Model-Checking Parametric Lock-Sharing Systems Against Regular Constraints

Corto Mascle
Université de Bordeaux, France

Anca Muscholl
Université de Bordeaux, France

Igor Walukiewicz
Université de Bordeaux, CNRS, France

Abstract

In parametric lock-sharing systems processes can spawn new processes to run in parallel, and can create new locks. The behavior of every process is given by a pushdown automaton. We consider infinite behaviors of such systems under strong process fairness condition. A result of a potentially infinite execution of a system is a limit configuration, that is a potentially infinite tree. The verification problem is to determine if a given system has a limit configuration satisfying a given regular property. This formulation of the problem encompasses verification of reachability as well as of many liveness properties. We show that this verification problem, while undecidable in general, is decidable for nested lock usage.

We show \textsc{ExpTime}-completeness of the verification problem. The main source of complexity is the number of parameters in the spawn operation. If the number of parameters is bounded, our algorithm works in \textsc{Ptime} for properties expressed by parity automata with a fixed number of ranks.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Parametric systems, Locks, Model-checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.24

Funding Work supported by the ANR project PaVeDys.

1 Introduction

Locks are a widely used concurrency primitive. They appear in classical programming languages such as Java, as well as in recent ones such as Rust. The principle of creating shared objects and protecting them by mutexes (like the “synchronized” paradigm in Java) requires \textit{dynamic lock creation}. The challenge is to be able to analyze programs with dynamic creation of threads and locks.

Our system model is based on Dynamic Pushdown Networks (DPNs) as introduced in [7], where processes are pushdown systems that can spawn new processes. The DPN model was extended in [20] by adding synchronization through a fixed number of locks. Here we take a step further and allow dynamic lock creation: when spawning a new process, the parent process can pass some of its locks, and new locks can be created for the new thread. This way we model recursive programs with creation of threads and locks. We call such systems \textit{dynamic lock-sharing systems} (DLSS).

The focus in both [7] and [20] is computing the \textit{Pre} of a regular set of configurations, and they achieve this by extending suitably the saturation technique from [6]. Here we consider not only reachability but also infinite behaviors of DLSS under fairness conditions. For this we propose a different approach than saturation from [7,20] as saturation is not suited to cope with liveness properties.
We show that verifying regular properties of DLSS is decidable if every process follows nested lock usage. This means that locally every process acquires and releases the locks according to the stack discipline. Nested locking is assumed in most papers on parametric verification of systems with synchronization over locks. It is also considered as good programming practice, sometimes even enforced syntactically, as in Java through synchronized blocks.

Without any restriction on lock usage we show that our problem is undecidable, even for finite state processes and reachability properties that refer to a single process. Note that our model does not have global variables. It is well-known that reachability is undecidable already for two pushdown processes with one lock and one global variable.

Outline of the paper. Our starting point is to use trees to represent configurations of DLSS. This representation was introduced in [20]. The advantage is that it does not require to talk about interleavings of local runs of processes. Instead it represents every local run as a left branch in a tree and the spawn operations as branching to the right. At each computation step one or two nodes are added below a leaf of the current configuration. Thus, the result of a run of DLSS is an infinite tree that we call a limit configuration. Our first observation is that it is easy to read out from a limit configuration of a run if the run is strongly process-fair (Proposition 3).

An important step is to characterize those trees that are limit configurations of runs of a given finite state DLSS, namely where every process is a finite state system. This is done in Lemma 11. To deal with lock creation this lemma refers to the existence of some global acyclic relation on locks. We show that this global relation can be recovered from local orderings in every node of the configuration tree (Lemma 12). Finally, we show that there is a nondeterministic Büchi tree automaton verifying all the conditions of Lemmas 11 and 12. This is the desired tree automaton recognizing limit configurations of process-fair runs. Our verification problem is solved by checking if there is a tree satisfying the specification and accepted by this automaton. This way we obtain the upper bound from Theorem 7.

Surprisingly the size of the Büchi automaton is linear in the size of DLSS, and exponential only in the arity of the DLSS, which is the maximal number of locks a process can access. For example, in the dining philosophers setting (cf. Figure 1) the arity is 3, as every philosopher has access only to its left and right forks, implemented as locks; and there is one more fork to close the cycle.

The extension of our construction to pushdown processes requires one more idea to get an optimal complexity. In this case, ensuring that the limit tree represents a computation requires using pushdown automata. Hence, the Büchi tree automaton as described in the previous paragraph becomes a pushdown Büchi automaton on trees. The emptiness of pushdown Büchi tree automata is EXPTIME-complete, which is an issue as the automaton constructed is already exponential in the size of the input. However, we observe that the automata we obtain are right-resetting, since new threads are spawned with empty pushdown. Intuitively, the pushdown is needed only on left paths of the configuration tree to check correctness of local runs. A right-resetting automaton resets its stack each time it goes to the right child. We show that the emptiness of right-resetting parity pushdown tree automata can be checked in PTIME if the biggest rank in the parity condition is fixed (if it is not fixed then the problem is at least as complex as solving parity games). This gives the upper bound from Theorem 8.

Finally, we obtain the matching lower bound by proving EXPTIME-hardness of checking if a process of the DLSS has an infinite run (Proposition 22). This holds even for finite state processes. We also show that even for finite state processes the DLSS verification problem is undecidable if we allow arbitrary usage of locks (Theorem 5).
Related work. Parametrized verification has remained an active research area for almost three decades [1,5,13]. It has brought a steady stream of works on parametric systems with locks. As already mentioned, the first directly relevant paper is [7] introducing Dynamic Pushdown Networks (DPNs). These consist of pushdown processes with spawn but no locks. The main idea is to represent a configuration as a sequence of process identifiers, each identifier followed by a stack content. Computing Pre^* of a regular set of configurations is decidable by extending the saturation technique from [6].

An important step is made in [20] where the authors introduce a tree representation of configurations. This is essentially the same representation as we use here. They extend DPNs by a fixed set of locks, and show how to adapt the saturation technique to compute Pre^* in this case. Their result is an \textit{Exptime} decision procedure for verifying reachability of a regular set of configurations. This work has been extended to incorporate join operations [12], or priorities on processes [9]. Our work extends [20] in two directions: it adds lock creation, and considers liveness properties. It is not clear how one could extend saturation methods to deal with liveness properties.

The saturation method has been adapted to DPNs with lock creation in the recent thesis [17]. The approach relies on hyperedge replacement grammars, and gives decidability without complexity bounds. Our liveness conditions can express this kind of reachability conditions.

Actually, the first related paper to deal with lock creation is probably [25]. The authors consider a model of higher-order programs with spawn, joins, and lock creation. Apart from nested locking, a new restriction of scope safety is imposed. Under these conditions, reachability of pairs of states is shown to be decidable.

The works above have been followed by implementations [9,18,25]. In particular [9] reports on verification of several substantial size programs and detecting an error in xvisor [8].

In all the works above nested locking is assumed. In [16] the interest of nested locking is underlined by showing that reachability with two pushdown processes using locks is undecidable in general, but it is decidable for nested locking. There are only few related works without this assumption. The work [15] generalizes nested locking to bounded lock-chain condition, and shows decidability of reachability for two pushdown processes. In [19] the authors consider contextual locking where arbitrary locking may occur as long as it does not cross procedure boundaries. This condition is incomparable with nested locking.

Finally, we comment on shared state and global variables. These are not present in the above models because reachability for two pushdown processes with one lock and one global variable is already undecidable. There is an active line of study of multi-pushdown systems where shared state is modeled as global control. In this model decidability is recovered by imposing restrictions on stack usage such as bounded context switching and variations thereof [2,22–24]. Observe that these are restrictions on global runs, and not on local runs of processes, as we consider here. Another approach to recover decidability is to have shared state but no locks [10,11,14,21]. Finally, there is a very interesting model of threaded pools [3,4], without locks, where verification is decidable once again assuming bounded context switching. But the complexity of this model is as high as Petri net coverability [4].

Structure of the paper. The next section presents the main definitions and results. The main proof for finite state processes is outlined is Sections 3 and 4. Section 5 describes the extension to pushdown processes. Missing proofs can be found in the appendix of the full version on arXiv.
2 Definitions and results

A dynamic lock-sharing system is a set of processes, each process has access to a set of locks and can spawn other processes. A spawned process can inherit some locks of the spawning process and can also create new locks. All processes run in parallel. A run of the system must be fair, meaning that if a process can move infinitely many times then it eventually does.

More formally, we start with a finite set of process identifiers \(\text{Proc} \). Each process identifier \(p \in \text{Proc} \) has an arity \(\text{ar}(p) \in \mathbb{N} \) telling how many locks the process uses. The process can refer to these locks through the variables \(\text{Var}(p) = \{x_1^{\text{ar}(p)}, \ldots, x_{\text{ar}(p)}^{\text{ar}(p)}\} \). At each step a process can do one of the following operations:

\[
\text{Op}(p) = \{\text{nop}\} \cup \{\text{get}_x, \text{rel}_x | x \in \text{Var}(p)\} \\
\cup \{\text{spawn}(q, \sigma) | q \in \text{Proc}, \sigma : \text{Var}(q) \to (\text{Var}(p) \cup \{\text{new}\})\}
\]

Operation \(\text{nop} \) does nothing. Operation \(\text{get}_x \) acquires the lock designated by \(x \), while \(\text{rel}_x \) releases it. Operation \(\text{spawn}(q, \sigma) \) spawns an instance of process \(q \) where every variable of \(q \) designates a lock determined by the substitution \(\sigma \); this can be a lock of the spawning process or a new lock, if \(\sigma(x^i) = \text{new} \). We require that the mapping \(\sigma \) is injective on \(\text{Var}(p) \). This is important for the definition of nested stack usage.

A dynamic lock-sharing system (DLSS for short) is a tuple

\[
\mathcal{S} = (\text{Proc}, \text{ar}, (A_p)_{p \in \text{Proc}}, p_{\text{init}}, \text{Locks})
\]

where \(\text{Proc} \), and \(\text{ar} \) are as described above. For every process \(p \), \(A_p \) is a transition system describing the behavior of \(p \). Process \(p_{\text{init}} \in \text{Proc} \) is the initial process. Finally, \(\text{Locks} \) is an infinite pool of locks.

Each transition system \(A_p \) is a tuple \((S_p, \Sigma_p, \delta_p, \text{op}_p, \text{init}_p) \) with \(S_p \) a finite set of states, \(\text{init}_p \) the initial state, \(\Sigma_p \) a finite alphabet, \(\delta_p : S_p \times \Sigma_p \to S_p \) a partial transition function, and \(\text{op}_p : \Sigma_p \to \text{Op}(p) \) an assignment of an operation to each action. We require that the \(\Sigma_p \) are pairwise disjoint, and define \(\Sigma = \bigcup_{p \in \text{Proc}} \Sigma_p \). We write \(\text{op}(b) \) instead of \(\text{op}_p(b) \) for \(b \in \Sigma_p \), as \(b \) determines the process \(p \).

For simplicity, we require that \(p_{\text{init}} \) is of arity 0. In particular, process \(p_{\text{init}} \) has no \text{get} or \text{rel} operations.

An example in Figure 1 presents a DLSS modeling an arbitrary number of dining philosophers. The system can generate a ring of arbitrarily many philosophers, but can also generate infinitely many philosophers without ever closing the ring.

A configuration of \(\mathcal{S} \) is a tree representing the runs of all active processes. The leftmost branch represents the run of the initial process \(p_{\text{init}} \), the left branches of nodes to the right of the leftmost branch represent runs of processes spawned by \(p_{\text{init}} \) etc. So a leaf of a configuration represents the current situation of a process that is started at the first ancestor above the leaf that is a right child. A node of a configuration is associated with a process, and tells in what state the process is, which locks are available to it, and which of them it holds.

More formally, a \text{configuration} is a, possibly infinite, tree \(\tau \subseteq \{0, 1\}^* \), with each node \(\nu \) labeled by a tuple \((p, s, a, L, H) \) where \(p \in \text{Proc} \) is the process executing in \(\nu \), \(s \in \Sigma_p \) the state of \(p \), \(a \in \Sigma_p \) the action \(p \) executed at \(\nu \), or \(\perp \notin \Sigma \) if \(\nu \) is a root, \(L : \text{Var}(p) \to \text{Locks} \) an assignment of locks to variables of \(p \), and \(H \subseteq L(\text{Var}(p)) \) the set of locks \(p \) holds before executing \(a \). We use \(p(\nu) \), \(s(\nu) \), \(a(\nu) \), \(L(\nu) \) and \(H(\nu) \) to address the components of the label of \(\nu \). For ease of notation we will write \(\text{Var}(\nu) \) instead of \(\text{Var}(p(\nu)) \).
We write $H(\tau)$ for the set of locks ultimately held by some process in τ, that is, $H(\tau) = \{\ell : \text{for some } \nu, \ell \in H(\nu') \text{ for all } \nu' \text{ on the leftmost path from } \nu\}$. If τ is finite this is the same as to say that $H(\tau)$ is the union of $H(\nu)$ over all leaves ν of τ.

The initial configuration is the tree τ_{init} consisting only of the root e labeled by $(p_{init}, init_p, \bot, 0, \emptyset)$. Suppose that ν is a leaf of τ labeled by (p, s, b, L, H), and there is a transition $s \xrightarrow{a} s'$ for some s' in A_p. A transition between two configurations $\tau \xrightarrow{\nu,a} \tau'$ is defined by the following rules.

- If $op(a) = spawn(q, \sigma)$ then τ' is obtained from τ by adding two children ν_0, ν_1 of ν. The label of the left child ν_0 is (p, s', a, L, H). The label of the right child ν_1 is $(q, init_q, \bot, L', \emptyset)$ where $L'(x^0) = L(\sigma(x^0))$ if $\sigma(x^0) \neq \text{new}$ and $L'(x^0) = \ell_{e,x^0}$ is a fresh lock, otherwise.
- Otherwise, τ' is obtained from τ by adding a left child ν_0 to ν. The label of ν_0 must be of the form (p, s', a, L, H') subject to the following constraints:
 - If $op(a) = \text{nop}$ then $H' = H$.
 - If $op(a) = get_x$ and $L(x) \notin H(\tau)$ then $H' = H \cup \{L(x)\}$,
 - If $op(a) = \text{rel}_x$ and $L(x) \in H$ then $H' = H \setminus \{L(x)\}$.

Note that we do not allow a process to acquire a lock it already holds, or release a lock it does not have. We call this property soundness.

A run is a (finite or infinite) sequence of configurations $\tau_0 \xrightarrow{\nu_1,a_1} \tau_1 \xrightarrow{\nu_2,a_2} \cdots$. As the trees in a run are growing we can define the limit configuration of that run as its last configuration if it is finite, and as the limit of its configurations if it is infinite.

\begin{itemize}
 \item [\blacktriangleright] \textbf{Remark 1.} Note that in a run, at every moment distinct variables of a process are associated with distinct locks: $L(\nu_i)(x) \neq L(\nu_i)(y)$ for all $x, y \in \text{Var}(\nu_i)$ with $x \neq y$.
 \item [\blacktriangleright] \textbf{Remark 2.} The labels L and H can be computed out of the other three labels in the tree just following the transition rules. We could have defined configurations as trees with only three labels (p, s, a), but we preferred to include L and H for readability. Yet, later we will work with tree automata recognizing configurations and there it will be important that the labels come from a finite set.
\end{itemize}

A configuration τ is fair if for no leaf ν there is a transition $\tau \xrightarrow{\nu,a} \tau'$ for some a and τ'. We show that this compact definition of fairness captures strong process fairness of runs. Recall that a run is strongly process-fair if whenever from some position in the run a process is enabled infinitely often then it moves after this position.
Proposition 3. Consider a run $\tau_0 \xrightarrow{\nu_1,a_1} \tau_1 \xrightarrow{\nu_2,a_2} \cdots$ and its limit configuration τ. The run is strongly process-fair if and only if τ is fair.

Objectives. Instead of using some specific temporal logic we stick to a most general specification formalism and use regular tree properties for specifications. A regular objective is given by a nondeterministic tree automaton B over $\Sigma \cup \{\bot\}$, which defines a language of accepted limit configurations. The trees we work with can have nodes of rank 0, 1, or 2. So we suppose that the alphabet is partitioned into Σ_0, Σ_1 and Σ_2. The nondeterministic transition function reflects this with $\delta(q,a) \subseteq \{\top\}$ if $a \in \Sigma_0$, $\delta(q,a) \subseteq Q$ if $a \in \Sigma_1$, and $\delta(q,a) \subseteq Q \times Q$ if $a \in \Sigma_2$. A run of the automaton on a tree t is a labeling of t with states respecting δ. In particular if ν is a leaf of t then $\top \in \delta(q,a)$, where q is the state and a is the letter in ν. A run is accepting if for every infinite path the sequence of states on this path is in the accepting set of the automaton. We will work with accepting sets given by parity conditions. We say that a configuration τ satisfies B when B accepts the tree obtained from τ by restricting only to action labels.

Regular objectives can express many interesting properties. For example, “for every instance of process p its run is in a regular language C”. Or more complicated “there is an instance of p with a run in a regular language C_1 and all the instances of p have runs in the language C_2”. Of course, it is also possible to talk about boolean combinations of such properties for different processes. Observe that the resulting automaton B for these kinds of properties can be a parity automaton with ranks $1, 2, 3$ (properties of sequences can be expressed by Büchi automata, and rank 3 is used to implement existential quantification on process instances).

Regular objectives can express deadlock properties. Since we only consider process-fair runs, a finite branch in a limit configuration indicates that a process is blocked forever after some point. Hence, we can express properties such as “there is an instance of p that is blocked forever after a finite run in a regular language C”. We can also express that all branches are finite, which is equivalent to a global deadlock since we are considering only process-fair runs.

Reachability properties are also expressible with regular objectives. We can check simultaneous reachability of several states in different branches, for instance “there is a reachable configuration in which some process p reaches s while some process p' reaches s'”. There are ways to do it directly, but the shortest argument is through a small modification of the DLSS. We can simply add transitions to stop processes non-deterministically in desired states: adding new nop transitions from s and s' to new deadlock states. Using ideas from [19] we can also check reachability of a regular set of configurations.

Going back to our dining philosophers example from Figure 1, we can see also other types of properties we would like to express. For example, we would like to say that there are finitely many philosophers in the system. This can be done simply by saying that there are not infinitely many spawns in the limit configuration. (In this example it is equivalent to saying that there is no branch turning infinitely often to the right.) Then we can verify a property like “if there are finitely many processes in the system and some philosopher eats infinitely often then all philosophers eat infinitely often”. This property holds under process-fairness, as philosophers release both their forks after eating.

Definition 4 (DLSS verification problem). Given a DLSS S and a regular objective B decide if there is a process-fair run of S whose limit configuration τ satisfies B.

Without any further restrictions we show that our problem is undecidable:
Theorem 5. The DLSS verification problem is undecidable. The result holds even if the DLSS is finite-state and every process uses at most 4 locks.

This result is obtained by creating an unbounded chain of processes simulating a Turing machine. Each process memorizes the content of a position on the tape, and communicates with its neighbours by interleaving lock acquisitions. The trick for processes to exchange information by interleaving lock acquisitions was already used in [16], and requires a non-nested usage of locks.

The situation improves significantly if we assume nested usage of locks.

Definition 6. A process A_p is nested if it takes and releases locks according to a stack discipline, i.e., for all $x, y \in \text{Var}(p)$, for all paths $s_0 \xrightarrow{a_1} \cdots \xrightarrow{a_n} s_n$ in A_p, with $\text{op}(a_1) = \text{get}_x$, $\text{op}(a_n) = \text{rel}_x$, $\text{op}(a_m) \neq \text{rel}_x$ for all $m < n$: if $\text{op}(a_i) = \text{get}_y$ for some $i < n$ then there exists $i < k < n$ such that $\text{op}(a_k) = \text{rel}_y$. A DLSS is nested if all its processes are nested.

We can state the first main result of the paper. Its proof is outlined in the next two sections.

Theorem 7. The DLSS verification problem for nested DLSS is \textsc{Exptime}-complete. It is in \textsc{Ptime} when the number of priorities in the specification automaton, and the maximal arity of processes are fixed.

We can extend this result to DLSS where transition systems of each process are given by a pushdown automaton (see definitions in Section 5). The complexity remains the same as for finite state processes.

Theorem 8. The DLSS verification problem for nested pushdown DLSS is \textsc{Exptime}-complete. It is in \textsc{Ptime} when the number of priorities in the specification automaton, and the maximal arity of processes is fixed.

Characterizing limit configurations

A configuration is a labeled tree. We give a characterization of such trees that are limit configurations of a process-fair run of a given DLSS. In the following section we will show that the set of limit configurations of a given DLSS is a regular tree language, which will imply the decidability of our verification problem.

Definition 9. Given a configuration τ with nodes ν, ν' and variables $x \in \text{Var}(\nu)$, $x' \in \text{Var}(\nu')$, we write $x \sim x'$ if $L(\nu)(x) = L(\nu')(x')$, so if x and x' are mapped to the same lock. The scope of a lock ℓ is the set $\{\nu : \ell \in L(\nu)(\text{Var}(\nu))\}$.

Remark 10. It is easy to see that in any configuration, the scope of a lock is a subtree.

We say that a node ν is labeled by an unmatched get_x if it is labeled by some get_x and there is no rel_x operation in the leftmost path starting from ν. Recall that $H(\tau)$ is the set of locks ℓ for which there is some node ν with an unmatched get_x and $L(\nu)(x) = \ell$.

We define a relation \prec_H on $H(\tau)$ by letting $\ell \prec_H \ell'$ if there exist two nodes ν, ν' such that ν is an ancestor of ν', ν is labeled with an unmatched get of ℓ, and ν' is labeled with a get of ℓ'.

After these preparations we can state a central lemma giving a structural characterization of limit configurations of process-fair runs.

Lemma 11. A tree τ is the limit configuration of a process-fair run of a nested DLSS S if and only if
F1 The node labels in τ match the local transitions of S.

F2 For every leaf ν every possible transition from s(ν) has operation get_x for some x with L(ν)(x) ∈ H(τ).

F3 For every lock ℓ ∈ H(τ) there are finitely many nodes with operations on ℓ, and there is a unique node labeled with an unmatched get of ℓ.

F4 The relation ≺_H is acyclic.

F5 The relation ≺_H has no infinite descending chain.

Before presenting the proof of the previous lemma note that the main difficulty is the fact that some locks can be taken and never released. If H(τ) = ∅ then from τ we can easily construct a run with limit configuration τ by exploiting the nested lock usage. This is because any local run can be executed from a configuration where all locks are available.

Proof. We start with the left-to-right implication. Suppose that we have a process-fair run τ_0 ↠ ν_1 ↠ τ_1 ↠ ν_2 ↠ τ_2 ↠ ··· with limit configuration τ.

With every lock ℓ ∈ H(τ) we associate the maximal position m = m_ℓ such that op(σ_m) = get_ℓ and L(ν_m)(x) = ℓ, so the position m_ℓ where ℓ is acquired for the last time (and never released after).

It remains to check the conditions of the lemma. The first one holds by definition of a run. The second condition is due to process fairness and soundness, since a process can always execute transitions other than acquiring a lock, and locks not in H(τ) are free infinitely often. All actions involving ℓ ∈ H(τ) must happen before position m_ℓ, hence there are finitely many of them. Moreover, a lock cannot be acquired and never released more than once. This shows condition F3. Conditions F4 and F5 are both satisfied because if ℓ ≺_H ℓ' then m_ℓ < m_ℓ'. Thus ≺_H is acyclic and it cannot have infinite descending chains.

For the right-to-left implication, let τ satisfy all conditions of the lemma. In order to construct a run from τ we first build a total order < on H(τ) that extends ≺_H and has no infinite descending chain. Let ℓ_0, ℓ_1, ··· be some arbitrary enumeration of H(τ) (which exists as τ is countable, thus so is H(τ)). For all i let ↓ ℓ_i = {ℓ ∈ H(τ) | ℓ ≺_H ℓ_i}. As τ satisfies condition F3, the set of nodes that are ancestors of a node with an operation on ℓ_i is finite. Since additionally by condition F5 there are no infinite descending chains for ≺_H, the set ↓ ℓ_i is finite as well (by König’s lemma). As ≺_H is acyclic by condition F4, we can chose some strict total order <_i on ↓ ℓ_i that extends ≺_H. We define for all ℓ ∈ H(τ) the index m_ℓ = min{i ∈ N | ℓ ∈ ↓ ℓ_i}. Finally, we set ℓ < ℓ' if either m_ℓ < m_ℓ' or if m_ℓ = m_ℓ' and ℓ <_i ℓ'. By definition < is a strict total order on H(τ) with no infinite descending chains. Moreover it is easy to see that if ℓ ≺_H ℓ' then ℓ < ℓ'. This is the case because ℓ ≺_H ℓ' and ℓ' ≺_H ℓ_i implies ℓ ≺_H ℓ_i, so m_ℓ ≤ m_ℓ'.

Using the order < on H(τ) we construct a process-fair run τ_0 ↠ τ_1 ↠ τ_2 ↠ ··· with τ as limit configuration. During the construction we maintain the following invariant for every i:

There exists k_i ∈ N such that all operations on locks ℓ_j with j < k_i are already executed in τ_i (there is no operation on these locks in τ \ τ_i). Moreover, all other locks are free after executing τ_i: H_i := H(τ_i) = {ℓ_0, ···, ℓ_{k_i-1}}.

For i = 0 the invariant is clearly satisfied as all locks are free (k_0 = 0).

For i > 0 we assume that there is a run τ_0 ↠ τ_i and τ_i satisfies the invariant. Thus, all locks ℓ_j with j < k_i are ultimately held and all other locks are free in τ_i.

We say that a leaf ν of τ_i is available if one of the following holds:

1. either there is a descendant ν' ≠ ν on the leftmost path from ν in τ with H(ν') = H(ν) in τ,
2. or the left child ν' of ν in τ is labeled with an unmatched get of ℓ_k_i, and there is no further operation on ℓ_k_i in τ \ τ_i.
In particular, leaves of \(\tau \) cannot be available. The strategy is to find the smallest available node \(\nu \) in BFS order, and execute the actions on the left path from \(\nu \) to \(\nu' \). The execution is possible as on this path there are no actions using locks from \(H_i \) and all other locks are free. Let \(\tau_{i+1} \) denote the configuration thus obtained from \(\tau_i \). The invariant is satisfied after this execution, with \(H_{i+1} = H_i \) in the first case above, resp. \(H_{i+1} = H_i \cup \{ \ell_k \} \) in the second case.

It remains to show that if a node is a leaf in \(\tau_i \) for all \(i \) after some point, then it is a leaf in \(\tau \). This shows, in particular, that there always exists some available node.

Suppose that \(\nu \) and \(i_0 \) are such that \(\nu \) is a leaf of \(\tau_i \) for all \(i \geq i_0 \). If \(\nu \) becomes available at some point then it stays available in all future configurations, and there are finitely many nodes before \(\nu \) in the BFS order. Thus \(\nu \) cannot be available in some \(\tau_i \), as otherwise it would eventually be taken. Note that by the invariant (and soundness), no leaf of \(\tau_i \) has the left child labeled by some rel operation. Moreover, every leaf \(\nu \) of \(\tau_i \) with left child \(\nu' \) in \(\tau \) labeled by \(\text{nop, spawn}() \), or by some matched \(\text{get} \), is available (the latter because we consider nested DLSS). Hence, the left child of \(\nu \) must be labeled with an unmatched \(\text{get} \) of some \(\ell \in H(\tau) \). Thus there is some unmatched \(\text{get} \) on a lock of \(H(\tau) \) that is never executed.

Let \(m \) be the minimal index in the enumeration of \(H(\tau) \) such that an unmatched \(\text{get} \) of \(\ell_m \) in \(\tau \) is never executed. By minimality of \(m \), there exists \(i_1 \) such that \(m = k_i \) for all \(i \geq i_1 \). After \(i_1 \), all operations on locks \(\ell < \ell_m \) have been executed. Thus, as \(\prec_H \) extends \(\prec_H \), all unmatched \(\text{get} \) operations that have some descendant in \(\tau \) with operation on \(\ell_m \), have been executed. By the previous argument, the nodes with left child not labeled with an unmatched \(\text{get} \) cannot stay leaves forever. Hence, all nodes whose left child has some operation on \(\ell_m \) eventually become leaves. The ones with matched \(\text{get} \) or other operations are then available and eventually executed.

Hence, after some point the only remaining operations on \(\ell_m \) are unmatched \(\text{get} \). Furthermore by the condition \(F3 \) of the lemma there is exactly one. As a result, when it is reached and all other operations on \(\ell_m \) have been executed, it becomes available, and is thus eventually executed, contradicting the definition of \(m \).

This proves that the limit of the run we have constructed is \(\tau \). Observe finally that the run is process-fair because of condition \(F2 \) of the lemma.

The next lemma is an important step in the proof as it simplifies condition \(F4 \) of Lemma 11. This condition talks about the existence of a global order on some locks. The next lemma replaces this order with local orders in each of the nodes. These orders can be guessed by a finite automaton.

\[\text{Lemma 12. Suppose that } \tau \text{ satisfies the first three conditions of Lemma 11. The relation } \prec_H \text{ is acyclic if and only if there is a family of strict total orders } \prec_\nu \text{ over a subset of variables from } \text{Var}(\nu) \text{ such that:} \]

\[\text{F4.1 } x \text{ is ordered by } \prec_\nu \text{ if and only if } L(\nu)(x) \in H(\tau). \]

\[\text{F4.2 } \text{if } x \prec_\nu x', \nu' \text{ is a child of } \nu, \text{ and } y, y' \in \text{Var}(\nu') \text{ are such that } x \sim y \text{ and } x' \sim y' \text{ then } y \prec_\nu y'. \]

\[\text{F4.3 } \text{if } x, x' \in \text{Var}(\nu) \text{ and } L(\nu)(x) \prec_H L(\nu)(x') \text{ then } x \prec_\nu x'. \]

4 Recognizing limit configurations

Recall that a configuration is a possibly infinite tree with five labels \(p, s, a, L, H \). As we have mentioned in Remark 2, configurations need actually only three labels \(p, s, a \). The other two can be calculated from the tree. Hence, configurations are labeled trees with node labels coming from a finite alphabet. Our goal in this section is to define a tree automaton recognizing limit configurations of process-fair runs of a given DLSS.
Our plan is to check the conditions (F1-5) of Lemma 11. Actually we will check (F1-3,5) and the conditions of Lemma 12 that are equivalent to F4 of Lemma 11.

We first observe that since our processes are finite state it is immediate to construct a nondeterministic tree automaton B_1 verifying condition F1. This automaton just verifies local constraints between the labeling of a node and the labelings of its children. The constraints talk only about the labels p, s, a. The automaton does not need any acceptance condition, every run is accepting. We will say τ is process-consistent if it is accepted by B_1.

Checking condition F2 is more complicated because it refers to a set $H(\tau)$ of locks that are ultimately held by some process. Our approach will be to define four types of predicates and color the nodes of τ with these predicates. From a correct coloring of τ it will be easy to read out $H(\tau)$. Then we will show that the correct coloring can be characterized by conditions verifiable by Büchi tree automata. The coloring will be also instrumental in checking the remaining conditions F3, F4, F5.

For a configuration τ, a node ν and a variable $x \in \text{Var}(\nu)$ we define four predicates.

- $\nu \models \text{keeps}(x)$ if at ν process $p(\nu)$ holds the lock $\ell = L(\nu)(x)$ and never releases it: $\ell \in H(\nu')$ for every left descendant ν' of ν.
- $\nu \models \text{ev-keeps}(x)$ if $\nu \not\models \text{keeps}(x)$ and there is a descendant ν' of ν and a variable $x' \in \text{Var}(\nu')$ with $x \sim x'$ and $\nu' \models \text{keeps}(x')$.
- $\nu \models \text{avoids}(x)$ if neither ν nor any descendant takes $\ell = L(\nu)(x)$, namely $\ell \not\in H(\nu')$ for every descendant ν' of ν (including ν).
- $\nu \models \text{ev-avoids}(x)$ if $\nu \not\models \text{avoids}(x)$ and on every path from ν there is ν' such that $\nu' \models \text{avoids}(x)$.

Observe a different quantification used in ev-keeps and ev-avoids. In the first case we require one ν' to exist, in the second we want that such a ν' exists on every path.

The next lemma shows how we can use the coloring to determine $H(\tau)$.

\begin{lemma}
Let τ be a process-consistent configuration. A lock $\ell \in H(\tau)$ if and only if there is a node ν of τ and a variable $x \in \text{Var}(\nu)$ such that $\nu \models \text{keeps}(x)$ and $L(\nu)(x) = \ell$.
\end{lemma}

\begin{proof}
Follows from the definitions, since $\nu \models \text{keeps}(x)$ if and only if $\ell \in H(\nu')$ for every left descendant ν' of ν.
\end{proof}

The above conditions define a semantically correct coloring of nodes of a configuration τ by sets of predicates

$$C(\nu) = \{ P(x) : x \in \text{Var}(\nu), \nu \models P(x) \}$$

where $P(x)$ is one of $\text{keeps}(x), \text{ev-keeps}(x), \text{avoids}(x), \text{ev-avoids}(x)$. Observe that the four predicates are mutually exclusive, but it may be also the case that none of them holds. We say that a variable $x \in \text{Var}(\nu)$ is unc�킓ed in ν if $C(\nu)$ contains no predicate on x.

We now describe consistency conditions on a coloring of configurations guaranteeing that a coloring is semantically correct.

Before moving forward we introduce one piece of notation. A node that is a right child, namely a node of a form $\nu 1$ is due to spawn(q, σ) operation. More precisely $\text{op}(\nu 0) = \text{spawn}(q, \sigma)$. We refer to this σ as $\sigma(\nu 1)$.

A coloring of a configuration τ is branch-consistent if for every node ν of τ and every variable $x \in \text{Var}(\nu)$ the following conditions are satisfied.

- If ν has one successor $\nu 0$ then $\nu 0$ inherits the colors from ν except for two cases depending on $\text{op}(\nu 0)$, i.e., the operation used to obtain $\nu 0$:
It is clear that every configuration tree has a unique syntactically correct coloring. The two implications are stated separately as the statements are slightly different.

Next we describe when a coloring is \textit{eventuality-consistent}. An \textit{ev-trace} is a sequence of pairs \((\nu_1, x_1), (\nu_2, x_2), \ldots\) where:

- \(\nu_1, \nu_2, \ldots\) is a path in \(\tau\),
- \(x_i \in \text{Var}(\nu_i)\); moreover \(x_{i+1} = x_i\) if \(\nu_{i+1}\) is the left successor of \(\nu_i\), and \(\sigma(\nu_{i+1})(x_{i+1}) = x_i\) if \(\nu_{i+1}\) is the right successor of \(\nu_i\),
- ev-keeps(\(x_i\)) or ev-avoids(\(x_i\)) is in \(\mathcal{C}(\nu_i)\).

Observe that it follows that it cannot be the case that we have ev-keeps(\(x_i\)) and ev-avoids(\(x_{i+1}\)) or vice versa. A coloring is \textit{eventuality-consistent} if every ev-trace in the coloring of a configuration is finite.

Finally, a coloring is \textit{recurrence-consistent} if for every \(\nu\) and uncolored \(x \in \text{Var}(\nu)\) the lock \(\ell = L(\nu)(x)\) is taken and released infinitely often below \(\nu\).

A coloring is \textit{syntactically correct} if it is branch-consistent, eventuality-consistent, and recurrence-consistent. We show that syntactically correct colorings characterize semantically correct colorings. The two implications are stated separately as the statements are slightly different.

\textbf{Lemma 14.} If \(\tau\) is a limit configuration and \(\mathcal{C}\) is a semantically correct coloring of \(\tau\) then \(\mathcal{C}\) is syntactically correct.

For the other direction, we prove a more general statement without assuming that \(\tau\) is a limit configuration. This is important as ultimately we will use the consistency properties to test if \(\tau\) is a limit configuration.

\textbf{Lemma 15.} If \(\tau\) is a configuration and \(\mathcal{C}\) a syntactically correct coloring of \(\tau\), then \(\mathcal{C}\) is semantically correct.

Having a correct coloring will help us to verify all conditions of Lemma 11. Condition F2 refers to \(L(\nu)(x) \in H(\tau)\). We need another labeling to be able to express this.

A \textit{syntactic H-labeling} of \(\tau\) assigns to every node \(\nu\) a subset \(H^*(\nu) \subseteq \text{Var}(\nu)\). We require the following properties:

- For the root \(\varepsilon\) we have \(H^*(\varepsilon) = \emptyset\).
- If \(\nu \neq \emptyset\) exists: \(x \in H^*(\nu)\) if and only if \(x \in H^*(\nu)\).
- If \(\nu \neq \emptyset\) exists: \(y \in H^*(\nu)\) if and only if either \(\sigma(\nu)(y) = \text{new} \) and \(\nu \models \text{ev-keeps}(y)\), or \(\sigma(\nu)(y) = x \) and \(\nu \models \text{ev-keeps}(x)\).

It is clear that every configuration tree has a unique \(H^*\) labelling.
Lemma 16. Let τ be a process-consistent configuration with syntactically correct coloring. For every node ν and variable $x \in \text{Var}(\nu)$ we have: $L(\nu)(x) \in H(\tau)$ if and only if $x \in H^*(\nu)$.

Thanks to Lemma 16 we obtain

Lemma 17. Let τ be a process-consistent configuration with a syntactically correct coloring. Condition $F2$ of Lemma 11 holds for τ if and only if for every leaf ν of τ, every possible transition from $s(\nu)$ has some get_x operation with $x \in H_s(\nu)$.

Lemma 18. Let τ be a process-consistent configuration with a syntactically correct coloring. Then condition $F3$ of Lemma 11 holds for τ.

It remains to deal with conditions $F4$ and $F5$ of Lemma 11. Condition $F4$ is more difficult to check as it requires to find an acyclic relation with some properties. Fortunately Lemma 12 gives an equivalent condition talking about a family of local orders \prec_ν for every node ν of a configuration. An automaton can easily guess such a family of orders. We show that it can also check the required properties.

A consistent order labeling assigns to every node ν of τ a total order \prec_ν on some subset of $\text{Var}(\nu)$. The assignment must satisfy the following conditions for every node ν:

1. x is ordered by \prec_ν if and only if $x \in H^*(\nu)$,
2. if $x, x' \in \text{Var}(\nu)$ then $x <_{\nu} x'$,
3. if $x <_{\nu} x', \nu_1$ exists, and $\sigma(\nu_1)(y) = x, \sigma(\nu_1)(y') = x'$ then $y <_{\nu_1} y'$,
4. if $\nu \models \text{keeps}(x)$ and $y <_{\nu} x$ then $\nu \models \text{keeps}(y)$ or $\nu \models \text{avoids}(y)$.

Lemma 19. Let τ be a process-consistent configuration with a syntactically correct coloring. A family of local orders \prec_ν is a consistent order labeling of τ if and only if it satisfies the conditions of Lemma 12.

We consider now condition $F5$. We say that a consistent order labeling of τ admits an infinite descending chain if there exist a sequence of nodes ν_1, ν_2, \ldots and variables $(x_i), (y_i)$, such that for every $i > 0$: (i) ν_i is an ancestor of ν_{i+1}, (ii) $y_i \sim x_{i+1}$, and (iii) $y_i <_{\nu_i} x_i$.

Lemma 20. Let τ be a process-consistent configuration with a syntactically correct coloring. If \prec_H has no infinite descending chain then there is a consistent order labeling of τ with no infinite descending chain. If \prec_H has an infinite descending chain then every consistent order labeling of τ admits an infinite descending chain.

The next proposition summarizes the development of this section stating that all the relevant properties can be checked by a Büchi tree automaton.

Proposition 21. For a given DLSS, there is a non-deterministic Büchi tree automaton \hat{B} accepting exactly the limit configurations of process-fair runs of DLSS. The size of \hat{B} is linear in the size of the DLSS and exponential in the maximal arity of the DLSS.

We will show that the previous proposition yields an EPTIME algorithm. We match it with an EPTIME lower bound to obtain completeness.

Proposition 22. The DLSS verification problem for nested DLSS and Büchi objective is EPTIME-hard. The result holds even if the Büchi objective refers to a single process.
The hardness proof involves a reduction from the problem of determining whether the intersection of the languages of \(k \) deterministic tree automata over binary trees is empty. To achieve this, we create a DLSS that simulates all the tree automata concurrently. Each node of the tree in the intersection is simulated by a process, which encodes a state for each automaton through the locks it holds. So each process creates two children with whom it shares locks. The children are able to access the states of the parent by the following technique: Suppose processes \(p \) and \(q \) share locks 0 and 1, and \(p \) acquires one lock and retains it indefinitely. In this scenario, \(q \) can guess the lock chosen by \(p \) and try to acquire the other lock. If \(q \) guesses incorrectly, the system deadlocks. However, if the guess is correct, the execution continues, and \(q \) knows about the lock held by \(p \).

Now we have all ingredients for the proof of Theorem 7:

Proof of Theorem 7. The lower bound follows from Proposition 22.

For the upper bound we use the Büchi tree automaton \(\hat{B} \) recognizing limit configurations of the DLSS (Proposition 21).

We build the product of \(\hat{B} \) with the regular objective automaton \(A \), which is a parity tree automaton. From \(\hat{B} \times A \) we can obtain with a bit more work an equivalent parity tree automaton \(C \) with the same number of priorities, plus one. For this we modify the rank function in order to only store in the state the maximal priority seen between two consecutive occurrences of Büchi accepting states, and make the maximal priority visible at the next Büchi state. When the state of the \(\hat{B} \) component is not a Büchi state, the priority is odd and lower than all the ones of \(A \).

By Proposition 21, \(C \) is non-empty if and only if there exists a limit configuration of the system that satisfies the regular objective \(A \). Moreover, we know that \(\hat{B} \) has size linear in the size of the DLSS and exponential only in the maximal arity of processes. So \(C \) has size that is exponential w.r.t. the DLSS and the objective, and polynomial size if the maximal arity is fixed.

Finally, non-emptiness of \(C \) amounts to solve a parity game of the same size as \(C \): player Automaton chooses transitions of \(C \), and player Pathfinder chooses the direction (left/right child). To sum up, we obtain a parity game of exponential size, so solving the game takes exponential time since the number of priorities is polynomial. If both the number of priorities and the maximal arity are fixed, the game can be solved in polynomial time. ◀

5 Pushdown systems with locks

Till now every process has been a finite state system. Here we consider the case when processes can be pushdown automata. The definition of a pushdown DLSS is the same as before but now each automaton \(A_p \) is a deterministic pushdown automaton.

We will reduce our verification problem to the emptiness test of a nondeterministic pushdown automata on infinite trees. These automata will have parity acceptance conditions. While in general testing emptiness of such automata is \(\text{EXPTIME} \)-complete, we will notice that the automata we construct have a special form allowing to test emptiness in \(\text{PTIME} \) for a fixed number of ranks in the parity condition.

We start by defining **pushdown tree automata**. We work with a ranked alphabet \(\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \), so a letter determines whether a node has zero, one or two children. Our automaton will be quite standard but for an additional stack instruction. Apart standard **pop** and **push**(\(a \)), we have a **reset** instruction that empties the stack. A pushdown tree automaton is a tuple \((Q, \Sigma, \Gamma, q^0, \bot, \delta, \Omega)\), where \(Q \) is a finite set of states, \(\Sigma \) an input alphabet, \(\Gamma \) a stack alphabet, \(q^0 \in Q \) an initial state, \(\bot \in \Gamma \) a bottom stack symbol, and
\(\Omega : Q \to \{ 1, \ldots, d \} \) a parity condition. Finally, \(\delta \) is a partial transition function taking as the arguments the current state \(q \), the current input letter \(a \), and the current stack symbol \(\gamma \).

The form of transitions in \(\delta \) depends on the rank of the letter \(a \):

- For \(a \in \Sigma_0 \), we have \(\delta(q, a, \gamma) = \top \) for a special symbol \(\top \). This means that the automaton accepts in a leaf of the tree if \(\delta \) is defined.
- For \(a \in \Sigma_1 \), we have \(\delta(q, a, \gamma) = (q', \text{instr}) \) where \(\text{instr} \) is one of the stack instructions.
- For \(a \in \Sigma_2 \), we have \(\delta(q, a, \gamma) = ((q_t, \text{instr}_t), (q_r, \text{instr}_r)) \), so now we have two states, going to the left and right, respectively, and two separate stack instructions.

A run of such an automaton on a \(\Sigma \)-labeled tree is an assignment of configurations to nodes of the tree; each configuration has the form \((q, w) \) where \(q \ is a state and \(w \in \Gamma^+ \) is a sequence of stack symbols representing the stack (top symbol being the leftmost). The root is labeled with \((q^0, \bot) \). The labelling of children must depend on the labeling of the parent according to the transition function \(\delta \). In particular, if a leaf of the tree is labeled \(a \) and has assigned a configuration \((q, w) \) then \(\delta(q, a, \gamma) \) must be defined, where \(\gamma \) is the leftmost symbol of \(w \). A run is accepting if for every infinite path the sequence of assigned states satisfies the max parity condition given by \(\Omega \): the maximum of ranks of states seen on the path must be even.

We say that a pushdown tree automaton is right-resetting if for every transition \(\delta(q, a, \gamma) = ((q_t, \text{instr}_t), (q_r, \text{instr}_r)) \) we have that \(\text{instr} \) is reset.

Proposition 23. For a fixed \(d \), the emptiness problem for right-resetting pushdown tree automata with a parity condition over ranks \(\{1, \ldots, d\} \) can be solved in \(\text{Ptime} \).

Proof. We consider the representative case of \(d = 3 \). Suppose we are given a right-resetting pushdown tree automaton \(A = (Q, \Sigma, \Gamma, q^0, \bot, \delta, \Omega) \).

The first step is to construct a pushdown word automaton \(A'(G_1, G_2, G_3) \) depending on three sets of states \(G_1, G_2, G_3 \subseteq Q \). The idea is that \(A' \) simulates the run of \(A \) on the leftmost branch of a tree. When \(A \) has a transition going both to the left and to the right then \(A' \) goes to the left and checks if the state going to the right is in an appropriate \(G_i \). This means that \(A' \) works over the alphabet \(\Sigma' \) that is the same as \(\Sigma \) but all letters from \(\Sigma_2 \) have rank 1 instead of 2. The states of \(A'(G_1, G_2, G_3) \) are \(Q \times \{1, 2, 3\} \) with the second component storing the maximal rank of a state seen so far on the run. The transitions of \(A'(G_1, G_2, G_3) \) are defined according to the above description. We make precise only the case for a transition of \(A \) of the form \(\delta(q, a, \gamma) = ((q_t, \text{instr}_t), (q_r, \text{instr}_r)) \). In this case, \(A' \) has a transition \(\delta'((q, i), a, \gamma) = ((q_t, \max(i, \Omega(q_t))), \text{instr}_t) \) if \(q_t \in G_{\max(i, \Omega(q_t))} \). Observe that \(\text{instr} \) is necessarily reset as \(A \) is right-resetting.

The next step is to observe that for given sets \(G_1, G_2, G_3 \), we can calculate in \(\text{Ptime} \) the set of states from which \(A'(G_1, G_2, G_3) \) has an accepting run.

The last step is to compute the fixpoint expression below in the lattice of subsets of \(Q \). What the fixpoint computation does can be described at high-level as follows. While the pushdown automaton \(A' \) takes care of the parity condition on tree paths that are ultimately left paths, the sets \(G_i \) do this for paths that branch to the right infinitely often. For such paths, we need for example to guarantee through set \(G_3 \) that priority 3 is seen infinitely often. We do this through a least fixpoint computation for \(G_3 \). For \(G_2 \), we compute a greatest fixpoint since we want priority 2 to be seen infinitely often. Finally, for \(G_1 \) we compute a least fixpoint since priority 1 should be seen infinitely often before seeing priority 2:

\[
W = \text{LFP}X_3, \text{GFP}X_2, \text{LFP}X_1, \ P(X_1, X_2, X_3) \quad \text{where} \quad P(X_1, X_2, X_3) = \{ q : A'(X_1, X_2, X_3) \text{ has an accepting run from } q \} .
\]
Observe that $P : \mathcal{P}(Q)^3 \to \mathcal{P}(Q)$ is a monotone function over the lattice of subsets of Q. Computing W requires at most $|Q|^3$ computations of P for different triples of sets of states.

We claim that \mathcal{A} has an accepting run from a state q, if and only if, $q \in W$. The proof can be found in the full version.

Proof of Theorem 8. The lower bound follows already from Theorem 7.

For the upper bound we reuse the Büchi tree automaton \hat{B} from Proposition 21. This time \hat{B} is a pushdown tree automaton, however it is right-resetting because processes are spawned with empty stack. We follow the lines of the proof of Theorem 7, building the product of \hat{B} with the regular objective automaton \mathcal{A}, and constructing an equivalent parity, right-resetting pushdown tree automaton \mathcal{C}. Proposition 23 concludes the proof.

6 Conclusions

We have considered verification of parametric lock sharing systems where processes can spawn other processes and create new locks. Representing configurations as trees, and the notion of the limit configuration, are instrumental in our approach. We believe that we have made stimulating observations about this representation. It is very easy to express fairness as a property of a limit configuration. Many interesting properties, including liveness, can be formulated very naturally as properties of limit trees (cf. page 6). Moreover, there are structural conditions characterizing when a tree is a limit configuration of a run of a given system (Lemma 12).

We expect that the parameters in Theorem 8 will be usually quite small. As the dining philosophers example suggests, for many systems the maximal arity should be quite small (cf. Figure 1). Indeed, the maximal arity of the system corresponds to the tree width of the graph where process instances are nodes and edges represent sharing a lock. The maximal priority will be often 3. In our opinion, most interesting properties would have the form “there is a left path such that” or “all left paths are such that”, and these properties need only automata with three priorities. So in this case our verification algorithm is in Ptime.

Our handling of pushdown processes is different from the literature. Most of our development is done for finite state processes, while the transition to pushdown process is handled through right-resetting concept. Proposition 23 implies that in our context pushdown processes are essentially as easy to handle as finite processes.

As further work it would be interesting to see if it is possible to extend our approach to treat join operation [12]. An important question is how to extend the model with some shared state and still retain decidability for the pushdown case.

References

8 Xvisor commit message fixing issue:. URL: https://github.com/xvisor/xvisor/commit/e5dd8291b5e3f0c552b9aacc73ef2f000ae14c09.

