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Abstract
Large neighborhood search (LNS) is an algorithmic framework that removes a part of a solution
and performs search in the induced search space to find a better solution. While LNS shows strong
performance in constraint programming, little work has combined LNS with state space search. We
propose large neighborhood beam search (LNBS), a combination of LNS and state space search.
Given a solution path, LNBS removes a partial path between two states and then performs beam
search to find a better partial path. We apply LNBS to domain-independent dynamic programming
(DIDP), a recently proposed generic framework for combinatorial optimization based on dynamic
programming. We empirically show that LNBS finds better quality solutions than a state-of-the-art
DIDP solver in five out of nine benchmark problem types with a total of 8570 problem instances. In
particular, LNBS shows a significant improvement over the existing state-of-the-art DIDP solver in
routing and scheduling problems.
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1 Introduction

In constraint programming (CP), large neighborhood search (LNS) [34] achieves strong per-
formance in solving combinatorial optimization problems such as routing [24] and scheduling
problems [27]. LNS is an algorithmic framework that removes a part of a solution and then
performs search in the induced partial search space (neighborhood) to find a better solution.
Typically, LNS uses tree search to find a better solution in a partial search space, where each
search node represents a partial assignment of decision variables, and a solution of a problem
corresponds to a leaf node, where all variables are assigned values.

Dynamic programming (DP) is a powerful method for multiple combinatorial optimization
problems [14, 15], and the hybridization of CP, decision diagrams, and DP is a topic of active
research [1, 22, 23, 5, 28, 19, 17]. Recently, domain-independent dynamic programming
(DIDP), a model-based paradigm for combinatorial optimization based on DP, has been
proposed [25]. In DIDP, a model of a problem is represented by a state transition system. A
solution corresponds to a path in a state space graph, where each vertex represents a state
and each edge represents a transition between two states. The current state-of-the-art DIDP
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23:2 Large Neighborhood Beam Search for Domain-Independent Dynamic Programming

solver is complete anytime beam search (CABS) [26], which is based on beam search, an
algorithm that searches for a path in a state space graph by maintaining a fixed number of
states at a time.

In this paper, we propose large neighborhood beam search (LNBS), a combination of
LNS and beam search in a state space graph. LNBS tries to improve a solution path by
removing a partial path between two states and then performing beam search to find a
better partial path. While LNBS has the freedom to select a neighborhood (i.e., a partial
path to remove), we propose a strategy that dynamically adjusts the size of a neighborhood
based on a multi-armed bandit problem. With our strategy, LNBS is complete, i.e., it finds
and proves an optimal solution given enough time, but, of course, it is aimed at problems
where its solution quality is more important than proved optimality. We implement LNBS
for DIDP and empirically evaluate its performance. The experimental results show that
LNBS outperforms CABS in five out of nine benchmark problem types in terms of solution
quality. In addition, LNBS performs better than a commercial CP solver, which uses LNS
[27], in seven problems while CABS is better than CP in six problems. Since LNBS performs
particularly well in routing and scheduling problems, we also investigate the reason for this
performance and gain insight from empirical analysis.

2 Background

We first introduce domain-independent dynamic programming and complete anytime beam
search. Then, we present large neighborhood search (LNS). We also describe LNS with
decision diagrams [18], a recently proposed method for combinatorial optimization that can
be considered a combination of LNS and state space search.

2.1 Domain-Independent Dynamic Programming
A combinatorial optimization problem is to find a set of discrete decisions, e.g., a permutation,
to minimize or maximize an objective function. In dynamic programming (DP), a problem is
recursively formulated by decomposing it into subproblems, represented by states, and the
optimal objective value of each subproblem is represented by the value function, which maps
a state to a real number.

Domain-independent dynamic programming (DIDP) is a model-based paradigm for
combinatorial optimization based on DP [25]. In DIDP, a DP formulation of a combinatorial
optimization problem is defined by a state-transition system in Dynamic Programming
Description Language (DyPDL). A DyPDL model is a seven-tuple ⟨V, S0,K, T ,B, C, h⟩
consisting of state variables V, the target state S0, constants K, transitions T , base cases B,
state constraints C, and the dual bound h.

A state variable v ∈ V has a type of set, element, or numeric. Each set and element
variable vi is associated with a set of objects Ni = {0, ..., ni − 1}. The domain of a set
variable vi is 2Ni , and the domain of an element variable vi is Ni. A numeric variable takes
a real value. A constant in K is a value independent of the state variables.

A state is a complete value assignment to the state variables, and the target state S0

is a state. We denote the value of a state variable vi in a state S by S[vi]. The value of a
state S is represented by the value function V (S), and the objective of a DyPDL model is
to compute the value of the target state, V (S0). We can define dominance between states
based on state variables. If a state S dominates another state S′, denoted by S′ ⪯ S, then
V (S) is equal or better (less/greater for minimization/maximization) than V (S′). For the
details of dominance in DyPDL, please refer to previous work [25].
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A transition τ ∈ T is a four-tuple ⟨effτ , costτ , preτ , forcedτ ⟩ defining how a state S is
transformed to a successor state (a subproblem) S[[τ ]], and how V (S) is computed based
on the value of V (S[[τ ]]). The set of effects effτ = {(vi, evi

) | vi ∈ V} defines how each
state variable vi is updated by an expression evi . The expression evi consists of predefined
operations on state variables and constants and returns S[[τ ]][vi] given S. For example, for a
set variable U , U \ {i} is an expression representing removing an element i from U , which
can be used as eU and results in S[[τ ]][U ] = S[U ] \ {i}. The cost expression costτ is an
expression that takes V (S[[τ ]]) in addition to S and returns a real number costτ (V (S[[τ ]]), S).
The preconditions preτ are conditions on the state variables, i.e., expressions returning a
binary value ⊤ or ⊥. The preconditions define when the transition is applicable. For example,
if preτ = {i ∈ U}, then τ is applicable in S iff i ∈ S[U ]. The flag forcedτ is a boolean value
indicating whether the transition is a forced transition. Let T (S) be the set of applicable
transitions in state S. If forced transitions are applicable, the first defined one τ is selected,
and all other forced and non-forced transitions are ignored, i.e., T (S) = {τ}. The value of
V (S) is computed by taking the best costτ (V (S[[τ ]]), S) over all τ ∈ T (S).

Base cases B are sets of conditions. For any B ∈ B, if a state S satisfies all conditions
in B, denoted by S |= B, then it is called a base state, and V (S) is defined non-recursively
by an expression eB(S). State constraints C are conditions that must be satisfied by all
states. If one of the state constraints c ∈ C is violated, denoted by S ̸|= C, then V (S) =∞
(V (S) = −∞) for minimization (maximization). The dual bound h(S) is a lower (upper)
bound on V (S) for minimization (maximization).

Overall, if the problem is minimization, the DP formulation is defined as follows.

compute V (S0) (1)

s.t. V (S) =


minτ∈T (S) costτ (V (S[[τ ]]), S) if S |= C ∧ ∀B ∈ B, S ̸|= B

eB(S) if S |= C ∧ ∃B ∈ B, S |= B

∞ if S ̸|= C
(2)

V (S) ≤ V (S′) if S′ ⪯ S (3)
V (S) ≥ h(S). (4)

The first line states that the optimal objective value is V (S0). Equation (2) recursively
defines the value function V . Inequalities (3) and (4) are bounds on the value function. For
maximization, we replace min with max in the first line of Equation (2) and swap ≤ and ≥
in Inequalities (3) and (4). A solution for the DP formulation is a sequence of transitions
that transforms the target state S0 into a base state. Concretely, for a sequence of transitions
x = ⟨x1, ..., xn⟩, let Si+1 = Si[[xi+1]] for i = 0, ..., n− 1. Then, x is a solution if xi+1 ∈ T (Si),
Si |= C, and ∀B ∈ B, Si ̸|= B for i = 0, ..., n− 1, Sn |= C, and ∃B ∈ B, Sn |= B. The solution
is an optimal solution if costτi

(V (Si+1), Si) = V (Si) for i = 0, ..., n− 1 in addition.

2.2 Complete Anytime Beam Search for DIDP
Previous research has shown that a subset of DyPDL models can be solved by cost-algebraic
heuristic search [11], a generalized version of the shortest path algorithm [25]. Multiple DIDP
solvers using cost-algebraic heuristic search algorithms have been proposed [25, 26]. These
solvers perform state space search, which finds a path from the target state to a base state in
a state space graph, a directed graph where each vertex is a state. In the state space graph,
an edge from state S to S[[τ ]] exists if τ ∈ T (S). Following the previous work, we assume
that costτ (V (S[[τ ]]), S) is expressed as wτ (S)× V (S[[τ ]]) where wτ is an expression returning
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Algorithm 1 Beam Search for DyPDL.

1: function BeamSearch(f , b)
2: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩.
3: O ← {S0}, x← NULL, complete← ⊤.
4: while O ̸= ∅ and x = NULL do
5: G← ∅. ▷ A set of states in the next layer.
6: for all S ∈ O do
7: if ∃B ∈ B such that S |= B then ▷ A base state.
8: if g(S)× eB(S) < f then ▷ A better solution.
9: f ← g(S)× eB(S), x← x(S).

10: else
11: for all τ ∈ T (S) : S[[τ ]] |= C do
12: if ∄S′ ∈ G such that S[[τ ]] ⪯ S′ and g(S)× wτ (S) ≥ g(S′) then
13: x(S[[τ ]])← ⟨x(S); τ⟩.
14: g(S[[τ ]])← g(S)× wτ (S), f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
15: if ∃S′ ∈ G such that S′ ⪯ S[[τ ]] and g(S[[τ ]]) ≤ g(S′) then
16: G← G \ {S′}. ▷ Remove a dominated state.
17: if f(S[[τ ]]) < f then ▷ Pruning by the primal bound.
18: G← G ∪ {S[[τ ]]}.
19: O ← {S ∈ G | f(S) < f}.
20: if |O| > b then
21: O ← the best b states in G minimizing f .
22: complete← ⊥.
23: if O ̸= ∅ then
24: complete← ⊥.
25: return x, complete.

a real value and × is a binary operator satisfying a cost-algebra. In particular, we focus on
nonnegative wτ and binary operators + or max, i.e., costτ (V (S[[τ ]]), S) = wτ (S) + V (S[[τ ]])
or costτ (V (S[[τ ]]), S) = max{wτ (S), V (S[[τ ]])}. The weight of the edge (S, S[[τ ]]) is defined
as wτ (S), and the cost of a path from the target state S0, which corresponds to a sequence
of the transitions x = ⟨x1, ..., xn⟩, is costx(S0) =×n−1

i=0 wxi+1(Si) where Si+1 = Si[[xi+1]]
for i = 0, ..., n − 1. As each edge weight is nonnegative, the cost of a path is nonnegative
and non-decreasing in length. In this paper, we focus on minimization while DyPDL and
cost-algebraic heuristic search can handle both minimization and maximization.

The state-of-the-art cost-algebraic heuristic search solver is complete anytime beam search
(CABS) [36, 26]. CABS performs beam search, which searches at most b states in the open
list O at each layer of the state space graph. We show the pseudo-code of beam search in
Algorithm 1. In addition to a DyPDL model and b, beam search takes the primal bound
f as an input, which is the best-known objective value and could be infinity. With each
state S, the best path x(S) from S0 and its cost g(S) = costx(S)(S0) (the g-value) are
maintained in lines 13 and 14. Starting from O = {S0}, beam search processes a state S in
O. If S is a base state, and the best path to S has a better cost than f in line 8, then f

and the solution x are updated. Otherwise, S[[τ ]] is added to the candidate set G for each
transition τ ∈ T (S), which is called the expansion of S, and we say that S is expanded
(lines 11– 18). When expanding S ∈ O, if there exists a state S′ ∈ G that dominates S[[τ ]]
and g(S′) ≤ g(S)× wτ (S), then S[[τ ]] is not added to G. In addition to g(S[[τ ]]), the priority
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f(S[[τ ]]) = g(S[[τ ]])× h(S[[τ ]]) (the f -value) is computed in line 14, which is a lower bound on
the optimal path cost from S0 to a base state via S[[τ ]]. If f(S[[τ ]]) ≥ f , the corresponding
path does not lead to an improved solution, so S[[τ ]] is not added to G in line 18. After
expanding all states, O is updated to the best b states in G according to f in lines 20-21.
This procedure is repeated until a solution whose cost is better than the given primal bound
is found, or no successor states are generated. The variable complete maintains whether the
search is complete. If states in G are pruned due to the beam width b (line 22), or O is not
empty when a solution is found (line 24), there may exist a better solution, so the search is
not complete. If complete = ⊤, then x is the optimal solution if it is not NULL, or the model
is infeasible if x = NULL. CABS performs a sequence of beam search with exponentially
increasing beam width b = 1, 2, 4, ... using the best objective value found so far as the primal
bound f until the optimality of the best solution or the infeasibility is proved.

2.3 Large Neighborhood Search
Large neighborhood search (LNS) iteratively removes a part of a solution and solves the
resulting subproblem (neighborhood) [34]. A solution for a CP problem is represented as a
complete value assignment to decision variables. Given a solution, LNS removes a subset of
the value assignments and solves the subproblem where the remaining variables are fixed to
the values assigned in the original solution. Typically, a tree search algorithm is used. In
a tree search algorithm, a search node is a partial value assignment to decision variables,
successor nodes are generated by assigning a value to an unassigned variable, and a solution
corresponds to a leaf node, where all variables are assigned values.

2.3.1 Large Neighborhood Search with Decision Diagrams
For combinatorial optimization, recent work proposed LNS with decision diagrams (DD-LNS)
[18]. Although DD-LNS was not explicitly framed as state space search, we interpret it as a
state space search algorithm. While DD-LNS is independent of DIDP, it also uses the DP
formulation of a problem as input while assuming that the solution has n transitions. Given
a sequence of transitions ⟨x1, ..., xn⟩, DD-LNS keeps the first d transitions, ⟨x1, ..., xd⟩, and
searches for the remaining n− d transitions. To find such a sequence, DD-LNS constructs
a decision diagram (DD), a directed graph where nodes are partitioned into layers. In the
constructed DD, each vertex corresponds to a state, and each edge corresponds to a transition,
so it is a state space graph. The first layer in the DD contains only the node corresponding to
Sd, where Si = Si−1[[xi]] for i = 1, ..., d. DD-LNS iteratively constructs a layer by applying
transitions to the states in the current layer until reaching layer n− d + 1.

Because constructing an exact DD is intractable, DD-LNS constructs a restricted DD,
which keeps a subset of states in the exact DD. In each layer, states satisfying certain
conditions are kept, some of which are selected randomly. Let the number of such states be
K. If K is smaller than a parameter W , from the remaining states, DD-LNS also keeps the
best W −K states that minimize a priority function, the rough lower bound (RLB). The
RLB of a state is a lower bound on the cost of a solution path via that state, which is the
same as the f -value. If the RLB of a state is larger than the best solution cost, the state is
removed from the DD as it does not lead to a better solution. Therefore, the procedure of
constructing a restricted DD can be considered beam search with randomization. Indeed,
the authors acknowledged that DD-LNS is a hybridization of LNS and beam search [18].
DD-LNS decreases d by 1 if a better solution is not found with d, starting from d = n−2 and
restarting from d = n− 2 if d = 0. When d = 0 and the restricted DD keeps all states except
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{1, 2, 3, 4}, 0

{2, 3, 4}, 1

{3, 4}, 2 {2, 4}, 3 {2, 3}, 4

{4}, 3 {3}, 4 {4}, 2 {2}, 4 {3}, 2 {2}, 3

∅, 4 ∅, 3 ∅, 2

1

2 3 4

3 4 2 4 2 3

4 4 3 3 2 2

Figure 1 Partial state space graph induced by the prefix ⟨1⟩ and the suffix ⟨4⟩ (highlighted in
red) in Example 1. The current partial path is highlighted in blue and an alternative partial path is
highlighted in green. Dashed transitions conflict with the suffix (explained in Section 3.2).

for those removed based on RLB, then it is the exact DD, so DD-LNS proves the optimality
of the solution. Since DD-LNS can be interpreted as a state space search algorithm and
is designed for combinatorial optimization, we implement it for DIDP and experimentally
compare it with our method.

3 Large Neighborhood Beam Search

We start with a simple idea of LNS for state space search: given a solution path, x =
⟨x1, ..., xn⟩ which connects states ⟨S0, ..., Sn⟩, we remove a partial path ⟨xi, ..., xi+d−1⟩
and search for a better partial path from Si−1 to Si+d−1. If we find a better solution
⟨x1, ..., xi−1, x′

i, ..., x′
i+d′−1, xi+d..., xn⟩, we repeat this procedure with the new solution. While

the overview of the algorithm is simple, there are design choices on how to select a partial
path to remove and how to search for a better partial path. The novelty of our method
compared to existing methods arises from such choices in addition to the fact that it is used
for DIDP. First, we describe the modifications of beam search for DyPDL to search for a
partial path from Si−1 to Si+d−1. Then, we propose strategies to select a partial path to
remove.

3.1 Beam Search for DyPDL in a Partial State Space Graph
We want to find a path from Si−1 to Si+d−1 instead of from S0 to a base state. We could
modify line 8 in Algorithm 1 so that it checks if S = Si+d−1 instead of ∃B ∈ B, S |= B.
However, in DyPDL, it may not be desirable as shown in the following example.

▶ Example 1. Consider the following DP formulation, where U ⊆ {0, 1, 2, 3, 4} is a set
variable, k ∈ {0, 1, 2, 3, 4} is an element variable, and clj for l, j ∈ {0, 1, 2, 3, 4} is a constant.

compute V ({1, 2, 3, 4}, 0)

V (U, k) =
{

minj∈U ckj + V (U \ {j}, j) if U ̸= ∅
0 if U = ∅.

Each transition in the DyPDL model has precondition j ∈ U and effect (U, U \ {j}) for
some j, and so we denote each transition by j. Each solution corresponds to a permutation
of the transitions 1, 2, 3, 4. A solution ⟨1, 2, 3, 4⟩ connects a sequence of states ⟨({1, 2, 3, 4}, 0),
({2, 3, 4}, 1), ({3, 4}, 2), ({4}, 3), (∅, 4)⟩. Consider removing ⟨2, 3⟩ from the solution. We
visualize the partial state space graph in Figure 1. An algorithm tries to find a path from
({2, 3, 4}, 1) to ({4}, 3). The original one, ⟨2, 3⟩, is only the path. However, a partial path
⟨3, 2⟩ from ({2, 3, 4}, 1) to ({4}, 2) also results in a valid solution ⟨1, 3, 2, 4⟩.
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Algorithm 2 Beam Search in a partial state space graph.

1: function BeamSearchForPartialPath(f , b, prefix, suffix)
2: Ŝ ← S0[[prefix]], g(Ŝ)← costprefix(S0), f(Ŝ)← g(Ŝ)× h(Ŝ), x(Ŝ)← prefix.
3: O ← {Ŝ}, x← NULL, complete← ⊤.
4: while O ̸= ∅ and x = NULL do
5: G← ∅. ▷ A set of states in the next layer.
6: for all S ∈ O do
7: S′ ← S, success← ⊥.
8: if ∃B ∈ B and S′ |= B then
9: success← ⊤. ▷ A base state, success.

10: else
11: for τ ← suffix1, ..., suffixn−i−d+1 do ▷ Rollout of the suffix.
12: if S′ ̸|= preτ then
13: break. ▷ Preconditions are not satisfied, fail.
14: S′ ← S′[[τ ]], g(S′)← g(S′)× wτ (S′), x(S′)← ⟨x(S′); τ⟩.
15: if S′ ̸|= C then
16: break. ▷ State constraints are not satisfied, fail.
17: if ∃B ∈ B such that S′ |= B then
18: success← ⊤. ▷ A base state, success.
19: break.
20: if success then
21: if g(S′)× eB(S′) < f then ▷ A better solution.
22: f ← g(S′)× eB(S′), x← x(S′).
23: else
24: for all τ ∈ T (S) : S[[τ ]] |= C do
25: if ∄S′ ∈ G such that S[[τ ]] ⪯ S′ and g(S)× wτ (S) ≥ g(S′) then
26: x(S[[τ ]])← ⟨x(S); τ⟩.
27: g(S[[τ ]])← g(S)× wτ (S), f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
28: if ∃S′ ∈ G, S′ ⪯ S[[τ ]] ∧ g(S[[τ ]]) ≤ g(S′) then
29: G← G \ {S′}. ▷ Remove a dominated state.
30: if f(S[[τ ]]) < f then ▷ Pruning by the primal bound.
31: G← G ∪ {S[[τ ]]}.
32: O ← {S ∈ G | f(S) < f}.
33: if |G| > b then
34: O ← the best b states in G minimizing f .
35: complete← ⊥.
36: if O ̸= ∅ then
37: complete← ⊥.
38: return x, complete.

Considering the above example, instead of focusing on a partial path to a state, we focus on
a partial path to a suffix of the solution path. Given a solution path ⟨x1, ..., xn⟩, if we remove
a partial path ⟨xi, ..., xi+d−1⟩, then ⟨x1, ..., xi−1⟩ is the prefix, and ⟨xi+d, ..., xn⟩ is the suffix.
For a partial path ⟨x′

i, ..., x′
i+d′−1⟩, we want to check if ⟨x1, ..., xi−1, x′

i, ..., x′
i+d′−1, xi+d, ..., xn⟩

is a valid solution. Therefore, for a state S found by a search algorithm, we perform a rollout
of the suffix from S and check if each of resulting states satisfies the state constraints and a

CP 2023
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Algorithm 3 Large Neighborhood Beam Search (LNBS).
Input: initial feasible solution x.
Output: solution x and if the optimality or infeasibility is proved.

1: while the time limit is not reached do
2: n← |x|, f ← costx(S0).
3: Select d such that 2 ≤ d ≤ n.
4: Select i such that 1 ≤ i ≤ n− d + 1.
5: Select beam width b.
6: prefix ← ⟨x1, ..., xi−1⟩, suffix ← ⟨xi+d, ..., xn⟩.
7: x, complete← BeamSearchForPartialPath(f , b, prefix, suffix)
8: if x ̸= NULL then
9: x← x.

10: if i = 0 ∧ d = n ∧ complete then
11: return x, ⊤.
12: return x, ⊥.

base case. We show the modified version of beam search in Algorithm 2. This algorithm
takes a prefix prefix and a suffix suffix as input. In line 2, we denote the state resulting from
applying the prefix to the target state by Ŝ = S0[[prefix]] and initialize the open list O with
Ŝ in line 3. In lines 8–22, the algorithm performs a rollout of the suffix from S and checks if
it results in a better solution. Other parts are the same as Algorithm 1.

We use this modified version of beam search in large neighborhood beam search (LNBS)
as shown in Algorithm 3. In line 2, |x| denotes the length of the current solution x. In
lines 3–5, LNBS selects parameters d, i, and b. In line 7, LNBS performs beam search in the
neighborhood. If an improving solution is found, LNBS updates the current solution x in
line 9. If the searched neighborhood is the original search space, i.e., i = 1 and d = n, and
beam search proves the optimality or infeasibility, LNBS terminates in line 11. Therefore, if
it is guaranteed to select i = 1 and d = n with sufficiently large b given enough time, LNBS
is guaranteed to find the optimal solution or prove the infeasibility, i.e., it is complete. CABS
can be considered a configuration of LNBS, where i = 1, d = n, and b increases exponentially.
DD-LNS can also be considered a configuration of LNBS, where i ranges from n− 2 to 1,
d is n− i + 1, and b is fixed to W while beam search is extended with the randomization
mechanism. We will describe the strategies that we use to select d, i, and b below.

3.2 Removing Conflicting Transitions
In Example 1, consider finding a partial path from a prefix ⟨1⟩, which results in state
Ŝ = ({2, 3, 4}, 1), to a suffix ⟨4⟩ using beam search. In Ŝ, three transitions 2, 3, and 4 are
applicable. However, applying transition 4 does not lead to a feasible solution because it
is already used in the suffix and cannot be applied twice: it requires 4 ∈ U and removes 4
from U , but no other transition adds 4 to U , so applying 4 makes the suffix inapplicable.
Generalizing this example, if we know that a transition τ makes a transition τ ′ in the suffix
inapplicable, then we can ignore τ when searching for a partial path. In particular, we focus
on the effects of τ that add/remove an element to/from a set variable and the preconditions
of τ ′ that require the element to be/not to be in that set variable.

▶ Proposition 2. Suppose that a DyPDL model ⟨V, S0,K, T ,B, C, h⟩ has a set variable U ∈ V
whose domain is 2N , where N is a set of objects. There does not exist a solution ⟨x1, ..., xn⟩
such that any pair of τ = xi and τ ′ = xj for 1 ≤ i < j ≤ n satisfy either of the following
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conditions:
1. There exists k ∈ N such that (U, U\{k}) ∈ effτ , (k ∈ U) ∈ preτ ′ , and each τ ′′ ∈ T \{xi, xj}

does not change U or (U, U \ {l}) ∈ effτ ′′ for some l ∈ N .
2. There exists k ∈ N such that (U, U ∪ {k}) ∈ effτ , (k ̸∈ U) ∈ preτ ′ , and each τ ′′ ∈
T \ {xi, xj} does not change U or (U, U ∪ {l}) ∈ effτ ′′ for some l ∈ N .

Proof. For the first case, xi removes k from U , and no other transition adds k to U . Since
xj requires k to be in U , once we apply xi, we cannot apply xj later. The other case is
proved similarly. ◀

Before starting beam search in a neighborhood, we remove a transition τ from the model
if there exists a transition τ ′ in the suffix such that τ and τ ′ satisfy one of the conditions in
Proposition 2. Detecting such a pair of transitions is done once at the beginning by checking
the expression trees representing the preconditions and effects of transitions.

3.3 Bandit-Based Depth Selection
Selecting the depth of a neighborhood, d, in line 3 of Algorithm 3 is non-trivial. If d

is too small, it is unlikely that an improving solution exists. However, if d is too large,
each neighborhood search takes a long time. We want to select d such that the total cost
improvement is maximized within the time limit.

We formulate the depth selection as the budgeted multi-armed bandit problem with
continuous random costs [35]. We have the set of depths D ⊆ {2, ..., n}. If we select a depth
d ∈ D and perform search in line 7 of Algorithm 3, we obtain a new solution x by spending
search time t. As t is assumed to take a value in [0, 1] in the budgeted multi-armed bandit
problem, we divide the actual time by the time limit T . If the cost costx(S0) is smaller than
the current best solution cost f , the reward is r = (f − costx(S0))/f . If no better solution is
found, the reward is r = 0. We call this process a round, and we repeat rounds until reaching
the time limit T . We do not know the reward r and time t before finishing a round, so we
use random variables rdk and tdk representing the reward and time if depth d is used at
round k. Let a be a strategy that selects a depth ak in the round k. The number of rounds
performed by a by the time limit, KaT , is also a random variable. The objective is to find a
strategy a that maximizes the total expected reward E[

∑KaT

k=1 rakk].
We use Budgeted-UCB [35]. At each round, if some depths in D have not been selected

before, Budgeted-UCB selects one of them. Otherwise, let mdk be the number of rounds
where the depth d is selected up to round k − 1, and let r̄dk and t̄dk be the average reward
and search time for d up to round k− 1. Budgeted-UCB selects the depth d that maximizes

r̄dk

t̄dk
+ ϵdk

t̄dk
+ ϵdk

t̄dk

min{r̄dk + ϵdk, 1}
max{t̄dk − ϵdk, λ}

(5)

where ϵdk =
√

2 log (k−1)
mdk

and λ is a positive lower bound of the search time of each round.
In practice, we initialize D = {2, 4, 8, ..., 2l, n}, where n is the length of the initial feasible

solution and l is the maximum integer such that 2l < n. If we get a solution whose length
n′ is different from n at round k, we replace n with n′ in D using mn′,k+1 = mn,k+1,
r̄n′,k+1 = r̄n,k+1, and t̄n′,k+1 = t̄n,k+1 and ignore depths greater than n′ in D. If multiple
depths have not been selected before or have the same value, we select the minimum depth
among them. For λ, we use the time of the first round divided by 10 while there is no
guarantee that it is a lower bound. Thus, the theoretical analysis of Budgeted-UCB studied
in the original paper [35] does not necessarily apply to our setting. In addition, while Xia et
al. [35] assumed that the pairs {(rdk, tdk)}∞

k=1 are i.i.d., we do not have such a guarantee.

CP 2023
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3.4 Start Selection
Once LNBS determines the depth d to use, it selects a starting point i, which induces the
prefix and the suffix, in line 4 of Algorithm 3. We select i considering the cost change in a
neighborhood. Concretely, the cost change by partial path ⟨xi, ..., xi+d−1⟩ is defined as

δdi = cost⟨x1,...,xi+d−1⟩(S0)− cost⟨x1,...,xi−1⟩(S0). (6)

Since the path cost is non-decreasing, δdi ≥ 0. We ignore i with δdi = 01 and select one
uniformly at random from the remaining options.

Our second approach is to select i based on the probability biased by δdi. As we explain
in the next subsection, for each d and i, the beam width b is maintained. Since smaller bdi

leads to a shorter search time, we discount the probability of selecting i by bdi. Concretely,
given the depth d, we can select the starting point i with the probability

pdi = δdi/bdi∑n−d+1
j=1 δdj/bdj

. (7)

3.5 Beam Width Selection
Given the depth d and the starting point i, LNBS selects a beam width b in line 5 of
Algorithm 3. Here, we use a similar strategy to CABS: for each d and i, we initialize the
beam width bdi to be 1 and update it to 2bdi after each round with d and i. If we find
an improved solution in line 7, we reset bd′i′ = 1 only for d′ and i′ such that i′ > i or
i′ + d′ < i + d; if i′ ≤ i and i′ + d′ ≥ i + d, the prefix and the suffix for the neighborhood
induced by i′ and d′ do not change, and we know that a better partial path was not found
with beam widths smaller than bd′i′ .2 If the neighborhood is exhausted, i.e., complete = ⊤
in line 7, we ignore the combination of d and i in lines 3 and 4 until a new solution is found
and bdi is reset to 1. Since the number of neighborhoods is finite, LNBS eventually exhausts
all the neighborhoods and finds the optimal solution, which guarantees completeness.

4 Experimental Evaluation

We compare LNBS with CABS, DD-LNS, CP, and mixed-integer programming (MIP).

4.1 Experimental Settings
As benchmarks, we use the same problems and instances used by previous work [26]: the
traveling salesperson problem with time windows (TSPTW), the capacitated vehicle routing
problem (CVRP), the multi-commodity pickup and delivery traveling salesperson problem
(m-PDTSP), the single machine total weighted tardiness problem (1||

∑
wiTi), the talent

scheduling problem (Talent), the simple assembly line balancing problem to minimize the
number of stations (SALBP-1), the bin packing problem (BPP), and the graph-clear problem
(GCP). We use the same DP, CP, and MIP models as the previous work [26].3

1 Theoretically, a better solution may be found with such i if the suffix is not empty because a partial
path may change the state from which the suffix is applied, which may change the cost of the suffix.

2 Theoretically, a better solution may be found with beam width smaller than bd′i′ if the updated primal
bound changes the search behavior.

3 https://github.com/Kurorororo/didp-models

https://github.com/Kurorororo/didp-models
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LNBS, CABS, and DD-LNS are implemented in didp-rs v0.3.24 using Rust 1.65.0. In
LNBS and DD-LNS, CABS is run first to find a feasible solution, and then LNBS and DD-
LNS are run to improve the solution. For DD-LNS, we use W = 1000 and p = 0.1 following
the original paper [18]. As we described above, LNBS removes conflicting transitions from a
suffix, selects the depth using Budgeted-UCB, and geometrically increases the beam width for
each neighborhood. To select the starting point of a partial path, we consider two approaches,
uniform and biased sampling. While biased sampling achieves better solution quality in
CVRP and m-PDTSP, uniform sampling is better in TSPTW, 1||

∑
wiTi, SALBP-1, MOSP,

and GCP (see Appendix A). In what follows, we only show results from uniform sampling.
In Appendix A, we also evaluate the importance of removing conflicting transitions and
Budgeted-UCB. We confirm that these mechanisms significantly improve the solution quality.
A more comprehensive ablation study is left for future work.

We implemented the DP models using didppy, a Python interface for didp-rs. We use
IBM ILOG CP Optimizer 22.1.0 for the CP models and Gurobi Optimizer 9.5.0 for the
MIP models. CP Optimizer is known to use LNS [27]. The DP, CP, and MIP models are
implemented in Python 3.10.2. All experiments are run on an Intel Xeon Gold 6148 processor
with a single thread, an 8 GB memory limit, and a time limit of 1800 seconds. For LNBS
and DD-LNS, we take the median of 5 runs.

Following the previous work [26], we use the primal gap and the primal integral to measure
the performance [7]. If an algorithm finds a solution xt with the cost f(xt) at time t, and
the optimal or best-known solution cost is f∗, the primal gap at t for the algorithm is

p(t) =


1 if f(xt) · f∗ < 0
0 if f(xt) = f∗ = 0

|f(xt)−f∗|
max{|f(xt)|,|f∗|} otherwise.

(8)

If the algorithm does not find a solution at time t, then p(t) = 1. Let t1, ..., tl−1 be time
points where a better solution is found, t0 = 0, and tl = T where T is the time limit. Then,
the primal integral, P (T ) is defined as

P (T ) =
l∑

i=1
p(ti−1) · (ti − ti−1). (9)

We use the primal gap at the time limit, p(T ), and the primal integral, P (T ), as the measures.

4.2 Experimental Results
We show the number of instances where the optimality of a solution is proved, the average
primal gap at the time limit, and the average primal integral for each problem in Table 1.
We omit MIP in Table 1 because it is outperformed by CP in the primal gap and the primal
integral for all problem types (see Appendix A). In the number of optimally solved instances,
MIP is the best in CVRP (with 26 problems solved). As reported by previous work [26],
MIP is good at finding an optimal solution for small instances, while it fails to find a feasible
solution for larger instances, which results in poor performance in the primal gap and the
primal integral on average. In other problems, LNBS solves more instances optimally than
MIP except for BPP, where LNBS solves 1139 and MIP solves 1157.

4 https://didp.ai
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Table 1 Summary of the experimental result. “#” is the number of optimally solved instances,
“gap” is the average primal gap at the time limit, and “p.i.” is the average primal integral.

CP CABS DD-LNS LNBS
# gap p.i. # gap p.i. # gap p.i. # gap p.i.

TSPTW (340) 47 0.0259 49.0 257 0.0033 9.0 109 0.0100 23.7 241 0.0016 5.7
CVRP (207) 0 0.3174 601.1 6 0.1772 339.5 0 0.2504 461.6 6 0.1640 316.8
m-PDTSP (1178) 1049 0.0122 25.5 1030 0.0023 5.1 459 0.0102 21.7 1029 0.0022 5.0
1||

∑
wiTi (375) 150 0.0009 3.5 286 0.0346 74.4 100 0.0409 83.5 275 0.0051 13.0

Talent (1000) 0 0.0081 29.3 232 0.0173 38.2 0 0.0602 114.6 232 0.0041 11.1
SALBP-1 (2100) 1584 0.0046 28.4 1799 0.0003 2.2 1507 0.0067 13.5 1682 0.0022 7.3
BPP (1615) 1234 0.0014 7.7 1159 0.0017 6.1 775 0.0190 35.4 1139 0.0021 8.1
MOSP (570) 437 0.0044 13.0 526 0.0000 0.4 353 0.0203 37.5 523 0.0002 0.7
GCP (135) 1 0.0151 44.3 103 0.0000 0.6 3 0.0009 2.7 102 0.0001 0.6
Larger Instances
m-PDTSP (240) 77 0.1491 285.9 101 0.0694 153.2 79 0.1345 265.7 98 0.0652 146.6
MOSP (760) 0 0.0676 150.6 150 0.0002 4.4 0 0.0402 72.7 148 0.0025 10.4
GCP (50) 0 0.5289 1268.3 0 0.0013 10.8 0 0.0764 137.8 0 0.0038 19.5

Compared to CABS, LNBS achieves the better primal gap and the primal integral in
TSPTW, CVRP, m-PDTSP, 1||

∑
wiTi, and Talent. We show the distribution of the primal

gap in TSPTW, CVRP, 1||
∑

wiTi, and Talent in Figure 2. The primal integral has a similar
trend to the primal gap in these problems (see Appendix A). In contrast, CABS is better
than LNBS in SALBP-1, BPP, MOSP, and GCP. These results are consistent with the
observation that LNS is effective for routing and scheduling problems in CP [24, 27]. In the
routing problems (TSPTW, CVRP, and m-PDTSP), CABS is already better than CP, and
LNBS is even better than CABS. In 1||

∑
wiTi, while LNBS shows a significant improvement

from CABS (0.0051 from 0.0346) outperforming MIP (0.0188), CP is still the best. However,
in Talent, LNBS outperforms CP while CABS does not. Overall, LNBS is better than CP in
seven problems while CABS is better than CP in six problems.

In TSPTW, the difference in the primal gap between LNBS and CABS (0.0016 and
0.0033) seems small, but it is because they achieve almost the same primal gap in many
instances: they optimally solve all 135 instances in the Dumas set [10] and achieve almost the
same average primal gap in the AFG set [2], which has 50 instances, and GendreauDumas
Extended set [16], which has 130 instances. However, in the OhlmannThomas set [31], which
has 25 instances, no instance is optimally solved, and LNBS shows a significant improvement
in the primal gap (0.0184 from 0.0395).

In the number of optimally solved instances, CABS is equal to or better than LNBS in all
problems. While CABS always searches the entire state space graph, LNBS searches multiple
neighborhoods, and the entire state space graph is just one of them. Nevertheless, LNBS
proves the optimality of more than 93% of instances that are optimally solved by CABS.

DD-LNS performs worse than CABS and LNBS in all the problems. Previous work has
reported that DD-LNS is effective for TSPTW [18]. Note however that the DD-LNS and
LNBS results in Table 1 are not the results reported by Gillard and Schaus. To validate that
our implementation and experimental settings do not handicap DD-LNS, we compare the
results of DD-LNS with those of the original paper in TSPTW.5 Our DD-LNS implementation

5 https://github.com/xgillard/ijcai_22_DDLNS/blob/main/results/tsptw/ddlns/results_w1000_

https://github.com/xgillard/ijcai_22_DDLNS/blob/main/results/tsptw/ddlns/results_w1000_t600.txt
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(b) CVRP.
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(d) Talent.
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(e) Large instances in m-PDTSP.
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(f) Large instances in MOSP.

Figure 2 Distribution of the primal gap at the time limit. Higher and left is better.

finds a better solution than the original in all instances with the time limit of 600 seconds.
This difference is likely due to the difference between the DP models used by us (from
Kuroiwa and Beck [26]) and Gillard and Schaus. In TSPTW, a solution is a tour that starts
from a depot, visits each customer j within the time window [aj , bj ], and returns to the
depot, and an optimal solution minimizes the total travel time. In both DP models, state
variables are the set of unvisited customers U , the current customer i, and the current time
t, and each transition corresponds to visiting a customer or the depot. Each DP model has a
dual bound (called RLB by Gillard and Schaus), a lower bound on the optimal solution cost.
While Gillard and Schaus use a dual bound based on a minimum spanning tree, Kuroiwa and
Beck use a simpler one based on the minimum travel time between customers. In addition,
Kuroiwa and Beck use information that was not considered by Gillard and Schaus. First,
they use dominance between states based on the current time: a state S dominates another
state S′ if S[U ] = S′[U ], S[i] = S′[i], and S[t] ≤ S′[t]. Furthermore, since the time to visit
customer j is underestimated by t + c∗

ij , where c∗
ij is the shortest travel time from i to j, they

t600.txt
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define state constraints ∀j ∈ U, t + c∗
ij ≤ bj . The dominance and the state constraints are

useful to prune states, which potentially explains the performance gap. Another difference
is whether considering the time window constraints at the depot or not. In the benchmark
instances used above6 (and in Kuroiwa and Beck [26]), a time window [a0, b0] is defined for
the depot. Gillard and Schaus explicitly model a required return to the depot within [a0, b0]
while Kuroiwa and Beck do not. However, in the benchmark instances, b0 ≥ bj + cj0 holds
for all customers j, where cj0 is the travel time from j to the depot. Thus, if all customers
are visited within the time windows, the depot can be reached within the time window, and
explicit modeling of the depot return window is unnecessary.

4.3 Larger Instances
LNBS performs better than CABS in m-PDTSP and worse in MOSP and GCP, but the
difference in the average primal gap is small. To evaluate the difference more clearly, we use
larger instances for these problems.

In m-PDTSP, a vehicle visits all nodes in a graph, picks up some commodities at some
nodes, and delivers them to others. Each commodity has a weight and the total weight of
commodities that a vehicle can carry is limited by the capacity. In the benchmark set for
m-PDTSP, three types of instances are used: Class 1, Class 2, and Class 3 [21], and Class 1
instances are generated from instances of the sequential ordering problem (SOP) [3]. We
generate larger Class 1 instances by using 30 SOP instances in TSPLIB7 that were not used
by the previous work. The original instances have at most 47 nodes, and the new instances
have 42 to 378 nodes. We use the same methods as the previous work [21] with the maximum
weight q ∈ {1, 5} and the capacity Q ∈ {5q, 10q, 20q, 100q}, resulting in 240 instance in total.

In MOSP, an instance is represented by a matrix, and the original set uses at most
125× 125 matrices. We add instances using 150× 150 to 1000× 1000 matrices [8, 12].

In GCP, an instance is represented by a graph. The original instance set uses random and
random planar graphs with 20, 30, and 40 nodes. We generate 50 instances using random
graphs with 100 and 200 nodes following the method used by previous work [29].

As shown in Table 1, LNBS clearly outperforms CABS in m-PDTSP in the primal gap and
the primal integral, but CABS is better in MOSP and GCP. We also show the distribution
of the primal gap in m-PDTSP and MOSP in Figure 2. The primal integral has a similar
tendency to the primal gap, and the result for GCP is qualitatively similar to that of MOSP.

4.4 Analysis of Problem Characteristics
In routing problems, a solution is a route visiting all nodes in a graph, and its cost is the
length of the route. In the DP models for these problems, each transition corresponds to
visiting one node, and the cost of a partial path increases when a transition is applied. We
expect that different partial solutions tend to have different costs, and it is relatively easy to
find a better partial path; because the path costs are diverse, unless the current partial path
is optimal, better partial paths are included in a partial state space graph with high density.
In such a case, beam search is likely to find a better partial path although it searches in a
fraction of the partial state space graph restricted by the beam width.

In contrast, in SALBP-1 and BPP, the problem is to pack weighted items into capacitated
bins while minimizing the number of bins. In the DP models, each transition packs one item
into a bin, and the cost increases only when a new bin is opened. In the DP models for

6 https://lopez-ibanez.eu/tsptw-instances
7 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/

https://lopez-ibanez.eu/tsptw-instances
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/
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(a) Problem types where LNBS has lower mean gap: TSPTW, CVRP, m-PDTSP, 1||
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wiTi, and Talent.
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(b) Problem types where CABS has lower mean gap: SALBP-1, BPP, MOSP, and GCP.

Figure 3 Entropy of the cost distribution over partial paths vs. the solution length in each
problem instance. ‘LNBS better’ means LNBS finds a better solution, ‘TIE’ means that LNBS and
CABS achieve the same solution cost, and ‘CABS better’ means that CABS finds a better solution.

MOSP and GCP, the cost is computed by taking the maximum weights of edges in a path,
and it does not increase unless a new edge has a higher weight than the current maximum.
Therefore, we expect that many partial paths tend to have the same cost in these problems,
making it difficult to improve a solution by searching only a partial state space graph.

Based on these observations, we hypothesize that LNBS tends to perform better than
CABS when path costs in a partial state space graph are diverse. To test this hypothesis, we
evaluate the diversity of costs in a partial state space graph using entropy in information theory.
Given a solution for a DyPDL model x = ⟨x1, ..., xn⟩, let Ydi(x) be the set of solution paths
whose prefix is ⟨x1, ..., xi−1⟩ and the suffix is ⟨xi+d, ..., xn⟩. Let C = {costy(S0) | y ∈ Ydi(x)}
be the set of the path costs. Then, the entropy of the path costs is defined as follows:

H(Ydi(x)) = −
∑
c∈C

|{y ∈ Ydi(x) | costy(S0) = c}|
|Ydi(x)| log2

|{y ∈ Ydi(x) | costy(S0) = c}|
|Ydi(x)| . (10)

As this value gets larger, the cost distribution becomes more diverse, and we expect that
LNBS will perform better than CABS. However, even if the entropy is large, if the problem
itself is easy, both CABS and LNBS will find optimal or near-optimal solutions. To consider
such cases, we also evaluate the length of the initial solution found by CABS.

We evaluate entropy and the length of the initial solution found for each problem instance
used in Section 4.2. We first run CABS until it finds a feasible solution and record the length
of the solution. Then, we remove the first eight transitions from the solution and enumerate
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all feasible prefixes of the solution, i.e., we use d = 8 and i = 1. In Figure 3, we show a scatter
plot of entropy and the solution length divided into two plots to emphasize the differences
between the problem types where LNBS has a lower primal gap on average (Figure 3a) and
those where CABS is better (Figure 3b). With low entropy, CABS dominates. For higher
entropy, the solution length begins to play a factor: for short solutions, CABS and LNBS
perform equally but for longer solutions, LNBS tends to perform better. Indeed, for the
problems where CABS performs better on average (Figure 3b), the entropy is quite low (less
than 3.5). This result suggests that the entropy of the cost distribution over partial paths
is related to the performance of LNBS. Since this analysis is based on path costs, it is not
directly applicable to LNS with tree search, where a solution corresponds to a leaf node.
However, if we consider the factors of neighborhood size and cost distribution over leaf nodes,
we may be able to apply this analysis to LNS for CP and MIP.

5 Related Work

As we discussed, LNBS can be considered a generalization of DD-LNS [18], which combines
DDs and LNS. DP is closely related to DDs [23], and DDs have been actively used for
combinatorial optimization [9]. For example, DDs are used to obtain bounds on the optimal
objective value [4, 33], and heuristics based on DDs have been proposed [6]. Moreover, ddo, a
general-purpose DD solver for combinatorial optimization has been developed [5, 19]. In CP,
DDs are used for constraint propagation [1, 22]. Recently, HADDOCK, a modeling language
of a DD based on a state transition system, was proposed for CP [17].

In state space search, there exist several methods that improve a solution path by searching
in a partial state space graph, but they were not framed as LNS. In classical planning, plan
neighborhood graph search (PNGS) first constructs a partial state space graph by performing
local search from each state in a solution path and then finds the shortest path in the graph
[30]. In sliding tile puzzles, iterative tunneling search with A* (ITSA*) iteratively expands a
partial state space graph, which includes states close to a given path, and finds the shortest
path in that graph [13]. Unlike the above two algorithms, Joint and local path A* (LPA*)
[32] try to find a better partial path between two states in a given path using A* [20]. While
Joint and LPA* fix the length of a partial path to remove and deterministically select a
neighborhood, LNBS dynamically adjusts them and uses beam search instead of A*.

6 Conclusion

We proposed large neighborhood beam search (LNBS), a state space search algorithm based
on large neighborhood search (LNS) and beam search for domain-independent dynamic
programming (DIDP). Our configuration of LNBS exploits the multi-armed bandit problem
and random sampling to select a neighborhood. We proved that LNBS is complete. LNBS
finds better quality solutions on average than the state-of-the-art DIDP solver, complete
anytime beam search (CABS), in five out of the nine benchmark problems. In particular,
LNBS performs well in routing and scheduling problems, and our analysis suggests that this
performance is related to the diversity of the cost distribution over partial paths. A deeper
investigation of the characteristics of the problems that make LNS effective in state space
search and tree search is an interesting direction for future work. Based on such analysis,
developing better configurations for LNBS may also be possible.
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A Additional Experimental Results

Table 2 Comparison of CP, MIP, and two configurations of LNBS. “#” is the number of optimally
solved instances, “gap” is the average primal gap at the time limit, and “p.i.” is the average primal
integral.

CP MIP LNBS LNBS/bias
# gap p.i. # gap. p.i. # gap. p.i. # gap. p.i.

TSPTW (340) 46 0.0275 52.3 227 0.2268 484.1 241 0.0016 5.7 242 0.0019 6.2
CVRP (207) 0 0.3174 601.1 26 0.5845 1157.4 6 0.1640 316.8 6 0.1633 314.8
m-PDTSP (1178) 1050 0.0121 25.4 945 0.0858 180.0 1029 0.0022 5.0 1029 0.0021 4.7
1||

∑
wiTi (375) 150 0.0003 2.4 109 0.0188 75.6 275 0.0051 13.0 275 0.0056 14.5

Talent (1000) 7 0.0072 27.6 0 0.0573 152.6 232 0.0041 11.1 231 0.0042 11.1
SALBP-1 (2100) 1584 0.0046 28.4 1357 0.3447 634.6 1682 0.0022 7.3 1675 0.0022 7.5
BPP (1615) 1234 0.0014 7.7 1157 0.0385 85.9 1139 0.0021 8.1 1129 0.0021 9.0
MOSP (570) 437 0.0044 13.0 224 0.0394 100.4 523 0.0002 0.7 523 0.0002 0.7
GCP (135) 1 0.0151 44.3 23 0.1102 311.9 102 0.0001 0.6 102 0.0001 0.7
Larger Instances
m-PDTSP (240) 77 0.1481 284.1 47 0.5811 1096.8 98 0.0652 146.6 97 0.0647 147.0
MOSP (760) 0 0.0675 150.4 0 0.8806 1599.4 148 0.0025 10.4 148 0.0027 10.7
GCP (50) 0 0.5287 1268.1 0 0.5306 977.8 0 0.0038 19.5 0 0.0061 21.2

Table 3 Comparison of LNBS variants. “No removing conflicts” does not remove conflicting
transitions in the suffix. “No Budgeted-UCB” selects the depth uniformly at random instead of
using Budgeted-UCB. “#’ is the number of optimally solved instances, “gap” is the average primal
gap at the time limit, and “p.i.” is the average primal integral.

LNBS No removing conflicts No Budgeted-UCB
# gap. p.i. # gap. p.i. # gap. p.i.

TSPTW (340) 241 0.0016 5.7 234 0.0035 10.6 256 0.0034 9.4
CVRP (207) 6 0.1640 316.8 5 0.1682 322.5 6 0.1767 338.7
1||

∑
wiTi (375) 275 0.0051 13.0 268 0.0224 56.0 287 0.0340 74.1

We show the result of MIP in Table 2. MIP solves more instances than CP in TSPTW,
CVRP, and GCP, but CP is better in the primal gap and the primal integral.

In addition, we compare two configurations of LNBS in Table 2. One selects the starting
point of a partial path uniformly at random (LNBS), and another selects it according to the
probability distribution biased by partial path costs in Equation (7) (LNBS/bias). LNBS/bias
solves one more instance in TSPTW and outperforms LNBS in CVRP and m-PDTSP in the
primal gap.
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(b) SALBP-1.

0.00 0.05 0.10 0.15 0.20
Primal gap

0.7

0.8

0.9

1.0

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS

(c) BPP.
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(d) MOSP.
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(e) GCP.
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(f) Large instances in GCP.

Figure 4 Distribution of the primal gap at the time limit. Higher and left is better.

We evaluate the importance of other components of LNBS using a subset of the problems:
TSPTW, CVRP, and 1||

∑
wiTi. In Table 3, we compare two variants of LNBS, where

conflicting transitions in a suffix are not removed (‘No removing conflicts’), and the depth
is selected uniformly at random instead of Budgeted-UCB (‘No Budgeted-UCB’). The two
variants perform worse in terms of the primal gap and the primal integral. While ‘No
Budgeted-UCB’ solves more instances to optimality, it is because the largest depth, which
makes LNBS the same as CABS, is more likely to be selected by uniform sampling. Indeed,
the primal gap and the primal integral of ‘No Budgeted-UCB’ are close to those of CABS.

In Figure 4, we present the distribution of the primal gap over instances in m-PDTSP,
SALBP-1, BPP, MOSP, Graph-Clear, and large instances in GCP. LNBS is slightly better in
m-PDTSP, and CABS is better in SALBP-1, BPP, and large instances in GCP. Figures 5
and 6 show the distribution of the primal integral. The tendency is similar to that of the
primal gap.
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(b) CVRP.
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(c) m-PDTSP.
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(d) Large instances in m-PDTSP.
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(f) Talent.

Figure 5 Distribution of the primal integral at the time limit in the problems where LNBS is
better. Higher and left is better.
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(a) SALBP-1.
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(b) BPP.
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(c) MOSP.
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(d) Large instances in MOSP.
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(e) GCP.
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(f) Large instances in GCP.

Figure 6 Distribution of the primal integral at the time limit in the problems where CABS is
better. Higher and left is better.
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