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Preface

After three years of online events, the 30th edition of the International Symposium on
Temporal Representation and Reasoning (TIME 2022) will take place as a physical event at
NCSR Demokritos in Athens, Greece.

Since its first edition in 1994, the TIME Symposium is quite unique in the panorama
of the scientific conferences as its main goal is to bring together researchers from distinct
research areas involving the management and representation of temporal data as well as
reasoning about temporal aspects of information. Moreover, the TIME Symposium aims to
bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for
exchange among researchers from the areas of artificial intelligence, database management,
logic and verification and beyond.

As a novelty this year, TIME was also open to systems papers focusing on the development,
deployment and evaluation of systems for temporal reasoning, as opposed to traditional
theoretical contributions. Moreover, we also solicited extended abstracts presenting work-in-
progress or summarising work that has been published elsewhere, qualifying for presentation
at the symposium and inclusion in the proceedings.

The authors of the of the top-ranked papers will be invited to submit an extended version
of their contribution to a special issue in Information and Computation.

We received a total of 16 submissions for regular papers, and another 9 extended abstracts,
representing a wide range of research topics in the areas of artificial intelligence, databases
and theoretical computer science. Submissions came from Africa, Asia, Europe and North
America. We would like to thank all the authors of the submitted papers, as they have
helped to build a successful TIME 2023 Symposium.

As a result of the review process and the following discussions, coordinated by the Program
Committee chairs, 12 regular papers were selected for presentation at the symposium. The
range of their topics is wide, including, among others, predicting temporal functional
dependencies, interval temporal logic, and qualitative constraint networks. All 9 extended
abstracts were deemed suitable to be presented at the symposium after light reviewing by the
Program Committee chairs. The accepted papers and extended abstracts are very interesting
and we are confident that we will have lively discussions during the symposium.

We are very pleased to include invited talks by leading scholars in our scientific com-
munities: Thomas Eiter (TU Vienna, Austria) and Laura Nenzi (University of Trieste,
Italy). We believe that the invited talks, the selected papers and extended abstracts, and
their presentations will help to stimulate and improve several research efforts in the area of
temporal representation and reasoning, and motivate members of under-represented research
communities to participate in the TIME Symposia.

We would like to thank all the members of the Program Committee and the additional
reviewers, who volunteered their time and expertise to set up the final program. We want also
to thank Periklis Mantenoglou for his efforts in maintaining the web page of the symposium.

Alexander Artikis, University of Piraeus & NCSR Demokritos, Greece
Florian Bruse, University of Kassel, Germany
Luke Hunsberger, Vassar College, United States

TIME 2023 Program Committee Co-Chairs
July 21st, 2023
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Learning Temporal Logic Formulas from
Time-Series Data
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Abstract
In this talk, we provide an overview of recent advancements in the field of mining formal specifications
from time-series data, with a specific focus on learning Signal Temporal Logic (STL) formulae.
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1 Extended Abstract

The abundance of available data has led to a significant increase in the utilization of machine
learning techniques for describing and analyzing systems. Although these methods are adept
at generating powerful black-box models and performing well in complex, high-dimensional
scenarios, they often lack measures of uncertainty for individual estimates and fail to fully
understand the underlying mechanisms driving the obtained outcomes. This limitation
becomes particularly crucial when dealing with safety-critical systems like smart healthcare
and self-driving cars, where failures can have severe consequences and incur substantial
costs. Therefore, it is imperative for designers to gain a comprehensive understanding of the
phenomena these systems capture and to extract interpretable information from the data
they produce.

To tackle this challenge, recent research has explored the application of learning Temporal
Logic (TL) formulae as a powerful approach for extracting human-interpretable information
from data. TL is a formal language that offers precise specifications which are easily
comprehensible to humans, allowing for the expression of complex system properties in
a clear manner. Furthermore, it provides verification algorithms that can automatically
evaluate the satisfaction of these properties. In this talk, we aim to provide a comprehensive
overview of the latest advancements in this field. We focus in particular on the learning of
Signal Temporal Logic (STL) formulae [2]. STL is a linear-time TL very suitable to describe
properties associated with real-time trajectories.

First, we present a framework for a supervised learning scenario [4]. We focus on a
two-label classification problem, specifically targeting the discrimination between regular and
anomalous trajectories. The objective is to develop a technique that learns a Signal Temporal
Logic (STL) formula capable of effectively distinguishing between the two sets of labeled data.
The desired formula should be satisfied by the regular trajectories to the greatest extent
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1:2 Learning Temporal Logic Formulas from Time-Series Data

possible, while not being satisfied by the anomalous ones. To accomplish this, the proposed
methodology leverages genetic programming, a form of Evolutionary Computation (EC),
to extract the structure of the formula, and Bayesian optimization to learn the formula’s
parameters.

Second, we explore a semi-supervised scenario, which poses a more complex problem as
it considers datasets comprising solely regular behaviors [1]. We introduce an algorithm that
utilizes the Grammar-Guided Genetic Programming (G3P) technique to learn an ensemble
of STL formulas. This ensemble is then utilized for effectively detecting anomalous behaviors
within the system.

Third, we explore the integration of spatial considerations within the study of system
behavior. To achieve this, we introduce the Spatio-Temporal Reach and Escape Logic
(STREL) [3], an extension of STL that incorporates a variety of spatial operators. This
extension enables the modeling and analysis of spatial-temporal properties, providing a
comprehensive framework for capturing complex behaviors that involve both temporal and
spatial aspects. We present a method that leverages a Parametric STREL (PSTREL) for
automatic feature extraction from the given spatio-temporal data. This is accomplished by
projecting the data onto the parameter space of PSTREL. Using an agglomerative hierarchical
clustering technique, we ensure the satisfaction of a distinct STREL formula in each cluster.

We demonstrate the versatility of these techniques through multiple case studies spanning
various domains, including naval surveillance, train speed regulation, secure water treatment,
urban transportation, and epidemiological analysis. We conclude the talk by discussing the
remaining challenges and future prospects, while also providing an overview of the latest
ongoing research.
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Abstract
Linear Temporal Logic over finite traces (LTLf) has proved itself to be an important and effective
formalism in formal verification as well as in artificial intelligence. Pure past LTLf (pLTL) is the
logic obtained from LTLf by replacing each (future) temporal operator by a corresponding past one,
and is naturally interpreted at the end of a finite trace. It is known that each property definable in
LTLf is also definable in pLTL, and vice versa. However, despite being extensively used in practice,
to the best of our knowledge, there is no systematic study of their succinctness.

In this paper, we investigate the succinctness of LTLf and pLTL. First, we prove that pLTL can
be exponentially more succinct than LTLf by showing that there exists a property definable with a
pLTL formula of size n such that the size of all LTLf formulas defining it is at least exponential in n.
Then, we prove that LTLf can be exponentially more succinct than pLTL as well. This result shows
that, although being expressively equivalent, LTLf and pLTL are incomparable when succinctness
is concerned. In addition, we study the succinctness of Safety-LTL (the syntactic safety fragment
of LTL over infinite traces) with respect to its canonical form G(pLTL), whose formulas are of the
form G(α), G being the globally operator and α a pLTL formula. We prove that G(pLTL) can be
exponentially more succinct than Safety-LTL, and that the same holds for the dual cosafety fragment.
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1 Introduction

In this paper, we study the succinctness of Linear Temporal Logic over finite words (LTLf) with
respect to pure past LTLf (pLTL) and prove two lower bounds that show the incomparability
of LTLf and pLTL as far as succinctness is concerned. In addition, we investigate some
succinctness properties of the safety and cosafety fragments of Linear Temporal Logic over
infinite words (LTL) with respect to their canonical forms (resp., G(pLTL) and F(pLTL)).
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2:2 LTLf Can Be Exponentially More Succinct Than pLTL, and vice versa

LTLf is a modal logic that extends classic Boolean Logic with temporal modalities for
reasoning about time and it is interpreted over finite sequences of states (called traces or
words). LTLf is extensively used in many areas of Artificial Intelligence (AI), like automated
synthesis [10, 12, 23], planning [4–6], and business process management [19, 20]. In last years,
also pLTL, the pure past version of LTLf , gained momentum in AI. As a matter of fact, while
all properties expressible in LTLf are also expressible in pLTL and vice versa (pLTL and LTLf
have been shown to be expressively equivalent [9, 16,25]), some properties like, e.g., those
characterizing planning problems (“to reach a goal while always obeying to a safety rule”)
are more natural and easy to express using past modalities [16]. Moreover, pLTL has been
advocated as a suitable declarative, logic programming language [3, 14]. Last but not least,
arguably the most important feature of pLTL is enjoying a compilation into deterministic
finite automata of singly exponential size [8,9], a result that cannot be achieved for LTLf [11].

In spite of the success of LTLf and pLTL, to the best of our knowledge, there is no
systematic study of their succinctness, that is, the study of which properties (if any) are
definable in one logic with formulas of small, polynomial size, but such that all formulas
in the other logic would require exponential size or more. The importance of studying
succinctness is twofold. On the one hand, it is an important theoretical tool, that joins the
study of computational complexity and expressive power (cf. e.g. the work by Hella and
Vilander [15], comparing first-order logic with basic modal logic and µ-calculus in terms of
succinctness, by means of formula size games). On the other hand, it may help in choosing
the right formalism when solving problems like model checking and reactive synthesis.

The main contributions of the paper are the following ones.
First, we prove that pLTL can be exponentially more succinct than LTLf , that is, there

exists a family of properties definable with pLTL formulas of size n such that the size of all
LTLf formulas defining them is at least exponential in n.

Second, by exploiting the fact that each trace recognized by a pLTL formula is the reverse1

of a trace recognized by an LTLf formula, we derive that LTLf can be exponentially more
succinct than pLTL as well. This has three important consequences:
1. it shows that, despite being expressively equivalent, LTLf and pLTL are incomparable

when succinctness is concerned;
2. it confirms the conjecture formulated in [2], derived from the complexity gap between

the realizability problem of LTLf , which is 2EXPTIME-complete, and pLTL, which is
EXPTIME-complete;

3. it proves that any translation from LTLf to pLTL (and vice versa), for which we only have
a triply exponential upper bound [9], has at least an exponential complexity in the size
of the initial formula.

Third, we study the succinctness of the syntactic safety fragment of LTL over infinite
traces (denoted as Safety-LTL) with respect to its canonical form G(pLTL), which is the
set of formulas of the form G(α), where G is the globally modality of LTL and α is a pLTL
formula [7]. We show that G(pLTL) can be exponentially more succinct than Safety-LTL. By
a duality argument, we derive the same result for the syntactic cosafety fragment of LTL
(coSafety-LTL) and its canonical form (F(pLTL)). Whether Safety-LTL (resp., coSafety-LTL)
can be exponentially more succinct than G(pLTL) (resp., F(pLTL)) is, to the best of our
knowledge, still an open question.

1 By “reverse” of a trace σ, we mean the trace obtained by σ considering its last state as the first one.
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The paper is organized as follows. In Section 2, we provide the necessary background.
Sections 3 and 4 prove, respectively, that pLTL can be exponentially more succinct than LTLf ,
and vice versa. In Section 5, we show the succinctness of G(pLTL) and F(pLTL) with respect
to the safety and cosafety fragments of LTL, respectively. We conclude with Section 6, where
we recap the results of the paper and we point out some future research directions.

2 Background

In this section, we give the necessary background on linear-time temporal logic and finite-state
automata.

2.1 Linear-time Temporal Logic
Given a set Σ of proposition letters, an LTL+P formula ϕ is generated as follows:

ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ Boolean connectives
| Xϕ | X̃ϕ | ϕ U ϕ | ϕ R ϕ future modalities
| Yϕ | Ỹϕ | ϕ S ϕ | ϕ T ϕ past modalities

where p ∈ Σ, and we call: X, next; X̃, weak next; U, until; R, releases; Y, yesterday; Ỹ,
weak yesterday; S, since; T, triggers. Note that, w.l.o.g., our definition of LTL+P considers
formulas already in Negation Normal Form (NNF), that is, negations are applied only to
proposition letters. For any formula ϕ, the size of ϕ (denoted with |ϕ|) is the size of the
(smallest) syntax tree of ϕ.

Let σ ∈ (2Σ)+ ∪ (2Σ)ω be a word over 2Σ (or trace over 2Σ). We define the length of σ
as |σ| = n, if σ = ⟨σ0, . . . , σn−1⟩ ∈ (2Σ)+ (in this case we say that σ is a finite trace); or
|σ| = ω, if σ ∈ (2Σ)ω (in this case we say that σ is an infinite trace). We call any subset of
(2Σ)∗ a language of finite words over 2Σ. Similarly, a language of infinite words over 2Σ is
any subset of (2Σ)ω.

The satisfaction of an LTL+P formula ϕ by σ at time 0 ≤ i < |σ|, denoted by σ, i |= ϕ, is
defined as follows:

σ, i |= p iff p ∈ σi;
σ, i |= ¬p iff p ̸∈ σi;
σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
σ, i |= Xϕ iff i+ 1 < |σ| and σ, i+ 1 |= ϕ;
σ, i |= X̃ϕ iff either i+ 1 = |σ| or σ, i+ 1 |= ϕ;
σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;
σ, i |= Ỹϕ iff either i = 0 or σ, i− 1 |= ϕ;
σ, i |= ϕ1 Uϕ2 iff there exists i ≤ j < |σ| such that σ, j |= ϕ2, and σ, k |= ϕ1 for all k, with
i ≤ k < j;
σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that σ, j |= ϕ2, and σ, k |= ϕ1 for all k, with
j < k ≤ i;
σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all i ≤ j < |σ|, or there exists i ≤ k < |σ| such that
σ, k |= ϕ1 and σ, j |= ϕ2 for all i ≤ j ≤ k;
σ, i |= ϕ1 Tϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i, or there exists k ≤ i such that σ, k |= ϕ1
and σ, j |= ϕ2 for all i ≥ j ≥ k.

TIME 2023



2:4 LTLf Can Be Exponentially More Succinct Than pLTL, and vice versa

We say that σ is a model of ϕ (written as σ |= ϕ) iff σ, 0 |= ϕ. The language of infinite
(resp., finite) traces of ϕ, denoted by L(ϕ), is the set of traces σ ∈ (2Σ)ω (resp., σ ∈ (2Σ)+)
such that σ |= ϕ.

We use the standard shortcuts for ⊤ := p ∨ ¬p, ⊥ := p ∧ ¬p (for some p ∈ Σ) and other
temporal operators: Fϕ := ⊤ U ϕ (eventually), Gϕ := ⊥ R ϕ (globally), Oϕ := ⊤ S ϕ (once),
and Hϕ := ⊥ T ϕ (historically).

From now on, given a linear-time temporal logic L, with some abuse of notation, we
denote with L also the set of formulas of L. A pure future (resp., pure past) formula is an
LTL+P formula without occurrences of past (resp., future) modalities. We denote by LTL
(resp., pLTL) the set of pure future (resp., pure past) formulas. In the following, we use the
subscript f to denote a logic interpreted on finite traces. Thus, e.g., with LTLf we denote
LTL interpreted on finite traces. Note that, if ϕ belongs to pLTL (i.e. pure past fragment of
LTL+P), then we interpret ϕ only on finite words and we say that σ ∈ (2Σ)+ is a model of ϕ
if and only if σ, |σ| − 1 |= ϕ, that is, each ϕ in pLTL is interpreted at the last state of a finite
word. It holds that LTLf and pLTL are expressively equivalent.

▶ Proposition 1 (see [9, 16, 25]). For any alphabet Σ and for any language L ⊆ Σω, it holds
that: there exists a formula ϕ ∈ LTLf such that L(ϕ) = L iff there exists a formula ϕ′ ∈ pLTL
such that L(ϕ′) = L.

In the following, we denote by Safety-LTL (also called the syntactic safety fragment of
LTL) the set of LTL formulas whose temporal operators are restricted to X̃, G, and R [7,21,24].
Similarly, we define coSafety-LTL (the syntactic cosafety fragment of LTL) as the set of
LTL formulas whose temporal operators are restricted to X, F, and U. Finally, we denote
by G(pLTL) (resp., F(pLTL)) the set of LTL+P formulas of the form Gα (resp., Fα), with
α ∈ pLTL. A fundamental theorem by Chang, Manna, and Pnueli [7], based on the results
found by Zuck [25], establishes the expressive equivalence of Safety-LTL with G(pLTL), and
of coSafety-LTL and F(pLTL), when interpreted over infinite traces.

We now define what it means, for two linear-time temporal logics L and L′, that L can be
exponentially more succinct than L′. We use the Ω-notation f(n) ∈ Ω(g(n)) to denote that
the function f is asymptotically bounded from below by g. Similarly, we use the O-notation
f(n) ∈ O(g(n)) to denote that f is asymptotically bounded from above by g.

▶ Definition 2. Given two linear-time temporal logics L and L′, we say that L can be
exponentially more succinct than L′ over infinite trace (resp., over finite traces) iff there
exists an alphabet Σ and a family of languages {Ln}n>0 ⊆ (2Σ)ω (resp., {Ln}n>0 ⊆ (2Σ)∗)
such that, for any n > 0:

there exists a formula ϕ ∈ L over Σ such that its language over infinite traces (resp., over
finite traces) is Ln and |ϕ| ∈ O(n); and
for all formulas ϕ′ ∈ L′ over Σ, if the language of ϕ′ over infinite traces (resp., finite
traces) is Ln, then |ϕ′| ∈ 2Ω(n).

2.2 Finite-state Automata
A Nondeterministic Finite Automaton (NFA, for short) is a tuple A = (2Σ, Q, I,∆, F ), where:
2Σ is a finite (nonempty) alphabet; Q is a finite set of states; I ⊆ Q is the set of initial states;
∆ ⊆ Q × 2Σ × Q is the transition relation; F ⊆ Q is the set of final states. We define the
size of A, denoted with | A |, as the number of its states (|Q|).

A run π of A over the word σ = ⟨σ0, σ1, . . . , σn−1⟩ ∈ (2Σ)∗ is a finite sequence of states
π = ⟨q0, q1, . . . , qn⟩ such that (qi, σi, qi+1) ∈ ∆, for all 0 ≤ i < n−1. A run π = ⟨q0, q1, . . . , qn⟩
is accepting if qn is a final state of A, that is qn ∈ F .
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Given an NFA A = (2Σ, Q, I,∆, F ), a word σ ∈ (2Σ)∗ is accepted by A iff there exists an
accepting run of A over σ. The language of A, denoted with L(A), is the set (finite) words
accepted by A.

For each LTLf+P formula ϕ of size n over the set of proposition letters Σ, we can effectively
build an NFA whose language is exactly L(ϕ) and its size is at most exponential in n [11].

▶ Proposition 3 (see [11]). For any formula ϕ of LTLf+P of size n, there exists an NFA A
such that L(ϕ) = L(A) and | A | ∈ 2O(n).

3 pLTL can be exponentially more succinct than LTLf

In this section, we prove the first main result of this paper, i.e. that pLTL can be exponentially
more succinct than LTLf .

Let Σ = {p0, p1, . . . , pn} be a finite set of proposition letters. Consider the following
family of languages over the alphabet 2Σ, where n > 0.

An := {σ ∈ (2Σ)+ | ∃k > 0 . (
n∧

i=0
(pi ∈ σk ↔ pi ∈ σ0))} (1)

For any n > 0, the language An is the set of finite words over 2Σ containing a position which
agrees with the initial state on the evaluation of all proposition letters in Σ (cf. Figure 1).

σ0
· · ·

σk

· · ·
σ|σ|−1

p0
¬p1
p2

p0
¬p1
p2

T

Figure 1 Example of a word σ in A2.

We shall prove that all formulas of LTLf defining An are at least of size exponential in n.
Conversely, as shown by the following lemma, An can be expressed in pLTL with formulas of
linear size in n, for any n > 0.

▶ Lemma 4. For any n > 0, there exists a formula ϕ ∈ pLTL such that L(ϕ) = An and
|ϕ| ∈ O(n).

Proof. For any n > 0, we define the formula ϕAn as

O(
n∧

i=0
(pi ↔ YO(Ỹ⊥ ∧ pi)))

Note the crucial role of the weak yesterday operator, and in particular of the subformula
Ỹ⊥, for hooking the initial state of a word. We prove that L(ϕAn

) = An. For any σ ∈ (2Σ)+

and for any n > 0, it holds that σ ∈ An if and only if ∃k > 0 .
∧n

i=1(σk |= pi ↔ σ0 |= pi.
This, in turn, is equivalent to ∃k < |σ| . (k ̸= 0 ∧

∧n
i=1(σk |= pi ↔ σ0 |= pi)) and

thus to ∃k < |σ| .
∧n

i=1(σk |= pi ↔ (∃h . (h < k ∧ h = 0 ∧ σh |= pi))). Therefore,
σ |= O(

∧n
i=0(pi ↔ YO(Ỹ⊥ ∧ pi))). Clearly, |ϕAn

| ∈ O(n). ◀

To prove that An is not expressible in LTLf with formulas of size less than 2Ω(n) (for
any n > 0), we make use of an auxiliary family of languages. For each n > 0, we define the
language Bn over the alphabet 2Σ with Σ = {p0, p1, . . . , pn} as follows:

Bn := {σ ∈ (2Σ)+ | ∃h ≥ 0 . ∃k > h . (
n∧

i=0
(pi ∈ σk ↔ pi ∈ σh))}
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For any n > 0, Bn is the set of finite words over 2Σ containing two (distinct) positions that
agree on the interpretation of all the proposition letters in Σ (cf. Figure 4). Clearly, An ⊆ Bn,
for any n > 0.

σ0
· · ·

σh

· · ·
σk

· · ·
σ|σ|−1

p0
¬p1
p2

p0
¬p1
p2

T

Figure 2 Example of a word σ in B2.

We now show that, if An was expressible in LTLf in space less than exponential in n, then
the property Bn would be expressible in LTLf in space less than exponential as well.

▶ Lemma 5. If there exists a formula of LTLf for An of size less than exponential in n, then
there exists a formula of LTLf for Bn of size less than exponential in n.

Proof. Let ψAn
be a formula of LTLf for An of size less than exponential in n. Consider

the formula F(ψAn
): we prove that its language is exactly Bn. For any σ ∈ (2Σ)+ and for

any n > 0, it holds that σ |= F(ψAn
) iff ∃k ≥ 0 . σ[k,−] |= ψAn

, where σ[k,−] is the suffix of σ
starting from i. This means: ∃k ≥ 0 . ∃h > k . (

∧n
i=0(σk |= pi ↔ σh |= pi)). Equivalently,

σ ∈ Bn. Moreover F(ψAn) belongs to LTLf and it is of size less than exponential in n. ◀

We show that there cannot exist formulas of LTLf (and, in general, of LTLf+P) defining
Bn whose size is less than exponential in n. In order to prove it, we first show that any NFA
accepting Bn is of size at least doubly exponential in n.

▶ Lemma 6. For any n > 0 and for any NFA A over the alphabet 2Σ, if L(A) = Bn then
| A | ∈ 22Ω(n) .

Proof. Let n > 0 and let ⟨a0, . . . , a2n−1⟩ be any permutation of the 2n subsets of {p1, . . . , pn}
(note that this set does not include the proposition letter p0 ∈ Σ). Let K be any subset of
{0, . . . , 2n − 1} and let K be the complement set of K. We define bK

i in this way: bK
i := ai,

if i ∈ K; and bK
i := ai ∪ {p0}, otherwise. We define σK as the sequence ⟨bK

0 , b
K
1 , . . . , b

K
2n−1⟩.

Suppose by contradiction that there exists an NFA A for Bn of size less than doubly
exponential in n. Consider the words σK · σK (obtained by concatenating σK with itself),
σK ·σK (the concatenation of σK with itself), and σK ·σK (the concatenation of σK with σK).
By construction, both σK · σK and σK · σK contain (at least) two positions that agree on the
interpretation of all symbols in Σ and thus they both belong to Bn, while σK · σK contains
no such positions and so it does not belong to Bn. Therefore, for any K ⊆ {0, . . . , 2n − 1}:
1. σK · σK is accepted by A;
2. σK · σK is accepted by A;
3. σK · σK is not accepted by A.
Now let π (resp., π′) be any accepting run of A over the word σK · σK (resp., σK · σK). Let q
(resp., q′) be the 2n-th state of π (resp., π′). Suppose that q = q′ and let π′′ be the sequence
obtained by appending the suffix of π′ starting from its 2n-th state to the prefix of π of
length 2n − 1, i.e.: π′′ := ⟨π0, . . . , π2n−1, π

′
2n , π′

2n+1, . . .⟩. By construction, π′′ is an accepting
run of the automaton A over the word σK · σK , which is a contradiction. Therefore, the
2n-th states of π and π′ must be distinct. This means that the automaton A has to contain
at least a state for choice of K ⊆ {0, . . . , 2n − 1}. Since there are 22n of such possible choices,
this means that A has to contain at least 22Ω(n) states. ◀
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By exploiting the singly exponential translation of LTLf+P formulas into equivalent NFAs
(Proposition 3), we can prove that (for any n > 0) the language Bn is not expressible in
LTLf+P (and, in particular, in LTLf) in space less than exponential.

▶ Lemma 7. For any formula ϕ ∈ LTLf+P, if L(ϕ) = Bn then |ϕ| ∈ 2Ω(n).

Proof. Suppose by contradiction that this does not hold, i.e. there exists a formula ϕ ∈
LTLf+P such that L(ϕ) = Bn and |ϕ| is less than exponential in n. Then, by Proposition 3,
it holds that there exists an NFA A such that L(A) = Bn and | A | is less than doubly
exponential in n, which is a contradiction with Lemma 6. ◀

Directly from Lemmas 5 and 7, it follows that the family of languages An cannot be
expressed in LTLf with formulas of size less than exponential in n.

▶ Theorem 8. For any n > 0 and for any formula ϕ ∈ LTLf , if L(ϕ) = An then |ϕ| ∈ 2Ω(n).

The following corollary is a direct consequence of Lemma 4 and Theorem 8.

▶ Corollary 9. pLTL can be exponentially more succinct than LTLf .

Comparison with Markey’s proof about LTL+P and LTL

In [18], Markey proves that LTL+P can be exponentially more succinct than LTL. In
particular, he exploits the result by Etessami, Vardi, and Wilke [13] that there are no Büchi
automata of size less than doubly exponential for the family of languages In (for all n > 0),
defined as the language of infinite traces in which any two positions that agree on p1, . . . , pn,
agree also on p0.

One could, in principle, use In interpreted over finite trace (let us call it I<ω
n ) to prove

that any NFA recognizing I<ω
n is at least of doubly exponential size in n, and use it as a base

for proving that pLTL can be exponentially more succinct than LTLf . This would require
to restate and reprove the theorem by Etessami, Vardi, and Wilke [13] to work over finite
traces. While we believe this is possible, we followed a simpler (and more useful) path by
showing that there is another family of properties, in our case Bn (which is arguably simpler
than In and I<ω

n ), for which each NFA explodes double-exponentially.

4 LTLf can be exponentially more succinct than pLTL

In this section, we show the second main result of this paper, i.e. that LTLf can be exponentially
more succinct than pLTL. Together with Corollary 9, this shows that LTLf and pLTL, despite
being expressively equivalent, are incomparable when succinctness is considered.

4.1 The Reverse Lemma
We first define the notions of reverse language and reverse logic. Given an alphabet Σ and a
language L ⊆ (2Σ)+ of finite words over 2Σ, we define the reverse language of L as the set:

L− = {σ′ ∈ (2Σ)+ | σ′
i = σn−i, for σ = σ0 . . . σn ∈ L and 0 ≤ i ≤ n}.

We then define reverse logics as follows.

▶ Definition 10 (Reverse Logics). Given two linear-time temporal logics L and L−, we say
that L− is a reverse logic of L iff:
1. for any formula ϕ ∈ L, there is a formula ϕ′ ∈ L− so that L(ϕ) = L(ϕ′)− and |ϕ′| = |ϕ|;
2. for any formula ϕ′ ∈ L−, there is a formula ϕ ∈ L so that L(ϕ′) = L(ϕ)− and |ϕ| = |ϕ′|.

TIME 2023
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Clearly, being a reverse logic is a symmetric property: L is a reverse logic of L− iff L− is
a reverse logic of L.

As an example, consider the logic pLTL and any formula ϕ ∈ pLTL. By replacing in ϕ the
temporal operators Y, Ỹ, S, and T with X, X̃, U, and R, respectively, one obtains a formula
ϕ′ such that: (i) it belongs to LTLf ; (ii) its size is |ϕ|; (iii) it is such that L(ϕ) = L(ϕ′)−.
Therefore, LTLf is a reverse logic of pLTL, and vice versa.

The next lemma proves that, for any two linear-time temporal logics L and L− such that
L is a reverse logic of L−, if a language L with a compact definition in L is not succinctly
definable in L−, then L− (i.e., the reverse language of L) is compactly definable in L−, but
its definitions exponentially blow-up in L.

▶ Lemma 11 (Reverse Lemma). Let L and L− be two linear-time temporal logics such that
L− is a reverse logic of L. Moreover, let ϕ ∈ L be such that, for every ψ ∈ L−, L(ψ) = L(ϕ)
implies |ψ| ∈ 2Ω(|ϕ|). Then, for some ϕ′ ∈ L−, we have: (i) L(ϕ′) = L(ϕ)−; (ii) |ϕ′| = |ϕ|;
and (iii) for every ψ ∈ L, L(ψ) = L(ϕ′) implies |ψ| ∈ 2Ω(|ϕ′|).

Proof. Suppose that ϕ ∈ L is a formula such that, for any ψ ∈ L−, if L(ψ) = L(ϕ)
then |ψ| ∈ 2Ω(|ϕ|). Now suppose by contradiction that for any formula ϕ′ ∈ L′, such that
L(ϕ′) = L(ϕ)− and |ϕ′| = |ϕ|, there exists a formula ψ ∈ L such that L(ψ) = L(ϕ′) and |ψ|
is sub-exponential in |ϕ′|. Since L− is a reverse logic of L, this means that for any formula
ϕ′ ∈ L−, such that L(ϕ′) = L(ϕ)− and |ϕ′| = |ϕ|, there exists a formula ϕR ∈ L and a
formula ψR ∈ L− such that:

L(ϕR)− = L(ϕ′) and thus L(ϕR) = L(ϕ);
L(ψR)− = L(ϕ′) and thus L(ψR) = L(ϕ);
|ϕR| = |ϕ′| and thus |ϕR| = |ϕ|;
|ψR| = |ψ| and thus |ψR| is sub-exponential in |ϕR|.

It follows that for any ϕR ∈ L there exists ψR ∈ L′ such that L(ϕR) = L(ψR) and |ψR| is
sub-exponential in ϕR. But this is a contradiction with the hypothesis. Therefore, it has to
hold that there exists a formula ϕ′ ∈ L′, such that L(ϕ′) = L(ϕ)− and |ϕ′| = |ϕ| and, for all
ψ ∈ L, if L(ψ) = L(ϕ′) then |ψ| ∈ 2Ω(|ϕ′|). ◀

From Lemma 11, one obtains a concrete family of languages that are definable with LTLf
formulas of polynomial size but such that any pLTL formula for them requires at least an
exponential amount of space. In particular, for any n > 0, recall An from the previous
section, and consider A−

n (cf. Figure 3):

A−
n := {σ ∈ (2Σ)+ | ∃k < |σ| − 1 . (

n∧
i=0

(pi ∈ σk ↔ pi ∈ σ|σ|−1))}

σ0
· · ·

σk

· · ·
σ|σ|−1

p0
¬p1
p2

p0
¬p1
p2

T

Figure 3 Example of a word σ in A−
2 .

For each n > 0, A−
n can be expressed in LTLf in space linear in n with the formula

F(
n∧

i=0
(pi ↔ XF(X̃⊥ ∧ pi))).

However, since LTLf is a reverse logic of pLTL, by Lemma 11 every formula of pLTL for A−
n

requires an amount of space at least exponential in n. This leads directly to the following.
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▶ Theorem 12. For any n > 0 and for any formula ϕ ∈ pLTL, if L(ϕ) = A−
n then |ϕ| ∈ 2Ω(n).

▶ Corollary 13. LTLf can be exponentially more succinct than pLTL.

4.2 Some meaningful implications of the incomparability
We have shown that the logics LTLf and pLTL, despite being expressively equivalent (Propos-
ition 1), are incomparable when succinctness is considered. Here below, we point out some
implications of this incomparability that are worth discussing.

Succinctness and Realizability

Realizability is the problem of establishing whether there is a strategy implementing a given
formula. That is, given a formula ϕ ∈ LTLf (resp., ϕ ∈ pLTL) over a set of variables C ∪ U
(with C and U sets of controllable and uncontrollable variables, respectively), the realizability
problem of LTLf (resp., pLTL) is the problem of establishing whether there exists a strategy
s : (2U )+ → 2C such that, for all sequences ⟨U0,U1, . . .⟩ ∈ (2U )+, it holds that there exists
k ∈ N so that the prefix from 0 up to k of ⟨U0 ∪ s(⟨U0⟩),U1 ∪ s(⟨U0,U1⟩), . . .⟩ is a model of ϕ.

Despite having the same expressive power, LTLf and pLTL have different complexity for the
realizability problem: while LTLf realizability is 2EXPTIME-complete [12], pLTL realizability
is EXPTIME-complete [2]. This is due to the fact that, starting from any LTLf formula ϕ of
size n, it is not possible to construct a Deterministic Finite Automaton (DFA) recognizing
L(ϕ) of singly exponential size in n, whereas for pLTL formulas this is possible, thanks to the
fact that “since past already happened”, there is no need to introduce nondeterminism [2,8,9].

In [2], the exponential gap between the two complexities, and the fact that LTLf and pLTL
are expressively equivalent, led to the conjecture that any translation from LTLf formulas
to equivalent pLTL ones requires at least an exponential blowup in the size of the resulting
formulas. The results proved in this paper (in particular Theorem 12) confirm this conjecture:
any translation in pLTL of the LTLf formula F(

∧n
i=0(pi ↔ XF(X̃⊥ ∧ pi))), which defines the

language A−
n , requires at least an exponential blowup.

Succinctness helps in choosing the most convenient formalism for realizability

The succinctness results between LTLf and pLTL can help in choosing the right formalism to
express a property when the time complexity of realizability is considered. As a matter of
fact, consider the family of languages An (Equation (1)), and suppose one wants to solve the
realizability problem for An, for a given partition of the variables p0, . . . , pn into controllable
and uncontrollable. There are two possibilities:

(i) either formalize An in pLTL (in linear size) and use pLTL realizability algorithms (which
are singly exponential in the worst case);

(ii) or formalize the language in LTLf (with at least an exponential blowup, by Theorem 8)
and use LTLf realizability algorithms (which are doubly exponential in the worst case).

While the former point requires only a singly exponential amount of time in the worst case,
the latter requires a triply exponential amount of time, in the worst case. This shows how
the results on the succinctness of LTLf and pLTL can tremendously help choosing the best
performing algorithm.

The fact that LTLf can be exponentially more succinct than pLTL has an important
implication as well. The realizability problem for the family of language A−

n has the same
worst-case time complexity (doubly exponential in n) irrespectively of whether we choose to
formalize A−

n in LTLf or we choose pLTL as the target formalism. In other words, the family
of languages A−

n cancels out the advantages of the past in realizability.
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Translation of LTLf into pLTL

Recall that LTLf and pLTL are expressively equivalent (Proposition 1). To the best of our
knowledge, the most efficient translation of LTLf into pLTL is the one reported in [9] that
performs the following steps:
1. build the corresponding NFA for the initial formula;
2. determinize the NFA into a DFA;
3. build a pLTL formula from the DFA using the Krohn-Rhodes cascaded decomposition [17];
Since all three steps may introduce an exponential blow up in the worst case, the whole
translation is triply exponential in the size of the initial formula. Maler and Pnueli prove
that this translation (in particular the third step) has an exponential lower bound [17]. In
this respect, Corollary 13 proves that any translation from LTLf to pLTL (not only the above
one) has at least an exponential lower bound.

5 Succinctness of safety and cosafety fragments of LTL+P

In this section, we show our last main results, i.e. that, when interpreted over infinite traces,
G(pLTL) can be exponentially more succinct than Safety-LTL, and that F(pLTL) can be
exponentially more succinct than coSafety-LTL.

5.1 G(pLTL) can be exponentially more succinct than Safety-LTL

The proof of this case follows from the result by Markey that LTL+P can be exponentially
more succinct than LTL, when interpreted over infinite traces [18]. In the following, we show
the details of the proof.

Let Σ = {p0, . . . , pn} be a set finite set of proposition symbols. Consider the family
of languages Mn over the alphabet 2Σ proposed by Markey in [18]: for each n > 0, Mn

comprises all and only those infinite traces in which any position of the trace that agrees on
p1, . . . , pn with the initial state also agrees on p0. Formally, for each n > 0, we define:

Mn := {σ ∈ (2Σ)ω | ∀k > 0(∀i, 1 ≤ i ≤ n (pi ∈ σk ↔ pi ∈ σ0) ↔ (p0 ∈ σk ↔ p0 ∈ σ0))}

In [18], Markey proves that, for any n > 0, any formula of LTL expressing Mn is at least of
size exponential in n. Since Safety-LTL is a proper subfragment of LTL (i.e. each Safety-LTL
formula is also an LTL formula), it follows that, for any n > 0, any formula of Safety-LTL
expressing Mn is at least of size exponential in n.

▶ Lemma 14. For any n > 0 and any formula ϕ ∈ Safety-LTL, if L(ϕ) = Mn then |ϕ| ∈ 2Ω(n).

However, for each n > 0, there is a formula in G(pLTL) of size linear in n expressing Mn,
such as the following:

G((
n∧

i=1
(pi ↔ O(Ỹ⊥ ∧ pi))) ↔ (p0 ↔ O(Ỹ⊥ ∧ p0)).)

Note again the crucial role of the subformula Ỹ⊥ for hooking the initial state of the trace.
This theorem directly follows.

▶ Theorem 15. G(pLTL) can be exponentially more succinct than Safety-LTL.
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5.2 F(pLTL) can be exponentially more succinct than coSafety-LTL
We now dualize the previous result to the cosafety case, and obtain the succinctness lower
bound of F(pLTL) with respect to coSafety-LTL. We first prove a more general result on
“dual” temporal logics (which we define here below), and then we instantiate the result to
the specific case of F(pLTL) and G(pLTL). We define dual logics as follows.

▶ Definition 16 (Dual Logics). Given two linear-time temporal logics L and L, we say that
L is a dual logic of L iff:
1. for any formula ϕ ∈ L, the transformation in negation normal form of ¬ϕ (denoted as

nnf(¬ϕ)) belongs to L, and
2. for any formula ϕ ∈ L, the transformation in negation normal form of ¬ϕ (denoted as

nnf(¬ϕ)) belongs to L.
As for the case of reverse logics, also being a dual logic is a symmetric property.

The following lemma proves that duality (as for Definition 16) preserves succinctness.

▶ Lemma 17 (Duality Lemma). For any linear-time temporal logics L and L′, if L can be
exponentially more succinct than L′, then L can be exponentially more succinct than L′,
where L (resp., L′) is a dual logic of L (resp., L′).

Proof. Since by hypothesis L can be exponentially more succinct than L′, there exists a
formula ϕ ∈ L of size n such that, for all ϕ′ ∈ L′, if L(ϕ′) = L(ϕ) than |ϕ′| ∈ 2Ω(n).

Let ϕ be the negation normal form of ¬ϕ, i.e. ϕ = nnf(¬ϕ). By definition:
1. ϕ belongs to L;
2. L(ϕ) = L(¬ϕ); and
3. |ϕ| ∈ O(n).
Suppose by contradiction that the thesis does not hold, that is, for all formulas ψ ∈ L of
size s = |ψ| there exists a formula ψ′ ∈ L′ such that L(ψ) = L(ψ′) and |ψ′| is less than
exponential in s. In particular, for ψ := ϕ, this means that there exists a formula ψ′ in L′

such that L(ψ′) = L(ϕ) and |ψ′| is less than exponential in n (recall that n is the size of ϕ).
Now, let χ′ be the negation normal form of ¬ψ′ in negated normal form. It holds that:

1. χ′ is a formula in L;
2. L(χ′) = L(ϕ); and
3. |χ′| ∈ O(|ψ′|).
Since the size of ψ′ is less than exponential in n, the size of |χ′| is less than exponential
in n as well. This means that L(ϕ) can be defined in L′ with a formula of size less than
exponential in n, which is a contradiction with the hypothesis. ◀

Since, by definition, F(pLTL) and coSafety-LTL are dual logics of G(pLTL) and Safety-LTL,
respectively, by Lemma 17 and Theorem 15, this result follows.

▶ Theorem 18. F(pLTL) can be exponentially more succinct than coSafety-LTL.

5.3 Open Problems
To complete the picture, we give a conjecture on the succinctness of the (co)safety fragments
of LTL. To the best of our knowledge, it is still an open question whether coSafety-LTL (resp.,
Safety-LTL) can be exponentially more succinct than F(pLTL) (resp., G(pLTL)).

We conjecture that coSafety-LTL can be n! (n factorial) more succinct than F(pLTL). Let
Σ = {pi}n

i=1 ∪ {qi}n
i=1 be a finite alphabet. Consider the following family of languages Cn

over the alphabet Σ, where n > 0:

Cn := {σ ∈ (2Σ)ω | ∃k ≥ 0 .
n∧

i=1
(∃h > k . (qi ∈ σh ∧ ∀k ≤ l < h . pi ∈ σl))}.
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For any n > 0, Cn comprises the infinite traces for which there exists a time point k such
that, for each i ∈ {1, . . . , n}, qi will eventually be realized in the future of k and pi holds
until (and excluding) that point (cf. Figure 4).

σ0
· · ·

σk

· · ·
σh2

· · ·
σh0

· · ·
σh1

· · ·
σ|σ|−1

p1
p0
p2 q2 q0 q1

p2

p0

p1

Figure 4 Example of a word σ in C2.

While Cn is definable in coSafety-LTL with a formula of linear size in n, for example
F(

∧n
i=1(pi U qi)), using F(pLTL) one is forced to enumerate all possible orders between

q1, . . . , qn with a formula of this type:

F
( ∨

π∈Π
(qπ(1)∧Y(pπ(1)) S (pπ(1) ∧ qπ(2)∧

Y(pπ(1) ∧ pπ(2)) S (pπ(1) ∧ pπ(2) ∧ qπ(3) ∧ . . .

Y(
n−1∧
i=1

pπ(i)) S (qπ(n) ∧
n∧

i=1
pπ(i))) . . . )))

)
where Π is the set of permutations of {1, . . . , n}. This, in turn, forces the formula to be at
least of size n!.

▶ Conjecture 19. For any n > 0, the language Cn is not expressible in F(pLTL) with a
formula of size less than n!.

We conjecture the same for dual case of Safety-LTL and G(pLTL).

6 Conclusions

We proved the incomparability between the succinctness of LTLf and of pLTL. We started by
proving that the family of properties An admits a formalization in pLTL with formulas of
linear size, while all formulas in LTLf for An are at least of exponential size. By using the
Reverse Lemma, we derived that also the vice versa holds, that is, LTLf can be exponentially
more succinct than pLTL. This result allowed us to confirm the conjecture left open in [2]
about the lower bound for the complexity of translating LTLf into pLTL. We finally showed
that G(pLTL) and F(pLTL) (i.e. the canonical forms of the safety and cosafety fragments of
LTL) can be exponentially more succinct than Safety-LTL and coSafety-LTL, respectively.

The study of the maximal fragment of LTLf that does not incur in the exponential blow-up
in the translation into pLTL is surely a problem worth studying, both for its theoretical
implications and for its applications in reactive synthesis.

Proving Conjecture 19 is also an interesting future direction, which may require more
sophisticated techniques for proving the lower bound, such as Ehrenfeucht-Fraïssé games [22]
or Adler-Immermann games [1].

Finally, while we know that the lower bound between the translation of LTLf into pLTL is
at least exponential, we have an upper bound which is triply exponential. The possibility of
tighter lower bounds, or more efficient algorithms for this problem, is worth investigating.
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Abstract
Community detection is a popular approach to understand the organization of interactions in static
networks. For that purpose, the Clique Percolation Method (CPM), which involves the percolation
of k-cliques, is a well-studied technique that offers several advantages. Besides, studying interactions
that occur over time is useful in various contexts, which can be modeled by the link stream formalism.
The Dynamic Clique Percolation Method (DCPM) has been proposed for extending CPM to temporal
networks.

However, existing implementations are unable to handle massive datasets. We present a novel
algorithm that adapts CPM to link streams, which has the advantage that it allows us to speed up
the computation time with respect to the existing DCPM method. We evaluate it experimentally on
real datasets and show that it scales to massive link streams. For example, it allows to obtain a
complete set of communities in under twenty-five minutes for a dataset with thirty million links,
what the state of the art fails to achieve even after a week of computation. We further show that
our method provides communities similar to DCPM, but slightly more aggregated. We exhibit the
relevance of the obtained communities in real world cases, and show that they provide information
on the importance of vertices in the link streams.
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1 Introduction

Detecting communities in complex networks has been a focus of interest since the early
years of the field to the point that even the number of surveys on the topic is large. While
the first ones aimed at giving a general view of the landscape (e.g., [9]), more recent ones
tend to focus on a particular issue, for instance the underlying purpose of the community
detection [24] or a specific family of networks [16].
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The Clique Percolation Method (CPM) proposed by Palla et al. [20] is a well studied
technique to detect communities in a graph. It is appreciated for the advantages that its
definition confers: the communities are defined locally and in a deterministic way and there
is no need to use heuristics or optimization functions that are hard to interpret. Also,
it allows the communities to overlap each other, by contrast with most other techniques
which lead to a partition of the nodes. It is a desirable property in general as the frontier
between communities is often difficult to decide. While the early implementations were
computationally costly, it was later improved [14, 22] and the most recent one scales up to
graphs with hundreds of millions of nodes and edges [2].

Considering temporal networks, where the structure evolves dynamically, a standard
approach consists in examining them as a sequence of snapshots and run graph community
detection algorithms on each of them. Then, it makes sense to match the communities obtained
from a time step to the next to obtain consistent groups through time [1]. Another approach
following the same purpose is to design communities that ensure cohesive structure continuity
over a time interval [25]. This strategy has been investigated for various applications,
including mobile communication networks [18] or social networks analysis [23]. However, the
instability of many community detection methods makes this task hard to achieve properly [6].
In addition, some works stress the importance of achieving online community detection, in
which case the communities are updated at each time step, by aggregating new information
to the existing communities [7, 21]. If the method is fast enough, it is possible to achieve a
streaming community analysis of the data. However, this type of method often comes at the
cost of losing part of the long term meaning that a community might have.

CPM can be implemented on graph snapshots and avoid instabilities from one step to the
next due to its deterministic nature; it thus appears as a good candidate for the approach
described above. It was in fact proposed quite early on, in [19]; we refer to this approach as
the Dynamic Clique Percolation Method (DCPM). Recently, Boudebza et al. [4] introduced
a faster algorithm to do this, called Online Clique Percolation Method (OCPM). However,
describing a temporal network as a sequence of snapshots has shortcomings. Indeed, it misses
the fact that the time step of analysis chosen is frequently arbitrary, while in general the data
do not exhibit an obvious timescale of analysis. This is why formalisms to describe temporal
networks have been developed to circumvent these limitations [5, 11, 15]. Among those, the
link stream formalism stresses the symmetric roles of structure and time in the representation
of data, and aim at describing temporal networks at the intersection of graph theory and
time series analysis [15]. As the notion of clique has been recently extended to this formalism
and the search for cliques is implemented efficiently [3, 28], it is now possible to investigate
extensions of CPM to link streams. This makes possible to design faster algorithms than
the state-of-the-art DCPM implementations. In this way, we obtain a community detection
technique that can process data online and maintain relevant communities which naturally
spread through time.

This is the main contribution of this paper: we propose an algorithm for this goal as
well as an open source implementation that scales to large link streams 3. In Section 2, we
give the necessary background definitions and notations. Then, we describe our method in
Section 3 and derive an expression of its theoretical complexity; note that this method uses
a novel k-clique enumeration algorithm in link streams. Finally, we provide in Section 4 an
extensive experimental investigation which shows its efficiency on several real-world instances,
compares the obtained communities to the DCPM ones, and illustrates its relevance to draw
information about the data examined.

3 https://gitlab.lip6.fr/baudin/lscpm

https://gitlab.lip6.fr/baudin/lscpm
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2 Definitions and notations

First, we start with some basic reminders about (static) graphs. A graph is a pair G = (V, E),
where V is a set of vertices, and E is a set of edges of the form {u, v}, where u, v ∈ V

and u ̸= v. A k-clique in G is a set of k vertices that are all connected pairwise by an
edge. Finally, the definition of CPM communities is given by the fact that two k-cliques are
adjacent when they have k− 1 vertices in common. Then, a CPM community of G is the set
of vertices belonging to a maximal set of k-cliques that can be reached from one to another
by a series of adjacent k-cliques (it forms a connected component of the graph whose vertices
are the k-cliques of G and edges are defined by the adjacency relation just explained).

2.1 Cliques in link streams
In this article, we work with the link stream model, which represents interactions over time.
Formally, a link stream is a triplet L = (T, V, E) where T is a time interval, V a set of vertices
and E ⊆ T × T × V × V a set of links (b, e, u, v) such that e ≥ b; we call e− b the duration
of such a link. Throughout the paper, we consider link streams with no self-loop, i.e. for any
link (b, e, u, v) ∈ E, then u ̸= v. Moreover, links on the same vertices exist over disjoint time
intervals, i.e. if (b, e, u, v), (b′, e′, u, v) ∈ E, with b ̸= b′ or e ̸= e′, then [b, e] ∩ [b′, e] = ∅.

We use the definition of a clique in a link stream which follows the one in [27], with
a minor difference to avoid cliques over time intervals of null length: a clique is a pair
(C, [t0, t1]), where C ⊆ V , |C| ≥ 2 and t0, t1 ∈ T , t0 < t1, such that for all u, v ∈ C, u ̸= v,
there is a link (b, e, u, v) in E such that [t0, t1] ⊆ [b, e]. A k-clique is a clique containing k

vertices. Notice that if (C, [t0, t1]) is a k-clique, then (C, [t′
0, t′

1]) is also a k-clique for all t′
0, t′

1
such that t0 ≤ t′

0 < t′
1 ≤ t1. We are therefore interested in maximal k-cliques:

▶ Definition 1 (maximal k-clique). For k ∈ [[2, +∞[[, a maximal k-clique is a clique (C, [t0, t1])
having k vertices (|C| = k), and such that its time interval is maximal: there is no t′

0 < t0
nor t′

1 > t1 such that (C, [t′
0, t1]) or (C, [t0, t′

1]) is a clique.

With this definition, we can introduce the notion of k-clique adjacency, which will allow
defining a generalization of CPM communities to link streams: two maximal k-cliques
(C, [t0, t1]) and (C ′, [t′

0, t′
1]) are said to be adjacent if they share k − 1 vertices and overlap

over a time interval with strictly positive length, i.e. , |C∩C ′| = k−1 and |[t0, t1]∩[t′
0, t′

1]| > 0,
where |I| denotes the length of interval I.

2.2 Communities in link streams
In a dynamical context, it is natural to define a temporal community as a set of temporal
vertices of the form (u, I), where u is a vertex, and I is a set of disjoint time intervals, which
are the time intervals during which u is present in the community. Then, the notion of
LSCPM community is similar to the one of CPM community in graphs, but with the notion
of maximal k-clique adjacency adapted to link streams:

▶ Definition 2 (LSCPM community). A LSCPM community is a temporal community whose
temporal vertices belong to a maximal set of k-cliques that can be reached from one to another
by a series of adjacent k-cliques.

A few observations can be made about this definition. First, as k increases, the communit-
ies may only split and/or lose temporal vertices. In other words, if k1 < k2, each community
computed with k2 is included in a community computed with k1. This property is illustrated
and further discussed in Section 4.5.

TIME 2023
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Second, let us recall the definition of the dynamic CPM (DCPM) communities introduced
in [19]. The idea is to compute the CPM communities at each snapshot. Then, comparing the
communities obtained for two consecutive snapshots allows finding whether each community
evolves by gaining vertices, losing vertices, dying (disappearing or merging with a larger
one), or being born (appearing or being detached from a larger one). Notice that DCPM
communities can be considered as temporal communities: given two consecutive snapshots
at ti and ti+1, a vertex of a CPM community at ti belongs to the DCPM community on
[ti, ti+1[. Most importantly, a LSCPM community is a union of DCPM communities. Indeed,
the temporal vertices of a CPM community in a snapshot are all included in a same LSCPM
community; and a CPM community that gains or loses vertices from one snapshot to the
next remain included in the same LSCPM community. Note that two DCPM communities
that are merged (resp. split) in the next snapshot belong to the same LSCPM community.

To illustrate these definitions, we show in Figure 1a an example of a link stream, with time
on the X-axis and vertices on the Y-axis. Links are represented as connections between two
vertices, and the horizontal line indicate their duration. For example, there is a link between
vertices c and d over the time interval [1, 13]. In Figure 1b, we represent its maximal k-cliques
in color, in Figure 1c its LSCPM communities, and in Figure 1d its DCPM communities.
The background of each vertex is colored according to the time during which it belongs to its
clique or community. Notice that the red LSCPM community is composed of three DCPM
communities: the red one, but also the green one because {e, f, g} is not adjacent to {c, d, e}
at time t = 3; and the purple one because {e, f, g} is no longer adjacent to {d, e, f} for t ≥ 9.

(a) Example of a link stream. (b) Link stream of Figure 1a and all its maximal
3-cliques in color.

(c) Link stream of Figure 1a and its two LSCPM
communities in color.

(d) Link stream of Figure 1a and its four DCPM
communities in color.

Figure 1 Example of a link stream with its maximal k-cliques for k = 3 and the associated
LSCPM communities and DCPM communities.

3 Algorithms

Our main idea to compute efficiently LSCPM communities in link streams is to use techniques
similar to those developed for enumerating maximal cliques in link streams [3, 28]. Indeed,
it is possible to enumerate k-cliques in a link stream efficiently by going through each link
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only once and aggregate adjacent ones using a temporal Union-Find data structure. In
the DCPM case however, the comparison of communities at each time step to detect their
evolution is more demanding. We present an algorithm to efficiently enumerate k-cliques in
Section 3.1. We then adapt the best existing method for computing CPM communities, and
propose an efficient algorithm that, given as input the k-cliques of a link stream, computes
its communities, in Section 3.2.

3.1 k-clique enumeration algorithm in link streams
We take inspiration from our recent work [3] which enumerates the maximal cliques to design
the algorithm for enumerating k-cliques in a link stream. The key idea is to use graph
k-clique enumeration, as very efficient algorithms have been designed for this task [8]. Then,
we compute the starting and ending time of each induced maximal k-clique in the link stream.

Algorithm 1 k-clique enumeration in link streams.

Input: Link stream L = (T, V, E); k ∈ [[3, +∞[[.
Output: All k-cliques of L without duplicates.

1 G← empty graph
2 E ← empty associative array // E associates ending times to edges
3 for (b, e, u, v) ∈ E sorted by increasing b do
4 Add edge {u, v} to G

5 E(u, v)← e // Record the ending time of {u, v}
6 Remove from G all edges {x, y} with E(x, y) < b

7 GCliques← all k-cliques of G containing u and v

8 for C ∈ GCliques do
9 end← min

x,y∈C
(E(x, y))

10 output k-clique (C, [b, end])

Algorithm 1 lists all the maximal k-cliques. It starts from an empty graph (Line 1), and
processes the link stream in chronological order (Line 3). For each link (b, e, u, v), it updates
the graph (Lines 4 to 6). Then, it enumerates the maximal k-cliques containing u and v

induced by the links seen up till then. They match the static k-cliques in G that contain u

and v (Line 7). Finally, each of these maximal k-clique starts at b, because the link between
u and v does not exist before b, and lasts as long as all its links exist, so its ending time is
the minimum of the ending times of the edges composing it (Line 9).

The complexity of Algorithm 1 is given by Theorem 3. Its proof is given in Appendix.

▶ Theorem 3 (k-clique enumeration time complexity). Algorithm 1 enumerates all k-cliques
of the input link stream in time O

(
m · k3 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
, where m is the

number of links and d the maximal degree of a node, that is its maximal number of neighbors
at any given time.

The largest factor in this complexity is m. d can in theory be large with respect to m

but, since it is the maximal number of neighbors of a node at any given time, it is small in
practice. It is therefore the value of k that determines how efficient the enumeration can be,
as the factors k3 and

(
d
2
)k−2 show that this method remains efficient only for small values

of k.
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3.2 LSCPM: CPM algorithm in link streams
To the best of our knowledge, the most efficient algorithmic implementation of CPM in
graphs is [2]. In a few words, this algorithm stores each CPM community as the set of the
(k − 1)-cliques composing its k-cliques. It builds these sets on the fly, by processing each
k-clique one by one, testing to which community each of its (k − 1)-cliques currently belongs.
Then, it merges these communities or creates a new one if needed. For this purpose, the
algorithm uses a Union-Find data structure, as it is efficient to do these operations. It is a
forest of trees, where each node corresponds to a (k− 1)-clique, and each tree corresponds to
a CPM community, identified by its root. It has three intrinsic functions: UF.Find(id) that
returns the root of the tree containing the node id, UF.Union(p,q) that performs the union of
two trees by connecting their roots and returns the root of the new tree, and UF.MakeSet()
which creates a new tree on a new root q, and returns this root.

We take inspiration from the algorithm above to extend the percolation of k-cliques
to its definition in link streams. The procedure is given in Algorithm 2 and follows a
similar logic: each LSCPM community is stored as the set of the temporal (k − 1)-cliques
of its maximal k-cliques. A (k − 1)-clique of a maximal k-clique (Ck, [t0, t1]) is of the form
(Ck−1, [t0, t1]), with Ck−1 ⊆ Ck containing k−1 vertices. These communities are constructed
on the fly, by processing each maximal k-clique one by one, following the chronological
order of their starting time, given by Algorithm 1. For each maximal k-clique (Ck, [t0, t1])
(Line 5), Algorithm 2 checks the community to which each of its (k− 1)-clique belongs on an
interval that (strictly) intersects [t0, t1] if it exists (Line 10), or creates a new one if needed
(Line 16), then merges them (Lines 13 and 17). It also extends the membership duration
of the (k − 1)-cliques in case they did not belong to this community until t1 (Line 11).
To do so, in addition to the Union-Find structure UF, we use an associative array TimeUF,
which associates each Ck−1 to a list of elements of the form (id, [t0, t1]), where id is the
identifier of a Union-Find element and [t0, t1] is the interval during which Ck−1 belongs to
the community of id. In these lists, the intervals are disjoint, and the pairs are sorted in
ascending chronological order. Each list is initialized to [(-1,-1,-1)] (Lines 3 and 4), meaning
that the corresponding Ck−1 has not yet been added to any community. Figure 2 gives an
example of the update of TimeUF and UF structures, when applying Algorithm 2 to the link
stream of Figure 1.

Finally, we need to transform the Union-Find structure into the adequate format to get
the output as a temporal community. This is done with a loop through the elements of
TimeUF. Each one is of the form Ck−1 → I, where Ck−1 is a set of k − 1 vertices, and I is a
list of pairs (id, [t0, t1]) corresponding to a Union-Find element and a time interval. Each
Union-Find element belongs to a single set, which is one of the LSCPM communities and that
we obtain with the Find procedure. We then add each vertex of Ck−1 to this community, on
the time interval [t0, t1].

The complexity of Algorithm 2 is given by Theorem 4 (demonstrated in Appendix). Note
that Algorithm 2 takes as input the set of (k−1)- and k-cliques of the link stream. Therefore,
the total complexity given in Theorem 4 takes into account the time needed to perform their
enumeration as well as the time needed to compute the communities.

▶ Theorem 4 (LSCPM time complexity). The time complexity of Algorithm 2 is in
O ((k + α(nk)) · k · nk + c(k)), where α is the inverse Ackermann function, nk the num-
ber of k-cliques of the link stream, and c(k) the complexity of enumerating k-cliques, given in
Theorem 3. It is thus in O

(
(k + α(nk)) ·m · k2 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
.

This complexity is expressed with the inverse Ackermann function α, which is known to
grow extremely slowly, and can be considered as a constant at the scale of our data. Thus,
we see from this theorem that the time complexity is close to O

(
k2 · nk + c(k)

)
. This shows



A. Baudin, L. Tabourier, and C. Magnien 3:7

Algorithm 2 Clique Percolation Method in link streams (LSCPM).

Input: (k − 1)-cliques then k-cliques of a link stream L = (T, V, E); k ∈ [[3, +∞[[.
Output: Union-Find structure representing all LSCPM communities of L.

1 UF ← empty Union-Find data structure
2 TimeUF ← empty associative array
3 for each maximal (k − 1)-clique (Ck−1, [t0, t1]) of L do
4 TimeUF[Ck−1]← [(−1,−1,−1)]
5 for each maximal k-clique (Ck, [t0, t1]) of L, sorted by increasing t0 do
6 p← −1
7 for each u ∈ Ck do
8 Ck−1 ← Ck \ {u}
9 (id, [t′

0, t′
1])← last element of TimeUF[Ck−1]

10 if t0 < t′
1 then // is in the current community

11 last element of TimeUF[Ck−1] ← (id, [t′
0, max(t1, t′

1)])
12 q ← UF.Find(id)
13 p← UF.Union(p, q) // merge with other (k − 1)-cliques

14 else // not yet or no longer in the community
15 if p = −1 then
16 p← UF.MakeSet()

17 Append (p, [t0, t1]) to TimeUF[Ck−1] // add to community of p

TimeUF[{d, f}] = [ ]
TimeUF[{c, d}] = [(i1, [2, 13])]
TimeUF[{c, e}] = [(i1, [2, 13])]
TimeUF[{d, e}] = [(i1, [2, 13])]

TimeUF[{e, f}] = [(i2, [3, 5])]
TimeUF[{e, g}] = [(i2, [3, 5])]
TimeUF[{f, g}] = [(i2, [3, 5])]

UF: i1 i2

(a) After processing the
3-clique: ({e, f, g}, [3, 5]))

TimeUF[{d, f}] = [(i1, [4, 9])]
TimeUF[{c, d}] = [(i1, [2, 13])]
TimeUF[{c, e}] = [(i1, [2, 13])]

TimeUF[{d, e}] = [(i1, [2, 13])]
TimeUF[{e, f}] = [(i2, [3, 9])]

TimeUF[{e, g}] = [(i2, [3, 5])]
TimeUF[{f, g}] = [(i2, [3, 5])]

UF: i1 i2

(b) After processing the
3-clique: ({d, e, f}, [4, 9]))

TimeUF[{d, f}] = [(i1, [4, 9])]
TimeUF[{c, d}] = [(i1, [2, 13])]
TimeUF[{c, e}] = [(i1, [2, 13])]
TimeUF[{d, e}] = [(i1, [2, 13])]

TimeUF[{e, f}] = [(i2, [3, 12])]
TimeUF[{e, g}] = [(i2, [3, 5]), (i1, [8, 12])]
TimeUF[{f, g}] = [(i2, [3, 5]), (i1, [8, 12])]

UF: i1 i2

(c) After processing the 3-clique:
({e, f, g}, [8, 12]))

Figure 2 Example of updates of TimeUF and UF of Algorithm 2, during the processing of the
second, third and fourth 3-cliques of the link stream of Figure 1. Note that all lists in TimeUF begin
by a (−1, −1, −1) triplet which we omit for readability. We show only the part of TimeUF relevant
to the cliques under study. At each time step, the (k − 1)-cliques corresponding to the added clique
are shown in red. In 2a, three (k − 1)-cliques are added to the structure. In 2b, communities of
i1 and i2 are merged, as the k-clique contains one (k − 1)-clique in i1 and another in i2; also one
(k − 1)-clique is added: {d, f}, one is extended in time: {e, f}, and one remains unchanged because
it is already present in the community over a longer time interval: {d, e}. In 2c, one (k − 1)-clique is
extended in time: {e, f}, and as the other two, {e, g} and {f, g}, were not in the community any
more, they are re-added over the time interval of the k-clique [8, 12]. At the end of the process, the
structure matches the information represented by the red LSCPM community of Figure 1.

that our algorithm is efficient in the way each k-clique is processed, once the k-cliques have
been computed. Indeed, each k-clique contains k (k − 1)-cliques, and therefore it is not
possible to process them in less than k · nk operations, using an approach similar to ours.
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The second part of the theorem is obtained by replacing c(k) by the expression of
Theorem 3 and nk by a bound on its value. If we do not take into account the factor
α(nk), the complexity is in O

(
k3 ·m ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
. As noted above, this

complexity depends almost linearly on m and the factor d is small in practice. Nevertheless,
the cubic factor in k and the

(
d
2
)k−2 make it manageable only for small values of k. We will

see in Section 4 that small values of k allow for a fast building of the communities and are
sufficient to observe interesting properties of the datasets.

In practice, Algorithm 2 needs to store in memory all the (k − 1)-cliques in the link
stream. It can be limiting, for example if the input dataset contains a very large clique. For
instance, if there is a clique of size 1000, and that we are looking for 6-clique communities,
then there are more than 1015 5-cliques to store from this large clique. Still, data from
real-world interactions are known not to exhibit many large cliques, which makes the k-clique
approach interesting for their study, and this memory feature has not been prohibitive during
our experiments.

4 Experiments

For the experimental study, we implemented our algorithm in Python and the code is
available online 4. Throughout this section, we set k = 3 unless otherwise specified. We will
see that this value allows for a fast computation while being sufficient to provide interesting
information on the datasets. Also, we present in Section 4.5 the impact of increasing k on
the community structures, which induces smaller communities and therefore allows targeting
their core, with more or less strength depending on the value by which k has been increased.

4.1 Datasets
We run our experiments on real-world link streams of various sizes and types of interactions.
Even though many datasets consist of links with duration, in many cases these data are
registered with regular discrete time intervals, because of the practical data acquisition
protocol. This is the case for instance of proximity between individuals data, usually
captured using RFID tags. Therefore, currently there is a larger range of publicly available
instantaneous link streams with links of the form (t, u, v), where u and v are vertices
interacting at time t. So, we transform these link streams by adding a duration ∆ creating
links of the form (t, t + ∆, u, v). Note that the value of ∆ will impact the number and
extension of cliques in the link stream. Practically, we choose uniform ∆ values which are
consistent with the typical time scales of the interactions considered for the datasets under
study. These values, while consistent, remain arbitrary, and we use them to demonstrate
the efficiency and relevance of our algorithm. Users can adjust the values according to their
requirements and to the nature of the studied datasets.

The datasets on which we performed the experiments are described in Table 1. Households
is a link stream representing contacts between members of five households in rural Kenya in
2012 [13]; Highschool corresponds to contacts between students of five classes of a preparatory
school in Marseilles (France) during one week in 2012 [10] and Infectious consists of contacts
between visitors to a museum in Dublin (Ireland) in 2009 [12]. These three datasets represent
contacts between individuals, for which we have chosen to take a link duration ∆ = 1 hour.
The Foursquare dataset is extracted from the eponymous application, where users check-in in

4 https://gitlab.lip6.fr/baudin/lscpm

https://gitlab.lip6.fr/baudin/lscpm
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venues that they visit, located in New-York City in our case [29]. It can thus be represented
as a bipartite link stream between visitors and locations, where timestamps correspond to
the check-in time. In this link stream, we set ∆ = 6 hours, then we project it on the set of
locations: if a user is connected to two locations over an overlapping time interval, this will
create a link between these locations during the overlap. If the time interval of two links
created in this way overlap, they are merged into a single link over the union of the initial
time intervals. Finally, we use the link stream Wikipedia, which represents links between
Wikipedia pages, timestamped by the time of the link creation, over several years in the
2000s [17]. We choose a ∆ = 1 week duration, essentially to explore how our method scales
to massive link streams.

Table 1 Link stream datasets. ∆ is the link duration, m the number of links, d the maximal
degree, n the number of nodes, D the total duration from the first to the last link and r the time
resolution, that is the smallest duration between the beginning of two links.

Link stream ∆ m n d D r

Households 1 hour 2,136 75 19 3 days 1 hour
Highschool 1 hour 5,528 180 18 8 days 20s
Infectious 1 hour 44,658 10,972 43 3 months 5 min
Foursquare 6 hours 268,472 33,153 81 10 months 15 min
Wikipedia 1 week 38,953,380 1,870,709 33,217 2.3 years 20s

The link stream parameter that affects most dramatically the running time of the
community detection is its number of k-cliques nk, as the complexity depends strongly on
k and nk according to Theorem 4. In Table 2, we report the number of k-cliques for each
dataset, for k ranging from 3 to 7. It allows anticipating the differences in computation time
between the datasets, which are detailed in Section 4.2. We notice that for large datasets, nk

increases with k, certainly because these datasets contain some large cliques. Indeed, within
a clique containing c vertices, there are

(
c
k

)
cliques with k vertices, and that quantity grows

with k (as long as k ≤ c
2 ). In particular, Foursquare is a projection of a bipartite network,

and projections are known to contain many large cliques.

Table 2 Number of k-cliques (nk) for each dataset and for k from 3 to 7.

Link stream k = 3 k = 4 k = 5 k = 6 k = 7
Households 3,951 4,721 3,929 2,324 987
Highschool 2,468 583 97 11 1
Infectious 79,836 128,157 202,181 274,181 300,850
Foursquare 571,768 2,423,011 17,823,050 155,466,085 1,302,290,726
Wikipedia 3,757,877 1,148,832 1,763,386 4,545,105 11,853,134

4.2 LSCPM: faster and scaling to massive real-world link streams
We now compare our algorithm to the DCPM one in terms of running time. Note that the
comparison focuses on the running time and not on the complexity as the complexity of
the DCPM method or the existing OCPM implementation are not given by their authors.
In our implementation, the k-cliques are streamed to the standard input of the LSCPM
algorithm, which reads them as the enumeration proceeds. These two operations are done
on two different threads; but for comparison purposes with the DCPM running time, we
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measure its computation time as the sum of the time spent on each of these two threads.
The DCPM runtime is provided by the best implementation available [4]. We refer to this
implementation as OCPM (standing for Online CPM). We performed all the experiments on
a Linux machine, equipped with two processors Intel Xeon Silver 4210R with twenty cores
each, at 2.40Ghz, and with 252Gb of RAM.

Table 3 presents the computation times of communities with the OCPM implementation
of DCPM and our LSCPM implementation, on all the datasets of Table 1, for k from 3 to 7.
These values are also plotted in Figure 3 for readability purposes. We observe that LSCPM is
significantly faster, particularly on more massive datasets. For example, with k = 3 or k = 4,
it takes a few seconds with LSCPM to compute the Foursquare communities, while it takes a
few hours with OCPM. Moreover, for the massive Wikipedia link stream, OCPM is unable to
compute the set of communities in a week, while our algorithm provides the communities in
less than 30 minutes for all k values tested. Our algorithm thus allows to study a community
structure in massive datasets for which the state of the art does not provide a result.

Table 3 Time computation of communities in seconds with both OCPM and LSCPM, for all our
datasets, with k varying from 3 to 7. The symbol “-” means that the computation time exceeds one
week.

k = 3 k = 4 k = 5 k = 6 k = 7
Link stream OCPM LSCPM OCPM LSCPM OCPM LSCPM OCPM LSCPM OCPM LSCPM
Households 1.5s 0.1s 1.0s 0.1s 0.7s 0.2s 0.6s 0.2s 0.5s 0.2s
Highschool 3.6s 0.1s 1.9s 0.1s 1.6s 0.1s 1.3s 0.1s 1.3s 0.1s
Infectious 10min49s 1.4s 6min12s 3.3s 3min58s 6.2s 3min02s 17.2s 2min30s 16.2s
Foursquare 3h01min 9.2s 2h28min 43s 2h12min 6min39s 2h08min 1h15mins 2h07min 12h35min
Wikipedia - 13min44s - 15min29s - 15min44s - 17min38s - 23min39s
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Figure 3 Line charts of the running times of OCPM and LSCPM for each dataset. Values are
those in Table 3.

Another point of interest is that the LSCPM computation time increases with k, while it
decreases with OCPM. This comes from the fact that OCPM implementation obtains its
results by aggregating the maximal cliques of size at least k, while our method enumerates
k-cliques. With larger k, there are fewer maximal cliques to enumerate and process, hence
the decreasing computation time. By contrast, we have seen in Section 4.1 that nk typically
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increases with k for larger datasets, which implies that the computation time of LSCPM
increases too according to Theorem 4. Notice however that in spite of this, there is only one
instance where OCPM is faster than LSCPM: Foursquare link stream with k = 7, which as
we have seen as a very large number of k-cliques.

4.3 Comparison between LSCPM and DCPM communities
In what follows, we compare the communities obtained with our LSCPM algorithm to those
obtained with DCPM, on the four datasets where the OCPM implementation provides a
result. Note that, up to our knowledge, there is no reference method to compare overlapping
temporal communities. So we do not use tools such as NMI or Rand index which are designed
for comparing partitions of vertices in a graph and thus would require some adaptation to
the context considered in this paper. We have seen in Section 2 that each DCPM community
is included in a LSCPM one and, conversely, that each LSCPM community can be seen as
the union of DCPM communities. This property is illustrated in Figure 4 (left), which gives
an example of a LSCPM community from Infectious dataset, with k = 3 using the python
package tnetwork 5. Vertices are represented on the Y-axis, time on the X-axis, and each
vertex belongs to the community over the period during which it is colored. Each of the
DCPM communities included in this LSCPM community is represented in a different color.
In what follows, we investigate to what extent DCPM communities are grouped into LSCPM
communities.

Figure 4 Composition of LSCPM communities in terms of DCPM communities, with k = 3. Left:
a LSCPM community of Infectious, and the DCPM communities included in it (one color each).
Center: cumulative distribution of the relative size (in number of vertices) of the largest DCPM
community to the corresponding LSCPM community. Right: cumulative distribution of the number
of DCPM community per LSCPM community.

To evaluate the similarity between a LSCPM community and the DCPM communities
that it contains, we compute the relative size (in number of vertices) of the largest DCPM
community that each LSCPM community contains. Figure 4 (center) reports the cumulative
distribution of this value. We see a clear peak at the end, which shows that for all datasets,
90% of the LSCPM communities contain as many vertices as their largest DCPM community,
which is the case of the example in Figure 4 (left). Only 1% of LSCPM communities have
its largest DCPM community with less than 70% of the vertices, and none have its largest
DCPM community with less than 50%.

We also observe that there are only a few DCPM communities per LSCPM community. It
is illustrated in Figure 4 (right), which represents the cumulative distribution of the number
of DCPM communities that each LSCPM community contains. In all cases, more than 70%

5 https://tnetwork.readthedocs.io/
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of LSCPM communities contain only 1 or 2 DCPM communities, and almost never more
than 10. However, there are some exceptions: in Highschool, 2.6% of the communities contain
between 10 and 26 DCPM communities, and in Infectious, 1.8% of LSCPM communities
contain between 50 and 115 DCPM communities.

Besides, we observe that there are fewer small LSCPM communities than DCPM ones:
considering communities with 5 or fewer vertices, we observe that Households has 17% more
DCPM communities than LSCPM, Highschool has twice as many and Infectious has six
times as many, (however, the sets of LSCPM and DCPM communities are very similar
for Foursquare). This indicates that small DCPM communities tend to be aggregated into
larger LSCPM ones, as observed in the example of Figure 4 (left). These observations give
the typical scheme of how LSCPM communities compare to the DCPM ones: a LSCPM
community is in general composed of one large DCPM community which contains almost
all the vertices, and possibly a few residual communities. It also indicates that most of the
meaning conveyed by the communities obtained in both cases should be closely related, but
LSCPM method allows streamlining the community analysis by aggregating the smaller, less
meaningful, communities into the larger ones.

4.4 Insights on LSCPM communities
To investigate the relevance of the temporal communities obtained, we have at our disposal
metadata retrieved from the dataset repositories: families of Households, class of Highschool,
and GPS coordinates of locations in Foursquare.

In the case of the Households and Highschool datasets, which are based on person-to-person
interactions, we observe that the communities are homogeneous in terms of these categories,
as could be expected. Indeed, in the case of Households dataset, 95% of communities are
composed of members of only one family, and the remaining 5% of two families. In Highschool,
70% of communities are composed of only one class, 23% of two classes, 6% of three classes,
and 1% of four classes.

Moreover, this metadata provides interesting insight on interactions at the individual level
over time, pointing out who socializes with whom and when. For instance, Figure 5 (left) is
a community of Households, composed of 5 members of a family (in green) and 17 members
of another (in blue). It highlights the existence of an at most one hour gathering between all
these people except one. Similarly, Figure 5 (center) shows a community where we observe
members of three different classes of Highschool, which are the three physics major classes of
the preparatory school. We distinguish three time periods: during the first one, students
from the three classes are grouped together, which suggests a period when students can meet
and mix. Then, the community reduces to a few nodes of the orange class, later joined by an
additional group of students, which might indicate the proximity of the students during the
courses or working groups.

Concerning Foursquare, we can use the metadata to investigate the geographical distribu-
tion of locations which are visited by the same individuals within a ∆ period. Figure 5 (right)
shows a map of a part of New-York City displaying a sample of four LSCPM communities. We
observe that some of them are relatively clustered geographically, such as the green one, while
others are more extended, which happens when one or several persons move from one part of
the city to another within a ∆ period. Thus here, ∆ allows tuning the geographical extension
of the communities, as lower ∆ should correspond to smaller geographical extensions.

It may also be relevant to evaluate the involvement of vertices in the communities that
they belong to. Indeed, some vertices are active longer than others or belong to more
communities, so it makes it possible to identify particularly important nodes in a group or
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Figure 5 Examples of LSCPM communities using the metadata of the datasets. Left: a community
of Households with vertices colored according to the family. Center: a community of Highschool with
vertices colored according to the class. Right: a map of Manhattan (NYC), where four Foursquare
communities are represented in different colors.

nodes which act as bridges between groups. Figure 6 illustrates these two aspects: it is the
cumulative distribution of the number of communities to which each vertex belongs. Points
on the far left correspond to vertices that belong to no community at all. In this regard, the
various datasets yield very different results. For example, in Foursquare, around 20% of the
vertices do not belong to any community; it corresponds to locations where users rarely visit
other places over the time period considered. We observe this for some specific locations such
as medical centers, offices, playgrounds... By contrast, in Households, each vertex belongs to
at least two communities, which is reasonable as it is a contact network between members of
a same household, so they are in contact with each other a lot. In Highschool, we see that
most nodes belong to many communities, which also makes sense, as students are grouped
in classes, and each day makes new LSCPM communities. Finally, vertices that belong to
many communities are on the far right of the distribution. It is striking on Foursquare, where
almost 10% of vertices belong to more than 10 communities, and a few to more than 100.
These can be described as central nodes of the link stream, which interact with many other
nodes throughout the period of observation. For example, the location of Foursquare that
belongs to the most communities by far (1.5 times more than the second) is the famous
Pennsylvania Station, which is the main intercity train station of New York City.

Figure 6 Number of communities to which each vertex belongs, as a cumulative distribution.
Note that the X-axis is in logarithmic scale, except between 0 and 1, in order to show vertices that
belong to no community.

4.5 Influence of k on the community structure
The size k of the cliques at the base of the LSCPM communities is the key parameter of the
algorithm. Here, we discuss the effect of increasing k on the community structure, in order
to give an intuition to the user as to the choice to make for this value.
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As we saw in Section 2, if k1 < k2, then each community computed with k2 is included in
a community computed with k1. This means that increasing k results in the communities
splitting and/or loosing temporal vertices. Figure 7 gives an example of this phenomenon on
a community of the Foursquare dataset: from left to right we see the community computed
with k = 3 and how it splits and looses nodes when increasing k up to 7. We observe that
the community remains almost identical for k = 4, and that it splits into three communities
for k = 5, and one of these smaller communities split again for k = 7. We also observe that
some nodes which belong to the community for k = 3 at a given time do not belong to any
of the resulting communities at this time for larger values of k. Thus, increasing k leads to
more cohesive communities, but smaller in size and time extension. This allows to change
the granularity of the dynamical communities that can be obtained on a dataset by focusing
on the “core” of the interactions.

Figure 7 Split of a Foursquare community as k increases from k = 3 to k = 7.

This allows to identify consistent sub-communities when metadata is available. For
instance, the vertices of the Foursquare community of Figure 7 correspond to 6 types of
locations (out of the 261 available), all sport-related: Athletic-&-Sport, Bike-Shop, Stadium,
Sporting-Goods-Shop, Gym-/-Fitness-Center, Motorcycle-Shop (most other communities
exhibit more diverse labels). We investigate if the splitting of communities when k increases
corresponds to more precise types of locations. For k = 5, the green community has the 6
type labels, but nodes of the blue and red ones only have 3 labels: Sporting-Goods-Shop,
Gym-/-Fitness-Center and Bike-Shop. Also, for k = 7, the green community splits into
two parts, one of which focuses on two-wheeled sports: Motorcycle, Bike, Stadium, which
highlights that the decomposition allows to derive the shared interests of the users.

5 Conclusion and perspectives

In this paper, we address the detection of dynamic communities in temporal networks, using
the link stream formalism. Using the literature of the field, we introduced the notion of
maximal k-clique of a link stream, with an algorithm to enumerate them. This leads to a new
adaptation of the Clique Percolation Method to dynamical networks, called LSCPM, which
pursues the work initiated by [19]. We provided a theoretical analysis of the complexity of
our algorithm, as well as an open source implementation in Python. Then, we experimented
with the algorithm, comparing it to the state of the art, and showed that it allows to obtain
possibly relevant information on real-world examples.

We believe that the community detection with LSCPM can scale to even more massive
networks and larger values of k. For instance, as memory consumption can be a limiting
factor on massive streams because of the clique storage, the work done in [2] to reduce the
RAM cost of the CPM method on graphs could be adapted to link streams. Also, it could be
better in some cases to percolate maximal cliques instead of k-cliques, as done in OCPM [4],
using efficient maximal clique enumeration methods in link streams such as [3]. In particular,
we have seen that this may be an efficient alternative for larger k values.
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Moreover, it would be interesting to develop the analysis of the effect of link duration ∆
and its practical implications. Indeed, when ∆ increases, the k-cliques grow longer, resulting
in more aggregated LSCPM communities. This is the opposite effect of what happens when
we increase k. We believe that the experimental study can be extended by testing the
simultaneous tuning of these two parameters, to see how the communities are structured,
and if this allows targeting relevant interaction cores in particular.

Finally, we believe that it is possible to adapt the algorithm for enumerating k-cliques in
link streams, into a more general framework of temporal motif listing. Indeed, the call of
the algorithm to enumerate graph cliques could be replaced in principle by any other motif
mining algorithm in a graph, resulting in a related temporal motif. This paves the way to
novel and efficient pattern mining algorithms in temporal networks.
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A Proofs for Section 3 (Algorithms)

▶ Theorem 3 (k-clique enumeration time complexity). Algorithm 1 enumerates all k-cliques
of the input link stream in time O

(
m · k3 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
, where m is the

number of links and d the maximal degree of a node, that is its maximal number of neighbors
at any given time.

Proof. First, we show that the update of G from Lines 4 to 6 is done in O (m · log(m)) in the
whole loop of Line 3. G is stored as an associative array, associating to each vertex the set of
its neighbors, so the addition of an edge at Line 4 is done in constant time. Line 5 is also
done in constant time. Finding all edges that have an ending time smaller than b (Line 6)
can be done by maintaining a sorted list of the end times of links in G, which can be done
in O (log(m)) for each new link. Then, the deletion itself is done in constant time by going
through this list. The global complexity is therefore in O (m · log(m) + m) = O (m · log(m)).

Consider an iteration of the loop starting at Line 3 and (b, e, u, v) its associated link. We
need to compute all k-cliques of G containing u and v. This is equivalent to computing
the (k − 2)-cliques of the graph induced by the common neighbors of u and v, that we note
G(N(u) ∩ N(v)). Computing this induced subgraph is done in O

(
d2)

. Then, the overall
complexity of these operations over all iterations is in O

(
m · d2)

.
Enumerating the (k− 2)-cliques of G(N(u)∩N(v)) depends on the value of k. If k = 3 it

consists in enumerating vertices, which is in O (d). If k = 4, it is enumerating the edges, in
O

(
d2)

. If k ≥ 4, then we use the k-clique enumeration algorithm in graphs described in [8].
In that paper, Theorem 5.7 gives the complexity of enumeration in O

(
k ·m ·

(
d
2
)k−2)

. Thus,

the (k − 2)-clique enumeration is in O
(

(k − 2) · d2 ·
(

d
2
)k−4)

and the overall complexity of

Line 7 is in O
(

k ·
(

d
2
)k−2)

, for any value of k. Note that this value sets an upper bound on
the number of k-cliques enumerated by the loop iteration. Each of these k-cliques is then
processed by the loop at Line 8, in O (k · (k − 1)) = O

(
k2)

. Then, the total complexity of
these operations in the iteration is in O

(
k3 ·

(
d
2
)k−2)

, it is thus in O
(

m · k3 ·
(

d
2
)k−2)

for
the entire loop.

Combining the cost of the above operations finally gives the result. Note that this result
can be slightly refined by keeping k ·(k−1) ·(k−2) instead of k3, which may have a significant
impact, since k values are usually small (typically ≤ 10). ◀

▶ Theorem 4 (LSCPM time complexity). The time complexity of Algorithm 2 is in
O ((k + α(nk)) · k · nk + c(k)), where α is the inverse Ackermann function, nk the num-
ber of k-cliques of the link stream, and c(k) the complexity of enumerating k-cliques, given in
Theorem 3. It is thus in O

(
(k + α(nk)) ·m · k2 ·

(
d
2
)k−2 + m · d2 + m · log(m)

)
.

Proof. With a Union-Find data structure, it is known that the amortized cost of Union
and Find functions is in O (α(N)), if N is the number of elements in the structure (see for
example [26]). Here, the Union-Find structure contains at most 1 element per maximal
k-clique, since there cannot be more than one call to MakeSet (Line 16) in each iteration of
the loop starting at Line 5. Indeed, if a MakeSet is performed, then p is no longer equal to
−1 and no other is performed until the end of this loop. So the complexity of each call to
Union and Find functions in the procedure is in O (α(nk)).

Now, consider a maximal k-clique (Ck, [t0, t1]) corresponding to an iteration of the loop
starting at Line 5. Line 7 performs one iteration per vertex of Ck, that is k iterations. The
operation at Line 9 to find the last element of TimeUF[Ck−1] is in O (k − 1). During this
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loop, there is also at most one call to Union and Find, and other operations in constant
time. So, it runs in O (k + α(nk)). Thus, in total, the loop starting at Line 5 runs in
O (nk · k · (k + α(nk))).

In addition, we have to take into account the complexity of the enumeration of k-cliques
and (k−1)-cliques given as input to the algorithm. However, Theorem 3 indicates that the com-
plexity of enumerating (k−1)-cliques is included in the one of enumerating k-cliques, denoted
c(k). We thus obtain an overall complexity of Algorithm 2 in O ((k + α(nk)) · k · nk + c(k)).

Finally, we saw in the proof of Theorem 3 above that at each iteration of the loop at
Line 3 of Algorithm 1, the number of k-cliques listed is in O

(
k ·

(
d
2
)k−2)

. Since there are

m iterations, we get that the number of k-cliques nk is in O
(

m · k ·
(

d
2
)k−2)

. Hence the
second part of the theorem by combining the above bound on nk and Theorem 3. ◀

Note that the output of Algorithm 2 is the Union-Find structure and thus a post-processing
is required to produce the actual communities. This post-processing is done by going through
the set of elements (Ck−1, [t0, t1]) in TimeUF, that are at most k · nk (at most k per maximal
k-clique). Then, it performs a Find operation on them and adds each of its k − 1 associated
vertices to its community during the corresponding time interval. Adding a vertex to its
community can be done in constant time if the nodes of the Union-Find are browsed in
chronological order, which is possible by storing their creation time order at Line 16. So the
complexity of the post-processing is also in O (k · nk · (k + α(nk))).
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Abstract
In this paper, we propose a methodology for deriving a new kind of approximate temporal functional
dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-
window framework and on a multi-temporal relational model. Different features are proposed for the
Observation Window (OW), where we observe predictive data, for the Waiting Window (WW), and
for the Prediction Window (PW), where the predicted event occurs. We then discuss the concept of
approximation for such APFDs, introduce two new error measures. We prove that the problem of
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1 Introduction

Knowledge from databases may be expressed by discovering patterns and data dependencies.
Database dependencies express relevant characteristics of datasets, thereby enabling various
critical analyses of data. Functional dependencies (FDs) have been proposed as a way
of mining data, i.e., by discovering those FDs that hold on most data. The considered
approximation may be heterogeneous and deal with both null values, quantitative data, data
deletion/updates, and so on [7, 4, 18, 7, 12, 19].

Temporal Functional Dependencies (TFDs) received some interest since the nineties,
initially as a way for specifying constraints on temporal data [32, 9, 5], and, more recently,
as a mining approach in their approximate version, looking for hidden temporal patterns
inside data [8, 25, 10].

To the best of our knowledge, TFDs have not yet been considered for the prediction task.
Such decision-support task is mainly devoted to the prediction of some (future) event based
on a (past) data history. Thus, as time is an inherent feature of this task, TFDs are interesting
candidates as a formal tool, for discovering the predictivity of the stored data. Within this
context, in this paper we propose and discuss an original temporally-oriented data mining
framework to support the prediction of future events through the identification of recurring
past temporal data patterns, expressed as Approximate Temporal Predictive Functional
Dependencies (APFDs), according to a 3-window -based temporal framework. New kinds of
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error and related thresholds are introduced, to deal with the required approximation. The
main novelty can be summarized in the formalization of a new framework to exploit the
predictive aspect of the APFDs, according to the following specific aspects:

We introduce a new temporal framework based on three temporal windows: observation
window (OW), waiting window (WW), and prediction window (PW). The waiting window
is explicitly introduced to create a time span before the prediction for being able to
(possibly) manage the predicted event.
We define and exemplify the entire framework for the approximate predictive functional
dependencies (APFDs) in a formal way by introducing and characterizing multi-temporal
relations. It allows the representation of temporal patterns (made by attribute values)
related to a set of observed entities (e.g., patients) and characterizes their predictivity,
with respect to a target attribute (e.g., a disease).
We discuss different kinds of error measures, named G3, H3, and J3, to be evaluated
when deriving APFDs;
We discuss the (data) complexity of the problem of checking for APFDs and prove that
is exponential. We then propose a new algorithm for checking APFDs.
We provide some experimental results on real clinical data from patients in Intensive
Care Units, using data from MIMIC III [16], to obtain different APFDs.

With respect to the preliminary proposal of APFDs sketched in [3], as specific novelties,
here we first characterize a new temporal data model, based on relations having multiple
valid times; we introduce the three-window framework and the related APFDs for such model;
we extensively consider the related data complexity; we propose a new algorithm for checking
APFDs; we discuss further experimental evaluation.

Our paper unfolds as follows. Section 2 contains the related work; in Section 3 we
introduce and motivate the 3-window-based framework for prediction, the formalization of
APFDs and their approximation; in Section 4 we discuss the data complexity of deriving
APFDs, and provide a deterministic algorithm that could stop the analysis of a relation, as
soon as it verifies that the relation cannot satisfy the given APFD; in Section 5, we introduce
and discuss some experimental results and finally in Section 6 we draw some conclusions. The
Appendix A completes the description of our approach through the proof of the NP-hardness
of the APFDs-checking problem.

2 Related work

FDs were originally proposed to specify data constraints in the relational setting and then to
derive normalized relational schemata [2].

Let us briefly recall the concept of FD in the context of relational databases [2]. Let r

be a relation over the relational schema R(U) and let X, Y ⊆ U . r fulfills the functional
dependency X → Y (written as r |= X → Y ) if ∀t, t′ ∈ r(t[X] = t′[X], → t[Y ] = t′[Y ]).

In more recent years FDs have been extended in many different directions and with
different goals. Here we mainly consider three different research directions: the first one
deals with the representation of constraints on temporal data through temporal functional
dependencies (TFDs), the second one focuses on the discovery of approximate functional
dependencies (AFDs), and the third one deals with the use of FDs to support prediction and
classification tasks.

TFDs add a temporal dimension to classical FDs to deal with temporal data. In literature,
several kinds of TFDs have been proposed and various representation formalisms have been
developed [5, 15, 29, 30, 31, 9]. In [9] Combi et al. propose a new formalism for the
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representation of TFDs, involving multiple time granularities. They identify four relevant
classes, named pure temporally grouping, pure temporally evolving, temporally mixed, and
temporally hybrid TFDs, respectively.

In [22], the authors face another temporal aspect, which stems from the observation that
frequent constraint violations in a database may be related to the fact that the considered
(mini) world is changing, while the specified constraints remain static. FDs violated by
current data are then identified and some approaches are proposed to suitably modify the
given FD according to the new reality represented through the current data. In [26], the
authors deal with the problem of continuously discovering FDs on dynamic datasets in an
efficient way, and propose an incremental approach to solve it.

AFDs derive from the concept of plain FD. Given a relation r where an FD holds for
most of the tuples in r, we may identify some tuples for which that FD does not hold. In
[18], Kivinen and Mannila introduce three measures, known as G1, G2 and G3 considering,
respectively, the number of violating couples of tuples, the number of tuples that violate
the functional dependency, and finally the minimum number of tuples in r to be deleted
for the FD to hold. Discovering AFDs is a computationally expensive task, and different
algorithms have been proposed to perform the discovery in an efficient way [19]. More
recently, AFDs have been included in the wider scenario of relaxed FDs (RFDs), where not
only exceptions, i.e., violating tuples, are considered, but also similarities among attribute
values and conditional constraints [7, 6].

Temporal data mining techniques merging AFDs with TFDs have been proposed in [8],
where the authors propose approximate temporal functional dependencies (ATFDs), which
are defined and measured either on temporal granules or on sliding windows, and apply them
to mine data from psychiatry and pharmacovigilance domains. They introduce a new error
measure G4, which considers the minimum number of tuples in r which must be modified for
the plain TFD to hold on all the tuples of r. In [1], the authors present AETAS, a system for
the discovery of approximate temporal functional dependencies. The discovered TFDs are
mainly pure temporally grouping TFDs with moving windows, according to the classification
proposed in [9]. Also conditional TFDs are considered, where the moving window may have
different values according to specific values of atemporal attributes. As an interesting aspect
of AETAS, the authors deal with the discovery of TFDs from dirty web data, as well as with
the discovery of the “optimal” duration for the moving window.

Moving to contributions dealing with the use of FDs to support prediction and classification
tasks, in [20] the authors show that if there is a functional dependency between features, it is
likely to affect the classifier negatively. In [21], the authors address the notion of trusting
ML models by using also functional dependencies, discussing on the relationships between
supervised classification and functional dependencies. They consider the issue of estimating
the feasibility of classification over a given dataset using functional dependencies. As far
as we know, few studies till now considered functional dependencies in this context, where,
given a set of features (A1, ..., An, C) where C values represent the class to be classified, the
problem is to understand whether functional dependencies such as A1, ..., Ak −→ Aj influence
the classification performances.

3 The predictive aspects of functional dependencies

In this section, firstly we delineate the problem at hand, and introduce a 3-window model
for the interpretation of predictive temporal data; then we illustrate the definitions needed
to obtain a Predictive Functional Dependency, and finally, we analyze the concept of
approximation for the Predictive Functional Dependencies.
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Table 1 The multi-temporal relation PatientHistory, with a single atemporal attribute and one
attribute for each valid time.

# Patient HR1 VT1 SpO2
2 VT2 Drug3 VT3 ˙AKI V̇T

1 Daisy High 19 High 21 Aspirin 23 False 28
2 Daisy Low 2 High 4 Aspirin 6 False 18
3 Daisy Low 2 Medium 4 Aspirin 6 False 12
4 Daisy Medium 5 Medium 7 Indapamide 9 False 18
5 Luke Low 7 High 8 Ibuprofen 12 True 17
6 Luke Low 7 High 8 Ibuprofen 12 True 21
7 Luke Medium 9 High 13 Sulindac 14 True 18
8 Luke Medium 9 High 13 Sulindac 14 True 21
9 Stevie Medium 4 Medium 7 Metolazone 8 True 13
10 Stevie High 1 Low 2 Aspirin 5 False 8
11 Stevie High 1 Low 2 Indapamide 7 False 8
.. ... ... ... ... ... ... ... ... ...
36 Stevie High 1 Low 2 Aspirin 5 False 25
.. ... ... ... ... ... ... ... ... ...

3.1 A motivating scenario from Clinical Medicine
To illustrate the relevance and the potential meaning of our approach, we consider a real-world
example from the domain of Intensive Care Unit (ICU) focusing on patients suffering from
Acute Kidney Injury (AKI) [28], used as reference throughout the paper. In ICU, Acute
Kidney Injury is a frequent clinical problem, characterized by sudden loss of the ability of the
kidneys to excrete wastes, concentrate urine, store electrolytes, and maintain fluid balance
[27].

In 2012, KDIGO (Kidney Disease: Improving Global Outcomes) published specific
guidelines [17] for the definition of AKI, where a patient receives the diagnosis if one of the
following criteria is satisfied: (i) an increase in serum creatinine by ≥ 0.3 mg/dl ( ≥ 26.5
µmol/l) within 48 h, (ii) an increase in serum creatinine to ≥ 1.5 times baseline within the
previous 7 days and (iii) a urine volume ≤ 0.5 ml/kg/h for 6 hours.

As we are interested in discovering whether some clinical data features allow the early
identification of AKI patients, let us assume that we derive through a suitable query the
(possibly materialized) view PatientHistory. It represents different ordered states of
patients, we would like to associate to a final state, specifying whether the patient has AKI.
Each state is represented by some attribute values and is associated to a valid time (VT),
representing the timepoint when the state information is true in the modeled world [14].
Table 1 (partially) shows a possible instance of PatientHistory describing a clinical history
of three patients, Daisy, Luke, and Stevie, who have some measured vital signs and undergo
five different drugs, some of them specific for the AKI treatment. Such history can be derived
from the data contained in a clinical database [16].

3.2 A 3-window framework for the interpretation of predictive temporal
data

In general, the prediction models exploit the use of two-time windows, namely (i) a data
collection (or observation) window, and (ii) a prediction window. Even though there are
approaches [11, 24] which consider a third temporal window, to the best of our knowledge, a
general and formal prediction framework considering three different time windows has not
yet been considered in the data mining literature.
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Figure 1 The time windows of the proposed framework: (a) the anchored and (b) the unanchored
–sliding window– case.

According to this view, depicted in Figure 1, we can observe:
1. Decisions are taken after gathering information for some time span (Observation Window:

OW).
2. After the moment when the decision is taken, we have to execute all the related actions

and (possibly) wait for a while (Waiting Window: WW). The WW is held to be the
minimum time interval required to act in order to prevent the event in the prediction
window. Indeed, not all the performed actions have an instantaneous effect.

3. The last temporal window refers to when the possible effects of the decision are observable
and thus we can evaluate the suitability of the taken decision (Observation Window:
OW).

It is worth noting that the span of such windows may be different and could be also
composed of a single time-point. Moreover, the Waiting Window could be missing, i.e., of
zero length, in case of decisions having an immediate observable effect.

In general, we may identify different orthogonal features for the introduced time windows.
The first distinction is between (i) anchored and (ii) unanchored time windows. Indeed,

with anchored time windows, we are able to represent specific periods of the considered time
axis. An example of anchored time windows for the motivating scenario could consist of
specifying OW as the first 4 hours from the admission to the ICU, the following 2 hours as
WW (i.e., the fifth and sixth hour after the ICU admission), ending with the PW from the
seventh to the tenth hour after the ICU admission. Figure 1 a) depicts the three anchored
windows, the time-point corresponding to the decision moment, and possible temporal
evolution of some observed quantitative parameter, having some varying behavior. On the
other side, unanchored time windows represent windows that “move” through the time axis,
constraining only the distance between the considered data. An example of such kind of
windows for our scenario could consist in specifying again 4 hours, 2 hours, and 4 hours for
OW, WW, and PW, respectively, but not anchored to any point of the time axis. Figure 1
b) represents two partially overlapping views, representing unanchored time windows. In
this case, we may consider a possibly infinite number of unanchored (sliding) windows, even
by specifying the width of the step size of sliding.

▶ Definition 1 (Unanchored Time-Frame). An unanchored time-frame (uTF) α is a triple
⟨OW, WW, PW ⟩ where OW, WW, and PW are expressed as durations, i.e., time distances.
They allow the representation of three different unanchored windows, which we will use to
observe temporal data.
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▶ Definition 2 (Anchored Time-Frame). An anchored time-frame (aTF) α is a time-
frame associated to an anchor time point and can be represented through the structure
⟨atp, ⟨OW, WW, PW ⟩⟩, where atp is a (anchor) time point.

A second subtle distinction, which may provide different results for prediction and is
orthogonal with respect to the distinction between anchored and unanchored time windows, is
between (i) fixed-length and (ii) variable-length time windows. Indeed, OW, and consequently
the following WW and PW, could be either of fixed length, without any further constraint
related to the temporal position of data inside it, or of variable length, and thus ending with
the last time point associated with the data to consider in the window.

3.3 A multi-temporal relational model and its connection to the
temporal framework

Let us introduce the concept of multi-temporal relation. Informally, a multi-temporal relation
is characterized by multiple valid times. Each tuple of such relation represents a piece of
history of a given entity, through the values of attributes holding at different (valid) times. A
set of attributes of such relation allows the (optional) identification of the considered entities
(e.g., a patient, an employee) and their characterization. Any other attribute of such relation
is associated with a specific valid time.

▶ Definition 3 (Multi-temporal relation (mt-relation)). Given an overall set of attributes
A and a set of valid time attributes VT , a multi-temporal relation mtr is a relation with
schema WT where W ⊆ A and T = {V T1, ..., V Ti, ....V Tk, V Tk+1} ⊆ VT are k + 1 valid
time attributes.

For a multi-temporal relation schema, a mapping Vtime : T → 2W allows us to specify
the attribute subset associated to a specific valid time. For such mapping, it holds

Vtime(V Ti) ∩ Vtime(V Tj) = ∅ for any i, j with i ̸= j

The (possibly empty) set Z ⊆ W , Z = W −
k+1⋃
i=1

Vtime(V Ti) contains attributes not

associated with any valid time attribute.
For any relation mtr it holds

∀t ∈ mtr(t[V Ti] < t[V Tj ]) for 1 ≤ i < j ≤ k + 1

As we will discuss in the following, the main idea here is to propose a general framework
allowing the definition of “specialized” functional dependencies having the antecedent com-
posed of a set of attributes, called predictive attributes, ordered according to the corresponding
valid times and the consequent defined as the predicted attributes. In order to distinguish
such roles for attributes, we introduce a suitable partition of attributes, according to the
following definition.

▶ Definition 4 (Prediction-oriented partition of mt-relation valid times). Given a multi-temporal
relation mtr with schema WT , where W ⊆ A and T = {V T1, ..., V Ti, ....V Tk, V Tk+1},
attributes in T are partitioned in two sets O, for observation-related valid times, and P, for
prediction-related valid times, where it holds

∀ V To, V Tp((V To ∈ O ∧ V Tp ∈ P) =⇒ ∀t ∈ mtr(t[V To] < t[V Tp]))

For the sake of simplicity and without losing generality, in the following, we assume that
O ≡ {V T1, V T2, ..., V Tk}, while P ≡ {V Tk+1}. According to this choice, we use an overline-
based notation for (ordered) observation-related valid times and the associated attributes.
We use a dot notation for the prediction-oriented valid time and the associated attributes.
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▶ Example 5. The relation view depicted in Table 1 considers attributes according to the
introduced notation. More precisely, in this case O ≡ {V T

1
, V T

2
, V T

3}, P ≡ { ˙V T}, and
Vtime(V T

1) = {HR1}, Vtime(V T
2) = {SpO2

2}, Vtime(V T
3) = {Drug

3}, and Vtime( ˙V T ) =
{ ˙AKI}.

Given a multi-temporal relation mtr , we are now interested in verifying which tuples
are “fine” with or “contained” in a given time frame. More precisely, we are interested in
eliciting those tuples having the (some of the) k observation-related valid times contained in
the observation window OW , and the last valid time in the prediction window PW . We will
call them consistent with the considered time frame.

In the following, we will introduce different kinds of time-frame consistency, mainly
considering both the partial containment of some valid times in the observation window and
different requirements for the observation window.

Indeed, as for the first aspect, we may be interested in verifying the partial/complete
containment of the k observation-related valid times within the given OW , while for the
second one, we may consider either fixed length OW s, or flexible observation windows, which
end with the last valid time we have to consider in the given OW .
▶ Definition 6 (Time-frame tuple consistency with range and modality). Given a tuple t of a
multi-temporal relation mtr with schema WT , where W ⊆ A and T = {V T1, ..., V Ti, ....V Tk,

V Tk+1} ⊆ VT , and a (either anchored or unanchored) time frame α, we say that t is
time-frame consistent with α according to modality m ∈ {‘flex ′, ‘fixed ′} in the range [i1, i2],
where 1 ≤ i1 < i2 ≤ k, if formula Θ(t, α, m, [i1, i2]) holds.

Formula Θ(t, α, m, [i1, i2]) is defined according to the following cases:
Θ(t, α, ‘fixed ′, [i1, i2]) ≡ t[V T

i2 ] − t[V T
i1 ] ≤ OW ∧ t[ ˙V T ] − t[V T

i1 ] > OW + WW ∧
t[ ˙V T ] − t[V T

i1 ] < OW + WW + PW

–if the time-frame is unanchored–, or
Θ(t, α, ‘fixed ′, [i1, i2]) ≡ t[V T

i1 ] ≥ atp ∧ t[V T
i2 ] ≤ atp + OW ∧ t[ ˙V T ] > atp + OW +

WW ∧ t[ ˙V T ] < atp + OW + WW + PW

–if the time-frame is anchored–, or
Θ(t, α, ‘flex ′, [i1, i2]) ≡ t[V T

i2 ] − t[V T
i1 ] ≤ OW ∧ t[ ˙V T ] − t[V T

i2 ] > WW ∧ t[ ˙V T ] −
t[V T

i2 ] < WW + PW

–if the time-frame is unanchored–, or
Θ(t, α, ‘flex ′, [i1, i2]) ≡ t[V T

i1 ] ≥ atp ∧ t[V T
i2 ] ≤ atp + OW ∧ t[ ˙V T ] − t[V T

i2 ] > WW ∧
t[ ˙V T ] − t[V T

i2 ] < WW + PW

–if the time-frame is anchored–

3.4 Defining Predictive FDs
The overall idea is now to temporally characterize functional dependencies X → Y for the
introduced multi-temporal relational model, by considering for the attribute set X those
attributes related to “past” properties, while attributes Y would be those attributes related to
“future” properties. “Past” and “future” values are evaluated according to a given time-frame
consistency.
▶ Definition 7 (Predictive Functional Dependency (PFD)). Given an mt-relation schema
MTR(ZU

1
U

2
..U

k
U̇ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}), a time frame, and a modality m ∈ {“flex ′′,

“fixed ′′}, a Predictive Functional Dependency is expressed as:

SP
h
Q

i
...R

j −−→
α,m

Ẏ with 1 ≤ h < i < ... < j ≤ k

where S ⊆ Z, P
h ⊆ U

h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ is the predicted attribute set.
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4:8 Discovering Predictive Dependencies on Multi-Temporal Relations

A PFD holds on an mt-relation mtr with schema MTR in a timeframe TF with modality
m, with an extended range semantics (denoted as mtr |=E

α,m SP
h
Q

i
...R

j → Ẏ ) iff

∀t, t′ ∈ mtr((t[SP
h
Q

i
...R

j ] = t′[SP
h
Q

i
..R

j ] ∧ Θ(t, α, m, [1, k]) ∧ Θ(t′, α, m, [1, k]))
→ t[Ẏ ] = t′[Ẏ ])

A PFD holds on an mt-relation mtr with schema MTR in a timeframe TF with modality
m, with a restricted range semantics (denoted as mtr |=R

α,m SP
h
Q

i
...R

j → Ẏ ) iff

∀t, t′ ∈ mtr((t[SP
h
Q

i
...R

j ] = t′[SP
h
Q

i
..R

j ] ∧ Θ(t, α, m, [h, j]) ∧ Θ(t′, α, m, [h, j]))
→ t[Ẏ ] = t′[Ẏ ])

According to the previous definition, it is straightforward to observe that the given PFD
has to hold, by considering only a subset of mtr , composed of tuples consistent with the
considered time frame, the modality, and the range. Such subset is called time-frame relation
view (TF -view). More formally, the TF -view w is defined as w = TFv(mtr , α, m, [i1, i2]) ≡
{t | t ∈ mtr ∧ Θ(t, α, m, [i1, i2])}. Hereinafter, we will consider a time-frame α = ⟨6, 2, 10⟩,
m = ‘fixed ′, and an extended semantics, i.e., considering the range [1, k].

▶ Example 8. Let us consider the mtr depicted in Table 1. Tuples #10, #11, and #36 are out
of the time frame α. It is straightforward to observe that the PFD Drug

3 −−→
α,m

˙AKI holds.

On the other side, PFDs HR
1
, SpO2

2 −−→
α,m

˙AKI, HR
1 −−→

α,m
˙AKI and SpO2

2 −−→
α,m

˙AKI

do not hold.

3.5 Discovering Approximate PFDs
To mine PFDs in a generic multi-temporal relation we have first to isolate those tuples that
fit, with respect to a given modality and to a given semantics, the considered temporal
frame, composed of OW, WW, and PW. As a second step, we need to deal with some kind
of approximation, as it could happen that some PFDs hold on a subset of tuples of the
time-frame relation view, we consider. Thus, we have to evaluate whether considering such
subset is acceptable with respect to the prediction task supported by the considered PFDs.

In other words, we require a PFD f to be satisfied by most tuples of the TF -view w.
A very small portion of tuples of w is allowed to violate the dependency. In the context
of predictive functional dependencies, we consider one of the measures proposed in [18]
and introduce two other error measures, specifically tailored to the predictive purpose of
approximate PFDs.

Given a TF -view w ⊆ mtr, the first error measure G3 considers the minimum number
of tuples in w to be deleted to obtain a relation s where the given FD holds [18]. In our
context, it is expressed according to the following definition.

▶ Definition 9 (Error measure G3). Given a TF-view w = TFv(mtr , α, m, [1, k]) of an
mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}, and a PFD SP

h
Q

i

...R
j −−→

α,m
Ẏ , where S ⊆ Z, P

h ⊆ U
h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ , and any relation s ⊆ w,

such that s |=E
α,m SP

h
Q

i
...R

j → Ẏ , the error measure G3 is expressed as: G3 = |w| − |s|.
The related scaled measurement g3 is defined as: g3 = G3

|w| .

Let us now introduce some new kinds of error, which may be of interest in the context of
prediction. The first issue is in considering another error, no longer focused on the number
of tuples that we have to delete to satisfy the PFD, but focused on the number of entities
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that we accept to discard for the sake of the PFD. The new error measure H3 permits, for
example, to disregard data of entities with a very low number of tuples, which could create
noise in our dataset.

▶ Definition 10 (Error measure H3). Given a TF-view w = TFv(mtr , α, m, [1, k]) of an
mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}, and a PFD SP

h
Q

i

...R
j −−→

α,m
Ẏ , where S ⊆ Z, P

h ⊆ U
h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ , and any relation s ⊆ w,

such that s |=E
α,m SP

h
Q

i
...R

j → Ẏ , the error measure H3 is expressed as: H3 = |{t[Z] | ∃t ∈
w}| − |{t[Z] | ∃t ∈ s}| The related scaled measurement h3 is defined as: h3 = H3

|{t[Z]|∃t∈w}| .

Finally, considering the number of tuples for each entity we accept to discard to satisfy
the PFD, we formalize a last error measure, namely J3. It ensures to maintain enough
“consistent” information for each entity.

▶ Definition 11 (Error measure J3). Given a TF-view w = TFv(mtr , α, m, [1, k]) of an
mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}, a PFD SP

h
Q

i

...R
j −−→

α,m
Ẏ , where S ⊆ Z, P

h ⊆ U
h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ , and any relation

s ⊆ w, such that s |=E
α,m SP

h
Q

i
...R

j → Ẏ , the error measure J3 is expressed as in the
following.

Let w[v] ≡ {t[Z]|t ∈ w ∧ t[Z] = v} and s[v] ≡ {t[Z]|t ∈ s ∧ t[Z] = v}, then

J3 = max
(v∈{t[Z]|t∈s})

{|w[v]| − |s[v]|}

The related scaled measurement j3 is defined as follows:

j3 = max
(v∈{t[Z]|t∈s})

{
|w[v]| − |s[v]|

|w[v]|
}

According to the introduced error measures, we are now able to define an approximate
predictive functional dependency as follows:

▶ Definition 12 (Approximate Predictive Functional Dependency (APFD)). Given a TF -view
w = TFv(mtr , α, m, [1, k]) of an mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, ..,

V T
k
, ˙V T}, w fulfills the APFD

SP
h
Q

i
...R

j ε−−→
α,m

Ẏ

(written as w |=E
α,m SP

h
Q

i
...R

j ε−→ Ẏ ) , where ε = ⟨εg, εh, εj⟩ and S ⊆ Z, P
h ⊆ U

h
, Q

i ⊆
U

i
, R

j ⊆ U
j, Ẏ ⊆ U̇ , if a relation s ⊆ w exists such that s |=E

α,m SP
h
Q

i
...R

j → Ẏ with
g3 ≤ εg ∧ h3 ≤ εh ∧ j3 ≤ εj. In other words, εg, εh, εj are the maximum acceptable errors
defined by the user for g3, h3, and j3, respectively.

▶ Example 13. Suppose that our final goal is to preserve at least the 75% of the tuples
(εg = 0.25), the 80% of the patients (εh = 0.2), and the 50% of the tuples for each patient
(εj = 0.5). In Table 1, the PFD HR

1
, SpO2

2 −−→
α,m

˙AKI is satisfied by considering a
(sub)instance s by deleting tuples #2 and #9 . Thus, in this case, g3 = 2/9, h3 = 1/3, as
any tuples for patient Stevie disappear; and j3 = 1/4 as we delete a tuple of Daisy. It is easy
to see that g3 < εg, h3 > εh, while j3 < εj . On the other side, if we consider the instance
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s′, by deleting tuples #2 and #4, we would observe that the PFD is still satisfied, while
g3 = 2/9, h3 = 0/3, and j3 = 2/4. In this case, all the errors are below or equal to the given
thresholds. Thus, we can say that w |=E

α,m HR
1
, SpO2

2 ϵ−→ ˙AKI with ϵ ≡ ⟨0.35, 0.2, 0.5⟩.
If we set the error thresholds as εg = 0.25, εh = 0.4, and εj = 0.3 (mainly we accept to

discard some more patients, but we increase the number of tuples per patient we want to
preserve), we can observe that s |=E

α,m HR
1
, SpO2

2 → ˙AKI, while s′ ̸|=E
α,m HR

1
, SpO2

2 →
˙AKI. Thus, w |=E

α,m HR
1
, SpO2

2 ϵ−→ ˙AKI also with ϵ ≡ ⟨0.35, 0.4, 0.3⟩.

It is easy to prove that if w |=E
α,m SP

h
Q

i
...R

j ε−→ Ẏ , it will also hold w |=E
α,m

SS1P
h
P

h

1 Q
i
Q

i

1 V
x
...R

j
R

j

1
ε−→ Ẏ , where S1 ⊆ Z, P

h

1 ⊆ U
h
, Q

i

1 ⊆ U
i
, R

j

1 ⊆ U
j , V

x ⊆ U
x

with i < x < j.
As an example, as w |=E

α,m HR
1
, SpO2

2 ε−→ ˙AKI for the TF -view w depicted in Table 1,
it is also the case that w |=E

α,m Patient, HR
1
, SpO2

2 ε−→ ˙AKI. After adding the new
attribute Patient in the antecedent, nothing changes for mt-relation s ⊆ w, for which
HR

1
, SpO2

2 → ˙AKI holds, independently from the values of attribute Patient.
As we are interested in finding the minimum predictive attribute set, here we introduce

the definition of minimal APFDs as follows:

▶ Definition 14 (Minimal APFD). An APFD SP
h
Q

i
...R

j ε−−→
α,m

Ẏ is minimal for w, if

w |=E
α,m SP

h
Q

i
...R

j ε−→ Ẏ and ∀ V ⊂ SP
h

Q
i
...R

j we have that w ̸|=E
α,m V

ε−→ Ẏ .

Minimal APFDs provide the most compact representation of the existing dependencies.

▶ Example 15. Considering the mt-relation w depicted in Table 1, it is straightforward to
observe that the following two APFDs hold for ϵ ≡ ⟨0.25, 0.4, 0.4⟩ and are minimal.

w |=E
α,m HR

1
, SpO2

2 ε−→ ˙AKI, w |=E
α,m Drug

3 ε−→ ˙AKI

As for the minimality of the first APFD, both SpO2
2 ε−−→

α,m
˙AKI and HR

1 ε−−→
α,m

˙AKI

cannot satisfy the first threshold, i.e., g3 ≤ 0.25.

4 The (data) complexity of deriving an APFD

As we said before, to obtain a set s ⊆ w which satisfies an APFD, we have to consider the
three different thresholds.

We reduced the problem in hand to a general 3SAT problem, showing that checking an
APFD considering all the three thresholds belongs to the class NP.

Before starting with the theoretical analysis let us recall that an instance of SAT problem
is a logical formula formed by a conjunction of disjunctive clauses. Namely, each clause
is a disjunction of literals, and the general formula is a conjunction of disjunctive clauses.
Therefore, an instance of SAT is a conjunction of clauses, each of them representable as a
set of literals. In the specific case of 3SAT , each clause has exactly 3 literals [23].

Let us now introduce a simple relation representing any mt-relation. To discuss the
complexity of checking an APFD, it is enough to consider a relation having a single attribute
(Z) representing the entity attribute, a single attribute (A) representing the antecedent, the
predicted attribute (Ḃ). Moreover, let us assume that the domain of all attributes is N or a
subset of it (the predicted values for Ḃ will be either 0 or 1, to represent boolean values).
Thus, we will consider a relation w with schema W (A, Ḃ, Z). Before introducing the two
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problems and then proving the NP-hardness of checking APFDs by a suitable reduction to
an NP problem, let us introduce a simple reformulation of the satisfaction of error thresholds
for G3 and H3 by a relation w in terms of conflict resolution (in the following we will make
use of the standard projection operation π of relational algebra).

▶ Definition 16. Given a relation w ⊂ N3, a natural number 0 ≤ k < |w|, and a natural
number 0 ≤ h < |πZ(w)| we say that w admits a conflict resolution of order (k, h) if there
exists a subset w− ⊆ w such that:
1. |w−| ≤ k

2. for every pair of triplets (a, ḃ, z), (a′, ḃ′, z′) ∈ w \ w− if a = a′ then ḃ = ḃ′;
3. |πZ(w)| − |πZ(w \ w−)| ≤ h.

According to the introduced simplified form of mt-relation and the previous definition
of conflict resolution, we may now represent the problem of checking an APFD as in the
following. It is worth noting that the order (k, h) of the conflict resolution represents the
thresholds for errors G3 and H3, respectively.

▶ Problem 1. Given a relation w ⊂ N3, a natural number 0 ≤ k < |w|, and a natural number
0 ≤ h < |πZ(w)| determine whether or not w admits a conflict resolution of order (k, h).

Now, we introduce the problem, well-known in the literature, we will use for the reduction.

▶ Problem 2. Given an instance C of 3SAT in which each clause features only positive literals,
C = {{a1

1, a1
2, a1

3}, . . . , {an
1 , an

2 , an
3 }}, with variable set A = {ai

j : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}, and a
number 0 ≤ p < |C| determine whether or not there exists an assignment σ : A → {0, 1}1

such that |{i : σ(ai
1) = σ(ai

2) = σ(ai
3)}| ≤ p and C is satisfied.

For the sake of brevity, given a clause {ai
1, ai

2, ai
3} in C = {{a1

1, a1
2, a1

3}, . . . , {an
1 , an

2 , an
3 }}

and an assignment σ : A → {0, 1} we say that {ai
1, ai

2, ai
3} is homogeneous w.r.t σ, or

simply homogeneous when σ is clear from the context, if and only if σ(ai
1) = σ(ai

2) =
σ(ai

3). Then, Problem 2 may be equivalently redefined as: given a set of clauses C =
{{a1

1, a1
2, a1

3}, . . . , {an
1 , an

2 , an
3 }} deciding whether or not there exists an assignment σ for the

variables in C that makes C satisfied and at most p clauses of C homogeneous w.r.t σ.
The complexity of Problem 2 is well known, as in the following theorem.

▶ Theorem 17. Problem 2 is NP-Complete [23].

The following theorem proves that checking an APFD according to the introduced error
thresholds is NP-hard.

▶ Theorem 18. Problem 1 is NP-Hard.

Proof. The proof is by reduction from Problem 2 and is reported in Appendix A. ◀

Proved that the Problem 1 is NP-Hard, it is now necessary to find a deterministic
algorithm that could stop the analysis of a relation, as soon as it verifies that the relation
cannot satisfy the given APFD. Algorithm 1 provides the pseudo-code of such algorithm. The
general idea of this algorithm is searching for a solution considering one tuple at a time, until
it is possible to generate a solution, which satisfies the selected thresholds. Throughout the

1 here 0 and 1 represent the logical values false and true, respectively.
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Algorithm 1 DeterministicADC.
Input: an instance w of the relation W , and three real numbers ϵg3 , ϵh3 , and ϵj3 in [0, 1]
Output: a relation s ⊆ w s.t. s |= A→ Ḃ, g3(w, s) ≥ 1− ϵg3 , h3(w, s) ≥ 1− ϵh3 ,

j3(w, s) ≥ 1− ϵj3

▷ Prepare data for initial call according to epsilons
1 begin
2 del← ⌊ϵg3 |w|⌋
3 count← ϵh3⌊|πZ(w)|⌋
4 for z ∈ πZ(w): do
5 thresholds[z]← ⌊ϵj3 |σZ=z(w)|⌋
6 return RecADC(w, del, count, thresholds)

7 Function RecADC(w, del, count, thresholds):
▷ This is the last recursive call before success

8 if w = ∅ then
9 return ∅

10 let a ∈ πA(w)
▷ For each value of B

11 for boolean_val ∈ {0, 1} do
▷ del_tuples: tuples removed according to selection

12 del_tuples← σA=a∧Ḃ=boolean_val(w)
13 s← σA=a∧Ḃ=¬boolean_val(w)
14 out← {}
15 for z ∈ πZ(del_tuples): do
16 thresholds′[z]← thresholds[z]− |σZ=z(del_tuples)|
17 if thresholds′[z] < 0 ≤ thresholds[z] then
18 out← out ∪ {z}

▷ out: the z groups that must disappear, since their tuples passed below
the threshold ϵj3 in the current state

19 if count− |out| ≥ 0 then
▷ count′: represent the z groups still to be considered

20 count′ ← count− |out|
21 del_tuples← del_tuples ∪ σZ=z:z∈out(w)
22 if del − |del_tuples| ≥ 0 then

▷ If the final test succeeds, we proceed with the recursive call on
the updated values

23 del′ ← del − |del_tuples|
24 w′ ← w \ (del_tuples ∪ s)
25 s′ ← RecADC(w′, del′, count′, thresholds′)
26 if s′ ̸= fail then
27 return s ∪ s′

28 return fail

code, w is the entire relation. del, count, thresholds represent the counters that control the
errors. del counts the number of remaining tuples, count controls the number of remaining
entities, and thresholds verifies the number of remaining tuples for each entity. After a
trivial check about the (non) emptiness of relation w, for each value a ∈ πA(w), we try one
boolean value and verify the dependency, if it fails, we try the second boolean value and
verify the dependency. If both choices failed, then the algorithm fails. If one of the boolean
values satisfies the thresholds, we update the counters, building at every step an intermediate
relation s′, as long as the thresholds are satisfied.
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5 Deriving APFDs: an experimental evaluation

Here, we provide some results from an experimental evaluation on real-world clinical data.
We derived APFDs by using a simpler, even sub-optimal, mining algorithm.

5.1 Computing APFDs
As for the first experimental evaluations of the proposed approach, we adopted a sub-optimal
solution, on top of the well-known TANE [13] algorithm, a popular approximate func-
tional dependency detection algorithm, customizing it to mine only approximate functional
dependencies with a fixed consequent, the predicted attribute Ẏ .

To find all minimal non-trivial dependencies, TANE works as follows. It starts the search
from singleton sets of attributes and works its way to larger attribute sets through the
set containment lattice level by level. When the algorithm is processing a set X, it tests
dependencies of the form X\A → A, where A ∈ X. This guarantees that only non-trivial
dependencies are considered. In our proposal, we compute all the Approximate Predictive
Functional Dependencies, considering the three errors, g3, h3, j3.

Given TF -view w and the predicted attribute Ẏ , our approach was mainly based on the
following steps:

Derive s by TANE, such that g3 ≤ εg;
Check on s that h3 ≤ εh;
If the previous check is fine, check that j3 ≤ εj .

It is easy to observe that this approach, while extracting APFDs that are satisfied by w

according to the given thresholds, could exclude other APFDs that are associated to some s,
which is not maximal, i.e., minimal with respect to g3, but still satisfies g3 ≤ εg. And such s

could satisfy also the other thresholds.
It is well known that the complexity of deriving AFDs is exponential in the number of

attributes [13, 19], while the complexity of checking a single dependency is linear in the
number of tuples (data complexity). In our experiments, even though the “maximality” of
s is related to a composite error threshold ε=< εg, εh, εj > and many possible relations s

would be derived to evaluate a single APFD –making the data complexity higher as shown
in the previous section–, the data complexity remains linear, as we rely on TANE, and check
only further thresholds.

5.2 Dataset and data transformation
Our proposal has been applied to the clinical domain of the Intensive Care Unit (ICU) using
the MIMIC III (Medical Information Mart for Intensive Care) [16] dataset, with the aim of
finding significant APFDs for the AKI diagnosis. MIMIC III is a freely accessible relational
database of de-identified patients, hospitalized in the intensive care units at Beth Israel
Deaconess Medical Center between 2001 and 2012.

The data are associated with more than 46 000 patients and almost 60 000 admissions.
The information contained in the database includes demographics, vital sign measures (such
as heart rate, systolic and diastolic pressures, oxygen saturation, and body temperature)
registered at the bedside, laboratory test results, administered drugs, medications and
procedures.

From the original dataset, we used seven tables, transformed through an ETL (Extract,
Transform, Load) process. D_ITEMS and D_LABITEMS were the reference tables needed
to label every measure related to a patient. PATIENTS and ICUSTAYS were used to retrieve
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information about the admission and discharge from the ICU and the age. PRESCRIPTIONS
provided information about the administered medications. We mainly considered four
categories: diuretics, Non-steroidal anti-inflammatory drugs (NSAID), radiocontrast agents,
and angiotensin. LABEVENTS was used to extract information about serum creatinine and
urine and CHARTEVENTS for heart rate, diastolic pressure and oxygen saturation. We
categorized the numerical variables into “low, medium, high” according to clinical literature.

We considered two 3-window settings. The first one was characterized by an OW of 72
hours, a WW of 12 hours, and then a PW of 36 hours, where there is the (possible) onset of
the illness according to one of the KDIGO criteria. The second one was characterized by an
OW of 120 hours, a WW of 12 hours, and a PW of 36 hours. Starting from the literature
[33], we considered six measures: creatinine, administered drugs, respiratory rate, oxygen
saturation, and diastolic blood pressure. From a cohort of 50.711 patients, we considered
three different TF -views:

TF -view #1, with four states of the same measure (serum creatinine) to build a sequence
of four values of a measure, where any value is the next of the preceding one (if any),
within the first 3-window setting. In this case, we obtain 2546 subjects (1878 patients
without AKI, 668 patients with AKI) with 3839 rows;
TF -view #2, with four states of the same measure (administered drugs) to build a
sequence of four values of a measure, where any value is the next of the preceding one
(if any), within the second 3-window setting. In this case, we obtain 148 subjects (109
patients without AKI, 39 patients with AKI) with 1047 rows;
TF -view #3 with four states, each one related to a different measure (administered drug,
diastolic blood pressure, respiratory rate, oxygen saturation) with V T

k = V T
k−1 + 1 for

k = 1, .., 3 within the second 3-window setting. In this case, we have 413 subjects (305
patients without AKI, 108 patients with AKI) with 193.173 rows.

With the two 3-window settings, we achieved similar results. First of all, the error values
were completely comparable between the two settings. Secondly, we recorded a similar trend
in all the TF -views. Indeed, the temporal states kept dropping until the results of functional
dependencies consisted of a single antecedent, with the increase of error ϵ.

Regarding serum creatinine, our experiments suggested that creatinine needed a medium-
long history to provide predictive patterns, so considering the 4 measures the difference in
terms of error between functional dependencies that had more than one antecedent state,
and those that had only one state, was very small. With six measures we were able to have
temporal patterns formed by more than one state.

In Table 2, we reported some of the APFDs obtained through the algorithm, with the
corresponding error thresholds. The algorithm took a few minutes for each TF -view to
extract these APFDs.

During the experimental evaluation, we observed that data related to some patients are
completely discarded when mining APFDs. Indeed, dealing with a large population, whatever
the entity under study, it may be common to completely discard some (entity) outliers.

6 Conclusions

In this paper, we introduced a 3-window framework for the specification and evaluation of
Approximate Predictive Functional Dependencies, dealing with the capability of exploiting
data dependencies for the prediction task. The declarative framework, which we represented
through relational calculus queries and formulas, allows one to consider different kinds of
anchored and unanchored time windows.
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Table 2 APFDs from the three TF -views.

APFD εg εh εj TF -view
Creat

1
, Creat

3 → ˙AKI 27.45% 27% 50% #1
Creat

1
, Creat

4 → ˙AKI 27.45% 27% 50% #1
Drug

1
, Drug

2
, Drug

4 → ˙AKI 21% 30% 50% #2
Drug

1
, Drug

2
, Drug

4 → ˙AKI 21% 30% 80% #2
Drug

1
, Drug

2
, Drug

3 → ˙AKI 21% 30% 80% #2
Drug

1
, Drug

3
, Drug

4 → ˙AKI 21% 30% 80% #2
Drug

1
, RespRate

3 → ˙AKI 10% 51% 75% #3
RespRate

3 → ˙AKI 30% 75% 75% #3
Drug

1 → ˙AKI 30% 75% 75% #3
Spo2

4 → ˙AKI 30% 75% 75% #3

Such dependencies have been specified with respect to three different kinds of error
related to: the number of tuples to be deleted for having the corresponding PFD holding,
the number of entities having all tuples deleted for having the corresponding PFD holding,
and the number of tuples we admit to discard for any entity.

We also discussed the computational aspects related to the extraction of APFDs. We
detailed a theoretical analysis of the complexity to derive a relation s ⊆ w considering the
error thresholds G3 and H3. We reduced the problem in hand to a general 3SAT problem,
showing that checking an APFD considering all the three thresholds belongs to the class NP.

We applied our approach to real clinical data, specifically to MIMIC III dataset, obtaining
results that demonstrate the applicability of this new type of temporal pattern mining in
medicine, but also in other contexts where the core of the problem is finding temporal patterns
in the past associated, in a prediction-oriented approach, to following (future) events.
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A Data Complexity

In this Appendix, we first provide the proof of Theorem 18 and then discuss some algorithmic
issues.

Proof of Theorem 18. The proof is by reduction from Problem 2. Let C = {{a1
1, a1

2, a1
3}, . . . ,

{an
1 , an

2 , an
3 }} and p an instance of Problem 2. We introduce the following relation wC =

{(ai
j , 0, 2i) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3} ∪ {(ai

j , 1, 2i + 1) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}. It is easy to
observe that |wC | = 6|C| and wC may be generated in polynomial space from C. Let us
define a function clause : wC → {1, . . . , n} defined as:

clause(ai
j , ḃ, z) =


z
2 if z is even
(z−1)

2 otherwise
.

Let us observe that function clause is well-defined and maps each element (ai
j , ḃ, z) ∈ wC

to the index of the clause which corresponds to it in the above construction. Now we prove
that (C, p) is a positive instance of Problem 2 if and only if (wC , |wC |, p) is a positive instance
of Problem 1.
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For the left-to-right direction, let us assume that C = {{a1
1, a1

2, a1
3}, . . . , {an

1 , an
2 , an

3 }}
and p is a positive instance of Problem 2. Let A be the set of all and only variables
which appear in C. Thus, there exists an assignment σ : A → {0, 1} and at most p

distinct indexes i1, . . . ip such that σ(aik
1 ) = σ(aik

2 ) = σ(aik
3 ) for each 1 ≤ k ≤ p. Let

w−
C = {(ai

j , 1, 2i) : σ(ai
j) = 0} ∪ {(ai

j , 0, 2i + 1) : σ(ai
j) = 1}. Let us observe that w−

C ⊆ wC .
For proving that w−

C satisfies the three conditions of Definition 16 for the pair (|wC |, p) we
need to prove the following useful property:

(OddEvenProperty) for each 1 ≤ i ≤ n we have that {2i, 2i + 1} ∩ πZ(wC \ w−
C ) ̸= ∅.

Informally speaking property (OddEvenProperty) states that for every possible value
2i ∈ πZ(wC \ w−

C ) it is not the case that both 2i and 2i + 1 do not belong to πZ(wC \ w−
C ).

Let us assume by contradiction that there exists an index i with 1 ≤ i ≤ n for which
2i /∈ πZ(wC \ w−

C ) and 2i + 1 /∈ πZ(wC \ w−
C ). Thus, for each j with 1 ≤ j ≤ 3 all the tuples

of the form (ai
j , 1, 2i) and (ai

j , 0, 2i + 1) belong to w−
C . Let us take any index j with 1 ≤ j ≤ 3.

We have (ai
j , 1, 2i), (ai

j , 0, 2i + 1) ∈ w−
C . By definition of w−

C from (ai
j , 1, 2i) ∈ w−

C we have
that σ(ai

j) = 0, and from (ai
j , 0, 2i + 1) ∈ w−

C we have that σ(ai
j) = 1 (contradiction).

Now we are ready to prove that conditions 1., 2., and 3. of Definition 16 are satisfied by
the pair |wC | and p and thus (wC , |wC |, p) is a positive instance of Problem 1. Condition 1. of
Definition 16 imposes that |w−

C | ≤ |wC | which is trivially satisfied since w−
C ⊆ wC . Condition

2. of Definition 16 imposes that for every pair of triplets (ai
j , ḃ, z), (ai′

j , ḃ′, z′) ∈ wC \ w−
C if

ai
j = ai′

j′ , i.e., they represent the occurrence of the same variable possibly in two distinct clauses
we have ḃ = ḃ′. Let us assume by contradiction that this is not the case, then there exists
(ai

j , 0, z), (ai′

j′ , 1, z′) ∈ wC \ w−
C for some z, z′ ∈ {2, . . . , 2n + 1} with ai

j = ai′

j′ . By definition
of w−

C the fact that (ai
j , 0, z) ∈ wC \ w−

C means that σ(ai
j) = 0 while (ai′

j′ , 1, z′) ∈ wC \ w−
C

means that σ(ai′

j′) = 1 since ai
j = ai′

j′ we have a contradiction.
Condition 3. of Definition 16 imposes that |πZ(wC)| − |πZ(wC \ w−

C )| ≤ p. Let us assume
by contradiction that there exist p + 1 distinct indexes 2 ≤ i1 < . . . < ip+1 ≤ 2n + 1 such
that ij /∈ πZ(wC \ w−

C ) for every 1 ≤ j ≤ p + 1. This means that for every 1 ≤ j ≤ p + 1 if
ij is even (resp., odd) then (ai

q, 1, ij) ∈ w−
C (resp., (ai

q, 0, ij) ∈ w−
C ) for each 1 ≤ q ≤ 3 and

thus by definition of w−
C we have σ(ai

q) = 0 for each 1 ≤ q ≤ 3, thus the clause ij/2 (resp.,
(ij − 1)/2) is homogeneous w.r.t to σ.

Since, σ is a “witness” that (C, p) is a positive instance of Problem1 we have that
is the number of clauses homogeneous w.r.t σ is at most p. Since we just proved that
2 ≤ i1 < . . . < ip+1 ≤ 2n + 1 may be associated to p + 1 homogeneous clauses then there
exist 1 ≤ j′ < p + 1 such that ij′ is even and ij′+1 = ij′ + 1 because at least two distinct
indexes among i1, . . . , ip+1 must be mapped to the same clause. However, by applying the
(OddEvenProperty) on ij′ , ij′+1 we have that at least one among ij′ and ij′+1 must belong
to πZ(wC \ w−

C ) and thus we have a contradiction.
For the right-to-left direction, let us assume that wC and (|wC |, p) is a positive instance

of Problem 1. Thus, there exists w−
C ⊆ wC and a function f : A′ → {0, 1} with A′ ⊆ A such

that:
for all (a, ḃ) ∈ πAḂ(wC \ w−

C ) we have ḃ = f(a);
|πZ(wC)| − |πZ(wC \ w−

C )| ≤ p.
Let us assume w.l.o.g. that w−

C is minimal, that is for every (a, ḃ) ∈ πAḂ(w−
C ) we have that

there exists (a, ḃ′) ∈ πAḂ(wC \ w−
C ) with ḃ ̸= ḃ′. In other words, any tuple in πAḂ(w−

C )
“conflicts” with at least one tuple in πAḂ(wC \ w−

C ). Under this assumption, we may easily
prove that A′ = A. Let us assume by contradiction that A′ ⊂ A. Thus, there exists a ∈ A\A′

such that (a, 0), (a, 1) ∈ πAḂ(w−
C ). If we take w=

C = w−
C \ {(a, 0, z) : (a, 0, z) ∈ w−

C } we have
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that wC \w=
C admits a (|wC |, p′) conflict resolution with p′ ≤ p since, informally speaking, we

are possibly “reducing” the size of w−
C . By construction, we have that {(a, 0, z) : (a, 0, z) ∈

w−
C } ̸= ∅ because since a ∈ A we have that there exists at least one clause {ai

1, ai
2, ai

3} in C

for which ai
j = a for some j ∈ {1, 2, 3} and thus (a, 0, 2i + 1) ∈ wC . Thus, we can conclude

that w−
C is not minimal (contradiction). By having A′ = A we can now claim that f is also

a completely defined assignment for C. Let us prove that f is an assignment that makes at
most p clauses in C homogeneous. Let us assume by contradiction that f makes at least
p + 1 distinct clauses homogeneous and let i1 < . . . < ip+1 be the indexes of such clauses.
By construction and by minimality of w−

C , let us assume that for every 1 ≤ h ≤ p + 1 either
(aih

j , 0, 2i+1) ∈ wC \w−
C for every j ∈ {1, 2, 3} – in such a case f(aih

1 ) = f(aih
2 ) = f(aih

3 ) = 0–,
or (aih

1 , 0, 2i) ∈ wC \ w−
C for every j ∈ {1, 2, 3} – in such a case f(aih

1 ) = f(aih
2 ) = f(aih

3 ) = 1.
This means that for each 1 ≤ h ≤ p + 1, if f(aih

1 ) = f(aih
2 ) = f(aih

3 ) = 1, we have
2ih ∈ πZ(wC \ w−

C ) and 2ih + 1 /∈ πZ(wC \ w−
C ). Symmetrically, for each 1 ≤ h ≤ p + 1

if f(aih
1 ) = f(aih

2 ) = f(aih
3 ) = 0 we have 2ih /∈ πZ(wC \ w−

C ) and 2ih + 1 ∈ πZ(wC \ w−
C ).

Let U = {2i1, 2i2 + 1, . . . , 2ip+1, 2ip+1 + 1}. We can conclude that πZ(wC \ w−
C ) ∩ U and

πZ(w−
C ) ∩ U is a bi-partition of U with |πZ(wC \ w−

C ) ∩ U | = |πZ(w−
C ) ∩ U | = p + 1.

Since we have (πZ(w−
C ) ∩ U) ∩ πZ(wC \ w−

C ) = ∅ and trivially πZ(w−
C ) ∩ U ⊆ πZ(wC),

we have that (πZ(w−
C ) ∩ U) ⊆ (πZ(wC) \ πZ(wC \ w−

C )) and, thus, |πZ(w−
C ) ∩ U | = p + 1

≤ |πZ(wC)| − |πZ(wC \ w−
C )|. Thus |πZ(wC)| − |πZ(wC \ w−

C )| ≥ p + 1 (contradiction). ◀

As we just proved, the problem of verifying any APFD even only considering H3 is
NP-Hard. Algorithm 2 represents a guess and check non-deterministic algorithm to solve the
general problem, namely to verify all three errors. This algorithm shows that the verification
of the three errors is an NP-complete problem. In the following algorithms, the symbol ▷

precedes comments.

Algorithm 2 ApproximateDependencyCheck.
Input: an instance w of relation W , and three real numbers ϵg3 , ϵh3 , and ϵj3 in [0, 1]
Output: a relation s ⊆ w s.t. s |= A→ Ḃ, g3(w, s) ≥ 1− ϵg3 , h3(w, s) ≥ 1− ϵh3 ,

j3(w, s) ≥ 1− ϵj3

1 begin
2 guess s ⊆ w

▷ Check if s |= A→ Ḃ

3 for v ∈ πA(s) do
4 if |πḂ(σA=v(s))| ≥ 2 then
5 fail

▷ Check g3(w, s)
6 if |s|

|w| < 1− ϵg3 then
7 fail

▷ Check h3(w, s)
8 if |πZ (s)|

|πZ (w)| < 1− ϵh3 then
9 fail

▷ Check j3(w, s)
10 for z ∈ πZ(s): do
11 if |σZ=z(s)|

|σZ=z(w)| < 1− ϵj3 then
12 fail

13 return s
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Abstract
The concept of prime implicant is a fundamental tool in Boolean algebra, which is used in Boolean
circuit design and, recently, in explainable AI. This study investigates an analogous concept in
qualitative spatial and temporal reasoning, called prime scenario. Specifically, we define a prime
scenario of a qualitative constraint network (QCN) as a minimal set of decisions that can uniquely
determine solutions of this QCN. We propose in this paper a collection of algorithms designed to
address various problems related to prime scenarios. The first three algorithms aim to generate
a prime scenario from a scenario of a QCN. The main idea consists in using path consistency to
identify the constraints that can be ignored to generate a prime scenario. The next two algorithms
focus on generating a set of prime scenarios that cover all the scenarios of the original QCN: The first
algorithm examines every branch of the search tree, while the second is based on the use of a SAT
encoding. Our last algorithm is concerned with computing a minimum-size prime scenario by using
a MaxSAT encoding built from countermodels of the original QCN. We show that this algorithm
is particularly useful for measuring the robustness of a QCN. Finally, a preliminary experimental
evaluation is performed with instances of Allen’s Interval Algebra to assess the efficiency of our
algorithms and, hence, also the difficulty of the newly introduced problems here.
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1 Introduction

The role of prime implicants is pivotal in various domains, including knowledge compilation [2,
5], Boolean circuit simplification [21, 22, 17], and diagnosis [7, 28]. Additionally, many recent
research works have employed prime implicants to explain decisions by compiling machine
learning classifiers into Boolean circuits [30, 9, 10, 11, 4].

Qualitative Spatial and Temporal Reasoning (QSTR) focuses on reasoning about space
and time using qualitative human-like descriptions, e.g., x {is north of } y, as opposed to
quantitative ones [15]. QSTR is a rich symbolic AI framework concerned with studying
various types of spatial and temporal relationships, such as the relative position of objects [14],
the ordering and duration of events [1], and the mereotopology of regions [23]. By employing
qualitative representations, QSTR allows modeling and reasoning about complex entities
and phenomena in a more flexible and intuitive way without resorting to, often prohibitively
expensive, numerical precision.
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taskx taskz

tasky

before ∨ after

before before ∨ equals

(a) A consistent plan as a QCN.

taskx taskz

tasky

before

before before
(or equals)

(b) A scenario of the QCN.

taskx taskz

tasky

?

before before
(or equals)

(c) A prime scenario of the QCN.

Figure 1 An illustration of the knowledge compilation notion of prime scenario of a qualitative
constraint network (QCN) (see also Definition 4); a set of prime scenarios can form a prime scenario
cover of a QCN, for such a cover, here, we only need to additionally consider the prime scenario in
Figure 1c with tasky {equals} taskz instead of tasky {before} taskz.

In this study, we introduce a novel notion, called prime scenario, that serves as the QSTR
analogue of the notion of prime implicant. A prime scenario is defined as a minimal set
of decisions that can only lead to solutions of the original qualitative constraint network
(QCN); see Figure 1. While the notion of prime implicant shares similarities with that of
prime scenarios, there are significant distinctions that hinder the direct application of prime
implicant computation approaches to our context. Notably, prime scenarios are based on
binary relations between variables, while prime implicants rely on truth values of variables.
For instance, any literal entailed by a prime implicant belongs to that implicant; in contrast,
singleton constraints entailed by prime scenarios do not have this property. To better grasp
this point, consider the following constraints: x {before} y, y {before, equals} z, and x {before,
after} z (Figure 1a); although the two first constraints entail x {before} z, this constraint does
not belong to the prime scenario {x {before} y, y {before} z} (Figure 1c): it is redundant.

It is worth mentioning that our notion of prime scenario has some relation to that of
prime sub-QCN introduced in [13]. Specifically, the constraints that are not included in
the prime scenario are redundant when we require the instantiated part within the prime
scenario. In particular, for every atomic QCN, the prime scenarios are the prime sub-QCNs.
Intuitively, the difference between prime scenarios and prime sub-QCNs bears a resemblance
to the difference between prime implicants and the formulas resulting from the elimination
of redundant clauses in propositional formulas expressed in conjunctive normal form.

To illustrate the motivation behind our novel work here, consider the example of machine
learning classifiers that can be compiled into QCNs, much like as in the ongoing research
involving Boolean circuits that we mentioned in the beginning. In this case, the solutions
correspond to positive decisions, while the remaining interpretations correspond to negative
ones. To explain the decisions made by these classifiers, prime scenarios can be used in a
similar way as prime implicants are used to explain decisions of classifiers compiled into
Boolean circuits. In particular, a prime scenario that covers a solution can be seen as a
sufficient reason behind the decision associated with this solution. What is more, the notions
of prime scenario and prime scenario cover that we introduce here (Figure 1), form a step
towards compiling QCNs and open new avenues for research in this field: Prime scenarios
can be used in the context of compilation of spatio-temporal knowledge bases, and prime
scenario covers would be a classical way to perform such compilations.

With regard to the discussion above, our main contributions are fivefold: (i) We define the
notion of prime scenario of a QCN and propose three algorithms for computing it (Section 3);
(ii) we introduce and study the related problem of prime scenario cover of a QCN and present
two distinct algorithms for solving it, a constraint- and a SAT-based one (Section 4); (iii) we
focus on obtaining a minimum-size prime scenario of a QCN and devise a countermodel-
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before b meets m overlaps o starts s during d finishes f equals eq
x y x y x y x y x y xy x = y

Figure 2 A representation of the 13 base relations b of IA, each one relating two potential intervals
x and y as in x b y; the converse of b, i.e., b−1, can be denoted by bi and is omitted in the figure.

based MaxSAT encoding to tackle this task, and (iv) we show how the minimum-size prime
scenarios are useful for measuring the robustness of a QCN (Section 5); and finally (v) we
experimentally evaluate all our algorithms and make our code available for any interested
researcher to use (Section 6).

2 Preliminaries

A qualitative spatial or temporal constraint language is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called base relations, and defined over an infinite
domain D [15] (e.g., R). The base relations of such a language can be used to represent the
definite knowledge between any two of its entities (e.g., x contains y). The set B contains the
identity relation Id, and is closed under the converse operation (−1). Indefinite knowledge
can be specified by a union of possible base relations, and is represented by the set containing
them. Hence, 2B represents the total set of relations. The set 2B is equipped with the usual
set-theoretic operations of union and intersection, the converse operation, and the weak
composition operation, denoted by ⋄ [15]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}.

The weak composition (⋄) of two base relations b, b′ ∈ B is defined as the smallest (i.e., most
restrictive) relation r ∈ 2B that includes b ◦ b′, or, formally, b ⋄ b′={b′′ ∈ B | b′′∩(b ◦ b′) ̸= ∅},
where b◦b′={(x, y) ∈ D×D | ∃z ∈ D such that (x, z) ∈ b∧(z, y) ∈ b′} is the (true) composition
of b and b′. For all r, r′ ∈ 2B, we have that r ⋄ r′ =

⋃
{b ⋄ b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative temporal constraint language of
Interval Algebra (IA) [1]. IA considers time intervals (as temporal entities) and the set of
base relations B = {eq (= Id), b, bi, m, mi, o, oi, s, si, d, di, f , fi} to encode knowledge
about the temporal relations between intervals on the real line, as described in Figure 2.

Finally, representing and reasoning about qualitative spatio-temporal information can be
facilitated by a qualitative constraint network (QCN); we recall the following definition:

▶ Definition 1. A qualitative constraint network (QCN) is a tuple (V, C) where:
V = {v1, . . . , vn} is a finite set of variables over some infinite domain D (e.g., R);
and C is a mapping C : V × V → 2B associating a relation with each pair of variables s.t.
C(v, v) = {Id} for all v ∈ V , and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

For convenience, we often consider that the set of variables of a QCN consists of integers,
and we use [[N ]] to denote the set {(i, j) ∈ V × V : i < j}.

A QCN N = (V, C) is said to be trivially inconsistent iff ∃v, v′ ∈ V such that C(v, v′) = ∅.
A solution of a QCN N = (V, C) is a mapping σ : V → D such that ∀v, v′ ∈ V ,

∃b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b; N is said to be consistent iff it admits a solution.
A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V, C ′) such that, ∀u, v ∈ V ,

C ′(u, v) ⊆ C(u, v). (This term is also known as a refined QCN in the literature.)
A scenario of N is a consistent atomic sub-QCN S of N , where a QCN S = (V, C ′) is

atomic iff ∀v, v′ ∈ V , |C(v, v′)| = 1. To refer to the set of scenarios of N , we employ the
notation Scenarios(N ).
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Throughout the paper, we use the following notational conventions for a QCN N = (V, C):
For two variables v, v′ ∈ V , we use N [v, v′] to denote the relation C(v, v′).
For two variables v, v′ ∈ V and a relation r ∈ 2B, we use v r v′ to denote that C(v, v′) = r

when there is no ambiguity about the considered QCN.
For two variables v, v′ ∈ V and a relation r ∈ 2B, we use N[v,v′]/r to denote the result of
substituting C(v, v′) with r in N , i.e., N[v,v′]/r is the QCN (V, C ′) defined by C ′(v, v′) = r,
C ′(v′, v) = r−1 and, ∀(u, u′) ∈ (V × V ) \ {(v, v′), (v′, v)}, C ′(u, u′) = C(u, u′).

A counter-scenario of a QCN N = (V, C) is a consistent atomic QCN S over V that is
not a scenario of N , i.e., there exist i, j ∈ V such that S[i, j] ̸⊆ N [i, j]. We denote the set of
counter-scenarios of N as CounterS(N ).

In general, there exists only one type of QCNs that do not admit any counter-scenario:
those in which every constraint is universal, i.e., it contains all base relations. In such cases,
we use N⊤ to denote the universal QCN when the set of variables is assumed to be known,
or to refer to this type of QCNs.

Given a set of variables V , we define a q-assignment over V as a partial function f from
{(i, j) : i, j ∈ V and i < j} to B. We use N f

V to denote the QCN (V, C) defined as follows:
for each (i, j) ∈ dom(f), C(i, j) = {f(i, j)}; and
for each i, j ∈ V with i < j and (i, j) /∈ dom(f), C(i, j) = B.

Given a QCN N , we use min(N ) to denote the equivalent minimal sub-QCN of N [26],
i.e., the sub-QCN that contains only the feasible base relations of the original one.

It is important to note that in this paper, we focus on calculi with the following property:
▶ Note 2. For any q-assignment f over V , the closure of N f

V under path consistency (with
weak composition, or, equivalently, under algebraic closure [25]) yields min(N f

V ).
This property holds for many widely adopted qualitative calculi, such as IA [1] (mentioned

earlier) and RCC8 [23]; a fuller listing is provided in the proof of Theorem 2 in [16].
As a direct consequence of the aforementioned property, we also have that, for any

q-assignment f over V , path consistency decides the consistency of N f
V .

Given a consistent atomic QCN S = (V, C), we say that a q-assignment f over V covers
S if S is a scenario of N f

V .
In the sequel, we also represent a q-assignment as a set of expressions of the form (i, j) 7→ b:

f corresponds to the set {(i, j) 7→ f(i, j) : (i, j) ∈ dom(f)}.

3 Prime Scenarios

In this section, we introduce the concept of prime scenario, which can be thought of as
analogous to that of prime implicant in propositional logic.

▶ Definition 3 (Convergent Q-Assignment). A convergent q-assignment (CQA) of a QCN
N = (V, C) is a q-assignment π over V where (1) N π

V is consistent, and (2) every scenario
of N π

V is a scenario of N .

Convergent q-assignments are similar in concept to implicants in propositional logic.
Property 1 states that a CQA maintains consistency, and Property 2 says that a CQA cannot
lead to a scenario that does not satisfy the original QCN. By virtue of this second property,
π(i, j) ∈ C(i, j) holds for every (i, j) ∈ dom(π).

▶ Definition 4 (Prime Scenario). A prime scenario of a QCN N is a convergent q-assignement
π of N where for every D ⊊ dom(π), π|D is not a convergent q-assignment.
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Algorithm 1 FindOnePS_1(N ,S).

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 π ← {(i, j) 7→ b : (i, j) ∈ [[N ]], b ∈ S[i, j],N [i, j] ̸= B};
2 for (i, j) ∈ [[N ]] do
3 N ′ ← PathConsistency(N π

V [i,j]/B);
4 if N ′ ⊆ N then
5 π ← π|dom(π)\{(i,j)};
6 return π

In other words, a prime scenario is a CQA that has a minimal domain (w.r.t. set inclusion).
We use PSes(N ) to denote the set of prime scenarios of N .

To distinguish between prime scenarios and standard scenarios more clearly, we will refer
to the latter as complete scenarios.

▶ Proposition 5. The problem of determining whether a q-assignment is a prime scenario
of a QCN is tractable.

Proof. We show that we can determine whether a q-assignment is a prime scenario by linearly
applying the polytime procedure of path consistency. Let N = (V, C) be a QCN and π a
q-assignment of N . To determine whether π is a prime scenario, we first need to check that
N π

V is consistent, which can be done using path consistency (see Note 2 and the discussion
after). Using, again, path consistency, we can determine whether every complete scenario of
N π

V is a complete scenario of N (see Note 2). Indeed, we only have to show N ′ ⊆ N , where
N ′ is the result of applying path consistency on N π

V . Similarly, to show that π is minimal
w.r.t. set inclusion, we can use path consistency to show that, for every (i, j) ∈ dom(π),
Nij ̸⊆ N , where Nij is the result of applying path consistency on N π|dom(π)\{(i,j)}

V . ◀

Let us recall that a prime implicant of a propositional formula is a minimal consistent
conjunction of literals whose Boolean models are models of this formula. This definition
clearly shows that prime implicants and prime scenarios are similar in concept. However,
a closer examination reveals that there are significant differences between them, making
the study of prime scenarios highly compelling and of great interest. First, prime scenarios
are more complex structures by involving constraints and qualitative relations. Secondly,
universal constraints, which are analogous to tautologies in the case of propositional logic, can
be involved in prime scenarios, whereas tautologies can be simply ignored in prime implicant
computation. Consider, for instance, the QCN N in Point Algebra PA [33] (B = {<, =, >})
that corresponds to the following constraints: i{<, =, >}j, j{<, =, >}k and i{<}k; we obtain
that π = {(i, j) 7→<, (j, k) 7→<} is a prime scenario of N even though the two involved
constraints in π are universal in N . Thirdly, unlike entailed literals in the case of prime
implicants, the singleton constraints entailed from a prime scenario do not belong to it.
The prime implicants benefit significantly from this advantage, as it enables the use of unit
propagation to efficiently compute them.

Computing One Prime Scenario
The focus here is on the computation of a prime scenario that covers a given complete scenario.
We propose three different algorithms that are centered around the idea of computing a
prime scenario from a precomputed CQA.
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Algorithm 2 FindOnePS_2(N ,S).

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 N ′ ← N⊤;
2 P ← [[N ]];
3 while N ′ ̸⊆ N do
4 Let (i, j) ∈ P s.t. |N ′[i, j]| > 1 and N [i, j] ̸= B;
5 N ′ ← PathConsistency(N ′

[i,j]/S[i,j]);
6 P ← P \ {(i, j)}
7 π ← {(i, j) 7→ b : (i, j) ∈ [[N ]] \ P, b ∈ S[i, j]};
8 for (i, j) ∈ [[N ]] \ P do
9 N ′ ← PathConsistency(N π

V [i,j]/B);
10 if N ′ ⊆ N then
11 π ← π|dom(π)\{(i,j)};
12 return π

Algorithm 3 FindOnePS_3(N ,S).

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 N ′ ← N ;
2 min← 1;
3 max← n;
4 while min ̸= max do
5 v ← (max + min)/2;
6 N ′′ ← PathConsistency(N ′

[i1,j1]/S[i1,j1],...,[iv,jv ]/S[iv,jv ]);
7 if N ′′ ⊆ N then
8 max← v;
9 else

10 min← v + 1;
11 N ′ ← N ′′;
12 π ← {(ik, jk) 7→ bk : 1 ≤ k ≤ min, b ∈ S[i, j]};
13 for k ∈ 1, . . . , min do
14 if PathConsistency(N π

V [ik,jk]/B) ⊆ N then
15 π ← π|dom(π)\{(i,j)};
16 return π

Algorithm 1 starts by obtaining a CQA from a given complete scenario: its domain
corresponds to the set of non-universal constraints in the original QCN. It then iterates over
this CQA, applying path consistency to determine if the domain can be reduced.

Algorithm 2 begins by constructing a more compact CQA compared to Algorithm 1. It
achieves this by using a while loop, which adds a constraint at each iteration using the given
complete scenario until it reaches a CQA. Then, similarly to algorithm 1, it uses a for loop
to compute a prime scenario from the obtained CQA.

Algorithm 3 is described by fixing {(i, j) ∈ [[N ]] : N [i, j] ̸= B} = {(i1, j1), . . . , (in, jn)}.
Similar to Algorithm 2, it starts by computing a CQA and then utilizes a for loop to
obtain a prime scenario from the computed CQA. However, unlike Algorithm 2, Algorithm 3
incorporates a dichotomic search to compute a CQA, which might enable it to perform the
search more efficiently.
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Algorithm 4 ComputePSCover(N ,N ′, π).

in : Two QCNs N = (V, C) and N ′(V, C ′), and q-assignment π over V

out : A PS cover of N by assigning N⊤ to N ′ and ∅ to π

1 N ′′ ← PathConsistency(N ′);
2 if ∃(i, j) ∈ [[N ]] \ dom(π),N ′′[i, j] ∩N [i, j] = ∅ then
3 return ∅;
4 if N ′′ ⊆ N then
5 return {FindOnePS(N , π)};
6 Let (i, j) ∈ [[N ]] \ dom(π) s.t. N ′′[i, j] ̸⊆ N [i, j];
7 R← ∅;
8 for b ∈ N ′′[i, j] ∩N [i, j] do
9 R← R ∪ {FindPSCover(N ,N ′′

[i,j]/b, π ∪ {(i, j) 7→ b})};
10 return R

By employing three distinct algorithms, we can benefit from the advantages and the
strength of each approach. Our experiments have revealed that these algorithms exhibit
varying levels of accuracy and efficiency for specific instances. Note that the considered
approaches are similar to some approaches used in propositional logic for computing prime
implicants, prime implicates, and minimal unsatisfiable cores (e.g., see [29, 18, 8]).

4 Prime Scenario Cover

Prime implicant cover is a key knowledge compilation concept in the realm of Boolean circuit
design, as it allows us to simplify complex Boolean functions: a function is represented as a
disjunction of prime implicants that cover all its models. In this section, we investigate a
similar concept in QSTR, called prime scenario cover.

We define a prime scenario cover of a QCN N as any set C of prime scenarios of N such
that each complete scenario of N is covered by at least one element of C.

A prime scenario cover provides a simplified representation of the original QCN. It can
also be regarded as a compact representation of all complete scenarios of the initial QCN.

Computing A Prime Scenario Cover

We propose two distinct approaches for computing a prime scenario cover of a given QCN.
The first approach considers every branch of the search tree to cover all scenarios, while the
second is based on an encoding in the SAT problem.

Constraint-based Approach

Algorithm 4 generates a prime scenario cover by recursively exploring the search tree and
including a prime scenario for each found CQA. To obtain a prime scenario cover, we need to
invoke ComputePSCover by assigning N⊤ to N ′ and ∅ to π. The code in Lines 2–3 ensures
that search-subtrees without any CQA are not considered. The code in Lines 4–5 generates a
prime scenario from a found CQA using one of the approaches described previously. Finally,
the code in Lines 6–9 selects a constraint in the current QCN to continue exploring the
search tree by making new decisions.
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Algorithm 5 ComputePSCover(N ).

in : A QCN N = (V, C)
out : A PS cover C of N

1 C ← ∅;
2 Φ← SATEnc(N );
3 while SAT(Φ) do
4 π ← FindOnePS(N ,Sω);
5 C ← C ∪ {π};
6 Φ← ϕ ∧

∨
(i,j)∈dom(π) ¬p

π(i,j)
ij

7 return C

SAT-based Approach

To define our second algorithm, we use a SAT encoding of the consistency problem [19, 35]. For
every (i, j) ∈ [[N ]] and every b ∈ B, we associate a distinct propositional variable pb

ij . Then,
we define the encoding SATEnc(N ) as follows: (1)

∑
b∈C(i,j) pb

ij = 1 for each (i, j) ∈ [[N ]];
and (2)

∧
b1∈C(i,j)
b2∈C(j,k)

(pb1
ij ∧ pb2

jk →
∨

b3∈(b1⋄b2)∩C(i,k) pb3
ik) for every (i, j), (j, k) ∈ [[N ]].

Note that the sum constraints in Formula (1) can be linearly encoded as CNF formulas
in several ways (e.g., see [31]).

For every model ω of SATEnc(N ), the associated complete scenario of N , denoted Sω, is
defined as follows: for every (i, j) ∈ [[N ]], Sω[i, j] = {b : ω(pb

ij) = 1}.
Algorithm 5 allows us to compute a prime scenario cover by ensuring that each newly found

prime scenario covers at least one complete scenario that is not covered by the previously
obtained prime scenarios. Indeed, in each iteration of the while loop, the computed complete
scenario is not covered by the prime scenarios found in the previous iterations, thanks to the
addition of blocking clauses in Line 6.

5 Minimum-Size Prime Scenarios

The minimum-size prime scenarios are those that have the smallest possible domains. We
think that, like minimum-size prime implicants, minimum-size prime scenarios can be applied
in various contexts. In this section, after describing our algorithm for computing minimum-
size prime scenarios, we introduce a novel application by showing that these prime scenarios
can be useful for analyzing and reasoning about robustness. Specifically, they can help us to
define a robustness measure that provides insights into the number of critical constraints.

Computing a Minimum-Size Prime Scenario: PMaxSAT-based Approach
Given two QCNs N and N ′ over the same set of variables V , we use comp(N , N ′) to denote
the set {(i, j) 7→ b : (i, j) ∈ [[N ]] and b ∈ N [i, j] \ N ′[i, j]}.

A hitting set is a subset of a collection of sets that intersects with every element in the
collection. A hitting set is said to be minimal if it cannot be reduced in size without ceasing
to be a hitting set.

The following theorem shows that all prime scenarios can be obtained from the minimal
hitting sets of collections of sets built from the counter-scenarios.

▶ Theorem 6. A q-assignment π is a prime scenario of N iff π is a minimal hitting set of
H = {comp(N , N ′) : N ′ ∈ CounterS(N )} and N π

V is consistent.
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Algorithm 6 MinimumSizePS(N ).

in : A QCN N = (V, C)
out : A minimum-size prime scenario of N

1 Let S0 an arbitrary counter-scenario of N ;
2 H ← {comp(N ,S0)};
3 while true do
4 π ← getHS(MaxSATMH(H,N ));
5 N ′ ← PathConsistency(N π

V );
6 if N ′ ⊆ N then
7 return π

8 Let S be an arbitrary scenario of N ′ where S[i, j] ̸⊆ N [i, j] for some (i, j) ∈ [[N ]];
9 H ← H∪ {comp(N ,S)};

Proof. First, we prove the “if” part. Let π be a q-assignment such that N π
V is consistent

and π is a minimal hitting set of H. We assume for the sake of contradiction that N π
V is

satisfied by a counter-scenario N ′ of N . This implies that π ∩ comp(N , N ′) = ∅. However,
this contradicts the assumption that π is a hitting set of H. Therefore, π must be a CQA of
N . To prove that π is a prime scenario, we must show that its domain is minimal w.r.t. set
inclusion. This follows directly from the fact that π is a minimal hitting set of H. Indeed,
any proper subset π′ of π does not hit at least one element of H, which means that N π′

V is
satisfied by at least one counter-scenario of N . Consequently, π is a prime scenario of N .

Now, we move to the “only if” part. Let π be a prime scenario of N . Suppose that there
is counter-scenario N ′ of N s.t. π ∩ comp(N , N ′) = ∅. Thus N ′ is a complete scenario of
N π

V , which leads to a contradiction. Therefore, π is a hitting set of H. Just as in the “if”
part, the minimality of π as a hitting set is implied by its minimality as a CQA. ◀

To some extent, Theorem 6 is similar to the minimal hitting set duality between prime
implicants and prime implicates in the case of propositional logic [24, 27, 20].

Our algorithm generates candidate solutions by utilizing a Partial MaxSAT encoding
to compute specific minimal hitting sets. We denote this encoding by MaxSATMH(H′, N ),
where N = (V, C) is a QCN and H′ ⊆ {comp(N , N ′) : N ′ ∈ CounterS(N )}. In addition to
the variables used to define the SATEnc(N ) encoding, described in Section 4, we associate
a distinct propositional variable qb

ij with every (i, j) 7→ b ∈
⋃

H′. The hard part of
MaxSATMH(H′, N ) corresponds to the conjunction of SATEnc(N ) and the following formulas:
(1)

∨
(i,j) 7→b∈e qb

ij for each e ∈ H; and (2) qb
ij → pb

ij for each (i, j) 7→ b ∈
⋃

H′.
Formula (1) guarantees that each solution of the encoding hits all elements of H′, and

Formula (2) forces the truth values of the variables representing a complete scenario of N to
match those of the variables of the form qb

ij .
The soft part of MaxSATMH(H′, N ) corresponds to the set of unit clauses {¬qb

ij : (i, j) 7→
b ∈

⋃
H′}. This allows us to minimize the size of the hitting set.

Given a solution ω of MaxSATMH(H′, N ), its associated q-assignment is πω = {(i, j) 7→
b ∈

⋃
H′ : ω(qb

ij) = 1}. Clearly, πω is one of the smallest hitting sets of H′ such that N πω

V is
consistent and covers a scenario of N .

Theorem 6 shows that every minimum-size prime scenario π of N is a minimum-size
hitting set of H = {comp(N , N ′) : N ′ ∈ CounterS(N )} where (1) N π

V is consistent, and
(2) every complete scenario of N π

V is a complete scenario of N . Consequently, if π is one of
the smallest hitting sets of a subset H′ ⊆ H that satisfies Properties 1 and 2, then π is a
minimum-size prime scenario of N . This is because every hitting set of H is also a hitting
set of H′. Algorithm 6 uses this property to generate a minimum-size prime scenario. In

TIME 2023
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each iteration of the while loop, Algorithm 6 employs the encoding MaxSATMH(H′, N ) to
compute π, one of the smallest hitting sets that satisfies Property 1 (Line 4). It then uses
path consistency to check whether π satisfies also Property 2 (Lines 5–6). If π satisfies both
properties, then π is a minimum-size prime scenario and is returned; otherwise, the algorithm
adds an element obtained from a new counter-scenario of N to the collection of sets H. In
the worst case, all counter-scenarios of N will be considered in H, and this necessarily allows
the algorithm to obtain a minimum-size prime scenario.

Algorithm 6 shares some similarities with the approach used in [6] for solving the MaxSAT
problem. This approach leverages the duality between minimal correction subsets and minimal
unsatisfiable subsets.

An Application of Minimum-Size Prime Scenarios: Robustness Measure
Now, we demonstrate one possible use of minimum-size prime scenarios in reasoning about
robustness in QCNs, cf. [32] and [34]. With respect to our terminology here, QCN robustness
refers to the ability of a QCN to withstand perturbations, i.e., eliminations of base relations,
without needing to transform counter-scenarios into scenarios: the scenarios that result after
perturbation are also scenarios of the original QCN. In other words, a robust QCN can
maintain its consistency when facing perturbations. Although certain robustness notions
have been studied in [32] and [34], robustness measures that can be used to compare different
QCNs with one another have not been formalized or introduced; in fact, those notions only
compare the different scenarios (or refined QCNs) with one another of a single QCN.

We define a robustness measure as a function from the set of QCNs to positive real
numbers. Our robustness measure, denoted RP S , is defined as follows:

RP S(N ) = max{|[[N ]]| − |dom(π)| : π ∈ PSes(N )}

where max ∅ = 0. For consistent QCNs, we clearly have RP S(N ) = |[[N ]]| − min{|dom(π)| :
π ∈ PSes(N )}; It follows that RP S can be computed from any minimum-size prime scenario.

Our measure captures the fact that the robustness increases by decreasing the number of
the constraints that we need to instantiate to get a complete scenario of the given QCN.

To formally establish the suitability of our robustness measure, we present a result that
lists interesting properties that can be considered as necessary for any robustness measure.

▶ Proposition 7. The following properties are satisfied:
1. for any inconsistent QCN N , RP S(N ) = 0;
2. RP S(N⊤) = |[[N⊤]]|;
3. for all two QCNs N and N ′ with Scenarios(N ) = Scenarios(N ′), RP S(N ) = RP S(N ′);
4. for all two QCNs N and N ′ with Scenarios(N ) ⊆ Scenarios(N ′), RP S(N ) ≤ RP S(N ′).

Proof. Property 1 holds since every inconsistent QCN does not admit any prime scenario.
Property 2 follows from the fact that π = ∅ is a prime scenario of N⊤. The fact that the
QCNs having the same complete scenarios have also the same prime scenarios leads to
Property 3. Property 4 stems from the observation that PSes(N ) ⊆ PSes(N ′) holds when
Scenarios(N ) ⊆ Scenarios(N ′). ◀

The first two properties state that the minimum robustness value is associated with
inconsistent QCNs, while the maximum value corresponds to QCNs where all relations are
trivial, viz., N⊤. The third property ensures that identical complete scenarios lead to the
same robustness value. The last property guarantees that the robustness value does not
decrease as more complete scenarios are considered.
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Table 1 Assessing the performance of obtaining (minimum) prime scenarios, the format being
min | avg.(µ) | max prime index

min | avg.(µ) | max # of oracle calls (# of timeouts); a timeout occurs after 1 200s, and it is im-

portant to note that the oracle calls for the FindOnePS variants concern the application of path
consistency, whereas the ones for MinimumSizePS the solving of a Partial MaxSAT instance.

d FindOnePS_1 FindOnePS_2 FindOnePS_3 MinimumSizePS

9 0.2 | 0.3 | 0.4

45 | 45.0 | 45

0.2 | 0.29 | 0.36

26 | 38.24 | 52

0.2 | 0.3 | 0.38

34 | 45.11 | 50

0.2 | 0.26 | 0.31

0.9k | 2.2k | 4.2k
(34)

8 0.23 | 0.34 | 0.45

40 | 40.0 | 40

0.23 | 0.33 | 0.43

28 | 39.02 | 54

0.23 | 0.34 | 0.45

23 | 41.03 | 45

0.23 | 0.29 | 0.35

1.5k | 2.9k | 5.7k
(45)

7 0.29 | 0.4 | 0.66

35 | 35.0 | 35

0.29 | 0.39 | 0.66

26 | 39.98 | 60

0.29 | 0.4 | 0.57

27 | 37.39 | 40

0.26 | 0.33 | 0.46

1.7k | 3.4k | 5.3k
(64)

6 0.3 | 0.47 | 0.6

30 | 30.0 | 30

0.3 | 0.46 | 0.6

26 | 39.60 | 54

0.33 | 0.46 | 0.63

21 | 32.89 | 34

0.3 | 0.38 | 0.47

2.7k | 4.1k | 5.5k
(85)

5 0.4 | 0.57 | 0.76

25 | 25.0 | 25

0.4 | 0.57 | 0.76

28 | 37.92 | 46

0.4 | 0.57 | 0.8

23 | 28.3 | 29

0.36 | 0.45 | 0.56

2.2k | 4.3 | 6.2k
(88)

4 0.5 | 0.69 | 0.85

20 | 20.0 | 20

0.5 | 0.69 | 0.85

24 | 34.1 | 40

0.5 | 0.7 | 0.9

21 | 23.57 | 24

0.45 | 0.52 | 0.55

3.6k | 5.6k | 7.0k
(97)

3 0.67 | 0.83 | 1.0

15 | 15.0 | 15

0.67 | 0.83 | 1.0

22 | 28.14 | 30

0.67 | 0.84 | 1.0

16 | 17.96 | 18

0.6 | 0.63 | 0.67

5.0k | 5.0k | 5.0k
(98)

Table 2 Assessing the performance of obtaining prime scenario covers, the format being avg.
# of oracle calls; it is important to note that the oracle calls for ComputePSCover concern the
application of path consistency, whereas the ones for ComputePSCover(SAT) the solving of a
SAT instance, and that avg. cover size = avg. # of oracle calls of ComputePSCover(SAT) − 1
(each oracle call in line 3 of Algorithm 5 computes a prime scenario in the cover, minus the last one).

d = 9 8 7 6 5 4 3

ComputePSCover 0.2k 0.3k 0.5k 1.0k 2.3k 3.0k 3.5k

ComputePSCover(SAT) 16.05 25.04 56.21 0.1k 0.4k 0.7k 1.0k

6 Experimentation

In this section, we perform a preliminary evaluation to assess the efficiency of our algorithms
and, hence, also the difficulty of the introduced problems that they tackle. Our expectation
is that: the FindOnePS variants should run really fast as they involve a number of
path consistency applications that is linear to the number of constraints of a QCN, the
ComputePSCover variants should run comparatively quite slower as they explore the
search space of a QCN and mirror model counting algorithms, and the MinimumSizePS
algorithm should be the slowest of all as it is not only dealing with finding a prime scenario
for each of the exponentially many scenarios of a QCN, but one that is minimal too (there
are many possibilities for a single scenario).

Dataset, Measures, & Setup

To be able to have results that are comparable between fast polytime methods (the Fin-
dOnePS variants) and methods for hard optimization problems (the MinimumSizePS
algorithm), we consider QCNs of IA of 10 variables with a maximum of 2 base relations per
non-universal constraint, for every avg. degree d ∈ (9, 8, . . . , 3) of their constraint graphs
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Figure 3 Assessing the runtime of our algorithms for the problems pertaining to prime scenarios.

(i.e., going from complete graphs to sparse ones). Specifically, we generate two arbitrary
IA scenarios that we then proceed to unify; then, we create all the QCNs that result by
considering one sub-graph of the initially complete constraint graph for every degree d in the
aforementioned range, each with an avg. degree d. We consider 100 QCNs with an initially
complete constraint graph, each yielding 6 more (sparser ones), hence a total of 700 QCNs.
The size of the networks is relatively consistent with what has been used in the literature for
similar optimization problems in order to present results that are as complete as possible (e.g.,
[3]), see also Table 1; in addition, a QCN of IA of n variables enumerates O(2n·log n) scenarios
(qualitative solutions) [12], which translates to roughly 10 billion scenarios in our case.

All of the used measures are clear and intuitive, with the exception of prime index : this is
the ratio of the # of non-universal constraints in a prime scenario to the # of non-universal
constraints in the original QCN and, thus, takes values in (0, 1]. Clearly, the denser the
network, the more opportunities there are to obtain a low measure of this type.

For the experiments we used an Intel®Core®CPU i7-12700H @ 4.70GHz, 16 GB of RAM,
and the Ubuntu Linux 22.04 LTS OS. All coding/running was done in Python 3.10.6; the
code is available at: https://seafile.lirmm.fr/d/9c0cbd2cd0954252ab96/.

Results & Remarks

The results are shown in Tables 1 and 2 and Figure 3, and confirm our expectations; we detail
as follows. Regarding (minimum) prime scenario computation, the polytime FindOnePS
variants are extremely fast, and among those variants the simpler FindOnePS_1 has the
best performance overall; in the case of computing a prime scenario that is also minimal,
we can see that MinimumSizePS can reduce the min, avg., and max prime index values,
but at a huge cost as the number of scenarios that this algorithm has to consider becomes
detrimental to its runtime performance (see # of timeouts in Table 1 and runtime in Figure 3
in particular). Regarding prime scenario cover computation, the constraint-based and the
SAT-based ComputePSCover algorithms perform very similarly, with the SAT variant, viz.,
ComputePSCover(SAT), performing better overall with respect to runtime performance
(see Figure 3 in particular); here, we must note that we did not find any notable differences
in the size of the covers that these algorithms computed (the same result applies to both, see
the caption of Table 2), even though such differences may exist in general.

https://seafile.lirmm.fr/d/9c0cbd2cd0954252ab96/
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7 Conclusion and Perspectives

We introduced the novel notion of prime scenario to QSTR, which is analogous to that of
prime implicant in the case of classical logic. In sum, we made five major contributions: first,
we described three methods for computing one prime scenario; secondly, we presented two
methods for computing a prime scenario cover, which is a set of prime scenarios that cover all
the scenarios of a given QCN; thirdly, we proposed a method for computing a minimum-size
prime scenario and, fourthly, demonstrated how this notion can be used to reason about
robustness; and, fifthly, we experimentally evaluated all our algorithms and made our code
available for any interested researcher to use. Our study opens up new perspectives by
revealing previously unexplored ways to extend the notion of prime implicants to QSTR.
Specifically, it sheds light on the possible use of prime scenarios to explain the decisions made
by classifiers compiled into QCNs, in the same way as prime implicants [30, 9, 10, 11, 4], and
opens new avenues for research in the field of knowledge compilation in the context of QSTR.
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Abstract
Runtime Enforcement (RE) is a monitoring technique aimed at correcting possibly incorrect ex-
ecutions w.r.t. a set of formal requirements (properties) of a system. In this paper, we consider
enforcement monitoring of real-time properties. Thus, executions are modelled as timed words
and specifications as timed automata. Moreover, we consider that the enforcer has the ability to
delay events by storing or buffering them into its internal memory (and releasing them when the
property is finally satisfied) and suppressing events when no delaying is appropriate. Practically, in
an implementation, the internal memory of the enforcer is finite.

In this paper, we propose a new RE paradigm for timed properties, where the memory of the
enforcer is bounded/finite, to address practical applications with memory constraints and timed
specifications. Bounding the memory presents a number of difficulties, e.g., how to accommodate a
timed event into the memory when the memory is full, s.t., regardless of the course of action we
choose to handle this situation, the behaviour of the bounded enforcer should not significantly differ
from that of the unbounded enforcer. The problem of how to optimally discard events when the
buffer is full is significantly more difficult in a timed environment where the progress of time affects
the satisfaction or violation of a property. We define the bounded-memory RE problem for timed
properties and develop a framework for regular timed properties specified as timed automata. The
proposed framework is implemented in Python, and its performance is evaluated. From experiments,
we discovered that the enforcer has a reasonable execution time overhead.
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1 Introduction

Runtime Enforcement (RE) [8, 11, 2, 6, 19] is a monitoring technique to ensure that a system
conforms to a set of formal requirements (properties) at runtime. It does so by employing
an enforcement monitor (enforcer), which modifies an untrustworthy (not satisfying the
property) sequence of input events into a trustworthy (satisfying the property) sequence of
output events. This transformation of an input sequence into an output sequence should be
constrained by the so-called Soundness (the enforcer should only output correct sequences),
Transparency (the enforcer should not modify correct input sequences), Optimality (actions
should be released as soon as possible as output), etc. properties.
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6:2 Bounded-Memory Runtime Enforcement of Timed Properties

We focus on the enforcement of regular timed properties, where the enforcement of a
property φ is done on the fly (online). The input sequence of events is made up of actions
and delays between them. The general schema is as follows: an enforcer is placed between
an event emitter (which emits a sequence of events σ as an input to the enforcer) and an
event receiver (which receives the corrected sequence of events o from the enforcer). The
enforcer can increase the delays between the events to satisfy the desired timed property.
Thus, when a sequence of events is received by the enforcer that is currently not satisfying
the property, the enforcer stores or delays those events until a time/events come that result
in the satisfaction of the property. Now, for that purpose, the enforcer is equipped with
an internal memory (which we refer to as a buffer throughout the paper). Moreover, we
consider that the enforcer can also suppress input events when it determines that the input
events cannot be corrected by delaying, whatever their continuation.

In usual RE mechanisms such as [8, 11], the buffer of the enforcer is regarded as infin-
ite/unbounded. But in the case of a real implementation of the enforcer, this assumption is
obviously not realistic: an internal buffer is inevitably bounded [9, 24]. Thus, a situation may
arise, where an event needs to be buffered (since it is not currently satisfying the property
but can satisfy the property in the future with the arrival of more events), and the buffer is
full. Now, to make room for this incoming event, one can arbitrarily remove some events
from the buffer, or just discard the received event. However, these naive approaches can
result in deviation in behaviour from the unbounded enforcer.

[23] studies RE for untimed properties with a bounded buffer, i.e., it gives a framework
where the enforcer tackles the situation when the buffer is finite in an optimal way (minimal
dropping of events from the buffer (“cleaning”), minimal deviation from the unbounded
enforcer). The framework in [23] (referred to as Bounded-Memory Runtime Enforcement)
synthesised an enforcer, for a given regular property φ, with the maximum size of buffer k,
that takes as input a word σ and outputs a word o that (i) satisfies φ (soundness), (ii) is a
prefix or subword of input σ (transparency), (iii) the output is as long as possible (optimality)
and equivalent to one produced by an unbounded-memory enforcer (∞-compatible).

For various domains such as safety-critical systems, cyber-physical systems, and commu-
nication protocols, the correct functioning of their software systems depends crucially on
real-time considerations (timing constraints and deadlines) where the time between events
matters. Thus, we have timed properties to specify and verify models of real-time systems.
They allow expressing constraints on the time that should elapse between (sequences of)
events. Timed properties can be formally expressed using models such as timed automata [1].
By enforcing timed properties on these systems, we can ensure that the system behaviour
adheres to these timing requirements, thereby guaranteeing its correctness and reliability.

RE allows for dynamic monitoring during execution. It provides a mechanism to detect
violations of the timed properties at runtime (during execution of the system) and respond
accordingly, by taking corrective actions. This enables proactive management of timing-
related issues and helps prevent potential failures. Thus, various formal RE monitor synthesis
approaches for timed properties, where properties are expressed as timed automata (or its
variant) have been proposed [7, 15, 17, 18, 16].

Motivation. A framework for RE of “timed” properties with memory constraints on the
buffer of the enforcer, however, has not been investigated yet, which is required since in
a real-time safety-critical system, the properties are timed properties and the buffer is
constrained by memory limitations.

Let us understand the usefulness of the bounded-memory enforcer for timed properties by
an example. Consider a wireless sensor network in which the sensor nodes move throughout
the environment working to gather and process information (e.g., temperature, humidity,
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air quality, etc.) about their surroundings at specific intervals. These nodes typically
consist of a low power microcontroller capable of limited information processing, sensors to
capture specific data from the environment, memory to store collected data, and a radio
to transmit data between nodes. Data buffers, used to handle large flows of network data,
often consume large amounts of memory and therefore must be carefully allocated. So, if
there are memory constraints on the whole sensor system, then the limited memory in sensor
systems necessitates rethinking the data buffering model. Thus, whenever these systems are
safeguarded by an enforcer which has constraints on the buffer size and we do not want to
lose any random event stored in the buffer, then our work outshines others as it works on
the principle of suppressing idempotent events (data) which makes insignificant differences
in many cases.

Also, often the timing of the data captured by the sensor nodes is critical for maintaining
temporal relevance. Consequently, this highlights the requirement for an enforcer that ensures
adherence to timed properties.

Contributions. We introduce the first formal framework for bounded-memory runtime
enforcement of timed properties modelled as timed automata1. We tackle the problem of
obtaining an enforcer with memory constraints on the buffer, given a timed property. The
enforcer intervenes when an execution is about to violate the property by its following abilities:
delaying events in a buffer (increase the absolute dates of events of the observed input while
allowing to shorten the delay between some events), releasing them when the property is
finally satisfied, and suppressing (a minimal number of) events if there is no other way to
avoid a property violation or a buffer overflow. The notions of soundness, monotonicity,
and optimality are similar to the ones commonly used in the other RE frameworks [7].
Transparency is, however, simplified into two parts to account for cases where input events
are corrected by just delaying or when suppression is also required. Moreover, we propose the
notion of optimal suppression, which discards events when there is no possibility of finding a
correct delay for an event.
The contributions can be summarized as follows:
1. We define an enforcer as one dedicated to a desired timed property φ, that transforms

words.
2. We define the constraints that should be satisfied by the enforcer.
3. We present algorithms describing how the proposed enforcer can be implemented.
4. We implemented the proposed algorithms in Python and evaluated them using example

properties. All our results are formalised and proven.
Due to space constraints, the algorithms and performance evaluation are provided at Appendix
B, and sketches of proofs are provided at our github repository BMRE_timed.

2 Related Work

Runtime enforcement. RE is introduced in [21] by Schneider, where security policies
are specified by security automata, a variant of the Büchi automaton. Later, many works
extended the work of Schneider, e.g., Ligatti et al. introduced edit automata [10, 11] which

1 Timed automata provide an explicit modeling of timing constraints and behaviour, including the ability
to represent clock variables, timeouts, and synchronization mechanisms. This explicit representation
makes timed automata well-suited for systems where precise timing constraints are crucial, such as
real-time or embedded systems. Note that a timed temporal logic such as MTL can also be considered
as an alternative for specifying properties, which can be transformed into timed automata [12].
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not only recognise (truncate) the incorrect sequence of events but also correct those using
edit functions. These edit functions perform suppression and insertion of input sequences
(along with truncation). He also pioneered mandatory results automata [5], which have to
provide a result to the target application before it can see the further action it wants to take.

Runtime enforcement of timed properties. The RE approaches are used to protect safety-
critical systems. These are real-time systems, so the properties that need to be enforced are
generally timed properties (properties with timing constraints on the sequence of events).
Alur et al. in [1] pioneered timed automata to simulate the behaviour of real-time systems.
Since then, different formal RE monitor synthesis approaches have been proposed for timed
properties modelled by timed automata, e.g., [7, 15, 17, 18, 22].

Tools for runtime monitoring of timed properties. Several tools have been proposed to
monitor the correctness of real-time systems. For example, the tool RT-MaC [20] verifies
timeliness and reliability correctness properties at runtime. The Analog Monitoring Tool
(AMT) [13] monitors the temporal properties of continuous signals. LARVA [4] can be
used for the runtime verification of real-time properties of Java programs. The tool in [3]
(implemented in Larva) presents dynamic communicating automata with timers and events
to describe the properties of systems to monitor the temporal and contextual properties of
Java programs. Tool TiPEX [14], as proposed in [7], implements the enforcement monitoring
algorithms for timed properties.

Runtime enforcement with memory limitations. The approaches mentioned above do not
consider any memory restrictions on the enforcer. There are a few works that take into
consideration the memory limitations of the enforcer, e.g., the work by Fong in [9] and Talhi
et al. in [24]. However, these approaches primarily concentrate on characterising the set of
enforceable properties in a memory constrained environment. [23] introduces a framework
for enforcement with bounded memory, restricted to untimed properties.

We extend the work in [23] and [7] to develop a framework for the bounded-memory RE
of timed properties. To the best of our knowledge, our framework is the first to define how
to synthesise an enforcer for a timed property that offers a solution when the memory of the
enforcer is full at runtime.

3 Preliminaries and notations

We first recall some basic notions about untimed languages in Sect. 3.1. We then recall
timed words and languages in Sect. 3.2 and talk about timed properties as timed automata
in Sect. 3.3. At last, we introduce some preliminaries to RE of timed properties in Sect. 3.4.

3.1 Untimed languages
Languages. A (finite) word w is a finite sequence of elements of finite alphabet Σ. The
length of w is the number of elements in w and is denoted as |w|. The empty word over
Σ is denoted by ϵ. The sets of all words and non-empty words are denoted by Σ∗ and Σ+

respectively. A language (property) L over Σ is any subset of Σ∗.
The concatenation of two words w and w′ is denoted by w · w′. A word w′ is a prefix of

the word w, denoted w′ ≼ w, whenever there exists a word w′′ such that w = w′ · w′′, and
w′ ≺ w, if additionally w′ ̸= w; conversely w is said to be an extension of w′.
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The set pref(w) stands for the set of prefixes of w. Subsequently, pref(L) def=
⋃

w∈L pref(w)
is the set of prefixes of words in L.

Given two words u and v, we define w = v−1 · u as the residual of u by v, s.t. v · w = u,
if this word exists i.e., if v is a prefix of u. Intuitively, v−1 · u is the suffix of u after reading
prefix v. By extension, for a language L ⊆ Σ∗ and a word v ∈ Σ∗, the residual of L by v is the
language v−1 · L def= w ∈ Σ∗|v · w ∈ L. It is the set of suffixes of words which, concatenated
to v, belong to L. In other words, v−1 · L is the set of suffixes of words in L after reading
the prefix v.

A word w′ = a1...an is a subword/subsequence of w, denoted w′ ◁w, if w′ can be obtained
by deleting some letters from w or, equivalently, w = w0a1w1...anwn for some w0, ..., wn ∈ Σ∗.
We use the terms subword and subsequence interchangeably.

For a word w and i ∈ [1, |w|], the i-th letter of w is denoted by w[i]. Given a word w and
integers i, j, s.t. 1 ≤ i ≤ j ≤ |w|, the suffix of word w starting from index i is denoted by
w[i··· ] and the subword from index i to j by w[i···j].

Given a n-tuple of symbols e = (e1, ..., en), for i ∈ [1, n], we define Πi(e) as the projection
of e on its i-th element (Πi(e) = ei).

3.2 Timed words and languages
Let Σ be a finite alphabet of actions and R≥0 denotes the set of non-negative real numbers.
An event is a tuple (t, a) ∈ (R≥0 × Σ), where date(t, a) def= t is the absolute time instant at
which action act(t, a) def= a occurs.

A timed word over Σ denoted σ = (t1, a1) · (t2, a2) · · · (tn, an), is a finite sequence of
non-decreasing events (i ≤ j =⇒ ti ≤ tj), ranging over (R≥0 × Σ)∗. We denote the starting
date of σ by start(σ) def= t1, and its ending date by end(σ) def= tn (with the convention that
the starting and ending dates for the empty timed word ϵ are equal to 0).

The set of timed words over Σ is denoted by tw(Σ). A timed language is any subset
L ⊆ tw(Σ).

Note that, even though the alphabet (R≥0 × Σ) is infinite in this case, previous notions
and notations defined in the untimed case (related to length, prefix, subword/subsequence,
etc.) naturally extend to timed words.

Concatenating timed words, on the other hand, takes greater care because, when concaten-
ating two timed words, one must make sure that the result is a timed word, i.e., dates must not
be decreasing. When we observe that the ending date of the first timed word does not exceed
the starting date of the second one, this is ensured. Formally, let σ = (t1, a1) · · · (tn, an) and
σ′ = (t′1, a′1) · · · (t′m, a′m) be two timed words with end(σ) ≤ start(σ′)2, their concatenation is
σ ·σ′ def= (t1, a1) · · · (tn, an) ·(t′1, a′1) · · · (t′m, a′m). By convention σ ·ϵ = ϵ ·σ = ϵ. Concatenation
is undefined otherwise.

The untimed projection of σ is ΠΣ(σ) def= a1 · a2 · · · an ∈ Σ∗, i.e., dates are ignored.

3.3 Timed properties as timed automata
A timed automaton is a model used to specify the properties of a series of events where
the timing between the events matters. In this section, we introduce timed automata as a
formalism for specifying timed properties.

2 Throughout the paper, when we consider concatenation of two timed words σ and σ′ as σ · σ′, we
assume that end(σ) ≤ start(σ′).
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Timed automata . A Timed Automaton (TA) [1] is a finite automaton extended with a
finite set of real valued clocks. A clock valuation for X, where X = {x1, · · · , xk} is a finite
set of clocks, is an element of RX

≥0 , i.e., a function from X to RX
≥0. v + δ is the valuation

assigning v(x) + δ to each clock x of X, where v ∈ RX
≥0 and δ ∈ R≥0 (delay since previous

action). Given a set of clocks X ′ ⊆ X, v[X ′ ← 0] is the clock valuation v where all clocks in
X ′ are assigned to 0. G(X) denotes the set of guards. These are clock constraints defined
as Boolean combinations of simple constraints of the form x ⋊⋉ c with x ∈ X, c ∈ N and
⋊⋉∈ {<,≤, =,≥, >}. Given g ∈ G(X) and v ∈ RX

≥0, we denote v |= g when g holds according
to v.

▶ Definition 1 (Timed automata). TA is a tuple A = (L, l0, X, Σ, ∆, F ), s.t. L is a finite set
of locations. l0 ∈ L is initial location. X is a finite set of clocks. Σ is a finite set of actions.
∆ ⊆ L×G(X)×Σ× 2X ×L is the transition relation. F ⊆ L is the set of accepting locations.

▶ Example 2 (Timed automata). The automaton AP in Figure 1 denotes a timed automaton
of a prototype property P , with L = {l0, l1, l2, l3} as the set of locations, l0 the initial
location, and l2 the accepting location (denoted by double circles). The alphabet of events is
Σ = {h, r}. The automaton has one clock x.

l0

start

l1 l2

l3

h

r, x := 0

r, x ≤ 4

h, x ≤ 9

h
,x

>
9

r,x
>

4

h, r

h, r

Figure 1 AP .

The transitions can be understood as follows: from initial location l0 and on reception of
input action h, AP remains at the same location. It makes a transition to location l1 with
the clock x being reset (to keep an eye on the reception of next r or h action) on reception
of input action r. From location l1, if action h is received within 9 t.u., then AP makes a
transition to the accepting location l2, otherwise goes to violating (non-accepting) location
l3. Moreover, from location l1, if action r is received within 4 t.u., AP remains at the same
location l1, otherwise goes to location l3. From locations l2 and l3, on input actions {h, r},
AP remains at same respective locations.

▶ Definition 3 (Semantics of TA). The semantics of a TA is a timed transition system
[[A]] = (Q, q0, Γ,→, QF ) where the (infinite) set of states is given by Q = L×RX

≥0. q0 = (l0, v0)
is the initial state where v0 is the valuation that maps each clock in X to 0. The set of
accepting states is given by QF = F×RX

≥0. The set of transition labels is given by Γ = R≥0×Σ.
A label is a pair consisting of a delay and an action. The transition relation →⊆ Q× Γ×Q

is a set of transitions of the form tr : (l, v) (δ,a)−→ (l′, v′) with v′ = (v + δ)[Y ← 0] whenever
there exists (l, g, a, Y, l′) ∈ ∆ s.t. v + δ |= g for δ ∈ R≥0.

Deterministic and complete TA. A is deterministic whenever for any two distinct trans-
itions (l, g1, a, Y1, l′1) and (l, g2, a, Y2, l′2) ∈ ∆, g1∧g2 is unsatisfiable. A is complete whenever
for any location l ∈ L and an action a ∈ Σ, the disjunction of the guards of the transitions
leaving l and labelled by a evaluates to true.
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In this work, we only consider deterministic and complete TA [1, 7]. So, wherever we say
a TA, it refers to a deterministic and complete TA.

A run ρ from q ∈ Q is a sequence of moves in [[A]] : ρ = q
(δ1,a1)−−−−→ q1 · · · qn−1

(δn,an)−−−−−→ qn,
for some n ∈ N , where the trace of a run ρ is the timed word (t1, a1) · (t2, a2) · · · (tn, an),
(where the date tn of action an is the sum of all the delays i.e., Σn

i=1δi). The set of runs
from q0 ∈ Q is denoted by Run(A). The subset of runs accepted by A, i.e., when qn ∈ FG is
denoted by RunFG

(A). L(A) denotes the language accepted by A from its initial state q0,
whereas L(A, q) denotes the language accepted by A from state q.

3.4 Preliminaries to runtime enforcement of timed properties
The following preliminaries will be useful for RE.

obs(σ, t): Given t ∈ R≥0, and σ ∈ tw(Σ), the observation of σ at date t (i.e., obs(σ, t)) is
the maximal prefix of σ that can be observed at date t. Formally,

obs(σ, t) def= max≼{σ′ ∈ (R≥0 × Σ)∗ | σ′ ≼ σ ∧ end(σ′) ≤ t}.
Delaying order =d: For σ, σ′ ∈ tw(Σ), σ′ delays σ (noted σ′ =d σ) iff they have the same
untimed projection but the dates of events in σ′ is greater than or equal to the dates of
corresponding events in σ. Formally:

(σ′ =d σ) def= (ΠΣ(σ′) = ΠΣ(σ)) ∧ ∀i ∈ [1, |σ|] : date(σ′[i]) ≥ date(σ[i]).
Sequence σ′ is obtained from σ by keeping all actions, but with a potential increase in
dates. For example, (4, a) · (7, b) · (9, c) =d (3, a) · (5, b) · (8, c). Note that delays between
events may be decreased (e.g., between b and c), but absolute dates are increased.
Delayed prefix ≼d: For σ, σ′ ∈ tw(Σ), we say that σ′ is a delayed prefix of σ (noted σ′ ≼d σ)
iff the untimed projection of σ′ is a prefix of the untimed projection of σ and the dates of
events in σ′ is greater than or equal to the dates of corresponding events in σ. Formally:

(σ′ ≼d σ) def= (ΠΣ(σ′) ≼ ΠΣ(σ)) ∧ ∀i ∈ [1, |σ′|] : date(σ′[i]) ≥ date(σ[i]).
For example, (4, a) · (7, b) ≼d (3, a) · (5, b) · (8, c).
Delaying subsequence order ◁d: For σ, σ′ ∈ tw(Σ), we say that σ′ is a delayed sub-
word/subsequence of σ (noted σ′ ◁d σ) iff there exists a subsequence σ′′ of σ such that σ′

delays σ′′. Formally: (σ′ ◁d σ) def= {∃σ′ ∈ tw(Σ) : (σ′ =d σ′′ ∧ σ′′ ◁ σ)}.
Sequence σ′ is obtained from σ by first suppressing some actions and then increasing
the dates of the actions that are kept. For example, (5, a) · (10, c) ◁d (3, a) · (5, b) · (8, c)
(where event (5, b) has been suppressed, while a and c are shifted in time).
Lexical order ⪯lex: For σ, σ′ ∈ tw(Σ), with same untimed projection (i.e., ΠΣ(σ) =
ΠΣ(σ′)), the order ⪯lex is defined inductively as follows: ϵ ⪯lex ϵ, and for two events with
identical actions (δ, a) and (δ′, a), (δ, a) · σ ⪯lex (δ′, a) · σ′ if δ < δ′ ∨ (δ = δ′ ∧ σ ⪯lex σ′).
This order is useful to select a unique timed word from a group of words with same
untimed projection. For example (4, a) · (5, b) · (8, c) · (11, d) ⪯lex (4, a) · (5, b) · (9, c) · (10, d).
Choosing a unique timed word with minimal duration min⪯lex,end:
Given a set of timed words having the same untimed projection, min⪯lex,end chooses a
timed word among timed words with minimal ending date w.r.t. the lexical order: first
the set of timed words with minimal ending date are considered, and then, from these
timed words, the (unique) minimal one is selected w.r.t. the lexical order. Formally, for
a set E ⊆ tw(Σ) such that ∀σ, σ′ ∈ E : ΠΣ(σ) = ΠΣ(σ′) (i.e., such that all words have
the same untimed projection), we have min⪯lex,end(E) = min⪯lex

(min⪯end
(E)) where

σ ⪯end σ′ if end(σ′) ≥ end(σ), for σ, σ′ ∈ tw(Σ).
Maximal strict prefix: The maximal strict prefix of σ ∈ tw(Σ) that belongs to φ ⊆ tw(Σ)
is defined as maxφ

≺,ϵ(σ) def= max≼({σ′ ∈ (R≥0 × Σ)∗|σ′ ≺ σ ∧ σ′ ∈ φ} ∪ {ϵ}).
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The following notions of delayable (that checks whether a word is delayable w.r.t. the
given property) are useful in defining constraints and respective enforcer.
Function delayable1φ(σ): Given property φ ⊆ tw(Σ), a timed word σ ∈ tw(Σ), it returns
the set of delayed words σ′ of σ, s.t. σ′ can be extended to satisfy φ in the future (i.e.,
σ′ ∈ pref(φ)). Formally:
delayable1φ(σ) def= {σ′ ∈ tw(Σ) : (σ′ =d σ) ∧ (σ′ ∈ pref(φ))}.
Function delayable2φ(σ1, σ2): Given property φ ⊆ tw(Σ), and two timed words σ1, σ2 ∈
tw(Σ), it returns a set of delayed words σ′2 of σ2, where each word in the set returned
should start at or after the ending date of σ2, which is the date t of the last event (t, a)
of σ2, s.t. σ1 · σ′2 can be extended to satisfy the property φ in the future. Formally,
delayable2φ(σ1, σ2) def= {σ′2 ∈ tw(Σ) : (σ′2 =d σ2) ∧ (σ1 · σ′2 ∈ pref(φ)) ∧

(start(σ′2) ≥ end(σ2))}.
Function kL(σ1, σ2): Given L ⊆ tw(Σ) and two timed words σ1, σ2 ∈ tw(Σ), function
kL(σ1, σ2) computes the set of timed words w that delay σ2, start at or after the ending
date of σ2, s.t. when σ1 is extended with w (i.e., σ1 · w), the word should belong to L.
Formally,
kL(σ1, σ2) def= {w ∈ σ−1

1 · L | (w =d σ2) ∧ (start(w) ≥ end(σ2))}.

4 Runtime enforcement in a timed context with unbounded memory

In this section, we define the enforcement monitoring framework with an unbounded buffer.
We first define the expected constraints on the input/output behaviour of the enforcer in
Sect. 4.1 and then define an enforcer dedicated to a desired timed property φ ∈ tw(Σ) in
Sect. 4.2 ; this is a reformulation of paper [7]; the paper contains all the proofs.

4.1 Constraints on an enforcer
We first define the constraints that should be satisfied by an enforcer before providing
the actual definition of an enforcer in Sect. 4.2. The following constraints can serve as a
specification of the expected behaviour of an enforcer for timed properties that has the ability
to delay as well as suppress events.

▶ Definition 4. (Constraints on an enforcer). An enforcer for a timed property φ ⊆ tw(Σ)
is a function Eφ : tw(Σ)→ tw(Σ), satisfying the following constraints:

Soundness (Snd) ∀σ ∈ tw(Σ) : Eφ(σ) |= φ ∨ Eφ(σ) = ϵ

Monotonicity (Mo) ∀σ, σ′ ∈ tw(Σ) : σ ≼ σ′ =⇒ Eφ(σ) ≼ Eφ(σ′)

Transparency (Tr1) ∀σ ∈ tw(Σ), delayable1φ(σ) = ∅ =⇒ Eφ(σ) ◁d σ

(Tr2) ∀σ ∈ tw(Σ), delayable1φ(σ) ̸= ∅ =⇒ Eφ(σ) ≼d σ

Soundness expresses that for any word σ ∈ tw(Σ), the output produced by the enforcer
(i.e., Eφ(σ)) should satisfy the property φ, as soon as it is non-empty. Monotonicity expresses
that the output produced for the extension σ′ of an input word σ (i.e., Eφ(σ′)) extends the
output produced for σ (i.e., Eφ(σ)), conveying that the output is a continuously growing timed
word, i.e., for a given input timed word, what is output can only be changed by appending new
events with greater dates. Transparency is defined using Tr1 and Tr2. Here, Tr1 expresses
that if no delayed word of σ ∈ tw(Σ) exists that can satisfy the property in the future, then
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the output of the enforcer for σ will be a delayed subword of σ (i.e., some events may be
suppressed). The constraint Tr2 expresses that if any delayed word of σ ∈ tw(Σ) exists that
can satisfy the property in the future, then the output of the enforcer for σ will be a delayed
prefix of σ (i.e., none of the events are suppressed).

4.2 Definition of enforcement function
We now define an enforcement function / enforcer dedicated to a desired property φ. At an
abstract level, it serves as a delayer with suppression, where suppression only occurs upon
the reception of an event that inhibits any satisfaction of φ in the future.

▶ Definition 5 (Enforcement function/ Enforcer). The enforcer for a property φ ⊆ tw(Σ) is
the function Eφ : tw(Σ)→ tw(Σ) defined as:
∀σ ∈ tw(Σ), ∀t ∈ R≥0, ∀a ∈ Σ,

Eφ(σ) = Π1(storeφ(σ)), where
storeφ : tw(Σ)→ tw(Σ)× tw(Σ) is defined as:

storeφ(ϵ) = (ϵ, ϵ)

storeφ(σ · (t, a)) =


(σs ·min⪯lex,end(kφ(σs, σca)), ϵ) if kφ(σs, σca) ̸= ∅,
(σs, σc) if kpref(φ)(σs, σca) = ∅,
(σs, σca) otherwise.

with:
(σs, σc) = storeφ(σ)
σca = σc · (t, a)

The unbounded enforcer Eφ takes a timed word over Σ as input, and produces a timed word
over Σ as output.
For a given input σ, function storeφ computes a pair (σs, σc) of timed words: i) σs is the
prefix of maximal length for which the absolute dates have been computed to satisfy property
φ; it is a delayed subsequence of the input σ; and it is extracted by the projection function
Π1 to produce output Eφ(σ), ii) σc is a subsequence3 of the remaining suffix of σ for which
the releasing dates of events are still required to be computed. It is a temporary memory.

Enforcer Eφ incrementally computes a timed word according to the input timed word,
and, inductively, is defined as follows: when the empty word ϵ is input, it produces (ϵ, ϵ).
Otherwise, suppose that for the input σ, the result of storeφ(σ) is (σs, σc) and consider a
newly received event (t, a). Now, the new timed word to be corrected is σca = σc · (t, a).
There are three possible cases, according to the vacuity of the two sets kφ(σs, σca) and
kpref(φ)(σs, σca). For any L ⊆ tw(Σ), definition of kL(σs, σca) is given in Sect. 3.4.

kφ(σs, σca) is the set of timed words w that delay σca, such that σs · w satisfies φ; and
kpref(φ)(σs, σca) is the set of timed words w that delay σca, such that some additional
continuation w′ may satisfy φ, i.e., σs · w · w′ |= φ. Finally the three possible cases are:

If kφ(σs, σca) ̸= ∅ (and thus kpref(φ)(σs, σca) ̸= ∅ ), it indicates that, for the timed word
σca = σc · (t, a), it is possible to choose its appropriate dates to satisfy φ. The minimal
timed word in kφ(σs, σca) w.r.t. the lexicographic order is selected among those with a
minimal ending date and appended to σs. Since all events memorised in σc · (t, a) are
corrected and appended to σs, σc is set to ϵ.

3 and not the complete suffix, since, some events may have been suppressed when no delaying allowed to
satisfy φ, whatever is the continuation of σ, if any
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If kpref(φ)(σs, σca) = ∅ (and thus kφ(σs, σca) = ∅ ), it means that, for the current input
σ · (t, a), whatever is its continuation, there is no chance to find a suitable delaying for
(t, a). Thus, event (t, a) should be suppressed, leaving σc and σs unchanged.
Otherwise, i.e., when kφ(σs, σca) = ∅ but kpref(φ)(σs, σca) ̸= ∅, it means that for σca =
σc · (t, a), it is not yet possible to select its appropriate dates to satisfy φ, however, if
the input is continued, if at all, there is still a chance to do it in the future. Thus, σc is
modified into σca = σc · (t, a) in memory, but σs is left unchanged.

▶ Proposition 6 (Snd, Mo, Tr1, Tr2). Given some timed property φ ⊆ tw(Σ), its enforcer
Eφ as per Definition 5 satisfies Snd, Mo, Tr1, and Tr2 constraints as per Definition 4.

▶ Proposition 7 (Optimal Suppression). Given some timed property φ ⊆ tw(Σ), its enforcer
Eφ as per Definition 5 satisfies the following constraint:

∀σ ∈ tw(Σ), ∃σs, σc ∈ tw(Σ) : storeφ(σ) = (σs, σc) ∧ ∀(t, a) ∈ (R≥0 × Σ), t ≥ end(σc) :
(delayable2φ(σs, σc · (t, a)) = ∅ =⇒ ∀σcon ∈ tw(Σ) : start(σcon) ≥ t,

Eφ(σ · (t, a) · σcon) = Eφ(σ · σcon))
(Opts)

For any input σ, for which the output of the storeφ(σ) is (σs, σc), the optimal suppression
constraint expresses that, when σc is extended with a timed event (t, a) and if no delayed
word of σc · (t, a) exists s.t. σs · σc · (t, a) can be extended to satisfy the property φ in future
(i.e., delayable2φ(σs, σc · (t, a)) = ∅) then, the action a should be suppressed by the enforcer4.

▶ Remark 8. Snd, Mo, Tr1, Tr2 constraints outline an enforcer’s expected input-output
behaviour throughout the whole input sequence. However, it should be noted that it does
not strongly constrain the output. These restrictions are specifically met by an enforcer
that never produces any output. But, to be practical, a real enforcer should also offer some
guarantees on the output sequence it produces in terms of delay, w.r.t. the input sequence.
Such assurances are specified by the optimality property, which is provided in Appendix A.1.

▶ Example 9 (Unbounded enforcer). We illustrate how Definition 5 is applied to enforce a
prototype property P of example 2, recognised by the automaton depicted in Fig. 1 with
Σ = {h, r}, and the input timed word σ = (1, h) · (2, h) · (3, h) · (4, h) · (5, r) · (8, r) · (9, h).

Table 1 shows evolution of the observed input timed word obs(σ, t) and the output of
function storeP when the input timed word is obs(σ, t). The first element of the output
of function storeP can be extracted by projection function Π1 to produce output EP (σ).
Variable t keeps track of physical time, i.e., it contains current date.

From the table, we can see that, at time t = 8, event (8, r) is suppressed, as it is not
possible to correct the input sequences (since, reception of this event is leading to a violating
location l3 in the timed automata 1). Till t < 9, the observed output is empty (since
Π1(storeP (obs(σ, t))) = ϵ). When t ≥ 9, the observed output is (9, h) · (10, h) · (11, h) · (12, h) ·
(13, r) · (17, h) (since Π1(storeP (obs(σ, t))) = (9, h) · (10, h) · (11, h) · (12, h) · (13, r) · (17, h)).

5 Runtime enforcement in a timed context with bounded-memory

In this section, we introduce the enforcement monitoring framework with a bounded buffer.
We describe how expected constraints must be adapted by the enforcer in Sect. 5.1 and then
define an enforcer dedicated to a desired timed property φ ∈ tw(Σ) in Sect. 5.2.

4 As stated in Tr1, suppression should only be done when necessary.
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Table 1 Evolution of the unbounded enforcer for property P .

t ∈ [0, 1) obs(σ, t) = ϵ

storeP (obs(σ, t)) = (ϵ, ϵ)
t ∈ [1, 2) obs(σ, t) = (1, h)

storeP (obs(σ, t)) = (ϵ, (1, h))
t ∈ [2, 3) obs(σ, t) = (1, h) · (2, h)

storeP (obs(σ, t)) = (ϵ, (1, h) · (2, h))
t ∈ [3, 4) obs(σ, t) = (1, h) · (2, h) · (3, h)

storeP (obs(σ, t)) = (ϵ, (1, h) · (2, h) · (3, h))
t ∈ [4, 5) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h)

storeP (obs(σ, t)) = (ϵ, (1, h) · (2, h) · (3, h) · (4, h))
t ∈ [5, 8) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h) · (5, r)

storeP (obs(σ, t)) = (ϵ, (1, h) · (2, h) · (3, h) · (4, h) · (5, r))
t ∈ [8, 9) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h) · (5, r) · (8, r)

storeP (obs(σ, t)) = (ϵ, (1, h) · (2, h) · (3, h) · (4, h) · (5, r))
t ∈ [9, ∞) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h) · (5, r) · (8, r) · (9, h)

storeP (obs(σ, t)) = ((9, h) · (10, h) · (11, h) · (12, h) · (13, r) · (17, h), ϵ)

A bounded-memory enforcer, denoted by Eφ,k, for a given timed property φ ∈ tw(Σ) is
equipped with a buffer of size k and should be able to transform an input timed word σ

which is possibly incorrect w.r.t. φ into an output timed word that is correct w.r.t. φ.
Enforcer Eφ,k : tw(Σ)→ tw(Σ)× {⊥,⊤, stop}, outputs a tuple consisting of an output

word, referred by Eφ,k
out (σ), (element of tw(Σ)) and mode information, referred by Eφ,k

mode(σ),
(which is an element of {⊤,⊥, stop}) permitting to warn the user, where ⊤, ⊥, and stop

respectively represent nominal mode indicating none of the events from the buffer were
suppressed, degraded mode indicating some of the events from the buffer were suppressed,
and stop mode indicating the enforcer cannot continue operating5. buff(Eφ,k(σ)) refers to
the buffer content of enforcer Eφ,k, after reading σ.

5.1 Constraints on an enforcer
We here define the constraints that should be satisfied by an enforcer.

▶ Definition 10 (Constraints on an enforcer). A bounded enforcer for a timed property
φ ⊆ tw(Σ), equipped with a buffer of size k, is a function Eφ,k

Eφ,k : tw(Σ)→ tw(Σ)× {⊥,⊤, stop}
satisfying the following constraints:

Soundness (SndB) ∀σ ∈ tw(Σ) : Eφ,k
out (σ) |= φ ∨ Eφ,k

out (σ) = ϵ

Monotonicity (Mo1B) ∀σ, σ′ ∈ tw(Σ) : σ ≼ σ′ =⇒ Eφ,k
out (σ) ≼ Eφ,k

out (σ′)
(Mo2B) ∀σ, σ′ ∈ tw(Σ) : σ ≼ σ′, (Eφ,k

mode(σ) = ⊥ =⇒ Eφ,k
mode(σ′) = ⊥)

Transparency (Tr1B) ∀σ ∈ tw(Σ), delayable1φ(σ) = ∅ ∨ Eφ,k
mode(σ) = ⊥ =⇒ Eφ,k

out (σ) ◁d σ

(Tr2B) ∀σ ∈ tw(Σ), delayable1φ(σ) ̸= ∅ ∧ Eφ,k
mode(σ) = ⊤ =⇒ Eφ,k

out (σ) ≼d σ

The notion of (SndB), (Mo1B), (Tr1B 6) and (Tr2B 7) are the same as in the unbounded
case in Def. 4, with some notational variations and mode information being included as a
consideration. (Mo2B) expresses that when the mode is degraded, it cannot return to nominal.

5 Note that, intially the mode is considered to be nominal, i.e., Eφ,k
mode(ϵ) = ⊤.

6 Tr1B can alternatively be expressed as: ∀σ ∈ tw(Σ), ∀(t, a) ∈ (R≥0 ×Σ), Eφ,k
mode(σ) = ⊥∨delayable1φ(σ ·

a) = ∅ =⇒ Eφ,k
out (σ · a) ◁d σ · a

7 Tr2B can alternatively be expressed as: ∀σ ∈ tw(Σ), ∀(t, a) ∈ (R≥0 ×Σ), Eφ,k
mode(σ) = ⊤∧delayable1φ(σ ·

a) ̸= ∅ =⇒ Eφ,k
out (σ · a) ≼d σ · a
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5.2 Definition of enforcement functions
We now define a bounded-memory enforcer Eφ,k dedicated to a desired property φ. The
enforcer works as a delayer with suppression, where suppression happens upon reception of
an event that prevents any satisfaction of φ in the future or when the buffer is full.

Preliminary to the enforcer. During enforcement of an input timed word σ, when an
incoming event needs to be buffered and the buffer is full, then the buffer is cleaned (i.e.,
some events stored in the buffer are suppressed to make room for the incoming events). The
cleaning has to be done in such a way that, the treatment of future events by the enforcer
is not affected (i.e., the enforcer handles the future events the same way with or without
cleaning of the buffer). This is guaranteed if the state reached in the property automaton
remains the same, even if some events are removed from the buffer. The notion of property
equivalence can be understood as follows:

Equivalence of two timed words. Two timed words σ ∈ tw(Σ) and σ′ ∈ tw(Σ) are φ-
equivalent, noted σ ∼φ σ′ if runs ρ and ρ′ from q0 of Aφ (i.e., (l0, v0)) upon σ and σ′

respectively i.e.,
ρ = q0

(δ1,a1)−−−−→ q1 · · · qn−1
(δn,an)−−−−−→ qn and ρ′ = q0

(δ′
1,a′

1)−−−−→ q′1 · · · q′m−1
(δ′

m,a′
m)−−−−−→ qm

(where, the trace of a run ρ and ρ′ are timed words σ = (t1, a1) · (t2, a2) · · · (tn, an) and
σ′ = (t′1, a′1) ·(t′2, a′2) · · · (t′m, a′m) respectively (with tn = Σn

i=1δi and t′m = Σm
i=1δ′i), of different

lengths) end on qn and qm respectively s.t. L(Aφ, qn) = L(Aφ, qm).
It means that if the respective runs from the initial state of the property automaton upon

two timed words end on two states, from where the language accepted are identical, then we
say that the words are property equivalent.

▶ Definition 11. (Bounded enforcement function / enforcer.) A bounded enforcer for a
property φ ⊆ tw(Σ) is the function Eφ,k : tw(Σ)→ tw(Σ)× {⊤,⊥, stop}, and is defined as:
∀σ ∈ tw(Σ), ∀t ∈ R≥0, ∀a ∈ Σ,

Eφ,k(σ) = (Π1(storeφ,k(σ)), Π3(storeφ,k(σ))), where:
storeφ,k : tw(Σ)→ tw(Σ)× tw(Σ)× {⊤,⊥, stop} is defined as:
storeφ,k(ϵ) = (ϵ, ϵ,⊤)
storeφ,k(σ · (t, a)) =

(σs ·min⪯lex,end(kφ(σs, σca)), ϵ, {⊤,⊥}) if kφ(σs, σca) ̸= ∅,
(σs, σc,⊥) if kpref(φ)(σs, σca) = ∅,
(σs, σca, {⊤,⊥}) if kpref(φ)(σs, σca) ̸= ∅ ∧ |σca| ≤ k

(σs, σc, stop) if kpref(φ)(σs, σca) ̸= ∅ ∧ |σca| > k

∧ Get_SWφ,k(σs, σca) = ∅
(σs, Cleanφ,k(σs, σca),⊥) if kpref(φ)(σs, σca) ̸= ∅ ∧ |σca| > k

∧ Get_SWφ,k(σs, σca) ̸= ∅

with:

(σs, σc, {⊤,⊥}) = storeφ,k(σ),
σca = σc · (t, a)
Eφ,k

out (σ) = Π1(Eφ,k(σ))
Eφ,k

mode(σ) = Π3(Eφ,k(σ))
buff(Eφ,k(σ)) = Π2(Eφ,k(σ))
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Cleanφ,k : tw(Σ)× tw(Σ)→ tw(Σ)
Cleanφ,k(σs, σca) = σ′ ∈ Get_SWφ,k(σs, σca) : ∀σ′′ ∈ Get_SWφ,k(σs, σca),

σ′ ̸= σ′′ ∧ |σ′| > |σ′′| ∧ (index(σ′, σca) ≤ index(σ′′, σca))
index(σ′, σca) = (i ∈ N | i ∈ [1, |σca|] : σca[i] ̸= σ′[i])

Get_SWφ,k : tw(Σ)× tw(Σ)→ 2tw(Σ)

Get_SWφ,k(σs, σca) = {σ′′ ∈ tw(Σ) | ∃σ′ ∈ delayable2φ(σs, σca) ∧
∃i, j, k ∈ N ∧ 1 ≤ i ≤ j < k :
(σ′′ = σ′[1...i−1] ·σ

′
[j+1...k])∧ (σ′[1...i−1] ·σ

′
[i...j] ·σ

′
[j+1...k] ∼φ σ′′)}

The bounded enforcer Eφ,k takes a timed word over Σ as input, and produces a timed word
over Σ and a sequence of modes (elements from the set {⊤,⊥, stop}) as output. For a given
input σ over Σ, function storeφ,k computes a pair (σs, σc) of timed words over Σ (of which the
first timed word is extracted by the projection function Π1 to produce the output Eφ,k

out (σ))
and a sequence of mode as output (which is extracted by the projection function Π3 to be
the mode Eφ,k

mode(σ)). The pair (σs, σc) is same as in Def. 5.
Function Eφ,k incrementally computes a timed word according to the input timed word

and is defined inductively as follows: When the empty word ϵ is input, it produces (ϵ, ϵ,⊤).
Otherwise, suppose that for input σ, the result of storeφ,k(σ) is (σs, σc, {⊤,⊥}) and consider
a new received event (t, a). Now, the new timed word to correct is σca = σc · (t, a). There are
five possible cases, according to the vacuity of the two sets kφ(σs, σca) and kpref(φ)(σs, σca),
whether the buffer is full, and if there exist any property equivalent word in the buffer:

If kφ(σs, σca) ̸= ∅. Since this case is similar to the first one in Def. 5, the same course of
actions are followed. Mode remains unchanged.
If kpref(φ)(σs, σca) = ∅. Since this case is similar to the second one in Def. 5, the same
course of actions are followed. In addition, the mode changes to ⊥.
If kpref(φ)(σs, σca) ̸= ∅, and |σca| ≤ k, i.e., it means that for σca = σc · (t, a), it is not yet
possible to select appropriate dates to satisfy φ, however, depending on the continuation
of the input, if any, there is still a chance to do it in the future, and there is space in the
buffer to accomodate this incoming event. Thus σc is modified into σca = σc · (t, a) in
memory, but σs and mode are left unmodified.
If kpref(φ)(σs, σca) ̸= ∅, |σca| > k, and Get_SWφ,k(σs, σca) = ∅. In this case, the
buffer is full. Thus, cleaning of the buffer is required. However, there does not exist a
property equivalent word (of length < k) of the buffer contents to be able to replace the
buffer contents. Thus, “safe” cleaning cannot be done and the enforcer stops operating
(conveying this information by changing the mode to stop).
If kpref(φ)(σs, σca) ̸= ∅, |σca| > k, and Get_SWφ,k(σs, σca) ̸= ∅. In this case, there exists
a property equivalent word (of length < k) of the buffer contents to be able to replace the
buffer contents. Thus, the function Cleanφ,k is called to clean the buffer (received event
is also considered for cleaning) in order to accommodate the event. σs is left unmodified,
σc is replaced by the output of function Cleanφ,k, and the mode changes to ⊥.

Function Cleanφ,k takes two timed words over Σ as input. It produces a timed word as
output, which should be a delayed subword of σca. Also, the output word should be of
maximal length, and the events discarded are the most obsolete8 ones. For this purpose,
function Get_SWφ,k provides all delayed subwords σ′′ of σca. It does so by first finding all

8 The earliest received events are considered for deletion in this approach; this is an implementation
choice.
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delayed words σ′ (of length k) of σca and then finding all the property equivalent words
σ′′ (of length < k) of every delayed word σ′, if any. Function Cleanφ,k selects the longest
subwords among those and then chooses a unique subword, with the most obsolete action
being discarded. This is done by comparing the indexes of σca with the indexes of received
subwords from function Get_SWφ,k using function index. The contents of the buffer are
then substituted by the output of function Cleanφ,k.

▶ Proposition 12 (SndB, Mo1B, Mo2B, Tr1B, Tr2B). Given some timed property φ ⊆ tw(Σ)
and the maximum buffer size k, let n ∈ N be the number of locations in Aφ. If k ≥ n, then the
enforcer Eφ,k as per Definition 11 satisfies SndB, Mo1B, Mo2B, Tr1B, and Tr2B constraints
as per Definition 10.

The notion of optimal suppression in the case of a bounded enforcer is same as in case of
unbounded enforcer (Opts), with some notational variations; we omit the definition due to
space constraints. Also, similar to Sect. A.1, some additional constraints to provide some
guarantees on the output sequence produced by the enforcer in terms of length and delay
are provided in Appendix A.2.

▶ Example 13 (Bounded enforcer). We consider example 9, and see (in Table 2) how Def. 11
can be applied with k = 4. Other parameters are the same as in Table 1. From the table
2, we can see that, at time t = 5, the buffer is already full, thus function CleanP,4 invokes
function Get_SWP,4 to calculate the possible property equivalent subwords of the delayed
word of (1, h) · (2, h) · (3, h) · (4, h) · (5, r).

Table 2 Evolution of the enforcer for property P .

t ∈ [0, 1) obs(σ, t) = ϵ

storeP,4(obs(σ, t)) = (ϵ, ϵ)
t ∈ [1, 2) obs(σ, t) = (1, h)

storeP,4(obs(σ, t)) = (ϵ, (1, h))
t ∈ [2, 3) obs(σ, t) = (1, h) · (2, h)

storeP,4(obs(σ, t)) = (ϵ, (1, h) · (2, h))
t ∈ [3, 4) obs(σ, t) = (1, h) · (2, h) · (3, h)

storeP,4(obs(σ, t)) = (ϵ, (1, h) · (2, h) · (3, h))
t ∈ [4, 5) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h)

storeP,4(obs(σ, t)) = (ϵ, (1, h) · (2, h) · (3, h) · (4, h))
t ∈ [5, 8) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h) · (5, r)

storeP,4(obs(σ, t)) = (ϵ, (6, h) · (7, h) · (8, h) · (9, r))
t ∈ [8, 9) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h) · (5, r) · (8, r)

storeP,4(obs(σ, t)) = (ϵ, (6, h) · (7, h) · (8, h) · (9, r))
t ∈ [9, ∞) obs(σ, t) = (1, h) · (2, h) · (3, h) · (4, h) · (5, r) · (8, r) · (9, h)

storeP,4(obs(σ, t)) = ((9, h) · (10, h) · (11, h) · (12, r) · (16, h), ϵ)

For example, some of the words returned by function Get_SWP,4 will be ((6, h) · (7, h) ·
(8, h) · (9, r)), ((5, h) · (7, h) · (8, h) · (9, r)), ((7, h) · (8, h) · (9, r)), etc. Function CleanP,4 will
first choose all the longest subwords among the set of delayed property equivalent subwords
e.g., ((6, h) · (7, h) · (8, h) · (9, r)), ((5, h) · (7, h) · (8, h) · (9, r)), etc. Then it will choose a unique
subword which is formed by deleting the most obsolete event, which is (6, h)·(7, h)·(8, h)·(9, r)
in this presented example with event (5, h) being suppressed while cleaning. All other cases
are similar as in example 9. The final output is (9, h) · (10, h) · (11, h) · (12, r) · (16, h).
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▶ Remark 14 (Performance evaluation and analysis). We have provided an online algorithm
and an experimentation framework in order to: i.) validate the viability of enforcement
monitoring; and ii.) analyse the performance of the enforcer through experiments. Through
performance analysis, we found that the enforcer had a reasonable execution time overhead
(the average time taken in cleaning (per call) is found to be 0.019 s, which is low and
reasonable9). The results are provided in Appendix B.

In the future, we plan to assess the framework within a more realistic scenario, taking
into account various metrics. For instance, we aim to enhance the evaluation by increasing
the complexity of the TAs, such as augmenting the number of locations within the TA.
Additionally, we plan to explore the impact of varying buffer sizes, among other factors. This
expanded evaluation will enable us to observe the growth patterns of time, memory, and
other relevant aspects.

▶ Remark 15 (Stop mode of the enforcer and enforceable properties). Note that for any given
property φ ⊆ tw(Σ), for some input observation σ ∈ tw(Σ) if the mode of the enforcer changes
to stop upon σ, then it is an indication that the enforcer should halt and cannot continue
any further. We have, ∀σ ∈ tw(Σ), (Eφ,k

mode(σ) = stop) =⇒ ∀σcon, Eφ,k
out (σ · σcon) = Eφ,k

out (σ).
This happens when “safe” buffer cleaning is not attainable, (i.e., there does not exist a

property equivalent word (of length < k) of the buffer contents to be able to replace the
buffer contents, when cleaning of the buffer is required), leading to halting of the enforcer
and the mode getting changed to stop.

Ideally however, we expect that for a given property φ, Eφ,k should continuously operate,
and the mode of the enforcer should not change to stop. We call a given property φ, as
continuously enfocerable as per Def. 10 and Eφ,k an enforcer for φ as per Def. 11 if, for any
input timed word σ ∈ tw(Σ), mode is different from stop, i.e., ∀σ ∈ tw(Σ), Eφ,k

mode(σ) ̸= stop.
To achieve this, we introduce (in Appendix C) specific syntactic and semantic conditions

on the TA, s.t. if a TA satisfies these conditions, it guarantees that the enforcer never halts.

6 Conclusion and future work

In conclusion, this paper presents a novel framework for enforcing timed properties with
memory constraints on the enforcer. The proposed approach intervenes in executions by
delaying or suppressing events to prevent property violations or buffer overflows. The
paper defines the necessary constraints for an enforcer and proposes a dedicated function
that transforms words to enforce a desired property. The presented algorithms provide
implementation details for the proposed approach. Overall, this work contributes to the
field of runtime enforcement of timed properties and provides a valuable framework for
ensuring system correctness with real-time constraints. In the future, we also plan to develop
other alternative implementations of the proposed enforcement framework using other TA
frameworks such as TChecker10 (to obtain the zone graphs and for reachability analysis).
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A Appendix: Additional constraints

A.1 Additional constraints on an enforcer with unbounded-memory
We here provide some additional constraints to provide some guarantees on the output
sequence produced by the enforcer in terms of delay.

Optimality (minimum delay)

∀σ ∈ tw(Σ) : Eφ(σ) = ϵ ∨ ∃m, w ∈ tw(Σ) : Eφ(σ) = m · w(|= φ) with
m = maxφ

≺,ϵ(Eφ(σ)) and
w = min⪯,lex,end{w′ ∈ m−1 · φ | ΠΣ(w′) = ΠΣ(m−1 · Eφ(σ))

∧ m · w′ ◁d σ ∧ start(w′) ≥ end(σ)}

(Opt)

For any input σ, if the output Eφ(σ) is not empty, then it can be separated into: the
maximal strict prefix m of Eφ(σ) satisfying property φ, and a suffix w. The optimality
constraint expresses that, among those sequences w′ that could have been chosen, w is
the minimal one in terms of ending date, and lexical order. The “sequences that could
have been chosen” are those such that m ·w′ satisfies the property, have the same events,
are delayed subsequences of the input σ, and have a starting date greater than or equal
to end(σ).

▶ Proposition 16 (Optimality). Given some property φ ⊆ tw(Σ), its enforcer Eφ as per
Definition 5 satisfies Opt property.

A.2 Additional constraints on an enforcer with bounded-memory
Similar to Sect. A.1, we here provide some additional constraints to provide some guarantees
on the output sequence produced by the enforcer in terms of length and delay.
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Let us first look at the below definition of ∞-compatibility used to define one of the
optimality property: Consider the case when the buffer is full. Thus, as we have discussed, the
enforcer would clean the buffer in such a way that, the treatment of the future events by the
enforcer is not affected, implying that after cleaning, the behaviour of the bounded enforcer
should be the same as that of the unbounded enforcer (bounded enforcer before/without
cleaning). Thus, we define the notion of ∞-compatible as follows:

▶ Definition 17 (∞-compatible). Enforcer Eφ,k is compatible with Eφ,∞ (enforcer with
buffer size k = ∞, i.e., unbounded enforcer), noted ∞-compatible(Eφ,k), if ∀σ ∈ tw(Σ) :
Eφ,∞(σ) · buff(Eφ,∞(σ)) ∼φ Eφ,k

out (σ) · buff(Eφ,k(σ)).

The above definition says that, for φ, a bounded enforcer Eφ,k is compatible with an
unbounded enforcer Eφ,∞, if for any input word σ, the concatenation of the output and the
buffer content of Eφ,∞, is φ-equivalent to the concatenation of the output and the buffer
content of Eφ,k. Finally the optimality properties are:

Optimality (output is of maximum length):
Consider any bounded enforcer F φ,k as per Def. 10. We have
∃σ ∈ tw(Σ), ∀(t, a) ∈ (R≥0 × Σ) :

(Eφ,k
out (σ) · buff(Eφ,k(σ) = F φ,k

out (σ) · buff(F φ,k(σ)) ∧ |Eφ,k
out (σ · (t, a)) · buff(Eφ,k(σ · (t, a)))|

< |F φ,k
out (σ · (t, a)) · buff(F φ,k(σ · (t, a))|) =⇒ ¬(∞-compatible(F φ,k))

(Opt1B)

Opt1B expresses that an enforcer Eφ,k (as per Def. 11) is optimal; if, for some input,
for any other enforcer F φ,k, the length of the concatenation of its output and its buffer
content is greater than the length of the concatenation of output and the buffer content
of Eφ,k, then the output produced by F φ,k is not ∞-compatible. Simply, it implies that,
there does not exist an enforcer that can clean the buffer in a better way; by discarding
less events and being ∞-compatible with the unbounded enforcer.
Optimality (minimum delay): The optimality property ensuring that each subsequence
is output as soon as possible, with minimum delay for bounded-memory case is similar
to Opt in Sect. A.1 for the unbounded-memory case, although with some notational
variations.

∀σ ∈ tw(Σ) : Eφ,k
out (σ) = ϵ ∨ ∃m, w ∈ tw(Σ) : Eφ,k

out (σ) = m · w(|= φ) with
m = maxφ

≺,ϵ(Eφ,k(σ)) and
w = min⪯,lex,end{w′ ∈ m−1 · φ|ΠΣ(w′) = ΠΣ(m−1 · Eφ,k(σ))

∧m · w′ ◁d σ ∧ start(w′) ≥ end(σ)}

(Opt2B)

▶ Proposition 18 (Optimality). Given some property φ and the maximum buffer size k, its
enforcer Eφ,k as per Definition 11 satisfies Opt1B and Opt2B properties.

B Appendix: Enforcement algorithm and performance evaluation

In Sect. 5.2, we provided an abstract view of our bounded-memory enforcer, defining it as a
function that transforms words. In this section, we provide the overall enforcement algorithm.
Also, we implemented the algorithm, to validate the feasibility of enforcement monitoring
through experiments and analyse the performance of the enforcer.
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B.1 Enforcement algorithm
Let Aφ = (L, l0, X, Σ, ∆, F ) define φ. Consider that it has one clock11. The Algorithm 1,
takes Aφ and the buffer size k ∈ N as input parameters.

In the algorithm, σs and σc refer to the output and the buffered events as in Def. 11.
currState holds the current state. Function await_event is used to wait for a new input
event. Function check_reachability computes all the reachable paths from the current
state currState upon events in σc · (δ, a). Function get_acc_paths takes as input all the
paths returned by function check_reachability and returns only those that lead to a
location in F . Function get_od computes the optimal delays for σc · (δ, a). Also, it returns
the state reached upon σc · (δ, a). Function append is used to add the given event to the given
word. Function release releases the given word as output. Function check_reach_acc
takes all the paths returned by the function check_reachability, finds the last state of each
paths and checks if an accepting location is reachable from that last state of the considered
path. Function len is used to get the length of the word. Function Get_SW behaves as the
same as function Get_SWφ,k in Def. 11. It returns property equivalent subwords (of length
< k) of delayed σc · (δ, a). Function clean optimally deletes events from the given word,
similar12 to the function Cleanφ,k in Def. 11. Function sum_d returns the sum of the delays
of each of the events of the given word.

The algorithm proceeds as follows: Initially, buffers σc and σs are empty and currState

is initialized with the initial state of Aφ (i.e., [l0, 0]). Variable c holds the sum of the delays
of the events deleted by function clean13. It then enters into an infinite loop waiting for
an input event. Upon receiving an event (δ, a) (as in line no. 5 of Algorithm 1), where
the delay δ is relative to the delay of the previous received event, the enforcer adds extra
delay c if returned by function clean, and progresses its clock (as shown in line 8). It then
computes all the reachable paths from the current state currState upon events in σc · (δ, a)
using function check_reachability (as shown in line 9). Function get_acc_paths then
returns only those paths that lead to a state in F i.e., it returns all accepting paths, (as
shown in line 10). If an accepting path exists (i.e., accPaths ̸= ∅ as in line no. 11), then
the enforcer computes optimal delays for σc · (δ, a), (in σca), appends each event from σca to
σs to be released as output and sets the current state accordingly (as in line nos. 12-17).
Otherwise, if an accepting path does not exist, it finds out if there is still a chance to reach an
accepting location in the future using function check_reach_acc. If an accepting location is
not reachable in the future, the enforcer drops/suppresses the received event and continues
enforcement. Otherwise, if an accepting location is reachable, it appends the received event
to the buffer, if the buffer is not full (as in line no. 24). Else, if the buffer is full, it optimally
cleans the buffer to accomodate the received event, given that there exists any property
equivalent subwords (of length < k) delaying σc · (δ, a); otherwise the enforcer halts.

Function clean first computes the optimal delayed word σd of σca using function get_od.
It then enters a loop where in every iteration i (1 ≤ i ≤ k + 1), it checks if a subword of
length i from index j of σd can be read on a cycle s.t., the state remains same with or without

11 This initial approach can be generalised and extended to any number of clocks.
12 Function clean in this algorithm also returns the sum of the delays of the suppressed events in addition

to the cleaned timed word; however Function Cleanφ,k of Def. 11 does not, since the enforcement
mechanism considers the delays to be absloute.

13 When function clean delete the very first or the intermediate events then c returned by it is 0 (because
function clean internally has taken care of those delays by adding them to the delay of the next event
in buffer, since the delays are relative; thus it need not be added to the incoming event (δ, a), thus
c = 0), otherwise c ̸= 0 (then, c is added to the delay of the incoming event).
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Algorithm 1 Algorithm Enforcer (Aφ, k).
1: σc, σs = [ ]
2: currState← [l0, 0]
3: c = 0
4: while true do
5: (δ, a)← await_event()
6: if c ̸= 0 then
7: δ = δ + c

8: currState[1] = currState[1] + δ
9: allP aths = check_reachability(currState, σc · (δ, a))

10: accP aths = get_acc_paths(allP aths)
11: if accP aths ̸= ∅ then
12: (σca, state) = get_od(currState, σc · (δ, a))
13: for event ∈ σca do
14: append(σs, σca[event])
15: σc = [ ]
16: currState = state
17: release(σs)
18: else
19: isReachable = check_reach_acc(allP aths)
20: if isReachable == F alse then
21: continue
22: else
23: if len(σc) < k then
24: append(σc, (δ, a))
25: else
26: if Get_SW(σs, σca) ̸= ∅ then
27: (σc, c) = clean(currState, σc · (δ, a))
28: else
29: exit
1: function clean(curr_state, σca)
2: (σd, stated) = get_od(curr_state, σca)
3: for i ∈ 1 · · · k + 1 do
4: j = 1
5: while i + j ≤ k + 2 do
6: if j == 1 then
7: (DelayedW 1, state1) = get_od(curr_state, σd[j···j+i−1])
8: if curr_state == state1 then
9: return σd[j+i···k+1], 0

10: else
11: (DelayedW 1, state1) = get_od(curr_state, (σd[1···j−1] · σd[j···j+i−1])
12: (DelayedW 2, state2) = get_od(curr_state, σd[1···j−1])
13: if state1 == state2 then
14: return σd[1···j−1] · σd[j+i···k+1], sum_d(σd[j···j+i−1])
15: j + +

the subword. If yes, the subword is removed from σd and the resultant subword is returned
by function clean along with the sum of delays of all the events of the subwords. The time
complexity of function clean in Algorithm 1 is O(k3) with k as the buffer size.

B.2 Implementation and performance evaluation
We implemented Algorithm 1 and developed an experimentation framework in order to i.)
validate the feasibility of enforcement monitoring and ii.) analyse the performance of the
enforcer through experiments.

Our experimental framework. There are tools for obtaining EMs, from the properties
expressed using formalisms such as TA. We use the tool called TiPEX [14], as this is the
RE monitor generation tool based on the theory of RE of timed properties proposed in [7],
which we consider in this work.

We update the EMTA module to account for the bounded case. We add the definition
of function clean as proposed in Algorithm 1 which will clean the buffer when required.
In the implementation functions checkReachability, getAccPaths, getOptimalDelays, and
clean straightaway maps to the functions check_reachability, get_acc_paths, get_od,
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and clean in Algorithm 1. Function check_reach_acc in the algorithm is implemented to
check if an action needs to be suppressed. It is implemented as follows: First it calls function
checkReachability to give all the paths from the current state upon the given word; then, it
finds the last state of each paths and checks if an accepting location is reachable from that
last state of the considered path. It returns true in that case. Function clean is implemented
in approx 50 LoC and Tipex is of approx 1200 LoC.

Table 3 Effect on T(s) by bounded-memory enforcer by varying |Input|.

Input T
clean

No. Tc

100 1.513 0 0
200 5.843 2 0.0254
300 13.294 27 0.3564
400 23.306 52 0.8372
500 35.485 77 1.4245
600 51.615 102 2.1624
700 67.942 127 2.94386
800 89.137 152 3.88968
900 120.853 177 5.27106
1000 148.1558 202 6.62964

Performance evaluation and analysis. For measuring the performance, the timed property
P in the prototype example 2 is used. The length of input sequence was varied from 100
to 1000 with an increment of 100 each time. To determine the worst case time taken, the
input sequences were set so that function clean is invoked frequently by the bounded-memory
enforcer. Considering buffer size14 k = 50, we have the following observations from Tab.
3, where Input denotes the length of input sequences, T indicates the time taken by the
bounded-memory enforcer to output the word, No. and Tc under clean indicates the number
of times function clean is called and the total time taken by it respectively: i.) the time
taken by the bounded-memory enforcer increases non-linearly15 with the linear increase in
trace length. ii.) the average time taken by the function clean (per call) is 0.019 s and is
low/reasonable.

▶ Remark 19. Upon calculating the processing time for both the unbounded enforcer and
the bounded-memory enforcer with the same set of input sequences of identical length, it is
observed that the unbounded enforcer takes longer time. This is due to the extra workload
of managing a buffer that can expand with incoming input sequences in the unbounded
enforcer, as opposed to the bounded enforcer where maintaining a fixed-size buffer incurs
less overhead.

C Appendix: Enforceable properties

When we construct an enforcer for any given property φ ⊆ tw(σ) using the proposed approach,
we ideally want the enforcer to never halt (i.e., the mode of the enforcer should never change
to stop). While the fourth case (kpref(φ)(σs, σca) ̸= ∅ ∧ |σca| > k ∧ Get_SWφ,k(σs, σca) = ∅)

14 Buffer allocation should be done carefully. If we use a small buffer, there will be a higher chance of
buffer overflow, resulting in the deletion of more events. However, if we use a sufficiently sized buffer,
there will be less overflow, which is crucial for retaining critical events and avoiding their loss.

15 The behaviour is non-linear because of reasons such as, overhead in maintaining the list of uncorrected
events (events in σc), the more numbers of times function clean is called, etc.
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of Def. 11 in Sect. 5.2 may result in the enforcer halting, which is undesirable in practical
scenarios, our objective is to ensure that the enforcer consistently operates. To achieve this,
we propose (based on our preliminary observations) specific syntactic and semantic conditions
on the TA, s.t. if the TA corresponding to any given property φ ⊆ tw(σ) satisfies these
conditions, it guarantees that the enforcer never halts (i.e., the fourth case of Def. 11 never
arise; or the function Get_SWφ,k always finds a word (of length < k), which is property
equivalent with the buffer contents).

▶ Definition 20 (Conditions on TA). We define the following conditions on TA Aφ:
∀ρ ∈ RunFG

(Aφ) and timed words σs, σ, σcon, ∃ρ0, ρ1, ρ2 : ρ = ρ0 · ρ1 · ρ2,

(ρ0 = (l0, v0) σs−→ (l, v)) ∧ ρ1 = (l, v) σ−→ (l, v′)) ∧ (ρ2 = (l, v′) σcon−−−→ (ln, vn)), ∀tr ∈ ρ1 :
1. tr = (l, g, a, ∅, l′) where, g ∈ G(X) with ⋊⋉∈ {<,≤}), or
2. tr = (l, ϵ, a, ∅, l′)

The above definition gives (not necessary but sufficient) syntactic and semantic conditions
for a TA. The condition expresses that, for any run accepted by Aφ, if it can be broken down
(as shown in figure 2) into three consecutive runs ρ0, ρ1, and ρ2 as follows:
ρ0: from initial state (l0, v0) upon σs, Aφ makes the last transition to state (l, v),
ρ1: from (l, v) upon σ, Aφ makes last transition to state (l, v′) with no change in location,
ρ2: from (l, v′) upon σcon, Aφ makes the last transition to state (ln, vn) (an accepting

state),

l0start l ln

ρ0

ρ1

ρ2

Figure 2 Runs of a TA, showing only the locations reached.

then all the transitions of the run ρ1 should be s.t., i) the guards are Boolean combinations
of simple constraints where the operators are restricted to {≤, <}, or, ii) the transitions
should not have guards and resets acting on them.

▶ Example 21. (TA satisfying conditions of Def. 20). TA in Figure 1 of Example 2 satisfies
the syntactic conditions of Def. 20, since the accepting run from initial state (l0, v0) can
be broken down into runs ρ0 (from (l0, v0) to (l1, v1)), ρ1 (from (l1, v1) to (l1, v′1)), and ρ2
(from (l1, v′1) to (l2, v2), where (l2, v2) is an accepting state) and the transition in ρ1 (e.g.,
tr = (l1, {x ≤ 4}, r, ϵ, l1)) has guard with constraints where the operator is ≤ (i.e., x ≤ 4)

▶ Remark 22. (Condition for enforceability.) If k ≥ n (where n ∈ N is the number of locations
in Aφ), and the TA satisfies the conditions given in Definition 20, then Eφ,k defined in Def.
11 never halts.



More Than 0s and 1s: Metric Quantifiers and
Counting over Timed Words
Hsi-Ming Ho #

Department of Informatics, University of Sussex, UK

Khushraj Madnani #

Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract
We study the expressiveness of the pointwise interpretations (i.e. over timed words) of some predicate
and temporal logics with metric and counting features. We show that counting in the unit interval
(0, 1) is strictly weaker than counting in (0, b) with arbitrary b ≥ 0; moreover, allowing the latter
indeed leads to expressive completeness for the metric predicate logic Q2MLO, recovering the
corresponding result for the continuous interpretations (i.e. over signals). Exploiting this connection,
we show that in contrast to the continuous case, adding “punctual” predicates into Q2MLO is still
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1 Introduction

Timed logics. Metric Temporal Logic (MTL) [22] is a natural extension of Linear Temporal
Logic (LTL) [31] with the capability of expressing real-time constraints by allowing intervals
I to be specified with the “until” (U) and “since” (S) modalities of LTL. Intuitively, p UI q

holds at a position i if there is a position j in the future where q holds, the time difference
between i and j is within I, and p holds at all the points between i and j. While MTL
provides a convenient and intuitive syntax for timing constraints, the problem of whether
a given MTL formula has a model (behaviour) that satisfies it is undecidable [3,29] – this
makes MTL infeasible as a specification formalism for practical verification tasks. To remedy
this issue, Alur, Feder, and Henzinger proposed in a seminal work [1] a syntactic fragment of
MTL called Metric Interval Temporal Logic (MITL) where intervals associated with modalities
are “non-punctual”, i.e. non-singular. They showed that the satisfiability and model-checking
problems for MITL are decidable with ExpSpace-complete complexity. In other words, by
sacrificing perfect timing precision, we obtain a fully decidable timed specification formalism
capable of expressing many practical properties of interest (see, e.g., [35]).

Expressiveness. Pnueli conjectured in the early 1990s that the trivial property “p and then
q will happen in the next time unit’ is not expressible in timed temporal logics like MTL and
MITL. The conjecture (in different forms) is proved in [5, 12, 13, 30] and has led to several
decidable extensions of MITL; one of the most notable extensions amongst them is Hirshfeld
and Rabinovich’s Q2MLO [12]. It is straightforward to express the counting modalities and
Pnueli modalities (a more general form of the aforementioned conjecture) in Q2MLO, and it
admits a very simple and natural metric temporal logic characterisation: the extension of
MITL with counting modalities is expressively complete for Q2MLO [16]. However, most of
these results only hold for the continuous interpretations (i.e. over signals) of these logics

© Hsi-Ming Ho and Khushraj Madnani;
licensed under Creative Commons License CC-BY 4.0

30th International Symposium on Temporal Representation and Reasoning (TIME 2023).
Editors: Alexander Artikis, Florian Bruse, and Luke Hunsberger; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hsi-ming.ho@sussex.ac.uk
https://orcid.org/0000-0003-0387-4857
mailto:kmadnani@mpi-sws.org
https://orcid.org/0000-0003-0629-3847
https://doi.org/10.4230/LIPIcs.TIME.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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C(0,1)MTL
1⃝
≡ C0MTL

2⃝
≡ CMTL

3⃝
≡ PQ2MLO

4⃝
≡ FO[<, +1] .

C(0,1)MITL
5⃝
≡ C0MITL

6⃝
≡ CMITL

7⃝
≡ Q2MLO .

Figure 1 The relevant expressiveness results in the continuous semantics. 2⃝ is trivial,
e.g., C2

(1,2) p ⇐⇒ F=1 C2
(0,1) p. 1⃝ can similarly be seen to hold by an easy case analysis,

e.g., C2
(0,2) p ⇐⇒ C2

(0,1) p ∨ F=1(C2
(0,1) p) ∨

(
C1

(0,1) p ∧ F=1(p ∨ C1
(0,1) p)

)
. 3⃝ and 4⃝ are proved

in [20]. 5⃝, 6⃝, and 7⃝ follow from [14,16] and [19].

C(0,1)MTLfut
1⃝
⊊ C0MTLfut

2⃝
⊊ CMTLfut

3⃝
⊆ PQ2MLO ⊆ PGQMLO ⊆ FO[<, +1] .

C(0,1)MITLfut
4⃝
⊊ C0MITLfut

5⃝
⊊ CMITLfut

6⃝
⊆ Q2MLO .

Figure 2 The relevant known expressiveness results in the pointwise semantics (where the
subscript “fut” stands for the future-only fragments). 1⃝, 2⃝, 4⃝, and 5⃝ are proved in [24]. 3⃝ and
6⃝ follow from [19]. The rest are syntactic inclusions.

and do not hold for the pointwise interpretations (i.e. over timed words). This is unfortunate
from a practical point of view, as the latter is usually more amenable to automata-based
implementations (e.g., Uppaal [27]).

Contributions. The present work focusses on the expressiveness of these logics. We show
that, as opposed to the situation in the continuous semantics, counting in (0, b⟩ is strictly
more expressive than counting in (0, 1), and by allowing this modest generalisation we can
actually recover the expressive completeness result for Q2MLO; this is also in stark contrast
with the future-only fragments of these logics in the pointwise semantics, where counting in
(0, b⟩ is still insufficient for the expressiveness of (future) Q2MLO [24]. Similarly, we show
that Q2MSO (the second-order version of Q2MLO) is characterised by MITL with counting
modalities and untimed automata modalities. Finally, we show that Q2MLO with punctual
predicates is still strictly less expressive than FO[<, +1] (once again in stark contrast with the
continuous case), and we propose an extension to achieve the full expressiveness of FO[<, +1].

Related work. Compared to the situation in the continuous semantics, there are very
few expressive completeness results regarding timed temporal logics like MTL and MITL in
the pointwise semantics in the literature. D’Souza and Tabareau [8] showed that “vanilla”
MITL is expressively complete for a restricted fragment of the Monadic First-Order Logic of
Order and Metric (FO[<, +1]) in the pointwise semantics. It is shown in [17] that MTL with
counting modalities is still strictly less expressive than FO[<, +1] in the pointwise semantics.
On the practical side, counting modalties appear to be amenable to implementations, e.g.,
Bersani, Rossi, and San Pietro [4] proposed an SMT-based tool for deciding the satisfiability
of MITL with counting modalities.

2 Preliminaries

We give a brief introduction to (linear-time) timed logics and some technical tools and
notations used in the paper. For more detailed reviews and comparisons of relevant results,
we refer the readers to [6, 15].
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C(0,1)MTL
1⃝
⊊ C0MTL ≡ CMTL

2⃝
≡ PQ2MLO

3⃝
⊊ PGQMLO ⊆ PGQMLOfrac 4⃝

≡ FO[<, +1] .

C(0,1)MITL
5⃝
⊊ C0MITL ≡ CMITL

6⃝
≡ Q2MLO .

Figure 3 The results of this paper (in the pointwise semantics). 1⃝ and 5⃝ follow from Theorem 9.
2⃝ and 6⃝ follow from Theorem 13. 3⃝ is Corollary 16, and 4⃝ is Theorem 17.

Timed languages. A timed word over a finite alphabet Σ is an ω-sequence of events
(σi, τi)i≥1 over Σ × R≥0 with (τi)i≥1 an increasing sequence of non-negative real numbers
(“timestamps”) such that for any r ∈ R≥0, there is some position j ≥ 1 with τj ≥ r (i.e. we
consider strictly monotonic timed words and require them to be “non-Zeno”).1 We denote
by ρ[i, j] the finite timed word formed by the sequence of events (σℓ, τℓ)i≤ℓ≤j . We denote by
TΣω the set of all timed words over Σ. A timed language is a subset of TΣω.

Metric predicate logics. We start by defining Monadic Second-Order Logic of Order and
Metric (MSO[<, +1]), which encompasses all the timed logics discussed in this paper.

▶ Definition 1 (MSO[<, +1] [3, 33]). Monadic Second-Order Logic of Order and Metric
(MSO[<, +1]) formulae are generated by

ϑ ::= ⊤ | X(x) | x < x′ | d(x, x′) ∈ I | ϑ1 ∧ ϑ2 | ¬ϑ | ∃x ϑ | ∃X ϑ

where X is an atomic proposition, x, x′ are first-order variables, d is the distance predicate,
I ⊆ R≥0 is an interval with endpoints in N≥0 ∪ {∞}, and ∃x, ∃X are first- and second-order
quantifiers, respectively.2

As a convention we write, e.g., (0, b⟩, to refer to (0, b) or (0, b]. The fragment of MSO[<, +1]
without second-order quantifiers is the Monadic First-Order Logic of Order and Metric
(FO[<, +1]). The fragment of MSO[<, +1] without the distance predicate is the Monadic
Second Logic of Order (MSO[<]). The fragment of FO[<, +1] without the distance predicate
is the Monadic First-Order Logic of Order (FO[<]).

▶ Definition 2 (Q2MLO [12]). Q2MLO is the smallest fragment of FO[<, +1] obtained from
FO[<] by the following rules:

All FO[<] formulae with a single free variable are Q2MLO formulae (note that they may
use Q2MLO formulae as atomic propositions).
If ϑ(x0, x) is an FO[<] formula where x0 and x are the only free first-order variables,
then ∃x

(
x0 < x ∧ d(x0, x) ∈ I ∧ ϑ(x0, x)

)
and ∃x

(
x < x0 ∧ d(x0, x) ∈ I ∧ ϑ(x0, x)

)
, where

I is non-singular, are also Q2MLO formulae (with free first-order variable x0).
We denote by Q2MLO0,∞ the fragment of Q2MLO with only intervals of the forms (0, b⟩
or ⟨a, ∞), and Q2MLO0 is the even more restricted fragment where only intervals of the
form (0, b⟩ are allowed.3 We also define Q2MSO [26], the smallest fragment of MSO[<, +1]
obtained from MSO[<] by the rules in the previous definition (replacing FO[<] by MSO[<]).

1 We restrict ourselves to strictly monotonic timed words to simplify the definitions of metric predicate
logics; all the results carry over to the case of non-strictly monotonic timed words as well.

2 Following [33], we use d(x, x′) in place of a “+1” function symbol.
3 Note that non-metric FO[<] formulae are still allowed in these fragments.
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▶ Definition 3 (PQ2MLO [20]). PQ2MLO (where “P” stands for “punctual”) is obtained
from Q2MLO by adding the rule:

∃x
(
x0 < x ∧ d(x0, x) ∈ I ∧ ϑ(x)

)
where I is a singular interval and ϑ(x) is a Q2MLO formula with a single free variable x.

Metric temporal logics. We start by defining Extended Metric Temporal Logic (EMTL) [33]
where all operators are defined by non-deterministic finite automata (NFAs). An NFA over
Σ is a tuple A = ⟨Σ, S, s0, ∆, F ⟩ where S is a finite set of locations, s0 ∈ S is the initial
location, ∆ ⊆ S × Σ × S is the transition relation, and F is the set of final locations. We say
that A is deterministic (a DFA) iff for each s ∈ S and σ ∈ Σ, |{(s, σ, s′) | (s, σ, s′) ∈ ∆}| ≤ 1.
A run of A on σ1 . . . σn ∈ Σ+ is a sequence of locations s0s1 . . . sn where there is a transition
(si, σi+1, si+1) ∈ ∆ for each i, 0 ≤ i < n. A run of A is accepting iff it ends in a final location.
A finite word is accepted by A iff A has an accepting run on it.

▶ Definition 4 (EMTL [33]). Extended Metric Temporal Logic (EMTL) formulae over a
finite set of atomic propositions AP are generated by

φ ::= ⊤ | p | φ1 ∧ φ2 | ¬φ | AI(φ1, . . . , φn) |←AI (φ1, . . . , φn)

where p ∈ AP, A is an NFA over the n-ary alphabet {1, . . . , n}4, and I ⊆ R≥0 is an interval
with endpoints in N≥0 ∪ {∞}

As a convention, modalities with left arrows above them denote their “past” versions [2, 33].
We omit the subscript I when I = (0, ∞) and write pseudo-arithmetic expressions for lower
or upper bounds, e.g., “< 3” for (0, 3). We also omit the arguments φ1, . . . , φn and simply
write AI or ←AI , if clear from the context. EMITL [33] is the fragment of EMTL with only
non-singular intervals. EMITL0,∞ is the fragment of EMITL with only intervals of the forms
(0, b⟩ or ⟨a, ∞).

▶ Definition 5 (MTL [22]). Metric Temporal Logic (MTL) is the fragment of EMTL with
only the “until” and “since” modalities defined by the NFA AU below:

φ1

φ2

MTL formulae are usually written in infix notation as φ1 UI φ2 and φ1 SI φ2. We also use
the usual shortcuts like FI φ ≡ ⊤ UI φ and GI φ ≡ ¬ FI ¬φ. Metric Interval Temporal Logic
(MITL) [1] is the fragment of MTL with only non-singular intervals (or, equivalently, the
fragment of EMITL with only the “until” and “since” modalities). MITL0,∞ is the fragment
of MITL with only intervals of the forms (0, b⟩ or ⟨a, ∞) (or, equivalently, the fragment of
EMITL0,∞ with only the “until” and “since” modalities). Linear Temporal Logic (LTL) [31]
is the fragment of MITL0,∞ where all operators are labelled by (0, ∞).5

▶ Definition 6 (CMTL [14, 16]). CMTL is obtained from MTL by adding the counting
modalities Ck

I defined by the MSO[<, +1] formula

ϑC,k
I (x, X) = ∃x1 . . . ∃xk

(
x < x1 < · · · < xk ∧ d(x, x1) ∈ I ∧ d(x, xk) ∈ I ∧

∧
1≤i≤k

X(xi)
)

4 For clarity, we use φ1, . . . , φn directly as transition labels (instead of 1, . . . , n) in the figures.
5 We adopt the strict semantics for U and S, which subsumes the usual “next” and “previous” operators.



H.-M. Ho and K. Madnani 7:5

as well as
←
Ck

I defined by the past counterpart of ϑC,k
I (x, X).6 C0MTL is the fragment of CMTL

where the counting modalities use only intervals of the form (0, b⟩ where b ∈ N>0 ∪ {∞}.

C(0,1)MTL is the fragment of C0MTL where the counting modalities use only (0, 1). We
will freely combine notations to refer to various fragments of metric temporal logics, e.g.,
C(0,1)MITL is obtained from MITL by adding Ck

I and
←
Ck

I with I = (0, 1).

Semantics of MSO[<, +1]. With each timed word ρ = (σi, τi)i≥1 over ΣAP = 2AP we
associate a structure Mρ whose universe Uρ is {i | i ≥ 1}. The order relation < and atomic
propositions in AP are interpreted in the expected way, e.g., P (i) holds in Mρ iff P ∈ σi.
The distance predicate d(x, x′) ∈ I holds iff |τx − τx′ | ∈ I. The satisfaction relation for
MSO[<, +1] is defined inductively in the usual way. We write ρ, j1, . . . , jm, J1, . . . , Jn |=
ϑ(x1, . . . , xm, X1, . . . , Xn) if j1, . . . , jm ∈ Uρ, J1, . . . , Jn ⊆ Uρ, and ϑ(j1, . . . , jm, J1, . . . , Jn)
holds in Mρ. We say that two MSO[<, +1] formulae ϑ1(x) and ϑ2(x) are equivalent if for all
timed words ρ = (σi, τi)i≥1 and j ∈ Uρ,

ρ, j |= ϑ1(x) ⇐⇒ ρ, j |= ϑ2(x) .

Semantics of EMTL. EMTL can be embedded into MSO[<, +1] through Büchi-Elgot-
Trakhtenbrot theorem [25], but we can also define the satisfaction relation directly. Given an
EMTL formula φ over AP, a timed word ρ = (σi, τi)i≥1 over ΣAP and i ≥ 1, define ρ, i |= φ

as follows:
ρ, i |= ⊤;
ρ, i |= p iff p ∈ σi;
ρ, i |= φ1 ∧ φ2 iff ρ, i |= φ1 and ρ, i |= φ2;
ρ, i |= ¬φ iff ρ, i ̸|= φ;
ρ, i |= AI(φ1, . . . , φn) iff there exists j ≥ i such that (i) τj − τi ∈ I and (ii) there is an
accepting run of A on ai . . . aj where ρ, ℓ |= φaℓ

(aℓ ∈ {1, . . . , n}) for each ℓ, i ≤ ℓ ≤ j.
ρ, i |=←AI (φ1, . . . , φn) is defined symmetrically.

We say that ρ satisfies φ (written ρ |= φ) iff ρ, 1 |= φ.

Ehrenfeucht-Fraïssé games for CMTL. An m-round CMTL Ehrenfeucht-Fraïssé (EF) game
starts with round 0 and ends with round m. The game is played by two players (Spoiler and
Duplicator) on a pair of timed words ρ = (σi, τi)i≥1 and ρ′ = (σ′i, τ ′i)i≥1. A configuration
is a pair of positions (i, j), respectively in ρ and ρ′. In each round r (0 ≤ r ≤ m), the
game proceeds as follows. Spoiler first checks whether the two events that correspond to
the current configuration (ir, jr) in ρ and ρ′ satisfy the same atomic propositions. If this is
not the case then Spoiler wins the game. Otherwise if r < m, Spoiler chooses I ⊆ R≥0 with
endpoints in N≥0 ∪ {∞} and plays either of the following moves:

UI-move: Spoiler chooses one of the two timed words (say ρ) and picks i′r such that
ir < i′r and τi′

r
−τir

∈ I (if there is no such i′r then Duplicator wins the game). Duplicator
must choose j′r such that τ ′j′

r
− τ ′jr

∈ I – if this is not possible then Spoiler wins the game.
Otherwise, Spoiler plays either of the following “parts”:

F-part: The game proceeds to the next round with (ir+1, jr+1) = (i′r, j′r).

6 Note that Ck
I and

←
Ck

I are subsumed by EMTL even when inf I ̸= 0 [19].
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U-part: If j′r = jr + 1 the game proceeds to the next round with (ir+1, jr+1) = (i′r, j′r).
If i′r = ir + 1 but j′r ̸= jr + 1 then Spoiler wins the game. Otherwise, Spoiler picks j′′r
such that jr < j′′r < j′r; Duplicator has to choose i′′r such that ir < i′′r < i′r in response
– if this is not possible then Spoiler wins the game. Otherwise, the game proceeds to
the next round with (ir+1, jr+1) = (i′′r , j′′r ).

SI-move: Defined symmetrically.
Ck

I -move: Spoiler chooses one of the two timed words (say ρ) and picks i1
r, . . . , ik

r such
that ir < i1

r < · · · < ik
r and τiℓ

r
− τir ∈ I for all ℓ, 1 ≤ ℓ ≤ k (if there are no such i1

r, . . . , ik
r

then Duplicator wins the game); Duplicator must choose j1
r , . . . , jk

r such that τ ′jℓ
r

−τ ′jr
∈ I

for all ℓ, 1 ≤ ℓ ≤ k – if this is not possible then Spoiler wins the game. Spoiler then picks
j′′r = jℓ

r for some ℓ, 1 ≤ ℓ ≤ k, Duplicator chooses i′′r = iℓ
r for some ℓ, 1 ≤ ℓ ≤ k, and the

game proceeds to the next round with (ir+1, jr+1) = (i′′r , j′′r ).
←
CI-move: Defined symmetrically.

We say that Duplicator has a winning strategy for the m-round CMTL EF game on ρ and ρ′

that starts from configuration (i, j) if and only if, no matter how Spoiler plays, Duplicator
can always win the m-round CMTL EF game on ρ and ρ′ with (i0, i0) = (i, j). If this is not
the case then we say that Spoiler has a winning strategy. The following theorem relates the
number of rounds of CMTL EF games to the modal depth (i.e., the maximal depth of nesting
of modalities) of CMTL formulae.

▶ Theorem 7 ([24, 30]). For timed words ρ, ρ′ and a CMTL formula φ of modal depth ≤ m,
if Duplicator has a winning strategy for the m-round CMTL EF game on ρ, ρ′ with (i0, j0) =
(1, 1), then

ρ |= φ ⇐⇒ ρ′ |= φ .

Note that the theorem above can also be specialised to sublogics of CMTL; for example, the
corresponding theorem for C(0,1)MITL is obtained by forcing I = (0, 1) in Ck

I -moves.

Expressiveness. We say that a metric logic L′ is expressively complete for a metric logic
L iff for any formula ϑ(x) ∈ L, there is an equivalent formula φ(x) ∈ L′.7 We say that L′

is at least as expressive as (or more expressive than) L (written L ⊆ L′) iff for any formula
ϑ(x) ∈ L, there is an initially equivalent formula φ(x) ∈ L′ (i.e., ϑ(1) and φ(1) evaluate
to the same truth value for any timed word). We say that L′ and L are equally expressive
(written L′ ≡ L) iff L ⊆ L′ and L′ ⊆ L. If L ⊆ L′ but L′ ⊈ L then we say that L′ is strictly
more expressive than L (or L is strictly less expressive than L′).

3 Expressive completeness for Q2MLO

Counting in (0, 1). We argue that counting in (0, 1) is not sufficiently expressive in the
pointwise semantics; in particular, counting in (0, b⟩ cannot be expressed in MTL extended
with Ck

(0,1) and
←
Ck

(0,1), and it turns out to be essential for achieving the full expressiveness of
Q2MLO. This is in stark contrast with the situation in the continuous semantics, where LTL
extended with Ck

(0,1) and
←
Ck

(0,1) is expressively complete for Q2MLO [14,16]. We show this
by constructing two families of timed words (Mm,c) and (Nm,c) over Σ{p,q} (inspired by [30])
that can be told apart easily by a C0MTL formula using Ck

(0,b⟩, yet they are indistinguishable
by all C(0,1)MTL formulae of modal depth ≤ m, all constants ≤ c, and where all occurrences
of counting modalities Ck′

I and
←
Ck′

I have k′ ≤ k.

7 Formulae of metric temporal logics are MSO[<, +1] formulae with a single free first-order variable.
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We start by describing Nm,c for some fixed m, c ∈ N≥0. Let c′ be the least integer greater
than 5

4 · (c+ 3)+ 1 and ϵ = 1
6 . We put an ∅-event at time 0, and then a number of overlapping

segments start at time (c + 1) where each segment consists of a {p}-event and a {q}-event
(note that each {p}-event or {q}-event uniquely identifies a segment). If the {p}-event in the
ith segment is at, say, t, then its {q}-event is at t + 2 + i

3·m·c′+3 · ϵ (see Figure 4). We put a
total of 2 · m · c′ + 1 segments where {p}-events in neighbouring segments are separated by 4

5 .
Finally, we put an infinite sequence of ∅-events, equally separated by (c + 1) and starting at
(c + 1) after the {q}-event in the last segment. Mm,c is almost identical to Nm,c, except for
the middle (i.e., (m · c′ + 1)th) segment – say this segment starts at t, then in Mm,c we shift
the corresponding {q}-event to t + 2 − m·c′+1

3·m·c′+3 · ϵ instead. For convenience, we write ta for
the timestamp of the {p}-event in the middle segment (i.e. ta = (c+1)+ 4

5 ·m ·c′), tb = ta +2,
and denote the corresponding {q}-events in Mm,c and Nm,c by x and y respectively with
timestamps tx and ty (see Figure 5). It is easy to see that no {q}-event is at an integer
distance to some other {p}-event or {q}-event. This completes the description of Mm,c and
Nm,c. We say a configuration (i, j) is identical if i = j. For a position i ≥ 1 in Mm,c or Nm,c,
we write seg(i) for the segment to which the ith event belongs. For convenience we define
seg(i) = 0 if the ith event is an ∅-event.

1 1 ϵ

Figure 4 A segment in Nm,c . The white box is the {p}-event and the black box is the {q}-event.

Mm,c

Nm,c

ta tb

x x′

y′′ y′ y

4
5

1 1

Figure 5 The events near the middle segments of Mm,c and Nm,c . White boxes are {p}-events
and black boxes are {q}-events.

We are now ready to state the main technical lemma, which intuitively says that Duplicator
can either keep the configuration identical or far enough from the beginnings and the ends of
both Mm,c and Nm,c (where Spoiler can easily win the EF game).

▶ Lemma 8. In the m-round C(0,1)MTL EF game on Mm,c, Nm,c starting from (1, 1),
Duplicator has a winning strategy such that for each round 0 ≤ r ≤ n, the ith

r -event in Mm,c

and the jth
r -event in Nm,c satisfy the same atomic propositions and

if seg(ir) ̸= seg(jr), then r ≥ 1 and
seg(ir), seg(jr) ∈

[
(m − r + 1) · c′ − 1, (m + r − 1) · c′ + 3

]
.

Proof. We describe a winning strategy for Duplicator by induction on r. The basic idea
is to make the resulting configuration identical whenever possible (and thus the induction
hypothesis trivially holds); otherwise we use a copy-cat strategy (i.e. try to make seg(ir+1) −

TIME 2023
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seg(ir) = seg(jr+1) − seg(jr)). If that is also not possible, we must choose another event
that satisfies the same atomic propositions. In the following, we refer to the timed word that
Spoiler first chooses as ρs = (σs

i , τ s
i )i≥0 (ρd = (σd

i , τd
i )i≥0 for that of Duplicator).

Base step. The induction hypothesis holds trivially for (i0, j0) = (1, 1).
Induction step. Suppose the claim holds for r < m. We prove it also holds for r + 1.

(ir, jr) = (1, 1):
Since all segments happen at time > c, Duplicator can always make (ir+1, jr+1) an
identical configuration, if necessary.
(ir, jr) ̸= (1, 1) is identical:
We may assume r > 0. Observe from Figure 5 that any two {p}-events that are 5n

segments away are separated by 4n. More specifically, since tb − ta = 2, {p}-events
whose distances to ta are integers will also have integer distances to tb. We consider
the following cases:
∗ (ir, jr) both correspond to ∅-events: since they are separated from any other events

by > c, Duplicator can always make (ir+1, jr+1) identical if necessary.
∗ (ir, jr) both correspond to {p}-events and Spoiler plays an UI -move or SI -move

and picks (say) i′r = x. Duplicator may either choose j′r = y (then Duplicator
can surely make (ir+1, jr+1) identical later) or if that is not possible, choose event
j′r = y′. In the latter case, if Spoiler plays the F-part, it is obvious that the
resulting configuration (ir+1, jr+1) would satisfy the claim. If Spoiler plays U-part,
Duplicator may either make (ir+1, jr+1) identical or seg(jr+1) − seg(ir+1) = −1.
In this latter case it is clear that the claim still holds (seg(ir+1) = m · c′ + 2 or
seg(ir+1) = m · c′ + 4). If Spoiler plays a Ck

I -move or
←
Ck

I -move, as I = (0, 1),
Duplicator can always make (ir+1, jr+1) identical if necessary.

∗ (ir, jr) corresponds to {q}-events except x and y, and Spoiler chooses, say, event
i′r = x. The reasoning is exactly similar to the case above.

∗ (ir, jr) corresponds to events x and y. If Spoiler plays an UI -move or SI -move,
chooses some event z, and forces Duplicator not to choose the corresponding event
but another one in a neighbouring segment, then that event z must be less than
(c + 1) away from tb. If it happens before tb, then ta would have distance < (c − 1)
to it. If it happens after tb, then ta would be < (c + 3) away from it. Assume
that z happens before tb. If z is a {p}-event, we divide (c − 1) by 4

5 to obtain
5
4 · (c − 1) > |seg(z) − seg(ir)| where seg(ir) = m · c′+ 1. Observe that the {p}-event
z′ that Duplicator chooses as the response will be at most one more segment away.
Then the claim holds regardless of Spoiler plays F-part or U-part (may cause a
drift of two more segments) later. If z is a {q}-event, observe that its corresponding
{p}-event in the same segment must be less than 2 + 1

5 < 3 · 4
5 away from z. Add

this to (c − 1) and divide the result by 4
5 gives 5

4 · (c − 1) + 3 < 5
4 · (c + 2). Again,

the {q}-event z′ that Duplicator chooses will be at most one more segment away.
The case for z happens after tb is similar. If Spoiler plays a Ck

I -move or
←
Ck

I -move,
as I = (0, 1), Duplicator can always make (ir+1, jr+1) identical if necessary.

(ir, jr) is not identical:
We claim that no matter how Spoiler plays, Duplicator can always either make
(ir+1, jr+1) identical or, ensure that (ir+1, jr+1) has not moved towards the nearest
end by ≥ c′ segments. In the latter case the claim holds by the induction hypothesis.
If Spoiler plays an Ck

I -move or
←
Ck

I -move, it is once again clear that Duplicator can
follow a copy-cat strategy if necessary, but this is not always the case for UI -moves
and SI -moves. In the following, we focus on UI -moves and SI -moves and assume that
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Spoiler always chooses some event that is more than two events away from the current
event, e.g., j′r > jr + 2. If j′r ≤ jr + 2, it is easy to see that Duplicator can simply
choose i′r = ir + (j′r − jr) (unless (ir, jr) are very close to one of the ends, which will
not happen).
Assume that (ir, jr) corresponds to a pair of {p}-events and (without loss of generality)
assume that Spoiler chooses a position j′r such that j′r > jr. If Duplicator can choose
i′r such that i′r = j′r, Duplicator chooses i′r = j′r. Then, if Spoiler plays F-part,
it is immediate that ir+1 = jr+1. If Spoiler plays U-part, then Duplicator makes
ir+1 = jr+1 whenever possible. Otherwise, for example, if ir < jr and Spoiler chooses
some {p}-event in (τd

ir
, τd

jr
) as ir+1, then Duplicator chooses jr+1 = jr + 2. Observe

that ir+1 has moved towards jr (and away from the nearest end). The claim holds by
the induction hypothesis. If Duplicator cannot choose i′r such that i′r = j′r, consider
the following cases:
∗ Duplicator can choose i′r such that i′r = ir + (j′r − jr): If Duplicator cannot

choose i′r = j′r, then Duplicator chooses i′r = ir + (j′r − jr). As before, we know
that τ s

j′
r

< τ s
jr

+ (c + 1). It is easy to see that seg(ir+1) − seg(ir) < c′ and
seg(jr+1) − seg(jr) < c′, and hence the claim holds by the induction hypothesis.

∗ Duplicator cannot choose i′r such that i′r = ir +(j′r −jr): This can only happen when
j′r corresponds to a {q}-event. Observe that all {p}-events in neighbouring segments
are separated by 4

5 . These imply that there exists t such that t − τ s
jr

= n = n′ · 1
5

for some n, n′ ∈ N>0, and there exists |k1|, |k2| < 1, k1, k2 ̸= 0 such that t − τ s
jr

lies
between
· τ s

j′
r

− τ s
jr

= n1 · 1
5 + k1 · ϵ, n1 ∈ N>0 and

· τd
ir+(j′

r−jr) − τd
ir

= n2 · 1
5 + k2 · ϵ, n2 ∈ N>0.

It is obvious that n1 = n2. If k1 · k2 > 0, since there is no integer multiple
of 1

5 that lies between, e.g., n1 · 1
5 and n1 · 1

5 + ϵ, this is a contradiction. If
k1 · k2 < 0, we must have n′ = n1 = n2. This only happens when ir + (j′r − jr) in ρd

corresponds to event x. In this case, Duplicator chooses the corresponding event in
a neighbouring segment. For example, if (ir, jr) corresponds to a pair of {p}-events,
seg(ir) = m · c′ + 1, seg(jr) = m · c′, I = (2, 3) and j′r = y′, then Duplicator chooses
i′r = x′. Now if Spoiler plays F-part, since we know that τ s

j′
r

< τ s
jr

+ (c + 1), the
claim holds. If Spoiler plays U-part, e.g., in the aforementioned example, Spoiler
chooses ir+1 = x, then Duplicator chooses jr+1 = y′′ – the claim also holds.

Now assume that (ir, jr) corresponds to a pair of {q}-events and assume that the
Spoiler chooses a position j′r such that j′r < jr. Most cases can be argued in very
similar ways. We consider the situation when Duplicator cannot choose i′r such that
i′r = ir + (j′r − jr). If j′r corresponds to a {p}-event then the argument is exactly
similar to above. Otherwise if j′r corresponds to a {q}-event, observe the fact that
all {q}-events in neighbouring segments, except x, are separated by 4

5 + 1
3·m·c′+3 · ϵ.

By a similar argument, if k1 · k2 < 0, Duplicator chooses the corresponding event
in a neighbouring segment. It can be argued in the same way that the claim holds
regardless of Spoiler plays F-part or U-part later. ◀

Lemma 8 implies that any C(0,1)MTL formula of modal depth ≤ m and largest constant
≤ c cannot distinguish Mm,c and Nm,c. However, from Figure 5 it is obvious that

Mm,c |= F(p ∧ C3
(0,2) q) ∧ Nm,c |̸= F(p ∧ C3

(0,2) q) ,

as each interval like (ta, tb) in Nm,c contains at most two {q}-events. We thus have the
theorem below, which can be seen as a strengthened version of a corresponding result in [24]
(which holds for the future-only fragments).
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▶ Theorem 9. C0MTL ⊊ C(0,1)MTL.

Counting in (0, b⟩. We now show that once we bridge the expressiveness gap indicated by
Theorem 9, we can derive a corresponding expressive completeness result for Q2MLO in the
pointwise semantics. Before we give the main proof, let us state a crucial observation.

▶ Theorem 10. Q2MLO0 ≡ Q2MLO.

Proof. We first note that Q2MLO0,∞ is equally expressive as Q2MLO; this can be obtained as
a simple corollary of the main result of [18] (EMITL0,∞ is already as expressive as full EMITL),
since all the automata modalities involved in the proof are counter free (aperiodic) and thus
equivalent to FO[<] formulae of the form ϑ(x0, x). To see that Q2MLO0 ≡ Q2MLO0,∞, note
that, e.g., the Q2MLO formula

∃x
(
x0 < x ∧ d(x0, x) ∈ (a, ∞) ∧ ϑ(x0, x)

)
is equivalent to an EMITL formula A(a,∞) where A is the automaton equivalent of ϑ(x0, x); we
assume (without loss of generality [34]) that A = ⟨Σ, S, s0, ∆, F ⟩ is a DFA and in particular,
at most one of the arguments holds at any position. Let Bs,φ be the automaton obtained
from A by adding a new location sF , declaring it as the only final location, and adding new
transitions s′

φa∧φ−−−→ sF for every s′
φa−−→ s in A. Let Cs be the automaton obtained from A by

adding new non-final locations s′0 and s′1, adding new transitions s′0 → s′1 (i.e. labelled with
⊤) and s′1

φa−−→ s′′ for every s
φa−−→ s′′ in A, and setting the initial location to s′0. Intuitively,

Bs,φ enforces φ at the point when s is reached in A and Cs “runs’ A from s. We can argue
that A(a,∞) is equivalent to

A(0,∞) ∧ ¬
∨
s∈S

Bs,φ
(0,a]

where φ = ¬Cs. This can be translated into a Q2MLO0 formula. ◀

We have thus reduced the problem to expressing Q2MLO0 formulae in C0MITL. The
proof below essentially follows [14, 16] with the exception that instead of the composition
method [32] we use Myhill-Nerode congruence, which appears to be more natural in a
pointwise setting. It suffices to show that we can use a C0MITL formula to express a Q2MLO0
formula of the form

∃x
(
x0 < x ∧ d(x0, x) ∈ (0, b⟩ ∧ ϑ(x0, x)

)
(1)

where ϑ(x0, x) is an FO[<] formula, as we can repeatedly apply the equivalence on the
minimal subformula until the whole formula is turned into a C0MITL formula.

We say an FO[<] formula ϑ(x0, x) is functional if for any given timed word ρ and positions
i0, i, if we have ρ, i0, i |= ϑ(x0, x) then i0 < i and i is unique for i0: if ρ, i0, i′ |= ϑ(x0, x) then
it must be the case that i′ = i. It is not hard to see that (1) remains equivalent if we replace
ϑ(x0, x) by its “functional’ counterpart

ϑ′(x0, x) = x0 < x ∧ ϑ(x0, x) ∧ ∀x′
(
x0 < x′ < x =⇒ ¬ϑ(x0, x′)

)
.

We recall some facts about functional formulae before stating the main theorem. Intuitively,
once we restrict ourselves to the case of functional ϑ(x0, x), then for any given position i0,
there can be only a bounded number of pairs of positions (i, j) such that i < i0 < j and
ρ, i, j |= ϑ(x0, x). In particular if ρ, i0, i |= ϑ(x0, x), we can make use of counting modalities
to enforce that τi − τi0 ∈ (0, b⟩.
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▶ Lemma 11. If ϑ(x0, x) is functional and i0 is a position in the timed word ρ, then
|{j | ρ, i, j |= ϑ(x0, x) and i < i0 < j}| ≤ r where r is the number of locations of the minimal
DFA equivalent to ϑ(x0, x).

Proof. Suppose to the contrary that there exists a set {(i1, j1), . . . , (ir+1, jr+1)} of r + 1
distinct pairs of positions (i, j) (where j1, . . . , jr+1 are all distinct) that satisfy the condition;
i1, . . . , ir+1 must also be all distinct as ϑ(x0, x) is functional. Let D be the minimal DFA
equivalent to ϑ(x0, x). As there are only r locations in D, it must be the case that D reaches
some specific location s after reading ρ[iu, i0] and ρ[iv, i0] for some u ̸= v, and it follows
that ρ, iu, ju |= ϑ(x0, x) and ρ, iu, jv |= ϑ(x0, x). This contradicts the fact that ϑ(x0, x) is
functional. ◀

If ϑ(x0, x) is functional, we say that a pair of positions (i1, j1) such that ρ, i1, j1 |= ϑ(x0, x)
is of ϑ-nesting depth at least m in ρ if there exist positions i1 < · · · < im < jm < · · · < j1
such that ρ, iℓ, jℓ |= ϑ(x0, x) for all ℓ ∈ {1, . . . , m}. We say (i1, j1) is of ϑ-nesting depth m in
ρ if it is of ϑ-nesting depth at least m but not m + 1 in ρ. Let

R≥m
ϑ (y1) = ∃x1, x2, . . . , xm, y2, . . . , ym

(
x1 < x2 < · · · < xm < ym < · · · < y2 < y1

∧ ϑ(x1, y1) ∧ ϑ(x2, y2) ∧ · · · ∧ ϑ(xm, ym)
)

and Rm
ϑ (y1) = R≥m

ϑ (y1) ∧ ¬R≥m+1
ϑ (y1). Intuitively, ρ, j1 |= R≥m

ϑ (y1) iff there exists i1 such
that (i1, j1) is of ϑ-nesting depth at least m in ρ.

▶ Lemma 12. If ϑ(x0, x) is functional and (i, j) is of ϑ-nesting depth m in the timed word
ρ, then if (i′, j′) where j′ < j is also of ϑ-nesting depth m in ρ (i.e. ρ, j′ |= Rm

ϑ (y1)), we
necessarily have i′ < i.

Proof. i′ > i contradicts the fact that (i, j) is of ϑ-nesting depth m in ρ, and i′ = i contradicts
the fact that ϑ(x0, x) is functional. ◀

▶ Theorem 13. C0MITL ≡ Q2MLO.

Proof. Fix a functional formula ϑ(x0, x) and a timed word ρ. Let Rm,ℓ
ϑ (x0) be the formula

that says xℓ, the ℓ-th point > x0 satisfying Rm
ϑ , also happens to satisfy ϑ(x0, xℓ), i.e.

Rm,ℓ
ϑ (x0) = ∃x1, . . . , xℓ

(
x0 < x1 < · · · < xℓ ∧ ϑ(x0, xℓ)

∧ ∀x
(
x ∈ (x0, xℓ] =⇒ (Rm

ϑ (x) ⇐⇒
∨

i∈{1,...,ℓ}

x = xi)
))

.

By Lemma 11 and Lemma 12, we know that ℓ can at most be r + 1 (where r is the number
of locations of the minimal DFA equivalent to ϑ(x0, x)). If (i0, i) satisfies ϑ(x0, x), then (i0, i)
must be of ϑ-nesting depth m in ρ for some m ≤ r. To express

∃x
(
x0 < x ∧ d(x0, x) ∈ (0, b⟩ ∧ ϑ(x0, x)

)
,

we take the disjunction over all the possible choices of m’s and ℓ’s:∨
m∈{1,...,r}

( ∨
ℓ∈{1,...,r+1}

(
∃x1, . . . , xℓ

(
x0 < x1 < · · · < xℓ ∧ d(x0, xℓ) ∈ (0, b⟩

∧
∧

i∈{1,...,ℓ}

Rm
ϑ (xi) ∧ Rm,ℓ

ϑ (x0)
)))

.
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The formula above is equivalent to∨
m∈{1,...,r}

( ∨
ℓ∈{1,...,r+1}

(
(Cℓ

(0,b⟩R
m
ϑ ) ∧ Rm,ℓ

ϑ

))
where Rm

ϑ , Rm,ℓ
ϑ are the LTL equivalents of Rm

ϑ (y1) and Rm,ℓ
ϑ (x0), respectively. ◀

▶ Corollary 14. C0MITL with untimed automata modalities is expressively complete
for Q2MSO.

4 Expressive completeness for FO[<, +1]

Generalising EMITL. We know that in the continuous semantics PQ2MLO [20] is expressively
complete for FO[<, +1]; in other words, the only expressiveness gap between (decidable)
Q2MLO and (undecidable) FO[<, +1] is the capability to express punctualities. Unfortunately,
this pleasant result does not hold in the pointwise semantics.

▶ Theorem 15. PQ2MLO is strictly less expressive than FO[<, +1].

Proof. Thanks to Theorem 13, it suffices to show that C0MTL is strictly less expressive
than FO[<, +1]. In fact, we can prove the stronger result that MTL with arbitrary rational
endpoints (which subsumes Ck

I ) is still insufficient for expressing the property below (“X

holds at the first event in I from now’):

B→I (x, X) = ∃x′
(
x < x′ ∧ d(x, x′) ∈ I ∧ X(x′) ∧ ¬∃x′′ (x < x′′ < x′ ∧ d(x, x′′) ∈ I)

)
(2)

The detailed proof can be found in the full version of this paper. ◀

The theorem above suggests that we need more involved extensions to make Q2MLO as
expressive as FO[<, +1] in the pointwise semantics; at least we must be able to specify (2).
PnEMTL [23] is a generalisation of EMTL where instead of just between the current point
and a single witness point, one can use “Pnueli automata’ modalities to specify behaviours
between multiple witness points as well. More precisely, the semantics of Pnueli automata
modalities are defined as follows:

ρ, i |= FI1,...,Ik
(A1, . . . , Ak) iff there exists j1, . . . , jk such that

1. i < j1 < · · · < jk.
2. For each ℓ ∈ {1, . . . , k}, τjℓ

− τi ∈ Iℓ.
3. For each ℓ ∈ {1, . . . , k}, there is an accepting run of Aℓ on ajℓ−1 . . . ajℓ

(ℓ > 1) or
ai . . . ajℓ

(ℓ = 1) such that for each m, jℓ−1 ≤ m ≤ jℓ (or i ≤ m ≤ jℓ), ρ, m |= φam

(am ∈ {1, . . . , nℓ} where nℓ is the arity of the alphabet of Aℓ).
ρ, i |= PI1,...,Ik

(A1, . . . , Ak) (the past counterpart) is defined symmetrically.
In [23], it is also shown that PnEMTL is expressively equivalent to PGQMSO, a generalisation
of PQ2MSO with the following rule:

if ϑ1(x0, x1), . . . , ϑk(x0, xk) are MSO[<] formulae where for each ϑℓ(x0, xℓ) (ℓ ∈
{1, . . . , k}), x0 and xℓ are the only free first-order variables, then ∃x1 . . . ∃xk

(
x0 <

x1 < · · · < xk ∧ d(x0, x1) ∈ I1 ∧ · · · ∧ d(x0, xk) ∈ Ik ∧ ϑ(x0, x1) ∧ · · · ∧ ϑ(x0, xk)
)

and
the past counterpart, where I1, . . . , Ik are (possibly singular) intervals with endpoints in
N≥0 ∪ {∞}, are also PGQMSO formulae (with free first-order variable x0).

As we can easily express (2) in PGQMLO (the first-order fragment of PGQMSO) [23, Theorem
6.4], we have the following corollary.

▶ Corollary 16. PQ2MLO ⊊ PGQMLO.



H.-M. Ho and K. Madnani 7:13

Order of fractional parts. While we have not been able to prove or disprove whether
PGQMLO ≡ FO[<, +1], we can show that a simple extension of PnEMTL, where one is
allowed to specify orders of fractional parts of witnesses, can capture the full expressiveness
of FO[<, +1]. Let F frac,N

I1,...,Ik
(A1, . . . , Ak) be the new modalities where

A1, . . . , Ak are all counter free (aperiodic).
Each of I1, . . . , Ik is a left-closed, right-open subinterval of [−N, N) with integer endpoints
and length 1 (e.g., [3, 4) or [−7, −6)).

The intended semantics when evaluated at position i0 is as follows:
There exists k “witness’ points i1, . . . , ik such that iℓ ∈ Iℓ for all ℓ ∈ {1, . . . , k}.
The fractional parts of the witnesses are in this order, i.e. frac(τi1) < · · · < frac(τik

).
For each ℓ ∈ {1, . . . , k}, Aℓ has an accepting run on the “stacked’ word [17] formed by
all events in τi0 + [−N, N) with the fractional parts in [τiℓ−1 , τiℓ

). More precisely, the
transitions of A are partitioned into 2N sets, where each set is only enabled for events in
the corresponding unit subinterval of τi0 + [−N, N).

In the same way we define the past counterpart P frac and its semantics, and denote by
PGQMLOfrac the extension of PGQMLO with these modalities.

▶ Theorem 17. PGQMLOfrac ≡ FO[<, +1].

Proof (sketch). Following [21], the main challenge is to express formulae of the form

∃z0 . . . ∃zn−1

(
x = z0 < · · · < zn−1 ∧ d(x, zn−1) < 1

∧
∧

{Φi(zi) : 0 ≤ i < n}

∧
∧

{∀u
(
zi < u < zi+1 =⇒ Ψi(u)

)
: 0 ≤ i < n − 1}

∧ ∀u
(
zn−1 < u ∧ d(x, u) < 1 =⇒ Ψn−1(u)

))
where Φi and Ψi are Boolean combinations of atomic formulae. This is readily possible with
F frac and subformulae of the forms F=1 p and

←
F=1 p. ◀

5 Conclusion and future work

The general consensus in the real-time verification community is that the continuous inter-
pretations of timed logics are more well behaved and admit more robust characterisations.
The present paper showed that by allowing a mild generalisation of the counting modalities,
we can recover the pleasant expressive completeness result for Q2MLO – one of the most
expressive decidable fragments of FO[<, +1] – in the pointwise semantics as well. On the
other hand, we also showed that as opposed to the situation in the continuous semantics, the
full expressiveness of FO[<, +1] cannot be achieved by simply adding punctual predicates –
we remedy this by proposing a more involved variant of PnEMTL, which we showed to be
expressively complete for FO[<, +1]. We list some possible future directions below.

The expressive completeness for FO[<, +1] is achieved with a family of modalities that
enable one to specify the relative orders of the fractional parts of the points involved.
This begs the question of whether this feature is really necessary; in other words, is
PGQMLO strictly less expressive than FO[<, +1]?
Is it possible to add (or perhaps restricted versions of) the modalities F frac and P frac to
GQMLO while retaining the decidability of the satisfiability problem?
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It is known that the pointwise and continuous interpretations of FO[<, +1] are actually
equally expressive [9], if one considers a special “timed word’ form of signals [5, 7, 28].
Does a similar result hold for Q2MLO as well?
There are some existing SMT-based tools for checking the satisfiablity of CMITL in the
continuous semantics (e.g., [4]), although they require a predetermined bound k on the
variability of signals. In light of the recent developments in back-end algorithms [10,11],
it would be interesting to see how a timed-automata-based implementation compares in
terms of practical performance.
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clustered. While the cascades themselves may be obvious from the data, it is important to understand
which states of the system trigger them. For this purpose, we propose a modeling framework based
on continuous-time Bayesian networks (CTBNs) to analyze cascading behavior in complex systems.
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1 Introduction

Many real-world phenomena can be modeled as interacting sequences of events of different
types. This includes social networks where user activity influences the activity of other
users [11]. In healthcare, patient history may be modeled as a sequence of events [46]. In
this paper, we focus on an industrial application in which the events are alarm signals of a
complex engineered system. As an illustration, consider Figure 1. Three different alarms
(A, B, and C) monitor a process each within an industrial system. These processes may, for
instance, represent measured temperatures or pressures. An alarm transitions to on when its
the process it monitors leaves a prespecified range of values and transitions to off when the
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8:2 Analyzing Complex Systems with Cascades Using CTBNs

process is again within the range corresponding to “normal operation”. In Figure 1c, the
colored segments correspond to the alarm being on. When an alarm changes state, we say
that an event occurs.

In particular, we are interested in systems that exhibit a cascading behavior in the sense
that events are strongly clustered in time. Therefore, we should use a model class which
is capable of expressing cascades. However, important information may also be contained
in non-cascading parts of the observed data. This is explained by the fact that our goal
is twofold: We wish to understand which states of the system lead to cascades, and we
also wish to understand how different components of the system interact. These goals are
connected as understanding the inner workings of the system will also help us understand
the cascading behavior. We can achieve both by using continuous-time Bayesian networks
(CTBNs) [32], a class of parsimonious Markov processes with a discrete state space. Moreover,
CTBNs are equipped with a graphical representation of how different components interact.
In our application, data is sampled at a very high frequency and using a continuous-time
modeling framework makes for a conceptually and computationally simple approach. In
CTBNs, we define the concept of a sentry state which is a state that may lead to an imminent
cascade. In an industrial setting, identifying such states may give operators an early warning,
which in turn facilitates the mitigation of underlying issues before an actual alarm cascade
occurs. Moreover, sentry states can be used to apply state-based alarm techniques [18], which
otherwise require a known alarm structure.

In applications to complex systems, analysts often need to communicate findings to domain
experts. CTBNs also allow easy communication using their graphical representation which is
crucial for their applicability to real-world problems. We describe a useful interpretation of
the graph of a CTBN and provide some new results in this direction. We apply the methods
developed in this paper to a challenging data set from the European Spallation Source (ESS),
a research facility in Lund, Sweden. This data set describes how alarms propagate through a
subsystem of the neutron source at ESS.

The paper is structured as follows. We start with a description of the ESS data as
this motivates the following developments (Section 2). In Section 3, we describe related
work and compare CTBNs with other approaches. Section 4 describes continuous-time
Bayesian networks. Sections 5 and 6 contain the main theoretical contributions of the paper:
Section 5 describes the concept of a sentry state while Section 6 explains how the graphical

A B C

(a) CTBN graph G.

A=0,B=0,C=0

A=0,B=0,C=1 A=0,B=1,C=0 A=1,B=0,C=0

A=0,B=1,C=1 A=1,B=0,C=1 A=1,B=1,C=0

A=1,B=1,C=1

(b) State space graph Gs.

t
A
B
C

(c) Trajectory.

Figure 1 a) Graph G of a CTBN consisting of three nodes (A, B, C). b) State space graph Gs

of the CTBN, i.e., nodes represent states of the CTBN and two states are adjacent if a transition
from one to the other, and vice versa, is possible. c) A trajectory for the CTBN. A white segment
indicates that the corresponding process is in state 0 (off), while a colored segment indicates that
the corresponding process is in state 1 (on).
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representation of a CTBN may assist interpretation and communication. Section 7 presents
numerical experiments, including a description of the ESS data analysis. A discussion
concludes the main paper and the appendices contain auxiliary results.

2 Data set

The European Spallation Source ERIC (ESS) is a large research facility which is being
built in Lund, Sweden. Its main components include a linear proton accelerator, a tungsten
target, and a collection of neutron instruments [16]. It comprises a large number of systems,
including an integrated control system [15]. The facility has a goal of 95% availability and
state-of-the-art alarm handling may contribute to reaching this goal.

Operators of large facilities are often facing large quantities of data in real time and good
tools may helpsystem understanding and support decision making. Operators rely on alarm
systems to warn them about unexpected behavior. However, alarm problems are common
[18]. One example is that of cascading alarms. In large facilities, different alarms monitor
different processes and when an issue occurs this may result in a large number of alarms
that occur within a short time frame due to the interconnectedness of the different processes.
Operators will often find it difficult to respond to such cascades as hundreds or thousands of
alarms may sound, making it difficult to identify the underlying issue.

The alarm system has two purposes. One, it should help operators foresee and mitigate
fault situations. Two, it should help operators understand a fault situation. In this paper,
we illustrate how the methods we propose can help achieve these goals using data from the
accelerator cryogenics plant at ESS, which has been in operation since 2019.

▶ Example 1 (Simplified ESS alarm network). In this example, we will look at a simplified
version of the alarm system at ESS. Each of the alarm processes P1, T1, P2, T2, P3, T3,
S1, S2, S3, and S4 in Figure 2 (left) monitors a physical process, e.g., a temperature or a
pressure. At each time point, each alarm process is either 1 (alarm is on) or 0 (alarm is off).
An edge, Ñ, in the graph implies a dependence in transition rates, e.g., the rate with which
P1 changes its state depends only on the current states of P1, T1, and S4. Alarm cascades
occur when a certain state triggers a fast progression of alarm onsets. In this formalism, this
is modeled by the dependence of transition rates on the current state: therefore, cascades tend
to unfold along the directed edges of the graph.

Large engineered systems can often be divided into subsystems (in Figure 2, Systems 1,
2, 3, and 4). In alarm networks, a group of alarms may monitor processes that are known
to be correlated as they are measured from the same subsystem. Moreover, many systems
of a realistic size comprise so many alarms or variables that processes must be grouped into
subsystems to enable a system-level understanding of their dependencies. In Section 6, we
show that graphical representations using these subsystems (e.g., Figure 2 (right)), instead of
the processes themselves, are also useful and have a clear interpretation.

3 Related work

Our work has connections to several major directions in the literature of dynamical models.
We will focus on methods that are relevant for modeling cascades of events.

Continuous-time Markov processes with a discrete state space are often used as models
of cascading failures in complex networks such as power grids [34, 28] and as models of burst
behavior in biological cells [6]. They are also used in chemistry [4], reliability modeling [20],
queueing theory [26], and genetics [7]. Graphs may be used as representations of networks
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System 3

System 1

System 2

System 4

P1

T1 P2

T2 P3

T3 S1

S2

S3

S4
System 1

System 2

System 3

System 4

Figure 2 Graphs from Example 1. Left: Graph such that each node represents an alarm process.
Edges, Ñ, represent sparsity in transition rate dependence. The transition rate of each process, A,
only depends on its own state and the states of its parent processes, i.e., processes B such that the
edge B Ñ A is in the graph. Right: Graph representing transition rate dependencies between entire
subsystems rather than between individual alarm processes. This graph is computed from the larger
graph on the left and can be given a mathematical interpretation (Section 6).

and several methods use graphs to represent cascading structures [30, 29]. Some of these
methods use simple models of contagion and study influential nodes in a graph [22]. Among
these we find the independent cascade model and the linear threshold model [21, 12]. These
models are targeted at applications in which cascades or “ epidemics” are the salient feature.

Change-point detection methods aim to recover the time points at which distributional
changes occur. There is a large literature on change-point detection in various classes
of stochastic processes and application fields such as neuroscience [37], DNA sequence
segmentation [9], speech recognition [39], and climate change [36]. [3] provides a survey on
change-point methods in discrete-time models. [42] also provides a survey and discusses
subsampling of continuous-time processes. [45] provides a method for change-point detection
in a class of multivariate point processes. There are subtle, but important, differences between
the task at hand and change-point detection. The alarm network that motivates our work
is thought to operate in the same mode throughout the observation period. Moreover, the
detection of cascades is trivial in this application as they are evident from simply visualizing
the data. Instead, we focus on identifying the states that are likely to lead to a cascade.
In addition, our modeling approach should allow for a qualitative understanding of the
interactions between system components.

As a result, we would like to explicitly model how events propagate through the system.
A traditional approach is to use point processes [13]. In our setting, we can think of a
point process as a sequence of pairs pt1, e1q, pt2, e2q, pt3, e3q, . . . such that ptiq is an increasing
sequence of time points and peiq denotes the type of event. Point process models have been
used for modeling cascades of failures [23]. [35] describes self-exciting point processes that
model cascading behavior using explicit exogenous influences on the system. These methods
can in principle also be applied in the setting of this paper. The CTBN-based method
proposed in this paper models the state of the system directly and this facilitates the notion
of sentry states which is central to this paper. Moreover, as the alarm status takes values in
a discrete set, the CTBN provides a natural representation of the alarm data.
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While the above describes general approaches to the modeling of dynamical systems with
cascading behavior, there are also more specialized methods for handling or analyzing alarm
cascades in large industrial systems. We now summarize the connections to this work; see
also [2], which is a recent review of methods for alarm cascade problems (in that paper
known as alarm floods). In short, so-called knowledge-based methods use expert knowledge
of the cause-effect relations in the system to find root causes and explain alarm cascades.
Among these are multilevel flow modeling [24] and signed directed graphs [44]. In contrast,
there is also a large number of data-based methods. Data-based methods can be subdivided
into classes of methods depending on their purpose. Some approaches aim to classify the
fault type from an input sequence of alarms or to simply reduce the number of alarms, e.g.,
using data mining, clustering, or machine learning methods such as artificial neural networks
[47, 38, 5]. This goal is somewhat different from ours and our method is more closely related
to methods using probabilistic graphical models, in particular dynamic Bayesian networks
[19]. These methods produce an easily interpretable output represented by a graph. Our
contribution in relation to this prior work is twofold. 1) We introduce the CTBN framework
as a natural further development of alarm modeling. This allows continuous-time modeling
which is useful for our data as it is collected using a very high sampling rate. Discretization
of time will therefore either lead to a prohibitively large number of time intervals or to a loss
of temporal information if using fewer, longer time intervals. 2) We define the novel concept
of a sentry state which identifies a set of states that are of interest when analyzing cascading
behavior. The sentry state concept may also be used in other alarm propagation models and
is not specific to CTBNs.

4 Models

Continuous-time Bayesian networks (CTBNs; [31]) are a class of continuous-time Markov
processes (CTMPs) with a factored state space and a certain sparsity in how transition rates
depend on the current state. This sparsity can be represented by a directed graph. In this
sense, they are similar to classical Bayesian networks [33] but their directed graphs are allowed
to contain cycles. CTBNs have proved to be both effective and efficient representations of
discrete-state continuous-time dynamical systems [1, 43, 25]. We first define a CTMP.

4.1 Continuous-Time Markov Processes
A continuous-time Markov process (CTMP) [41] is a continuous-time stochastic process
X “ tXptq : t P r0,8qu which satisfies the following Markov property:

Xpt1q KK Xpt3q|Xpt2q, @ t1 ă t2 ă t3, (1)

where ¨ KK ¨ | ¨ denotes conditional independence. The state of the process X changes in
continuous-time and takes values in the domain S which we assume to be a finite set. In our
application, each state s P S can be represented by an n-vector with binary entries indicating
whether each alarm is on or off. A CTMP can be parameterized by the initial distribution
P0 and the intensity matrix QX. The initial distribution P0 is any distribution on the state
space. The intensity matrix QX models the evolution of the stochastic process X. Each row
of QX sums to 0 and models two distinct processes:
1. The time when X abandons the current state x, which follows an exponential distribution

with parameter qx P R`.
2. The state to which X transitions when abandoning the state x. This follows a multinomial

distribution with parameters θxy “
qxy

qx
, x, y P S, x ‰ y.

TIME 2023
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An instance of the intensity matrix QX , when S has three states, is as follows

QX “

»

–

´qx1 qx1x2 qx1x3

qx2x1 ´qx2 qx2x3

qx3x1 qx3x2 ´qx3

fi

fl qxi ą 0, qxixj ě 0 @ i, j. (2)

We say that a realization of a CTMP, σ, is a trajectory. This is a right-continuous,
piecewise constant function of time. It can be represented as a sequence of time-indexed
events,

σ “ txt0, Xpt0qy, xt1, Xpt1qy, ..., xtI , XptIqyu, t0 ă t1 ă ¨ ¨ ¨ ă tI . (3)

4.2 Continuous-Time Bayesian Networks
General CTMPs do not assume any sparsity. CTBNs impose structure on a CTMP by assum-
ing a factored state space S “ tS1 ˆS2 ˆ ¨ ¨ ¨ˆSLu such that Xptq “ pX1ptq, . . . , XLptqq P S

where each Sj , j “ 1, ..., L, represents the domain of a distinct component of the process.1
In the alarm data, Sj “ t0, 1u for each j and Xjptq indicates if the j’th alarm is on or off at
time t. The structure imposed by the CTBN is useful when interpreting a learned model.
In essence, the CTBN framework allows us to learn which components of the system act
independently, or conditionally independently, and this can be communicated to experts.

A CTBN is a tuple N “ xP0, X, G, QXy where X “ tX1, . . . , XLu is a set of stochastic
processes. A CTBN is specified by:

An initial probability distribution P0 on the factored state space S.
A continuous-time transition model, specified as:

a directed (possibly cyclic) graph G with node set X;
a set of conditional intensity matrices QXj |PapXjq for each process Xj P X.

Given the graph G, each node/process Xj has a parent set PapXjq consisting of all
nodes/processes, Xi, with an edge directed from Xi to Xj in G, Xi Ñ Xj . A conditional
intensity matrix (CIM) QXj |PapXjq consists of a set of intensity matrices, one for each possible
configuration of the states of the parent set PapXjq of the node/process Xj , that is, one for
each element of

Ś

XiPPapXjq
Si. The CIM describes how the transition intensity of process j

depends on the state of the system. However, it does not necessarily depend on the state of
every other process, but only on the states of the processes that are parents of j.

In a CTBN only one process can transition at any given time. This assumption is
reasonable for the alarm data as it is sampled at a high rate. When we apply this model to
the alarm data, the interpretation is straightforward. The CIM of Xj describes how likely
this alarm is to change its state (from on to off, or from off to on), and this only depends
on the current state of the alarms in its parent set.

▶ Example 2. Assume we observe three alarm processes (A, B, and C) each monitoring a
measured process and that we represent this by a stochastic process X that takes values in
t0, 1u ˆ t0, 1u ˆ t0, 1u indicating the status of each of the three alarms. If X is a general
CTMP, then the transition rates of each alarm process may depend on the entire state of the
system. On the other hand, if X is a CTBN represented by the graph G in Figure 1a there
is a certain sparsity in the way the transition rates depend on the current state. It follows

1 A CTBN is specialization of a CTMP. It is possible to reformulate a CTBN as a CTMP by applying
the so-called amalgamation procedure [41].
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directly that the transition rate of alarm process C only depends on the states of processes
B and C. Similarly, the transition rate of alarm process B only depends on the states of
processes A and B while the transition rate of process A only depends on its own state. When
we learn a CTBN from data, we can therefore use its graph as a qualitative summary of the
interconnections of the alarms. An edge from A to B in this graph means that a change in
the state of A may change the transition rates of B and therefore cascades are expected to
occur along the directed edges of the graph.

Another type of graphical representation is also useful: Figure 1b shows the associated
factored state space graph Gs. In this graph, each node represents a state (in contrast, in G
each node represents a process/alarm) and edges represent the possible transitions between
states. We will say that G is the graph of the CTBN and refer to Gs as the state space graph.

As we will see in the numerical experiments, CTBNs are capable of producing “ cascading”
behavior. However, they also model the non-cascading behavior: This is important for our
application because we would also like to use the information contained outside periods
with cascades. The CTBN framework has the following advantages that are critical to our
application: 1) It exploits the factorization of the multivariate alarm process to make it
feasible to learn a CTBN model from data. 2) It takes into account the duration of an event
as well as its occurrence. Moreover, it uses both the cascading and non-cascading data. 3) It
has a graphical representation which is easy to interpret, thus facilitating communication.

4.3 Reward function
A reward function is a function that maps the states of one or more processes onto a real
number. We use a reward function to compute the discounted, expected number of transitions
(that is, alarms changing their states) when starting the process in some initial state, x. A
reward function consists of two quantities,

Rpxq : S Ñ R, the instantaneous reward of state X “ x, and
Cpx, x1q : S ˆ S Ñ R, the lump sum reward when X transitions from state x to state x1.

We use the lump sum reward which is an indicator of transitions,

Cpx, x1q “ 1, for all x, x1 P S, (4)

and we let the instantaneous reward be zero. We will use the infinite-horizon expected
discounted reward [17],

Vαpxq “ Ex

«

8
ÿ

i“0
e´αti`1CpXptiq, Xpti`1qq `

ż ti`1

ti

e´αtRpXptiqqdt

ff

: ti ă ti`1 (5)

where α ą 0 is referred to as the discounting factor, Exp¨q is the expectation when conditioning
on Xp0q “ x, and the ti’s are the transition times. We use Rpxq “ 0 for all x and therefore

Vαpxq “ Ex

«

8
ÿ

i“0
e´αti`1CpXptiq, Xpti`1qq

ff

“ E

«

8
ÿ

i“0
e´αti`1

ff

: ti ă ti`1. (6)

This simply counts the number of transitions including a discounting factor. Clearly, other
reward functions can be chosen to analyze other or more specialized types of behavior. If,
for instance, we are only interested in a subset of transitions we can modify the lump sum
reward accordingly. A value of the parameter α can be chosen using, e.g., prior information
on the length of typical cascades. This concludes the introduction of the modeling framework
and the following sections describe the contributions of this paper.

TIME 2023
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5 Sentry state

Given a CTBN N “ xP0, X, G, QXy, we are interested in understanding its cascading behavior.
We are in particular interested in identifying what we will call sentry states. A sentry state
is a state which may trigger a ripple effect, that is, a sequence of fast transitions.

▶ Example 3. An example of a ripple effect can be found in the CTBN in Figure 1a which
consists of three processes XA, XB and XC , forming a chain A Ñ B Ñ C, and each taking
values in t0, 1u, SA “ SB “ SC “ t0, 1u. The trajectory in Figure 1c shows that every time
A transitions, B and C quickly transition as well. In other words, when A changes its state,
a ripple effect occurs such that B and C also change states to match the state of their parent.
The starting point of these cascades of events is a sentry state as defined in this section.

High EDNT

A=0,B=0,C=0 (4.0)

A=0,B=0,C=1 (4.7)A=0,B=1,C=0 (5.4) A=1,B=0,C=0 (6.3)

A=0,B=1,C=1 (5.5) A=1,B=0,C=1 (6.4)A=1,B=1,C=0 (6.2)

A=1,B=1,C=1 (5.5)

Figure 3 Visualization of Example 3: The state space graph (same graph as in Figure 1b, but
presented slightly differently) is annotated with EDNTs for each node (in parentheses) and a subset
of nodes with relatively high EDNT values is highlighted. Sentry states are high EDNT states to
which transitions from low EDNT states are possible and such a transition increases the risk of an
imminent cascade. Some states with high EDNT tend to occur in the middle of a cascade which
motivates using the REDNT metric. In this example, transitioning from pA “ 0, B “ 0, C “ 0q to
pA “ 1, B “ 0, C “ 0q may trigger an alarm in B which in turn may trigger an alarm in C, resulting
in a cascade (note that only transitions along the edges in the state space graph are possible).

It is important to stress that we are interested in states that start a cascade of events.
Intuitively, this means that we are assuming the existence of at least one state in the state
space graph which is directly connected to the sentry state and which has a much smaller
expected number of transitions than the sentry state itself. We can observe this in the
example in Figure 1c: Before starting the sequence of transitions of processes XA, XB , and
XC from 0 to 1, the CTBN remained for a long time in state tA “ 0, B “ 0, C “ 0u P S.
Similarly, before changing the state of all processes A, B and C from 1 to 0, the CTBN
remained for a long time in state tA “ 1, B “ 1, C “ 1u P S.

5.1 Sentry state identification

In order to identify a sentry state, we need to take a further step from the heuristic definition
of a sentry state we have just given and formalize the concept. For this purpose, we first
compute the expected (discounted) number of transitions for each state of the CTBN. This
can be achieved by using the lump sum reward in (4) to obtain the Expected Discounted
Number of Transitions (EDNT) of each state x P S,
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EDNTαpxq “ E

«

8
ÿ

i“0
e´αti`1CpXptiq, Xpti`1qq

ff

: Cpx, x1q “ 1. (7)

There is no guarantee that a state with high EDNT is often the starting point of a cascade.
States that tend to occur in the middle of a cascade may easily have a high EDNT if the
cascade tends to continue after reaching that state. We are interested in early detection of
cascades and the solution we propose is to take into account the number of transitions in the
neighborhood NeGs

pxq of the state x P S. For this purpose, we define a new quantity called
Relative Expected Discounted Number of Transitions (REDNT),

REDNTαpxq “ max
x1PNeGs pxq

EDNTαpxq

EDNTαpx1q
(8)

where α in (7) and (8) is the discounting factor as in (5), and the neighborhood in (8) refers
to the undirected state space graph (see Figure 1b). The central idea is that a large ratio
between two adjacent states implies that transition from one to the other leads to a significant
change in the expected discounted number of transitions. We will use REDNT to identify
potential sentry states (states with high values of REDNT are likely sentry states).

One could propose other ways to aggregate EDNT across different states. We focus on
REDNT as defined above in the interest of brevity. We let s̄ denote the number of alarms
that are on in the state s “ ps1, s2, . . . , sLq, s̄ “

řL
i“1 si. In the alarm data application, we

are mostly interested in sentry states such that s̄ is fairly small. States with large s̄ may also
have large REDNT values; however, these are states that occur when a cascade is already
happening. As we want early detection, we should focus on sentry states such that s̄ is small.

5.2 Monte Carlo algorithm
We are now left with the problem of estimating the EDNT of each state from which we can
compute the REDNT. We propose a Monte Carlo approach based on Algorithm 1 from [32].
This sampling algorithm starts from an initial state Xp0q and generates a single trajectory σ

ending at time tend. After the initialization phase the algorithm enters into a loop. At each
iteration, the algorithm samples a time to transition for each of the variables, identifies the
next transitioning variable, generates the next state, and resets the time to transition for the
transitioned variable and all its children. We combine Algorithm 1 with (7) to compute

{EDNT αpxq “
1
|σ|

ÿ

σPσ

|σ|
ÿ

i“0
e´αtiCpxptiq, xpti`1qq (9)

where |σ| is the number of trajectories generated by Algorithm 1 and |σ| represents the
number of events in the trajectory σ.

In order to compute {EDNT α, we need to set the values of the following hyperparameters:
1. α, the discounting factor;
2. tend, the ending time for each trajectory;
3. |σ|, the number of trajectories to be generated.
Choosing the discounting factor α and the ending time tend, we decide the importance of
the distant future and appropriate values depend on the application. On the other hand, |σ|

controls the trade-off between the quality of the approximation and its computational cost:
We can choose its value using a stopping-rule approach based on variance as proposed in [8].
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Algorithm 1 Forward Sampling for CTBN.

procedure CTBN-Sample(Xp0q, tend)
t Ð 0, σ Ð tx0, Xp0qyu Ź Initialization
loop

for all Xi P X s.t. TimepXiq is undefined do Ź Time to transition sampling
∆t Ð draw a sample from an exponential with rate qXiptq|PapXiptqq

TimepXiq Ð t ` ∆t

end for
j “ arg minXiPX rTimepXiqs Ź Transitioning variable
if TimepXjq ą tend then

return Tr

end if
xj Ð draw a sample from a multinomial with θXjptq|PapXjptqq Ź Next state
t Ð TimepXjq

Add xt, Xptqy to σ

Undefine TimepXjq and TimepXiq @Xi P PapXjq Ź Reset the time to transition
end loop
return σ

end procedure

6 Graphical information

This paper proposes the CTBN as a modeling tool for systems with cascades. However,
CTBNs have other useful properties: The interplay between the graph and the probabilistic
model facilitates both communication with subject matter experts and easy computation of
various statistics that summarize the learned system.

We define the parent set of A, PapAq “
`
Ť

XiPA PapXiq
˘

zA. Note that PapAqXtAu “ H

for all A. We define the closure of A, ClpAq “ PapAqY tAu. A walk is a sequence of adjacent
edges and a path is a sequence of adjacent edges such that no node is repeated. We say that
Xi is an ancestor of Xj if there exists a directed path from Xi to Xj , Xi Ñ . . . Ñ Xj , such
that all the edges point toward Xj . We define AnpAq to be the set of nodes that are in A or
are ancestors of a node in A. Therefore, A Ď AnpAq for all A. We say that the node set A

is ancestral if AnpAq “ A, that is, if A contains all ancestors of every node in A. In Figure
4a, the set tA, Bu is ancestral while the set tB, Cu is not ancestral. We let GA denote the
graph with node set A such that for Xi, Xj P A, the edge Xi Ñ Xj is in GA if Xi Ñ Xj is
in G. We construct the moral graph, Gm, of G by replacing all edges with undirected edges,
´, and adding an undirected edge between two nodes if there exists a node of which they
are both parents. In an undirected graph and for disjoint A, B, and C, we say that A and B

are separated by C if every path between A and B is intersected by C.

6.1 Decomposition properties
The graph of a CTBN has a clear interpretation, as the transition rate of Xi only depends
on the current value of ClpXiq. The following results provide another interpretation of the
graph in terms of conditional independence. We let XAptq denote the process A until time
point t, XAptq “ tXipsq : i P A, s ď tu. The next result follows from Proposition 5 in [14].

▶ Proposition 1. Let G “ pX, Eq be the graph of a CTBN, and let A, B, C Ď V be disjoint.
If A and B are separated by C in pGAnpAYBYCqq

m, then XAptq KK XBptq | XCptq for all t.
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The above result allows us to decompose the learned system into components A and B

that operate independently conditionally on C. That is, all dependence between A and B is
“explained” by C. However, the graph may not be very informative to experts if it contains
too many nodes. We address this issue now and further results are in Appendix A.

6.2 Hierarchical analysis
The graph of a CTBN may be too large to be easily examined visually. If the number of
components in a system is large experts mostly reason about groups of components. For
instance, in the alarm data, the system is known to comprise different subsystems, which
form a natural partition of the components X. We show that Proposition 1 still applies in
an aggregated version of the graph. We define a graph partition to formalize this.

▶ Definition 1 (Graph partition). Let G “ pX, Eq be a directed graph and let D “

tD1, . . . , Dmu be a partition of X. The graph partition of G induced by D, D, is the
directed graph pD, EDq with node set D such that Dk Ñ Dl, k ‰ l, is in ED if and only if
there exists Xi P Dk and Xj P Dl such that Xi Ñ Xj in G.

In a graph partition, each node, Dk P D, corresponds to a subset of the node set in the
original graph. Underlined symbols, e.g., A, represent subsets of D “ tD1, . . . , Dmu. When
A Ď D, we let A denote the corresponding nodes in the original graph, A “

Ť

DiPA Di. The
following is an extension of the classical separation property to a graph partition and it means
that separation in a graph partition can be translated into separation in the underlying
graph. This is in turn implies a conditional independence in the CTBN.

▶ Proposition 2. Let D be a partition of V and let D be the graph partition induced by D.
Let A, B, C Ď D be disjoint. If A and B are separated by C in pDAnpAYBYCqq

m, then A and
B are separated by C in pGAnpAYBYCqq

m.

▶ Example 4 (Simplified ESS alarm network). We revisit the example in Figure 2 and denote
the graph on the left by G. This graph represents a CTBN as introduced in Section 4. System 1,
System 2, System 3, and System 4 constitute a partition, D, of the node set of G and we let
D denote the corresponding graph partition (Figure 2 (right)). If we let A “ tSystem 1u,
B “ tSystem 3u, and C “ tSystem 2, System 4u, then A and B are separated by C in
pDAnpAYBYCqq

m (in this case AnpA Y B Y Cq “ tSystem 1, System 2, System 3, System 4u
and pDAnpAYBYCqq

m is simply the undirected version of D as every node only has a single
parent). The set A corresponds to processes A “ tP1, T1u, B corresponds to processes
tP3, T3u, and C corresponds to tP2, T2, S1, S2, S3, S4u. Proposition 2 gives that A and B

are separated by C in pGAnpAYBYCqq
m. It follows from Proposition 1 that the processes in

A and the processes in B are independent when conditioning on the processes in C. This
means that the state of System 1 is irrelevant when reasoning about the state of System 3 if
we already account for Systems 2 and 4. Using this procedure, conditional independences can
be found using both the original graph and a graph partition. Furthermore, in both G and D,
the edges have a simple interpretation: The transition rates of the processes corresponding to
a node only depend on the processes corresponding to the parent nodes.

6.2.1 Condensation
The graph G of a CTBN may be cyclic. A possible simplification is to collapse each cyclic
component into a node to form the condensation of G which is a directed acyclic graph. We
say that A Ď V is a strongly connected component if for every Xi P A and every Xj P A
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there exists a directed path from Xi to Xj . The strongly connected components constitute a
partition of V and the condensation is the graph partition they induce. The condensation
has some properties that do not hold for general graph partitions (see Appendix A).

▶ Definition 2 (Condensation). Let G be a directed graph and let D “ tD1, . . . , Dmu be its
strongly connected components. We say that the graph partition of G induced by D is the
condensation of G.

7 Numerical experiments and examples

We now study the performance of the proposed approach. We generate synthetic data from
CTBNs such that the sentry states are known. Data is generated from different CTBNs
(additional experiments are in Appendix C). In all of them,

each process, Xj P X, has a binary state space.
the CTBN consists of slow processes and fast processes.
each process, Xj P X, replicates the state of its parent processes, PapXjq.
if a process, Xj P X, has more than one parent, it stays in state 0 with high probability
if at least one of its parents is in state 0.

Experiment 1

The first synthetic experiment is based on a CTBN model whose graph G is a chain consisting
of three nodes A, B, and C (Figure 4a). The corresponding CIMs for the processes A, B,
and C are shown in Table A1 in Appendix C. This CTBN describes a structured stochastic
process such that the root process, A, changes slowly from the state no-alarm (0) to the
state alarm (1) and vice versa. This can be seen from the CIM corresponding to process A.
The CIMs associated with processes B and C make these two processes replicate the state of
their parent process and this happens at a faster rate. Therefore, starting from p0, 0, 0q, if
process A changes its state, process B quickly changes its state to match that of its parent A.
The same holds true for the process C. For this reason, we expect tA “ 1, B “ 0, C “ 0u to
be a sentry state because as soon as the process A transitions from state 0 to state 1, a fast
sequence of transitions (a cascade of events) makes the processes B and C transition from
state 0 to state 1. This behavior is shown in Figure 4b. Estimates of the REDNT quantity
are shown in Table A2 and they confirm that tA “ 1, B “ 0, C “ 0u is a sentry state.

Experiment 2

The second synthetic experiment is based on the CTBN shown in Figure 5a which consists
of a slow cycle (A, B, C) and a fast chain (D, E, F ). In this CTBN, the sentry state is
expected to be tA “ 0, B “ 0, C “ 1, D “ 0, E “ 0, F “ 0u. Figure 5b shows that this state
triggers a fast sequence of alarms in the chain (D, E, F ) and a slow sequence of alarms in
the cycle (A, B, C). Estimates of the REDNT quantity are shown in Table A3 and they
confirm that tA “ 0, B “ 0, C “ 1, D “ 0, E “ 0, F “ 0u is a sentry state.

Comparison

We compare the REDNT method to the naive approach proposed in Appendix B. In
synthetic data it is easier to identify the two parameters of the naive approach. Each
synthetic experiment has only two transition rates and we can let the parameter λft

2 be

2 Threshold between a slow and a fast transition (Appendix B).
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Figure 4 (a) depicts the graph G of a CTBN. Its CIMs are in Table A1 in the appendix. Slow
processes are represented by solid line nodes, while fast processes are represented by dashed line
nodes. Colors describe the most likely sentry state, s “ ps1, s2, s3q, in this system: If a node is green,
the corresponding alarm is 1 (on) in s. If a node is red, the corresponding alarm is 0 (off ) in s. (b)
shows an example trajectory from the CTBN represented in Figure 4a. Each function in the plot
represents the evolution of one of the three binary processes, A, B, and C.

C
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E F
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Figure 5 (a) Graph G of a CTBN model consisting of six processes. The graph G contains the
cycle (A, B, C) as well as the chain (D, E, F ). See the caption of Figure 4 for an explanation of
the node colors.

the median elapsed time between two consecutive events when combining events of all types.
The parameter λmcl

3 can be determined based on the structure of the network. For instance,
in the example in Figure 4a we expect a cascade to have at least two transitions,

tA “ 1, B “ 0, C “ 0u Ñ tA “ 1, B “ 1, C “ 0u Ñ tA “ 1, B “ 1, C “ 1u.

To identify sentry states using the naive approach we should simply identify the cascades
of events and compute the fraction of times that observing a specific state coincides with
the start of a cascade. As already mentioned in Section 5, we are interested in sentry states
with a low number of active alarms. For this reason, we consider only states such that the
number of active alarms is less than or equal to the size of the largest parent set in the true
graph. The naive approach and the REDNT both produce a list where states are ordered
from the most likely sentry state to the least likely. We compare the two approaches with
the Jaccard similarity [27] using the K most likely sentry states. We tested our approach

3 It determines the minimum number of fast consecutive events to be considered a cascade See Appendix
B.
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Figure 6 This figure reports the Jaccard similarity@k between the REDNT and the naive
approach. The x-axis represents the number of states taken into account from the ordered lists
generated by the two methods. The structures of the networks used for the experiments are depicted
in Figures 4a, A1, A2, A3, 5a, and A4.

on 6 different structures with different numbers of nodes. Results are reported in Figure 6.
In every experiment, the two methods share at least one state in their top-two lists. It is
important to emphasize that the parameters of the naive method have been set knowing the
length of cascades. Conversely, the REDNT method does not require this knowledge in order
to identify sentry states.

ESS data set

The last experiment is performed on a real data set provided by the European Spallation
Source ERIC (ESS) as described in Section 2. The data set consists of observations of 138
alarm processes from January 2020 to March 2023. No structure was provided, thus we
use the score-based structure learning algorithm presented in [32]. We chose not to use the
constraint-based algorithm [10] because, in the case of binary variables, it has been shown to
be outperformed by the score-based algorithm. The score-based algorithm penalizes the size
of the parent sets, leading to sparsity in the graphical structure. For this data, the learned
graph is composed of disconnected components. We only present the results of applying the
REDNT method for one of them. The most likely sentry state has the alarm SpeedHighFault
set to on and everything else set to off (see Figure 7). We observe that the connected
component which contains SpeedHighFault is a rooted directed tree, and that SpeedHighFault
is the root. This means that an alarm in SpeedHighFault propagates along the directed paths
in the tree. A CTBN assumes that at most one event occurs at any point in time. This is
reasonable in this application because of the high sampling rate.

The four PressureRatioHighFault alarms in Figure 7 could be verified as consequences of
the root cause SpeedHighFault, both from documentation and by an experienced operator. On
the other hand, the alarms StateIntervened, CabinetFault, and StateFault were not evident
from the documentation and were not expected to be related to the root alarm SpeedHighFault.
If these connections are real, this information is relevant to operators as they may look for
reasons for this connection and enhance their process understanding. Moreover, the identified
root alarm SpeedHighFault can be given a high priority to ensure that the operators will be
made aware of a potential cascade starting from this alarm.

The CTBN was learned with no structural input, but using a prior distribution one can
provide engineering knowledge to a Bayesian learning method. We believe that the graphical
output can easily be shown to and interpreted by engineers; however, user studies are needed
to validate this. Results like Propositions 1 and 2 allow a formal interpretation and help us
find those components of the system that function independently when accounting for other
parts of the machine. Moreover, the sentry states that are identified can be presented to the
operators. In the example shown in figure 7 the sentry state is covered by an already existing
alarm, but if a more complex sentry state would have been identified then an additional
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Figure 7 Graph G of the CTBN learned from the ESS data set. Figure 4 explains the node colors.

alarm would be needed. Using domain expertise, one can assign appropriate instructions to
sentry states and these can be presented to operators when the machine reaches a fault state.
When we have learned a CTBN from data, we may also compute the risk of reaching each of
the sentry states from the current state. This can be provided to operators in real time to
facilitate early mitigation. This should be studied in detail in future work.

▶ Example 5 (Simplified ESS alarm network). We now return to our running example. This
is an example system and it does not correspond to the learned network. Imagine that we
start from the state with all alarms off. Assume we have learned from data, using the CTBN
framework, that the P1 alarm is very likely to go on if both S4 and T1 alarms are on.
Furthermore, assume that P2 is very likely to go on when P1 is on and that P3 is very likely
to go on when P2 is on. In this case, the state such that S4 “ 1, T1 “ 1, and such that every
other node is zero is likely to be a sentry state. This knowledge can be useful in two ways.
First, this can be presented to experts so that they can map common cascades, and their sentry
state starting points, to underlying causes using domain knowledge. Second, during operation
a warning can be issued when reaching a sentry state, along with the recommended course of
action. It is also possible to compute, given the current state, the risk of reaching each of the
sentry states within some time interval to facilitate an earlier warning if the expected time
from reaching the sentry state to the actual cascade does not suffice for mitigation.

8 Discussion

In this paper we defined the concept of sentry states in CTBNs and we presented a naive
approach and a heuristic (REDNT) for identifying such sentry states. The synthetic experi-
ments showed that REDNT can identify the configuration of the network from which a fast
sequence of events starts. A key limitation is the fact that the REDNT heuristic is computed
for each state and the number of states is exponential in the number of nodes. However, the
simplicity of its implementation and the effectiveness showed in the synthetic experiments
make the REDNT heuristic attractive. Moreover, only states with few active alarms may
be of interest and this reduces the computational cost. The proposed heuristic assigns a
score to each state in the state space of a CTBN; a possible extension of this work is the
identification of the contribution of each process to the REDNT.

This paper laid the theoretical groundwork for the implementation of online early warning
systems based on the identification of sentry states. In practical implementations, a list of
sentry states can be provided to domain experts for them to formulate appropriate actions
in order to mitigate alarm cascades. This is left for future work. Moreover, the graph
representing a learned CTBN indicates how the behavior of each alarm process depends on
the states of the other alarm processes. As illustrated in this paper, this graph also represents

TIME 2023



8:16 Analyzing Complex Systems with Cascades Using CTBNs

conditional independences in the system. In future work, we hope to demonstrate that the
intended end users, engineers and system operators, also find this graphical tool useful.
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A Graphical information

The following proposition follows from Proposition 4 in [14] and Theorem 2 in [40].

▶ Proposition 3. If A is ancestral, then the subprocess XA “ pXiqiPA is a CTBN with
transition matrices QXi|PapXiq and graph GA.

Proof of Proposition 2. Note that A, B, and C must be disjoint. We consider a connecting
path between A and B in pGAnpAYBYCqq

m which does not intersect C,

Xi0 ´ Xi1 ´ . . . ´ Xim
.

Let f : X Ñ D be the unique map such that if fpXiq “ Dl, then Xi P Dl. We consider the
walk

fpXi0q ´ fpXi1q ´ . . . ´ fpXim
q.

and argue that this walk, or a subwalk, is present in pDAnpAYBYCqq
m and is not intersected

by C. Every node on the original walk is in AnpAYB YCq in G, so every node on the above
walk is in AnpA Y B Y Cq in D. We remove nodes such that no adjacent nodes are equal
(note that the result is a nontrivial walk). If an edge on the original walk corresponds to a
directed edge in G, then it is also in D. Assume it does not correspond to a directed edge
on the original walk. It then corresponds to a “ moral” edge, Xij

Ñ Xk Ð Xij`1 in G, and
these must be in different Di. In this case, Xij

´ Xij`1 is also in pDAnpAYBYCqq
m. No node

can be in C on this walk. We can reduce this to a path such that no node is repeated. Note
that the end nodes are in A and B, respectively. ◀

https://doi.org/10.24963/ijcai.2018/804
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▶ Proposition 4. Let D1, . . . , Dm be the strongly connect components of G. If there are no
edges between Di and Dj , i ‰ j, in G, then XptqDi

KK XptqDj
| Xptqpi

or XptqDi
KK XptqDj

|

Xptqpj
where pi “

Ť

DkPPapDiq
Dk and pj “

Ť

DkPPapDjq
Dk.

Proof. If there are no edges between any node in Di and any node in Dj , then Di and Dj

are not adjacent in the condensation of G. The condensation is acyclic, so we can without
loss of generality assume that Di is not a descendant of Dj . There are no descendants of
Dj in AnptDi, Dju Y PapDjqq and this means that Di and Dj are separated by PapDjq

in pDAnptDi,DjuYPapDjqqq
m where D is the condensation of G. The result follows from

Propositions 2 and 1. ◀

B Cascade identification

Informally, a cascade of events is a fast sequence of transitions; where fast is relative to the
rest of the transitions that are observable during the evolution of the process. Starting from
this informal definition, we can develop a naive approach to identifying such cascades in a
trajectory. First of all we need to identify two quantities: - λft: the fast threshold determines
when two consecutive transitions are considered to occur fast. - λmcl: the minimum cascade
length determines the minimum number of fast consecutive events to be considered a cascade.

Given the two parameters the identification procedure consists of iterating over the
entire trajectory and identifying subsets of consecutive transitions with length at least λmcl

and with a transition time between each pair of consecutive events of less than λft. This
approach can also be used to identify a sentry state. Indeed, once a cascade of events has
been identified, the sentry state is the state from which the cascade begins.

The main limitation of this approach is the difficulty of identifying the correct parameters
as it requires knowing in advance common durations and sizes of event cascades.

In addition, we define two simple quantities: Naive Count - the number of times a state
starts a cascade, and Naive Score - the fraction of times that observing a specific state
coincides with the start of a cascade.

C Synthetic Experiments

Table A1 Conditional Intensity Matrices used for the example in Figure 4a. Process A has no
parents and therefore its transition rate only depends on its own state: If A is in state 0 (off ), then
its transition rate (to state 1 (on)) is 1.0. Process B has a single parent, process A. The states of
processes A and B determine the transition rate of process B. If A is in state 0 (off ) and B is in
state 0 (off ), then B transitions to state 1 (on) with rate 0.1. A CTBN is defined from its CIMs
and its initial distribution. Its graph illustrates the dependence structure in the CIMs.

A 0 1 A B 0 1 B C 0 1
0 -1.0 1.0 0 0 -0.1 0.1 0 0 -0.1 0.1
1 5.0 -5.0 1 15.0 -15.0 1 15.0 -15.0

1 0 15.0 -15.0 1 0 -15.0 15.0
1 0.1 -0.1 1 0.1 -0.1
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Table A2 Values of EDNT, REDNT, Naive Score, and Naive Count for the CTBN depicted in
Figure 4a. Higher values of REDNT indicate CTBN states that are more likely to be sentry states.
One should note that high-scoring states with few alarms (bold rows) are more interesting in our
application as they correspond to states that occur before strong cascading behavior.

A B C EDNT REDNT Naive Score Naive Count
1 0 0 6.316 1.589 0.35 304
1 0 1 6.444 1.359 0.21 13
0 1 0 5.394 1.357 0.16 41
0 0 1 4.740 1.192 0.03 26
0 1 1 5.511 1.163 0.22 153
1 1 0 6.173 1.145 0.08 57
1 1 1 5.455 1.0 0.03 19
0 0 0 3.976 1.0 0.02 24

Table A3 Values of EDNT, REDNT, Naive Score, and Naive Count of the states with at most
one active alarm for the CTBN depicted in Figure 5a.

A B C D E F EDNT REDNT Naive Score Naive Count
0 0 1 0 0 0 12.98 1.46 0.24 2172
0 0 0 1 0 0 11.33 1.28 0.25 2156
0 1 0 0 0 0 10.76 1.21 0.04 848
0 0 0 0 1 0 10.75 1.21 0.14 1533
1 0 0 0 0 0 10.24 1.15 0.02 341
0 0 0 0 0 1 9.90 1.12 0.03 651
0 0 0 0 0 0 8.87 1.0 0.01 426

X Y Z A B

Figure A1 Graph G of a CTBN model consisting of a chain of five processes.

A B
C D

E

Figure A2 Graph G of a CTBN model consisting of five processes, including a cycle.
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A
B

C

D

E
Figure A3 Graph G of a CTBN model consisting of five processes. The graph G contains a

bifurcation after the root node A.

C

D

I

A

G

H

B E F

Figure A4 Graph G of a CTBN model consisting of nine processes and with a more complex
structure. The sentry state has three active alarms.
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Interval temporal logic plays a critical role in various applications, including planning, scheduling,
and formal verification; recently, interval temporal logic has also been successfully applied to learning
from temporal data. Halpern and Shoham’s interval temporal logic, in particular, stands out as a
very intuitive, yet expressive, interval-based formalism. To address real-world scenarios involving
uncertainty and imprecision, Halpern and Shoham’s logic has been recently generalized to the fuzzy
(many-valued) case. The resulting language capitalizes on many-valued modal logics, allowing for a
range of truth values that reflect multiple expert perspectives, but inherits the bad computational
behaviour of its crisp counterpart. In this work, we investigate a sound and complete tableau
system for fuzzy Halpern and Shoham’s logic, which, although possibly non-terminating, offers a
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1 Introduction

Temporal logic is an essential framework for representing and reasoning about time. To
accurately represent time, it is crucial to adopt suitable primitive ontological entities, usually
categorized into point-based and interval-based ones. In this work, we take intervals as
primary semantic objects. Halpern and Shoham’s Modal Logic for Time Intervals (HS) [14]
is one of the most influential logical languages for time intervals, providing a robust and
expressive formalism for reasoning about temporal relations between events with duration.
Its applications range from planning, to scheduling, to formal verification; more recently,
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be extracted from temporal data by exploiting the integration of HS in machine learning
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As it turns out, the satisfiability problem for HS is undecidable in all interesting cases
of underlying linear order. Various strategies have been studied to obtain fragments of HS
with better computational behaviour, such as restricting the set of modal operators [1, 3],
constraining the underlying temporal structure [17], restricting the propositional power of
the languages [5], and considering coarser logics based on relations that describe a less precise
relationship between intervals [18]. On a more practical side, a few attempts to devise
practical reasoning systems for HS and its fragments have been made; among them there are
sound and complete procedures, respectively for the fragment of HS known as PNL [12, 4],
and the coarser version of HS called HS3 [18], among a few others; moreover, it has also been
devised a similar procedure for the interval temporal logic CDT, introduced in [20], which
generalizes HS to the case of ternary relations [11].

A unifying aspect of the work on interval temporal logic as we have presented it is the
crisp (that is, based on the classic two-values Boolean algebra) semantics of all mentioned
logics. In order to enhance the applicability and effectiveness in addressing real-world
scenarios, it has been recently proposed to generalize the syntax and semantics of HS to
accommodate the inherent uncertainty and imprecision when dealing with real-world data,
including (multivariate) time series. A natural way to accomplish such a generalization is
following the pioneering work of Fitting on fuzzy modal logics [8], in which both propositions
and accessibility relations are no longer just true or false but can have different truth values.
As a consequence, the definition of a fuzzy logic rests on a specific class of algebras. Typical
choices are Heyting algebras and Łukasiewicz algebra; in the former case, the resulting
logic embodies the perspectives of multiple experts whose opinions may not necessarily be
independent, while in the latter case the idea is to represent intrinsic vagueness of data.

Fuzzy Halpern and Shoham’s Modal Logic for Time Intervals (FHS) [7] is precisely the
Fitting-style generalization of HS in the case of Heyting algebras. FHS inherits the bad
computational behaviour of its crisp counterpart. In particular, in the case of chain Heyting
algebras and the class of all (fuzzy) linearly ordered sets, the (fuzzy generalisation of the)
satisfiability problem for FHS is undecidable, as well as in the case of all finite (fuzzy) linearly
ordered sets, and it is believed so in the other two natural sub-classes of Heyting algebras,
that is, the class of finite and the class of Boolean Heyting algebras. However, satisfiability
of interval temporal logic formulas is much less studied in the fuzzy case than it is in its crisp
counterpart. In this sense, there is a general lack of reasoning tools that are able to deal
with fuzzy interval temporal logics, and with FHS in particular.

This work is a first step towards filling in this gap. In particular, we consider FHS in the
case of finite Heyting algebras, and, following (again) Fitting [9], we study a tableau system
for FHS in the case of all (fuzzy) linear orders. We shall prove that our tableau system,
which generalizes tableau systems for crisp interval logics such as those proposed in [11, 12],
is sound and complete for satisfiability (at a certain degree of truth or more), and that it is
a semi-decision procedure for the case of all finite (fuzzy) linear orders.

This paper is organized as follows. In Section 2 we give some necessary background on
HS, Heyting algebras and their properties, and FHS. Then, in Section 3 we present our
tableau system, and prove its soundness and completeness, before concluding.

2 Background

While several different interval temporal logics have been proposed in the recent literat-
ure [13], Halpern and Shoham’s Modal Logic for Time Intervals (HS) [14] is certainly the
formalism that has received the most attention. Let D = ⟨D,<⟩ be a linear order with
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Table 1 Allen’s interval relations and HS modalities.

HS modality Definition w.r.t. the interval structure Example

x y

z t

z t

z t

z t

z t

z t

⟨A⟩ (after) [x, y]RA[z, t] ⇔ y = z

⟨L⟩ (later) [x, y]RL[z, t] ⇔ y < z

⟨B⟩ (begins) [x, y]RB [z, t] ⇔ x = z ∧ t < y

⟨E⟩ (ends) [x, y]RE [z, t] ⇔ y = t ∧ x < z

⟨D⟩ (during) [x, y]RD[z, t] ⇔ x < z ∧ t < y

⟨O⟩ (overlaps) [x, y]RO[z, t] ⇔ x < z < y < t

domain D; in the following, we shall use D and D interchangeably. A strict interval over D
is an ordered pair [x, y], where x, y ∈ D and x < y. If we exclude the identity relation, there
are 12 different binary ordering relations between two strict intervals on a linear order, often
called Allen’s interval relations [2]: the six relations RA (adjacent to), RL (later than), RB
(begins), RE (ends), RD (during) and RO (overlaps), depicted in Tab. 1, and their inverses,
that is, RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}. We interpret interval structures as
Kripke structures, with Allen’s relations playing the role of accessibility relations. Thus,
we associate an existential modality ⟨X⟩ with each Allen’s relation RX . Moreover, for each
X ∈ {A,L,B,E,D,O}, the transpose of modality ⟨X⟩ is the modality ⟨X⟩ corresponding
to the inverse relation RX of RX . Now, let X = {A,A,L, L,B,B,E,E,D,D,O,O}; well-
formed HS formulas are built from a set of propositional letters P, the classical connectives
∨ and ¬, and a modality for each Allen’s interval relation, as follows:

φ ::= p | ¬φ | φ ∨ φ | ⟨X⟩φ,

where p ∈ P and X ∈ X . The other propositional connectives and constants (i.e., ψ1 ∧ ψ2 ≡
¬ψ1 ∨ ¬ψ2, ψ1 → ψ2 ≡ ¬ψ1 ∨ ψ2 and ⊤ = p ∨ ¬p), as well as, for each X ∈ X , the universal
modality [X] (e.g., [A]φ ≡ ¬⟨A⟩¬φ), can be derived in the standard way. The set of all
subformulas of a given HS formula φ is denoted by sub(φ).

The strict semantics of HS is given in terms of interval models of the type M = ⟨I(D), V ⟩,
where D is a linear order, I(D) is the set of all strict intervals over D, and V is a valuation
function V : P → 2I(D) which assigns to every atomic proposition p ∈ P the set of intervals
V (p) on which p holds. The truth of a formula φ on a given interval [x, y] in an interval
model M , denoted by M, [x, y] ⊩ φ, is defined by structural induction on the complexity of
formulas, as follows:

M, [x, y] ⊩ p if and only if [x, y] ∈ V (p), for each p ∈ AP,
M, [x, y] ⊩ ¬ψ if and only if M, [x, y] ̸⊩ ψ,

M, [x, y] ⊩ ψ1 ∨ ψ2 if and only if M, [x, y] ⊩ ψ1 or M, [x, y] ⊩ ψ2,

M, [x, y] ⊩ ⟨X⟩ψ if and only if there exists [w, z] s.t. [x, y]RX [w, z] and M, [w, z] ⊩ ψ,

where X ∈ X . Given a model M = ⟨I(D), V ⟩ and a formula φ, we say that M satisfies φ if
there exists an interval [x, y] ∈ I(D) such that M, [x, y] ⊩ φ. A formula φ is satisfiable if there
exists an interval model that satisfies it. Moreover, a formula φ is valid if it is satisfiable at
every interval of every (interval) model or, equivalently, if its negation ¬φ is unsatisfiable.
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Figure 1 Graphical representation of finite, Boolean, and chain algebras. Some examples have
well-known names: Gs are Göedel algebras, Bs are Boolean algebras, and ℘(N) is the powerset of N.

A Heyting algebra is a structure of the type

H = (H,∩,∪, ↪→, 0, 1),

where (H,∩,∪, 0, 1) is a bounded lattice with domain H, with top (resp., bottom) element 1
(resp., 0); in the following, we shall use H and H interchangeably. Recall that a bounded
lattice is a set with internal operations ∩ (meet1) and ∪ (join), both commutative, associative,
and connected by the absorption law, in which a partial order can be defined, as follows:

α ⪯ β iff α ∩ β = α iff α ∪ β = β.

It is well-known that Heyting algebras are always distributive. In the following we use
⋂

(resp.,
⋃

) to indicate the generalized ∩ (resp., ∪), and we assume them to have the lowest
priority in algebraic expressions; moreover, we omit the quantification domains when it is
clear from the context. The symbols 0 and 1 denote, respectively, least and the greatest
elements of H. In other words, a Heyting algebra is a bounded distributive lattice in which
the relative pseudo-complement of α w.r.t. β, defined as⋃

{γ | α ∩ γ ⪯ β},

and denoted by α ↪→ β (it is also called Heyting implication), exists for every α and β [10].
For instance, consider the Heyting algebra B3 in Fig. 1. Then, as expected, 0 ↪→ 0 = 1 and
1 ↪→ 0 = 0, where 0 is ∅ and 1 is {a, b, c} (and, in general, this is true for every Heyting algebra,
since it generalizes the Boolean case); moreover, we have that, for example, {a, c} ↪→ 0 = {b}.
A Heyting algebra is said to be complete if for every subset H ′ ⊆ H, both its least upper

1 This is the classical nomenclature in lattice theory, and it should not be confused with Allen’s relation
meets.
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bound
⋃
H ′ and its greatest lower bound

⋂
H ′ exist. Moreover, a Heyting algebra is finite if

its domain is finite, Boolean if it is isomorphic to a nonempty set of subsets of a given set
closed under the set operations of union, intersection, and complement relative to that set,
and a chain if ⪯ is total. Graphical examples of such algebras can be found in Figure 1.

As in [7], assuming that H is a complete Heyting algebra with domain H we define an
adequate fuzzy strictly linearly ordered set as a structure of the type

D̃ = ⟨D, <̃, =̃⟩,

where D is a domain (and, again, we identify D with D) enriched with two functions
<̃, =̃ : D ×D 7→ H, for which the following conditions apply for every x, y, and z:

=̃(x, y) = 1 iff x = y,

=̃(x, y) = =̃(y, x),
<̃(x, x) = 0,
<̃(x, z) ⪰ <̃(x, y) ∩ <̃(y, z),
if <̃(x, y) ≻ 0 and <̃(y, z) ≻ 0 then <̃(x, z) ≻ 0,
if <̃(x, y) = 0 and <̃(y, x) = 0 then =̃(x, y) = 1,
if =̃(x, y) ≻ 0 then <̃(x, y) ≺ 1.

An adequate fuzzy linear order is finite when D is finite. The above conditions are called
adequate fuzzy linear order axioms.

Now, let us fix a complete Heyting algebra H. Similarly to the crisp case, well-formed
Fuzzy Halpern and Shoham’s Modal Logic for Time Intervals (FHS) formulas are built from
a set of propositional letters P, the classical connectives ∨ and ¬, and a modality for each
Allen’s interval relation, as follows:

φ ::= α | p | φ ∨ ψ | φ ∧ ψ | φ → ψ | ⟨X⟩φ | [X]φ,

where α ∈ H, p ∈ P , and, as in the crisp case, X ∈ X . As before, the set of all subformulas
of a given FHS formula φ is denoted by sub(φ).

As for the semantics of FHS formulas, given an adequate fuzzy strictly linearly ordered
set we define the set of fuzzy strict intervals in D̃ as

I(D̃) = {[x, y] | <̃(x, y) ≻ 0},

and, generalizing classical Boolean evaluation, propositional letters are directly evaluated in
the underlying algebra by defining a fuzzy valuation function, as follows:

Ṽ : P × I(D̃) 7→ H.

On top of the fuzzyfication of valuations we need to define how accessibility relations behave
in the fuzzy context. The definition of fuzzy Allen’s relations is obtained by generalizing the
original, crisp definition, and substituting every = with =̃ and every < with <̃:

R̃A([x, y], [z, t]) = =̃(y, z),
R̃L([x, y], [z, t]) = <̃(y, z),
R̃B([x, y], [z, t]) = =̃(x, z) ∩ <̃(t, y),
R̃E([x, y], [z, t]) = <̃(x, z) ∩ =̃(y, t),
R̃D([x, y], [z, t]) = <̃(x, z) ∩ <̃(t, y),
R̃O([x, y], [z, t]) = <̃(x, z) ∩ <̃(z, y) ∩ <̃(y, t),

and similarly for the inverse relations. Finally, we say that an H-valued interval model (or
fuzzy interval model) is a tuple of the type:

M̃ = ⟨I(D̃), Ṽ ⟩
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where D̃ is a fuzzy strictly linearly ordered set and Ṽ is a fuzzy valuation function. We
interpret an FHS formula in a fuzzy interval model M̃ and an interval [x, y] by extending
the valuation Ṽ of propositional letters as follows, where X ∈ X and [z, t] varies in I(D̃):

Ṽ (α, [x, y]) = α,

Ṽ (φ ∧ ψ, [x, y]) = Ṽ (φ, [x, y]) ∩ Ṽ (ψ, [x, y]),
Ṽ (φ ∨ ψ, [x, y]) = Ṽ (φ, [x, y]) ∪ Ṽ (ψ, [x, y]),
Ṽ (φ → ψ, [x, y]) = Ṽ (φ, [x, y]) ↪→ Ṽ (ψ, [x, y]),
Ṽ (⟨X⟩φ, [x, y]) =

⋃
{R̃X([x, y], [z, t]) ∩ Ṽ (φ, [z, t])},

Ṽ ([X]φ, [x, y]) =
⋂

{R̃X([x, y], [z, t]) ↪→ Ṽ (φ, [z, t])}.

We say that a formula of FHS φ is α-satisfied at an interval [x, y] in a fuzzy interval model
M̃ if and only if

Ṽ (φ, [x, y]) ⪰ α.

The formula φ is α-satisfiable if and only if there exists a fuzzy interval model and an interval
in that model where it is α-satisfied. A formula is satisfiable if it is α-satisfiable for some
α ∈ H, α ̸= 0. A formula is α-valid if it is α-satisfied at every interval in every model, and
valid if it is 1-valid. Observe that since a Heyting algebra, in general, does not encompass
classical negation, and since our definition of satisfiability is graded, instead of absolute, then
the usual duality of satisfiability and validity does not hold anymore.

As shown in [7], α-satisfiable of FHS formulas is undecidable in the case of chain algebras.
Such a result cannot be immediately generalized to the case of all Heyting algebras, but,
since as crisp HS is undecidable in every class of linearly ordered sets, one can expect that
FHS is too, regardless the underlying algebra.

3 A Tableau System for FHS

In this section we consider the problem of reasoning with FHS formulas. Tableau systems
have been introduced in [4, 11, 12, 18] for variants, fragments, and generalizations of crisp
HS, and in [9] for fuzzy modal logics; as in the latter case, we limit ourselves to the case of
finite Heyting algebras as truth value algebras.

A tableau for a FHS formula is a directed tree, in which every node is associated to a
truth judgment, to a pair formula/interval, and to a finite constraint system. In Fitting’s
terminology, a truth judgement, as we use it, is a signed formula with bounding implications [9].
Such a system represents an adequate fuzzy linearly ordered set; its constraints come from
both the formula whose satisfiability has to be checked and the axioms that every adequate
fuzzy linear order must meet. It may be possible that such a constraint system cannot be
satisfied at some node: this will cause the branch that contain that node to be closed.

▶ Definition 1 (fuzzy constraint system). Given a finite Heyting algebra H, a fuzzy constraint
system C is a finite set of elements {x, y, . . .} associated to a finite set of constraints of the
following types:

=̃(x, y) ▷◁ α,
<̃(x, y) ▷◁ α,
F F is an adequate fuzzy linear order axiom,

where α ∈ H and ▷◁∈ {⪯,⪰,≺,≻}.
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For the sake of convenience, when describing a constraint system we shall omit to include
adequate fuzzy linear order axioms (as they do not vary from system to system). It is
immediate to see that any fuzzy constraint system can be checked for satisfiability using a
first-order reasoner, and that termination is guaranteed by the fact that the system is finite.
In the following, we shall use x ∈ C to indicate that a certain element is mentioned in the
fuzzy constraint system C. Intuitively, C represent a possibly incomplete adequate fuzzy
linear order; if C can be satisfied, then it can be extended to a complete adequate fuzzy
linear order. In the following, we say that C is solved if a value for =̃ and a value for <̃ has
been chosen for every pair x, y ∈ C in such a way that all constraints are met; moreover, we
say that C is inconsistent if a solution cannot be found. We assume that a constraint system
C (once solved) can be queried, so that, for example, at any given time, we can know the
value of the relation RX([x, y], [z, t]) for any points x, y, z, t ∈ C. In particular, for a given
constraint system C, we assume that a function o(C) (resp., n(C)) is defined that returns a
list of all possible old intervals [x, y] that can be formed with points in C (resp., all possible
new intervals that can be formed in C using one or two points not currently in C); clearly,
o(C) ∩ n(C) = ∅. Finally, observe that for a given non-inconsistent system C there may be
more than one solution. The set of all possible constraint systems is denoted by C.

Because classic negation is not available in the fuzzy case, following Fitting, our tableau
is designed to answer the question of whether a given formula φ can be satisfied to a degree
at least α in H-valued interval model, for a given finite Heyting algebra H.

▶ Definition 2 (decoration). Given a Heyting algebra H, an FHS formula φ, and a fuzzy
constraint system C, a decoration is an object of the type

Q(α → φ, [x, y], C), or Q(φ → α, [x, y], C),

where α ∈ H and Q ∈ {T, F} is a judgment. The expression α → φ (φ → α) is an assertion
on [x, y] ∈ o(C). The universe of all possible decorations is denoted by D.

Intuitively, the assertion α → φ (resp., φ → α) on an interval [x, y] means that there exists
a fuzzy model M̃ with valuation function Ṽ such that Ṽ (φ, [x, y]) ⪰ α (resp., for every
fuzzy model M̃ and valuation functions Ṽ it is the case that Ṽ (φ, [x, y]) ⪯ α); associating
a judgment T (resp., F ) to an assertion can be interpreted as (trying to) proving that the
assertion holds (resp., does not hold).

▶ Definition 3 (tableau for FHS). Given an FHS formula φ and a finite Heyting algebra H,
the tableau τ for φ and α ∈ H is an object of the type

τ = (V, E , d, f, c),

where (V, E) is a tree with vertices (or nodes) in V and edges in E. The nodes in τ are
partially ordered by the relation ◁ (induced by the edges) and whose set of branches is denoted
by B,

d : V → D,

is a node labeling function, which associates a decoration Q(ψ → α, [x, y], C) or Q(α →
ψ, [x, y], C) to any node ν, where ψ ∈ sub(φ) and x, y ∈ C, and

f : V → {0, 1}

is a node flag function, which determines which nodes have been already expanded,

c : B → C
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is a branch labeling function, which associates every branch to the constraint system in the
decoration of its leaf, and it has been obtained starting from the initial tableau τ0

({ν0}, ∅, {(ν0, T (α → φ, [x, y], {x, y, <̃(x, y) ≻ 0}))}, {(ν0, 0)}, {(ν0, {x, y, <̃(x, y) ≻ 0})})

by iteratively applying the branch expansion rule in Fig. 2 to the closest-to-the-root node ν
such that f(ν) = 0 and every leaf ν′ such that ν ◁ ν′, until no further application is possible
or all branches have been closed. The tableau is closed (resp., open) if all its branches (resp.,
at least one of its branches) are (resp., is) closed ✗ by some condition in Fig. 3 (resp., open
✓).

Following the original terminology, the first four rules in Fig. 2 are referred to as reverse
rules, the rules for nodes with a decoration that contain a propositional formula in the
assertion are referred to as propositional rules, and the rules for nodes with a decoration that
contain a temporal formulas in the assertion are referred to as temporal rules. Observe that
the set actually covers all cases; those that are not covered can be treated by (the application
of) a reverse rule.

The application of the branch expansion rule to a specific branch B in a tableau defined
as above works as follows. First, the closest-to-the-root node ν of B, such that f(ν) = 0 is
chosen. Then, the consequent of the rule produces a new tree which is attached to the leaf of
B; observe that the constraint system used in the application is always the one currently
at the leaf. Finally, the application is not possible if the nodes produced by it are already
present on the branch.

Now, we move to proving that the tableau system is sound.

▶ Lemma 4 (soundness). Let φ be an FHS formula and α ∈ H a constant of a finite Heyting
algebra. Then, if φ is α-satisfiable, then the tableau τ for φ and α is open.

Proof. Consider an FHS formula φ. Assume that τ is the tableau for φ and α ∈ H, where
H is a fixed finite Heyting algebra. We proceed contrapositively to prove that if τ is closed
then φ is not α-satisfiable. Given a node ν in τ such that C is the constraint system in d(ν),
we define the set

S(ν) = {ν′ | ν′ ◁ ν}

and we say that is S(ν) is α-satisfiable if and only if there is an H-valued interval model

M̃ = ⟨I(C∗), Ṽ ⟩,

where C∗ is a fuzzy strictly linearly ordered set that extends C, such that
for each node ν′ ∈ S(ν) such that d(ν′) = T (β → ψ, [x, y], C ′) (resp., F (ψ → β, [x, y], C ′)),
it is the case that Ṽ (ψ, [x, y]) ⪰ β (resp., Ṽ (ψ, [x, y]) ⪰ γ, for some minimal γ not below
β), and
for each node ν′ ∈ S(ν) such that d(ν′) = T (ψ → β, [x, y], C ′) (resp., F (β → ψ, [x, y], C ′)),
it is the case that Ṽ (ψ, [x, y]) ⪯ β (resp., Ṽ (ψ, [x, y]) ⪯ γ for some maximal γ not above
β).

Observe that M̃ depends on α since ν0 ∈ S(ν), for every ν. Moreover, if S(ν0) is α-satisfiable,
then φ is α-satisfiable. Now, we prove the following stronger statement: if every branch
containing a node ν is closed, then the set S(ν) is not α-satisfiable. Let us proceed by
induction on the height h of the node ν.
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T (α → ψ, [x, y], C)
(T ⪰)

F (ψ → γ, [x, y], c(B))
where α ̸= 0 and γ is any maximal

element not above α, i.e., γ ̸⪰ α

F (α → ψ, [x, y], C)
(F ⪰)

T (ψ → βi, [x, y], c(B)) | . . . | T (ψ → βn, [x, y], c(B))
where α ̸= 0 and β1, . . . , βn are all maximal
elements not above α, i.e., β1, . . . , βn ̸⪰ α

T (ψ → α, [x, y], C)
(T ⪯)

F (γ → ψ, [x, y], c(B))
where α ̸= 1 and γ is any minimal
element not below α, i.e., γ ̸⪯ α

F (ψ → α, [x, y], C)
(F ⪯)

T (βi → ψ, [x, y], c(B)) | . . . | T (βi → ψ, [x, y], c(B))
where α ̸= 1 and β1, . . . , βn are all minimal
elements not below α, i.e., β1, . . . , βn ̸⪯ α

(a) Reverse rules.

T (α → (ψ ∧ ξ), [x, y], C)
(T∧)

T (α → ψ, [x, y], c(B))
T (α → ξ, [x, y], c(B))

where α ̸= 0

F (α → (ψ ∧ ξ), [x, y], C)
(F∧)

F (α → ψ, [x, y], c(B)) | F (α → ξ, [x, y], c(B))
where α ̸= 0

T ((ψ ∨ ξ) → α, [x, y], C)
(T∨)

T (ψ → α, [x, y], c(B))
T (ξ → α, [x, y], c(B))

where α ̸= 1

F ((ψ ∨ ξ) → α, [x, y], C)
(F∨)

F (ψ → α, [x, y], c(B)) | F (ξ → α, [x, y], c(B))
where α ̸= 1

T (α → (ψ → ξ), [x, y], C)
(T →)

F (γ → ψ, [x, y], c(B) | T (γ → ξ, [x, y], c(B))
where α ̸= 0 and γ is any element
below α except 0, i.e., 0 ̸= γ ⪯ α

F (α → (ψ → ξ), [x, y], C)
(F →)

T (β1 → ψ, [x, y], c(B)) | . . . | T (βn → ψ, [x, y]c(B))
F (β1 → ξ, [x, y], c(B)) | . . . | F (βn → ξ, [x, y], c(B))

where α ̸= 0 and β1, . . . , βn are all elements
below α except 0, i.e., 0 ̸= β1, . . . , βn ⪯ α

(b) Propositional rules.

T (α → [X]ψ, [x, y], C)
(T□)

T ((α ∩ β1) → ψ, [z1, t1], c(B))
. . .

T ((α ∩ βn) → ψ, [zn, tn], c(B))
T (α → [X]ψ, [x, y], c(B))

where βi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),
βi ≻ 0, and α ∩ βi ̸= 0

T (⟨X⟩ψ → α, [x, y], C)
(T♢)

T ((ψ → (β1 ↪→ α), [z1, t1], c(B))
. . .

T (ψ → (βn ↪→ α), [zn, tn], c(B))
T (⟨X⟩ψ → α, [x, y], c(B))

where βi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),
βi ≻ 0, and βi ↪→ α ̸= 1

F (α → [X]ψ, [x, y], C)
(F□)

F ((α ∩ β1) → ψ, [z1, t1], c(B)) | . . . | F ((α ∩ βn) → ψ, [zn, tn], c(B))
where βi = RX ([x, y], [zi, ti]),[zi, ti] ∈ o(c(B)) ∪ n(c(B)),

βi ≻ 0, and α ∩ βi ̸= 0

F (⟨X⟩ψ → α, [x, y], C)
(F♢)

F (ψ → (β1 ↪→ α), [z1, t1], c(B)) | . . . | F (ψ → (βn ↪→ α), [zn, tn], c(B))
where βi = RX ([x, y], [zi, ti]),[zi, ti] ∈ o(c(B)) ∪ n(c(B)),

βi ≻ 0, and βi ↪→ α ̸= 1

(c) Temporal rules.

Figure 2 Branch expansion rules for a branch B, to be applied to ν ∈ B under the conditions
specified below each rule. The node flag is 0 when a rule is applied on a node with label at the top,
modified into 1 after the application, and set to 0 on every produced node. When applying the rules
(F□) and (F♢), the constraint system C is first solved, and, queried for o(C), and finally, for n(C),
returning all possible (old and new) intervals relevant for the application.
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T (α → β, [x, y], C)
(✗1)

✗

where α ̸⪯ β

F (α → β, [x, y], C)
(✗2)

✗

where α ⪯ β

F (0 → ψ, [x, y], C)
(✗3)

✗

F (ψ → 1, [x, y], C)
(✗4)

✗

T (β → ψ, [x, y], C)
F (α → ψ, [x, y], C)

(✗5)
✗

where α ⪯ β

Q(·, ·, C)
(✗6)

✗

where C is inconsistent

Figure 3 Branch closing conditions.

If h = 0, then there is exactly one branch that contains it. Since such branch is closed, one
of the following must hold. First, for some ν′ ∈ S(ν), d(ν′) = T (β → γ, [x, y], C ′) but β ̸⪯ γ

(condition (✗1)), or d(ν′) = F (β → γ, [x, y], C ′) but β ⪯ γ (condition (✗2)). Second, for some
ν′ ∈ S(ν), d(ν′) = F (0 → ψ, [x, y], C ′) (condition (✗3)), or F (ψ → 1, [x, y], C ′) (condition
(✗4)). Third, for some ν′ ∈ S(ν), d(ν′) = Q(·, ·, C) but C is inconsistent (condition (✗6)). Or,
fourth, for some ν′, ν′′ ∈ S(ν), d(ν′) = F (β → ψ, [x, y], C ′) and d(ν′′) = T (γ → ψ, [x, y], C ′′),
but γ ⪯ β (condition (✗5)). In all such cases, M̃ cannot be realized, so S(ν) is not α-satisfiable,
as we wanted.

Suppose, now, that h > 0. First, observe that if every branch that contains ν is closed,
then every branch that contains any of its successors must be closed too, so that the
inductive hypothesis applies to them. Then, consider the node ν′ ∈ S(ν) that has been
expanded when ν was a leaf, and let us analyze the possible rules that have been applied
at ν′. If d(ν′) = T (ψ → β, [x, y], C ′), then the immediate successor ν′′ of ν is such that
d(ν′′) = F (γ → ψ, [x, y], C ′′), where γ is some minimal element of H such that γ ̸⪰ β (rule
(T ⪯)); by inductive hypothesis, S(ν′′) is not α-satisfiable, but this implies that S(ν) cannot
be α-satisfiable either. If d(ν′) = F (β → ψ, [x, y], C ′), then all immediate successors νi
of ν are such that d(νi) = T (ψ → γi, [x, y], Ci), where γi is a maximal element of H such
that γi ̸⪰ β (rule (F ⪰)); by inductive hypothesis, S(νi) is not α-satisfiable for any i, but
this implies that S(ν) cannot be α-satisfiable either. The cases in which another reverse
rule has been applied to ν are similar. If d(ν′) = T (β → (ψ ∧ ξ), [x, y], C ′), then ν has an
immediate successor ν1 with d(ν1) = T (β → ψ, [x, y], C1), which in turn has an immediate
successor ν2 with d(ν2) = T (β → ξ, [x, y], C2) (rule (T∧)). By inductive hypothesis, S(ν2),
in particular, is not α-satisfiable, but this implies that S(ν) is not α-satisfiable either. If
d(ν′) = F (β → (ψ∧ξ), [x, y], C ′), then ν has two immediate successors ν1 and ν2 with d(ν1) =
F (β → ψ, [x, y], C1) and d(ν2) = F (β → ξ, [x, y], C2) (rule (F∧)). By inductive hypothesis,
both S(ν1) and S(ν2) are not α-satisfiable, but this implies that S(ν) is not α-satisfiable
either. The cases in which another propositional rule has been applied to ν are similar.
If d(ν′) = T (β → [X]ψ), [x, y], C ′) then ν has a chain of successors ν1, . . . , νn, such that
d(νi) = T ((β ∩γi) → ψ, [zi, ti], Ci) and γi = RX([x, y], [zi, ti]), for all [zi, ti] ∈ o(c(B)), where
1 ≤ i ≤ n (rule (T□)). Observe that asking that the evaluation of [X]ψ is above β is equivalent
to asking that the evaluation of ψ is above β∩γi on every interval [zi, ti]. Since, in particular,
S(νn) is not α-satisfiable by inductive hypothesis, S(ν) is not α-satisfiable as well. The case
in which (T♢) has been applied to ν is similar. Finally, if d(ν′) = F (⟨X⟩ψ → β), [x, y], C ′)
then every immediate successor νi of ν is such that d(νi) = F (ψ → (γi ↪→ β), [zi, ti], Ci)
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and γi = RX([x, y], [zi, ti]), for all [zi, ti] ∈ o(c(B)) ∪ n(c(B)), where 1 ≤ i ≤ n (rule (F♢)).
Observe that asking that the evaluation of ⟨X⟩ψ is below β is equivalent to asking that the
evaluation of ψ is below γi ↪→ β on some interval [zi, ti]. Since all S(νi) are not α-satisfiable
by inductive hypothesis, S(ν) is not α-satisfiable as well. The case in which (F□) has been
applied to ν is similar. ◀

Finally, we turn our attention to proving completeness.

▶ Lemma 5 (completeness). Let φ be an FHS formula and α ∈ H a constant of a finite
Heyting algebra. If τ is an open tableau for φ and α, then φ is α-satisfiable.

Proof. Consider an FHS formula φ, and assume that τ is the tableau for φ and α. Consider
an open branch B in τ , let Cµ =

⋃
ν∈B Cν , where Cν is the constraint system in the label

d(ν), and let C∗ the complete extension of Cµ. Then, consider the model

M̃ = ⟨I(C∗), Ṽ ⟩,

where Ṽ is the following fuzzy valuation function, defined for every propositional letter p
and fuzzy strict interval [x, y] in I(C∗):

Ṽ (p, [x, y]) =
{
β if d(ν) = T (β → p, [x, y], C), for some ν ∈ B;
γ if d(ν) = F (β → p, [x, y], C), for some ν ∈ B and γ ̸⪰ β.

The model M̃ is the direct translation of the branch B into an (fuzzy) interval model; in
particular, is an coherent assignment of truth values of all propositional letters on all intervals.
As much as the case of the judgment F (β → p, [x, y], C) is considered we need to associate
any truth value γ such that γ ̸⪰ β. We want to prove that, for every ν ∈ B,

if d(ν) = T (β → ψ, [z, t], C), then Ṽ (ψ, [z, t]) ⪰ β,
if d(ν) = T (ψ → β, [z, t], C), then Ṽ (ψ, [z, t]) ⪯ β,
if d(ν) = F (β → ψ, [z, t], C), then Ṽ (ψ, [z, t]) ̸⪰ β, and
if d(ν) = F (ψ → β, [z, t], C), then Ṽ (ψ, [z, t]) ̸⪯ β.

Observe that the above implies that φ is α-satisfiable on [x, y] in M̃ , that is, it is α-satisfiable.
Also, observe that M̃ is constructible and well-defined because B is open. Consider a node
ν ∈ B such that d(ν) is a decoration with a judgment for a formula ψ on some interval [z, t].
We proceed by structural induction on ψ.

If ψ = p or ψ = β, then the claim is trivial.
If ψ = ξ ∧ χ, then suppose, first, that d(ν) = T (β → (ξ ∧ χ), [z, t], C). Since τ is fully

expanded, rule (T∧) has been applied to ν. It follows that B contains two nodes ν1 and
ν2 such that d(ν1) = T (β → ξ, [z, t], C) and d(ν2) = T (β → χ, [z, t], C). By inductive
hypothesis, Ṽ (ξ, [z, t]) ⪰ β and Ṽ (χ, [z, t]) ⪰ β, which is equivalent to Ṽ (ψ, [z, t]) ⪰ β.
Suppose, now, that d(ν) = F (β → (ξ ∧ χ), [z, t], C). Since τ is fully expanded, rule (F∧) has
been applied to ν. It follows that B contains a node ν′ such that d(ν′) = F (β → ξ, [z, t], C)
or d(ν′) = T (β → χ, [z, t], C). By inductive hypothesis, Ṽ (ξ, [z, t]) ̸⪰ β or Ṽ (χ, [z, t]) ̸⪰ β,
which is equivalent to Ṽ (ψ, [z, t]) ̸⪰ β. The remaining propositional cases are similar.

Finally, if ψ = [X]ξ, then suppose, first, that d(ν) = T (β → [X]ξ, [z, t], C). Since τ
is fully expanded, rule (T□) has been applied to ν. This entails that, for every interval
[zi, ti] in I(C∗), B contains a node νi such that d(νi) = T ((β ∩ γi) → ξ, [zi, ti], Ci), that
is, d(νi) = T ((β ∩RX([z, t], [zi, ti])) → ξ, [zi, ti], Ci); observe that this is guaranteed by the
fact that the rule has been applied at a certain point of the construction on the n possible
intervals that are constructible at that point, but then an additional (n + 1)-th node is
also created at the end of the branch with the same decoration, ensuring that, should more
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points be added at some later moment, the rule is applied, again, on them. By inductive
hypothesis, Ṽ (ξ, [zi, ti]) ⪰ (β ∩ γi). Therefore, Ṽ (ψ, [z, t]) =

⋂
[zi,ti]{RX([z, t], [zi, ti]) ↪→

Ṽ (ξ, [zi, ti])} ⪰ β. Suppose, now, that d(ν) = F (β → [X]ξ, [z, t], C). Since τ is fully
expanded, rule (F□) has been applied to ν. This entails that, for some interval [zi, ti] in
I(C∗), B contains a node νi such that d(νi) = F ((β ∩ γi) → ξ, [zi, ti], Ci), that is, d(νi) =
F ((β ∩ RX([z, t], [zi, ti])) → ξ, [zi, ti], Ci). By inductive hypothesis, Ṽ (ξ, [zi, ti]) ̸⪰ β ∩ γi.
Therefore, Ṽ (ψ, [z, t]) =

⋂
[zi,ti]{RX([z, t], [zi, ti]) ↪→ Ṽ (ξ, [zi, ti])} ̸⪰ β. The remaining

temporal cases are similar. ◀

▶ Theorem 6 (semi-decision procedure). The tableau system for FHS is sound and complete.
Moreover, it is also a semi-decision procedure in the case of finite domains.

A semi-decision procedure for the problem of establishing if a given FHS formula φ

is α-satisfiable for some truth value α of a given Heyting algebra, as stated by the above
theorem, emerges naturally as the systematic application of the expansion rules (see Fig. 2)
to the initial tableau. Termination is not guaranteed as there may exist formulas that are
α-satisfiable but only on an infinite domain: in such a case, no contradiction would be found
within a finite amount of time.

We conclude this part with an example of application of the tableau system, illustrated
in Fig. 4. In this example, we consider the formula ⟨A⟩p ∧ [A](p → 0) and 1 ∈ G3, where G3
is the Göedel algebra from Fig. 1. To show how the system is applied, we tested if the truth
value of the above formula is at least 1, that is, T (1 → ⟨A⟩p ∧ [A](p → 0), [x, y], C) on the
interval [x, y] with C = {<̃(x, y) ≻ 0}; since all branches are closed, we verified, as expected,
that it cannot. In the figure, only two branches are displayed.

4 Conclusion

Interval temporal logic is a crucial tool for planning, scheduling, and formal verification,
and are also particular interesting for learning tasks, especially from continuous data. To
deal with the uncertainty of real data, a fuzzy (many-valued) generalization of the most
representative interval temporal logic (HS), called FHS, had been recently introduced and
studied. The computational properties of FHS strongly depend on the underlying algebra on
which it is based. Within the context of Heyting algebras, we considered, here, the finite
case, and we devised a sound and complete tableau system for it. Our method builds on
previous work by Fitting, and it is the first case of an implementable deduction procedure
for fuzzy interval temporal logic, which could be applied as a reasoning system, for example,
on formulas learned from real data in order to combine them with expert knowledge.

As future work, we plan to design an efficient implementation of the proposed tableau
system. Observe that, in particular, such an implementation would be a generalization of its
crisp counterpart. The experiments that have been carried on so far seem to indicate that
the best implementation strategies are those based on the naive approaches as in [18], which
is essentially different from the point-based case; therefore, in order to obtain a truly useful
tool, an effort should be made to optimize the construction of such a tableau system in the
crisp and fuzzy case alike.
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ν0 : T (1 → ⟨A⟩p ∧ [A](p → 0), [x, y], C) C = {<̃(x, y) ≻ 0}

ν1 : T (1 → ⟨A⟩p), [x, y], C)

ν2 : T (1 → [A](p → 0), [x, y], C)

ν3 : F (⟨A⟩p → 1
2 , [x, y], C)

ν4 : T (1 → [A](p → 0), [x, y], C)

ν5 : F (p → (1 ↪→ 1), [z, t], C′) C′ = C ∪ {=̃(x, y) = 0, <̃(z, t) ≻ 0, =̃(y, z) = 1}

ν6 : T ((1 ∩ 1) → (p → 0), [z, t], C′)

ν7 : T (1 → [A](p → 0), [x, y], C′)

ν8 : T ( 1
2 → p, [z, t], C′)

ν9 : F ( 1
2 → p, [z, t], C′) ν10 : T ( 1

2 → 0, [z, t], C′)

✗ ✗

(T∧)

(T∧)

(T ≥)

(T□)

(F♢)

(T□)

(T□)

(F ≤)

(✗5)

(✗5) (✗1)

Figure 4 Some closed branches of the tableau for ⟨A⟩p ∧ [A](p → 0) and 1 ∈ G3.
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Abstract
We present the Calculus of Temporal Influence, a simple logical calculus that allows reasoning about
the behaviour of real-valued functions over time by making assertions that bound their values or
the values of their derivatives. The motivation for the design of such a proof system comes from
the need to provide the background computational machinery for tools that support learning in
experimental subjects in secondary-education classrooms. The end goal is a tool that allows school
pupils to formalise hypotheses about phenomena in natural sciences, such that their validity with
respect to some formal experiment model can be checked automatically. The Calculus of Temporal
Influence provides a language for formal statements and the mechanisms for reasoning about valid
logical consequences. It extends (and deviates in parts from) previous work introducing the Calculus
of (Non-Temporal) Influence by integrating the ability to model temporal effects in such experiments.
We show that reasoning in the calculus is sound with respect to a natural formal semantics, that
logical consequence is at least semi-decidable, and that one obtains polynomial-time decidability for
a natural stratification of the problem.
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1 Introduction

Digitalisation is an ongoing process that aims at providing better solutions in all kinds of
areas in industry, science, society and everyday’s life. The work presented here is motivated
by efforts to provide digital technology in particular learning environments, mainly secondary-
education classrooms in natural sciences like biology, physics, chemistry. Digitalisation in
school classrooms is a well-studied topic in educational sciences, but it often just deals
with the employment of digital equipment in order to enhance learning environments, like
electronic whiteboards, tablets, the internet as an online source of information, or at most
the acquisition of competences to use digital (software) tools.

An aspect that is fundamental to science education is the promotion of scientific literacy
which targets “the skills to use scientific knowledge, ask questions, and draw evidence-based
conclusions to understand and make decisions about the natural world and the changes
humans are making to it” [11]. The Circle of Inquiry asks learners to form phenomena-based
hypotheses and test them by experiment [6]. The curricula of natural science subjects
therefore often contain experimental studies where pupils start from a given research question
like “does temperature influence the growth of yeast?” which prompts them to formulate
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a hypothesis like “yeast grows when it is warmer” or, better, “yeast growth is maximal at
temperatures between 32° and 38°, and higher temperatures influence the growth negatively.”
This is typically followed by a validation process in which they assemble and physically
conduct an experiment in order to check the validity of their hypothesis, thus learning some
form of scientific reasoning.

The design and use of learning tools, in the form of specialised software for instance,
can take this a step further by making use of general digital technology rather than just
equipment, see strategies devised by ministries and departments of education.1 The next
step is then of course to use computational resources like algorithms, formal models, etc. in
order to further advance the digitalisation process in such areas.

Technology-based learning makes it possible to create differentiated learning methods
and to enable individualised learning of subject-specific competencies using feedback [9]. It
comes with several advantages.

It is resource efficient, making it possible to run experiments more often and at smaller
running costs after investing into generic and reusable hardware.
It is more scalable since digital environments can easily be multiplied, depending only on
the availability of digital hardware, thus making it possible to run experiments by smaller
groups of pupils.
It makes experimental lessons more widely applicable as it eliminates risk in handling
dangerous substances, lifts the restriction to objects of manageable size, and allows time
to be scaled up or down in experiments that would otherwise take a very long or too
short time to be observed in reality.
It enhances learning efforts by reducing the influence of human factors: broadly speaking,
it forces pupils to concentrate on the learning material when interacting with a learning
tool, rather than to look for clues to the right answers by interacting with a teacher
directly, cf. [8].

In order to be effectively used by school pupils, a digitalised learning environment for
experimental lessons needs to combine different kinds of digital technology, including intuitive
web interfaces, secure and stable network communications, etc. Here we are concerned with
the logic that is needed in order to automatically check the correctness of a formulated
hypothesis w.r.t. some background knowledge about a modelled experiment. In previous
work we have introduced the Calculus of Influence [4] which provides

a simple language for making statements of the form

“variable A influences variable B
[

on data range [x, y]
] [

into values in [x′, y′]
][

showing monotonic / antitonic / constant / arbitrary behaviour
]
”

where variables are partially ordered entities, determined by the experiment (for instance
temperature and yeast), and [x, y] and [x′, y′] are intervals over the reals providing a
common data type for all variables;
a formal semantics for interpreting such statements in collections of real-valued continuous
partial functions over partially ordered sets of variables, thus providing a formal model of
such experiments in which influence of a variable B by a variable A is modelled by the
existence of a function associated with the pair (A,B);

1 See e.g. https://www.kmk.org/themen/bildung-in-der-digitalen-welt/strategie-bildung-in-der
-digitalen-welt.html (in German) for a joint strategy paper on eduction in a digital world of the
German federal states’ ministers for education.

https://www.kmk.org/themen/bildung-in-der-digitalen-welt/strategie-bildung-in-der-digitalen-welt.html
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/strategie-bildung-in-der-digitalen-welt.html
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a simple proof system for derivability of a hypothesis from a set of statements representing
the aforementioned background knowledge about the experiment. It turned out to be
sound and polynomially decidable, and it was shown to be complete for a restricted class
of formal experiment models.

The framework can be used to formalise known facts about the underlying experiment
through sets of statements in the above sense, called an influence scheme. The pupils’ task
is then to formulate a hypothesis in the form of another statement, detecting some form of
(simple) influence between the variables involved in the scheme. The underlying tool should
then verify, based on the notion of logical consequence, whether the hypothesis follows from
the facts given in the scheme. If this is the case, then the pupils could be given the possibility
to further interact with the tool, for instance by providing an explanation for the discovered
influence (which could be checked for correctness by matching it against the found proof).
If it is not the case, then pupils can be guided towards a correct hypothesis by presenting
them with a counterexample, i.e. a realisation of experimental behaviour that satisfies all
the facts in the scheme but not the hypothesis, derived from the failed proof attempt in the
underlying tool. Note that the proof rules and strategy are not open to interaction for the
pupils but are hidden away in an automated decision procedure. Likewise, the formalisation
of experiments as influence schemes is not something that the pupils are tasked with; this
needs to be done by someone with further expertise, or it can be automatically extracted
from sets of data points.

Note that influence in the above model is always static: it is possible to state that a
growing temperature between 10° and 20° causes increasing yeast activity between 0.14h−1

and 0.26h−1, but it is not possible to state how yeast activity causes an incressing volume
of dough, as this keeps growing at a particular rate over time. Note that time cannot be
modelled as a variable in this scenario like temperature or yeast activity, since neither of
them cause particular values of time, and time alone does not cause particular volumes.
Instead, the influence between yeast activity and dough volume is dynamic, more specifically
it is time-dependent in the sense that a particular value of yeast activity causes particular
volumes over a particular time interval.

In this paper we introduce the Calculus of Temporal Influence in order to provide a formal
model for capturing further experiments and to allow hypotheses to be made about such time-
dependent influences. In Sect. 2 we first introduce a simple formal language for formalising
statements about background knowledge or hypotheses, incorporating time-dependency by
allowing statements that assert an influence of a variable onto another one, resp. its derivative
(w.r.t. time). This does not only extend the calculus by incorporating time as a special entity
s.t. values of any variable are always implicitly time-dependent; it also enhances its ability to
make more refined statements about the nature of influence, for instance asserting that the
gradient of some growth rate – i.e. the values of the derivative function – falls into an interval
[l, u]. For instance, monotonicity then corresponds to growth rates in the range [0,∞). Note,
however, that the implicit time-dependency makes time play a special role in this setting.
Moreover, in the Calculus of Temporal Influence, there are no direct formalisations available
to express that one variable influences another, but rather indirect ways tightly connected to
the fact that we model the behaviour of variables over time.

We then interpret such statements in collections containing a function of type R≥0 → R
for each variable, modelling its behaviour over time in the experiment. As it turns out, the
introduction of time-dependency alleviates the need for ordering the variables as it is done in
the non-temporal Calculus of Influence, thus extending it in this respect as well.

TIME 2023
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The formal semantics immediately gives rise to the question of logical consequence,
explaining when a statement, resp. hypothesis H is seen to follow from a set of statements,
resp. scheme C. This provides the mathematical ground for an automatic correctness
check for hypotheses H when C models an experiment as a collection of known facts about
time-dependent variable influences in it.

In Sect. 3 we present a simple proof system as the computational ground for such automatic
correctness checks. The ultimate aim is polynomial decidability since the employment in a
learning tool requires such correctness checks to be carried out efficiently – usually running on
mobile devices – in order to provide instantaneous feedback to pupils formulating hypotheses.
Another requirement posed by this application restricts the proof rules to formalisations
of intuitive reasoning principles since an effective learning tool needs to be able to provide
feedback to pupils about why a hypothesis might be false, i.e. why it cannot be inferred from
the experiment model. This leads to a natural stratification of logical consequence w.r.t.
the number of “difficult” rule applications, and we obtain polynomial-time decidability for
each stratum in Sect. 4. We briefly report on a prototypical implementation of the deciding
algorithm, implemented in Python, in Sect. 5.

Sect. 6 concludes with remarks on further work in this direction.

2 Modeling Influence over Time

Variables and Statements. Let V = {a, b, . . . } be a finite set of so-called variables (like
temperature, some bacteria’s growth rate, etc.). We introduce a small language for formalising
statements about the behaviour of such variables over time. Below we introduce a formal
semantics based on certain partial and continuous functions of the reals. This puts some
underlying assumptions about such behaviours in place which is best motivated here in order
to then proceed to the definition of the formal statements.

There is a special variable t representing time which is not included in V.
Each variable – including t – is real-valued. This is in accordance with what is done
in many areas in natural sciences, in particular in physics with the only exception of
quantum physics perhaps. For simplicity we do not state units like seconds, kilograms,
cubic meters, etc.; they are assumed to be given implicitly.
The behaviour of a variable over time is a partial function whose domain is a single
interval, i.e. values of variable a may only be defined after time point t1, but if such
values exist for time points t1 and t2 > t1, then they also exist for all time points t with
t1 ≤ t ≤ t2. It is arguable that this puts restrictions on the structure of experiments to
be modelled here, but there is also a benefit to it: it means that experiment models can
be obtained from measurements at discrete time points, and while we may not know the
exact values in between the measurements, we can assume them to exist and even make
some reasonable assumption about their values. The domain of t is always R≥0.
The behaviour of a variable over time is a continuous function on its domain. This is in
line with typical behaviour in nature which is rarely discontinuous.
The behaviour of a variable over time is a derivable function on its domain, and the
derivative in time is also continuous. Again, this is in accordance with typical behaviour
in nature; it is also a necessary consequence of introducing time into the study of influence
between such variables. We want to allow statements that prescribe values of a variable
at certain later moments, possibly depending on values at a current moment. A simple
way to do this is to assert that the values of the derivative of the variable’s function are
bounded, and for this to be well-founded such functions need to be derivable. We identify
a variable a with an underlying function t → a and write ȧ for its first derivative.
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Such functions of type t → a can of course easily be shown graphically. We remark, though,
that they are only used here for a formal semantics for simple statements about temporal
influences. Such statements – to be defined next – are the main objects of concern, as they
will be used to symbolically reason about such functions.

Intervals of reals with rational bounds are written as [x, y] for x, y ∈ Q ∪ {∞,−∞}
with x ≤ y. We simply write [5.3,∞] instead of [5.3,∞) in order to avoid unnecessary
case distinctions. Intervals are only (semi-)open on an infinite interval bound. We restrict
ourselves to rational bounds to keep them easily representable. A time interval is one in
which the bounds are non-negative.

▶ Definition 1. Let V be given, a, b ∈ V , [l, u] and [l′, u′] be intervals in the sense above, and
[t1, t2] be a time interval.

A time-value statement (TVS) is of the form t [t1,t2],[l,u],[l′,u′] a. It states that the value
of a is within [l, u] at time point t1, is within [l′, u′] at time point t2, and is within some
interval [l′′, u′′] at any time point t′ ∈ [t1, t2] that is obtained by linearly transforming
[l, u] into [l′, u′] along the interval [t1, t2]. For details, see Def. 4 below.
Thus, such a TVS intuitively states that the portion of the graph of the function a in
the interval [t1, t2] is contained in the trapezoid that has left vertical edge [l, u] at t1 and
right vertical edge [l′, u′] at t2.
Note that every rectangle is a trapezoid (with equal left and right vertical edges). We
will write the special case of a TVS t [t1,t2],[l,u],[l,u] a also simply as t [t1,t2],[l,u] a.
Moreover, if t2 = ∞ then the “right edge” of the trapezoid is ill-defined, and we will
assume that in such a case, the trapezoid degenerates to a rectangle in this sense, i.e.
in a statement t [t1,t2],[l,u],[l′,u′] a with t2 = ∞ we will always have [l, u] = [l′, u′] and
consequentially write it in its abbreviated form. A similar case arises with degenerate
trapezoids of the form t [t1,t2],[−∞,∞],[−∞,∞] a which we also write as t [t1,t2],[−∞,∞] a.
A time-derivative statement (TDS) is of the form t [t1,t2],[l,u] ȧ. It states that the
gradient of the portion of the graph of the function a is bounded from below by l and
from above by u, likewise that the portion of the derivative of the function a in this
interval is contained in the rectangle that is formed by the horizontal interval [t1, t2] and
the vertical interval [l, u].
A value-derivative statement (VDS) is of the form a [l,u],[t1,t2],[l′,u′] ḃ. It states: if
at some point t in time, the function a has a value within [l, u], then in the interval
[t+ t1, t+ t2] the derivative of the function b has values between l′ and u′.

A V-statement is either a TVS, a TDS or a VDS. Note that TVS and TDS assert that
something holds in time, while a VDS is more reminiscent of a temporal logic formula like
□(φ → ♢ψ).

Note the special role that time plays in the above definitions: the time variable t only ever
appears in the context of descriptions of the behaviour of other variables over time, and
the time axis only serves as the domain of functions, but never appears in the range of any
function. The only exception are VDS, where time also appears in the context of a delay
after which a certain statement is supposed to hold.

▶ Definition 2. A temporal V-influence scheme C is a finite set of V-statements.

This introduces the main tool for formal modelling of temporal influence experiments.
Intuitively, a temporal influence scheme collects abstract information about the way that the
variables of an experiment behave over time and influence each other, in particular influence
each other’s growth rate. We simply speak of statements and influence schemes if V is clear
from the context.
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Figure 1 Graphical presentation of some statements about temporal influence in the experiment
on photosynthesis and cellular respiration, as explained in Ex. 3.

▶ Example 3. We consider a phenomenon that is routinely discussed in biology classes:
photosynthesis produces glucose (G) under the influence of light (L), cell respiration consumes
glucose. We model this as a temporal influence scheme over V = {L,G}.2

A typical pattern of light intensity during a 24h day is shown in Fig. 1 left. It is modelled
using 14 TVS like t [9,10],[40,60],[75,85] L that can be visualised as trapezoids in the plane for
influences of type t → L. The unit on the t-axis is hours, the one on the L-axis is percent.

Photosynthesis causes the production of glucose under light. On the other hand, cellular
respiration consumes glucose at a fairly standard rate (which we assume here to be constant).
We model this phenomenon by dividing the range of light intensity into four categories,
leading to four VDS as follows.

In lowest light or darkness (say 0–15%), glucose is solely consumed by cellular respiration
and therefore decreases in overall availability: L [0,15],[0,2],[−10,0] Ġ actually states that
the gradient of light over the next time interval of 2h lies within the range of staying
constant to dropping by 10, say µg/h.
At a lower light intensity (15–40%), the production and consumption of glucose in the
processes of photosynthesis and cellular respiration balance each other out, and there is at
most a small increase or decrease: L [15,40],[0,1.5],[−3,3] Ġ. Here we choose a shorter time
interval – and then even shorter below – as bright light may be more prone to sudden
changes as low light.
At a higher intensity, production wins over consumption, and the growth rate is positive:
L [40,80],[0,1],[0,20] Ġ.
At highest intensity, the growth rate of glucose is even higher: L [80,100],[0,0.5],[15,40] Ġ.

Such VDS are less easy to depict graphically as they include three independent entities: a
value range of L, a time interval, and a range for the gradient that values of G can follow
over time. We introduce the graphical notation shown in Fig. 1 second to left, presenting
those four statements from above.

A TDS seems to be of little use here in order to model the photosynthesis experiment;
they are included in general because of common reasoning principles: if time influences
light intensity, and light intensity influences the way that glucose levels change, then time
indirectly influences the way that glucose levels change. Hence, a statement like “glucose
levels are falling after 20h” – formalised as the TDS t [20,∞],[−∞,0] Ġ and shown in Fig. 1
second to right, actually saying that the levels are not rising instead of falling – may or may
not be a valid conclusion from the TVS and VDS discussed beforehand.

2 Clearly, such metabolism processes could be modelled at arbitrarily higher levels of detail, taking into
account all sorts of involved biochemical agents. The view of the interaction focussing on these three
agents is consistent with what can be done in biology school classes for instance. It already leaves out
further factors like carbon dioxide, water and oxygen, which can either be seen as by-products or as
constantly available.
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At last, if time exerts an influence over the derivative of G, then it must also influence G.
I.e. the picture of what kinds of influence between variables at certain value ranges or at
certain time intervals exist in this model or can be derived from known facts in there, will
not be complete without the possibility to include TVS for G. One such statement is shown
in Fig. 1 right, in blue to distinguish it from the others as a hypothesis, i.e. a statement with
which we associate the question “Is this a correct logical consequence from the statements in
the influence scheme?” It predicts a glucose concentration whose expected value is falling
slightly in the hours between 15 and 22.

It should be clear that in order to be able to answer this question we would need to fix
initial values for G which can be done using another TVS like t [0,2],[20,25] G shown in Fig. 1
right in red, and fixing a range of initial glucose concentration.

The problem of deciding whether a given hypothesis (in the form of a statement H) is
correct w.r.t. some experiment is modelled here as the question whether H follows logically
from the temporal influence scheme C modelling knowledge about the way that the variables of
the experiment behave over time and possibly influence each over. For this to be well-defined
we introduce a formal semantics for statements and schemes next.

Semantics of Influence Schemes. An influence is a function f : R≥0 → R s.t. its domain
dom(f) is a non-unit interval as per above, and f is derivable on its entire domain. An
influence is used to specify the behaviour of a variable a ∈ V over time. We write f(t) = ⊥ if
t /∈ dom(f). Note that necessarily also t /∈ dom(ḟ).

▶ Definition 4. Let V be a set of variables. A V-influence experiment is a collection F of
influences containing exactly one influence Fa for each variable a ∈ V .

F satisfies the TVS S = t [t1,t2],[l,u],[l′,u′] a, written F |= S, if

l + (l′ − l) · t− t1
t2 − t1

≤ Fa(t) ≤ u+ (u′ − u) · t− t1
t2 − t1

(1)

for all t ∈ [t1, t2]. In the special case where t2 = ∞ (and [l′, u′] = [l, u] by convention)
this is to be interpreted as t ∈ [l, u] for all t ≥ t1.
F satisfies the TDS S = t [t1,t2],[l,u] ȧ, also written F |= S, if l ≤ Ḟa(t) ≤ u for all
t ∈ [t1, t2].
F satisfies the VDS S = a [l,u],[t1,t2],[l′,u′] ḃ, also written F |= S, if l′ ≤ Ḟb(z) ≤ u′ for
all z such that there is t with Fa(t) ∈ [l, u] and z ∈ [t+ t1, t+ t2].

F satisfies a V-influence scheme C, written F |= C, if F |= S for all S ∈ C.

An influence scheme C is called satisfiable if there is some F such that F |= C. We say
that a statement S follows from an influence scheme C, written C |= S, if F |= S for all F such
that F |= C. Hence, a temporal influence experiment models concrete behaviour in terms
of particular, real-valued functions; a temporal influence scheme models this abstractly by
collecting (a finite amount) of information about bounds on the expected temporal behaviour
of variables and on the influence they exert on each other leading to such temporal behaviour.
Likewise, a temporal influence scheme can be seen as a finite representation of a (typically
infinite and even uncountable) number of influence experiments with behaviours within the
bounds included in the statements of the scheme.

We also obtain a notion of logical equivalence for influence schemes: we say that C and C′

are equivalent, written C ≡ C′ iff for all influence experiments F we have F |= C iff F |= C′.
Note that in this case, for all statements S we have C |= S iff C′ |= S. Hence, equivalent
models can be seen as forming abstract representations of the same experimental setup that
may differ syntactically.
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Figure 2 Intersecting two trapezoids (in red) over the same time interval into one, two or three
adjacent trapezoids (in blue).

3 The Calculus of Temporal Influence

Geometric Considerations. We consider several subproblems – relaxation of a TVS, in-
tersection and join of two TVS, and the effect of derivatives on TVS – arising with the
problem of deciding (via a sound proof system) whether a given hypothesis follows from a
given scheme, e.g. when two TVS make assertions about the same interval in time. Given
the geometric interpretation of statements introduced in Ex. 3, the considerations carried
out here can be seen as simple geometric principles.

Let S = t [t1,tw],[l1,u1],[l2,u2] a be a TVS. By Def. 4, S implies that for all t ∈ [t1, t2],
the function Fa : t → a satisfies the inequalities in Eq. 1. Clearly, S also implies conditions
on subintervals of [t1, t2], and less restrictive conditions w.r.t. the vertical extent of the two
edges of the trapezoid implied by it. However, it is generally not correct to simply make the
vertical intervals larger and to shorten the time interval. Instead, relaxation is formalised as
follows.

▶ Definition 5. Let S be as above. The set of relaxed TVS w.r.t. S, written relax(S), is the
set of all TVS t [t′

1,t′
2],[l′

1,u′
1],[l′

2,u′
2] a s.t.

t1 ≤ t′1 < t′2 ≤ t2, and
l′1 ≤ l1 + (l2 − l1) · t′

1−t1
t2−t1

and u′
1 ≥ u1 + (u2 − u1) · t′

1−t1
t2−t1

, and
l′2 ≤ l1 + (l2 − l1) · t′

2−t1
t2−t1

and u′
2 ≥ u1 + (u2 − u1) · t′

2−t1
t2−t1

.

Let S = t [t1,t2],[l1,u1],[l2,u2] a and S′ = t [t1,t2],[l′
1,u′

1],[l′
2,u′

2] a be two TVS over the
same time interval. Note that both induce a trapezoid in the graphical representation of
the function a, and the horizontal range is [t1, t2] for both of these trapezoids. Clearly, if
e.g. l1 ≤ l′1 and l2 ≤ l′2, then the second lower bound implies the first, and similarly for
the upper bounds. However, if l1 < l′1 and l2 > l′2, then there is a unique inner point
tl ∈ [t1, t2] at which the two lower sides of the trapezoids intersect, namely such that
l1 + (l2 − l1) · tl−t1

t2−t1
= l′1 + (l′2 − l′1) · tl−t1

t2−t1
and l1 + (l2 − l1) · t−t1

t2−t1
< l′1 + (l′2 − l′1) · t−t1

t2−t1
for all t ∈ [t1, tl), and l1 + (l2 − l1) · t−t1

t2−t1
> l′1 + (l′2 − l′1) · t−t1

t2−t1
for all t ∈ (tl, t2]. Hence,

splitting [t1, t2] into [t1, tl] and [tl, t2] would make it possible to have each lower bound be
represented by a straight line in this case, the case where l1 > l′1 and l2 > l′2 works similarly.
Moreover, this reasoning also applies to the upper bounds.

It should be clear that the bounds imposed by two trapezoids over the same time interval
[t1, t2] can equally be represented by one (over [t1, t2]), two (over [t1, tl] and [tl, t2]) or three
trapezoids (over [t1, tl], [tl, tu] and [tu, t2], or [t1, tu], [tu, tl] and [tl, t2], for some tl, tu determ-
ined by the two upper and lower sides of the trapezoids at hand and the order of their inter-
section points). A technical definition of the TVS isecti([t1, t2], [l1, u1], [l2, u2], [l′1, u′

1], [l′2, u′
2])
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for i ∈ {1, 2, 3} is given in Appendix A. For the following it suffices to know that these terms
refer to the first, second, or third (if they exist) trapezoid resulting from the intersection of
S and S′, as shown in Fig. 2.

Another important reasoning principle is derived from the converse operation of joining
two adjacent TVS S and S′. This is possible if the two trapezoids defined by them fit into
the trapezoid defined by taking the left vertical interval of S and the right vertical interval
of S′ at their respective moments in time as new trapezoid-defining edges.

▶ Definition 6. Let S = t t1,t2,[l1,u1],[l2,u2] a and S′ = t [t2,t3],l′
1,u′

1],[l′
2,u′

2] a be TVS. Let
l = l1 + (l′2 − l1) · t2−t1

t′
2−t1

and let u = u1 + (u′
2 − u1) · t2−t1

t′
2−t1

. If u ≥ u2, u ≥ u′
1 and l ≤ l2, l ≤ l′1

then set join(t1, t2, t3, [l1, u1], [l2, u2], [l′1, u′
1], [l′2, u′

2]) = t [t1,t2],[l1,u1],[l′
2,u′

2] a, otherwise set
join(t1, t2, t3, [l1, u1], [l2, u2], [l′1, u′

1], [l′2, u′
2]) = S to make it always defined.

Let S1 = t [t1,t2],[l1,u1],[l2,u2] a be a TVS and F |= S1, i.e. Fa : t → a satisfies Fa(t1) ∈
[l1, u1] and Fa(t2) ∈ [l2, u2]. Let furthermore S2 = t [t′

1,t1],[l3,u3] ȧ and S3 = t [t2,t′
2],[l4,u4] ȧ

be TDS. They imply Ḟa(t) ∈ [l3, u3] for all t ∈ [t′1, t1] and that Ḟa(t) ∈ [l4, u4] for all
t ∈ [t2, t′2]. This entails l1 + (t1 − t) · u3 ≤ Fa(t) ≤ u1 − (t1 − t) · l3 for all t ∈ [t′1, t1] and
l2 + (t− t2) · l4 ≤ Fa(t) ≤ u2 + (t− t2) · u4 for all t ∈ [t2, t′2].

▶ Definition 7. Let S1, S2 and S3 be as above. Define lderivative([t1, t2], [l1, u1], [l3, l4]) as
the TVS t [t′

1,t1],[l1+(t1−t′
1)·u3,u1+(t1−t′

1)·l3],[l1,u1] a and rderivative([t1, t2], [l2, u2], [l4, u4]) as
the TVS t [t2,t′

2],[l2,u2],[l2+(t′
2−t2)·l4,u2+(t′

2−t2)·u4] a.

Note the inverted role of u3 and l3 in lderivative, which is due to the reasoning from right to
left that happens here.

The Calculus. We say that a V-statement S is provable in the Calculus of Temporal
Influence (CTI) w.r.t. an influence scheme C, written C ⊢ S, if there is a finite proof for S
in the proof system whose rules are shown in Fig. 3. We say that C is consistent in CTI if
there are no statements S, S′ derivable from C s.t. rules (STVS) or (STDS), when applied to
S, S′ as premises, would yield an ill-defined TVS or TDS, i.e. one where u < l in a vertical
interval [l, u]. We briefly explain each rule and argue why it is sound.

(F): This rule stipulates that any statement S that is already contained in C is derivable.
This is evidently sound.
(GTVS) & (GTDS): These rules close gaps in the domain of a function or its derivative by
asserting that the function, resp. its derivative be defined in the gap. This is sound due
to the stipulation that functions and their derivatives are defined on intervals.
(WTVS): This weakening rule stipulates the following kind of reasoning. Suppose we
know that in the interval I1, the function a is contained in the trapezoid generated by I2
and I3. Then in any subinterval of I1 it is contained in any trapezoid that is larger in the
vertical dimension, using the reasoning outlined before Def. 5. Note that this rule can be
used to split a TVS in half on the time axis. The rule is easily seen to be sound already
due to geometric reasoning.
(WTDS): This weakening rule stipulates that if ȧ is contained in some rectangle, it must
be contained in any rectangle that is smaller on the horizontal axis or larger on the
vertical axis. Soundness is also by geometric reasoning.
(JTVS) & (JTDS): These rules join two TVS or two TDS via the machinery introduced
before Def. 6, resp. simple geometric reasoning. Soundness is by invoking weakening first
to adjust vertical extents and then by straightforward joining of two trapezoids, resp. two
rectangles.
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(F)
S

if S ∈ C (GTVS)
t [t1,t2],I2,I3 a t [t′

1,t′
2],I′

2,I′
3 a

t [t2,t′
1],[−∞,∞] a

if t2 < t′1

(GTDS)
t [t1,t2],I2 ȧ t [t′

1,t2],I′
2 ȧ

t [t2,t′
1],[−∞,∞] ȧ

if t2 < t′1 (WTVS)
S

S′ if S′ ∈ relax(S)

(WTDS)
t I1,I2 ȧ

t I′
1,I′

2 ȧ
if I ′

1 ⊆ I1, I2 ⊆ I ′
2 (JTVS)

t [t1,t2],I2,I3 a t [t2,t3],I′
2,I′

3 a

join(t1, t2, t3, I2, I3, I
′
2, I

′
3)

(JTDS)
t [t1,t2],I2 ȧ t [t2,t3],I′

2 ȧ

t [t1,t3],I2∪I3 ȧ
(VD)

t I1,I2,I3 a

t I1,[−∞,∞] ȧ

(DV)
t I1,I2 ȧ

t I1,[−∞,∞] a
(STVS)

t I1,I2,I3 a t I1,I′
2,I′

3 a

isecti(I1, I2, I3, I
′
2, I

′
3)

if i ∈ {1, 2, 3}

(STDS)
t I1,I2 ȧ t I′

1,I′
2 ȧ

t I1∩I′
1,I2∩I′

2 ȧ
(Der)

t [t1,t2],I1 a a I1,[t′
1,t′

2],I2 ḃ

t [t1+t′
1,t2+t′

2],I2 ḃ

(CDL)
t [t2,t3],I1,I2 a t [t1,t2],I3 ȧ

lderivative([t1, t2], I1, I3)
(CDR)

t [t1,t2],I1,I2 a t [t2,t3],I3 ȧ

rderivative([t2, t3], I2, I3)

Figure 3 Proof rules for correctness of a statement w.r.t. an influence scheme C.

(VD) & (DV): These rules assert that a function is defined on some interval if its derivative
is defined there, and vice versa. Soundness is by the definition of an influence.
(STVS) & (STDS): The former rule can be used to derive up to three distinct TVS from
two TVS defined on the same time interval, via the considerations outlined after Def. 5.
Soundness follows from the discussion there; the technical definition is in Def. 13 in
Appendix A. The latter rule is similar and for TDS instead, and, hence much simpler
and readily seen to be sound.
(Der): This core rule of the calculus can be thought of as a form of modus ponens. The
right premise is a VDS, which always has the form of an implication that, if the graph of
the function a is contained in the vertical interval [x, y] at some point, then the derivative
of the function b is contained in the interval I2 during some interval dictated by [t′1, t′2].
The left premise of this rule is the assertion that a has the property demanded in the
right premise of the rule, whence the conclusion of the right premise must hold, i.e. the
derivative of b has the given properties in some interval. Soundness is due to the semantics
of a VDS, applied to the whole interval [t1, t2].
(CDL) & (CDR): These rules combine the information that the graph of a is contained in
some trapezoid (left premise) together with assertions on the derivative of a to the left
(CDL) or right (CDR), in order to derive new trapezoids left, resp. right of the trapezoid
given by the left premise. Soundness is due to the discussion before Def. 7.

Note that the left premise of rule (Der) is a rectangle-shaped TVS. It would be possible to
formulate a similar rule more specialised to general trapezoids, but this would make it even
more unwieldy, whence we refrain from this.
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The following is a consequence of soundness of all the rules. It also entails that an
inconsistent influence scheme is not satisfiable.

▶ Theorem 8 (Soundness). For any temporal influence scheme C and and statement S we
have: if C ⊢ S then C |= S.

4 Decidability For Fixed Strata in the Consequence Relation

Let C be an influence scheme and let S be a statement such that C ⊢ S. We say that a
proof of S from C has (Der)-depth k if, on any path from S to an axiom, there are at most
k invocations of rule (Der). We say that S has (Der)-depth k w.r.t. C if there is a proof of
C |= S with (Der)-depth at most k. Let C be consistent. We write CTI[k](C) for the set of
statements S such that C ⊢ S and S has (Der)-depth k w.r.t. C. If C is clear from context, we
simply speak of (Der)-depth. We single out rule (Der) here since it is conceptually the most
complicated, in particular for a pupil in secondary education. The stratification induced by
the above definition also is very natural, as witnessed by Lemma 11.

Of course, if C is not consistent, C is not satisfiable, whence C |= S trivially, but the proof
of any statement witnessing inconsistency, for example by containing empty vertical intervals,
might have (Der)-depth k′ with k′ being much greater than k. This is the reason for the
restriction to consistent influence schemes. We now define two notions of normalisation.

▶ Definition 9. Let C be a consistent V-influence scheme, let a ∈ V, let k ∈ N and let
S = {S1, . . . , Sn} be a set of TDS of (Der)-depth k or less, where Sj = t [tj

1,tj
2],[lj ,uj ] ȧ. We

call S k-normalised if the following hold:
S is separated, i.e. for all j < k, we have tj2 = tj+1

1 .
S is minimal, i.e. for all TDS t [t1,t2],[l,u] ȧ of (Der)-depth (w.r.t. C) of k or less, if
t1 < t2 and there are j ≤ j′ such that tj1 ≤ t1 < t2 ≤ tj

′

2 , then for all j′′ s.t. j ≤ j′′ ≤ j′,
we have lj′′ ≥ l and uj′′ ≤ u.
S is representative, i.e. for all TDS S = t I1,I2 ȧ of (Der)-depth (w.r.t. C) of k or less, S
is derivable from S via applications of rules (WTDS) and (JTDS) alone.

We call a set of TDS k-normalised if it is k-normalised for each individual variable.

The intuition here is that being separated removes temporal overlap between the individual
TDS and that the union of their temporal domains forms an interval. Minimality means
that S cannot be strengthened any further without invocations of rule (Der), and being
representative means that S is a complete representation of CTI[k](C) w.r.t. the derivative
of the function a in the sense that any TDS from the latter set can be derived from the
former by very simple rules. In fact, derivability of such a TDS S can be decided by visual
inspection: we have S ⊢ S iff the corridor defined by S stretches at least over S’s time
interval and is entirely surrounded by the rectangle defined by S there.

▶ Definition 10. Let C be a consistent V-influence scheme, let a ∈ V, let k ∈ N and let
S = {S1, . . . , Sn} be a set of TVS of (Der)-depth k or less, where Sj = t [tj

1,tj
2],[lj ,uj ],[l′j ,u′j ] a.

We call S k-pre-normalised if the following hold:
S is separated, i.e. for all j < k, we have tj2 = tj+1

1 .
S is minimal, i.e. for all TVS t [t1,t2],[l′,u′],[l′,u′] a of (Der)-depth (w.r.t. C) of k or less, if
t1 < t2 and there are j ≤ j′ such that tj1 ≤ t1 < t2 ≤ tj

′

2 , then for all j′′ s.t. j ≤ j′′ ≤ j′,
and for all t ∈ [tj

′′

1 , tj
′′

2 ] we have that

l+ (l− l′) · t′ ≤ lj
′′

+ (l′j
′′

− lj
′′
) · t′′ ≤ uj′′

+ (u′j′′
−uj′′

) · t′′ ≤ u+ (u−u′) · t′
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where t′ = t−t1
t2−t1

and t′′ = t−tj′′
1

tj′′
2 −tj′′

1
.

S is representative, i.e. for all TVS S = t I1,I2,I3 a of (Der)-depth (w.r.t. C) of k or less,
S is derivable from S via applications of rules (WTVS) and (JTVS) alone.

Moreover, we call S k-normalised if it is k-pre-normalised and the following holds:
S is derivative-reduced, i.e. for all TDS t I,[l,u] ȧ of (Der)-depth (w.r.t. C) of k or less,
and for all j ≤ k, the following holds: if I ∩ [tj1, t

j
2] ̸= ∅, then (i) if lj ̸= −∞ and l′j ̸= −∞,

then l ≤ l′j−lj

tj
2−tj

1
≤ u, and (ii) if uj ̸= ∞ and u′j ̸= ∞, then l ≤ u′j−uj

tj
2−tj

1
≤ u.

S is (Der)-ready, i.e. if S can be obtained from some Sj via (WTVS), and there is a VDS
S′ such that S and S′ are possible premises for an application of rule (Der), then S and
Sj agree on their time interval.

We call a set of TVS k-normalised if it is k-normalised w.r.t. each variable.

The intuition for the first three items is the same as in Def. 9, but the formulation of
minimality is more complicated due to the more complex geometry involved. Minimality in
geometric terms requires that any of the Sj that overlaps with any TVS S of (Der)-depth k

or less must be contained in the trapezoid defined by S for the time interval of the overlap.
Hence, Sj (or any TVS derived by splitting it) could not be strengthened via (STVS) using S.

The intuition for being derivative-reduced is the following: when we know that the graph
of function a must pass through a given trapezoid that is bounded from e.g. above, and we
know that the derivative of that function is bounded from above by u and from below by
l, then unless the slope of the upper edge of the trapezoid is between l and u, there will
be parts of the trapezoid that a cannot pass through without violating the bounds l and
u on its derivative, and this fact can be derived via rules (CDL) or (CDR) after potentially
splitting the TDS in question via (WTDS), followed by (STVS). Similar reasoning applies
for lower bounds or if the derivative is only properly bounded from one side. Note that for
two neighbouring TVS such that the derivative in question is bounded from both above and
below on the point in time of their intersection, being derivative-reduced entails that the
upper and lower bounds of the TVS match due to continuity.

Finally, the point of being (Der)-ready is to ensure that a TVS can serve as the left
premise of a given VDS either in its horizontal extent, or not at all.

▶ Lemma 11. Let C be a consistent V-influence scheme, let a ∈ V, let k ∈ N. Let S be a
finite set of TVS and let S ′ be a finite set of TDS s.t. all TVS and TDS of (Der)-depth (w.r.t.
C) k or less can be derived from S ∪ S ′ without using rule (Der). Then there are Snorm and
S ′

norm that both are k-normalised (and therefore representative, ensuring equivalence to S and
S ′ w.r.t. ⊢). Moreover, Snorm and S ′

norm can be computed from S and S ′ in polynomial time.

The proof has been moved to Appendix B for space considerations. This lemma yields a
polynomial-time decision procedure for CTI[k](C):

▶ Theorem 12. Let k be fixed. Let C be a consistent V-influence scheme and let S be
V-statement. It is decidable in polynomial time whether S ∈ CTI[k](C).

Proof. If S is a VDS then there is nothing to prove since no proof rule has a VDS as its
conclusion. So assume that S is a TVS or a TDS. C trivially contains subsets S,S ′ of
TVS, resp. TDS that satisfy the premises of Lemma 11 for k = 0. Let S0

norm,S ′0
norm be the

0-normalised, polynomially-sized sets from said lemma. If k = 0 we are done.
Now assume that we have obtained j-normalised polynomially-sized sets Sj

norm and S ′j
norm

for j ≥ 0. We obtain sets Sj+1 ⊇ Sj
norm and S ′j+1 ⊇ Sj

norm by extending Sj
norm and S ′j

norm the
following way: (i) First we apply rule (WTVS) to sets in Sj

norm to obtain premises for all
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instances of rule (Der) that can be obtained this way. Since Sj is (Der)-ready, this is at most
one instance per pair of TVS in Sj and VDS in C, since only vertical weakening is necessary.
(ii) Then we obtain all possible TDS that can be derived via rule (Der) from these pairs.

By the above, the sets Sj+1 and S ′j+1 are of polynomial size. Moreover, they satisfy the
conditions of Lemma 11 for k = j + 1: let S′ be a TVS or a TDS in CTI[j + 1](C). If also
S′ ∈ CTI[j](C), then due to j-normalisation of Sj

norm and S ′j
norm, we are done. Otherwise, in

any proof of S′ from C that witnesses S′ ∈ CTI[j + 1](C), there are finitely many top-level
applications of rule (Der), i.e. those such that on the path from the root S′ to the application
of (Der) in the proof tree, there is no second application of (Der). Let T be a conclusion of
such a rule application, let Tl and Tr be its left- and right-hand premises. If we can show
that T is derivable from Sj+1 ∪ S ′j+1, we are done since T is arbitrary.

By definition, Tl ∈ CTI[j](C) and, hence, Tl can be derived from Sj
norm via applications of

(JTVS) and (WTVS). W.l.o.g. the applications of (JTVS) happen last in the proof tree of Tl,
i.e. there are T1, . . . , Tm s.t. Ti can be obtained from Sj

norm via (WTVS) for 1 ≤ i ≤ m. By
(Der)-readiness of Sj

norm, each of the Ti is a valid premise for rule (Der) together with Tr,
and the conclusions T ′

1, . . . , T
′
m are all in S ′j + 1. It is easily verified that T can be obtained

from T ′
1, . . . , T

′
m via rules (WTDS) and (JTDS). Since T was arbitrary, S′ is provable from

Sj+1 ∪ S ′j+1 without using rule (Der).
Using Lemma 11 on Sj+1 and S ′j+1 yields, in polynomial time, j+1-normalised Sj+1

norm
and S ′j+1

norm . Continuing this sequence of mass-applications of rule (Der) and re-normalisations
yields, in polynomial time, k-normalised Sk

norm and S ′k
norm from which it follows directly

whether S ∈ CTI[k](C). ◀

As a corollary, we obtain the following: given a consistent influence scheme C and a
statement S, it is semi-decidable whether C ⊢ S. If C ⊢ S, then there is a proof of S
from C, and it has (Der)-depth k for some k. Hence, by checking consecutively whether
S ∈ CTI[k′](C) for k′ = 0, . . . will yield a positive result when reaching k′ = k at the latest.
In fact, this procedure is polynomial for k given in unary.

5 A Prototypical Implementation

We have implemented the proof search algorithm given in Thm. 12 in Python.3 The program
accepts statements and hypotheses as lists of tuples, or from a CSV file.

The solver module can run in different modes: it can either generate all derivable
statements up to a certain (Der)-depth, until it has covered a certain point in time with
statements, or until it runs out of new statements to derive, which, in practice, happens quite
frequently due to compounding imprecision growing with the distance from the initial values.
This is an effect that is known from numerical methods for solving differential equations,
cf. [12, Chp. 5]. It remains to be seen whether such effects are acceptable for the foreseen
application in a digital learning tool, and whether mathematical methods can be employed
to reduce such effects.

The implementation also comes with a plotter module to visualise the statements that
were derived. Full implementation into a classroom application is still to be done. Finally,
the implementation comes with some pre-implemented example problems, including the
photosynthesis problem from Ex. 3.

3 Available at https://github.com/SoerenMoeller/timed_influence_solver.
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Preliminary results show that the implementation is fast enough to be able to solve
didactically meaningful problems in seconds even on mobile devies, which matches similar
results for the Calculus of (Non-Temporal) Influence [4].

The implementation differs in some details from the variant presented in the proof. For
example, the implementation keeps sets of TVS and TDS associated to a variable normalised,
i.e. after each additional statement that is derived w.r.t. a given variable, its entire set
of associated statements is re-normalised immediately, instead of doing this in bulk after
exhausting certain derivation rules. The reason for this is that keeping a representation of
derived statements normalised is advantageous form a computational point of view, but the
structure of the proof above becomes simpler if normalisation is done in bulk. It is not hard
to see that both approaches yield the same results.

6 Conclusion

This work introduced the Calculus of Temporal Influence with the aim to extend previously
started work on the formalisation of experiments and phenomena in nature, specifically in
natural science classes. The focus here is on allowing processes to be modelled that are
largely driven by time.

There are various other proposals of formalisms that also provide means to model dynamic
systems evolving in time, like timed automata [2], timed Petri nets [13], hybrid automata [7],
etc. In fact, modelling biological, chemical or physics phenomena by means of discrete and/or
continuous mathematical formalisms is an active field of research, cf. [15, 1, 10, 14, 5, 3].
The need to develop a new formalism is driven by its application in an environment that
is largely determined by didactical considerations. For example, hybrid automata allow for
very precise modelling which is needed in verification; the price to pay is undecidability,
high complexity and potentially only approximative analysis. For the hypotheses that are
typically created by secondary-education pupils, precision is much less relevant, and so the
Calculi of (Temporal and Non-Temporal) Influence are designed to allow reasoning about
imprecise models.

It is important to note that the Calculus of Temporal Influence is a suggestion; it will
have to prove worthy under exactly those circumstances. This will require much further
work, starting with a clear categorisation of natural science experiments to which a hierarchy
of modelling formalisms w.r.t. expressiveness can be aligned. An important point here
is that it is not necessarily desirable to be able to model every such phenomenon, since
more complicated argument structures may not be suitable for secondary-education level.
In particular for lower grades, explainability of the results and ease of use of the learning
framework are considerably more important.

However, being able to model more phenomena is certainly interesting alongside a different
axis, i.e. the scientific one. Something that immediately comes to mind is the ability to
make statements about compound functions, e.g. on the sum of the values of two variables
a and b. Apart from this and the obvious question of whether (polynomial) decidability
could be obtained for ⊢, perhaps based on some pumping argument, there are also further
aspects of future work, perhaps of more technical nature, that will have to be considered
like completeness of the calculus: does C |= H imply C ⊢ H? In the non-temporal case,
completeness does not hold, but it is possible to retain it for a large class of experiment
models [4]. We suspect the obstacles incurring in the temporal version to be even bigger.
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We are also planning integration of our implementation in the wider context of a digital
tool that supports learning and teaching in experimental science classes. Beyond the obvious
problems of providing students with an answer whether their hypothesis was correct, based
on the Calculis of Temporal Influence, this includes also tasks such as visualisation of the data
in question, automatic translations from textual statements into formal ones, and teacher
support.
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A The Technical Definition of Intersecting Two Trapezoids

▶ Definition 13. Let S = t [t1,t2],[l1,u1],[l2,u2] a and S′ = t [t1,t2],[l′
1,u′

1],[l′
2,u′

2] a be two
TVS.

If l1 < l′1 and l2 > l′2, or if l1 > l′1 and l2 < l′2, let tl be the unique point in (t1, t2) such
that lol = l1 + (l2 − l1) · tl−t1

t2−t1
= l′1 + (l′2 − l′1) · tl−t1

t2−t1
. Let hil = min(u1 + (u2 − u1) ·

tl−t1
t2−t1

), u′
1 + (u′

2 − u′
1) · t1−t2

t2−t1
).

If u1 < u′
1 and u2 > u′

2, or if u1 > u′
1 and u2 < u′

2, let tu be the unique point in
(t1, t2) such that hiu = u1 + (u2 − u1) · tu−t1

t2−t1
) = u′

1 + (u′
2 − u′

1) · tu−t2
t2−t1

. Let lou =
max(l1 + (l2 − l1) · tu−t1

t2−t1
, l′1 + (l′2 − l′1) · tu−t1

t2−t1
).

We now define three TVS Si = isecti([t1, t2], [l1, u1], [l2, u2], [l′1, u′
1], [l′2, u′

2]) for i ∈ {1, 2, 3},
paremeterized in the parameters of S, S′ via:

If both (i) l1 ≥ l′1 and l2 ≥ l′2 or l1 ≤ l′1 and l2 ≤ l′2, and (ii) u1 ≥ u′
1 and u2 ≥ u′

2, or
u1 ≤ u′

1 and u2 ≤ u′
2 hold, then S1 = t [t1,t2],[max(l1,l′

1),min(u1,u′
1)],[max(l2,l′

2),min(u2,u′
2)] a

and S2 = S3 = S1.
If both (i) l1 ≥ l′1 and l2 ≥ l′2 or l1 ≤ l′1 and l2 ≤ l′2, and (ii) u1 > u′

1 and u2 < u′
2,

or u1 < u′
1 and u2 > u′

2 hold, then S1 = t [t1,tu],[max(l1,l′
1),min(u1,u′

1)],[lou,hiu)] a and
S2 = t [tu,t2],[lou,hiu)],[max(l2,l′

2),min(u2,u′
2)] a, and S3 = S2.

If both (i) l1 < l′1 and l2 > l′2 or l1 > l′1 and l2 < l′2, and (ii) u1 ≤ u′
1 and u2 ≤ u′

2,
or u1 ≥ u′

1 and u2 ≥ u′
2 hold, then S1 = t [t1,tl],[max(l1,l′

1),min(u1,u′
1)],[lol,hil)] a and

S2 = t [tl,t2],[lol,hil)],[max(l2,l′
2),min(u2,u′

2)] a, and S3 = S2.
If both (i) l1 < l′1 and l2 > l′2 or l1 > l′1 and l2 < l′2, and (ii) u1 < u′

1 and
u2 > u′

2, or u1 < u′
1 and u2 > u′

2 hold, then both tl and tu are defined. If tl < tu,
then S1 = t [t1,tl],[max(l1,l′

1),min(u1,u′
1)],[lol,hil)] a and S2 = t [tl,tu],[lol,hil)],[lou,hiu] a,

and S3 = t [tu,t2],[lou,hiu)],[max(l2,l′
2),min(u2,u′

2)] a. The case for tu < tl is defined
analogously. If tl = tu, then S1 = t [t1,tl],[max(l1,l′

1),min(u1,u′
1)],[lol,hil)] a and S2 =

t [tl,t2],[lol,hil)],[max(l2,l′
2),min(u2,u′

2)] a and S3 = S2.
By setting S3 = S2 or S1 = S2 = S3, we make sure that, both for i = 2 and i =, the TVS
isecti([t1, t2], [l1, u1], [l2, u2], [l′1, u′

1], [l′2, u′
2]) are defined, even if the intersection produces less

than three distinct TVS.

B Proof of Lemma 11

Before we begin with the proof of Lemma 11, we study the interplay between TVS and TDS
on adjacent time intervals. Let S1 = t [t1,t2],[l1,u1],[l′

1,u′
1] a and S2 = t [t2,t3],[l2,u2],[l′

2,u′
2] a

be two adjacent TVS and let S3 = t [t1,t2],[l3,u3] ȧ and S4 = t [t2,t3],[l4,u4] ȧ be two adjacent
TDS, all over the same variable a and with pairwise matching time intervals. This is a
situation that appears in sets of separated TVS and TDS. The synchronisation of the time
intervals can be achieved by using rules (WTVS) and (WTDS).

We call an individual TVS derivative-reduced, if it satisfies the conditions laid out in
Def. 10 for derivative-reducedness of an entire set of TVS. Obviously, a set of TVS is
derivative-reduced if all the TVS in it are so. By the above, we can assume that, for
separated sets of TVS and separated and minimal TDS, the individual points where time
intervals touch each other are the same. This can be achieved by splitting a TVS if two TDS
for the same variable touch in an interior point of its time interval, and vice versa. Clearly,
this produces polynomial blowup at most. Hence, for a given TVS, there is a unique strictest
TDS in question that dictates whether the TVS is derivative-reduced. For our considerations,
we assume that this is S3 for S1 and S4 for S2.



F. Bruse, M. Kastaun, M. Lange, and S. Möller 10:17

We can now make S1 derivative-reduced by using rule (STVS) to obtain TVS for the unit
intervals [t1, t1] and [t2, t2] and using them as left premises for rules (CDR), resp. (CDL). The
former of these rules produces an upper bound on the slope of the upper edge of the trapezoid
generated by S1, and a lower bound on the slope of the lower edge of said trapezoid. The
latter rule produces a lower bound on the slope of the upper edge, and an upper bound on
the slope of the lower edge. Notably, the actual slopes of the edges of the trapezoid defined
by S1 can violate at most one of these bounds per slope. It follows that the intersection
of the three TVS in question, i.e. S1, the trapezoid obtained by using rule (CDR), and
the one obtained by using rule (CDL), do not produce intersecting upper and lower edges
unless there is inconsistency: The trapezoid obtained by using the former rule shares the
right edge with the one defined by S1, and the trapezoid obtained by using the latter rule
shares a left edge with the one defined by S1. Hence, neither of these produces a nontrivial
intersection with S1, and they cannot intersect with each other inside the trapezoid defined
by S1 for simple geometric reasons unless S1 and S3 together are inconsistent. Hence, if
we assume consistency, combining these three trapzoids using rule (STVS) produces a single
new trapezoid S′

1 = t [t1,t2],[ld
1 ,ud

1 ],[l′d
1 ,u′d

1 ] a. Moreover, S′
1 shares at least two of l1, u1, l

′
1, u

′
1,

since S1 violates at most one bound on the slope of its upper edge, and at most one on the
slope of its lower edge. We write reduce(S1, S3) for the TVS S′

1 obtained this way. We say
that a TVS S is reduced w.r.t. a TDS S′ if reduce(S, S′) = S, i.e. if the trapezoid defined
by it already satisfies the conditions on its slopes induced by S′. As outlined above, in a
separated, minimal setting, w.l.o.g., for each TVS S there is a unique TDS S′ such that S is
derivative-reduced if it is derivative-reduced w.r.t. S′. The above also works if S3 contains
infinite upper and lower bounds; in this case there are simply less restrictions.

Now image that we obtain S′
1 = t [t1,t2],[ld

1 ,ud
1 ],[ld

2 ,ud
2 ] a = reduce(S1, S3) and S′

2 =
t [t2,t3],[l′d

1 ,u′d
1 ],[l′d

2 ,u′d
2 ] a = reduce(S2, S4). If [ld2 , ud

2] = [l′d1 , u′d
1 ] then we are done. Otherwise

we obtain the TVS t [t2,t2],[max(ld
2 ,l′d

1 ),min(ud
2 ,u′d

1 )] a, and we can apply rules (CDL) and (CDR)
together with S2 resp. S4 to further restrict the function Fa on the intervals [t1, t2] and
[t2, t3]. Hence, making a single TVS derivative-reduced is rather straightforward, but already
with two, it is not clear that the process of making both of them derivative-reduced at the
same time ever halts. The following is a crucial observation for the process of making a set
of TVS derivative-reduced.

▶ Observation 14. Let S′ = t [t1,t2],[l1,u1],[l2,u2] a be the result of reduce(S, S′′) for some
TDS S′′. Let [l′1, u′

1] ⊆ [l1, u1] and [l′2, u′
2] ⊆ [l2, u2] and let R1 = t [t1,t1],[l′

1,u′
1] a and

R2 = t [t2,t2],[l′
2,u′

2] a be two TVS over unit intervals. Then there are unique, maximal
intervals [l′′1 , u′′

1 ] ⊆ [l1, u1] and [l′′2 , u′′
2 ] ⊆ [l2, u2] s.t. S′

l = t [t1,t2],[l′
1,u′

1],[l′′
2 ,u′′

2 ] a and S′
r =

t [t1,t2],[l′′
1 ,u′′

1 ],[l′
2,u′

2] a are derivative-reduced w.r.t. S′′. Moreover, they can be obtained using
rules (CDR), resp. rule (CDL) with the R1 resp. R2 as premises and then using (STVS).

The reason for this is that S is already derivative-reduced w.r.t. S′′, i.e. the slopes of the
upper and lower edges of the trapezoid defined by it are already within the bounds given by
S′′. Hence, making one of the vertical intervals smaller will only result in the other interval
shrinking when making the TVS derivative-reduced again. We write reduce(S′, S′′, [l′1, u′

1])
or reduce(S′, S′′, [l′2, u′

2]) for the TVS S′
l and S′

r obtained this way, tacitly assuming that it
is clear on which side the stricter vertical interval goes. Note that all of this also works if
one of the TVS has infinite upper or lower bounds.

These re-reduced TVS are important since they give us an easy termination argument for
the process of making a separated sequence of TVS derivative-reduced: Use the two-argument
version of reduce to obtain a derivative-reduced version of the leftmost TVS. Let [l, u] be
it’s right vertical interval, and let [l′, u′] be the left interval of the second TVS from the left.
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Then use the three-argument version together with [l, u] ∩ [l′, u′] to make the second TVS
from the left derivative-reduced. This might yield a new left interval [l′′, u′′] for said second
TVS, so we use the three-argument version of reduce on the first TVS to adjust it to the new
interval bounds. Crucially, this will not change the right vertical interval of the first TVS,
whence the process terminates.

The general procedure of making an entire separated sequence of TVS derivative-reduced
works as follows: assume that the first k TVS are already derivative-reduced. Let [l, u] be
the right vertical interval of the kth such TVS, and let [l′, u′] be the left vertical interval
of it’s right neighbour, i.e. the k+1st TVS. Use the three-argument version of reduce on
this from the left, together with the interval [l, u] ∩ [l′, u′]. This makes the k+1st TVS
derivative-reduced, and potentially introduces an even stricter interval [l′′, u′′] for the vertical
interval between the kth and k+1st TVS. Use the three-argument version of reduce to adjust
the kth TVS. This potentially yields a new interval bound between the kth and k−1st TVS,
so use the three-argument version of reduce to adjust the k−1st TVS as well. Since the
new, stricter intervals only propagate to the left, this process terminates when the first
TVS is re-reduced, since it does not have a left neighbour. Now the first k + 1 TVS are
derivative-reduced. Clearly this process works in polynomial time, since it propagates to the
left at most once per TVS, which, in turn, only happens once for each of them.4

It follows that a sequence of separated TVS can be made derivative-reduced in polynomial
time.

We are now ready to prove the following.

▶ Lemma 11. Let C be a consistent V-influence scheme, let a ∈ V, let k ∈ N. Let S be a
finite set of TVS and let S ′ be a finite set of TDS s.t. all TVS and TDS of (Der)-depth (w.r.t.
C) k or less can be derived from S ∪ S ′ without using rule (Der). Then there are Snorm and
S ′

norm that both are k-normalised (and therefore representative, ensuring equivalence to S and
S ′ w.r.t. ⊢). Moreover, Snorm and S ′

norm can be computed from S and S ′ in polynomial time.

Proof. We begin by transforming S ′ into a set S ′
c of TDS that is almost k-normalised for

every variable. Note that the only rules that have a TDS as their conclusion are rules (Der),
(GTDS), (WTDS), (STDS) and (VD). Obviously, rule (Der) plays no role here.

As a first step, we generate a candidate set S ′
c from S ′ by making it separated for every

variable. This is done by removing non-unit overlap between TDS with different time intervals
using rule (WTDS). We use this rule to split a TDS that overlaps with another w.r.t. their
time intervals such that any two TDS in the set either have the same time interval, or time
intervals that overlap in at most one point. Since each TDS overlaps at most with all the
others in S ′, this produces at most polynomial blowup in the number of TDS.

We then use rule (STDS) if several TDS still overlap at non-unit intervals. By assumption,
any such overlapping TDS have the same time interval, so it is easy to see that this produces
at most one TDS per time interval with nontrivial overlap. We use rule (GTDS) to close any
uncovered gaps in the horizontal dimension. Hence, S ′

c is now separated. It is also minimal:
Any witness to the contrary must be derivable from S ′ ∪ S by assumption. Rules (GTDS) and
(VD) certainly cannot help to produce such a counterexample, as they produce TDS with
infinite lower and upper bounds. Rule (WTDS) can also be omitted since its premise would
already be a counterexample. However, we just used rule (STDS) to its maximum extent,
so S ′

c is minimal for each variable. It is not yet representative though, since there might

4 In fact, the process can be optimised to only propagate to the left once. We simply state this here
without an argument.
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be a TDS derivable using rule (VD), but the premise of that rule is not in S. However, by
the reasoning above it is almost representative in the sense that these are the only TDS of
(Der)-depth k or less not yet derivable from S ′

c.
Hence, we now transform S into a candidate set Sc that is almost k-pre-normalised for

each variable. Again, we make Sc separated by using rule (WTVS) to reduce overlaps to
statements with either unit intervals, or the same time interval, and then (STVS) to reduce
overlap to unit intervals only. Note that rule (STVS) may produce shorter time intervals due
to the mechanics of intersecting trapezoids, however these are still only polynomially many,
since each overlap produces at most three trapezoids. Using rules (GTVS) and (VD), we make
Sc separated for each variable. We then synchronise the time intervals for the TVS in Sc

and TDS S ′
c by splitting them, if necessary.

Using the procedure outlined after Obs. 14, we make Sc derivative-reduced. Since S ′
c

is minimal except for TDS with infinite upper and lower vertical bounds, the TDS in S ′
c

do contain the strictest bounds on the respective derivative functions, so the result of the
procedure is really derivative-reduced. Note that the procedure may have produced gaps
in the sequence of TVS, if the time intervals in some of the TDS are large. We use rule
(GTVS) to close these gaps, and rule (VD) to transport new information on the domains of
the functions to the TDS. It is not hard to verify that both Sc and S ′

c are now separated,
minimal, and representative. Moreover, Sc is derivative-reduced. We make it (Der)-ready by
splitting intervals, if necessary, for, again, at most polynomial blowup.

Hence, the sets Sc and S ′
c are now both k-normalised, and are our desired sets Snorm and

S ′
norm. ◀
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Abstract
Detecting causality or the happens before relation between events in a distributed system is a
fundamental building block for distributed applications. It was recently proved that this problem
cannot be solved in an asynchronous distributed system in the presence of Byzantine processes,
irrespective of whether the communication mechanism is via unicasts, multicasts, or broadcasts.
In light of this impossibility result, we turn attention to synchronous systems and examine the
possibility of solving the causality detection problem in such systems. In this paper, we prove
that causality detection between events can be solved in the presence of Byzantine processes in a
synchronous distributed system. The positive result holds for unicast, multicast, as well as broadcast
modes of communication. We prove the result by providing an algorithm. Our solution uses the
Replicated State Machine (RSM) approach and vector clocks.
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11:2 Detecting Causality in the Presence of Byzantine Processes

The related problem of causal ordering of messages asks that if the send event of message
m happens before the send event of message m′, then m′ should not be delivered before m
at all the common destinations of m and m′. Under the Byzantine failure model, causal
ordering has recently been studied in [2] for broadcast communication and in [24, 26, 27] for
unicast, multicast, as well as broadcast communication.

1.2 Contributions

It was recently proved that the problem of detecting causality between a pair of events cannot
be solved in an asynchronous system in the presence of Byzantine processes, irrespective of
whether the communication is via unicasts, multicasts, or broadcasts [25]. In the multicast
mode of communication, each send event sends a message to a group consisting of a subset
of the set of processes in the system. Different send events can send to different subsets
of processes. Communicating by unicasts and communicating by broadcasts are special
cases of multicasting. It was shown in [25] that in asynchronous systems with even a single
Byzantine process, the unicast and multicast modes of communication are susceptible to false
positives and false negatives, whereas the broadcast mode of communication is susceptible to
false negatives but no false positives. A false positive means that e ̸→ e′ whereas e → e′ is
perceived/detected. A false negative means than e → e′ whereas e ̸→ e′ is perceived/detected.

1. In light of the impossibility result for asynchronous systems, this paper examines the
solvability of causality detection in synchronous systems in the presence of Byzantine
processes.

2. We prove that causality detection between events can be solved in the presence of
Byzantine processes in a synchronous system. We provide an algorithm that solves the
causality detection problem. The positive result holds for unicasts, multicasts, as well as
broadcasts. Our solution uses the Replicated State Machine (RSM) approach [31], which
works only in synchronous systems, in conjunction with vector clocks.

3. This is the first paper to establish this result. The paper uses a simple combination of
RSMs and vector clocks and is yet significant, similar to results in [8, 22,32], because it
establishes a fundamental possibility result about causality detection in the presence of
Byzantine processes in a synchronous system.

4. The results for multicasts, unicasts, and broadcasts are summarized in Table 1. In a
system with n application processes, our RSM-based solution uses 3t+ 1 process replicas
per application process, where t is the maximum number of Byzantine processes that can
be tolerated in a RSM. Thus, there can be at most nt Byzantine processes among a total
of (3t+ 1)n processes partitioned into n RSMs of 3t+ 1 processes each, with each RSM
having up to t Byzantine processes. By using (3t+ 1)n processes and the RSM approach
to represent n application processes, the malicious effects of Byzantine process behaviors
are neutralized.

Roadmap. Section 2 gives the system model. Section 3 formulates the problem of detecting
causality in the presence of Byzantine processes. Section 4 proves the results outlined under
“Contributions” above. Section 5 gives a discussion and concludes.
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Table 1 Detecting causality between events under different communication modes in asynchronous
and synchronous systems. F P is false positive, F N is false negative. F P /F N means no false
positive/no false negative is possible.

Mode of Detecting “happens before” Detecting “happens before”
communication in asynchronous systems in synchronous systems
Multicasts Impossible [25] Possible, Theorem 11

F P, F N F P , F N

Unicasts Impossible [25] Possible, Corollary 12
F P, F N F P , F N

Broadcasts Impossible [25] Possible, Corollary 13
F P , F N F P , F N

2 System Model

This paper deals with a distributed system having Byzantine processes which are processes
that can misbehave [21,28]. A correct process behaves exactly as specified by the algorithm
whereas a Byzantine process may exhibit arbitrary behaviour including crashing at any point
during the execution. A Byzantine process cannot impersonate another process or spawn
new processes.

The distributed system is modelled as an undirected graph G = (P,C). Here P is the set
of processes communicating in the distributed system. Let |P | = n. C is the set of (logical)
communication links over which processes communicate by message passing. The channels
are assumed to be FIFO. G is a complete graph.

The distributed system is assumed to be synchronous, i.e., there is a known fixed upper
bound δ on the message latency, and a known fixed upper bound ψ on the relative speeds of
processors [6]. In contrast, an asynchronous system has been defined as one in which there
is no upper bound on the message latency and on the relative speeds of processors [6]. A
synchronous system guarantees that the relative speeds of non-faulty processors and messages
is bounded, and this is equivalent to assuming that the system has synchronized real-time
clocks [31].

Let ex
i , where x ≥ 1, denote the x-th event executed by process pi. An event may be an

internal event, a message send event, or a message receive event. Let the state of pi after
ex

i be denoted sx
i , where x ≥ 1, and let s0

i be the initial state. The execution at pi is the
sequence of alternating events and resulting states, as ⟨s0

i , e
1
i , s

1
i , e

2
i , s

2
i . . .⟩. The sequence of

events ⟨e1
i , e

2
i , . . .⟩ is called the execution history at pi and denoted Ei. Let E =

⋃
i{Ei} and

let T (E) denote the set of all events in (the set of sequences) E. The happens before [20]
relation, denoted →, is an irreflexive, asymmetric, and transitive partial order defined over
events in a distributed execution that is used to define causality.

▶ Definition 1. The happens before relation → on events T (E) consists of the following
rules:
1. Program Order: For the sequence of events ⟨e1

i , e
2
i , . . .⟩ executed by process pi, ∀ x, y

such that x < y we have ex
i → ey

i .
2. Message Order: If event ex

i is a message send event executed at process pi and ey
j is

the corresponding message receive event at process pj, then ex
i → ey

j .
3. Transitive Order: If e → e′ ∧ e′ → e′′ then e → e′′.

▶ Definition 2. The causal past of an event e is denoted as CP (e) and defined as the set of
events {e′ ∈ T (E) | e′ → e}.

TIME 2023



11:4 Detecting Causality in the Presence of Byzantine Processes

3 Problem Formulation

The problem formulation is done similar to the way in [25]. An algorithm to solve the
causality detection problem collects the execution history of each process in the system and
derives causal relations from it. Ei is the actual execution history at pi. For any causality
detection algorithm, let Fi be the execution history at pi as perceived and collected by
the algorithm and let F =

⋃
i{Fi}. F thus denotes the execution history of the system as

perceived and collected by the algorithm. Analogous to T (E), let T (F ) denote the set of all
events in F . Analogous to Definition 1, the happens before relation can be defined on T (F )
instead of on T (E). With a slight relaxation of notation, let T (Ei) and T (Fi) denote the set
of all events in Ei and Fi, respectively.

Let e1 → e2|E and e1 → e2|F be the evaluation (1 or 0) of e1 → e2 using E and F ,
respectively. Byzantine processes may corrupt the collection of F to make it different from E.
We assume that a correct process pi needs to detect whether ex

h → e∗
i holds and e∗

i is an event
in T (E). If ex

h ̸∈ T (E) then ex
h → e∗

i |E evaluates to false. If ex
h ̸∈ T (F ) (or e∗

i ̸∈ T (F )) then
ex

h → e∗
i |F evaluates to false. We assume an oracle that is used for determining correctness

of the causality detection algorithm; this oracle has access to E which can be any execution
history such that T (E) ⊇ CP (e∗

i ).
Byzantine processes may collude as follows.

1. To delete ex
h from Fh or in general, record F as any alteration of E such that ex

h → e∗
i |F = 0,

while ex
h → e∗

i |E = 1, or
2. To add a fake event ex

h in Fh or in general, record F as any alteration of E such that
ex

h → e∗
i |F = 1, while ex

h → e∗
i |E = 0.

Without loss of generality, we have that ex
h ∈ T (E) ∪ T (F ). Note that ex

h belongs to
T (F ) \ T (E) when it is a fake event in F .

▶ Definition 3. The causality detection problem CD(E,F, e∗
i ) for any event e∗

i ∈ T (E) at a
correct process pi is to devise an algorithm to collect the execution history E as F at pi such
that valid(F ) = 1, where

valid(F ) =
{

1 if ∀ex
h, e

x
h → e∗

i |E = ex
h → e∗

i |F
0 otherwise

When 1 is returned, the algorithm output matches the actual (God’s) truth and solves
CD correctly. Thus, returning 1 indicates that the problem has been solved correctly by the
algorithm using F . 0 is returned if either

∃ex
h such that ex

h → e∗
i |E = 1 ∧ ex

h → e∗
i |F = 0 (denoting a false negative), or

∃ex
h such that ex

h → e∗
i |E = 0 ∧ ex

h → e∗
i |F = 1 (denoting a false positive).

Using the state-machine replication approach, we show that F at a correct process can
be made to exactly match E, hence there is no possibility of a false positive or of a false
negative.

4 Solution based on Replicated State Machines (RSMs)

4.1 Background on RSMs
The discussion in this section is based on the survey by Schneider [31]. A process execution
is modelled as the actions of a finite state machine. Two basic requirements are: (O1: FIFO
order) Messages issued by a client to a state machine are processed in the order issued, and
(O2: Causal order) If a message m1 issued to a state machine sm by client c could have
caused (i.e., causally preceded) a message m2 issued by client c′ to sm, then sm processes
m1 before m2.
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A t-tolerant version of a state machine is implemented by replicating that state machine
and running a state machine replica smr on different processors in an ensemble. If each
replica run by a correct processor starts in the same initial state and executes the same
requests in the same order, then each replica will execute the same step at each transition
and produce the same output. Under Byzantine failures, an ensemble implementing a t

tolerant RSM must have at least 2t+ 1 replicas and the output of each (correct) replica in
the ensemble is the output produced by t+ 1 replicas. To ensure that all replicas’ actions
and transitions are coordinated, all replicas in an ensemble must receive and process the
same sequence of messages. This can be expressed as two requirements.

Agreement: Every non-faulty replica receives every message.
Total order: Every non-faulty replica processes the messages it receives in the same order.

Agreement requires that (IC1) for each message sent by a replica, all non-faulty replicas of the
destination process agree on the contents of the message, and (IC2) if the transmitting replica
is non-faulty, then all non-faulty replicas of the destination process use the transmitter’s value
as the one on which they agree. Any of the Byzantine agreement protocols in the literature
can be used [21, 28]; they all require that the total number of replicas (of the destination
process) is at least 3t + 1. Furthermore, no deterministic algorithm can implement state
machine replication, which requires agreement or consensus, in an asynchronous system [9].
So we assume a synchronous system.

Total order can be satisfied by assigning unique identifiers to messages sent and having the
receiver’s smrs process the messages as per a total order relation on these unique identifiers.
For the RSM of application process pj , its various 3t+1 smrs are denoted smrj,w. A message
is defined to be stable at smrj,w once no message from a correct sender process replica (across
all sender processes from various sender process ensembles) having a lower unique identifier
can be subsequently delivered to smrj,w. Total order is implemented by requiring a replica
process to next process the stable request with the smallest stable identifier. Mechanisms for
generating unique identifiers satisfying FIFO and causal order are given by Schneider [31].
These mechanisms are based on synchronized real-time clocks (which guarantees O1 and
causal order O2 implicitly), or based on receiver replica-generated unique identifiers; the latter
approach also requires for maintaining FIFO order and causal order (O1 and O2) that once
a transmitter replica starts disseminating a message, it performs no other communication
until the current message has been delivered to every receiver replica that is a destination of
the current message. In a system with Byzantine processes, the replica-generated unique
identifiers approach along with using the assumptions on synchronized real-time clocks can
satisfy the total order. But note here that the requirement of synchronized real-time clocks
forces us to assume a synchronous system.

4.2 Adapting RSMs to Our Solution
In our system model having n application processes, each process pi modelled as a RSM is
replicated 3t+ 1-way as pi,1, . . . , pi,3t+1 and these processes form the ensemble pi. Various
RSM ensembles communicate in a peer-to-peer (P2P) manner with each other. When a
RSM ensemble sends/receives a message, it is referred to as a sender/receiver RSM ensemble.
Thus in a system having n application processes, there are (3t+ 1)n processes (i.e., replicas)
partitioned into n RSM ensembles and each ensemble can have at most t Byzantine processes.
Each pi,a, i.e., smri,a, uses a sequence number denoted seqi,a that is incremented for each
message that it sends/multicasts as a sender RSM replica. The (3t + 1)n processes can
be viewed as running in an application layer that is above the RSM layer which provides
Agreement and Total Order.

TIME 2023



11:6 Detecting Causality in the Presence of Byzantine Processes

Using the implementation of RSMs described by Schneider or any of the subsequent
implementations proposed since then, Agreement and Total Order are guaranteed. Further-
more, Total Order is guaranteed in a receiver RSM ensemble for messages from multiple
sender RSM ensembles. In addition, when each replica in the sender RSM ensemble does a
multicast, the following version of the Agreement property needs to be implemented.

Agreement−M : Every non-faulty replica in every RSM ensemble that is included in the
destination set of a multicast/broadcast receives the message multicast/broadcast.

Agreement-M requires that (IC1-M) for each message sent by a replica, all non-faulty replicas
of the destination processes of a multicast/broadcast agree on the contents of the message,
and (IC2-M) if the transmitting replica is non-faulty, then all non-faulty replicas of the
destination processes of a multicast/broadcast use the transmitter’s value as the one on
which they agree.

When a RSM replica receives a message from the RSM layer satisfying Total Order and
Agreement/Agreement-M, we say that the message is TOA-delivered to that RSM replica.
Under Byzantine failures, an ensemble implementing a t tolerant RSM in a system model
disallowing cryptography must have at least 3t+ 1 replicas and the output of each (correct)
replica in an ensemble is the output produced by a majority = t+ 1 replicas. Henceforth, we
treat majority as having the value t+ 1. Since we are using RSMs for “clients” and “servers”
in P2P mode, whenever a correct receiver replica is TOA-delivered (gets) t + 1 identical
messages M from the replicas of a sender ensemble, the (correct) receiver replica delivers the
message to the layer above. We say that a message M is SR-delivered to a RSM replica if
majority = t+ 1 identical copies of the message having the same seqj,∗ from the replicas of a
sender ensemble j have been TOA-delivered to it. On SR-delivery of a message to a RSM
replica, that replica makes the next transition according to the local state machine. The
Agreement and Total Order properties guarantee that if smri,a SR-delivers such a message,
then every other correct receiver replica smri,y in that ensemble will also SR-deliver that
same message M in exactly the order and sequence it was SR-delivered by smri,a. Note that
there are at least t+ 1 votes for this message M from the sender replica ensemble and since
there are at most t Byzantine processes in the sender replica ensemble, their state machines
can send only up to t messages (for any particular sequence number seqj,∗ from the sender
ensemble j) that are received by smri,a and that differ from the majority value of M received
t+ 1 times by smri,a.

When smri,a sends a message to pj at the application level, it sends it to all replicas
smrj,b. When smri,a SR-delivers a message, a receive event is said to have occurred at the
application level. Henceforth, we also refer to smri,a as pi,a and RSM i as pi.

4.3 Data Structures and Algorithm

Algorithm 1 is an online algorithm in which each correct replica pi,a records in F =
⋃

k{Fk}
its view of the execution history of RSM pk via lines 1-21. This recording of F in the local
replica is done by piggybacking control information on the application messages; no extra
messages are used. There is also a module in Algorithm 1 lines 22-26 that takes as input
two events ex

h and e∗
i and produces output from {true, false} giving ex

h → e∗
i |F . Theorem 9

shows that the set of events in E matches the set of events recorded in F , even though E is
never recorded and is accessible only to an oracle. Next we show in Theorem 11 that using
the output of the algorithm lines 22-26 function test, and Theorem 9, the causality detection
problem is solved by Algorithm 1’s recording of F and function test using this F , i.e., there
are no false positives nor false negatives.
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Algorithm 1 Processing of control information and testing for ex
h → e∗

i . Code at process
pi,a.

Data: Each process pi,a maintains (i) an integer seqi,a, (ii) F which is the union of
sequences Fk (history of events at pk) for all k, (iii) integer matrix
LASKALSJ [n, n], (iv) integer matrix V [|T (Fi)|, n].

Input: ex
h, e∗

i

Output: ex
h → e∗

i |F ∈ {true, false}

1 when pi,a needs to send application message M to pj,∗: ▷ Each other correct pi,a′

state machine will execute likewise
2 seqi,a = seqi,a + 1
3 append current send event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)
4 (∀k) include history from Fk after event LASKALSJ [j, k] in inc_F

5 (∀k) LASKALSJ [j, k] = maxeventID(Fk)
6 send (M, inc_F, seqi,a, j) to each pj,∗ via RSM layer (to satisfy RSM Total Order and

Agreement for receiver ensemble pj)

7 when pi,a needs to send application message M to each pj,∗ for each pj ∈ G: ▷ Each
other correct pi,a′ state machine will execute likewise

8 seqi,a = seqi,a + 1
9 append current send event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)

10 (∀k) include history from Fk after event minpj ∈G(LASKALSJ [j, k]) in inc_F

11 (∀pj ∈ G)(∀k) LASKALSJ [j, k] = maxeventID(Fk)
12 send (M, inc_F, seqi,a, G) to each pj,∗ for each pj ∈ G via RSM layer (to satisfy RSM Total

Order and Agreement−M for each receiver ensemble pj)

13 when (M, inc_F, seqj , i/G) is SR-delivered to pi,a from pj : ▷ Happens when t + 1
identical copies of (M, inc_F, seqj , i/G) for seqj (which equals seqj,∗) are
TOA-delivered from pj,∗

14 for all k do
15 if maxeventID(Fk) < maxeventID(inc_Fk) then
16 append history of events ⟨maxeventID(Fk) + 1, . . . , maxeventID(inc_Fk)⟩ from

inc_Fk to Fk

17 seqi,a = seqi,a + 1
18 append current receive event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)

19 At internal event at pi,a:
20 seqi,a = seqi,a + 1
21 append current internal event to Fi; (∀k)V [seqi,a, k] = maxeventID(Fk)

22 To determine ex
h → e∗

i at correct state machine pi,a via call to test(ex
h → e∗

i ):
23 if ex

h is in Fh and ∗ ≤ maxeventID(Fi) then
24 return(ex

h → e∗
i |F ) ▷ the test is whether V [∗, h] ≥ x

25 else
26 return(false)

Algorithm 1 gives the processing of control information done at a RSM replica pi,a. Each
RSM replica maintains the following data structures.
1. An integer seqi,a, initialized to 0, that gives the sequence number of the latest local event

at pi,a.
2. A local F that is a set of sequences Fk. F contains pi,a’s view of the recorded execution

history Fk of each RSM pk.
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11:8 Detecting Causality in the Presence of Byzantine Processes

3. An integer matrix LASKALSJ [n, n], where LASKALSJ [j, k] gives the sequence number
of the latest send event by pk (as per/from the local Fk) at the point in time of the last
send event to pj,∗.
This data structure is for efficiently identifying to send to pj only the incremental updates
that have occurred to the local Fk at pi,a for each other process pk, that need to be
transmitted to the destinations pj of a message send event since pi,a’s last send to pj .

4. pi,a also maintains an auxiliary integer matrix V [|T (Fi)|, n], where V [s, k] is maxeventID-
(Fk) in F (es

i,a), i.e., the highest sequence number in Fk(∈ F ) when the sth local event
es

i,a was executed at pi,a.
Lines 1-6 give the processing for sending a unicast. If multicast can be implemented as a set
of independent unicasts, similar code (but with a single increment in line 2) can be executed
for sending to each destination of the multicast group. Otherwise a multicast send processing
can be implemented via lines 7-12. When a message along with the incremental update
inc_F (containing the incremental updates for all pk as per the sender) is SR-delivered to
a RSM replica, it updates its Fk as shown in lines 13-18. A broadcast is a special case of
multicast and is hence handled as a multicast. The test for the happens before relation using
V is given in lines 22-26.

In the auxiliary matrix V at pi,a, row V [w] is the vector timestamp [8,22] of event ew
i,a

and could be stored along with the event in Fi. V [w, j] at pi,a identifies (gives the sequence
number of) the event at the surface of the causal past cone of event ew

i,a at RSM pj . At
event seqi,a for each type of event (unicast send (line 3), multicast send (line 9), delivery
(line 18), internal (line 21)), V [seqi,a, k] for all k is set to maxeventID(Fk). V is used only
to implement the test ex

h → e∗
i , viz., V [∗, h] ≥ x.

4.4 Correctness Proof
Events such as ex

h with a single subscript which denotes the application-level process ID of ph,
are at the application level or RSM-ensemble level. Events such as ex

h,a with two subscripts
denote events at smrh,a, i.e., ph,a, the individual state machine sm of replica a of RSM ph

in its RSM ensemble. Next, we adapt the definitions of E, of the happens before relation,
and of causal past to abstract away the RSM details.

▶ Definition 4. Define E_RSM to be the set of all events {ex
h} such that the events ex

h,a

have occurred at at least majority (= t+ 1) number of processes ph,a.

▶ Definition 5. The happens before relation →RSM on events in E_RSM (which occur in
ensembles of RSMs) consists of the following rules:
1. Program Order: For the sequence of events ⟨e1

i , e
2
i , . . .⟩ executed by RSM ensemble

process pi, ∀ x, y such that x < y we have ex
i →RSM ey

i .
2. Message Order: If event ey

j is a message receive event executed at RSM ensemble
process pj (i.e., at at least a majority of processes pj,b) and there is a corresponding RSM
send event ex

i in RSM ensemble pi (i.e., there are at least a majority events ex
i,a that are

the corresponding message send events at processes pi,a to RSM ensemble pj), we have
ex

i →RSM ey
j .

3. Transitive Order: If e →RSM e′ ∧ e′ →RSM e′′ then e →RSM e′′.

▶ Definition 6. The RSM-causal past of an event e ∈ E_RSM is denoted as CP_RSM(e)
and defined as the set of events {e′ ∈ E_RSM | e′ →RSM e}.

In the causality graph (E_RSM,→RSM ), there is a RSM-causal path from any event in
CP_RSM(e) to e comprised of program order edges and message order edges.
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▶ Lemma 7. An event ex
h ∈ E_RSM occurs at each correct process ph,z in the RSM ensemble

ph.

Proof. By definition, an event ex
h ∈ E_RSM occurs at at least majority (= t+ 1) processes

ph,a in the RSM ensemble ph. As at least one of these majority processes ph,a′ must be correct
and executes ex

h,a′ , and from the Agreement/Agreement-M and Total Order properties of the
RSM, each correct smr ph,z will behave identically to ph,a′ and will execute ex

h,z. ◀

▶ Lemma 8. An event ex
h,z that occurs at a correct process ph,z also occurs as event ex

h in
the RSM ensemble ph.

Proof. As the RSM ensemble works in perfect unision, an event ex
h,z that occurs at a correct

process ph,z also occurs at all the correct replicas in RSM ensemble ph and thus at at least
majority replicas in that ensemble. Then by Definition 4, the event is also said to occur as
ex

h in RSM ensemble ph. ◀

▶ Theorem 9. For an event e at a RSM pi (e must occur at each correct process pi,z by
Lemma 7), the set of events T (F ) when e is executed at each correct pi,z is CP_RSM(e).

Proof. There are two parts to this theorem.
1. If an event belongs to CP_RSM(e), the event must belong to T (F ) when event e is

executed at correct process pi,z.
If event ex

h ∈ CP_RSM(e) then ex
h must be genuine (not fake) and there is a “RSM-

causal path” from ex
h to e in (E_RSM,→RSM ). Such a RSM-causal path is comprised of

program order edges and message order edges. For each message order edge under →RSM

corresponding to a message hop along such a causal path, there are at least majority
(= t+ 1) edges under → from each of the at least majority (= t+ 1) correct processes
in the sender RSM ensemble to the at least majority (= t+ 1) correct processes in the
receiver RSM ensemble. Furthermore, for each program order edge at pj under →RSM

along the RSM-causal path, all the correct processes in the pj ensemble preserve the
content of F at the previous event along the corresponding program order edge under →.
Information about ex

h gets propagated via inc_Fh and Fh along all such message order
edges and program order edges through the processes pj along the “RSM-causal path”
from ex

h to e and gets inserted in Fh at pi,z, as can be seen from lines (1-6) (for unicasts)
or (7-12) (for multicasts), and lines (13-18). Once an entry is inserted in Fh at a correct
process, it is never deleted. Note, event e ∈ E_RSM and is specifically some event ey

i

that, by Lemma 7, must also occur as ei,z (or ey
i,z) at each correct process pi,z. Thus

ex
h ∈ CP_RSM(e) implies ex

h is in Fh when e is executed at pi,z.
2. If an event e′ belongs to T (F ) when event e is executed at correct process pi,z (the event

e must also occur at RSM ensemble process pi by Lemma 8), the event e′ must belong to
CP_RSM(e).
For event ex

h in Fh when e∗
i,z occurs at pi,z, there are two cases: h = i and h ̸= i.

a. First consider h = i. ex
i,z (as ex

i ) must have been inserted in Fi at ex
i,z only in line

3 (for unicast send event) or line 9 (for multicast send event) or line 18 (for receive
event) or line 21 (for internal event), and is never deleted by the correct process pi,z as
per the algorithm code. Clearly by Lemma 8, ex

i,z and e∗
i,z and all events in between

at pi,z must have occurred at RSM ensemble process pi as pi,z is a correct process.
As there exist program order edges under →RSM from ex

i to e∗
i and pi,z is a correct

process, it must be that ex
h=i ∈ CP_RSM(e∗

i ).
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b. Consider now h ̸= i. Set y to ∗, i′ to i, z′ to z.
As event ex

h is in Fh when ey
i′,z′ occurs at correct process pi′,z′ , then ex

h could have
been inserted only in line 16 on the SR-delivery of a message m at an event e1i′,z′ in
the causal past of ey

i′,z′ (along program order edges under → or under →RSM ) that
resulted from the TOA-delivery from some (at least majority) of processes pj,a that
sent at event ew

j . As at least majority (= t+ 1) processes in the preceding sender RSM
ensemble reported the same inc_F in the same message for the message to have been
SR-delivered to pi,z, the impact of Byzantine processes in the ensemble is filtered out.
By Lemma 8 note that receive event e1i′ occurs at RSM ensemble pi′ because e1i′,z′

occurs at a correct process. Also, send event ew
j at RSM pj must have occurred as at

least a majority of processes pj,a sent m, and so ew
j must have occurred at all correct

processes pj,c in the ensemble pj . The message m corresponds to a message order edge
under →RSM . Moreover the send event ew

j at RSM pj belongs to CP_RSM(ey
i′) (and

hence to CP_RSM(e∗
i,z = e) by transitivity because ey

i′ ∈ CP_RSM(e) as per the
previous invocation (if any) of this case 2b). ex

h must have existed in Fh at the time
these correct pj,c sent m at ew

j,c. There are two subcases: j ̸= h and j = h.
i. j ≠ h. Invoke case 2b but with y set to w, i′ set to j, z′ set to c. This case gets

invoked at most n− 1 times as there are n− 1 processes (RSMs) pj (j ̸= h) in the
system and ex

h gets added to Fh at correct replica processes c of any particular pj

at most once.
ii. j = h: ex

h must have been inserted in Fh at ex
h(=j),c in line 3 (for unicast send event)

or line 9 (for multicast send event) or in line 18/21 at a receive/internal event, at
ph, i.e., at each correct pj,c. Clearly by Lemma 8, ex

j,c and ew
j,c and all events in

between at pj,c must have occurred at RSM ensemble process pj(=h) as pj,c is a
correct process and hence there exist program order edges under →RSM from ex

j(=h)
to ew

j . Moreover such an event e′ (or ex
h) must belong to CP_RSM(ew

j ) (and hence
to CP_RSM(e∗

i,z = e) by transitivity because ew
j ∈ CP_RSM(e) as shown above

for case 2b of this invocation).
Combining transitively the above case invocations, it follows that event ex

h is in Fh

when e = e∗
i,z is executed at pi,z implies ex

h ∈ CP_RSM(e) and ex
h cannot be fake.

Both parts of the theorem thus stand proved. ◀

Next we adapt the definition of the CD problem to deal with the RSM approach. We
assume an oracle that is used for determining correctness of the causality detection algorithm
at p∗

i,z; this oracle has access to E_RSM which can be any downward-closed superset of
CP_RSM(e∗

i ). Also let F (e∗
i,z) be the value of F at pi,z when e∗

i,z is executed.

▶ Definition 10. The causality detection problem CD(E_RSM,F (e∗
i,z), e∗

i,z) for any event
e∗

i,z at a correct process pi,z (where e∗
i ∈ E_RSM) is to devise an algorithm to collect the

execution history of events E_RSM as F (e∗
i,z) at pi,z such that valid(F ) = 1, where

valid(F ) =
{

1 if ∀ex
h, e

x
h → e∗

i,z|E_RSM = ex
h → e∗

i,z|F
0 otherwise

When 1 is returned, the algorithm output matches God’s truth and solves CD correctly.
Thus, returning 1 indicates that the problem has been solved correctly by the algorithm
using F . 0 is returned if either

∃ex
h such that ex

h → e∗
i,z|E_RSM = 1 ∧ ex

h → e∗
i,z|F = 0 (denoting a false negative and

(E_RSM ∩ CP_RSM(e∗
i,z)) \ T (F (e∗

i,z)) ̸= ∅), or
∃ex

h such that ex
h → e∗

i,z|E_RSM = 0 ∧ ex
h → e∗

i,z|F = 1 (denoting a false positive and
T (F (e∗

i,z)) \ E_RSM ̸= ∅).
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Algorithm 1 produces the output of ex
h → e∗

i |F at pi,a (lines 22-26) via recording F (lines
1-21). Theorem 9 showed that the set of events in E_RSM matched the set of events
recorded in F , even though E_RSM is never recorded and is accessible only to an oracle.
Next we show in Theorem 11 that using the output of the algorithm and Theorem 9, the
causality detection problem CD(E_RSM,F (e∗

i,z), e∗
i,z) is solved, i.e., there are no false

positives nor false negatives.

▶ Theorem 11. There are neither false negatives nor false positives in solving causality
detection as per Algorithm 1 for the multicast mode of communication in synchronous systems.

Proof. This theorem has two parts – no false negatives and no false positives – and the
proof leverages the two cases in the proof of Theorem 9 which cover the multicast mode of
communication. Recall our assumption in Definition 10 that pi,z is a correct replica. By
Lemma 8, event e∗

i,z occurs as e∗
i in E_RSM . In what follows, we use CP_RSM(e∗

i,z)
instead of CP_RSM(e∗

i ) to emphasize that the reasoning is at e∗
i,z at pi,z.

1. (E_RSM ∩ CP_RSM(e∗
i,z)) \ T (F (e∗

i,z)) = ∅. This follows from the first case of
Theorem 9 proof because each event in CP_RSM(e∗

i,z) belongs to T (F ) at e∗
i,z. Let

ex
h ∈ CP_RSM(e∗

i,z). The causality test in lines 22-26 of Algorithm 1 will return true
because ex

h ∈ T (F ) at e∗
i,z and V [∗, h] = maxeventID(Fh) (when ex

h was added to T (F )
at pi,z at or before e∗

i,z occurred) ≥ x. Hence ̸ ∃ex
h such that ex

h → e∗
i,z|E_RSM = 1∧ex

h →
e∗

i,z|F = 0. Hence there are no false negatives.
2. T (F (e∗

i,z)) \E_RSM = ∅. This follows from the second case of Theorem 9 proof because
each event in T (F (e∗

i,z)) must also belong to CP_RSM(e∗
i,z) which is a subset of E_RSM

by definition. For the causality test of ex
h → e∗

i at pi,z in lines 22-26 of Algorithm 1,
consider the two cases: ex

h is in Fh and not in Fh. If ex
h is not in Fh, then by case 1 of

Theorem 9 proof, ex
h ̸∈ CP_RSM(e∗

i,z) and the test correctly returns false. If ex
h is in Fh,

then by case 2 of Theorem 9 proof, ex
h ∈ CP_RSM(e∗

i,z) and V [∗, h] = maxeventID(Fh)
(when ex

h was added to T (F ) at pi,z at or before e∗
i,z occurred) ≥ x. Hence the test

correctly returns true. Hence ̸ ∃ex
h such that ex

h → e∗
i,z|E_RSM = 0 ∧ ex

h → e∗
i,z|F = 1.

Hence there are no false positives.
The theorem follows. ◀

As unicast and broadcast are special cases of multicast, the prevention of false positives
and of false negatives for multicasts implies the prevention of false positives and of false
negatives for unicasts and for broadcasts also. Thus we have the following corollaries to
Theorem 11.

▶ Corollary 12. There are neither false negatives nor false positives in solving causality
detection as per Algorithm 1 for the unicast mode of communication in synchronous systems.

▶ Corollary 13. There are neither false negatives nor false positives in solving causality
detection as per Algorithm 1 for the broadcast mode of communication in synchronous systems.

5 Discussion and Conclusions

We proposed a RSM-based algorithm for solving the causality determination problem CD in
synchronous systems that can have at most nt Byzantine processes among a total of (3t+ 1)n
processes partitioned into n ensembles of 3t+ 1 processes each with each ensemble having up
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to t Byzantine processes. By using (3t+ 1)n processes and the RSM approach to represent n
application processes, the malicious effects of Byzantine process behaviors are neutralized.
This is true irrespective of whether the communication mode is by unicasting, multicasting,
or broadcasting. The RSM approach works only in synchronous systems. This result is in
contrast to the impossibility result for solving the CD problem in asynchronous systems in
the presence of even a single Byzantine process [25]. It would be interesting to determine
whether the CD problem can be solved in synchronous systems in the presence of Byzantine
processes using a direct approach without using RSMs.

Detecting causality between a pair of events is a fundamental problem [32]. Other
problems that use this problem as a building block include the following:

detecting the interaction type between a pair of intervals at different processes [10],
detecting the fine-grained modality of a distributed predicate [3, 14], and data-stream
based global event monitoring using pairwise interactions between processes [4],
detecting causality relation between two “meta-events” [11,13,15], each of which spans
multiple events across multiple processes [12].

It can be shown that these problems in Byzantine failure-prone synchronous systems are
solvable because they are reducible to causality detection in the presence of Byzantine
processes in synchronous systems.

Byzantine-tolerant causal ordering of messages under unicast mode or multicast mode
of communication has been proved to be unsolvable in asynchronous systems [26,27]. Two
forms of safety – strong safety (or unconditional safety) and a weaker form of safety called
weak safety were defined [26], and it was also shown that Byzantine-tolerant causal ordering
under broadcast mode of communication in asynchronous systems cannot satisfy strong
safety [26] (in a system model in which cryptographic techniques are not allowed). Neither
can the algorithm given in [2] for the broadcast mode of communication satisfy strong safety.
Algorithms to provide weak safety and liveness of Byzantine-tolerant causal ordering were
provided for synchronous systems in [24,27] (implicitly for unicast mode, multicast mode,
and broadcast mode). The use of the RSM approach can be seen to implicitly provide strong
safety and liveness of Byzantine-tolerant causal ordering (of unicast mode, multicast mode,
and broadcast mode of communication) in synchronous systems as order requirement O2
(Causal order) of the RSM specification is satisfied.
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Abstract
In this paper, we deal with inconsistency resolution in qualitative constraint networks (QCN). This
type of networks allows one to represent and reason about spatial or temporal information in a
natural, human-like manner, e.g., by expressing relations of the form x {is north of ∨ is east of} y.
On the other hand, inconsistency resolution involves maximizing the amount of information that is
consistent in a knowledge base; in the context of QCNs, this translates to maximizing the number of
constraints that can be satisfied, via obtaining a qualitative solution (scenario) of the QCN that
ignores/violates as few of the original constraints as possible. To this end, we present two novel
approaches: a greedy constraint-based and an optimal Partial MaxSAT-based one, with a focus on
the former due to its simplicity. Specifically, the greedy technique consists in adding the constraints
of a QCN to a new, initially empty network, one by one, all the while filtering out the ones that fail
the satisfiability check. What makes or breaks this technique is the ordering in which the constraints
will be processed to saturate the empty QCN, and for that purpose we use many different strategies
to form a portfolio-style implementation. The Partial MaxSAT-based approach is powered by Horn
theory-based maximal tractable subsets of relations. Finally, we compare the greedy approach
with the optimal one, commenting on the trade-off between obtaining repairs that are optimal and
obtaining repairs in a manner that is fast, and make our source code available for anyone to use.
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1 Introduction

Qualitative Spatio-Temporal Reasoning (QSTR) is a rich symbolic AI framework that
deals with representing and reasoning about abstract, qualitative spatio-temporal inform-
ation [8, 15]. Specifically, QSTR allows one to spatially or temporally relate one object
with another object or oneself by using everyday, human-like natural language descriptions,
and perform reasoning with those descriptions; as an example, consider a relation of the
form x {is north of ∨ is east of} y, which abstracts from numerical information and yet
is very intuitive. Such QSTR descriptions or relations, and disjunctions thereof, can be
modeled as a qualitative constraint network (QCN), a simplified example of which is provided
in Figure 1a. Spatial or temporal information in the QSTR framework can, in general,
pertain to any spatial or temporal aspects in the physical world. However, the literature
has been deeply invested in point/interval-based calculi, with Allen’s Interval Algebra being
the most representative example [1], as intervals can be used to represent and reason about
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taskx taskz

tasky

after

before before ∨ equals

(a) An inconsistent plan as a simplified QCN.

taskx taskz

tasky

before

before before

(b) An optimal scenario of the simplified QCN.

Figure 1 An illustration of the MAX-QCN problem of a qualitative constraint network (QCN) [6]
and the terminology used here; the QCN in Figure 1a is inconsistent, and one solution of the
MAX-QCN problem, viz., an optimal scenario, is depicted in Figure 1b, where taskx {before} taskz

is the only relation that does not satisfy the respective constraint in Figure 1a..

anything from durative actions in planning or tasks in robotics [18] to temporal abstractions
in multivariate time series classification [17], among other applications; the interested reader
is invited to explore the discussion in [26, 28, 9, 3].

Context & Motivation

In this paper, we focus on the problem of maximizing satisfiability in a qualitative constraint
network, formally called the MAX-QCN problem [6]. Specifically, given a QCN N , the
MAX-QCN problem is the problem of obtaining a spatial or temporal configuration that
maximizes the number of satisfied constraints in N ; see also Figure 1 for an example. The
motivation behind studying this problem lies in the fact that representing spatial or temporal
information may inevitably lead to inconsistencies, due to e.g. human error and/or inaccurate
classifiers. As illustration, timetabling is an instance of scheduling where inconsistencies
can naturally form due to the lack of resources for certain tasks, among other reasons [14].
Specifically, in timetabling the goal is to associate temporal intervals with a number of tasks
requiring limited resources. In the context of a hospital, for example, an inconsistency can
occur when two surgeons are allocated the same operating room in overlapping temporal
intervals; the inconsistency must then be repaired by considering available temporal intervals
and preferences alike, and minimizing changes so as to perturb the structure of the timetable
as little as possible. In the broader context of neuro-symbolic AI architectures [13], classifiers
may construct inconsistent spatio-temporal knowledge bases due to inaccurate predictions,
and minimizing inconsistency (i.e., maximizing satisfiability) is an essential step of logical
abduction (or other type of reasoning) in the neuro-symbolic cycle, see, e.g., Figure 1 in [31].

State of the Art & Contribution

The state of the art in solving the MAX-QCN problem with respect to constraints and SAT
encodings consists of the works in [6] and in [7], respectively. Specifically, both of these
approaches try to obtain a refinement of the input QCN that maximizes the number of
satisfied constraints in the QCN. In doing so, they are trying to solve two problems of
different nature at the same time: extracting a scenario of the QCN, whilst ensuring that
the extracted scenario is optimal. This is particularly crippling for the performance of the
constraint-based approach in [6], as, should the constraint not be part of an optimal scenario
in the end, taking a refinement of it in the beginning might create a huge branch in the
search tree that is useless to explore. The clause learning of the SAT-based approach in [7]
circumvents this issue, but, on the other hand, [7] does not exploit tractability properties for
QCNs, viz., Horn theories and/or maximal tractable subsets of relations [22]; nevertheless,
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precedes p meets m overlaps o starts s during d finishes f equals eq
x y x y x y x y x y xy x = y

Figure 2 A representation of the 13 base relations b of IA, each one relating two potential intervals
x and y as in x b y; the converse of b, i.e., b−1, can be denoted by bi and is omitted in the figure.

it significantly outperforms [6]. Here, with respect to the previous discussion, we make the
following contributions:

(i) We offer a greedy constraint-based approach for tackling the MAX-QCN problem that
treats the constraints of the input QCN in whole and, hence, may avoid – to a relatively
greater extent – redundant exploration of search space;

(ii) We introduce one of the most compact to date Partial MaxSAT encodings for the
MAX-QCN problem by extending the SAT encoding of [20] (see also [30]), fully utilizing
tractability properties (alongside chordal completions of the constraint graphs of QCNs);

(iii) We pit the two approaches against each other in an experimental evaluation, and
comment on the trade-off between obtaining repairs in an inconsistent QCN in a way
that is optimal and coming close to a solution of the MAX-QCN problem in a manner
that is fast, making our source code available for any interested researcher to use.

Organization

The rest of the paper is organized as follows. In Section 2 we provide definitions and
notations regarding QSTR and the MAX-QCN problem that are necessary for following and
understanding the paper. Then, Sections 3–5 expand on the contribution points (i)–(iii),
respectively, that were listed earlier. Finally, in Section 6 we conclude and give some directions
for future work.

2 Preliminaries

A binary qualitative spatial or temporal constraint language is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called base relations [15] and defined over an infinite
domain D (e.g., R). The base relations of a particular qualitative constraint language can be
used to represent the definite knowledge between any two of its entities with respect to the
level of granularity provided by the domain D. The set B contains the identity relation Id, and
is closed under the converse operation (−1). Indefinite knowledge can be specified by a union
of possible base relations, and is represented by the set containing them. Hence, 2B represents
the total set of relations. The set 2B is equipped with the usual set-theoretic operations of
union and intersection, the converse operation, and the weak composition operation denoted
by the symbol ⋄ [15]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}. The weak

composition (⋄) of two base relations b, b′ ∈ B is defined as the smallest (i.e., most restrictive)
relation r ∈ 2B that includes b ◦ b′, or, formally, b ⋄ b′={b′′ ∈ B | b′′∩(b ◦ b′) ̸= ∅}, where
b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈ b ∧ (z, y) ∈ b′} is the (true) composition of
b and b′. For all r, r′ ∈ 2B, we have that r ⋄ r′ =

⋃
{b ⋄ b′ | b ∈ r, b′ ∈ r′}.

As illustration, consider the well-known qualitative temporal constraint language of
Interval Algebra (IA) [1]. IA considers time intervals on the real line, and the set of base
relations B = {eq (= Id), p, pi, m, mi, o, oi, s, si, d, di, f , fi} to encode knowledge about
the temporal relations between such intervals, as described in Figure 2.

Representing and reasoning about qualitative spatio-temporal information pertaining to
a set of base relations B can be facilitated by a qualitative constraint network (QCN):

TIME 2023
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x1 x2

x3x4

{p, m}

B
{d, s, si} {oi}

{oi, m}

{pi, eq}

(a) A satisfiable QCN N .

x1

x2

x3

x4

(b) A solution σ of N .

x1 x2

x3x4

{m}

{d}
{d} {oi}

{oi}

{eq}

(c) A scenario S of N .

Figure 3 Figurative examples of QCN terminology using Interval Algebra (IA).

▶ Definition 1. A qualitative constraint network (QCN) is a tuple (V, C) where:
V = {v1, . . . , vn} is a non-empty finite set of variables (representing entities in D);
and C is a mapping C : V × V → 2B such that, ∀v ∈ V , C(v, v) = {Id}, and, ∀v, v′ ∈ V ,
C(v, v′) = (C(v′, v))−1.

An example QCN of IA is shown in Figure 3a; for conciseness, converse relations or Id
loops are not shown in the figure.

▶ Definition 2. Let N = (V, C) be a QCN (Figure 3a), then:
a solution of N is a mapping σ : V → D such that, ∀(u, v) ∈ V × V , ∃b ∈ C(u, v) such
that (σ(u), σ(v)) ∈ b; and N is satisfiable iff it admits a solution (see Figure 3b);
a sub-QCN (also known as refinement) N ′ of N , denoted by N ′ ⊆ N , is a QCN (V, C ′)
such that, ∀u, v ∈ V , C ′(u, v) ⊆ C(u, v);
N is atomic iff, ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation {b} with b ∈ B;
a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 3c);
the constraint graph of N , denoted by G(N ), is the graph (V, E) where {u, v} ∈ E iff
C(u, v) ̸= B and u ̸= v;
for V ′ ⊆ V , N ↓V ′ denotes N restricted to V ′;
N is denoted by N⊤ when each of its constraints is universal, i.e., iff, ∀v, v′ ∈ V with
v ̸= v′, C(v, v′) = B.

The MAX-QCN problem

The MAX-QCN problem has been introduced in the context of QSTR in [6]. Given a QCN N
over a set of variables V , the MAX-QCN problem is the problem of finding a scenario over V

that maximizes the number of satisfied constraints in N , or, equivalently, the problem of
finding a scenario over V that minimizes the number of unsatisfied constraints in N . Such
scenarios are called optimal scenarios of N . Clearly, if a QCN N is satisfiable, any scenario
of N is also an optimal scenario of N . The reader is kindly asked to revisit Figure 1 in the
introduction for a simplified example of the MAX-QCN problem and a solution of it. Solving
the MAX-QCN problem is clearly at least as difficult as solving the satisfiability checking
problem of a QCN, which is NP-hard in general for most calculi [8].

3 Greedy Constraint-based Approach

In this section, we present a greedy approach to come close to, or even exactly identify, a
maximum satisfiable subset of constraints of an original input QCN N = (V, C) and, hence,
tackle the MAX-QCN problem. This approach is presented in Algorithm 1, and it consists in
consistently saturating a universal QCN (lines 4–13) with as many constraints as possible
from N , by using and iterating various different orderings of the constraints of N (line 5).
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Algorithm 1 greedus(N ,A).

in : A QCN N = (V, C) and a set A of bijections α : E → {0, 1, . . . , |E| − 1}, where
E = E(G(N )) (i.e., roughly, a set of orderings of the constraints in N )

out : A subset p ⊆ E(G(N )) corresponding to feasible constraints in N
1 P ← ∅;
2 foreach α ∈ A do
3 p ← ∅;
4 N ′ = (V, C ′) ← N⊤;
5 for i from 0 to |E(G(N ))| − 1 do
6 {u, v} ← α−1(i);
7 C′(u, v) ← C(u, v);
8 C′(v, u) ← C(v, u);
9 if SAT(N ′) then

10 p← p ∪ {{u, v}};
11 else
12 C′(u, v) ← B;
13 C′(v, u) ← B;
14 P ← P ∪ {p};
15 return p ∈ arg maxp′∈P (|p′|);

Given a QCN N = (V, C), with E = E(G(N )) denoting the set of edges in its constraint
graph, Greedus runs in O(|E| · β) time, where β is the runtime of a SAT oracle call. The
SAT oracle here can be any solver that can solve the satisfiability checking problem of a
QCN, be it SAT- or qualitative constraint-based; in our implementation of the algorithm,
we opted for a qualitative constraint-based one, since it made the implementation of the
algorithm more straightforward. Of course, we assume here that the size of the set A of
some orderings of the constraints in N is upper bounded by a small constant k that is equal
to the number of different strategies that will be used to obtain these orderings in the first
place (a discussion on such strategies follows immediately after); this would be naturally the
case, as exploring all possible orderings would defeat the purpose of being greedy. Finally, it
is important to know that each iteration of the loop in line 5 can be run in parallel, as the
calculation of a satisfiable subset of constraints p by the end of an iteration is completely
independent to any other such p; in the end, the largest such p is returned. However, in our
implementation we maintained the sequential nature of the algorithm.

Constraint Ordering Strategies
Given a QCN N = (V, C), the effectiveness of Greedus relies heavily on the set A of some
orderings of the constraints in N that will be provided as part of its input, as this set has a
direct effect on the quality of the satisfiable subset of constraints that will be obtained in the
end. It is worth noting that the efficiency of Greedus does not rely all that much on A, as
the algorithm will go through all constraints anyway (of course, in the sequential version of
the algorithm, some optimizations can be achieved by passing information from one iteration
to the next one, to early stop the loop, for example).

Intuition. We would like to delay the encounter of a constraint that causes inconsistency
(line 9 in the algorithm) for as long as possible, as this should allow us to maximize the
size of the set of satisfiable constraints. So, intuitively, we should order constraints from
more permissive to less permissive, as this should increase our chances of a relatively more
successful outcome. In the sequel, we list ways to assess the permissiveness of a constraint.
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In qualitative constraint-based reasoning, the satisfiability checking of a QCN is done via
the use of a backtracking algorithm [22], where the selection of the next constraint to process
follows the minimum remaining values principle in traditional constraint programming [23]
(commonly known as MRV); specifically, heuristics are used to select the more restrictive
constraints first, as this should help the algorithm to explore a relatively sparser search
tree. Here, we simply reverse the use of such constraint selection heuristics, making small
adaptations where necessary, which we explain in what follows.

In sum, among other heuristics, we use the local model counting-based heuristics of [25],
as well as the weighting-based ones of [27, 21], to order the constraints from more permissive
to less permissive (or, equivalently, from less restrictive to more restrictive).

First, we need to recall and slightly adapt the definition of a local model from [25].

▶ Definition 3 (local model, cf. [25]). Given a QCN N = (V, C) and an edge {v, v′} ∈
E(G(N )), a local model of a base relation b ∈ C(v, v′) is a scenario S = (V ′, C ′) of N ↓V ′ ,
where V ′ = {v, v′, u} with u ∈ V (V ′ is a triple of variables in V ), and C ′(v, v′) = {b}.

Now, we are ready to list all of the used constraint ordering strategies in this work. It
is clear that, given a QCN N = (V, C), an exhaustive application of either of the following
strategies for each of the (non-universal) constraints of N provides an ordering of the
constraints of N ; we can then represent those orderings with bijections E → {0, 1, . . . , |E|−1},
where E = E(G(N )), and form the required set of orderings for Greedus.

max: choose the constraint that contains the base relation with the most local models.
min: choose the constraint for which the base relation with the fewest local models has
the most local models compared to such base relations of the rest of the constraints.
avg: choose the constraint with the highest average count of local models (i.e., each of
its base relations contributes a count and we take the average of these counts).
sum: choose the constraint with the highest cumulative count of local models. (i.e., each
of its base relations contributes a count and we take the sum of these counts).
weight: choose the constraint with the largest weight; see, e.g., Figure 9 in [27] (the
larger the weight, the more permissive the constraint).
card: choose the constraint whose smallest decomposition into sub-relations of a (maximal)
tractable subset S ∈ 2B [21] (e.g., the ORD-Horn set for IA [20]) is the largest one.
card + weight: the card heuristic, with the weight heuristic acting as tie-breaker (this is
very typical in the literature e.g., [21]).
random: choose a constraint randomly.

The reader can note that the aforementioned strategies are very different to one another,
even contradictory at times (e.g., max and min). In fact, such a mix of different strategies
ensures that our portfolio-style approach is diverse enough; diversity is an important aspect
of any portfolio-based method.

4 Optimal Partial MaxSAT-based Approach

In this section, we introduce a Partial MaxSAT encoding for the MAX-QCN problem by
extending the SAT encoding of [20]; we note that the aforementioned encoding pertains to
the IA calculus, but the approach itself may be adapted to any calculus by using the hard
clauses to encode a theory of the calculus and the soft ones to encode the constraints of an
input QCN over that calculus – e.g., a similar encoding exists for RCC8 in [29]. It must be
noted that, contrary to the approach of [7], which does not take into account a theory of a
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calculus and aims to provide a generic approach that is based solely on the weak composition
rules of that calculus, our extension may take full advantage of tractability properties for
QCNs, viz., Horn theory-based maximal tractable subsets of relations [22], and is thus one of
the most compact encodings for the MAX-QCN problem to date, see also Table 1 in [30].

First, we briefly introduce some notions about the Partial MaxSAT problem. A literal is a
propositional variable or its negation, and a clause is a disjunction of literals. The maximum
satisfiability problem (MaxSAT) is the problem of finding an assignment that satisfies as
many clauses of a given set of clauses as possible [12]. Hence, the MAX-QCN problem can
already be viewed as a version of the MaxSAT problem for QCNs. The Partial MaxSAT
problem is an extension of the MaxSAT problem defined as follows: an instance Ω of Partial
MaxSAT [16, 5] is a set of clauses composed of hard and soft clauses, and a solution ω of
Ω is an assignment that satisfies the hard clauses and maximizes the number of satisfied
soft clauses. For the MAX-QCN problem, certain hard clauses are necessary to ensure the
completeness of the approach, in particular, the clauses that pertain to a provided theory of
a given calculus, as we will demonstrate in the sequel.

We first introduce our Partial MaxSAT encoding for a given QCN in an abstract way,
and then give an example based on IA and the SAT encoding in [20]. Given a QCN N =
(V, C) over some calculus C, the hard clauses in the Partial MaxSAT encoding are the ones
encoding a theory of C, the set of these clauses being denoted by ThC(N ), and the soft
clauses in the Partial MaxSAT encoding are the ones encoding the constraints of N , the set
of these clauses being denoted by InC(N ). Specifically, regarding InC(N ), the soft clauses
can be viewed as follows (an explanation of the symbols follows immediately after):∧

(i,j)∈E(G(N )) s.t. i<j

(rij →
m∧

l=1
cl) (1)

With respect to Equation (1) above, rij is an auxiliary variable associated with every
(i, j) ∈ E(G(N )) s.t. i < j, and complementing every clause cl of a CNF formula c1 ∧ c2
∧ . . . ∧ cm corresponding to the constraint C(i, j) (here, m is some small constant that
is particular to the CNF encoding of a constraint in a given calculus). The soft part in
Equation (1) is simply the set of these rij unit clauses: maximizing the number of satisfied
clauses of the form rij corresponds to maximizing the number of satisfied constraints of the
form C(i, j).

Let us ground the presentation so far in IA to facilitate the reader. A Horn theory of IA
can be based on that of partial orders, as is done in [20]. We present this theory as follows:

x ≤ z ∧ z ≤ y → x ≤ y x = y → x ≤ y

x ≤ y ∧ y ≤ x → x = y x = y → y ≤ x

x = y ∧ x ̸= y → ⊥ x ̸= x → ⊥

Then, we consider the usual domain D of IA, which is defined as the set of intervals on the
real line, i.e., D = {x = (x−, x+) ∈ R × R | x− < x+}, where x− and x+ denote the starting
point and ending point of an interval x, respectively.

Given a QCN N = (V, C) over IA, every interval variable x ∈ V can be translated with
regard to the theory of partial orders as follows (remember that, ∀x ∈ V , x− < x+):

x− ≤ x+ ∧ x− ̸= x+

In addition, for all distinct interval variables x, y, z ∈ V , we need to enforce the theory of
partial orders mentioned earlier and obtain the respective translations for all of their starting
and ending points (with respect to a chordal completion of E(G(N ))).
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The hard clauses of ThIA(N ) can then be straightforwardly obtained by associating, for
all s ∈ {−, +} × {≤, =} × {−, +}, the propositional variables ps

xy with every pair of interval
variables x, y ∈ V , and retrieving the SAT enconding of the aforementioned translations.
For example the formula corresponding to an interval variable (viewed within the theory of
partial orders as above, viz., x− ≤ x+ ∧ x− ̸= x+) is as follows:

p(−,≤,+)
xx ∧ ¬p(−,=,+)

xx

With respect to the soft clauses of InIA(N ), and the SAT encoding of the constraints in
particular, it can be easily obtained by considering the definition of each base relation of IA
with respect to the starting and ending points of two intervals, and its subsequent translation
with regard to the theory of partial orders. For example, the base relation during between
two intervals x and y is defined as {(x, y) ∈ D × D | y− < x− ∧ x+ < y+}; we already saw
earlier how < corresponds to ≤ ∧ ̸= with regard to the theory of partial orders, so the
translation is obvious. By extension, the SAT encoding of composite relations (disjunctions
of base relations) can be obtained via the disjunction of the SAT encodings of the base
relations in the composite relation (which can then be transformed to CNF).

5 Experimentation

In this section, with respect to tackling the MAX-QCN problem, we perform an experimental
evaluation between and in-house implementation of greedus introduced in Section 3 (Al-
gorithm 1), and an implementation of the Partial PaxSAT encoding introduced in Section 4
using the PySAT toolkit [10] and the RC2 MaxSAT solver offering there [11].

▶ Note 4. All the code is available at: https://msioutis.gitlab.io/software/

Dataset & Setup

We kept the dataset consistent with what has been used in previous works on the MAX-QCN
problem for comparability, cf. [6, 7]. Specifically, we considered IA network instances generated
by the standard A(n, d, l) model [21], used extensively in the literature. In short, A(n, d, l)
creates network instances of size n, average constraint graph degree d, and an average
number l of base relations per constraint. We set n = 20 and l = 6.5, and we considered
100 inconsistent network instances for each degree d between 4 and 14 with a 2-degree step;
hence, 600 network instances in total. For this range of degrees d, the network instances of
model A(n, d, l) lie within the phase transition region [19]. Again, the nature and size of the
network instances is consistent with what has been used in the literature for the MAX-QCN
problem in order to present results that are comparable and as complete as possible, cf. [6, 7]
(see also the number of timeouts in Figure 4d for the dense instances). For the experiments
we used an Intel® Core™ CPU i7-12700H @ 4.70GHz, 16 GB of RAM, and the Ubuntu
Linux 22.04 LTS OS, and one CPU core per network. All coding/running was done in
Python 3; however, we must note that the implementation of greedus was sped up with
PyPy,1 which comes bundled with a just-in-time compiler, whereas the same is not possible
for the implementation of the Partial MaxSAT encoding, because the RC2 MaxSAT solver
in PySAT uses Glucose 3 [2] as the underlying SAT oracle, which is coded in C/C++.

1 https://www.pypy.org/

https://msioutis.gitlab.io/software/
https://www.pypy.org/
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(d) Runtime performance of main approaches.

Figure 4 Assessing the performance of an implementation of greedus and of our Partial MaxSAT
encoding, respectively, with Interval Algebra (IA) network instances of model A(n = 20, d, l = 6.5) [21];
a timeout occurs after 3 600s, and in that case the runtime up to that point is not taken into account
(only 7 such timeouts occured, all for the Partial MaxSAT-based implementation at d = 14).

Results & Remarks

All of the experimental results are concisely presented in Figure 4. In Figure 4a we evaluate
how the different strategies that are implemented under the hood of greedus behave
with respect to obtaining repairs in an inconsistent QCN if they are run standalone (see
Section 3 for a description of these strategies), and how they define the respective behaviour
of greedus when taken all together; the ground truth here is the optimal value. The best
performing strategies with respect to obtaining few repairs are sum and weight, and the worst
performing one is random; however, as we will see in the sequel, no strategy goes to waste in
this portfolio-style implementation. With respect to our last point, in Figure 4b we observe
the percentage of times that a strategy dominated all others, where by “dominated” we mean
that the strategy obtained a number of repairs that was strictly smaller than that of any
other strategy. Somewhat surprisingly, the worst strategy when it comes to obtaining few
repairs, viz., random, was still able to dominate all others at least a couple of times per avg.
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degree d. This means that, by removing random, we would obtain a slightly worse result for
greedus in Figure 4a, or, in other words, that random, albeit not the most helpful of all
strategies, can still be considered indispensable. In Figure 4c we observe the percentage of
times that an approach fails to find the optimal value. The performance of the strategies
here mirrors that of Figure 4a (the two measures, of course, correlate), but what we get from
Figure 4c is that greedus can find the optimal value for the majority of instances up to an
avg. degree d of 10. Even though the situation might seem dramatic for an avg. degree d of
12 and 14, the distance to the optimal value, as reported in Figure 4a, is quite small, and a
failure still registers as a failure even when a value of x + 1 is reported instead of the optimal
x. Finally, in Figure 4d we can see the implementation of greedus scaling gracefully as the
network instances become denser, whereas the performance of the implementation of the
Partial MaxSAT encoding starts deteriorating drastically and even time-outs a few times
when trying to solve the densest of instances.

▶ Remark 5. The time for generating the Partial MaxSAT encoding of a QCN was not taken
into acount in our evaluation and, in particular, in Figure 4d. This is because the encoding
is currently not generated in an optimal way and it would skew the results in favor of the
implementation of greedus. However, some computational effort would be required in any
case to produce the encoding, so what we see in Figure 4d for the implementation of the
Partial MaxSAT encoding is a lower bound (with respect to our experimental evaluation
here). In addition, despite the fact that the implementation of greedus was sped up with
PyPy, some overhead still remains, since it is fully coded in the high-level language of Python,
which has an inherent performance disadvantage against low-level languages like C/C++.
Thus, what we see in Figure 4d for the implementation of greedus is an upper bound. In
fact, based on algorithm design alone, it should be feasible to have an implementation of
greedus that would either match or exceed the performance of the implementation of the
Partial MaxSAT encoding in all cases. The main takeaway regarding runtime performance
here is that greedus scales much better with respect to the average constraint graph degree
of the network instances, and this scaling behaviour is accurately depicted in Figure 4d.

6 Conclusion and Future Work

In this paper, we focused on the problem of resolving inconsistency in qualitative constraint
networks (QCNs), which can be viewed as knowledge bases of intutive, human-like descriptions
of spatio-temporal information like x {is north of ∨ is east of} y. In particular, we presented
two novel approaches for maximizing satisfiability in such networks: a greedy constraint-based
and an optimal Partial MaxSAT-based one. The greedy technique adds the constraints of a
given QCN to a new, initially empty network, one by one, filtering out the ones that fail the
satisfiability check during the process; in doing so, it relies on many different strategies that
create various orderings of the constraints to be processed, in a portfolio-style setting. The
Partial MaxSAT encoding exploits to the fullest extent possible certain tractability properties
associated with QCNs, viz., Horn theory-based maximal tractable subsets of relations [22],
and is thus one of the most compact to date Partial MaxSAT encodings for the MAX-QCN
problem, as evidenced also by the special case where all its clauses are assumed to be hard
(the SAT case) [30]. We compared the two approaches against each other and provided some
insight on the trade-off between obtaining repairs that are optimal and obtaining repairs
in a manner that is fast. For future work, we would like to apply the techniques discussed
here to other inconsistency-related reasoning tasks, such as the recently introduced one of
decomposing QCNs into consistent components [24]. Further, we would like to explore more
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on the use of SAT/MaxSAT solvers, especially solvers based on local search, e.g., [4], as we
think that they would better suit our needs; in our experience, inconsistencies in QCNs tend
to form locally. Finally, we are looking into ways of devising an optimal method out of our
greedy approach.
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Optimization of Nonsequenced Queries Using
Log-Segmented Timestamps
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Abstract
In a period-timestamped, relational temporal database, each tuple is timestamped with a period. The
timestamp records when the tuple is “alive” in some temporal dimension. Nonsequenced semantics
is a query evaluation semantics that involves adding temporal predicates and constructors to a query.
We show how to use log-segmented timestamps to improve the efficiency of temporal, nonsequenced
queries evaluated using a non-temporal DBMS, i.e., a DBMS that has no special temporal indexes
or query evaluation operators. A log-segmented timestamp divides the time-line into segments of
known length. Any temporal period can be represented by a small number of such segments. The
segments can be appended to a relation as additional columns. The advantage of log-segmented
timestamps is that each segment can be indexed using standard database indexes, e.g., a B+-tree.
A query optimizer can use the indexes to generate a lower cost query evaluation plan. This paper
shows how to rewrite a query to use the additional columns and evaluates the time cost benefits and
space cost disadvantages.

2012 ACM Subject Classification Information systems → Temporal data; Information systems →
Relational database query languages

Keywords and phrases Temporal databases, nonsequenced semantics, query evaluation, query
performance
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Supplementary Material Software (Source Code): https://www.usu.edu/cs/people/Curtis
Dyreson/logsegmented/nonsequenced

1 Introduction

In a tuple-timestamped, temporal relational database, the lifetime of a tuple in some temporal
dimension is recorded using a period timestamp. The period timestamp represents the lifetime
using a start time and an end time. Temporal relational database management systems
process the timestamps in queries using two commonly recognized semantics for temporal
query evaluation: sequenced [3] and nonsequenced [5]. Sequenced query evaluation, in effect,
runs the query in every time instant, while nonsequenced semantics is about the evaluation
of explicit temporal predicates, constructors and functions.

We previously showed how to use a different kind of timestamp, which we called a
log-segmented timestamp, to implement sequenced semantics for queries in an unmodified
relational DBMS [14] and that sequenced semantics can be leveraged to support other kinds
of semantics [16]. This paper shows how to use log-segmented timestamps to implement
nonsequenced semantics. The primary benefit of doing so is that the log segments can be
indexed by non-temporal indexes, and the indexes can be used to (sometimes) lower the cost
of query evaluation.

To illustrate nonsequenced query evaluation, consider the query given in Figure 1. The
query computes the join on the dept attribute between the Tesco and Walmart relations;
the relations are shown in Figure 2. The OVERLAPS temporal predicate in the WHERE clause
determines if the timestamps for the time attributes in each relation overlap. The query can
be translated by a layer into a Postgres SQL query as shown in Figure 3. Evaluating the
query in Figure 3 gives the result in query Figure 2(c).
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SELECT s.dept, OVERLAPS(r, s)
FROM tesco s, walmart r
WHERE r OVERLAPS s

Figure 1 Query to compute the temporal join between two tables.

Data Time Metadata Data Time Metadata
Dept Start Stop Dept Start Stop
Shoe 1 5 Shoe 2 3

Shoe 5 6

(a) Relation Tesco (b) Relation Walmart

Data Time Metadata
Dept Start Stop
Shoe 2 3
Shoe 5 5

(c) Result of the nonsequenced evaluation of the query in Figure 1.

Figure 2 Example relations.

The focus of this paper is on the cost of query evaluation and whether that cost can
be reduced. As an example, consider the evaluation of the query in Figure 3 on relations
with 50K tuples. The query evaluation plan generated by the SQL compiler for the query is
given in Figure 4. To improve query efficiency in the plan a two attribute index was created
(indexstartstop) on the time attributes as well as individual indexes on each attribute.
The index is used in the nested loops join, but the overall cost of the query (given in the top
line of the plan) is 30,587,076.

The key research question addressed by this paper is whether this query evaluation plan
can be improved using “off-the-shelf” relational DBMS technology, i.e., not using a specialized
temporal index or other modifications of a DBMS. Using the techniques presented in this
paper we show how to lower the cost to 1,376,011. The optimizer can choose between the
plans to generate the lowest cost query.

This paper makes the following contributions.

We describe how to extend a relation to store a temporal period using log segments.

We show how to use log segments to evaluate a nonsequenced temporal predicate.

We describe experiments with the Postgres DBMS that demonstrate the efficacy of our
approach. Our experimental reproducibility package is available.1

This paper is organized as follows. The next section gives background material relevant
to the paper. Section 3 presents the main technical content of the paper, how to store
log segments and use the segments in nonsequenced query evaluation. Evaluation of the
technique is given in Section 4 followed by a discussion of related work and a short conclusion
with remarks on future work.

1 https://www.usu.edu/cs/people/CurtisDyreson/logsegmented/nonsequenced

https://www.usu.edu/cs/people/CurtisDyreson/logsegmented/nonsequenced
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SELECT s.dept,
GREATEST(r.time.start, s.time.start) AS start,
LEAST(r.time.stop, s.time.stop) as stop

FROM tesco s, walmart r
WHERE ((r.start <= s.start AND s.start <= r.stop)

OR (s.start <= r.start AND r.start <= s.stop))

Figure 3 Query to compute the nonsequenced temporal join between two tables.

Nested Loop (cost=228.08..30587076.79 rows=524691358 width=20)
-> Seq Scan on empt r (cost=0.00..1662.00 rows=50000 width=20)
-> Bitmap Heap Scan on empt s (cost=228.08..454.30 rows=10494 width=8)

Recheck Cond: (((r.start <= start) AND (start <= r.stop))
OR ((start <= r.start) AND (r.start <= stop)))

-> BitmapOr (cost=228.08..228.08 rows=11111 width=0)
-> Bitmap Index Scan on foostart (cost=0.00..55.86 rows=5556 width=0)

Index Cond: ((start >= r.start) AND (start <= r.stop))
-> Bitmap Index Scan on foostartstop (cost=0.00..166.97 rows=5556 width=0)

Index Cond: ((start <= r.start) AND (stop >= r.start))

Figure 4 Query execution plan for a temporal join.

2 Preliminaries

In this section we describe background material pertinent to the paper.

2.1 Model of time
This research is orthogonal to assumptions about the time-line, number of temporal dimen-
sions, representations of time, and data model. But for simplicity, we make the following
assumptions.

We use a discrete time-line, with chronons ranging from time −∞ to time ∞.
There is only one time dimension.
We assume a relational data model (as either sets or bags of tuples) in which every tuple
in every relation is annotated with temporal metadata that records the lifetime of the
tuple in some time dimension. That is, it is a tuple-timestamped model [20].

2.2 Temporal Query Semantics
Sequenced and nonsequenced semantics were introduced as different semantics for the evalu-
ation of a temporal operation such as a query or data modification, and both semantics are
important [19]. Böhlen and Jensen trace the history and meaning of sequenced semantics [2],
but, put simply, sequenced semantics evaluates an operation in each time instant using
only the data alive at that time. Nonsequenced semantics, in contrast, means that an
operation explicitly references and manipulates the timestamps in the data [5]. In some
sense, nonsequenced semantics is the absence of a implicit temporal semantics, only explicit,
direct manipulation of the timestamps is supported.

One important benefit of both semantics is that they reduce to non-temporal semantics.
For sequenced semantics, the reducibility is called snapshot reducibility [23] or S-reducibility [4].
The temporal semantics is defined in terms of a (presumably easily understood) slice of
temporal to non-temporal, and the non-temporal semantics of query evaluation (also, well
understood).

TIME 2023
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0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5 Log segments on a time-line.

Nonsequenced semantics is also reductive. The time information is converted to data,
and the non-temporal operation is evaluated on the data. Since time plays no special role
in the evaluation, each tuple in the result has no (implicit) time. Instead, the times are
manipulated through temporal functions, temporal predicates, and temporal constructors
specified in the query. Some of the constructors can convert the data back into time.

Traditionally, the two semantics have been seen as different, though proposals for recon-
ciling the differences exist [16].

2.3 Log-segmented Timestamps

Most temporal database research and implementation uses period timestamps to annotate
data with temporal metadata [22]. Period timestamping appends a timestamp to each
data item to represent its lifetime. A variation of tuple-timestamped models is attribute
timestamping where timestamps are appended to each attribute in a tuple rather than to the
entire tuple [25].

Period timestamps are a poor fit for architectures that need to partition large data sets
into smaller shards to process, e.g., mapreduce architectures [21] or hash joins in a DBMS.
Consider, for instance a hash join operation. Data items that have the same join values hash
to a common bucket, and the buckets are joined. The strategy is efficient since it ensures
that only data items that actually will join are put into a bucket. A temporal join adds a
further condition that two data items join only on the times at which they are both alive.
For period timestamps this is computed as the temporal intersection of the timestamps. If
the intersection is empty, the items do not join since they do not coexist at any point in time.
The problem is that periods cannot be directly mapped to buckets in a way that ensures
that the items within a bucket temporally intersect. Consider the periods [1,2], [8,9], and
[0,10]. [1,2] and [8,9] should be placed in different buckets since they do not intersect,
and hence, never represent data that coexists. But [0,10] intersects both, it has to be
placed into both. Since a period of size n has n(n + 1)/2 sub-periods that could intersect,
every period potentially needs to belong to many buckets.

To address this challenge we developed a log-segmented timestamp [13]. The timestamp
uses a labelling scheme for pre-determined periods on a time-line. A label is a binary number
that has the following meaning.
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Table 1 Some example labels for the time-line 0. . .15.

Label Period tx ty

1 0 – 15 0 15 = 0 + (24 − 1)
10 0 – 7 0 = 0 ∗ 24 8 = 0 + (23 − 1)

110 8 – 11 8 = 1 ∗ 23 11 = 8 + (22 − 1)
1101 10 – 11 10 = 1 ∗ 23 + 1 ∗ 21 11 = 10 + (21 − 1)

10011 3 – 3 3 = 1 ∗ 21 + 1 ∗ 20 3 = 3 + (20 − 1)

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1-11

2-3
1

Times

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5-6

Figure 6 Log segments for the times in the relations in Figure 2 a) and b).

▶ Definition 1 (Log-segment Label). Let a (discrete) time-line consist of the times t0, . . . , tn,
where n = 2k − 1. Note that n can be represented using a binary number of length k with
each digit set to 1. A label is a binary number, b0. . .bj , and b0 is always 1. The label 1b1. . .bj ,
j ≤ k, represents the time period tx to ty where tx = b12k−1 + b22k−2 + . . . bj2k−j and
ty = tx + (2k−j − 1).

The log segments for a time-line from 0 to 15 are depicted in Figure 5. The chronons in
the time-line are numbered at the bottom of the figure. Each gray rectangle in the figure is
a segment. A label for a segment is the concatenation of 1’s and 0’s along the path from the
root to a segment. Some example labels are shown in Table 1. Note that only 2n − 1 of the
(n + 1)(n + 2)/2 possible periods in the timeline are labelled.

A log-segmented timestamp is the minimal set of segments that spans a given period.
For example, the log-segmented timestamp representing the period [3,11] is {10011, 101,
110} (naming the periods {[3,3], [4,7], [8,11]}, respectively). The log-segmented
timestamps for the times in the relations in Figure 2 a) and b) is graphically depicted in
Figure 6.

Log-segmented timestamps have the following properties.
Comprehensive - A time-line of size n has at most 2n − 1 labels. Each label will have
a maximum length of 1 + ⌈log2(n)⌉ bits. So a label of 64 bits (the size of a long long
scalar in C++) can represent a time-line of 263 − 1 time values, which encompasses a
time-line longer than current estimates of the lifetime of the universe to the granularity
of microseconds [17].
Compact - The maximum number of segments in a log-segmented timestamp for a period,
[tx,ty], is 2 ∗ ⌈log2((1 + ty) − tx)⌉. So assuming 64 bit labels, a log-segmented timestamp
has at most 2*64 labels.

TIME 2023
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Data Time Metadata
Dept Start Stop s1 s2 s4 s8 s1x s2x s4x s8x
... 1 11 10001 1001 101 110
... 2 3 1001
... 5 6 10101 10110

Figure 7 Example segment columns for the periods in Figure 6.

3 Timestamp Representation and Temporal Predicates

To process nonsequenced log-segmented queries, we choose to represent log segments by
adding additional columns (attributes) to a table (relation). There are two kinds of additional
columns, which we describe in this section: segment columns and prefix columns. It may
seem counter intuitive to add columns in order to improve evaluation efficiency, but, in effect,
we are trading space for time since the columns that we add will be indexed and the indexes
used to lower the time cost.

3.1 Segment Columns

A segment column is a column that stores a log segment as an integer. We observe that a
log segmented timestamp has at most two segments with the same length. For instance in
Figure 6 there are two segments with the same length, 101 and 110, in the set of segments
for the period [1-11]. Hence 2log2(n) columns are required to store all of the segments.
Moreover, each column can be distinguished by the length of the segment that it stores, i.e.,
a segment with length n can be stored in the segmentn column, and the second segment (if
present) in the segmentnx column. An example is shown in Figure 7. It depicts the segments
for the log-segmented timestamps in Figure 6. The segment columns (e.g., s1) are appended
to each row in the table. We assume a timeline for this example of only 16 chronons. An
s16 column is not needed since the entire timeline can be represented by the segments in s8
and s8x.

Any missing segment column value is null, hence the additional columns will be relatively
sparsely populated. Most modern DBMSs do not store null values, rather no space is allocated
for a null, instead the column is marked as no size in the row header.

3.2 Prefix Columns

The prefix columns record each segment that contains the starting (stopping) chronon of a
period. For any given segment, the segment is contained is each segment that is a labelled
with a prefix. For instance the segment 1101 is contained within the segments 110, 11, and 1.

Prefix columns are appended to each row in a table to store the prefixes for the start and
stop chronons. Each prefix must have a different length, hence the length of the label can be
used in the name of the column, e.g., p4 for a start chronon prefix of length 4 and p2e for a
stop chronon of length 2. Figure 8 shows the prefixes for the log-segmented timestamps in
Figure 6.
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Data Time Metadata
Dept Start Stop p1 p2 p4 p8 p1e p2e p4e p8e
... 1 11 10001 1000 100 10 11011 1101 110 11
... 2 3 10010 1001 100 10 10011 1001 100 10
... 5 6 10101 1010 101 10 10110 1011 101 10

Figure 8 Example prefix columns for the periods in Figure 6.

3.3 Reasoning About Chronon Containment
The segment and prefix columns can be used to determine whether a start (or stop) time is
contained within a period. Let chronon x have prefixes p1, p2, p4, . . . , pn and period [z, y]
have segments s1, s2, s4, . . . , sn, s1x, s2x, . . . , snx, then x is contained in [z, y] if

∃i(pi = si ∨ pi = six)

As examples consider the following using the segments of Figure 7 and the prefixes of Figure 8.
Is 2 contained in [1-11]? The segments of [1-11] are

Dept Start Stop s1 s2 s4 s8 s1x s2x s4x s8x
... 1 11 10001 1001 101 110

and the prefixes of 2 are as given below.

Dept Start Stop p1 p2 p4 p8 p1e p2e p4e p8e
... 2 10010 1001 100 10

Since p2 = s2, it is contained within.
Is 2 contained in [5-6]? The segments of [5-6] are

Dept Start Stop s1 s2 s4 s8 s1x s2x s4x s8x
... 5 6 10101 10110

and the prefixes of 2 are as given below.

Dept Start Stop p1 p2 p4 p8 p1e p2e p4e p8e
... 2 10010 1001 100 10

There is no i such that pi = si or pi = six, hence it is not contained.

3.4 Temporal Predicates
Log-segmented timestamps give an alternative to using the start and stop times in a period
to implement some temporal predicates. Examples include the following.

x OVERLAPS y - If the start chronon in x is contained in the period y or vice-versa then
period x overlaps period y. Figure 9 shows the SQL to add to the WHERE clause to express
an OVERLAPS predicate, assuming a timeline of 219 chronons. Note that the query could
be rewritten using UNION or UNION-ALL to break up the large disjunctive condition in the
WHERE clause.

TIME 2023
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WHERE ...
(x.s1 = y.p1 OR r.s2 = y.p2 OR ... OR x.s19 = y.p19

OR x.s1 = y.p1e OR r.s2 = y.p2e OR ... OR x.s19 = y.p19e
OR y.s1 = x.p1 OR y.s2 = x.p2 OR ... OR y.s19 = x.p19
OR y.s1 = x.p1e OR y.s2 = x.p2e OR .. OR y.s19 = x.p19e)

Figure 9 SQL for computing OVERLAPS in a time-line of 219.

WHERE ...
(x.start = y.start AND x.stop <> y.stop AND
(y.s1 = x.p1e OR y.s2 = x.p2e OR ... OR y.s19 = x.p19e)

)

Figure 10 SQL for computing STARTS in a time-line of 219.

x STARTS y - If x and y have the same start chronons and different end chronons and
the stop chronon of x is contained in period y then x starts y. Figure 10 shows the SQL
to add to the WHERE clause to express a STARTS predicate, assuming a timeline of 219

chronons.
x CONTAINS y - If the start and stop chronons of y are contained within x then x contains
y.

Note that log segments do not provide an alternative for predicates that only involve period
endpoints, such as MEETS. These predicates can still be evaluated using the start and stop
chronons in the timestamp.

3.5 DBMS Implementation

It is highly unlikely that a user could manually manage the prefix and segment columns,
for instance, populating these columns when inserting a tuple. To better support users we
envision a stratum approach to implementation whereby a user interacts with the DBMS
through a layer of middleware layer. The layer provides three key services.
1. Query rewriting - We observe that the schema supports query evaluation on both log-

segmented timestamps and normal timestamps (it is not an either-or choice, both can
be supported simultaneously). A query will be rewritten by replacing the nonsequenced
and sequenced predicates and constructors in the query in two ways. First the query
will be rewritten to evaluate with respect to the normal (non-log segmented timestamps).
For example an overlaps predicate will be replaced with the SQL to compare start
and stop timestamps. Note that this is how non-sequenced query evaluation is usually
implemented. Second the query will be rewritten to use the log segmented timestamps.
Both rewritten queries will be submitted to the query optimizer to determine which has
an (estimated) lower cost, and that query evaluation plan will be chosen.

2. Schema modification - Schema modification statements, e.g., CREATE TABLE will be
rewritten to manage the prefix and segment columns automatically. All indexes for the
additional columns will be created or dropped as needed.

3. Data modification - Data modification statements will be rewritten to manage the prefix
and segment columns automatically. Note that computing log segments is a simple
calculation that can be done using an SQL function [14].
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4 Evaluation

Log segments add columns to a relation and complicate the expression of temporal predicates,
but they provide one key benefit: the segment and prefix columns can be indexed and the
indexes can be utilized by the query optimizer to lower the time cost of query evaluation.
This section describes an experimental evaluation of temporal predicates using log segmented
timestamps.

4.1 Experiment Environment
The experiments were run on an Intel Core i7 CPU, 1.8 GHz clock speed, 16 GB of memory
and 1 TB SSD drive running Windows 10 Pro 64-bit as the operating system. We used
Postgres, version 14, and did not change any installation or configuration parameters from
the standard (default) installation.

4.2 Schema for Experiments
We tested with two schemas: periodStamped and segmentStamped. The periodStamped
schema has one table, an Employee table with the schema given below.

Employees(id, name, department, start, stop)

The id column is the primary key of the table (the snapshot versus temporal key is not
relevant to the experiments) and an integer type, the name and department columns are
string types, and the start and stop columns are integers. The segmentStamped schema
has one table, an Employee table with the schema given below.

Employees(id, name, department, start, stop,
s1, s2, ..., s19, s1x, s2x, ..., s19x,
p1, p2, ..., p19, p1e, p2e, ..., p19e)

The added segment and prefix columns are integer types. We chose to represent a log segment
using the time of the first chronon in the segment.

4.3 Database Generation
We synthetically generated a database for each of the schemas. We used 100 different
departments and 90% (of the total number of tuples) different names when populating the
table. We chose a timeline of 219 (enough to represent a span of 60 years to a granularity of
seconds) and used timestamps randomly chosen within the timeline and of random length
(from 1 to 28). We used test cases of 10000, 20000, 30000, 40000, and 50000 tuples and
created one column indexes for every timestamp column (start through p19e) as well as a
two column index on the start and stop columns. The resulting database sizes are shown in
Figure 11. The log segmented tables are roughly twice the size of the period stamped tables,
but the indexes for the log segmented tables approximately quadruple the storage cost.

4.4 Measuring Query Cost
To mitigate the impact of database buffering, we used the query cost as estimated by the
Postgres query optimizer using EXPLAIN. The optimizer computes the cost in units that do
not have an exact correspondence to running time, i.e., a cost of 100 does not mean 100 ms
of time taken to evaluate a query, but rather are used to determine cheaper versus more
expensive queries.
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Figure 11 Size of data in database (in MBs).

We also measured actual query time using EXPLAIN ANALYZE. We took the minimum cost
query over five runs (the variance was inconsequential). The measurements were taken with
respect to a warm cache.

4.5 Predicate Evaluation
We measured the cost of three predicates on a fully temporal join, i.e., joining the two
relations only on the temporal attributes. The first experiment measure the cost of overlaps.
The results are shown in Figure 12. The log-segmented cost is estimated by the compiler
to be much lower than that of the period stamped relations. The reason is a different
query execution plan. The query execution plan for the period stamped relations was given
previously (see Figure 4). Figure 16 shows the relevant part of the log segmented query
execution plan. The compiler generates an efficient plan that uses bitmap indexes for matches
between segment and prefix columns, yielding a lower cost query plan. The actual timings of
the queries shown in Figure 14 show that the query optimizer produced an accurate estimate,
and that the bitmap index use does speed up queries.

The second experiment measures the cost of contains. The results are shown in Figure 13.
Contains is slightly more efficient for both period and log-segmented timestamped relations.
Note that in the log-segmented plot the cost of the 50K join is less than that of the 40K cost.
This reflects a change in the optimization strategy chosen by the query optimizer; at 50K
tuples the optimizer chooses a parallel scan so gets some performance improvement. Figure 15
shows that the measured query times have the same profile as the estimates produced by the
query optimizer.

The third experiment measures the cost of starts. The results are shown in Figure 17.
Note that overall the costs are orders of magnitude lower than the other two predicates. This
is because both the period and log segmented queries use an equality comparison on the
start time, e.g., r.start = s.start, together with a test to determine whether the stop
time is less. The start time condition can take advantage of the start index for both kinds of
timestamp, and this in effect determines the cost of the query. The cost of testing end stop
time is slightly worse for the log segmented timestamp, which increases its cost slightly. Note
that the cost of the 50K case is better than the 40K case for the log segmented timestamps
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due to parallelization in the query execution plan. Figure 18 shows that period timestamped
query have slightly lower times than the log-segmented timestamped, as predicted by the
query optimizer.

4.6 Discussion of Results
Appending columns to a relation to store log segments and prefixes of the start and stop
chronons effectively doubles the size of a relation with few data columns. Adding indexes on
the segment and prefix columns further increases the cost. But, in practice relations with 10
to 100 data columns are more common, so the storage cost difference would often be less
in real-world situations. In some cases the query optimizer can use the added columns and
indexes to generate a lower cost query evaluation plan at the cost of increasing the size and
complexity of the WHERE clause predicate. But in many cases using the start and stop times
and indexes offers a better plan as shown by the third experiment (the starts experiment).
Utilizing log segments can be seen as a potential optimization technique that increases the
space of potential plans, and the query optimizer can examine other constraints in the query
to choose the best, lowest cost plan.
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Nested Loop (cost=12.13..102716.47 rows=120094 width=20)
-> Seq Scan on empt r (cost=0.00..417.00 rows=10000 width=176)
-> Bitmap Heap Scan on empt s (cost=12.13..18.11 rows=18 width=84)
Recheck Cond: ((s1 = r.p1) OR (s2 = r.p2) ... OR (s262144 = r.p262144x)

OR (s524288 = r.p524288x))
-> BitmapOr (cost=12.13..12.13 rows=18 width=0)

-> Bitmap Index Scan on foos1 (cost=0.00..0.30 rows=1 width=0)
Index Cond: (s1 = r.p1)

-> Bitmap Index Scan on foos2 (cost=0.00..0.30 rows=1 width=0)
Index Cond: (s2 = r.p2)

-> Bitmap Index Scan on foos4 (cost=0.00..0.30 rows=1 width=0)
...
-> Bitmap Index Scan on foos524288x (cost=0.00..0.30 rows=1 width=0)

Index Cond: (s524288 = s_1.p524288)

Figure 16 Query execution plan using indexes on the segment and prefix columns for a temporal
join.

10K 20K 30K 40K 50K
0

2000

4000

6000

8000

periodStamped
segmentStamped

Figure 17 Optimizer for starts.

10K 20K 30K 40K 50K
0

.05

.1

.15
se

co
nd

s

periodStamped
segmentStamped

Figure 18 Measured time for starts.

5 Related Work

There are many temporal extensions of query languages, c.f., [7,18,23,24]. This paper focuses
on temporal SQL. The extensions have been broadly characterized in various ways but
sequenced vs. nonsequenced distinguishes extensions, in part, by whether the time metadata is
manipulated implicitly or explicitly. This paper is about nonsequenced semantics. Temporal
languages have also been characterized as abstract vs. concrete based on whether their syntax
and semantics depends on a specific representation of the time metadata [8]. This paper
describes an abstract semantics, and proposes a concrete representation to optimize some
nonsequenced queries.

Two implementation approaches are common for SQL-like temporal query languages. A
stratum-approach adds a source-to-source translation layer to translate a query in a temporal
extension into an equivalent query in the original, non-extended language [26, 27]. Some
constructs prove not possible to translate using period timestamps, e.g., sequenced outer
join, so the only feasible approach is to extend the DBMS itself [11]. A related approach is to
translate to a non-standard variant of SQL [15], in anticipation that SQL will one day evolve to
incorporate the variant. We adopt a stratum approach in this paper whereby a nonsequenced
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query is translated to a (non-temporal) SQL query and evaluated on a unmodified relational
DBMS. We know of no other papers that explore optimization of nonsequenced queries using
non-temporal indexes or without making other changes to the DBMS.

Hierarchical partitioning of intervals into smaller segments, similar to log segments, for
the purposes of indexing has been explored recently [9]. Our research [13,14] predates this
effort and supports indexing by B-tree indexes.

There are several papers that also support the use of B-tree indexes in evaluating temporal
constructors and predicates c.f., [1, 6, 10, 12]. In particular, it was proposed that a range
query on a B-tree index combined with a UNION could be used to efficiently compute a
non-sequenced join using an overlaps predicate [12]. While we found also found that UNION,
or more specifically UNION-ALL, was useful in optimizing queries with an OR predicate in
the WHERE clause, but care had to be taken to preserve duplicates or not over-produce
duplicates in the query result. The UNION-ALL optimization could also be used for log
segmented timestamps which have many OR predicates in overlap joins. One key difference
is that we do not use range index queries, rather we use point index queries to evaluate the
join. Techniques to augment the DBMS evaluation engine for improved join strategies [1]
go beyond the scope of this paper, we focused on not altering the DBMS query evaluation
engine.

6 Conclusion and Future Work

The primary contribution of this paper is to show a novel method for optimizing nonsequenced
SQL queries. Temporal query languages often extend a non-temporal language by adding
temporal predicates, constructors, and functions which directly manipulate the time metadata
that annotates the data. A query is said to be nonsequenced if it explicitly includes one of
these added temporal features. When a nonsequenced query is evaluated, the nonsequenced
part of the query is evaluated against the time metadata, e.g., a temporal overlaps predicate
checks if two timestamps overlap in time.

A tuple-timestamped relational database appends to each tuple a period timestamp for
each temporal dimension. The start and stop times in the timestamp can be indexed, and
often a query execution plan can use the indexes to lower the cost of query execution. This
paper proposes adding a log-segmented timestamp to each tuple, in addition to a period
timestamp. A log-segmented timestamp divides the time-line into segments of known length.
Any temporal period can be represented by a small number of such segments. The segments
can be used as an alternative to determining containment of a start or stop chronon within a
period. We described how a relation can be extended with segment and prefix columns and
how these columns can be used in the nonsequenced evaluation of temporal predicates such
as OVERLAPS. We experimentally showed that an off-the-shelf relational DBMS can index the
segments and the query optimizer can use the indexed segments to generate a lower cost
query evaluation plan, though with higher space cost.

In future we plan to continue to investigate log segmented timestamps. We observe that
such segments can be used to improve temporal hash joins with a specialized temporal hash
join operator that can be added to a DBMS. The idea is that each tuple is first hashed to
a data bucket, and if that data bucket becomes full, then further hashed to different time
buckets within a data bucket by using log segments as the hash function. A time bucket
joins with all time buckets within a data bucket that are prefixes of the segment. A second
avenue to explore is prefix-based indexing. In this paper, we proposed precomputing the
prefixes and storing them as additional columns, but the prefixes are actually visited in the
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traversal of a B+ tree that stores the segments. By modifying the traversal, it should be
possible to avoid precomputation and storage of the prefixes. A third area of future work
is temporal constructors and functions. We believe that it is straightforward to articulate
temporal constructors, such as the OVERLAPS constructor, but have yet to articulate the
details. Finally, we are investigating the use of log segments in other temporal query languages
such as temporal graph query languages.
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Abstract
In stream reasoning, the task is to derive high level abstractions of large data streams with minimal
latency, as required by contemporary applications. This work presents an Event Calculus-based
approach to stream reasoning, highlighting its core features and recent extensions.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning

Keywords and phrases Event Calculus, temporal pattern matching, complex event recognition

Digital Object Identifier 10.4230/LIPIcs.TIME.2023.14

Category Extended Abstract

Funding This work was supported by the ENEXA project (No 101070305), and by the Hellenic
Foundation for Research and Innovation (HFRI) under the 3rd Call for HFRI PhD Fellowships
(Fellowship Number: 6011).

Motivation

Modern applications require the processing of large, high-velocity data streams that are being
generated continuously. A stream reasoning system derives instances of spatio-temporal
pattern satisfaction, based on the actions/events reported in such data streams, with minimal
latency. These spatio-temporal patterns may define a set of situations of interest in the
target application domain. In maritime situational awareness, e.g., a stream reasoning system
can be used to detect vessel activities that may be suspicious, illegal, dangerous or have a
negative environmental impact, based the position and velocity signals that are continuously
being emitted by sailing vessels [7]. For instance, spatio-temporal patterns may specify an
illegal fishing activity in a prohibited area or an unexpected halt in signal transmissions.

There are several requirements for effective stream reasoning. First, a stream reasoning
system should be based on a formal pattern specification language, in order to allow the user
to express situations of interest without ambiguity. Second, this language has to be expressive
enough to support all situations of interest that need to be detected in the target application.
Third, the system should be equipped with highly-efficient algorithms for detecting these
patterns, taking into consideration that input actions/events cannot be stored in memory en
masse when operating in a streaming setting.

The Event Calculus for Run-Time Reasoning

Towards addressing the requirements of stream reasoning, we proposed “The Event Calculus
for Run-Time Reasoning” (RTEC), a logic-based, formal computational framework that is
optimised for stream reasoning [2, 6, 5]. RTEC is based on a logic programming implementa-
tion of the Event Calculus [3], a temporal formalism for representing and reasoning about
events and their effects. The Event Calculus dialect used by RTEC is many-sorted and
includes events, fluents, i.e., properties that may have different values at different points
in time, and a linear time model with integer time-points. The built-in Event Calculus
predicates of RTEC are used to express event occurrences and changes in the values of fluents,
and specify the time periods during which fluent-value pairs (FVPs) hold continuously.
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happensAt(E , T ) denotes that event E takes place at time-point T , while initiatedAt(F = V , T )
(resp. terminatedAt(F = V , T )) expresses that a time period during which fluent F has the
value V is initiated (terminated) at time-point T . holdsFor(F = V , I ) states that fluent F has
the value V continuously in the maximal intervals included in list I. Finally, holdsAt(F = V , T )
states that fluent F has the value V at time-point T . Moreover, RTEC adopts the specifica-
tion of the common-sense law of inertia used in the Event Calculus, expressing that FVPs
persist through time, unless an event that affects the value of the fluent takes place.

RTEC features two types of fluents, called “simple” and “statically determined”. The
conditions under which event occurrences may affect the values of simple fluents are expressed
through domain-specific initiatedAt and terminatedAt rules. Given the “initiation points” and the
“termination points” of some simple fluent F with value V , RTEC computes holdsFor(F = V , I ),
i.e., the maximal intervals I in which F = V holds continuously. In the case of a statically
determined fluent F , RTEC the maximal intervals of F = V directly, i.e., without computing
the initiation and termination points of F = V , using an domain-specific holdsFor(F = V , I )
rule, defining the maximal intervals I of F = V in terms of the maximal intervals of other
FVPs via interval operations, such as union, intersection and relative complement.

RTEC supports stream reasoning applications by integrating the aforementioned represent-
ation and reasoning formalism with caching, indexing, windowing and a “forget” mechanism
that removes redundant events and FVP intervals from its knowledge base. Moreover, RTEC
is restricted to hierarchical knowledge bases that allow bottom-up processing, thus avoiding
re-computations. The complexity analysis of RTEC is available in [2].

Recent Extensions

The specifications of modern applications may include cyclic dependencies. In maritime
situational awareness, e.g., a fishing trip consists of several stages, such as approaching
a fishing area, fishing and returning to a port. These stages form a cycle, as each stage
depends on the previous one. Moreover, situations of interest are often defined as temporal
combinations of other situations, which are typically durative and take place within temporal
intervals. The corresponding patterns can be expressed using Allen’s interval relations [1].
For instance, we may detect the suspicious situation where a vessel stops signal transmissions
while being close to another vessel using the “during” Allen relation.

We extended RTEC for expressing patterns featuring cyclic dependencies and Allen
relations [6, 5]. Our theoretical analysis of the resulting framework highlighted its semantics,
correctness and complexity, while our empirical evaluation demonstrated its effectiveness
when reasoning over large streams of benchmark and real data from modern applications.
This extended version of RTEC is publicly available1.

Further Work

Uncertainty is inherent in modern applications. In maritime situational awareness, e.g.,
malfunctions in signal transmitters may lead to data streams that include empty fields or
erroneous field values. A recent work tackles uncertainty be associating input stream items
with probability values, serving as a confidence estimate, and then employing probabilistic
reasoning to derive the probabilities of pattern satisfaction instances based on such an input [4].
In the future, we would like to extend RTEC with probabilistic reasoning techniques.

1 https://github.com/aartikis/RTEC

https://github.com/aartikis/RTEC
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Abstract
We describe SSTRESED, a prototype focused on the real-time, online detection of simple, durative
events over streaming movement data. It is the first prototype that establishes a direct connection
between semantic trajectory extraction and simple event detection. SSTRESED is highly scalable
by incorporating parallel processing in two separate, but connected, training and event detection
pipelines implemented on state-of-the-art platforms, directly deployable in cloud environments.
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1 Introduction & Motivation

Detecting Simple, Derived Events (SDEs) is the first step towards Complex Event Recognition
(CER) [3, 4, 5]. In time critical-applications [1, 6], such as safe robot navigation in dynamic
smart factory environments, SDE detection should be performed continuously over voluminous
streams of movement data arriving at high speeds. In such scenarios, extracting SDEs out of
raw streams is a challenging task engaging (a) online neural network training for continuously
maintaining an up-to-date model for SDE labelling purposes and (b) semantic-aware trajectory
processing for identifying homogeneous movement portions, defining the SDE duration, before
using the neural model for labelling it. By definition, output SDEs are simple pieces of
information (Listing 2), but the volume and velocity of the original raw streams (Listing 1)
in large scale smart factory applications call for scaling out (parallelizing) the computation
to a number of machines to ensure real-time processing. Therefore, both (a) and (b) should
be set up in state-of-the-art, relevant platforms [7, 9] to allow for direct deployment over
computer clusters and/or the cloud. To tackle these challenges we develop SSTRESED, a
prototype for scalable SDE detection over streaming movement data. For the first time,
SSTRESED establishes a direct connection between semantic trajectory computation and
SDE detection in the streaming context. This is in contrast to prior art [9, 10] which uses
predetermined, application-defined time windows to a priori restrict eligible SDE durations.

2 The SSTRESED Prototype

SSTRESED (Figure 1) composes two connected pipelines distributed across worker machines
running in the cloud. In the robotic scenario of Section 1, truthful, timestamped and
labeled movement streams are continuously produced by robotic simulators, such as https:
//github.com/rock-simulation, as SDEs and their raw features, per robot (Listing 1).

© Nikos Giatrakos;
licensed under Creative Commons License CC-BY 4.0

30th International Symposium on Temporal Representation and Reasoning (TIME 2023).
Editors: Alexander Artikis, Florian Bruse, and Luke Hunsberger; Article No. 15; pp. 15:1–15:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ngiatrakos@softnet.tuc.gr
http://users.softnet.tuc.gr/~ngiatrakos/
https://orcid.org/0000-0002-8218-707X
https://doi.org/10.4230/LIPIcs.TIME.2023.15
https://github.com/rock-simulation
https://github.com/rock-simulation
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 SSTRESED: Scalable Semantic Trajectory Extraction for Simple Event Detection

Training 
Topic

Movement 
Streams

Learners Parameter Server Weights 
Topic

Semantic 
Tagger SDEs

Distributed 
SeTraStream

NN 
Weight 

Updates

Labeled Time Series @ Partition 1

Labeled Time Series @ Partition N

Unlabeled Time Series @ Partition 1

Unlabeled Time Series @ Partition M

…

𝑤1
𝑤2
…
𝑤𝑘

…

Figure 1 SSTRESED Architecture. Training (blue) and SDE Detection (red) Pipelines.

Listing 1 Example training stream for a single simulated robot. Unlabelled movement streams
lack a SDE label (last column in the figure). Thousands of such streams can be ingested by
SSTRESED in large scale applications.
time . . . pos_x pos_y pos_z . . . rot_w SDE
8.35 . . . −3.626 14 .921 0 .258 . . . 0 .9951 stopped at Stat ion1
30 .57 . . . . . . . . . . . . . . . . . . . . .
41 .15 . . . −7.446 23 .866 0 .257 . . . 0 .0977 moves to Stat ion3
41 .12 . . . −7.444 23 .867 0 .258 . . . 0 .0972 r o t a t i n g

The training pipeline (blue-colored path in Figure 1) continuously receives these robot
movement time series ingested in Apache Kafka partitions of the Training Topic. The
Training Topic is read by parallel PyTorch Learners. Each such learner, utilizes an
identical neural model (specified by the application), but performs the training process on a
separate set of robots. The local models learned at each Learner i (top of Figure 1) are
synchronized into a global neural model maintained by a Parameter Server [2]. At a global
model update, new weights of the neural network are written to a Weights Topic of Kafka.

The SDE detection pipeline (red-colored path in Figure 1) receives raw, unlabeled stream-
ing movement data, partitioned in the Movement Streams Kafka Topic. These incoming
tuples, ingested directly from the application field, have the same schema as those of the
Training Topic, but lack a label/SDE field. Ingested Movement Streams of robots (or,
optionally, samples of them [8, 11]) are processed by a distributed version of SeTraStream [12]
developed in Apache Flink. Distributed SeTraStream uses each parallel Segmentor i to
continuously identify homogeneous movement portions based on the ingested features per
robot, thus semantically and temporally segmenting each trajectory. In that, the duration
of a SDE is determined, which also bounds the feature tensors that should then be used
for labeling the SDE. Each parallel Segmentor i writes the result of its processing to an
intermediate Kafka topic connecting Distributed SeTraStream with a PyTorch Semantic
Tagger in the red-colored path. Each parallel Tagger i (bottom of Figure 1) of the Semantic
Tagger, at any given time instance, reads the up-to-date weights from the Weights Topic
and uses the updated neural model to label SDEs. The final SSTRESED output goes to the
SDEs Kafka topic in the form of tuples as illustrated in Listing 2 (per robot).
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Listing 2 SSTRESED output SDE Stream for the movement of a single robot.
Time_from Time_to SDE
4.25 8 .35 moving to Stat ion2
8 .35 8 .36 stopped at Stat ion2
. . . . . . . . .
39 .00 41 .15 r o t a t i n g
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Abstract
Dealing with inconsistency is a central problem in AI, due to the fact that inconsistency can arise
for many reasons in real-world applications, such as context dependency, multi-source information,
vagueness, noisy data, etc. Among the approaches that are involved in inconsistency handling, we
can mention argumentation, non-monotonic reasoning, and paraconsistency, e.g., see [2, 3, 10]. In
the work of [7], we are interested in dealing with inconsistency in the context of Qualitative Spatio-
Temporal Reasoning (QSTR) [6]. QSTR is an AI framework that aims to mimic, natural, human-like
representation and reasoning regarding space and time. This framework is applied to a variety of
domains, such as qualitative case-based reasoning and learning [5] and visual sensemaking [9]; the
interested reader is referred to [8] for a recent survey.

Task A Task C

Task B

after

before before

Task A Task C

Task B

after

before after

Task A Task C

Task B

before

before before

B
after C A before C

Figure 1 A decomposition of an inconsistent qualitative constraint network (QCN) into
consistent subnetworks (components).

Motivation. In [7], we study the decomposition of an inconsistent constraint network into consistent
subnetworks under, possible, mandatory constraints. To illustrate the interest of such a decomposition,
we provide a simple example described in Figure 1. The QCN depicted in the top part of the
figure corresponds to a description of an inconsistent plan. Further, we assume that the constraint
Task A {before} Task B is mandatory. To handle inconsistency, this plan can be transformed into a
decomposition of two consistent plans, depicted in the bottom part of the figure; this decomposition
can be used, e.g., to capture the fact that Task C must be performed twice. More generally, network
decomposition can be involved in inconsistency handling in several ways: it can be used to identify
potential contexts that explain the presence of inconsistent information; it can also be used to restore
consistency through a compromise between the components of a decomposition, e.g., by using belief
merging [4]; in addition, QCN decomposition can be used as the basis for defining inconsistency
measures.

Contributions. We summarize the contributions of [7] as follows. First, we propose a theoretical
study of a problem that consists in decomposing an inconsistent QCN into a bounded number of
consistent QCNs that may satisfy a specified part in the original QCN; intuitively, the required
common part corresponds to the constraints that are considered necessary, if any. To this end,
we provide upper bounds for the minimum number of components in a decomposition as well as
computational complexity results. Secondly, we provide two methods for solving our decomposition
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problem. The first method corresponds to a greedy constraint-based algorithm, a variant of which
involves the use of spanning trees; the basic idea of this variant is that any acyclic constraint graph
in QSTR is consistent, and such a graph can be used as a starting point for building consistent
components. The second method corresponds to a SAT-based encoding; every model of this encoding
is used to construct a valid decomposition. Thirdly, we consider two optimization versions of the
initial decomposition problem that focus on minimizing the number of components and maximizing
the similarity between components, respectively. The similarity between two QCNs is quantified by
the number of common non-universal constraints; the interest in maximizing the similarity lies mainly
in the fact that it reduces the number of constraints that allow each component to be distinguished
from the rest. Of course, our previous methods are adapted to tackle these optimization versions,
too. Additionally, we introduce two inconsistency measures based on QCN decomposition, which
can be seen as counterparts of measures for propositional KBs introduced in [11, 1], and show that
they satisfy several desired properties in the literature. Finally, we provide implementations of our
methods for computing decompositions and experimentally evaluate them using different metrics.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computing methodologies → Temporal reasoning; Computing methodologies → Spatial and physical
reasoning

Keywords and phrases Spatial and Temporal Reasoning, Qualitative Constraints, Inconsistency
Handling, Decomposition, Inconsistency Measures

Digital Object Identifier 10.4230/LIPIcs.TIME.2023.16

Category Extended Abstract

Related Version This is an extended abstract of our KR 2023 paper.
Full Version: https://proceedings.kr.org/2023/59/ [7]

Supplementary Material Software: https://seafile.lirmm.fr/d/cff42be4169d433d88a7/

Funding Michael Sioutis: The work was partially funded by the Agence Nationale de la Recher-
che (ANR) for the “Hybrid AI” project that is tied to the chair of Dr. Sioutis, and the I-SITE
program of excellence of Université de Montpellier that complements the ANR funding.

References

1 Meriem Ammoura, Yakoub Salhi, Brahim Oukacha, and Badran Raddaoui. On an MCS-based
inconsistency measure. Int. J. Approx. Reasoning, 80:443–459, 2017.

2 Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT Press, 2008.
3 Gerhard Brewka, Jürgen Dix, and Kurt Konolige. Nonmonotonic Reasoning: An Overview.

CSLI Lecture Notes. CSLI Publications, Stanford, CA, 1997.
4 Jean-François Condotta, Souhila Kaci, Pierre Marquis, and Nicolas Schwind. A Syntactical

Approach to Qualitative Constraint Networks Merging. In LPAR, 2010.
5 Thiago Pedro Donadon Homem, Paulo Eduardo Santos, Anna Helena Reali Costa, Rein-

aldo Augusto da Costa Bianchi, and Ramón López de Mántaras. Qualitative case-based
reasoning and learning. Artif. Intell., 283:103258, 2020.

6 Gérard Ligozat. Qualitative Spatial and Temporal Reasoning. ISTE. Wiley, 2013.
7 Yakoub Salhi and Michael Sioutis. A Decomposition Framework for Inconsistency Handling in

Qualitative Spatial and Temporal Reasoning. In KR, 2023.
8 Michael Sioutis and Diedrich Wolter. Qualitative Spatial and Temporal Reasoning: Current

Status and Future Challenges. In IJCAI, 2021.

https://doi.org/10.4230/LIPIcs.TIME.2023.16
https://proceedings.kr.org/2023/59/
https://seafile.lirmm.fr/d/cff42be4169d433d88a7/


Y. Salhi and M. Sioutis 16:3

9 Jakob Suchan, Mehul Bhatt, and Srikrishna Varadarajan. Commonsense visual sensemaking
for autonomous driving - On generalised neurosymbolic online abduction integrating vision
and semantics. Artif. Intell., 299:103522, 2021.

10 Koji Tanaka, Francesco Berto, Edwin D. Mares, and Francesco Paoli, editors. Paraconsistency:
Logic and Applications. Logic, Epistemology, and the Unity of Science. Springer, 2013.

11 Matthias Thimm. On the expressivity of inconsistency measures. Artif. Intell., 234:120–151,
2016.

TIME 2023





Answer Set Automata: A Learnable Pattern
Specification Framework for Complex Event
Recognition
Nikos Katzouris # Ñ

Institute of Informatics, National Center for Scientific Research “Demokritos”, Athens, Greece

Georgios Paliouras # Ñ

Institute of Informatics, National Center for Scientific Research “Demokritos”, Athens, Greece

Abstract
Complex Event Recognition (CER) systems detect event occurrences in streaming input using
predefined event patterns. Techniques that learn event patterns from data are highly desirable in
CER. Since such patterns are typically represented by symbolic automata, we propose a family of
such automata where the transition-enabling conditions are defined by Answer Set Programming
(ASP) rules, and which, thanks to the strong connections of ASP to symbolic learning, are learnable
from data. We present such a learning approach in ASP, capable of jointly learning the structure of
an automaton and its transition guards’ definitions from building-block predicates, and a scalable,
incremental version thereof that progressively revises models learnt from mini-batches using Monte
Carlo Tree Search. We evaluate our approach on three CER datasets and empirically demonstrate
its efficacy.
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1 Introduction

Complex Event Recognition (CER) systems [3] detect occurrences of complex events (CEs)
in streaming input, using temporal patterns consisting of simple events, e.g. sensor data,
or other complex events. CE patterns are typically defined by domain experts in some
event specification language. Despite the diversity of such languages and the variety of the
proposed event processing operators [4], a minimal set of such operators that every ECL
should support [3, 4] includes sequence and iteration (Kleene Closure), implying respectively
that some particular events should succeed one another temporally, or that an event should
occur iteratively in a sequence, and the filtering operator, which matches input events that
satisfy a set of predefined predicates.

Taken together, these three operators point to a computational model for CER based on
symbolic finite automata [1] (SFA), i.e., automata where the transition-enabling conditions
are predicates than need to be evaluated against the input, rather than mere symbols. As a
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result, in most existing CER systems CE patterns are either defined directly as SFA, or are
compiled into such at runtime. Prominent areas of CER research, then, concern the study of
trade-offs between ECLs’ expressive power and pattern matching complexity, in addition to
more practical considerations, such as scaling-up concrete pattern matching algorithms, or
dealing with fault tolerance and distributed processing.

CE pattern learning is a less studied CER topic, which, however, is of utmost importance,
since CE patterns are not always known in advance, or they frequently need to be revised.
A few learning approaches have been proposed, which have several limitations. Some are
restricted to sequence-based ESLs that do support operators such as iteration [7, 5, 2], others
do not allow for filtering predicates [6], most offer very limited support for reasoning with
background knowledge during pattern induction and none supports CE pattern revision.

To address such issues we propose answer set automata learning, a framework that allows
to specify SFA-based CE patterns in the form of answer set programs (ASP), which, thanks
to the strong connections of ASP to symbolic learning, are directly learnable and revisable
from data. We begin by encoding CE patterns specified in any ESL that supports the core
CER operators of filtering, sequence, iteration, disjunction and conjunction into answer set
automata, i.e. executable ASP specifications of the SFA that correspond to the initial CE
patterns. Our CE patterns-to-ASP programs translation comes with a correctness property,
stating that a pattern will be matched against a particular finite piece of input when run
with a CER engine, iff its corresponding answer set automaton program satisfies a particular
query, when run on the same input with an ASP solver.

The established connection between event pattern matching and logical reasoning allows
to learn the ASP program equivalent of a CE pattern from labeled event traces, via abductive
learning w.r.t. to an SFA interpreter. Our learning approach, implemented directly on top
of an ASP solver, allows to synthesize patterns utilizing the core CER operators by jointly
learning the structure of the corresponding SFA and the definitions of its transition guards,
consisting of boolean combinations of building-block, background knowledge predicates.

To scale-up the abductive learning core of our SFA synthesis method to large training
sets, we propose an incremental learning technique utilizing SFA revision in a Monte Carlo
Tree Search (MCTS) that continuously revises programs learnt from mini-batches of the
data, in an effort to approximate a global optimum. The revision operators can modify the
structure of an automaton, by adding/removing states and transitions, or the structure of the
transition guard rules, by adding/removing conditions from such rules’ bodies. These revision
operators are realized via same abductive learning technique that handles batch learning,
using constraints generated from the labeled traces in each mini-batch to guide the search for
optimal “local” revisions. MCTS is used to stochastically search in the massive space of SFA
structures, while balancing exploitation, i.e. revising already identified, globally-good SFA,
in an effort to further improve their quality, with exploration, i.e. revising less promising
SFA, in an effort to escape local optima.

We evaluate our SFA learning approach on three CER datasets and empirically demon-
strate its efficacy. We also compare our technique to classical automata learning methods on
univariate input and show its superiority, both in terms of predictive accuracy and scalability.

References
1 Loris D’Antoni and Margus Veanes. The power of symbolic automata and transducers. In

International Conference on Computer Aided Verification, pages 47–67. Springer, 2017.
2 Lars George, Bruno Cadonna, and Matthias Weidlich. Il-miner: instance-level discovery of

complex event patterns. Proceedings of the VLDB Endowment, 10(1):25–36, 2016.



N. Katzouris and G. Paliouras 17:3

3 Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos N.
Garofalakis. Complex event recognition in the big data era: a survey. VLDB J., 29(1):313–352,
2020.

4 Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. A formal framework
for complex event recognition. ACM Transactions on Database Systems (TODS), 46(4):1–49,
2021.

5 Sarah Kleest-Meißner, Rebecca Sattler, Markus L Schmid, Nicole Schweikardt, and Matthias
Weidlich. Discovering multi-dimensional subsequence queries from traces–from theory to
practice. BTW 2023, 2023.

6 Yan Li and Tingjian Ge. Imminence monitoring of critical events: A representation learning
approach. In Proceedings of the 2021 International Conference on Management of Data, pages
1103–1115, 2021.

7 Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli. Learning from the past:
automated rule generation for complex event processing. In Proceedings of the 8th ACM
international conference on distributed event-based systems, pages 47–58, 2014.

TIME 2023





A Benchmark for Early Time-Series Classification
Petro-Foti Kamberi #

Institute of Informatics & Telecommunications, NCSR “Demokritos”, Athens, Greece

Evgenios Kladis #

Institute of Informatics & Telecommunications, NCSR “Demokritos”, Athens, Greece

Charilaos Akasiadis #

Institute of Informatics & Telecommunications, NCSR “Demokritos”, Athens, Greece

Abstract
The objective of Early Time-Series Classification (ETSC) is to predict the class of incoming time-
series by observing the fewest time-points possible. Although many approaches have been proposed
in the past, not all techniques are suitable for every problem type. In particular, the characteristics of
the input data may impact performance. To aid researchers and developers with deciding which kind
of method suits their needs best, we developed a framework that allows the comparison of five existing
ETSC algorithms, and also introduce a new method that is based on the selective truncation of
time-series principle. To promote results reproducibility and the alignment of algorithm comparisons,
we also include a bundle of datasets originating from real-world time-critical applications, and for
which the application of ETSC algorithms can be considered quite valuable.
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1 Extended Abstract

Latest technological advancements drive the generation of large volumes of time-series
data. Sea vessels, for example, utilize integrated sensory and telecommunication devices to
continuously report trajectory information in the form of time-series data. This abundance
of data is leveraged by machine learning techniques to address various problems. In the life
sciences domain, simulators are incorporated to test the effectiveness of new experimental
drugs “in-silico”. Such simulations often require long time and large amounts of computational
resources, which, in the case of unsuccessful drug treatment cases being simulated, are
consumed in vain [1]. It would be desirable to be able to predict such outcomes early on by
observing the simulations course as time-series, and to terminate not interesting trials so to
speed up the whole drug discovery process. To this end, the domain of Early Time-Series
Classification (ETSC) has an objective to classify time-series at the earliest point possible,
before the entire series is observed [5].

Meanwhile, despite the numerous proposed methods for ETSC, there is a notable absence
of a dedicated experimental evaluation and comparison framework in this field. Furthermore,
ETSC methods are predominantly evaluated and compared against only a limited set of
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alternative algorithms. In order to fill this gap, we have developed a framework that allows
to empirically compare five existing approaches as well as a newly introduced one, using
a curated bundle of datasets from real-world applications. This framework is utilized to
highlight the ETSC algorithms merits and shortcomings when applied to cases with different
features, e.g. dataset size, observation variability, class imbalance, etc. The framework can
be easily extended to include more datasets and algorithms, and is openly available online [2].

Evaluation metrics. In the ETSC domain, apart from the predictive performance (accuracy
and F1-score), there is also the objective to optimize the earliness of the generated predictions.
These two metrics can also be combined into a single metric as a harmonic mean [9]. Training
and testing times are also of interest to consider in real-world applications.

Algorithms. Our framework includes five existing ETSC algorithms, i.e. ECEC [7],
ECONOMY-K [3], ECTS [10], EDSC [11], and TEASER [9]. ECEC calculates confidence
thresholds above which a class label prediction is considered to be reliable. ECONOMY-K
performs clustering on the training data, and estimates the cost of having to observe more
time points to generate a prediction. ECTS utilizes nearest neighbors and reverse nearest
neighbors sets for its decisions. EDSC extracts shapelets of the training data that are then
matched with the input test data. TEASER trains classifiers on overlapping prefixes of the
training data, and then applies an one-class SVM that validates the class label prediction.

In addition, we propose a new method that can be configured to utilize different state-of-
the-art full time-series classification algorithms for ETSC. It relies on iteratively truncating
time-series into prefixes of gradually increasing length and then applying Minirocket [4],
MLSTM [6], and WEASEL [8] to the truncated examples for predicting the corresponding
class labels. Thus, for each dataset, a fixed earliness is determined throughout the training
phase. Although this might be suboptimal in the sense that for particular instances the
prediction could have been generated earlier than for others, it constitutes a comprehensive
baseline for diagnosing if applying ETSC to particular datasets and domains would be
successful, i.e. if accurate predictions can be generated earlier, before the whole time-series
is observed. Our approach can incorporate any full time-series classification algorithm.

Datasets. We have collected 10 publicly available datasets from the UEA & UCR Time-
series Classification Repository, and also introduced two new cases, one originating from the
drug discovery domain, and the other from the field of maritime intelligence. In turn, these
datasets are categorized according to particular characteristics: size, coefficient of variability,
levels of class imbalance, number of distinct class labels, and number of variables.

Comparison results. Judging by our experimental results, we can see that ECEC achieves
the most accurate and early predictions for datasets with lengthy time-series, but it requires
higher training times. When the number of examples in the dataset increases, the MLSTM
variant of our method competes with ECEC and TEASER in terms of the harmonic mean
between accuracy and earliness, but it has higher training times compared to both. In
applications with high variance in measurements and high class imbalance, ECEC and
MLSTM achieve the highest harmonic mean scores. In multi-class classification cases,
MLSTM is the best choice with the lowest earliness scores, followed by Minirocket, which has
high accuracy and reduced training times. For the rest of the datasets we tested, Minirocket
is the most suitable algorithm for ETSC in terms of harmonic mean. It has very low
earliness scores and training times, although its predictive accuracy is worse than ECEC,
ECONOMY-K, and ECTS, which however achieve higher earliness scores.
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As concerns future work, we are already in the process of further enriching our framework
with additional ETSC algorithms and more datasets. We believe that establishing consolidated
benchmarking procedures will be of great benefit for the ETSC community.
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Abstract
We present a first notion of a time-aware robustness property for Temporal Graph Neural Networks
(TGNN), a recently popular framework for computing functions over continuous- or discrete-time
graphs, motivated by recent work on time-aware attacks on TGNN used for link prediction tasks.
Furthermore, we discuss promising verification approaches for the presented or similar safety
properties and possible next steps in this direction of research.
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Introduction
Graph Neural Networks (GNN) provide a framework for computing functions over graphs
based on learnable parameters and have gained much attention in recent years [7]. The
most popular GNN models, so-called convolutional GNN or message-passing GNN apply a
neighborhood aggregation procedure to each node in a graph to compute its output. Usually,
such GNNs are used for classification or prediction tasks over static graphs. However,
this limits their applicability in contexts like social networks or knowledge graphs, where
underlying graphs change stepwise or time-continuously. Temporal Graph Neural Networks1

(TGNN) [5, 6] try to close this gap. The general idea of TGNN is to generalize the
neighborhood aggregation procedure mentioned above to temporal graphs, usually represented
as a tuple of a base graph with a series of time-stamped observed changes. In most applications
involving Neural Network based models, giving reliable safety certificates is highly desirable
but also a significant challenge, especially because of the blackbox nature of neural models. In
this extended abstract, we address the topic of verifying TGNN, which is an unexplored area
of research. We present a time-aware robustness property for TGNN used for link prediction
tasks, which is motivated by recent work on similar time-aware attacks [3]. Additionally, we
discuss our ongoing work regarding promising verification approaches for the introduced (or
similar) safety property.

Preliminaries
Temporal Graphs: A Continuous-Time Temporal Graph (CTG) is a tuple (G, O) where G is a
graph, often called start graph, and O is a finite set of time-stamped observations, including
events like node or edge additions or deletions. We denote by GO

≤t for some t ∈ Q≥0 the

1 Equivalently, these models are also called Dynamic Graph Neural Networks (DGNN).
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graph constructed by applying the observations from O with a timestamp t′ ≤ t to G. Note
that each CTG can be seen as a finite sequence of graphs by unfolding O in a stepwise fashion.
For more details on the notions of temporal graphs used in the context of temporal graph
learning, see [4]. Link Prediction for CTG: Given a CTG C = (G, O), the link prediction
task is to predict for a time t ∈ Q≥0 and pair of nodes u, v present in GO

≤t whether an edge
(u, v) will be present in the graph at time t. We denote the output of a TGNN for the
above-described link prediction task by N(C, (u, v), t).

Time-aware Robustness in the Context of Link Prediction
Chen et al. [3] present a notion of pointwise (adversarial) attacks on link predicting TGNN,
exploiting the time component of temporal graphs. Similarly, we present the following
definition of a pointwise time-aware (adversarial) robustness certificate for TGNN.

▶ Definition 1. Let N be a TGNN, C = (G, O) a CTG and B = (O1, O2) an adversarial
budget of two sets O1, O2 of observations where O1 ⊆ O. We say that N is robust for
nodes u, v and time t under influence of B if N(C, (u, v), t) = N(C ′, (u, v), t) where C ′ =
(G, (O \ O1) ∪ O2).

While this exact robustness certificate is desirable, a computationally feasible and complete
verification algorithm is unlikely, as recent results about the decidability and complexity
of similar safety properties for GNN [9] indicate. Therefore, we propose two approaches:
(A) one focuses on the development of non-complete verification algorithms, similar to [10]
for GNN, or (B) one gives up on exact verification and relaxes Def. 1 to a probabilistic
certificate, similar to [2] for GNN. The two approaches have advantages and disadvantages:
(A) allows for exact verification but most likely depends on the underlying TGNN model,
making model-specific verification algorithms necessary. Approach (B) can be model-agnostic
but can only give probabilistic certificates.

Outlook
We introduced a first notion of robustness for TGNN in the context of link prediction,
inspired by common (adversarial) attack and robustness certificates for Neural Network
based models, and discussed possible verification approaches. However, this can only be
seen as a first step in developing a well-founded framework for the verification of TGNN.
Next to developing efficient verification algorithms, a desirable goal is to combine TGNN
verification with well-founded specification languages or temporal logic. Since TGNNs work
over finite sequences or traces of graphs, a similar logic to Linear Temporal Logic (LTL) on
finite traces [8] could be promising. However, the traces considered here work over infinite
domains, making more expressive LTL variants necessary, like in [1].
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Abstract
In many sectors of real-world industry, it is necessary to plan and schedule tasks allocated to agents
participating in complex processes. Temporal planning aims to schedule tasks while respecting
temporal constraints such as release times, maximum durations, and deadlines, which requires quan-
titative temporal reasoning. Over the years, several major application developers have highlighted
the need for the explicit representation of actions with uncertain durations; efficient algorithms
for determining whether plans involving such actions are controllable; and efficient algorithms
for converting such plans into forms that enable them to be executed in real time with minimal
computation, while preserving maximum flexibility.

A Simple Temporal Network with Uncertainty (STNU) is a data structure for reasoning about
time constraints on actions that may have uncertain durations. An STNU is a triple (T , C, L) where
T is a set of real-valued variables called timepoints, C is a set of constraints of the form Y − X ≤ δ,
where X, Y ∈ T and δ ∈ R, and L is a set of contingent links of the form (A, x, y, C), where A, C ∈ T
and 0 < x < y < ∞. A contingent link (A, x, y, C) represents an uncertain duration where A is the
activation timepoint, C is the contingent timepoint, and y − x is the uncertainty in the duration
C − A. Typically, an executor controls the execution of A, but only observes the execution of C

in real time. Although uncontrollable, the duration is guaranteed to satisfy C − A ∈ [x, y]. We let
n = |T |, m = |C| and k = |L|.

An STNU graph is a pair (T , E), where the timepoints in T serve as nodes in the graph, and
the edges in E correspond to the constraints in C and contingent links in L. For each Y − X ≤ δ in
C, E contains an ordinary edge X δ Y . For each (A, x, y, C) ∈ L, E contains a lower-case (LC)
edge, A c:x C, and an upper-case (UC) edge, C C:−y A, representing the respective possibilities
that C − A might take its minimum or maximum value. The LO-edges are the LC or ordinary edges;
the OU-edges are the ordinary or UC edges.

For any STNU, it is important to determine whether it is dynamically controllable (DC) (i.e.,
whether it is possible, in real time, to schedule its non-contingent timepoints such that all constraints
will necessarily be satisfied no matter what durations turn out for the contingent links). Polynomial-
time algorithms are available to solve this DC-checking problem. Each uses rules to generate new
edges aiming to bypass certain kinds of edges in the STNU graph. Morris’ O(n4)-time DC-checking
algorithm [3] starts from LC edges, propagating forward along OU-edges, looking for opportunities
to generate new OU-edges that bypass the LC edges. Morris’ O(n3)-time algorithm [4] starts from
negative OU-edges, propagating backward along LO-edges, aiming to bypass negative edges with
non-negative edges. The O(mn + k2n + kn log n)-time RUL− algorithm [1] starts from UC edges,
propagating backward along LO-edges, aiming to bypass UC edges with ordinary edges. After
propagating, each algorithm checks for certain kinds of negative cycles to decide DC-vs.-non-DC.

However, being DC only asserts the existence of a dynamic scheduler. It is also crucial to be
able to execute a DC STNU efficiently in real time. For maximum flexibility and minimal space
and time requirements, a dynamic scheduler for an STNU is typically computed incrementally, in
real time, so that it can react to observations of contingent executions as they occur. An efficient
dynamic scheduler can be realized by first transforming an STNU into an equivalent dispatchable
form [6, 8]. Then, to execute the dispatchable STNU, it suffices to maintain time-windows for each
timepoint and, as each timepoint X is executed, only updating time-windows for neighbors of X in
the graph. Dispatchable STNUs are very important in applications that demand quick responses to
observations of contingent events.
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Of the existing DC-checking algorithms, only Morris’ O(n3)-time algorithm necessarily generates
a dispatchable STNU for DC inputs. This abstract describes a faster, O(mn + kn2 + n2 log n)-time
algorithm for converting DC STNUs into dispatchable form. (The full journal article is available
elsewhere [2].) This improvement is significant for applications (e.g., modeling business processes)
where networks are typically sparse. For example, if m = O(n log n) and k = O(log n), then our
algorithm runs in O(n2 log n) ≪ O(n3) time.

Our new Fast Dispatch algorithm, FDSTNU, has three phases. The first phase is similar to the
RUL− DC-checking algorithm, but generates an order-of-magnitude fewer edges overall, while also
generating new UC edges that correspond to wait constraints. The second phase is a version of
Morris’ 2006 algorithm that propagates forward from LC edges, but only along LO-edges, aiming
to generate ordinary bypass edges. The third phase focuses on the subgraph of ordinary edges,
which comprise a Simple Temporal Network (STN). It uses an existing dispatchability algorithm for
STNs [8] to convert that ordinary subgraph into a dispatchable STN. After completing the three
phases, the STNU is guaranteed to be dispatchable.

The left-hand graph below is the graph for a sample STNU that happens to be DC.
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The right-hand graph shows the edges inserted by our FDSTNU algorithm. The first phase applies
the modified RUL− algorithm, propagating backward from the original UC edge (C, C:−10, A)
to generate the (brown, dashed) wait edges (Y, C:−9, A) and (X, C:−11, A). (The original RUL−

algorithm only generates ordinary edges.) The second phase propagates forward from the LC edge
(A, c:1, C) to generate the (teal, dashed) edge (A, −6, W ). The third phase runs the pre-existing
STN-dispatchability algorithm on the ordinary STN subgraph, inserting the (red) edges (C, 1, Y )
and (Y, −6, W ). Using the mathematical analysis of dispatchability due to Morris [5], it is not hard
to confirm that this STNU is dispatchable.

We provide the source code of a Java implementation of the considered algorithms (Morris,
RUL−, and FDSTNU) [7] and the benchmarks used to compare their performances.
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Abstract
In this extended abstract, we discuss about Linear Temporal Logic Modulo Theories over finite traces
(LTLMT

f ), a temporal logic that we recently introduced with the goal of providing an equilibrium
between generality of the formalism and decidability of the logic. After recalling its distinguishing
features, we discuss some future applications.
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1 Overview

Linear Temporal Logic (LTL) [11] is arguably the most common language for the specification
of system properties in the field of formal verification. In recent years, its finite-traces
counterpart, LTLf [4], also took traction in the field of artificial intelligence, where reasoning
about a finite execution (e.g. in planning) is more natural. These formalisms are propositional
logics, and are therefore suitable to specify and reason about finite-state systems. However,
many complex scenarios, for example involving arithmetic constraints, complex data types,
or relational databases, require to go beyond finite-state systems.

Here, we discuss our take on the problem of specifying and reasoning about infinite-state
systems. To this aim, we recently introduced LTLf Modulo Theories (LTLMT

f ) [6], an extension
of LTLf where propositions are replaced by first-order formulas interpreted over arbitrary
theories, similarly to how satisfiability modulo theories (SMT) [1] extends the classic Boolean
satisfiability problem, and where first-order variables referring to different time points can
be compared.

LTLMT
f is, in general, undecidable, but for decidable underlying theories it is semi-

decidable1, with an effective semi-decision procedure based on the encoding of a tree-shaped
tableau system into first-order logic, handled directly by off-the-shelf SMT solvers. The
technique is implemented in the BLACK2 temporal reasoning framework [7, 8], providing
interesting performance. This puts this approach in contrast with other previous studies of
first-order extensions of LTL: on one hand, such extensions have been thoroughly studied
only from a theoretical perspective, without providing practical reasoning tools [9]; on the
other hand, other practice-oriented approaches resulted in efficient tools for ad-hoc extensions
(e.g. [3]), but difficult to extend or generalize. In contrast, our framework provides a most

1 This would not be true if we interpreted the logic over infinite traces instead.
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general and theoretically well-founded ground which can also lead to effective reasoning tools.
We discuss here future applications of these framework in the context of formal verification
and artificial intelligence.

2 Applications

The first-order setting of LTLMT
f naturally allows one to specify and reason about structured

and complex scenarios. An important use case is that of data-aware systems, i.e. systems
that manipulate unbounded data. Such data can come from numeric variables, or other kinds
of unbounded data types. In the most general setting, data comes from relational databases,
which are naturally grounded in first-order logic and are therefore perfectly suitable to be
modeled in LTLMT

f , including relations with primary and foreign key constraints, and many
other features.

These considerations lead to the definition of knowledge-base-driven systems (KDS), a
kind of transition system whose behavior depends on the content of a mutable relational
data store, that is updated by the transitions of the system. Work defining and studying
KDSs is under review. This concept is of uttermost generality, potentially subsuming many
different approaches found in the literature [2, 5], while still being directly handled by the
BLACK solver.

On the other hand, inspired by the tight relationship between LTL satisfiability and
classical planning [10], the same framework can be adapted to approach data-aware planning
problems, a scenario still unexplored in the planning literature. In such problems, the agent is
required to reason about actions whose preconditions depend on the content of an unbounded
relational data store, and whose effects update such data store. These kind of planning
problems could find applications in a wide range of scenarios such as planning for data
warehouses, business process management, and ontology-driven systems.

The LTLMT
f framework is still in its infancy, and interesting developments are on its path.

References
1 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability

modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 825–885. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-825.

2 Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey Rivkin.
SMT-based verification of data-aware processes: a model-theoretic approach. Math. Struct.
Comput. Sci., 30(3):271–313, 2020. doi:10.1017/S0960129520000067.

3 Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, and Stefano Tonetta.
Smt-based satisfiability of first-order LTL with event freezing functions and metric operators.
Inf. Comput., 272:104502, 2020. doi:10.1016/j.ic.2019.104502.

4 Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic on
finite traces. In Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, pages 854–860. IJCAI/AAAI, 2013.

5 Alin Deutsch, Yuliang Li, and Victor Vianu. Verification of hierarchical artifact systems. ACM
Trans. Database Syst., 44(3):12:1–12:68, 2019.

6 Luca Geatti, Alessandro Gianola, and Nicola Gigante. Linear temporal logic modulo theories
over finite traces. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, pages 2641–2647. ijcai.org, 2022. doi:10.24963/ijcai.2022/366.

2 https://www.black-sat.org

https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1017/S0960129520000067
https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.24963/ijcai.2022/366
https://www.black-sat.org


L. Geatti, A. Gianola, and N. Gigante 21:3

7 Luca Geatti, Nicola Gigante, and Angelo Montanari. A sat-based encoding of the one-pass
and tree-shaped tableau system for LTL. In Proceedings of the 28th International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods, volume 11714 of Lecture
Notes in Computer Science, pages 3–20. Springer, 2019. doi:10.1007/978-3-030-29026-9_1.

8 Luca Geatti, Nicola Gigante, and Angelo Montanari. BLACK: A fast, flexible and reliable
LTL satisfiability checker. In Proceedings of the 3rd Workshop on Artificial Intelligence and
Formal Verification, Logic, Automata, and Synthesis, volume 2987 of CEUR, pages 7–12, 2021.

9 Roman Kontchakov, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporalising
tableaux. Stud Logica, 76(1):91–134, 2004. doi:10.1023/B:STUD.0000027468.28935.6d.

10 Marta Cialdea Mayer, Carla Limongelli, Andrea Orlandini, and Valentina Poggioni. Linear
temporal logic as an executable semantics for planning languages. Journal of Logic, Language
and Information, 16(1):63–89, 2007. doi:10.1007/s10849-006-9022-1.

11 A. Pnueli. The Temporal Logic of Programs. In Proc. of the 18th Annual Symposium
on Foundations of Computer Science, pages 46–57. IEEE Computer Society, 1977. doi:
10.1109/SFCS.1977.32.

TIME 2023

https://doi.org/10.1007/978-3-030-29026-9_1
https://doi.org/10.1023/B:STUD.0000027468.28935.6d
https://doi.org/10.1007/s10849-006-9022-1
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32




Qualitative past Timeline-Based Games
Renato Acampora # Ñ

University of Udine, Italy

Luca Geatti # Ñ

University of Udine, Italy

Nicola Gigante # Ñ

Free University of Bozen-Bolzano, Italy

Angelo Montanari # Ñ

University of Udine, Italy

Abstract
This extended abstract discusses timeline-based planning, a modeling approach that offers a unique
way to model complex systems. Recently, the timeline-based planning framework has been extended
to handle general nondeterminism in a game-theoretic setting, resulting in timeline-based games. In
this context, the problem of establishing whether a timeline-based game admits a winning strategy
and synthesizing such a strategy have been addressed. We propose exploring simpler yet expressive
fragments of timeline-based games by leveraging results about the role of past operators in synthesis
from temporal logic specifications. The qualitative fragment of timeline-based planning is a good
starting point for this exploration. We suggest introducing syntactic restrictions on synchronization
rules so that they only constrain the behavior of the system before the current time point, which is
expected to lower the complexity of synthesizing timeline-based games to EXPTIME.
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1 State of the Art

Timeline-based planning, initially proposed for planning and scheduling of space opera-
tions [12], offers a unique approach to modelling complex systems. Unlike action-based
planning paradigms, such as STRIPS [5], the timeline-based one does not explicitly separate
states, actions, and goals; rather, it models the domain as a set of independent yet interacting
components, whose behaviour over time is governed by “synchronization rules”. A solution
plan is a set of timelines describing a behaviour of the system components that satisfies
all rules. This approach has been successfully deployed in systems like the Hubble Space
Telescope scheduling and control system (HSTS) [11]. The timeline-based planning framework
has recently been extended to handle general nondeterminism in a game-theoretic setting
(timeline-based games) [7]. The resulting formalism allows one to meet time constraints
without being affected by the environment’s choices, reducing re-planning issues present in
systems that only deal with temporal uncertainty [9]. Establishing the existence of a winning
strategy for a timeline-based planning game has been proved to be 2EXPTIME-complete.

In [1], Acampora et al. addressed the problem of establishing whether a timeline-based
game admits a winning strategy and, if this is the case, synthesizing such a strategy. In
particular, they outlined an algorithm, based on a non-trivial construction of a Deterministic
Finite Automaton (DFA), that recognizes solution plans for timeline-based planning problems.
As it commonly happens, the synthesis of controllers reduces to the “compilation” of the
specification into a DFA, which then serves as a game arena. This deterministic model is
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required for playing games, and it is necessary to meet optimal computational complexity. The
winning strategy for one of the players can then be determined through simple reachability
games [8]. In [1], a compilation procedure that serves as the core for the DFA’s construction
is provided, and a controller implementing the specification is built. As a matter of fact, it
was the first effective procedure for the synthesis of a controller starting from a timeline-based
game specification.

2 Qualitative Past Timeline-Based Games

In view of the high complexity of timeline-based games, we aim at exploring simpler yet
expressive fragments. One promising approach is to leverage results about the role of past
operators in synthesis from temporal logic specification. Recently, it has been shown that
writing the specification using past operators can make the synthesis problem exponentially
more efficient [2, 6]. Drawing parallels with co-safety properties in Linear Temporal Logic
(LTL), where properties express the fact that something good will eventually happen, we plan
to apply these findings to timeline-based games. Specifically, we are thinking of introducing
suitable syntactic restrictions on synchronization rules so that they only constrain the
behavior of the system before the current time point. In such a way, we expect to lower
the complexity of synthesizing timeline-based games to EXPTIME, offering an interesting
direction for future research.

To this end, a good starting point is the qualitative fragment of timeline-based planning [10],
a simpler planning formalism that only considers qualitative (ordering) features of timelines.
To solve the synthesis problem for such a formalism, one can represent synchronization rules
as partial orders and construct an automaton whose states are downward-closed subsets of
such partial orders. Each single synchronization rule leads to a deterministic automaton
taking care of matching the elements of the partial order when reading the word representing
the solution plan. By generating the union of all the automata (one for each rule), we
derive an automaton for the whole system. The size of such a deterministic automaton is
exponential in the size of the planning problem. Since the automaton can be built on-the-fly
and solving the reachability problem requires (nondeterministic) logarithmic space in the
size of the automaton, we get that the problem of identifying solution plans for the suggested
fragment belongs to PSPACE. Most importantly, the automaton is deterministic and can
serve as the game arena for achieving synthesis in exponential time.

3 Temporal Logic Characterization and Symbolic Algorithms

We conclude the abstract with a discussion of two other future directions. In [4], is given
the bounded variant of Timed Propositional Temporal Logic with Past (TPTLb+P) used
to capture timeline-based problems. It seems natural to look for a cosafety fragment of
TPTLb+P that captures past timeline-based problems, restricting the syntax of TPTLb+P
to formulas of the form F(α), where F is the eventually operator and α is a pure past
TPTLb+P formula. Modern algorithms for the synthesis of temporal logic specifications deal
with a symbolic representation of automata, representing the DFA equivalent to the initial
formula by means of Boolean formulas only, in contrast to the explicit-state representation
where states and transitions of the automaton are represented as memory locations and
pointers. The benefits of using a symbolic representation are known from almost 30 years [3].
Producing a symbolic DFA starting from a past temporal logic specification has proven to
be very effective [2, 6]. We expect to lift this result to the case of past timeline-based games.
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