
Exploring Hydrogen Supply/Demand Networks:
Modeller and Domain Expert Views
Matthias Klapperstueck #

Department of Human-Centred Computing, Faculty of IT, Monash University, Clayton, VIC,
Australia

Frits de Nijs #

Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
ARC Industrial Training and Transformation Centre OPTIMA, Carlton, VIC, Australia

Ilankaikone Senthooran #

Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
ARC Industrial Training and Transformation Centre OPTIMA, Carlton, VIC, Australia

Jack Lee-Kopij
Woodside Energy Ltd., Perth, Australia

Maria Garcia de la Banda #

Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
ARC Industrial Training and Transformation Centre OPTIMA, Carlton, VIC, Australia

Michael Wybrow #

Department of Human-Centred Computing, Faculty of IT, Monash University, Clayton, VIC,
Australia

Abstract
Energy companies are considering producing renewable fuels such as hydrogen/ammonia. Setting
up a production network means deciding where to build production plants, and how to operate
them at minimum electricity and transport costs. These decisions are complicated by many factors
including the difficulty in obtaining accurate current data (e.g., electricity price and transport costs)
for potential supply locations, the accuracy of data predictions (e.g., for demand and costs), and the
need for some decisions to be made due to external (not modelled) factors. Thus, decision-makers
need access to a user-centric decision system that helps them visualise, explore, interact and compare
the many possible solutions of many different scenarios. This paper describes the system we have
built to support our energy partner in making such decisions, and shows the advantages of having
a graphical user-focused interactive tool, and of using a high-level constraint modelling language
(MiniZinc) to implement the underlying model.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Integer programming; Human-centered computing → Information visual-
ization

Keywords and phrases Facility Location, Hydrogen Supply Chain, Human-Centric Optimisation

Digital Object Identifier 10.4230/LIPIcs.CP.2023.21

Funding Woodside Energy Ltd.

1 Introduction

Moving away from fossil fuels is needed to achieve (net) zero carbon emissions [12]. Part
of this move focuses on the production of hydrogen and ammonia as storage carriers for
their use in mobile applications and seasonal storage. It is estimated the world production
of hydrogen needs to more than double by 2030 [9] and, given around 50% of the current
production [5] relies on natural gas, the demand for “green” hydrogen is even higher. This

© Matthias Klapperstueck, Frits de Nijs, Ilankaikone Senthooran, Jack Lee-Kopij, Maria Garcia de la
Banda, and Michael Wybrow;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.klapperstueck@monash.edu
https://orcid.org/0000-0002-6759-7185
mailto:frits.nijs@monash.edu
https://orcid.org/0000-0003-4466-2447
mailto:ilankaikone.senthooran@monash.edu
https://orcid.org/0000-0001-6207-3780
mailto:maria.garciadelabanda@monash.edu
https://orcid.org/0000-0002-6666-514X
mailto:michael.wybrow@monash.edu
https://orcid.org/0000-0001-5536-7780
https://doi.org/10.4230/LIPIcs.CP.2023.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Exploring Hydrogen Supply/Demand Networks

requires energy companies to expand their production capacity as efficiently as possible. To
achieve this, energy companies need to solve a complex combinatorial optimisation problem
with energy sourcing, operation, transport and demand constraints that can be summarised
as making two interdependent decisions – where to build the hydrogen production plants and
how to operate the production and supply process – that minimise costs.

This paper describes the system we have built to support our energy partner in solving
this problem, which we refer to as the facility location and operation problem. While already
deployed at our partner’s servers, the system is in constant evolution to incorporate the
new capabilities our partner requests, while they continue using it. Importantly, the system
does not just consist of a problem model that is instantiated with input data and solved
using a solver, as this did not satisfy our partner’s needs. Instead, we took advantage of
the capabilities of constraint programming modelling languages (MiniZinc [15]) and our
knowledge of interactive user interfaces to build a system that supports users in obtaining,
exploring and comparing solutions in different ways, tailored to our partner’s needs.

In particular, the system provides users with (a) a diverse set of solutions that can be
compared visually and numerically, (b) conflict resolution methods that, upon infeasibility,
identify conflicted constraints and guide users on which to modify, (c) different kinds of data
and model approximations that allow users to explore near-optimal solutions quickly, (d) the
ability to interactively add/remove/modify constraints via the interface to explore different
scenarios, (e) the ability to impose simple robustness constraints that ensure the solution is
resilient to unexpected facility outages, and (f) two different models of the same problem that
are used to cross-validate the correctness of the solutions. The amount of work required to
implement the system was significantly reduced thanks to the use of MiniZinc: its compiler
directly supports (a–b), while its high-level nature significantly simplifies (c–f).

Our industry partner has assessed our code against alternative tools and selected ours
based both on quantitative and qualitative measures (software design & architecture, user
interface, and technology stack), as well as its additional features (diversity and robustness).
This provides some measure of its quality and usefulness.

2 Facility location and operation problem overview

Intuitively, the facility location and operation problem solved by our Hydrogen Network Op-
timisation System (or HyNetOS) aims to select the location and configuration of the hydrogen
production plants needed to supply the demand of the given demand locations, in such a
way as to minimise the total cost of building and operating the resulting production/supply

Supply location

Electrolysis

Compression Gas H2
storage

Liquefaction Liquid H2
storage

Demand
location

boil-off

E
le

ct
ri

ci
ty

Figure 1 Left: solution showing 4 plant locations (squares) and the demand locations each of
them supplies (circles in the plant’s colour). Right: abstraction of a single plant.

M. Klapperstueck et al. 21:3

network over a number of years. The left-hand-side of Figure 1 shows a visualisation of a
particular solution, where 4 plant locations (the squares) out of all 9 plant locations given
as input are selected by HyNetOS to supply all demand locations (the circles), also given as
input. The decision of who supplies who is visualised via colour, with demand locations
supplied by the same plant sharing the colour of that plant.

As shown in the right-hand-side of Figure 1, each production plant is itself built using one
or more units of three production components – electrolysers, compressors and liquefiers – and
two storage systems – for liquid and for compressed gas. The units in which each of these five
types of hardware can be delivered, referred to as stock keeping units (skus), have different
characteristics such as capacity, electricity consumption, and maximum change per hour in
production rates, which are given as input. The hydrogen is transported between supply
and demand locations using a truck-based transportation network, where the transport costs
between each supply-demand location are given via an input table. Note that during the
plant sizing, we take into account the impact boil-off has on the final quantity delivered after
transport. Boil-off is the decompression due to the boiling of residual hydrogen liquid as a
result of increased temperature inside a (nearly) empty truck’s storage tank. Further, we
also take into account the location specific price of the available electricity sources necessary
to operate each facility, including the generation of a facility operation schedule to minimise
electricity costs under variable electricity price and availability.

Importantly, the problem is defined across two timescales: periods and hours. A period is
the number of consecutive years during which the demand for hydrogen is assumed to stay
constant. Plants are built during some period and must only increase in size in later periods
since, currently, demand is assumed never to decrease. In contrast, the electricity prices
for some markets are given hourly for an entire year, yielding up to 8760 possible different
prices per market. Because of this, we can potentially perform market arbitrage by adjusting
production rates to fit the market price for electricity. However, this means the optimisation
needs to make power consumption decisions on an hourly resolution.

The problem’s objective is to minimise the total cost of the network, which can be broken
down into the following interdependent cost elements: building (CAPEX) and operating
(OPEX) the hydrogen production plants; transporting the product from supply to demand
locations; and powering the production plants using the available electricity sources. The
latter includes a monthly cost (demand charge) some electricity providers add to try to
flatten their consumer’s load profile, and is proportional to the plant’s highest monthly load.

From an optimisation perspective, this problem is challenging due to the large search
space created by the high number of demand locations to be supplied (several hundreds),
the different electricity sources often available, and the hourly electricity prices the system
must consider across an entire year (up to 8760 per source). This is further complicated
by decisions on two different timescales: plant construction decisions are taken for each
period, while operating decisions are taken hourly. In addition, the dramatic scale difference
between CAPEX (millions) and electricity costs (cents per kWh), makes the model numer-
ically unstable. Together, these factors mean that solving the hydrogen facility model to
optimality can quickly become out of reach even for commercial mixed-integer solvers such as
Gurobi [7]. Furthermore, due to the costs involved, plant construction decisions necessitate
the examination of a range of scenarios, requiring the problem to be solved many times.

CP 2023

21:4 Exploring Hydrogen Supply/Demand Networks

3 Modeller’s view

As HyNetOS is developed for industry and there is no ground-truth, we put special attention
on reducing modelling errors. To do this, we separately implemented and integrated two
models of the problem whose functional equivalence is continuously checked by ensuring
solutions to any model instance can be given to the other without drop in objective or
infeasibility. This practice increases the redundancy of the programming task, thereby
reducing the residual probability of errors [21]. This section presents the input data used by
both models (referred to as Ori for the original model, and Alt for the alternative one, both
always compiled into a MILP problem by MiniZinc), the constraints implemented by one
(Alt) due to space constraints, and the modelling changes that most improved solving time.

3.1 Input data
Both models require the following input data, which MiniZinc refers to as parameters:

D and S: set of client demand locations and set of candidate supply locations, respectively.
K: set of products; currently K = {liq, gas}, i.e., liquid and gas hydrogen, respectively.
H: set of hardware; currently H = {elec, comp, liqf, gas_str, liq_str} correspond-
ing to electrolyser, compressor, liquifier, gas and liquid storage types, respectively.
P : set of constant demand periods and, for each period p ∈ P , how many years py ∈ N it
covers within the given plan horizon (typically 20 years).
SOi: set of electricity sources (market labels) available at supply location si ∈ S.
Elements of set SOi correspond to year-long time series of electricity prices, recorded at
an hourly resolution. Markets are one of three types: (a) utility, a conventional metered
connection with mostly fixed prices, (b) ppa, a fixed-price power purchase agreement with
a renewable energy provider (e.g., solar or wind farm), and (c) wholesale, a market
with generally the lowest price but exposed to volatile price fluctuations. We distinguish
them for their unique features; demand charges typically only apply to utility, while
ppa is a zero carbon emissions source, necessary to achieve carbon targets in the future.
Ti ⊆ {t1, t2, . . . , tτ }: set of time steps considered for a single representative year at supply
location si ∈ S. Each time step t ∈ Ti has a duration in hours hi,t ∈ {1, . . . , 24}, during
which the price of electricity is constant. The value of τ ranges between 365 and 8760,
corresponding to the cases where every time step represents 1 day and 1 hour, respectively.
Their sum

∑
t∈Ti

hi,t must always be 8760.
Dk

p,j ∈ R≥0: daily demand of product k ∈ K from location dj ∈ D throughout period
p ∈ P, in tonnes per day.
T k

p,i,j ∈ R>0: transport cost in $ per kg of product k sent from supply location si ∈ S to
demand location dj ∈ D during period p ∈ P.
cso

p,i,t ∈ R>0: electricity cost of source so ∈ SOi at supply location si ∈ S during time
step t ∈ py of any year of period p ∈ P, in millions of $ per MW.
ĉso

p,i,t ∈ R≥0: demand charge of source so ∈ SOi at supply location si ∈ S during time
step t ∈ py of any year of period p ∈ P in millions of $ per MW. Common for utility.
lbso

i ∈ R≥0: minimum annual energy usage in MWh required to be allowed to consume
energy from source so ∈ SOi at location si ∈ S. In practice, only relevant for ppa.

For each hardware type h ∈ H, we also need the set of concrete stock keeping units (skus)
in which h can be delivered, and the following hardware-specific properties:

Nh: number of available skus for h, from which we build index set C = 1..N c.
Cc ∈ R>0: capacity of sku c ∈ C in tonnes per day.
Kc

p: ownership cost in millions of $ for one sku c ∈ Ch starting from period p ∈ P.

M. Klapperstueck et al. 21:5

νh ∈ [0..1]: minimum production (turndown) rate proportional to installed capacity for h.
eh ∈ R≥0: electricity usage in MWh per tonne of production needed to run h.
ρh ∈ [0..1]: overhead to production and storage for h ∈ {comp, liqf, gas_str, liq_str}
required to compensate for boil-off.
µ ∈ [0..1]: maximum ramping rate of the liquefaction units.

3.2 Decision variables, constraints and objective function
Figure 2 shows the objective and constraints in model Alt, where blue is used for decision
variables and black for input data, split into the following six groups.

Network constraints. As hydrogen demand is assumed to stay constant throughout any
period p ∈ P, we assume the supply network will also stay constant throughout p. Thus,
we only have to decide once per period p which location si ∈ S supplies (part of) the
daily demand of location dj ∈ D for product k ∈ K. The network constraints encode these
assumptions. Variable xk

p,i,j represents the percentage of the demand dj of product k supplied
by location si in period p. Constraint (1) ensures that every product of every demand location
is serviced in its entirety by the supply locations. In order to satisfy the demand induced
by the network, production plants must be built at one or more of the supply locations.
Binary variable bk

p,i represents whether a plant for product k is built at location si at (or
before) period p, i.e., whether there is a plant in si producing k in period p. Constraint (2)
ensures bk

p,i = 1 whenever any xk
p,i > 0, thereby capturing the need for a plant. Currently,

hybrid facilities (producing both gas and liquid for offtake) are disallowed via constraint (3);
a requirement of our industry partner.

The objective, shown in expression (26), includes as its first component the sum of the
total cost of transporting the product across the links selected with non-zero weight x, where
transporting the entire demand (of Dk

p,j tonnes per day) of product k from si → dj costs T k
p,i,j

in period p.

Offtake constraints. During a period p ∈ P, the daily demand Dk
p,j of product k ∈ K at

every location dj ∈ D is constant. Thus, we denote as zk
p,i the offtake rate (in tonnes per

day) of any supply location si ∈ S for period p and product k, i.e., the rate at which the
plant at location si must produce k over the long term, using storage to buffer production
rate changes in the short term. Constraints (4) and (5) define zk

p,i for k = liq and k = gas,
respectively. Note that the offtake of gas zgas

p,i includes the material needed to produce liquid
from that gas through liquefaction, and not just the transport requirements of gas.

Plant capacity constraints. Producing zk
p,i of product k ∈ K requires a production plant at

location si ∈ S during period p ∈ P that is of suitable capacity. This can be modelled using
the following five constraints. First, let variable uc

p,i represent how many of sku c ∈ Ch of
hardware type h ∈ H are newly installed at the start of period p (and thus available for use
in p) in supply location si. The maximum (or peak) production capacity of the plant at
location si in period p is defined by constraint (6) as the sum of the skus capacities installed
up to p, and denoted by variable yh

p,i. By tying the capacity to the cumulative number of
newly installed units, we ensure plants can only grow in size.

Second, the plant must be big enough for its peak capacity to meet the offtake rate zk
p,i.

This is ensured by constraint (7), which adds the overhead factor ρh to the normal offtake to
take transportation boil-off into account. The boil-off factor is applied differently to different

CP 2023

21:6 Exploring Hydrogen Supply/Demand Networks

N
et

w
or

k
O

fft
ak

e
P

la
nt

ca
pa

ci
ty

P
ro

du
ct

io
n

St
or

ag
e

E
le

ct
ric

ity
us

ag
e

O
bj

.
∑
si∈S

xk
p,i,j = 1 ∀p, dj , k where Dk

p,j > 0 (1)

xk
p,i,j ≤ bk

p,i ∀p, si, dj , k (2)∑
k∈K

bk
p,i ≤ 1 ∀p, si (3)∑

dj ∈D

Dliq
p,jxliq

p,i,j = zliq
p,i ∀p, si (4)

zliq
p,i +

∑
dj ∈D

Dgas
p,j xgas

p,i,j = zgas
p,i ∀p, si (5)

∑
1≤p′≤p,

c∈Ch

Ccuc
p′,i = yh

p,i ∀p, si, h (6)

(1 + ρh)zh→k
p,i ≤ yh

p,i ∀p, si, h ∈ {elec, comp, liqf} (7)

zh→k
p,i ≥ νhyh

p,i ∀p, si, h ∈ {elec, comp, liqf} (8)

ρh→kzh→k
p,i + mh→kbh→k

p,i ≤ yh
p,i ∀p, si, h ∈ {gas_str, liq_str} (9)

mliqzliq
p,i ≤ yliq_str

p,i ∀p, si (10)

νhyh→k
p,i ≤ p̂h→k

p,i ∀p, si, h ∈ {elec, comp, liqf} (11)

p̂h→k
p,i + ph→k

p,i,t + ρhzh→k
p,i ≤ yh

p,i ∀p, si, t, h ∈ {elec, comp, liqf} (12)
pliq

p,i,t+1 − pliq
p,i,t ≤ µhi,ty

liqf
p,i ∀p, si, t (13)

pliq
p,i,t − pliq

p,i,t+1 ≤ µhi,ty
liqf
p,i ∀p, si, t (14)

pliq
p,i,0 − pliq

p,i,|Ti| ≤ µhi,ty
liqf
p,i ∀p, si, t (15)

pliq
p,i,|Ti| − pliq

p,i,0 ≤ µhi,ty
liqf
p,i ∀p, si, t (16)

sh→k
p,i,t ≤ yh

p,i ∀p, si, t, h ∈ {gas_str, liq_str} (17)

sgas
p,i,t+1 = sgas

p,i,t + hi,t

24
(
p̂gas

p,i + pgas
p,i,t − p̂liq

p,i −
pliq

p,i,t + pliq
p,i,t+1

2 − zgas
p,i + zliq

p,i

)
∀p, i, t (18)

sliq
p,i,t+1 = sliq

p,i,t + hi,t

24

(
p̂liq

p,i +
pliq

p,i,t + pliq
p,i,t+1

2 − zliq
p,i

)
∀p, i, t (19)

sk
p,i,1 = sk

p,i,|Ti| = 0 ∀p, si, k (20)
24ep,i,t = eelec(p̂gas

p,i + pgas
p,i,t) + ecomp(p̂gas

p,i + pgas
p,i,t + ρgaszgas

p,i) +

eliqf
(

p̂liq
p,i +

pliq
p,i,t + pliq

p,i,t+1

2 + ρliqzliq
p,i

)
∀p, i, t (21)∑

so∈SO

eso
p,i,t = ep,i,t ∀p, si, t (22)

ĉso
p,i,te

so
p,i,t ≤ êso

p,i,m[t] ∀p, si, t, so (23)(∑
t∈Ti

(hi,te
so
p,i,t) > 0

)
=⇒

(∑
t∈Ti

(hi,te
so
p,i,t) ≥ lbso

i

)
∀p, si, so (24)

uc
p,i ∈ N0; bk

p,i ∈ {0, 1}; 0 ≤ xk
p,i,j ≤ 1; y, z, p, s, e ∈ R≥0 (25)

min
∑

p,i,j,k

(
T k

p,i,jxk
p,i,j

)
+

∑
p,i,c

(
Kc

puc
p,i

)
+

∑
p,i,t,so

(
cso

p,i,te
so
p,i,t

)
+

∑
p,i,m,so

(
êso

p,i,m

)
(26)

Figure 2 Objective and constraints for the Alt model of the HyNetOS decision system.

M. Klapperstueck et al. 21:7

types of hardware h ∈ H because boil-off comes in uncompressed gas form. Thus, it has to
pass through the compressor and the liquefactor but not the electrolyser. We use h → k to
indicate a mapping from hardware to product. For example, since the electrolyser h = elec
produces k = gas, the electrolyser must be scaled to meet gas demand zh→k

p,i . Third, the
plant should not be so big that running at minimum capacity yields more product on average
than is demanded. Constraint (8) captures this requirement, where the minimum production
rate depends on the minimum turndown capabilities νh of the hardware. Finally, we impose
two kinds of minimum storage size constraints. The first constraint ensures two things: 1)
that every plant has at least some gas storage for buffering boil-off during transport, which
is captured as a fraction ρh→k of daily production rate zk

p,i, and 2) that every plant meets a
global minimum storage amount mh→k if it is built (bh→k

p,i) (constraint (9)).
The second constraint ensures enough liquid storage is built to sustain liquid hydrogen

offtake for a minimum number of days mliq (constraint (10)).
The construction of any sku c ∈ Ch of hardware h ∈ H incurs CAPEX and OPEX costs.

These are aggregated into the period-specific component cost Kc
p (in millions of $ per unit)

and accumulated via the number of skus newly installed in p (given by uc
p,i), yielding the

objective term Kc
puc

p,i. The sum of these objective terms forms the second component of the
objective, shown in expression (26).

Production constraints. For the plant operation, we model the average operating costs
through a representative year per period. This means we create a production schedule for
one year in each (constant demand) period, which then repeats for however many years the
period is long. The production rate of hardware h ∈ H for product k ∈ K at supply location
si ∈ S during period p ∈ P is allowed to change during each of the time steps t ∈ Ti defined
for that location. The production rate is measured in tonnes per day and modelled via two
terms: p̂h→k

p,i + ph→k
p,i,t . Here, p̂h→k is the constant baseline production amount, and ph→k

p,i,t

the component that is variable in time step t. Constraint (11) ensures the baseline exceeds
the minimum turndown production rate. Constraint (12) ensures the flexible component
never exceeds the installed capacity, while also keeping sufficient headroom for the boil-off
fraction ρ that has to be re-compressed and re-liquefied. Constraints (13) and (14) deal
with h = liqf having a slow ramping speed. They constrain the ramp up and down rate,
respectively, between two consecutive production rates (where the consecutive steps wrap
around the year, via constraints (15) and (16)), such that the change in rate does not exceed
the ramping capability µ of liquefaction (0.1 of total capacity, i.e., 10%) by the number of
hours hi,t for which the ramping is maintained.

Storage constraints. Variable production is buffered via storage: overproduction causes
the storage level to increase, while underproduction causes the constant offtake to drain the
storage. At every time step t ∈ Ti of supply location si ∈ S in period p ∈ P, we track the
storage level of product k ∈ K in tonnes via variable sk

p,i,t. Constraint (17) ensures we never
store more than the plants’ installed storage capacity. Changes in storage levels are captured
by constraints (18) for k = gas, and (19) for k = liq. In both, the storage in t+1 is an offset
from the storage in t, plus hourly production (baseline plus flexible), minus offtake (either
by the liquefaction unit, or by the demand locations constant offtake factor). In addition, we
anchor the storage to a baseline with a wrap-around constraint in (20). Adding a baseline
of 0 at each year’s end removes some of the symmetries in storage schedule solutions and
ensures the storage level is implementable across period changes.

CP 2023

21:8 Exploring Hydrogen Supply/Demand Networks

Electricity cost constraints. The last set of constraints connects the daily hydrogen produc-
tion to the electricity cost required to produce it. To this end, at every time step t ∈ Ti for the
plant of supply location si ∈ S in period p ∈ P , we represent the power consumption in MW
of the plant via variable ep,i,t. This variable is defined by constraint (21) as the sum of the
power consumed by the plant’s hardware h ∈ {elec, comp, liqf} to produce the required
hydrogen in t of p, i.e., as the electricity usage eh multiplied by the production rate at that
time which, as before, is formed by a baseline p̂k

p,i,t component, plus a flexible and possibly a
boiloff one. Since our production rates are daily, we downscale the power consumption by
factor 24 to the per-hour rate. Constraint (22) distributes the power consumption among
sources via variables eso

p,i,t, which represent the power consumed from each electricity source
so ∈ SO available at that location. These variables are used to derive the cost of this power,
which is accumulated in the third sum of the objective. Constraint (23) defines variable
êso

p,i,m[t] representing the monthly demand charge for the month m[t] ∈ {1, . . . , 12} where
time step t falls. It is the maximum demand charge (cost cso

p,i,t of each MW consumed eso
p,i,t)

that can be obtained due to the power consumed at each t of that month. This accounts for
the last sum of the objective. Finally, constraint (24) ensures electricity source so ∈ SO is
selected only if its minimum annual energy usage lbso

i is met.

3.3 Effective modelling and solving in practice

One of the primary benefits of using a Constraint Modelling Language such as MiniZinc is
that it takes care of the details of mapping models to solvers efficiently (e.g., linearisation).
This is important because writing good (i.e. efficiently solvable) models can otherwise be
a process of significant trial-and-error, as much an art form as a science. While there are
important strategies for good modelling [22], the “last mile” of good practice involves rules
of thumb, such as minimizing the number of integer variables in favour of floats, or avoiding
equalities if possible. MiniZinc takes care of these during compilation, allowing the modeller
to focus on semantic changes. Nevertheless, because of its high level nature, it is equally
well-suited to rapid prototyping of model changes. This is why for our industry partner’s
quantitative evaluation of the system, we were able to use MiniZinc to try to find model
improvements that reduce the total runtime. To do this we took a reference implementation
of the model and evaluated the runtime of several model changes. The progression of these
changes is shown as a box plot in Figure 3 and discussed below.

1. Split power equality. The power equality (21) involves variables eso
p,i,t that are directly

minimized in the objective. As such, it is tempting to remove the equality constraint by
replacing it with ≥, such that the model will always demand at least as much power as
needed to produce the hydrogen. However, this change allows overconsumption of power to
meet the PPA minimum requirement (24). Therefore, we split the power equality constraint
into a greater than and a conditionally applied less than part, which is only applied if the
source has a minimum usage requirement through a conditional constraint:
forall (i) if (min_use[i]) then

∑
so∈SO eso

p,i,t = ep,i,t else
∑

so∈SO eso
p,i,t ≥ ep,i,t endif;

2. Tighter constraints. Plant production boolean bk
p,i is tied to many floating point supply

indicator variables. Instead of defining them separately, we can define the state activity
indicator with a single constraint, which will be active if any demand is supplied, i.e.:∑

dj∈D xk
p,i,j ≤ |D| bk

p,i, ∀p, si, k

M. Klapperstueck et al. 21:9

159.7 163.5
152.6 153.1 151.1

141.8 1594.9 1601.6
1667.3

1580.9 1594.2

Gurobi HiGHS

Original 1 2 3 2+3 Scale Original 1 2 3 2+3

1500

2000

100

150

200

250

So
lv

e
tim

e
(s

)

Figure 3 Response of model solve time as a result of model changes; mean time annotated.

3. Direct objective formulation. In our reference implementation, the objective terms are
captured by intermediate variables for each of the sums that make up the objective. We can
rewrite the objective directly in terms of the base variables, allowing the compiler to group
terms together, and furthermore helping the MIP solver to prove optimality faster.

We evaluated the time-to-optimality with each model change over 10 runs with different
seeds for the solver, to average out effects of solver-internal randomized branching choices
and heuristics, and capture statistically meaningful averages on the total runtime. We used
a Linux machine with AMD Ryzen 9 3950X 16-Core Processor (3.5-4.7 GHz) and the input
data file A shown in Table 1, which has 9 supply locations, 100 demand locations, 3 skus
per hardware type, and an average period length of 642 tiers (min 365, max 1338). Figure 3
tracks the distributions of total runtime as the changes are implemented, for the Gurobi
9.5.1 and HiGHS 1.5.0 [8] solvers. We also evaluated the combination of 2 and 3 which
individually seemed to produce improvements. Nevertheless, the combination of compilation
and pre-solving means that most changes have no significant effect. The biggest improvement
comes from adjusting how Gurobi scales the objective terms, by changing the ScaleFlag
parameter. We believe this is due to the nature of the hydrogen facility location problem,
where many candidate integer assignments are inherently feasible: we can always redistribute
the supply network and adjust production rates. The optimisation is thus primarily guided
by the (large) objective. We hypothesise that a core-guided search [6], which always assumes
constraints can be satisfied and iteratively tightens the model upon detecting an infeasibility,
would be a better strategy to solve this kind of model. However, due to the prevalence of
floating point data, no core-guided solver available to us can be applied to this problem.

4 From modellers to users

To integrate our models into a useful decision system we extended them with functionality
that its users (engineers and business experts) could access via the system’s user interface
(see Section 5). This includes minor changes to allow many decisions to be set to true/false
by the user to explore different scenarios, as well as the more significant ones discussed here.

4.1 Run-time versus accuracy – approximations and warm-starts

The large number of variables involved in the hourly operational decisions, can make solving
our models to optimality too time consuming for the user. Further, approximate solutions
may be sufficient whenever users are interactively exploring what-if scenarios. Our system
gives users several ways to control the time versus optimality trade-off, by means of the
following two approximation options and warm-start strategy.

CP 2023

21:10 Exploring Hydrogen Supply/Demand Networks

Constraint approximation – annual constant production. This approximation (referred
to as App) allows each plant to run at a constant daily production rate sufficient to exactly
meet the daily demand that the plant supplies. This means no intra-day or seasonal storage
is required and plants can simply build the minimum storage capacity. As a result, in this
version of the model all the production and storage constraints (11–20) are removed, and the
electricity usage constraints are reformulated to operate on the total annual energy demand
under a constant production. As such, the (hourly) energy cost coefficients cso

p,i,t are rescaled
to the total annual cost for a given offtake rate in tonnes per day:

cso
p,i = (ee + ec + el)

∑
t∈Ti

(
cso

p,i,t · hi,t

24

)
Data approximation – price-tier grouping. In practice, many hours in a year often have
identical prices for electricity. Since the only driver for operational decisions is a reduction
in electricity price, we can group consecutive time steps with equal price. We use the utility
market to inform the grouping operation, as utility prices often stay constant for hours, e.g.
a daytime tariff and a cheaper night-time tariff from 11pm to 6am. For the other markets
in the same compressed time step, we take the median price as the constant price. This
approximation (referred to as Tie) reduces the cardinality τ of the set Ti, thereby significantly
reducing the total number of floating point variables in the instance (see Table 1).

Warm-starting strategy. Both App and Tie approximations are valid, i.e., if their solutions
are fed to the non-approximated model (referred to as Exa and Hou, respectively) they also
yield a solution: we can always set the production schedule at a finer time granularity to be
equal to the constant-production (rate) assumptions at the coarser level. In addition, they
can be combined to further speed up the search at the cost of accuracy. This observation
informs our three-stage warm-starting strategy:
1. Solve using an approximate version of the model (i.e., App-Hou or App-Tie) to optimality;
2. Assign the integer decisions of that solution to the equivalent variables using an exact

version of the model (i.e., Exa-Hou or Exa-Tie, resp) and resolve;
3. Warm-start that last used model with the solution from step 2 and resolve to optimality.
The final step arrives at the same objective as a traditional execution (referred to as cold-start)
using the same model; however, it will find a good quality initial solution much faster.

Table 1 Size, solving time and objective value of the instances obtained with four data files.

Input data size Instance size for Gurobi solver
File |S| |D| N M t/day Model Float Int Cons. Time(s) Ratio
a 9 100 9 18 [40] Exa-Hou 597.7 k 144 835.6 k 5114.85 1.000

Exa-Tie 96.6 k 144 65.3 k 34.96 1.020
App-Hou 2.0 k 144 3.4 k 0.22 1.055
App-Tie 2.0 k 144 3.4 k 0.19 1.068

b 7 100 9 14 [278] Exa-Hou 457.1 k 112 642.2 k 20982.06 1.000
Exa-Tie 74.7 k 112 56.5 k 38.06 1.008
App-Hou 1.6 k 112 2.7 k 0.19 1.017
App-Tie 1.6 k 112 2.7 k 0.17 1.016

c 9 100 9 18 [278] Exa-Hou 597.7 k 144 835.6 k 22605.64 1.000
Exa-Tie 96.6 k 144 65.3 k 84.38 1.009
App-Hou 2.0 k 144 3.4 k 0.31 1.017
App-Tie 2.0 k 144 3.4 k 0.31 1.018

d 9 709 9 18 [283, Exa-Hou 1217.4 k 360 1706.7 k — —
293] Exa-Tie 215.2 k 360 166.0 k 1309.47 > 1.016

App-Hou 26.1 k 360 42.2 k 7.81 > 1.027
App-Tie 26.1 k 360 42.2 k 5.37 > 1.027

M. Klapperstueck et al. 21:11

Instance A Instance B Instance C Instance D
O

ri
A

lt

10−1 100 101 102 103 10−1 100 101 102 103 10−1 100 101 102 103 10−1 100 101 102 103

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

Runtime (log s)

In
cu

m
be

nt
 (r

at
io

)

Method

Warm−start

Cold−start

Figure 4 Quality of incumbent solution (ratio over optimum) as a function of log runtime obtained
by the warm- and cold-start strategies on each instance. Stage solutions are annotated with points.

Experimental snapshot. Table 1 shows a snapshot of the trade-offs obtained by the above
methods instantiated with four data files (A-D). For each file, it shows the number of
supply locations |S|; demand locations |D|; skus over all hardware types, N =

∑
h Nh;

markets M =
∑

i |SOi|, and total demand per period in tonnes/day. It then shows the
number (in thousands) of floating-point variables, integer variables, and constraints in the
instance resulting from compiling each data file with either an Exa-Hou, Exa-Tie, App-Hou
or App-Tie model for the Gurobi solver. The last two columns show the time (where –
indicates a timeout) to find an optimal solution and prove optimality when executing each
instance in cold-start mode using MiniZinc 2.7.6 and Gurobi 10.0.0.2, and the ratio between
the best objective value found using the most accurate Exa-Hou model and the others.

Figure 4 compares the improvement of feasible solutions over time obtained with a
cold-start run of the Exa-Hou model instantiated with the data files of Table 1, and with our
warm-start strategy, using MiniZinc 2.7.6 and Gurobi 10.0.0.2. Typically, by the time the
cold-start finds its first feasible solution (15+ minutes), the warm-start is in its third stage
and up to 5% gap to optimality.

4.2 Diversity of solutions
As is common in optimisation, every instance of our problem has many optimal (and even
more close-to-optimal) solutions. It is thus useful for decision-makers to obtain a number
of close-to-optimal alternative solutions that are meaningfully different in terms of the
components being optimised (e.g., transport vs electricity cost) or some major decisions
(e.g., plants locations or capacities). Ingmar et al. [11] proposed strategies to find N diverse
solutions of a model instance where the model includes the required user-defined diversity
measures. One of these strategies iterates at most N − 1 times from an optimal solution
looking for a new solution that is as close to optimality as desired by the user, and is
maximally diverse w.r.t. all previously found solutions.

This strategy is now implemented1 in MiniZinc and used in our system by simply
importing from our models a set of diversity measures our users can choose from. The
measure most used currently is the Manhattan distance between the vectors of the Boolean
variables bk

p,i indicating there is a plant at supply location i ∈ S in period p ∈ P. Figures 5
and 7(D) show the results of one of the implemented diversity metrics, i.e. maximum
diverse set of supply locations. To highlight the differences between diverse solutions our

1 It will be released as part of the MiniZinc Python package [3] before the end of the year.

CP 2023

21:12 Exploring Hydrogen Supply/Demand Networks

system allows users to compare solutions in terms of their supply/demand network, the
configuration of the plants they selected, their cost components, etc. Such comparisons have
already been useful in identifying, for example, supply locations that appear in all optimal
and close-to-optimal solutions due to their favourable cost coefficients (e.g. green location
in Figure 5) and are thus prime candidates for construction.

Figure 5 Three maximally diverse solutions within a maximum optimality gap of 0.02, using as
distance measure the Manhattan distance of the vector of supply locations built by each solution.

4.3 Robustness against plant shutdown
In practice, optimal solutions may lack robustness against uncertain events. There are many
sources of uncertainty in our problem, from changes to input data (e.g., costs, demand or
hardware technology) to loss of production due to plant shutdowns. Our system is not yet
required to deal with the former, as our users are still determining how to build reliable
future scenarios and/or probability distributions. It can however be used to find solutions
that, in the event of any plant failure, guarantee the supply of a user-defined minimum
percentage of the total demand of the network (denoted as new parameter gs ∈ [0..1], set to
0 as default). This allows users to compare optimal but non-robust solutions against robust
but non-optimal ones. We achieved this by adding constraint (27) to the models to ensure
that for every period p ∈ P, supply location si ∈ S, and product k ∈ K, the user-defined
percentage gs of the total demand

∑
dj∈D Dk

p,j for product k in period p is covered by the
sum of the peak production capacity of the plants in other supply locations si′ ∈ S \ {si}.

gs
∑

dj∈D

Dk
p,j ≤

∑
si′ ∈S\{si}

yh
p,i′ ∀p, si, k, h ∈ {elec, comp, liqf} (27)

5 User’s view

Our system (shown in Figure 6) connects two main components – optimisation and visualisa-
tion – via an application program interface (API). The optimisation calls MiniZinc with
the model, input data and configuration to find and return its solutions. The visualisation
calls the optimisation via the API and visualises the returned solutions on an interactive
web-based dashboard application, referred to as the User Interface (UI). It was implemented
using Plotly Dash [18], as requested by our industry partner.

Users experience our system mostly via its powerful UI, part of which appears in Figure 7.
The UI allows domain-experts and non-expert users (e.g., decision makers) to load different
input data, interactively turn some model constraints on/off, obtain solutions, compare
them and explore them in detail. This not only helps them make decisions but also gain
confidence and trust in the system’s output. In addition, domain-experts and external tools
can access the system’s functionality independently of the UI via the API and the command
line interface we implemented in Python. This allows them to automate the solving of
instances, i.e. explore many scenarios with different sets of parameters.

M. Klapperstueck et al. 21:13

Figure 6 The two components integrated by our system and connected by an API.

5.1 Configuring an execution run
As described above, our system supports a wide range of execution modes (e.g., warm-starts,
diversity, and robustness), which users can control via the UI. Fig.7(A) shows one of the
panes provided for this. In it, users can select a pre-configured scenario (list of supply and
demand locations, their demand, and electricity markets) or upload a new one; modify the
scenario by turning on/off the allowed markets (Utility, PPA, Wholesale); select a model
profile (e.g., Ori-Exa-Tie) from a list of available ones; determine whether to run in diversity,
robustness or traditional mode; and modify the default configuration values for each of those.
In addition, users can select one of the available solvers; set a timeout and number of threads;
and set various solver specific parameters. Once users finish configuring the run, solving can
be triggered by pressing a button. If solving time is expected to be long, users can leave
the dashboard and load the solution later using the session manager, which keeps track of
each execution and reports whether a solution was found, no solution was found due to
infeasibility, or the solver is still running.

5.2 Visualising and interacting with solutions
The UI displays solutions via the two tabs shown in Figures 7(B) and (C). Figure 7(B)
focuses on overview information and the supply/demand network, for which it combines
different sub-windows (or cards). Figure 7(C) focuses on the operational parts of one plant.

Overview and Network Tab. This tab (Figure 7(B)) comprises cards (frames) that contain
controller and visualisation elements. With the controller element a specific solution from a
set of multiple solutions (for example, solutions from diversity, robustness, or different set of
model parameters) and time period can be loaded and visualised. Below the controller a
stacked barchart summarises the $/kg cost (i.e. each cost component) for all active supply
locations for all periods. The map in the centre prominently shows the supply/demand
network, with markers representing supply locations and coloured circles for each demand
location, with the colour matching the supply location they are linked to. For each supply
location a radial chart with 4 segments (north, west, south east) shows the amount of
hydrogen delivery for each direction, and an area overlay highlights the covered area using
semi-transparent rectangles drawn between each linked supply/demand locations, indicating
compactness, spread or amount of overlap of supply areas. Supply locations can be selected
and its details viewed in a separate card. To the right of the map it shows details about the
delivery to each demand location; below it shows the plant configuration represented as a
flow diagram with details about installed hardware capacity and number of skus, including
a stacked bar-chart for each type of hardware showing utilisation to installed capacity. For a

CP 2023

21:14 Exploring Hydrogen Supply/Demand Networks

Figure 7 UI’s four main tabs: A) input tab, which allows detailed configuration of the model
and data before execution; B) supply network as an interactive map with details of selected supply
location; C) operational details of each supply location; and D) comparison view of multiple solutions.

selected supply location, interactive elements allow changes to maximum and minimum daily
production amount, disabling that particular supply location, or force a non-active location
to be active. A re-solve of an instance containing the new data can then be triggered.

Operation Tab. For a supply location selected from the map card, this tab (Figure 7(C))
shows further details with focus on the operation side. The two cards in the middle show for
each hour of the year (8760 hours) component usage and gas storage levels on the left, and
electricity source utilisation (Utility, PPA, Wholesale) on the right. Other cards show the
overall hydrolyser utilisation and waterfall charts of the investment costs. On the top left
the same controller card is shown to select specific solutions and time periods.

5.3 Comparing solutions

Fig 7(D) shows part of the solution comparison pane for three solutions (one per column).
For each solution, the pane shows a summary of the configuration of the run that created it, a
breakdown of its objective value, and many other useful information, including the two kinds
shown in the figure: a map of the plants it built and their hardware as a box-matrix plot
(one plant per row). Each box represents one sku of a particular type of hardware (identified
by its colour) and capacity (identified by its size). This enables easy visual comparison of
significant changes in plant locations and in their associated hardware. If a location appears
in all solutions it is highlighted with a light green colour. Users can use the loading manager
to compare any set of solutions obtained, for example, by selecting different model profiles,
available sources, and diversity definitions; by modifying the robustness parameter, or by
forcing a supply location to produce a given product.

M. Klapperstueck et al. 21:15

5.4 Detecting and resolving conflict
It is not uncommon for users to create infeasible instances while exploring solutions by,
for example, setting the minimum daily production for a plant to a higher value than its
maximum production. This is a significant roadblock for the usability of any optimisation
system. To address it, we use the conflict resolution method of [17], which allows users to
obtain a visual representation of the conflicts that is easy to understand, select which of the
conflicts to relax for a solution to be found, and obtain a solution to this relaxed instance
that quantifies the minimum changes needed to restore feasibility for the original instance.

To implement this method the model needs to be changed to a) provide information
about any constraint that can cause conflict, and b) soften these constraints to quantify the
minimum changes needed. Both can be achieved in MiniZinc: a) by adding an annotation
to each constraint that gives meaningful names to the constraint and its objects, and that
tracks its values; b) by adding a slack variable to each constraint that quantifies the minimum
changes (see [17] for details). The method also requires computing Minimum Unsatisfiable
Sets (MUSes), where a MUS is a set of infeasible constraints in the instance such that removal
of any one of the constraints makes the set feasible, and/or Minimum Correction Sets (MCS),
where an MCS is a minimum set of constraints that if eliminated from the infeasible instance
makes it feasible. Note that any minimum set that intersects all MUSes is an MCS. We
have currently implemented one of the pathways proposed in [17] which, upon failure, uses
FindMUS (a MUS enumerator available in MiniZinc) to obtain all MUSes, shows them
to the user in different formats, and allows them to manually select an MCS, thus ensuring
there is a solution if the constraints in the MCS are relaxed. Currently, users must directly
modify these constraints to obtain a feasible instance. We are in the process of implementing
the automatic relaxation and resolution process of [17].

Figure 8 shows two of the formats proposed in [17] to show MUSes, which we have
implemented. The pane on the left shows the MUS-graph, a compact way of showing the
conflicting constraints (left of graph), the MUSes they appear in (centre), and the objects
they involve (right). Each circle on the left of the graph represents one conflicting constraint,
whose colour connects it to the name shown in the legend on the top right of the graph. For
the example shown in the figure these include minimum production and maximum production.
Constraints in the same box appear in the same MUSes. The links connect each group
of constraints to the MUSes they appear in, and each MUS to the objects in any of its
constraints, which in this case are particular supply and demand locations. If users select a
constraint on the left of the graph, the constraint and all the MUSes in which it appears
are highlighted with a red frame. Users know they have selected an MCS if the selected
constraints highlight all MUSes. A geo-network view of the conflicts is given by showing them
on a map (Figure 8 right) of the supply/ demand locations. We overlay conflicts specific to a
location with a frame in the colour of the conflict (e.g., light blue to show that this location
is involved in a maximum production conflict), and with a coloured link for those involving
a supply and demand location. Conflict overlays disappear when any of its constraints is
selected in the MUS-graph, thus showing no conflict overlays once an MCS is selected.

6 Literature review

The problem of hydrogen production facility location and supply chain optimisation is widely
studied; see Riera, Lima and Knio [16] for a recent survey of the field, both in terms of
modelling the problem itself, and of optimisation strategies used. Our key takeaway from this
survey is that there are myriads of different contexts in which to study the problem, from the

CP 2023

21:16 Exploring Hydrogen Supply/Demand Networks

Figure 8 Two conflict visualisations: MUS-graph on the left, Geo-network on the right.

“micro” perspective of a single plant, to the “macro” decisions around the energy delivery
system for entire countries (including hydrogen as one of many types of renewable fuels).
As such, it is difficult to identify any two papers that study exactly the same mathematical
model (e.g., for optimisation benchmarking purposes).

Nevertheless, several papers stand out as closely related to the problem studied here:
Ingason, Ingolfsson and Jensson [10] study a electrolysis-based facility location problem for
Iceland, although they ignore the operational scheduling of the plant thanks to the assumption
of constant-rate renewable sources of electricity (hydro and geothermal). Likewise, Štádlerová
et al. [20] study a facility location problem in Norway including uncertainty in the demand
and operational considerations such as minimum turn-down rates, although not at an hourly
resolution. Demirhan et al. [4] study a multi-fuel, multi-chemical (hydrogen, methanol and
ammonia) facility location problem with hourly resolution on the operation of the production
plant to capture variability in renewable energy generation from wind and solar. Finally,
Kim and Kim [13] also study a joint facility location and hourly operation problem for green
hydrogen, although they consider only one time period for facility location without planning
the facility’s expansion pathway. All these papers, however, focus mostly on the modelling
expert’s view and ignore the domain expert’s one.

7 Conclusions and Future Work

This paper describes a Hydrogen Network Optimisation System (HyNetOS) designed to
support energy companies in solving the complex combinatorial optimisation problem of
producing and supplying hydrogen at minimum cost. HyNetOS integrates two supply network
and facility operation models implemented in the high-level constraint modelling language
MiniZinc, which natively supplies a range of tools to support the human decision-making
process, such as finding a diverse sets of near-optimal solutions to present possible alternatives,
and conflict resolution technology to explain infeasible instances. Further, HyNetOS supports
our industry partner’s decision-making process by means of a powerful and interactive user
interface that allows them to view, change, and compare solutions, and rapidly iterate
on “what-if” scenarios with efficiently solvable approximate versions of our models. To
increase confidence in the quality of the model, we applied a strategy of redundancy and
rapid prototyping of model changes to identify the most efficient formulation, and provide
robustness measures, to produce resilient solutions against hydrogen production failures.

M. Klapperstueck et al. 21:17

The HyNetOS system was quantitatively and qualitatively evaluated against an alternative
implementation using a direct modelling approach. It was selected as the preferred system
based mainly on its significantly higher scores in qualitative criteria such as maintainability,
extensibility, user interface, code quality and technology stack, as well as its additional
features (diversity and robustness).

While deployed, the system is in constant evolution with many avenues for future work.
One of the most pressing and complex is extending the system to produce robust solutions
against uncertainties in electricity prices and availability of resources using techniques
such as stochastic programming [19], sensitivity analysis [2] and Predict+Optimise [14].
Others include the integration of extra functionality, such as the production of ammonia
or the consideration of carbon intensity, the integration of a simulation system for detailed
operational modelling on a high resolution time scale, and the integration of a plant layout
optimisation system such as [1] to generate optimal hydrogen facility layouts.

References
1 Gleb Belov, Tobias Czauderna, Maria Garcia de la Banda, Matthias Klapperstueck, Ilankaikone

Senthooran, Mitch Smith, Michael Wybrow, and Mark Wallace. Process Plant Layout
Optimization: Equipment Allocation. In John Hooker, editor, Principles and Practice of
Constraint Programming, pages 473–489. Springer, 2018. doi:10.1007/978-3-319-98334-9_
31.

2 M. W. Dawande and J. N. Hooker. Inference-based sensitivity analysis for mixed integer/linear
programming. Operations Research, 48(4):505–660, 2000. doi:10.1287/opre.48.4.623.12420.

3 Jip J. Dekker. MiniZinc Python, 2023. URL: https://minizinc-python.readthedocs.io/
en/latest/.

4 C. Doga Demirhan, William W. Tso, Joseph B. Powell, and Efstratios N. Pistikopoulos. A
multi-scale energy systems engineering approach towards integrated multi-product network
optimization. Applied Energy, 281:116020, 2021. doi:10.1016/j.apenergy.2020.116020.

5 Ibrahim Dincer and Canan Acar. Review and evaluation of hydrogen production methods for
better sustainability. International Journal of Hydrogen Energy, 40(34):11094–11111, 2015.

6 Graeme Gange, Jeremias Berg, Emir Demirović, and Peter J. Stuckey. Core-guided and
core-boosted search for CP. In Emmanuel Hebrard and Nysret Musliu, editors, Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 205–221,
Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-58942-4_14.

7 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

8 Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Mathematical
Programming Computation, 10(1):119–142, March 2018. doi:10.1007/s12532-017-0130-5.

9 IEA. Net zero by 2050. Technical report, IEA, Paris, May 2021. URL: https://www.iea.
org/reports/net-zero-by-2050.

10 Helgi Thor Ingason, Hjalti Pall Ingolfsson, and Pall Jensson. Optimizing site selection for
hydrogen production in Iceland. International Journal of Hydrogen Energy, 33(14):3632–3643,
2008. TMS07: Symposium on Materials in Clean Power Systems. doi:10.1016/j.ijhydene.
2008.04.046.

11 Linnea Ingmar, Maria Garcia de la Banda, Peter J Stuckey, and Guido Tack. Modelling
diversity of solutions. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
1528–1535, 2020.

12 IPCC. Climate change 2022: Impacts, adaptation, and vulnerability. Technical report,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022. Contribution of
Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change. doi:10.1017/9781009325844.

CP 2023

https://doi.org/10.1007/978-3-319-98334-9_31
https://doi.org/10.1007/978-3-319-98334-9_31
https://doi.org/10.1287/opre.48.4.623.12420
https://minizinc-python.readthedocs.io/en/latest/
https://minizinc-python.readthedocs.io/en/latest/
https://doi.org/10.1016/j.apenergy.2020.116020
https://doi.org/10.1007/978-3-030-58942-4_14
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/s12532-017-0130-5
https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
https://doi.org/10.1016/j.ijhydene.2008.04.046
https://doi.org/10.1016/j.ijhydene.2008.04.046
https://doi.org/10.1017/9781009325844

21:18 Exploring Hydrogen Supply/Demand Networks

13 Minsoo Kim and Jiyong Kim. Optimization model for the design and analysis of an
integrated renewable hydrogen supply (IRHS) system: Application to Korea’s hydrogen
economy. International Journal of Hydrogen Energy, 41(38):16613–16626, 2016. doi:
10.1016/j.ijhydene.2016.07.079.

14 Jayanta Mandi, Emir Demiroviç, Peter J. Stuckey, and Tias Guns. Smart predict-and-optimize
for hard combinatorial optimization problems. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 1603–1610, 2020. doi:10.1609/aaai.v34i02.5521.

15 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and
Guido Tack. MiniZinc: Towards a standard CP modelling language. In Principles and Practice
of Constraint Programming–CP 2007: 13th International Conference, CP 2007, Providence,
RI, USA, September 23-27, 2007. Proceedings 13, pages 529–543. Springer, 2007.

16 Jefferson A. Riera, Ricardo M. Lima, and Omar M. Knio. A review of hydrogen production
and supply chain modeling and optimization. International Journal of Hydrogen Energy,
48(37):13731–13755, 2023. doi:10.1016/j.ijhydene.2022.12.242.

17 Ilankaikone Senthooran, Matthias Klapperstueck, Gleb Belov, Tobias Czauderna, Kevin
Leo, Mark Wallace, Michael Wybrow, and Maria Garcia de la Banda. Human-Centred
Feasibility Restoration in Practice. Constraints, 2023. (in publication). doi:10.1007/
s10601-023-09344-5.

18 Shammamah Hossain. Visualization of Bioinformatics Data with Dash Bio. In Chris Calloway,
David Lippa, Dillon Niederhut, and David Shupe, editors, Proceedings of the 18th Python in
Science Conference, pages 126–133, 2019. doi:10.25080/Majora-7ddc1dd1-012.

19 Lawrence V. Snyder. Facility location under uncertainty: a review. IIE Transactions, 38(7):547–
564, 2006. doi:10.1080/07408170500216480.

20 Šárka Štádlerová, Trygve Magnus Aglen, Andreas Hofstad, and Peter Schütz. Locating
hydrogen production in Norway under uncertainty. In Jesica de Armas, Helena Ramalhinho,
and Stefan Voß, editors, Computational Logistics, pages 306–321, Cham, 2022. Springer
International Publishing. doi:10.1007/978-3-031-16579-5_21.

21 Mark van den Brand and Jan Friso Groote. Software engineering: Redundancy is key. Science
of Computer Programming, 97:75–81, 2015. Special Issue on New Ideas and Emerging Results
in Understanding Software. doi:10.1016/j.scico.2013.11.020.

22 H. Paul Williams. Model building in mathematical programming. John Wiley & Sons, 5th
edition, 2013.

https://doi.org/10.1016/j.ijhydene.2016.07.079
https://doi.org/10.1016/j.ijhydene.2016.07.079
https://doi.org/10.1609/aaai.v34i02.5521
https://doi.org/10.1016/j.ijhydene.2022.12.242
https://doi.org/10.1007/s10601-023-09344-5
https://doi.org/10.1007/s10601-023-09344-5
https://doi.org/10.25080/Majora-7ddc1dd1-012
https://doi.org/10.1080/07408170500216480
https://doi.org/10.1007/978-3-031-16579-5_21
https://doi.org/10.1016/j.scico.2013.11.020

	1 Introduction
	2 Facility location and operation problem overview
	3 Modeller's view
	3.1 Input data
	3.2 Decision variables, constraints and objective function
	3.3 Effective modelling and solving in practice

	4 From modellers to users
	4.1 Run-time versus accuracy – approximations and warm-starts
	4.2 Diversity of solutions
	4.3 Robustness against plant shutdown

	5 User's view
	5.1 Configuring an execution run
	5.2 Visualising and interacting with solutions
	5.3 Comparing solutions
	5.4 Detecting and resolving conflict

	6 Literature review
	7 Conclusions and Future Work

