.g. [2, 14, 15].

▶ Example 24. Let p0 and q0 be as in Example 18, and r0 as in Example 22. We have that
δ(p0|r0, q0|r0) is as the figure below. Indeed, p0|r0 and q0|r0 necessarily reduce to bisimilar
states after a b action: therefore their distance b-reduces to ⊥. The situation for a actions is
more involved, due the the presence of several a-reducts for both processes. So, consider the
transition p0|r0

a−→ p1|r0. We need to find the matching move of q0|r0 that minimises the
distance between the reducts. So, consider the transition q0|r0

a−→ q1|r1. Since p1|r0 can only
perform a actions while q1|r1 only b ones, we have that δ(p1|r0, q1|r1) = ⊤. If we instead
consider transition q0|r0

a−→ q1|r0, we have that δ(p1|r0, q1|r0) = s′
1. Indeed, q1|r0

b−→ while
p1|r0 does not: hence s′

1 ̸ b−→. Moreover, s′
1

a−→ s′
2. The only a-reducts of p1|r0 and q1|r0 are,

respectively, p1|r1 and q1|r1. It is easy to verify that δ(p1|r1, q1|r1) = s′
2. The last possible

matching choice is q0|r0
a−→ q0|r1, for which we have that δ(p1|r0, q0|r1) = s′

1: the argument
is similar to the previous case. All the other starting a-moves of p0|r0, and those of q0|r0,
have matching moves leading to distances greater or equal than s′

1.
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p0|r0

p1|r0 p2|r0p0|r1

a ba

p2|r1p1|r1

a aa b

a
q0|r0

q1|r0 q2|r0q0|r1

a ba

q2|r1q1|r1

a aa b

a

q3|r0

q3|r1

a

b

b

δ(p0|r0, q0|r0) s′1

s′2⊥

a

a

b a

⌟

Parallel composition does not enjoy strong compositionality properties. Indeed in general
|̂(p1, p2, s1, s2) is related neither to s1 nor to s2, and even |̂(p1, p2, s1, ⊥V) is not related to
s1. Consider for instance the case where p2 “consumes” a s1 move.

However, our metric domain V contains “contextual” information. We exploit this fact to
show that a nice compositionality property, similar to non-extensivity [15], holds when the
context and the distance are “compatible”. A formal definition of compatibility follows.

▶ Definition 25. A relation R ⊆ S × P is a compatibility relation if, whenever s R p:
1. s

ℓ−→ s′ =⇒ s′ R p;

2. s
ℓ−→ s′ and p

ℓ−→ p′ =⇒ s′ R p′ and s ≤V s′.
We say that s is p-compatible iff s R p for some compatibility relation R.

▶ Example 26. Consider again p0, s0, s1 from Example 18 and δ(p0|r0, q0|r0) of Example 24.
We have that s0 is not p0-compatible as Condition 2 from Definition 25 is violated: s0

a−→ s1
and p0

a−→ p1 but s0 ̸≤V0 s1. Instead, s′′
0 below is p0-compatible: it follows from the facts

that s′′
0 necessarily reduces to a greater or equal state, p0 reduces to terminated states,

which are vacuously compatible with every distance. Note that δ(p0, q0) = s0 ≤V0 s′′
0 and

δ(p0|r0, q0|r0) ≤V0 s′′
0 . The second inclusion follows from the first by Proposition 27.

s′′0 s′′1
a

b a

▶ Proposition 27. If s1 is p2-compatible and s2 is p1-compatible, then |̂(p1, p2, s1, s2) ≤V
s1 +V s2.

5.5 Replication

We assume that P is closed both under operator | (as defined in Section 5.4) and under
! : P → P , whose semantics is standard. In general, replication has bad compositionality
properties: since it allows infinite behaviour, even a small distance in the parameter can
get amplified to a much larger value. However, we show that !̂ is not expansive under
the assumption that the parameter s always reduces to a larger or equal value and +Q
is idempotent. Such condition is of course quite strong, but it holds for instance when
interpreting bisimilarity as a contextual bisimulation metric (see Section 4.1).

▶ Example 28. We have that !p0 and !q0 can both fire a a or b action and reduce to a
process with the same behaviour (the simplest state with this property is drawn in the figure).
Therefore, the distance δ(!p0, !q0) = ⊥V. In general, however, the distance among processes
is not preserved by replication, as shown below:
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!p0 = !q0

a, b

p′0

p′1

p′2 q′2

q′1

q′0

q′3

!p′0

p′1|!p′0

...

!q′0

q′1|!q′0

...

a

b

a

a b

a

a

b

b

a a, b

a, b
a

a

a

δ(p′0, q
′
0) δ(!p′0, !q

′
0)⊥

b

ba b
b

a
a

a

⌟

▶ Definition 29. We define Inc, the set of increasing states, as the largest set S′ ⊆ S such
that, whenever s ∈ S′ and s

ℓ−→ s′ : s ≤V s′ and s′ ∈ S′.

▶ Proposition 30. If s is increasing and +Q is idempotent, then !̂(p, s) ≤V s.

6 Related Work & Conclusion

Quite a few works in the literature study context dependent relations. The closest to our
work is the already mentioned study about environment paremetrized bisimilarity [23]. Our
definition of CBM is similar to theirs, where the main differences are that we also consider
quantitative aspects and that we explicitly work with a metric. The same work also provides
an interesting logical characterisation of their relation in terms of Hennessy-Milner logic,
but does not study compositionality. Since environment parametrized bisimilarity can be
embedded into our framework, our compositionality results also hold for [23]. A closely
related line of research [3, 20, 21] (non-exhaustive list) studies conditional bisimulations in
an abstract categorical framework, where conditions are used to make assumptions on the
environment. In particular, [21] introduces a notion of conditional bisimilarity for reactive
systems and shows that conditional bisimilarity is a congruence. In [18], an early and a
late notion of symbolic bisimilarity for value passing processes are introduced, where actual
values are symbolically represented with boolean expressions with free variables. Symbolic
bisimilarities are parametric w.r.t. a predicate that, in a sense, allows to make assumptions
on the values that the context can send. Our notion of contextuality instead restricts the
choices of the environment, and we do not consider explicit value passing.

Compositionality of behavioural metrics has been studied in the probabilistic setting
[4, 8]. In [2], it has been shown that parallel composition is non-extensive. We remark
that our notion of parallel composition is slightly more general than the one considered
in [2], as in there processes necessarily synchronise on common actions. The work [14]
studies compositionality for quite a few process algebraic operators, showing e.g. that non-
deterministic sum is non-expansive, while parallel composition is non-extensive. The bang
operator is shown Lipschitz continuous for the discounted metric, while not even uniformly
continuous w.r.t. the non-discounted one. [16] introduces structural operational semantics
formats that guarantee compositionality of operators. Basically, compositionality depends
on how many parameters of the operator are copied from the source to the destination of the
rules, weighted by probabilities and the discount factor.

Concluding Remarks. This paper introduces a new form of metric on the states of a LTS,
called contextual behavioural metric, which enables contextual and quantitative reasoning.
We study compositional properties of CBMs w.r.t. some operators, showing that, under the
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assumption that the immediate metric is non-extensive, the following hold: restriction is
non-expansive, non-deterministic sum is non-extensive, prefixing enjoys a property slightly
weaker than uniform continuity, parallel composition is non-extensive when the distance
between components is compatible with the context and replication enjoys non-expansiveness
under some (rather strong) assumptions on the underling quantale Q.

Due to the generality of CBMs, our compositionality results extend to behavioural metrics
as defined in Section 4.2. For instance, since the compatibility relation of Definition 25 holds
trivially for the MLTS of behavioural metrics, we have that compositionality of parallel
composition only depends on the compositionality of the immediate metric.

Our work is still preliminary, and indeed we are yet in the quest for an appropriate general
notion of compositionality: here we tried to adapt concepts from the probabilistic setting
[14, 16], where uniform continuity is considered as the most general notion of compositionality.
In our setting not even prefixing enjoys uniform continuity, which should not come as a
surprise, as quantales are not totally ordered in general. Our compositionality results have
heterogeneous side conditions. Spelling out all the compositionality results in a uniform way
would come with a high price: operators for which compositionality holds without any side
condition, such as restriction, would have to be treated as those for which compositionality
holds only modulo appropriate (and strong) hypotheses, such as replication. An interesting
future work would be to infer the side conditions directly from SOS rules, or studying more
operators or rule formats as in [16].

Another direction of future research would be to consider calculi with value and/or
channel passing like the π-calculus: since strong bisimilarity is not a congruence in such
settings, a promising approach could be a “contextualisation” of open-bisimilarity [32].
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Abstract
When a system sends messages through a lossy channel, then the language encoding all sequences of
messages can be abstracted by its downward closure, i.e. the set of all (not necessarily contiguous)
subwords. This is useful because even if the system has infinitely many states, its downward closure
is a regular language. However, if the channel has congestion control based on priorities assigned
to the messages, then we need a finer abstraction: The downward closure with respect to the
priority embedding. As for subword-based downward closures, one can also show that these priority
downward closures are always regular.

While computing finite automata for the subword-based downward closure is well understood,
nothing is known in the case of priorities. We initiate the study of this problem and provide
algorithms to compute priority downward closures for regular languages, one-counter languages, and
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1 Introduction

When analyzing infinite-state systems, it is often possible to replace individual components by
an overapproximation based on (subword) downward closures. Here, the (subword) downward
closure of a language L ⊆ Σ∗ is the set of all words that appear as (not necessarily contiguous)
subwords of members of L. This overapproximation is usually possible because the verified
properties are not changed when we allow additional behaviors resulting from subwords.
Furthermore, this overapproximation simplifies the system because a well-known result by
Haines is that for every language L ⊆ Σ∗, its subword downward closure is regular.

This idea has been successfully applied to many verification tasks, such as the verification of
restricted lossy channel systems [1], concurrent programs with dynamic thread spawning and
bounded context-switching [3, 7], asynchronous programs (safety, termination, liveness [22],
but also context-free refinement verification [8]), the analysis of thread pools [9], and safety
of parameterized asynchronous shared-memory systems [25]. For these reasons, there has
been a substantial amount of interest in algorithms to compute finite automata for subword
downward closures of given infinite-state sytems [4–6,12–14,17,18,26–30].
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One situation where downward closures are useful is that of systems that send messages
through a lossy channel, meaning that every message can be lost on the way. Then clearly,
the downward closure of the set of sequences of messages is exactly the set of sequences
observed by the receiver. This works as long as all messages can be dropped arbitrarily.

Priorities. However, if the messages are not dropped arbitrarily but as part of congestion
control, then taking the set of all subwords would be too coarse an abstraction: Suppose we
want to prioritize critical messages that can only be dropped if there are no lower-priority
messages in the channel. For example, RFC 2475 describes an architecture that allows
specifying relative priority among the IP packets from a finite set of priorities and allows the
network links to drop lower priority packets to accommodate higher priority ones when the
congestion in the network reaches a critical point [11]. As another example, in networks with
an Asynchronous Transfer Mode layer, cells carry a priority in order to give preferences to
audio or video packages over less time-critical packages [21]. In these situations, the subword
downward closure would introduce behaviors that are not actually possible in the system.

To formally capture the effect of dropping messages by priorities, Haase, Schmitz and
Schnoebelen [16] introduced Priority Channel Systems (PCS). These feature an ordering on
words (i.e. channel contents), called the Prioritised Superseding Order (PSO), which allows
the messages to have an assigned priority, such that higher priority messages can supersede
lower priority ones. This order indeed allows the messages to be treated discriminatively, but
the superseding is asymmetric. A message can be superseded only if there is a higher priority
letter coming in the channel later. This means, PSO are the “priority counterpart” of the
subword order for channels with priorities. In particular, in these systems, components can
be abstracted by their priority downward closure, the downward closure with respect to the
PSO. Fortunately, just as for subwords, priority downward closures are also always regular.

This raises the question of whether it is possible to compute finite automata for the
priority downward closure for given infinite-state systems. For example, consider a recursive
program that sends messages into a lossy channel with congestion control. Then, the set
of possible message sequences that can arrive is exactly the priority downward closure S↓P
of the language S of sent messages. Since S is context-free in this case, we would like to
compute a finite automaton for S↓P. While this problem is well-understood for subwords,
nothing is known for priority downward closures.

Contribution. We initiate the study of computing priority downward closures. We show two
main results. On the one hand, we study the setting above – computing priority downward
closures of context-free languages. Here, we show that one can compute a doubly-exponential-
sized automaton for its priority downward closure. On the other hand, we consider a natural
restriction of context-free languages: We show that for one-counter automata, there is a
polynomial-time algorithm to compute the priority downward closure.

Key technical ingredients. The first step is to consider a related order on words, which we
call block order, which also has priorities assigned to letters, but imposes them more sym-
metrically. Moreover, we show that under mild assumptions, computing priority downward
closures reduces to computing block downward closures.

Both our constructions – for one-counter automata and context-free languages – require
new ideas. For one-counter automata, we modify the subword-based downward closures
construction from [4] in a non-obvious way to block downward closures. Crucially, our
modification relies on the insight that, in some word, repeating existing factors will always
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yield a word that is larger in the block order. For context-free languages, we present a novel
inductive approach: We decompose the input language into finitely many languages with
fewer priority levels and apply the construction recursively.

Outline of the paper. We fix notation in Section 2 and introduce the block order and show
its relationship to the priority order in Section 3. In Sections 4–6, we then present methods
for computing block and priority downward closures for regular languages, one-counter
languages, and context-free languages, respectively.

2 Preliminaries

We will use the convention that [i, j] denotes the set {i, i + 1, . . . , j}. By Σ, we represent
a finite alphabet. Σ∗ (Σ+) denotes the set of (non-empty) words over Σ. When defining
the priority order, we will equip Σ with a set of priorities with total order (P,⋖), i.e. there
exists a fixed priority mapping from Σ to P. The set of priority will be the set of integers
[0, d], with the canonical total order. By sets Σ=p (p ∈ P), we denote the set of letters in Σ
with priority p. For priority p ∈ P, Σ≤p = Σ=0 ∪ · · · ∪ Σ=p, i.e. the set of letters smaller
than or equal to p. For a word w = a0a1 · · · ak, where ai ∈ Σ, by w[i, j], we denote the infix
aiai+1 · · · aj−1aj , and by w[i], we denote ai.

Finite automata and regular languages. A non-deterministic finite state automaton (NFA)
is a tuple A = (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is its input alphabet, δ is its
set of edges i.e. a finite subset of Q× Σ ∪ {ϵ} ×Q, q0 ∈ Q is its initial state, and F ⊆ Q is
its set of final states. A word is accepted by A if it has a run from the initial state ending
in a final state. The language recognized by an NFA A is called a regular language, and is
denoted by L(A). The size of a NFA, denoted by |A|, is the number of states in the NFA.

(Well-)quasi-orders. A quasi-order, denoted as (X,≤), is a set X with a reflexive and
transitive relation ≤ on X. If x ≤ y (or equivalently, y ≥ x), we say that x is smaller than
y, or y is greater than x. If ≤ is also anti-symmetric, then it is called a partial order. If
every pair of elements in X is comparable by ≤, then it is called a total or linear order.
Let (X,≤1) and (Y,≤2) be two quasi orders, and h : X → Y be a function. We call h a
monomorphism if it is one-to-one and x1 ≤1 x2 ⇐⇒ h(x1) ≤2 h(x2).

A quasi order (X,≤) is called a well-quasi order (WQO), if any infinite sequence of
elements x0, x1, x2, . . . from X contains an increasing pair xi ≤ xj with i < j. If X is the set
of words over some alphabet, then a WQO (X,≤) is called multiplicative if ∀u, u′, v, v′ ∈ X,
u ≤ u′ and v ≤ v′ imply that uv ≤ u′v′.

Subwords. For u, v ∈ Σ∗, we say u ≼ v, which we refer to as subword order, if u is a subword
(not necessarily, contiguous) of v, i.e. if

u = u1u2 · · ·uk

and, v = v0u1v1u2v2 · · · vk−1ukvk

where ui ∈ Σ and vi ∈ Σ∗. In simpler words, u ≼ v if some letters of v can be dropped to
obtain u. For example, let Σ = [0, 1]. Then, 0 ≼ 00 ≼ 010 ̸≼ 110; 0 and 00 can be obtained
by dropping letters from 00 and 010, respectively. But 010 cannot be obtained from 110,
as the latter does not have sufficiently many 0s. If u ≼ v, we say that u is subword smaller
than v, or simply that u is a subword of v. And we call a mapping from the positions in u to
positions in v that witnesses u ≼ v as the witness position mapping.
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Since Σ is a WQO with the equality order, by Higman’s lemma, Σ∗ is a WQO with the
subword order. It is in fact a multiplicative WQO: if u ≼ u′ and v ≼ v′, then dropping the
same letters from u′v′ gives us uv.

Priority order. We take an alphabet Σ with priorities totally ordered by ⋖. We say u ≼P v,
which we refer to as priority order, if u = ϵ or,

u = u1u2 · · ·uk

and, v = v1u1v2u2 · · · vkuk,

such that ∀i ∈ [1, k], ui ∈ Σ and vi ∈ Σ∗
≤ui

. It is easy to observe that the priority order is
multiplicative, and is finer than the subword order, i.e. ∀u, v ∈ Σ∗, u ≼P v =⇒ u ≼ v. As
shown in [16, Theorem 3.6], the priority order on words over a finite alphabet with priorities
is a well-quasi ordering:

▶ Lemma 2.1. (Σ∗,≼P) is a WQO.

Downward closure. We define the subword downward closure and priority downward closure
for a language L ⊆ Σ∗ as follows:

L↓ := {u ∈ Σ∗ | ∃ v ∈ L : u ≼ v}, L↓P := {u ∈ Σ∗ | ∃ v ∈ L : u ≼P v}.

The following is the starting point for our investigation: It shows that for every language
L, there exist finite automata for its downward closures w.r.t. ≼ and ≼P.

▶ Lemma 2.2. Every subword downward closed sets and every priority downward closed set
is regular.

For the subword order, this was shown by Haines [19]. The same idea applies to the priority
ordering: A downward closed set is the complement of an upward closed set. Therefore, and
since every upward closed set in a well-quasi ordering has finitely many minimal elements, it
suffices to show that the set of all words above a single word is a regular language. This,
in turn, is shown using a simple automaton construction. In the full version, we prove an
analogue of this for the block ordering (Lemma 3.5).

We stress that Lemma 2.2 is not effective: It does not guarantee that finite automata
for downward closures can be computed for any given language. In fact, there are language
classes for which they are not computable, such as reachability sets of lossy channel systems
and Church-Rosser languages [15, 23]. Therefore, our focus will be on the question of how to
effectively compute automata for priority downward closures.

3 The Block Order

We first define the block order formally and then give the intuition behind the definition.
Let Σ be a finite alphabet, and P = [0, d] be a set of priorities with a total order ⋖. Then
for u, v ∈ Σ∗, where maximum priority occurring among u and v is p, we say u ≼B v, if

i. if u, v ∈ Σ∗
=p, and u ≼ v, or

ii. if
u = u0x0u1x1 · · ·xn−1un

and, v = v0y0v1y1 · · · ym−1vm

where x0, . . . xn−1, y0, . . . , ym−1 ∈ Σ=p, and for all i ∈ [0, n], we have ui, vi ∈ Σ∗
≤p−1 (the

ui and vi are called sub-p blocks), and there exists a strictly monotonically increasing
map ϕ : [0, n]→ [0,m], which we call the witness block map, such that
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a. ui ≼B vϕ(i), ∀i,
b. ϕ(0) = 0,
c. ϕ(n) = m, and
d. xi ≼ vϕ(i)yϕ(i)vϕ(i)+1 · · · vϕ(i+1), ∀i ∈ [0, n− 1].

Intuitively, we say that u is block smaller than v, if either
both words have letters of same priority, and u is a subword of v, or,
the largest priority occurring in both words is p. Then we split both words along the
priority p letters, to obtain sequences of sub-p blocks of words, which have words of
strictly less priority. Then by item iia, we embed the sub-p blocks of u to those of v, such
that they are recursively block smaller. Then with items iib and iic, we ensure that the
first (and last) sub-p block of u is embedded in the first (resp., last) sub-p block of v. We
will see later that this constraint allows the order to be multiplicative. Finally, by item
iid, we ensure that the letters of priority p in u are preserved in v, i.e. every xi indeed
occurs between the embeddings of the sub-p block ui and ui+1.

▶ Example 3.1. Consider the alphabet Σ = {0a, 0b, 1a, 1b, 2a, 2b} with priority set P = [0, 2]
and Σ=i = {ia, ib}. In the following examples, the color helps to identify the largest priority
occurring in the words. First, notice that ϵ ≼B 0a ≼B 0a0b, and hence

1b0a ≼B 0a1b0a0a1a0a0b, but 1b0a ̸≼B 0a1b0a0a1a0b0b.

This is because 0a ̸≼B 0b0b, i.e. the last sub-1 block of the former word cannot be mapped to
the last sub-1 block of the latter word. As another example, we have

2a1b0a ≼B 0a2a0a1b0a0a1a0a0b, but 2a1b0a ̸≼B 0a2b0a1b0a0a1a0a0b.

This is because 2a does not exist in the latter word, violating item iid. Finally, notice that

1a1b ̸≼B 1a2a1b, (1)

because the sub-2 block 1a1b would have to be mapped to a single sub-2 block in the
right-hand word; but none of them can accomodate 1a1b.

Note that by items iid and iia, we have that u ≼B v =⇒ u ≼ v, for all u, v ∈ Σ∗. Then
there exists a position mapping ρ from [0, |u|] to [0, |v|] such that u[i] = v[ρ(i)], for all i. We
say that a position mapping respects block order if for all i, v[ρ(i), ρ(i+ 1)] contains letters of
priorities smaller than u[i] and u[i+ 1]. It is easy to observe that if u ≼B v, then there exists
a position mapping from u to v respecting the block order. The following is a straightforward
repeated application of Higman’s Lemma [20] (see the full version).

▶ Theorem 3.2. (Σ∗,≼B) is a WQO.

In fact, the block order is multiplicative, i.e. for all u, v, u′, v′ ∈ Σ∗ such that u ≼B u′

and v ≼B v
′, it holds that uv ≼B u

′v′.

▶ Lemma 3.3. (Σ∗,≼B) is a multiplicative WQO.

Proof. For singleton P , the result trivially holds because it coincides with the subword order.
Let (Σ∗

≤p−1,≼B) be multiplicative. Now we show that (Σ∗
≤p,≼B) is multiplicative. To this

end, let u ≼B u
′, v ≼B v

′, and ϕ, ψ be the witnessing block maps respectively. We assume

u = u0x0u1x1u2x2 · · ·xk−1uk

v = v0y0v1y1v2y2 · · · yl−1vl

u′ = u′
0x

′
0u

′
1x

′
1u

′
2x

′
2 · · ·x′

k−1u
′
k′

v′ = v′
0y

′
0v

′
1y

′
1v

′
2y

′
2 · · · y′

l−1v
′
l′

CONCUR 2023



39:6 Priority Downward Closures

where xi, yi, x
′
i, y

′
i ∈ Σ=p. Consider the function δ : [0, k + l − 1]→ [0, k′ + l′ − 1] with

i 7→

{
ϕ(i), if 1 ≤ i ≤ k
ψ(i− k + 1), if k < i ≤ k + l − 1

Since the kth sub-p block of u and the 1st sub-p block of v combines in uv to form one sub-p
block, we have k + l− 1 sub-p blocks. Similarly, u′v′ has k′ + l′ − 1 sub-p blocks. And hence
ukv1 ≼B u

′
k′v′

1, by induction hypothesis. The recursive embedding is obvious for other sub-p
blocks. We also have that δ(0) = 0 and δ(k + l − 1) = k′ + l′ − 1. By monotonicity of ϕ and
ψ, δ is also strictly monotonically increasing. Hence, δ witnesses uv ≼B u

′v′. ◀

Pumping. In the subword ordering, an often applied property is that for any words u, v, w,
we have uw ≼ uvw, i.e. inserting any word leads to a superword. This is not true for the
block ordering, as we saw in Example 3.1, (1). However, one of our key observations about
the block order is the following property: If the word we insert is just a repetition of an
existing factor, then this yields a larger word in the block ordering. This will be crucial for
our downward closure construction for one-counter automata in Section 5.

▶ Lemma 3.4 (Pumping Lemma). For any u, v, w ∈ Σ∗, we have uvw ≼B uvvw.

Before we prove Lemma 3.4, let us note that by applying Lemma 3.4 multiple times, this
implies that we can also repeat multiple factors. For instance, if w = w1w2w3w4w5, then
w ≼B w1w

2
2w3w

3
4w5. Figure 1 shows an example on how to choose the witness block map.

Proof. We proceed by induction on the number of priorities. If there is just a single priority
(i.e. P = {0}), then ≼B coincides with ≼ and the statement is trivial. Let us assume the
lemma is established for words with up to n priorities. We distinguish two cases.

Suppose v contains only letters of priorities [0, n]. Then repeating v means repeating a
factor inside a sub-(n + 1) block, which is a word with priorities in [0, n]. Hence, the
statement follows by induction: Formally, this means we can use the embedding mapping
that sends block i of uvw to block i of uvvw.
Suppose v contains a letter of priority n+1. write v = v0x1v1 · · ·xmvm, where x1, . . . , xm

are the letters of priority n+ 1 in v and v0, . . . , vm are the sub-(n+ 1) blocks of v. Then:

uvw = uv0x1v1 · · ·xmvmw, uvvw = uv0x1v1 · · ·xm vmv0x1v1 · · ·xm︸ ︷︷ ︸
skipped

vmw

The idea is simple: Our witness block map just skips the m sub-(n + 1) blocks inside
of vmv0x1 · · · vm−1xm. Thus, the sub-(n+ 1) blocks in uv0x1 · · · vm−1xm are mapped to
the same blocks in uv0x1 · · · vm−1xm, and the sub-(n+ 1) blocks in vmw are mapped to
the same blocks in vmw. This is clearly a valid witness block map, since the first (resp.
last) sub-(n+ 1) block is mapped to the first (resp. last), and each sub-(n+ 1) block is
mapped to an identical sub-(n+ 1) block. ◀

Regular downward closures. As for ≼ and ≼P, we define L↓B = {u ∈ Σ∗ | ∃v ∈ L : u ≼B v}
for any L ⊆ Σ∗.

▶ Lemma 3.5. For every L ⊆ Σ∗, L↓B is a regular language.

For the proof of Lemma 3.5, one can argue as mentioned above: The complement Σ∗\(L↓B)
of L↓B is upward closed. And since ≼B is a WQO, Σ∗ \ (L↓B) has finitely many minimal
elements. It thus remains to show that for each word w ∈ Σ∗, the set of words ≼B-larger
than w is regular, which is a simple exercise. Details can be found in the full version.
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w′ = 1 2 0 1 0 1 2 1 1 2 1 1 2 1 1 2 1 0

w = 1 2 0 1 2 1 1 2 1 0

Figure 1 Here Σ = [0, 2], P = [0, 2], and Ai = {i}, w = 12(01)21(121)0 and w′ = 12(01)221(121)30.
The repeated segments are marked in red, and the arrows denote the witness block map.

Block order vs. priority order. We will later see (Theorem 4.4) that under mild conditions,
computing priority downward closures reduces to computing block downward closures. The
following lemma is the main technical ingredient in this: It shows that the block order refines
the priority order on words that end in the same letter, assuming the alphabet has a certain
shape. A priority alphabet (Σ,P) with P = [1, d] is called flat if |Σ=i| = 1 for each i ∈ [1, d].

▶ Lemma 3.6. If Σ is flat and u, v ∈ Σ∗a for some a ∈ Σ, then u ≼B v implies u ≼P v.

Proof. Since u ≼B v, there exists a witness position mapping ρ that maps the positions
of the letters in u to that of v, such that it respects the block order, and it maps the last
position of u to the last of v.

Let u = u0u1 · · ·uk. We say that a position mapping violates the priority order at position
i (for i ∈ [0, k − 1]), if v[ρ(i) + 1, ρ(i+ 1)] has a letter of priority higher than that of u[i+ 1].
Note that if ρ does not violate the priority order at any position, then u ≼P v.

Let i be the largest position at which ρ violates the priority order, i.e. v[ρ(i) + 1, ρ(i+ 1)]
has a letter of priority higher than that of u[i + 1]. We show that if ρ respects the block
order till position i, there exists another witness position mapping ρ′ that respects the block
order till position i− 1, and has one few position of violation (i.e. no violation at position i).

We first observe that u[i] > u[i + 1], which holds since ρ respects the block order till
position i, implying that v[ρ(i) + 1, ρ(i+ 1)] does not have a letter of priority higher than
min{u[i], u[i+ 1]}, and if u[i] ≤ u[i+ 1], ρ does not violate the priority order at i.

Then observe that v[ρ(i) + 1, ρ(i + 1)] does not have a letter with priority p, where
u[i] > p > u[i + 1], otherwise the sub-u[i] block of u immediately after u[i], can not be
embedded to that of v immediately after v[ρ(i)], since it would have to be split along p, and
the first sub-p block in v will not be mapped to any in u. Then v[ρ(i) + 1, ρ(i+ 1)] has letter
of priority u[i] (for a violation at i). Then consider the mapping ρ′ that maps i to the last
u[i] letter in v[ρ(i) + 1, ρ(i+ 1)] (say at v[j] for some j, ρ(i) + 1 ≤ j ≤ ρ(i+ 1)).

This mapping respects the block order till position i− 1, trivially, as we do not change
the mapping before i. We show that there is no priority order violation at position i. This
holds because the only larger priority letter occurring in v[ρ(i) + 1, ρ(i+ 1)] was u[i], and
due to the definition of ρ′, v[ρ′(i) + 1, ρ′(i+ 1)] has no letter of priority higher than u[i+ 1].
Since we do not change the mapping after position i, ρ′ does not introduce a violation at
any position after i. Hence we have a new position mapping that has one few position of
priority order violation. ◀

▶ Remark 3.7. We want to stress that the flatness assumption in Lemma 3.6 is crucial:
Consider the alphabet Σ from the Example 3.1. Then 1a0a ≼B 1a1b0a, but 1a0a ̸≼P 1a1b0a.
Here only one position mapping exists, and it is not possible to remap 1a to 1b since they
are two distinct letters of same priority. Hence, we need to assume that each priority greater
than zero has at most one letter.

CONCUR 2023



39:8 Priority Downward Closures

4 Regular Languages

In this section, we show how to construct an NFA for the block downward closure of a regular
language. To this end, we show that both orders are rational transductions.

Rational transductions. A finite state transducer is a tuple A = (Q,X, Y,E, q0, F ), where
Q is a finite set of states, X and Y are input and output alphabets, respectively, E is the
set of edges i.e. finite subset of Q×X∗ × Y ∗ ×Q, q0 ∈ Q is the initial state, and F ⊆ Q is
the set of final states. A configuration of A is a triple (q, u, v) ∈ Q ×X∗ × Y ∗. We write
(q, u, v)→A (q′, u′, v′), if there is an edge (q, x, y, q′) with u′ = ux and v′ = vy. If there is an
edge (q, x, y, q′), we sometimes denote this fact by q (x,y)−−−→A q′, and say “read x at q, output
y, and goto q′”. The size of a transducer, denoted by |A|, is the number of its states.

A transduction is a subset of X∗ × Y ∗ for some finite alphabets X,Y . The transduction
defined by A is T (A) = {(u, v) ∈ X∗ × Y ∗ | (q0, ϵ, ϵ) →∗

A (f, u, v) for some f ∈ F}. A
transduction is called rational if it is defined by some finite-state transducer. Sometimes we
abuse the notation and output a regular language R ⊆ Y ∗ on an edge, instead of a letter. It
should be noted that this abuse is equivalent to original definition of finite state transducers.

We say that a language class C is closed under rational transductions if for each language
L ∈ C, and each rational transduction R ⊆ X∗ × Y ∗, the language obtained by applying the
transduction R to L, RL def= {v ∈ Y ∗ | (u, v) ∈ R for some u ∈ L} also belongs to C. We
call such language classes full trio. Regular languages, context-free languages, recursively
enumerable languages are some examples of full trios [10].

Transducers for orders. It is well-known that the subword order is a rational transduction,
i.e. the relation T = {(u, v) ∈ X∗ ×X∗ | v ≼ u} is defined by a finite-state transducer. For
example, it can be defined by a one-state transducer that can non-deterministically decide to
output or drop each letter. Note that on applying the transduction to any language, it gives
the subword downward closure of the language. This means, for every L ⊆ X∗, we have
TL = L↓. We will now describe analogous transducers for the priority and block order.

▶ Theorem 4.1. Given a priority alphabet with priorities [0, k], one can construct in
polynomial time a transducer for ≼B and a transducer for ≼P, each of size O(k).

Proof. The transducers for the block and priority order are similar. Intuitively, both
remember the maximum of the priorities dropped or to be dropped, and keep or drop the
coming letters accordingly. We show the transducer for the priority order here since it is
applied in Theorem 4.4. The transducer for the block order is detailed in the full version.

Let Σ be a finite alphabet, with priorities P = [0, k]. Consider the transducer that has
one state for every priority, a non-final sink state, and a distinguished final state. If the
transducer is in the state for priority r and reads a letter a of priority s, then

if s < r, then it outputs nothing and stays in state r,
if s ≥ r, then it can output nothing, and go to state s,
if s ≥ r, it can also output a, and go to state 0, or the accepting state non-deterministically,
for any other scenario, goes to the sink state.

The priority 0 state is the initial state. Intuitively, the transducer remembers the largest
priority letter that has been dropped, and keeps only a letter of higher priority later. To be
accepting, it has to read the last letter to go to the accepting final state. ◀

The following theorem states that the class of regular languages form a full trio.
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▶ Theorem 4.2 ([24, Corollary 3.5.5]). Given an NFA A and a transducer B, we can construct
in polynomial time an NFA of size |A| · |B| for T (B)(L(A)).

Theorems 4.1 and 4.2 give us a polynomial size NFA recognizing the priority and block
downward closure of a regular language, which is computable in polynomial time as well.

▶ Theorem 4.3. Priority and block downward closures for regular languages are effectively
computable in time polynomial in the number of states in the NFA recognizing the language.

Theorem 4.3 and Lemma 3.6 now allow us to reduce the priority downward closure
computability to computability for block order.

▶ Theorem 4.4. If C is a full trio and we can effectively compute block downward closures
for C, then we can effectively compute priority downward closures.

Proof. The key idea is to reduce priority downward closure computation to the setting where
(i) all words end in the same letter and (ii) the alphabet is flat. Since by Lemma 3.6, on
those languages, the block order is finer than the priority order, computing the block order
will essentially be sufficient.

Let us first establish (i). Let L ∈ C. Then for each a ∈ Σ, the language La = L ∩ Σ∗a

belongs to C. Since L =
⋃

a∈Σ La ∪E and thus L↓P =
⋃

a∈Σ La↓P ∪E, it suffices to compute
priority downward closures for each La, where E = {ϵ} if ϵ ∈ L, else ∅. This means, it suffices
to compute priority downward closures for languages where all words end in the same letter.

To achieve (ii), we make the alphabet flat. We say that (Σ,P ′) is the flattening of
(Σ,P = [0, d]), if P ′ is obtained by choosing a total order to Σ such that if a has smaller
priority than b in (Σ,P), then a has smaller priority than b in (Σ,P ′). (In other words, we
pick an arbitrary linearization of the quasi-order on Σ that expresses “has smaller priority
than”). Then, we assign priorities based on this total ordering. Let ≼flat

B and ≼flat
P denote the

block order and priority order, resp., based on the flat priority assignment. It is a simple
observation that for u, v ∈ Σ∗, we have that u ≼flat

P v implies u ≼P v.
Now observe that for u, v ∈ La, Lemma 3.6 tells us that u ≼flat

B v implies u ≼flat
P v and

therefore also u ≼P v. This implies that (La↓flat
B )↓P = La↓P. By assumption, we can compute

a finite automaton A with L(A) = La↓flat
B . Since then L(A)↓P = (La↓flat

B )↓P = La↓P, we can
compute La↓P by applying Theorem 4.3 to A to compute L(A)↓P = La↓P. ◀

5 One-counter Languages

In this section, we show that for the class of languages accepted by one-counter automata,
which form a full-trio [10, Theorem 4.4], the block and priority downward closures can be
computed in polynomial time. We prove the following theorem.

▶ Theorem 5.1. Given an OCA A, L(A)↓B and L(A)↓P are computable in polynomial time.

Here, the difficulty is that existing downward closure constructions exploit that inserting any
letters in a word yields a super-word. However, for the block order, this might not be true:
Introducing high-priority letters might split a block unintentionally. However, we observe
that the subword closure construction from [4] can be modified so that when constructing
larger runs (to show that our NFA only accepts words in the downward closure), we only
repeat existing factors. Lemma 3.4 then yields that the resulting word is block-larger.

According to Theorem 4.4, it suffices to show that block downward closures are computable
in polynomial time (an inspection of the proof of Theorem 4.4 shows that computing the
priority downward closure only incurs a polynomial overhead).
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One-counter automata. One-counter automata are finite state automata with a counter
that can be incremented, decremented, or tested for zero. Formally, a one-counter automaton
(OCA) A is a 5-tuple (Q,Σ, δ, q0, F ) where Q is a finite set of states, q0 ∈ Q is an initial state,
F ⊆ Q is a set of final states, Σ is a finite alphabet and δ ⊆ Q× (Σ∪{ϵ})×{−1, 0,+1, z}×Q
is a set of transitions. Transitions (p1, a, s, p2) ∈ δ are classified as incrementing (s = +1),
decrementing (s = −1), internal (s = 0), or test for zero(s = z).

A configuration of an OCA is a pair that consists of a state and a (non-negative) counter
value, i.e., (q, n) ∈ Q × N. A sequence π = (p0, c0), t1, (p1, c1), t2, · · · , tm, (pm, cm) where
(pi, ci) ∈ Q× Z, ti ∈ δ and (pi−1, ci−1) ti−→ (pi, ci) is called:

a quasi-run, denoted π = (p0, c0) w=⇒
A

(pm, cm), if none of ti is a test for zero;

a run, denoted π = (p0, c0) w−→A (pm, cm), if all (pi, ci) ∈ Q× N.
For any quasi-run π as above, the sequence of transitions t1, · · · , tm is called a walk from the
state p0 to the state pm. A run (p0, c0) w−→ (pm, cm) is called accepting in A if (p0, c0) = (q0, 0)
where q0 is the initial state of A and pm is a final state of A, i.e. pm ∈ F . In such a case,
the word w is accepted by A.

Simple one-counter automata. As we will show later, computing block downward closures
of OCA easily reduces to the case of simple OCA. A simple OCA (SOCA) is defined
analogously to OCA, with the differences that (i) there are no zero tests, (ii) there is only
one final state, (iii) for acceptance, the final counter value must be zero.

We first show that the block downward closures can be effectively computed for the
simple one-counter automata languages.

▶ Proposition 5.2. Given a simple OCA A, we can compute L(A)↓B in polynomial time.

We present a rough sketch of the construction, full details can be found in the full version.
The starting point of the construction is the one for subwords in [4], but the latter needs to
be modified in a non-obvious way using Lemma 3.4.

Let A = (Q,Σ, δ, q0, qf ) be a simple OCA, with |Q| = K. We construct an NFA B that
can simulate A in three different modes. In the first mode, it simulates A until the counter
value reaches K, and when the value reaches K + 1, it switches to the second mode. The
second mode simulates A while the counter value stays below K2 +K + 1. Moreover, and
this is where our construction differs from [4]: if B is in the second mode simulating A in
some state q, then B can spontaneously execute a loop from q to q of A while ignoring
its counter updates. When the counter value in the second mode drops to K again, B
non-deterministically switches to the third mode to simulate A while the counter value stays
below K. Thus, B only needs to track counter values in [0,K2 +K + 1], meaning they can
be stored in its state. We claim that then L(A) ⊆ L(B) ⊆ L(A)↓B.

▶ Lemma 5.3. L(A) ⊆ L(B).

If a word in L(A) has a run with counters bounded by K2 + K + 1, then it trivially
belongs to L(B). If the counters go beyond K2 +K + 1, then with the classical “unpumping”
argument, one can extract two loops, one increasing the counter, one decreasing it. These
loops can then be simulated by the spontaneous loops in the second mode of B.

The more interesting inclusion is the following:

▶ Lemma 5.4. L(B) ⊆ L(A)↓B.

We have to show that each spontaneous loop in B can be justified by padding the run
with further loop executions so as to obtain a run of A. This is possible because to execute
such a spontaneous loop, we must have gone beyond K and later go to zero again. Thus,
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there exists a “pumping up” loop adding, say k ≥ 0 to the counter, and a “pumping down”
loop, subtracting, say ℓ ≥ 0 from the counter. We can therefore repeat all spontaneous loops
so often that their effect – when seen as transitions in A – is a (positive or negative) multiple
M of k · ℓ. Then, we execute the k- and the ℓ-loop so often so as to get the counter values so
high that (i) our repeated spontaneous loops never cross zero and (ii) the effect difference
of the new loops is exactly M . Since in our construction (in contrast to [4]), the padding
only repeated words that already exist in the run of B, Lemma 3.4 implies that the word of B
embeds via the block order.

General OCA. Let us now show how to construct the block downward closure of general
OCAs. Suppose we are given an OCA A. For any two states p, q, consider the simple OCA
Ap,q obtained from A by removing all zero tests, making p initial, and q final. Then L(A)
is the set of words read from (p, 0) to (q, 0) without using zero tests. We now compute for
each p, q a finite automaton Bp,q for the block downward closure of Ap,q. Clearly, we may
assume that Bp,q has exactly one initial state and one final state. Finally, we obtain the
finite automaton B from A as follows: We remove all transitions except the zero tests. Each
zero test from p to q is replaced with an edge p ε−→ q. Moreover, for any states p and q

coming from A, we glue in the automaton Bp,q (by connecting p with Bp,q’s initial state and
connecting Bp,q’s final state with q). Then, since the block order is multiplicative, we have
that L(B) accepts exactly the block downward closure of A.

Futhermore, note that since our construction for simple OCA is polynomial, the general
case is as well: The latter employs the former to |Q|2 simple OCAs.

6 Context-free Languages

The key trick in our construction for OCA was that we could modify the subword construction
so that the overapproximating NFA B has the property that in any word from L(B), we can
repeat factors to obtain a word from A. This was possible because in an OCA, essentially
any pair of loops – one incrementing, one decrementing – could be repeated to pad a run.

However, in context-free languages, the situation is more complicated. With a stack, any
pumping must always ensure that stack contents match: It is not possible to compensate
stack effects with just two loops. In terms of grammars, the core idea for subword closures of
context-free languages L is usually to overapproximate “pump-like” derivations X ∗=⇒ uXv

by observing that – up to subwords – they can generate any u′Xv′ where the letters of u′ can
occur on the left and the letters of v′ can occur on the right in derivations X ∗=⇒ ·X·. Showing

that all such words belong to the downward closure leads to derivations X ∗=⇒ u′′v̄Xv′′ū,

where u′′, v′′ are super-words of u′, v′ such that X ∗=⇒ u′′Xū and X
∗=⇒ v̄Xv′′ can be

derived. The additional infixes could introduce high priority letters and thus split blocks
unintentionally.

Therefore, we provide a novel recursive approach to compute the block downward closure
by decomposing derivations at high-priority letters. This is non-trivial as this decomposition
might not match the decomposition given by derivation trees. Formally, we show:

▶ Theorem 6.1. Given a context-free language L ⊆ Σ∗
≤n, one can construct a doubly-

exponential-sized automaton for L↓B, and thus also for L↓P.

We do not know if this doubly exponential upper bound is optimal. A singly-exponential
lower bound follows from the subword case: It is known that subword downward closures of
context-free languages can require exponentially many states [6]. However, it is not clear
whether for priority or block downward closures, there is a singly-exponential construction.
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We again note that Theorem 4.4 (and its proof) imply that for Theorem 6.1, it suffices to
compute a finite automaton for the block downward closure of the context-free language:
Computing the priority downward closure then only increases the size polynomially.

Grammars. We present the construction using context-free grammars, which are tuples
G = (N,T, P, S), where N is a finite set of non-terminal letters, T is a finite set of terminal
letters, P is a finite set of productions of the form X → w with X ∈ N and w ∈ (N ∪ T )∗,
and S is the start symbol. For u, v ∈ (N ∪T )∗, we have u⇒ v if there is a production X → w

in P and x, y ∈ (N ∪ T )∗ with u = xXy and v = xwy. The language generated by G, is then
L(G) := {w ∈ T ∗ | S ∗=⇒ w}, where ∗=⇒ is the reflexive, transitive closure of ⇒.

Assumption on the alphabet. In order to compute block downward closures, it suffices
to do this for flat alphabets (see Section 3). The argument is essentially the same as in
Theorem 4.4: By flattening the alphabet as in the proof of Theorem 4.4, we obtain a finer
block order, so that first computing an automaton for the flat alphabet and then applying
Theorem 4.3 to the resulting finite automaton will yield a finite automaton for the original
(non-flat) alphabet. In the following, we will assume that the input grammar G is in Chomsky
normal form, meaning every production is of the form X → Y Z for non-terminals X,Y, Z,
or of the form X → a for a non-terminal X and a terminal a.

Kleene grammars. Suppose we are given a context-free grammar G = (N,Σ, P, S). Roughly
speaking, the idea is to construct another grammar G′ whose language has the same block
downward closure as L(G), but with the additional property that every word can be generated
using a derivation tree that is acyclic, meaning that each path contains every non-terminal at
most once. Of course, if this were literally true, G′ would generate a finite language. Therefore,
we allow a slightly expanded syntax: We allow Kleene stars in context-free productions.

This means, we allow right-hand sides to contain occurrences of B∗, where B is a non-
terminal. The semantics is the obvious one: When applying such a rule, then instead of
inserting B∗, we can generate any Bk with k ≥ 0. We call grammars with such productions
Kleene grammar. A derivation tree in a Kleene grammar is defined as for context-free
grammars, aside from the expected modification: If some B∗ occurs on a right-hand side,
then we allow any (finite) number of B-labeled children in the respective place. Then indeed,
a Kleene grammar can generate infinite sets using acyclic derivation trees. Given a Kleene
grammar H, let acyclic(H) be the set of words generated by H using acyclic derivation trees.

▶ Lemma 6.2. Given a Kleene grammar H, one can construct an exponential-sized finite
automaton accepting acyclic(H).

Proof sketch. The automaton simulates a (say, preorder) traversal of an acyclic derivation
tree of H. This means, its state holds the path to the currently visited node in the derivation
tree. Since every path has length at most |N |, where N is the set of non-terminals of H, the
automaton has at most exponentially many states. ◀

Given Lemma 6.2, for Theorem 6.1, it suffices to construct a Kleene grammar G′ of
exponential size such that acyclic(G′)↓B = L(G)↓B.
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Normal form and grammar size. We will ensure that in the constructed grammars, the
productions are of the form (i) X → w, where w is a word of length ≤ 3 and consisting of
non-terminals Y or Kleene stars Y ∗ or (ii) X → a where a is a terminal. This means, the
total size of the grammar is always polynomial in the number of non-terminals. Therefore,
to analyze the complexity, it will suffice to measure the number of non-terminals.

Highest occurring priorities. Similar to classical downward closure constructions for context-
free languages, we want to overapproximate the set of words generated by “pump derivations”
of the form X

∗=⇒ uXv. Since we are dealing with priorities, we first partition the set of such
derivations according to the highest occurring priorities, on the left and on the right. Thus,
for r, s ∈ [0, p], we will consider all derivations X ∗=⇒ uXv where r is the highest occurring
priority in u and s is the highest occurring priority in v. To ease notation, we define Σmax r to
be the set of words in Σ∗

≤r in which r is the highest occurring priority. Since Σmax r = Σ+
max r,

we will write Σ+
max r to remind us that this is not an alphabet. Notice that for r ∈ [1, p], we

have Σ+
max r = Σ∗

≤rrΣ∗
≤r and Σ+

max 0 = Σ∗
≤0.

Language of ends. In order to perform an inductive construction, we need a way to
transform pairs (u, v) ∈ Σ+

max r × Σ+
max s into words over an alphabet with fewer priorities.

Part of this will be achieved by the end maps ←−τ r(·) and −→τ s(·) as follows. Let Σ̂ be the
priority alphabet obtained from Σ by adding the letters #, ←−# , and −→# as letters with priority
zero. Now for r ∈ [1, p], the function ←−τ r : Σ+

max r → Σ̂∗
≤r−1 is defined as:

←−τ r(w) = u
←−#v, where w = urx1r · · ·xnrv for some n ≥ 0, u, v, x1, . . . , xn ∈ Σ∗

≤r−1.

Thus, ←−τ r(w) is obtained from w by replacing the largest possible infix surrounded by r

with ←−#. For r = 0, it will be convenient to have the constant function ←−τ 0 : Σ+
max 0 → {

←−#}.
Analogously, we define for s ∈ [1, p] the function −→τ s : Σ+

max s → Σ̂∗
≤s−1 by

−→τ s(w) = u
−→#v, where w = usx1s · · ·xnsv for some n ≥ 0, u, v, x1, . . . , xn ∈ Σ∗

≤s−1.

Moreover, we also set −→τ 0 : Σ+
max 0 → {

−→#} to be the constant function yielding −→# .
In particular, for r, s ∈ [1, p], we have ←−τ r(w),−→τ s(w) ∈ Σ̂≤p−1 and thus we have reduced

the number of priorities. Now consider for r, s ∈ [0, p] the language

EX,r,s = {←−τ r(u)#−→τ s(v) | X ∗=⇒ uXv, u ∈ Σ∗
≤rrΣ∗

≤r, v ∈ Σ∗
≤ssΣ∗

≤s}.

For the language EX,r,s, it is easy to construct a context-free grammar:

▶ Lemma 6.3. Given G, a non-terminal X, and r, s ∈ [0, p], one can construct a grammar
EX,r,s for EX,r,s of linear size.

Defining the sets EX,r,s with fresh zero-priority letters #, ←−#, −→# is a key trick in our
construction: Note that each word in EX,r,s is of the form u

←−#v#w−→#x for u, v, w, x ∈ Σ∗
≤p−1.

The segments u, v, w, x come from different blocks of the entire generated word, so applying
the block downward closure construction recursively to EX,r,s must guarantee that these
segments embed as if they were blocks. However, there are only a bounded number of
segments. Thus, we can reduce the number of priorities while retaining the block behavior
by using fresh zero-priority letters. This is formalized in the following lemma:

▶ Lemma 6.4. For u, u′, v, v′ ∈ Σ∗
≤p, we have u#v ≼B u′#v′ iff both (i) u ≼B u′ and

(ii) v ≼B v
′.
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Language of repeated words. Roughly speaking, the language EX,r,s captures the “ends” of
words derived in derivations X ∗=⇒ uXv with u ∈ Σ+

max r and v ∈ Σ+
max s: On the left, it keeps

everything that is not between two occurrences of r and on the right, it keeps everything
not between two occurrences of s. We now need languages that capture the infixes that can
occur between r’s and s’s, respectively. Intuitively, these are the words that can occur again
and again in words derived from X. There is a “left version” and a “right version”. We set
for r, s ∈ [1, p]:
←−
RX,r,s = {yr | y ∈ Σ∗

≤r−1, ∃x, z ∈ Σ∗
≤r, v ∈ Σ+

max s : X ∗=⇒ xryrzXv}
−→
RX,r,s = {ys | y ∈ Σ∗

≤s−1, ∃u ∈ Σ+
max r, x, z ∈ Σ∗

≤r : X ∗=⇒ uXxsysz}.

The case where one side has highest priority zero must be treated slightly differently: There
are no enveloping occurrences of some r, s ∈ [1, p]. However, we can overapproximate those
words by the set of all words over a particular alphabet. Specifically, for r, s ∈ [0, p], we set
−→
RX,0,s = {a ∈ Σ≤0 | ∃u ∈ Σ+

max 0, v ∈ Σ+
max s : X ∗=⇒ uXv, a occurs in u}

←−
RX,r,0 = {a ∈ Σ≤0 | ∃u ∈ Σ+

max r, v ∈ Σ+
max 0 : X ∗=⇒ uXv, a occurs in v}

▶ Lemma 6.5. Given G, a non-terminal X, and r, s ∈ [0, p], one can construct grammars
←−
RX,r,s, −→RX,r,s for ←−RX,r,s,−→RX,r,s, respectively, of linear size.

Overapproximating derivable words. The languages EX,r,s and ←−RX,r,s and −→RX,r,s now
serve to define overapproximations of the set of (u, v) ∈ Σ+

max r × Σ+
max s with X

∗=⇒ uXv:

One can obtain each such pair by taking a word from EX,r,s, replacing ←−# and −→# , resp., by
words in r

←−
R ∗

X,r,s (←−R ∗
X,0,s if r = 0) and s

−→
R ∗

X,r,s (−→R ∗
X,r,0 if s = 0), respectively. By choosing

the right words from EX,r,s, ←−RX,r,s, and −→RX,r,s, we can thus obtain u#v. However, this
process will also yield other words that cannot be derived. However, the key idea in our
construction is that every word obtainable in this way from EX,r,s, ←−RX,r,s, and −→RX,r,s will
be in the block downward closure of a pair of words derivable using X ∗=⇒ ·X·.

Let us make this precise. To describe the set of words obtained from EX,r,s, ←−RX,r,s,
and −→RX,r,s, we need the notion of a substitution. For alphabets Γ1,Γ2, a substitution
is a map σ : Γ1 → 2Γ∗

2 that yields a language in Γ2 for each letter in Γ1. Given a word
w = w1 · · ·wn with w1, . . . wn ∈ Γ1, we define σ(w) := σ(w1) · · ·σ(wn). Then for K ⊆ Γ∗

1, we
set σ(K) =

⋃
w∈K σ(w). Now let ΣX,r,s : Σ̂≤p → 2Σ̂∗

≤p be the substitution that maps every
letter in Σ≤p ∪{#} to itself (as a singleton) and maps ←−# to r←−R ∗

X,r,s and −→# to s−→R ∗
X,r,s. Now

our observation from the previous paragraph can be phrased as:

▶ Lemma 6.6. For every u#v ∈ ΣX,r,s(EX,r,s), there are u′ ∈ Σ+
max r and v′ ∈ Σ+

max s with
u ≼B u

′, v ≼B v
′, and X ∗=⇒ u′Xv′.

Constructing the Kleene grammar. We now construct the Kleene grammar for L(G)↓B

by first computing the grammars EX,r,s, ←−RX,r,s, and −→RX,r,s for each non-terminal X and
each r, s ∈ [1, p]. Then, since EX,r,s, ←−RX,r,s, and −→RX,r,s generate languages with at most
p− 1 priorities, we can call our construction recursively to obtain grammars E ′

X,r,s, ←−R ′
X,r,s,

and −→R ′
X,r,s, respectively. Then, we add all productions of the grammars E ′

X,r,s, ←−R ′
X,r,s, and
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−→
R ′

X,r,s to G′. Moreover, we make the following modifications: Each production of the form
Y →

←−# (resp. Y → −→#) in EX,r,s is replaced with Y → Zr
←−
S ∗

X,r,s (resp. Y → Zs
−→
S ∗

X,r,s),
where ←−S X,r,s (resp. −→S X,r,s) is the start symbol of ←−R ′

X,r,s (resp. −→R ′
X,r,s), and Zr is a fresh

non-terminal used to derive r or ε: We also have Zr → r for each r ∈ [1, p] and Z0 → ε.
Moreover, each production Y → # in E ′

X is removed and replaced with a production Y → w

for each production X → w in G. We call the resulting grammar G′.

Correctness. Let us now observe that the grammar G′ does indeed satisfy L(G′)↓B = L(G)↓B.
The inclusion “⊇” is trivial as G′ is obtained by adding productions. For the converse, we
need some terminology. We say that a derivation tree t1 in G′ is obtained using an expansion
step from t0 if we take an X-labeled node x in t0, where X is a non-terminal from G, and
replace this node by a derivation X ∗=⇒ uwv using newly added productions (i.e. using EX,r,s,
←−
RX,r,s, and −→RX,r,s and some Y → w where X → w was the production applied to x in t0).
Then by construction of G′, any derivation in G′ can be obtained from a derivation in G by
finitely many expansion steps. An induction on the number of expansion steps shows:

▶ Lemma 6.7. We have L(G′)↓B = L(G)↓B.

Acyclic derivations suffice. Now that we have the grammar G′ with L(G′)↓B = L(G)↓B, it
remains to show that every word in G′ can be derived using an acyclic derivation:

▶ Lemma 6.8. acyclic(G′)↓B = L(G)↓B.

Essentially, this is due to the fact that any repetition of a non-terminal X on some path
means that we can replace a corresponding derivation X

∗=⇒ uXv by using new productions

from E ′
X,r,s, ←−R ′

X,r,s, and −→R ′
X,r,s. Since these also have the property that every derivation

can be made acyclic, the lemma follows. See the full version for details.

Complexity analysis. To estimate the size of the constructed grammar, let fp(n) be the
maximal number of non-terminals of a constructed Kleene grammar for an input grammar
with n non-terminals over p priorities. By Lemmas 6.3 and 6.5, there is a constant c such that
each grammar EX , ←−RX , and −→RX has at most cn non-terminals. Furthermore, G′ is obtained
by applying our construction to 3n(p+ 1)2 grammars with p− 1 priorities of size cn, and
adding Zp. Thus fp(n) ≤ n+ 3n(p+ 1)2fp−1(cn) + 1. Since fp−1(n) ≥ 1, we can simplify to
fp(n) ≤ 4n(p+ 1)2fp−1(cn). It is easy to check that f0(n) ≤ 4n+ 1 ≤ 5n, because EX,0,0 and
←−
RX,0,0 and −→RX,0,0 each only have one non-terminal. Hence fp(n) ≤ (4n(p+ 1)2)pf0(cpn) ≤
(4n(p+ 1)2) · 4(cpn), which is exponential in the size of G.

7 Conclusion

We have initiated the study of computing priority and block downward closures for infinite-
state systems. We have shown that for OCA, both closures can be computed in polynomial
time. For CFL, we have provided a doubly exponential construction.

Many questions remain. First, we leave open whether the doubly exponential bound
for context-free languages can be improved to exponential. An exponential lower bound
is easily inherited from the exponential lower bound for subwords [6]. Moreover, it is an
intriguing question whether computability of subword downward closures for vector addition
systems [17], higher-order pushdown automata [18], and higher-order recursion schemes [12]
can be strengthened to block and priority downward closures.

CONCUR 2023
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