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—— Abstract

Interacting systems of events may exhibit cascading behavior where events tend to be temporally
clustered. While the cascades themselves may be obvious from the data, it is important to understand
which states of the system trigger them. For this purpose, we propose a modeling framework based
on continuous-time Bayesian networks (CTBNs) to analyze cascading behavior in complex systems.
This framework allows us to describe how events propagate through the system and to identify
likely sentry states, that is, system states that may lead to imminent cascading behavior. Moreover,
CTBNSs have a simple graphical representation and provide interpretable outputs, both of which are
important when communicating with domain experts. We also develop new methods for knowledge
extraction from CTBNs and we apply the proposed methodology to a data set of alarms in a large
industrial system.
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1 Introduction

Many real-world phenomena can be modeled as interacting sequences of events of different
types. This includes social networks where user activity influences the activity of other
users [11]. In healthcare, patient history may be modeled as a sequence of events [46]. In
this paper, we focus on an industrial application in which the events are alarm signals of a
complex engineered system. As an illustration, consider Figure 1. Three different alarms
(A, B, and C') monitor a process each within an industrial system. These processes may, for
instance, represent measured temperatures or pressures. An alarm transitions to on when its
the process it monitors leaves a prespecified range of values and transitions to off when the
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process is again within the range corresponding to “normal operation”. In Figure 1lc, the
colored segments correspond to the alarm being on. When an alarm changes state, we say
that an event occurs.

In particular, we are interested in systems that exhibit a cascading behavior in the sense
that events are strongly clustered in time. Therefore, we should use a model class which
is capable of expressing cascades. However, important information may also be contained
in non-cascading parts of the observed data. This is explained by the fact that our goal
is twofold: We wish to understand which states of the system lead to cascades, and we
also wish to understand how different components of the system interact. These goals are
connected as understanding the inner workings of the system will also help us understand
the cascading behavior. We can achieve both by using continuous-time Bayesian networks
(CTBNS) [32], a class of parsimonious Markov processes with a discrete state space. Moreover,
CTBNs are equipped with a graphical representation of how different components interact.
In our application, data is sampled at a very high frequency and using a continuous-time
modeling framework makes for a conceptually and computationally simple approach. In
CTBNs, we define the concept of a sentry state which is a state that may lead to an imminent
cascade. In an industrial setting, identifying such states may give operators an early warning,
which in turn facilitates the mitigation of underlying issues before an actual alarm cascade
occurs. Moreover, sentry states can be used to apply state-based alarm techniques [18], which
otherwise require a known alarm structure.

In applications to complex systems, analysts often need to communicate findings to domain
experts. CTBNs also allow easy communication using their graphical representation which is
crucial for their applicability to real-world problems. We describe a useful interpretation of
the graph of a CTBN and provide some new results in this direction. We apply the methods
developed in this paper to a challenging data set from the European Spallation Source (ESS),
a research facility in Lund, Sweden. This data set describes how alarms propagate through a
subsystem of the neutron source at ESS.

The paper is structured as follows. We start with a description of the ESS data as
this motivates the following developments (Section 2). In Section 3, we describe related
work and compare CTBNs with other approaches. Section 4 describes continuous-time
Bayesian networks. Sections 5 and 6 contain the main theoretical contributions of the paper:
Section 5 describes the concept of a sentry state while Section 6 explains how the graphical
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(a) CTBN graph G.

(c) Trajectory.

(b) State space graph Gs.

Figure 1 a) Graph G of a CTBN consisting of three nodes (A, B, C). b) State space graph G,
of the CTBN, i.e., nodes represent states of the CTBN and two states are adjacent if a transition
from one to the other, and vice versa, is possible. ¢) A trajectory for the CTBN. A white segment
indicates that the corresponding process is in state 0 (off), while a colored segment indicates that
the corresponding process is in state 1 (on).
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representation of a CTBN may assist interpretation and communication. Section 7 presents
numerical experiments, including a description of the ESS data analysis. A discussion
concludes the main paper and the appendices contain auxiliary results.

2 Data set

The European Spallation Source ERIC (ESS) is a large research facility which is being
built in Lund, Sweden. Its main components include a linear proton accelerator, a tungsten
target, and a collection of neutron instruments [16]. It comprises a large number of systems,
including an integrated control system [15]. The facility has a goal of 95% availability and
state-of-the-art alarm handling may contribute to reaching this goal.

Operators of large facilities are often facing large quantities of data in real time and good
tools may helpsystem understanding and support decision making. Operators rely on alarm
systems to warn them about unexpected behavior. However, alarm problems are common
[18]. One example is that of cascading alarms. In large facilities, different alarms monitor
different processes and when an issue occurs this may result in a large number of alarms

that occur within a short time frame due to the interconnectedness of the different processes.

Operators will often find it difficult to respond to such cascades as hundreds or thousands of
alarms may sound, making it difficult to identify the underlying issue.

The alarm system has two purposes. One, it should help operators foresee and mitigate
fault situations. Two, it should help operators understand a fault situation. In this paper,
we illustrate how the methods we propose can help achieve these goals using data from the
accelerator cryogenics plant at ESS, which has been in operation since 2019.

» Example 1 (Simplified ESS alarm network). In this example, we will look at a simplified
version of the alarm system at ESS. Each of the alarm processes P1, T1, P2, T2, P3, T3,
S1, 52, S3, and S4 in Figure 2 (left) monitors a physical process, e.g., a temperature or a
pressure. At each time point, each alarm process is either 1 (alarm is on) or 0 (alarm is off).
An edge, —, in the graph implies a dependence in transition rates, e.g., the rate with which
P1 changes its state depends only on the current states of P1, T1, and S4. Alarm cascades
occur when a certain state triggers a fast progression of alarm onsets. In this formalism, this
is modeled by the dependence of transition rates on the current state: therefore, cascades tend
to unfold along the directed edges of the graph.

Large engineered systems can often be divided into subsystems (in Figure 2, Systems 1,
2, 3, and 4). In alarm networks, a group of alarms may monitor processes that are known
to be correlated as they are measured from the same subsystem. Moreover, many systems
of a realistic size comprise so many alarms or variables that processes must be grouped into
subsystems to enable a system-level understanding of their dependencies. In Section 6, we
show that graphical representations using these subsystems (e.g., Figure 2 (right)), instead of
the processes themselves, are also useful and have a clear interpretation.

3 Related work

Our work has connections to several major directions in the literature of dynamical models.

We will focus on methods that are relevant for modeling cascades of events.
Continuous-time Markov processes with a discrete state space are often used as models
of cascading failures in complex networks such as power grids [34, 28] and as models of burst
behavior in biological cells [6]. They are also used in chemistry [4], reliability modeling [20],
queueing theory [26], and genetics [7]. Graphs may be used as representations of networks
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System 1 System 4

Figure 2 Graphs from Example 1. Left: Graph such that each node represents an alarm process.
Edges, —, represent sparsity in transition rate dependence. The transition rate of each process, A,
only depends on its own state and the states of its parent processes, i.e., processes B such that the
edge B — A is in the graph. Right: Graph representing transition rate dependencies between entire
subsystems rather than between individual alarm processes. This graph is computed from the larger
graph on the left and can be given a mathematical interpretation (Section 6).

and several methods use graphs to represent cascading structures [30, 29]. Some of these
methods use simple models of contagion and study influential nodes in a graph [22]. Among
these we find the independent cascade model and the linear threshold model [21, 12]. These
models are targeted at applications in which cascades or “ epidemics” are the salient feature.

Change-point detection methods aim to recover the time points at which distributional
changes occur. There is a large literature on change-point detection in various classes
of stochastic processes and application fields such as neuroscience [37], DNA sequence
segmentation [9], speech recognition [39], and climate change [36]. [3] provides a survey on
change-point methods in discrete-time models. [42] also provides a survey and discusses
subsampling of continuous-time processes. [45] provides a method for change-point detection
in a class of multivariate point processes. There are subtle, but important, differences between
the task at hand and change-point detection. The alarm network that motivates our work
is thought to operate in the same mode throughout the observation period. Moreover, the
detection of cascades is trivial in this application as they are evident from simply visualizing
the data. Instead, we focus on identifying the states that are likely to lead to a cascade.
In addition, our modeling approach should allow for a qualitative understanding of the
interactions between system components.

As a result, we would like to explicitly model how events propagate through the system.
A traditional approach is to use point processes [13]. In our setting, we can think of a
point process as a sequence of pairs (t1,e1), (t2, ea), (t3, e3), ... such that (¢;) is an increasing
sequence of time points and (e;) denotes the type of event. Point process models have been
used for modeling cascades of failures [23]. [35] describes self-exciting point processes that
model cascading behavior using explicit exogenous influences on the system. These methods
can in principle also be applied in the setting of this paper. The CTBN-based method
proposed in this paper models the state of the system directly and this facilitates the notion
of sentry states which is central to this paper. Moreover, as the alarm status takes values in
a discrete set, the CTBN provides a natural representation of the alarm data.
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While the above describes general approaches to the modeling of dynamical systems with
cascading behavior, there are also more specialized methods for handling or analyzing alarm
cascades in large industrial systems. We now summarize the connections to this work; see
also [2], which is a recent review of methods for alarm cascade problems (in that paper
known as alarm floods). In short, so-called knowledge-based methods use expert knowledge

of the cause-effect relations in the system to find root causes and explain alarm cascades.

Among these are multilevel flow modeling [24] and signed directed graphs [44]. In contrast,
there is also a large number of data-based methods. Data-based methods can be subdivided
into classes of methods depending on their purpose. Some approaches aim to classify the
fault type from an input sequence of alarms or to simply reduce the number of alarms, e.g.,
using data mining, clustering, or machine learning methods such as artificial neural networks
[47, 38, 5]. This goal is somewhat different from ours and our method is more closely related
to methods using probabilistic graphical models, in particular dynamic Bayesian networks
[19]. These methods produce an easily interpretable output represented by a graph. Our
contribution in relation to this prior work is twofold. 1) We introduce the CTBN framework
as a natural further development of alarm modeling. This allows continuous-time modeling
which is useful for our data as it is collected using a very high sampling rate. Discretization
of time will therefore either lead to a prohibitively large number of time intervals or to a loss
of temporal information if using fewer, longer time intervals. 2) We define the novel concept
of a sentry state which identifies a set of states that are of interest when analyzing cascading
behavior. The sentry state concept may also be used in other alarm propagation models and
is not specific to CTBNs.

4 Models

Continuous-time Bayesian networks (CTBNs; [31]) are a class of continuous-time Markov
processes (CTMPs) with a factored state space and a certain sparsity in how transition rates
depend on the current state. This sparsity can be represented by a directed graph. In this
sense, they are similar to classical Bayesian networks [33] but their directed graphs are allowed
to contain cycles. CTBNs have proved to be both effective and efficient representations of
discrete-state continuous-time dynamical systems [1, 43, 25]. We first define a CTMP.

4.1 Continuous-Time Markov Processes

A continuous-time Markov process (CTMP) [41] is a continuous-time stochastic process
X = {X(t) : t € [0,00)} which satisfies the following Markov property:

X(tl) 1 X<t3)|X<t2), 4 t <ty < tg, (1)

where - 1L - | - denotes conditional independence. The state of the process X changes in
continuous-time and takes values in the domain S which we assume to be a finite set. In our
application, each state s € S can be represented by an n-vector with binary entries indicating
whether each alarm is on or off. A CTMP can be parameterized by the initial distribution
Py and the intensity matriz Qx. The initial distribution P, is any distribution on the state
space. The intensity matrix Qx models the evolution of the stochastic process X. Each row
of Qx sums to 0 and models two distinct processes:

1. The time when X abandons the current state x, which follows an exponential distribution

with parameter q, € RT.
2. The state to which X transitions when abandoning the state x. This follows a multinomial
s

distribution with parameters 6,, = Y€ S, x #y.
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An instance of the intensity matrix Q) x, when S has three states, is as follows

_qwl Qxlxg qgclasg
QX = | Qaozy —qxy Qroxs qz; > qumimj =0 VZ,] (2)

Qrzxy Qrzxo —qx3

We say that a realization of a CTMP, o, is a trajectory. This is a right-continuous,
piecewise constant function of time. It can be represented as a sequence of time-indexed
events,

o = {{to, X (to)), Ctr, X (t1)), oo br, X (81))}, to <ty < -+ <tr. 3)

4.2 Continuous-Time Bayesian Networks

General CTMPs do not assume any sparsity. CTBNs impose structure on a CTMP by assum-
ing a factored state space S = {S7 x Sg x -+ x Sp} such that X(t) = (X1(t),...,Xp(¢)) € S
where each Sj, j = 1,..., L, represents the domain of a distinct component of the process.!
In the alarm data, S; = {0, 1} for each j and X;(¢) indicates if the j’th alarm is on or off at
time t. The structure imposed by the CTBN is useful when interpreting a learned model.
In essence, the CTBN framework allows us to learn which components of the system act
independently, or conditionally independently, and this can be communicated to experts.
A CTBN is a tuple N = (P, X, G, Qx) where X = {X4,..., X} is a set of stochastic
processes. A CTBN is specified by:
An initial probability distribution Py on the factored state space S.
A continuous-time transition model, specified as:
a directed (possibly cyclic) graph G with node set X;
a set of conditional intensity matrices Qx;pa(x;,) for each process X; € X.

Given the graph G, each node/process X; has a parent set Pa(X;) consisting of all
nodes/processes, X;, with an edge directed from X; to X, in G, X; — X;. A conditional
intensity matricz (CIM) Qx; [Pa(x,) consists of a set of intensity matrices, one for each possible
configuration of the states of the parent set Pa(X;) of the node/process X;, that is, one for
each element of X X;ePa(X;) S;. The CIM describes how the transition intensity of process j
depends on the state of the system. However, it does not necessarily depend on the state of
every other process, but only on the states of the processes that are parents of j.

In a CTBN only one process can transition at any given time. This assumption is
reasonable for the alarm data as it is sampled at a high rate. When we apply this model to
the alarm data, the interpretation is straightforward. The CIM of X; describes how likely
this alarm is to change its state (from on to off;, or from off to on), and this only depends
on the current state of the alarms in its parent set.

» Example 2. Assume we observe three alarm processes (A, B, and C) each monitoring a
measured process and that we represent this by a stochastic process X that takes values in
{0,1} x {0,1} x {0,1} indicating the status of each of the three alarms. If X is a general
CTMP, then the transition rates of each alarm process may depend on the entire state of the
system. On the other hand, if X is a CTBN represented by the graph G in Figure 1a there
s a certain sparsity in the way the transition rates depend on the current state. It follows

L A CTBN is specialization of a CTMP. It is possible to reformulate a CTBN as a CTMP by applying
the so-called amalgamation procedure [41].
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directly that the transition rate of alarm process C' only depends on the states of processes
B and C. Similarly, the transition rate of alarm process B only depends on the states of
processes A and B while the transition rate of process A only depends on its own state. When
we learn a CTBN from data, we can therefore use its graph as a qualitative summary of the
interconnections of the alarms. An edge from A to B in this graph means that a change in
the state of A may change the transition rates of B and therefore cascades are expected to
occur along the directed edges of the graph.

Another type of graphical representation is also useful: Figure 1b shows the associated
factored state space graph Gs. In this graph, each node represents a state (in contrast, in G
each node represents a process/alarm) and edges represent the possible transitions between
states. We will say that G is the graph of the CTBN and refer to Gs as the state space graph.

?

As we will see in the numerical experiments, CTBNs are capable of producing “ cascading’
behavior. However, they also model the non-cascading behavior: This is important for our
application because we would also like to use the information contained outside periods
with cascades. The CTBN framework has the following advantages that are critical to our
application: 1) It exploits the factorization of the multivariate alarm process to make it
feasible to learn a CTBN model from data. 2) It takes into account the duration of an event
as well as its occurrence. Moreover, it uses both the cascading and non-cascading data. 3) It
has a graphical representation which is easy to interpret, thus facilitating communication.

4.3 Reward function

A reward function is a function that maps the states of one or more processes onto a real
number. We use a reward function to compute the discounted, expected number of transitions
(that is, alarms changing their states) when starting the process in some initial state, . A
reward function consists of two quantities,

R(z) : S — R, the instantaneous reward of state X = x, and

C(z,a’): S x 8§ — R, the lump sum reward when X transitions from state z to state a’.
We use the lump sum reward which is an indicator of transitions,

Clz,2') =1, forall z,2’ €S, (4)

and we let the instantaneous reward be zero. We will use the infinite-horizon expected
discounted reward [17],

tit1

Va((ﬂ) =E, lz eiat”lO(X(ti), X(ti+1)) + J
=0 t

i

€atR(X(tl))dt1 < ti+1 (5)

where o > 0 is referred to as the discounting factor, E,(-) is the expectation when conditioning
on X(0) = z, and the t;’s are the transition times. We use R(z) = 0 for all z and therefore

Valz) = E, lz e“““C’(X(ti),X(tiH))] -E lz eo‘ti“] Tt <tig. (6)
i=0 1=0

This simply counts the number of transitions including a discounting factor. Clearly, other
reward functions can be chosen to analyze other or more specialized types of behavior. If,
for instance, we are only interested in a subset of transitions we can modify the lump sum
reward accordingly. A value of the parameter o can be chosen using, e.g., prior information
on the length of typical cascades. This concludes the introduction of the modeling framework
and the following sections describe the contributions of this paper.

8:7
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5 Sentry state

Given a CTBN NV = (P, X, G, Qx ), we are interested in understanding its cascading behavior.
We are in particular interested in identifying what we will call sentry states. A sentry state
is a state which may trigger a ripple effect, that is, a sequence of fast transitions.

» Example 3. An example of a ripple effect can be found in the CTBN in Figure 1a which
consists of three processes X4, Xp and X¢, forming a chain A — B — C', and each taking
values in {0,1}, Sq4 = Sp = Sc = {0,1}. The trajectory in Figure 1c shows that every time
A transitions, B and C quickly transition as well. In other words, when A changes its state,
a ripple effect occurs such that B and C' also change states to match the state of their parent.
The starting point of these cascades of events is a sentry state as defined in this section.

A=0,B=0,C=0 (4.0)

High EDNT
A=0,B=1,C=0 (5.4) A=0,B=0,C=1 (4.7) A=1,B=0,C=0 (6.3) :
A=1B=1,C=1 (5.5)

Figure 3 Visualization of Example 3: The state space graph (same graph as in Figure 1b, but
presented slightly differently) is annotated with EDNTs for each node (in parentheses) and a subset
of nodes with relatively high EDNT values is highlighted. Sentry states are high EDNT states to
which transitions from low EDNT states are possible and such a transition increases the risk of an
imminent cascade. Some states with high EDNT tend to occur in the middle of a cascade which
motivates using the REDNT metric. In this example, transitioning from (A = 0,B = 0,C = 0) to
(A=1,B=0,C =0) may trigger an alarm in B which in turn may trigger an alarm in C, resulting
in a cascade (note that only transitions along the edges in the state space graph are possible).

It is important to stress that we are interested in states that start a cascade of events.
Intuitively, this means that we are assuming the existence of at least one state in the state
space graph which is directly connected to the sentry state and which has a much smaller
expected number of transitions than the sentry state itself. We can observe this in the
example in Figure lc: Before starting the sequence of transitions of processes X 4, Xp, and
X¢ from 0 to 1, the CTBN remained for a long time in state {A = 0,B = 0,C = 0} € S.
Similarly, before changing the state of all processes A, B and C from 1 to 0, the CTBN
remained for a long time in state {A =1,B=1,C =1} € S.

5.1 Sentry state identification

In order to identify a sentry state, we need to take a further step from the heuristic definition
of a sentry state we have just given and formalize the concept. For this purpose, we first
compute the expected (discounted) number of transitions for each state of the CTBN. This
can be achieved by using the lump sum reward in (4) to obtain the Expected Discounted
Number of Transitions (EDNT) of each state x € S,
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EDNT,(x) = E| Y e 1 C(X (t:), X (ti1)) | : Cla,2’) = 1. (7)
i=0

There is no guarantee that a state with high EDNT is often the starting point of a cascade.
States that tend to occur in the middle of a cascade may easily have a high EDNT if the
cascade tends to continue after reaching that state. We are interested in early detection of
cascades and the solution we propose is to take into account the number of transitions in the
neighborhood Neg_ (x) of the state x € S. For this purpose, we define a new quantity called
Relative Ezxpected Discounted Number of Transitions (REDNT),

EDNT,(z)

EDNT,(z) = —_—
R (51/') z’erl\rlleagf(a:) EDNT, (Jfl)

(8)
where « in (7) and (8) is the discounting factor as in (5), and the neighborhood in (8) refers
to the undirected state space graph (see Figure 1b). The central idea is that a large ratio
between two adjacent states implies that transition from one to the other leads to a significant
change in the expected discounted number of transitions. We will use REDNT to identify
potential sentry states (states with high values of REDNT are likely sentry states).

One could propose other ways to aggregate EDNT across different states. We focus on
REDNT as defined above in the interest of brevity. We let 5 denote the number of alarms
that are on in the state s = (s1, $2,...,81), § = Zle $;. In the alarm data application, we
are mostly interested in sentry states such that s is fairly small. States with large s may also
have large REDNT values; however, these are states that occur when a cascade is already
happening. As we want early detection, we should focus on sentry states such that s is small.

5.2 Monte Carlo algorithm

We are now left with the problem of estimating the EDNT of each state from which we can
compute the REDNT. We propose a Monte Carlo approach based on Algorithm 1 from [32].
This sampling algorithm starts from an initial state X (0) and generates a single trajectory o
ending at time te,q. After the initialization phase the algorithm enters into a loop. At each
iteration, the algorithm samples a time to transition for each of the variables, identifies the
next transitioning variable, generates the next state, and resets the time to transition for the
transitioned variable and all its children. We combine Algorithm 1 with (7) to compute

|o|

EDNT,(z) = F1| Z Z e Ca(t;), 2(tiv1)) ()

oeo =0

where |o| is the number of trajectories generated by Algorithm 1 and |o| represents the
number of events in the trajectory o.

In order to compute E/D’]VTQ, we need to set the values of the following hyperparameters:
1. «, the discounting factor;
2. tend, the ending time for each trajectory;
3. |o|, the number of trajectories to be generated.
Choosing the discounting factor o and the ending time t.,4, we decide the importance of
the distant future and appropriate values depend on the application. On the other hand, |o|
controls the trade-off between the quality of the approximation and its computational cost:

We can choose its value using a stopping-rule approach based on variance as proposed in [8].

8:9
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Algorithm 1 Forward Sampling for CTBN.
procedure CTBN-SAMPLE(X (0), tenq)

t<— 0,0« {<0, X(0)>} = Initialization
loop
for all X; e X s.t. Time(X;) is undefined do = Time to transition sampling

At « draw a sample from an exponential with rate gx, (¢)|pa(x; (t))
end for
j = argminx,ex [Time(X;)] = Transitioning variable
if Time(X;) > tenq then
return T'r
end if
zj < draw a sample from a multinomial with 0x ) pa(x; (1)) > Next state
t — Time(X;)
Add ¢, X (t)) to o
Undefine Time(Xj) and Time(X;) VX; € Pa(Xj) > Reset the time to transition
end loop
return o
end procedure

6  Graphical information

This paper proposes the CTBN as a modeling tool for systems with cascades. However,
CTBNs have other useful properties: The interplay between the graph and the probabilistic
model facilitates both communication with subject matter experts and easy computation of
various statistics that summarize the learned system.

We define the parent set of A, Pa(A) = ([Ux,c4 Pa(Xs)) \A. Note that Pa(4) n{A} = &
for all A. We define the closure of A, Cl(A) = Pa(A) u {A}. A walk is a sequence of adjacent
edges and a path is a sequence of adjacent edges such that no node is repeated. We say that
X; is an ancestor of X; if there exists a directed path from X, to X;, X; — ... — X, such
that all the edges point toward X;. We define An(A) to be the set of nodes that are in A or
are ancestors of a node in A. Therefore, A € An(A) for all A. We say that the node set A
is ancestral if An(A) = A, that is, if A contains all ancestors of every node in A. In Figure
4a, the set {A, B} is ancestral while the set {B,C} is not ancestral. We let G4 denote the
graph with node set A such that for X;, X; € A, the edge X; — X is in G4 if X; — X is
in G. We construct the moral graph, G™, of G by replacing all edges with undirected edges,
—, and adding an undirected edge between two nodes if there exists a node of which they
are both parents. In an undirected graph and for disjoint A, B, and C, we say that A and B
are separated by C if every path between A and B is intersected by C.

6.1 Decomposition properties

The graph of a CTBN has a clear interpretation, as the transition rate of X; only depends
on the current value of C1(X;). The following results provide another interpretation of the
graph in terms of conditional independence. We let X 4 () denote the process A until time
point ¢, X 4(t) = {X;(s) : i € A, s < t}. The next result follows from Proposition 5 in [14].

» Proposition 1. Let G = (X, E) be the graph of a CTBN, and let A, B,C <V be disjoint.
If A and B are separated by C in (G anacpoc))™, then X4 (t) 1L Xp(t) | Xc(t) for all t.
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The above result allows us to decompose the learned system into components A and B
that operate independently conditionally on C'. That is, all dependence between A and B is
“explained” by C. However, the graph may not be very informative to experts if it contains
too many nodes. We address this issue now and further results are in Appendix A.

6.2 Hierarchical analysis

The graph of a CTBN may be too large to be easily examined visually. If the number of
components in a system is large experts mostly reason about groups of components. For
instance, in the alarm data, the system is known to comprise different subsystems, which
form a natural partition of the components X. We show that Proposition 1 still applies in
an aggregated version of the graph. We define a graph partition to formalize this.

» Definition 1 (Graph partition). Let G = (X, E) be a directed graph and let D =
{D1,...,Dn} be a partition of X. The graph partition of G induced by D, D, is the
directed graph (D, Ep) with node set D such that Dy, — Dy, k # 1, is in Ep if and only if
there exists X; € Dy, and X; € Dy such that X; — X, in G.

In a graph partition, each node, Dy € D, corresponds to a subset of the node set in the
original graph. Underlined symbols, e.g., A, represent subsets of D = {D,...,D,,}. When
A < D, we let A denote the corresponding nodes in the original graph, A = UDieA D;. The
following is an extension of the classical separation property to a graph partition and it means
that separation in a graph partition can be translated into separation in the underlying
graph. This is in turn implies a conditional independence in the CTBN.

» Proposition 2. Let D be a partition of V' and let D be the graph partition induced by D.
Let A, B,C < D be disjoint. If A and B are separated by C in (Danaopoc))™, then A and
B are separated by C in (Ganaopocy)™-

» Example 4 (Simplified ESS alarm network). We revisit the example in Figure 2 and denote
the graph on the left by G. This graph represents a CTBN as introduced in Section 4. System 1,
System 2, System 3, and System 4 constitute a partition, D, of the node set of G and we let
D denote the corresponding graph partition (Figure 2 (right)). If we let A = {System 1},
B = {System 3}, and C = {System 2, System 4}, then A and B are separated by C in
(DancavBoc))™ (in this case An(A v B u C) = {System 1, System 2, System 3, System 4}
and (D anaoBoc))™ 18 simply the undirected version of D as every node only has a single
parent). The set A corresponds to processes A = {P1,T1}, B corresponds to processes
{P3, T3}, and C corresponds to {P2, T2, S1,52,53,54}. Proposition 2 gives that A and B
are separated by C in (Ganaupuc))™. It follows from Proposition 1 that the processes in
A and the processes in B are independent when conditioning on the processes in C'. This
means that the state of System 1 is irrelevant when reasoning about the state of System 8 if
we already account for Systems 2 and 4. Using this procedure, conditional independences can
be found using both the original graph and a graph partition. Furthermore, in both G and D,
the edges have a simple interpretation: The transition rates of the processes corresponding to
a node only depend on the processes corresponding to the parent nodes.

6.2.1 Condensation

The graph G of a CTBN may be cyclic. A possible simplification is to collapse each cyclic
component into a node to form the condensation of G which is a directed acyclic graph. We
say that A < V is a strongly connected component if for every X; € A and every X, € A
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there exists a directed path from X; to X;. The strongly connected components constitute a
partition of V and the condensation is the graph partition they induce. The condensation
has some properties that do not hold for general graph partitions (see Appendix A).

» Definition 2 (Condensation). Let G be a directed graph and let D = {D,..., Dy} be its
strongly connected components. We say that the graph partition of G induced by D is the
condensation of G.

7 Numerical experiments and examples

We now study the performance of the proposed approach. We generate synthetic data from
CTBNSs such that the sentry states are known. Data is generated from different CTBNs
(additional experiments are in Appendix C). In all of them,

each process, X; € X, has a binary state space.

the CTBN consists of slow processes and fast processes.

each process, X; € X, replicates the state of its parent processes, Pa(X;).

if a process, X; € X, has more than one parent, it stays in state 0 with high probability

if at least one of its parents is in state 0.

Experiment 1

The first synthetic experiment is based on a CTBN model whose graph G is a chain consisting
of three nodes A, B, and C (Figure 4a). The corresponding CIMs for the processes A, B,
and C are shown in Table Al in Appendix C. This CTBN describes a structured stochastic
process such that the root process, A, changes slowly from the state no-alarm (0) to the
state alarm (1) and vice versa. This can be seen from the CIM corresponding to process A.
The CIMs associated with processes B and C' make these two processes replicate the state of
their parent process and this happens at a faster rate. Therefore, starting from (0,0, 0), if
process A changes its state, process B quickly changes its state to match that of its parent A.
The same holds true for the process C. For this reason, we expect {A =1,B =0,C = 0} to
be a sentry state because as soon as the process A transitions from state 0 to state 1, a fast
sequence of transitions (a cascade of events) makes the processes B and C transition from
state 0 to state 1. This behavior is shown in Figure 4b. Estimates of the REDNT quantity
are shown in Table A2 and they confirm that {4 =1, B = 0,C = 0} is a sentry state.

Experiment 2

The second synthetic experiment is based on the CTBN shown in Figure 5a which consists
of a slow cycle (A4, B, C) and a fast chain (D, E, F). In this CTBN, the sentry state is
expected to be {A=0,B=0,C =1,D=0,FE =0,F = 0}. Figure 5b shows that this state
triggers a fast sequence of alarms in the chain (D, E, F) and a slow sequence of alarms in
the cycle (A, B, C). Estimates of the REDNT quantity are shown in Table A3 and they
confirm that {A =0,B=0,C=1,D=0,F =0, F = 0} is a sentry state.

Comparison

We compare the REDNT method to the naive approach proposed in Appendix B. In
synthetic data it is easier to identify the two parameters of the naive approach. Each
synthetic experiment has only two transition rates and we can let the parameter Az, 2 be

2 Threshold between a slow and a fast transition (Appendix B).



A. Bregoli, K. Rathsman, M. Scutari, F. Stella, and S. W. Mogensen

0 1 T

1
- = N 11w
@&y 8
I I 11 N NS
(a) 2 4 6

8 10

Time
(b)

Figure 4 (a) depicts the graph G of a CTBN. Its CIMs are in Table Al in the appendix. Slow
processes are represented by solid line nodes, while fast processes are represented by dashed line
nodes. Colors describe the most likely sentry state, s = (s1, 2, s3), in this system: If a node is green,
the corresponding alarm is 1 (on) in s. If a node is red, the corresponding alarm is 0 (off) in s. (b)
shows an example trajectory from the CTBN represented in Figure 4a. Each function in the plot
represents the evolution of one of the three binary processes, A, B, and C.
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Figure 5 (a) Graph G of a CTBN model consisting of six processes. The graph G contains the
cycle (A, B, C) as well as the chain (D, E, F). See the caption of Figure 4 for an explanation of
the node colors.

the median elapsed time between two consecutive events when combining events of all types.

The parameter A, ° can be determined based on the structure of the network. For instance,
in the example in Figure 4a we expect a cascade to have at least two transitions,

{A=1,B=0,C=0} >{A=1,B=1,C =0} >{A=1,B=1,C = 1}.

To identify sentry states using the naive approach we should simply identify the cascades
of events and compute the fraction of times that observing a specific state coincides with
the start of a cascade. As already mentioned in Section 5, we are interested in sentry states
with a low number of active alarms. For this reason, we consider only states such that the
number of active alarms is less than or equal to the size of the largest parent set in the true
graph. The naive approach and the REDNT both produce a list where states are ordered
from the most likely sentry state to the least likely. We compare the two approaches with
the Jaccard similarity [27] using the K most likely sentry states. We tested our approach

3 It determines the minimum number of fast consecutive events to be considered a cascade See Appendix
B.
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Figure 6 This figure reports the Jaccard similarity@k between the REDNT and the naive
approach. The x-axis represents the number of states taken into account from the ordered lists
generated by the two methods. The structures of the networks used for the experiments are depicted
in Figures 4a, A1, A2, A3, 5a, and A4.

on 6 different structures with different numbers of nodes. Results are reported in Figure 6.
In every experiment, the two methods share at least one state in their top-two lists. It is
important to emphasize that the parameters of the naive method have been set knowing the
length of cascades. Conversely, the REDNT method does not require this knowledge in order
to identify sentry states.

ESS data set

The last experiment is performed on a real data set provided by the European Spallation
Source ERIC (ESS) as described in Section 2. The data set consists of observations of 138
alarm processes from January 2020 to March 2023. No structure was provided, thus we
use the score-based structure learning algorithm presented in [32]. We chose not to use the
constraint-based algorithm [10] because, in the case of binary variables, it has been shown to
be outperformed by the score-based algorithm. The score-based algorithm penalizes the size
of the parent sets, leading to sparsity in the graphical structure. For this data, the learned
graph is composed of disconnected components. We only present the results of applying the
REDNT method for one of them. The most likely sentry state has the alarm SpeedHighFault
set to on and everything else set to off (see Figure 7). We observe that the connected
component which contains SpeedHighFault is a rooted directed tree, and that SpeedHighFault
is the root. This means that an alarm in SpeedHighFault propagates along the directed paths
in the tree. A CTBN assumes that at most one event occurs at any point in time. This is
reasonable in this application because of the high sampling rate.

The four PressureRatioHighFault alarms in Figure 7 could be verified as consequences of
the root cause SpeedHighFault, both from documentation and by an experienced operator. On
the other hand, the alarms StateIntervened, CabinetFault, and StateFault were not evident
from the documentation and were not expected to be related to the root alarm Speed HighFault.
If these connections are real, this information is relevant to operators as they may look for
reasons for this connection and enhance their process understanding. Moreover, the identified
root alarm SpeedHighFault can be given a high priority to ensure that the operators will be
made aware of a potential cascade starting from this alarm.

The CTBN was learned with no structural input, but using a prior distribution one can
provide engineering knowledge to a Bayesian learning method. We believe that the graphical
output can easily be shown to and interpreted by engineers; however, user studies are needed
to validate this. Results like Propositions 1 and 2 allow a formal interpretation and help us
find those components of the system that function independently when accounting for other
parts of the machine. Moreover, the sentry states that are identified can be presented to the
operators. In the example shown in figure 7 the sentry state is covered by an already existing
alarm, but if a more complex sentry state would have been identified then an additional
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Figure 7 Graph G of the CTBN learned from the ESS data set. Figure 4 explains the node colors.

alarm would be needed. Using domain expertise, one can assign appropriate instructions to
sentry states and these can be presented to operators when the machine reaches a fault state.
When we have learned a CTBN from data, we may also compute the risk of reaching each of
the sentry states from the current state. This can be provided to operators in real time to
facilitate early mitigation. This should be studied in detail in future work.

» Example 5 (Simplified ESS alarm network). We now return to our running example. This
is an example system and it does not correspond to the learned network. Imagine that we
start from the state with all alarms off. Assume we have learned from data, using the CTBN
framework, that the P1 alarm is very likely to go on if both S4 and T1 alarms are on.
Furthermore, assume that P2 is very likely to go on when P1 is on and that P3 is very likely
to go on when P2 is on. In this case, the state such that S4 =1, T1 =1, and such that every
other node is zero is likely to be a sentry state. This knowledge can be useful in two ways.
First, this can be presented to experts so that they can map common cascades, and their sentry
state starting points, to underlying causes using domain knowledge. Second, during operation
a warning can be issued when reaching a sentry state, along with the recommended course of
action. It is also possible to compute, given the current state, the risk of reaching each of the
sentry states within some time interval to facilitate an earlier warning if the expected time
from reaching the sentry state to the actual cascade does not suffice for mitigation.

8 Discussion

In this paper we defined the concept of sentry states in CTBNs and we presented a naive
approach and a heuristic (REDNT) for identifying such sentry states. The synthetic experi-
ments showed that REDNT can identify the configuration of the network from which a fast
sequence of events starts. A key limitation is the fact that the REDNT heuristic is computed
for each state and the number of states is exponential in the number of nodes. However, the
simplicity of its implementation and the effectiveness showed in the synthetic experiments
make the REDNT heuristic attractive. Moreover, only states with few active alarms may
be of interest and this reduces the computational cost. The proposed heuristic assigns a
score to each state in the state space of a CTBN; a possible extension of this work is the
identification of the contribution of each process to the REDNT.

This paper laid the theoretical groundwork for the implementation of online early warning
systems based on the identification of sentry states. In practical implementations, a list of
sentry states can be provided to domain experts for them to formulate appropriate actions
in order to mitigate alarm cascades. This is left for future work. Moreover, the graph
representing a learned CTBN indicates how the behavior of each alarm process depends on
the states of the other alarm processes. As illustrated in this paper, this graph also represents
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conditional independences in the system. In future work, we hope to demonstrate that the
intended end users, engineers and system operators, also find this graphical tool useful.
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A  Graphical information
The following proposition follows from Proposition 4 in [14] and Theorem 2 in [40].

» Proposition 3. If A is ancestral, then the subprocess X4 = (X;)iea s a CTBN with
transition matrices Qx| pa(x;) and graph Ga.

Proof of Proposition 2. Note that A, B, and C' must be disjoint. We consider a connecting
path between A and B in (Gan(aupuc))™ which does not intersect C,

X=X — ... — X,

10
Let f: X — D be the unique map such that if f(X;) = D;, then X; € D;. We consider the
walk

FXip) = f(Xiy) = = f(Xi,)-

and argue that this walk, or a subwalk, is present in (DAH( AU ng))m and is not intersected
by C. Every node on the original walk is in An(A u B u C) in G, so every node on the above
walk is in An(4A u B u C) in D. We remove nodes such that no adjacent nodes are equal
(note that the result is a nontrivial walk). If an edge on the original walk corresponds to a
directed edge in G, then it is also in D. Assume it does not correspond to a directed edge
on the original walk. It then corresponds to a “ moral” edge, X;; — X < X;,,, in G, and
these must be in different D;. In this case, X;, — X;,,, is also in (Dan(aupuc))™- No node
can be in C on this walk. We can reduce this to a path such that no node is repeated. Note
that the end nodes are in A and B, respectively. <
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» Proposition 4. Let Dy,..., D, be the strongly connect components of G. If there are no
edges between D; and Dj, i # j, in G, then X(t)p, 1L X (¢)p, | X(t)p, or X(t)p, 1L X(t)p, |
X(t)p; where pi = Up,cpan,) Pk and pj = Up,cpan,) Dr-

Proof. If there are no edges between any node in D; and any node in D;, then D; and D;
are not adjacent in the condensation of G. The condensation is acyclic, so we can without
loss of generality assume that D; is not a descendant of D;. There are no descendants of
D; in An({D;,D,} v Pa(D;)) and this means that D; and D; are separated by Pa(D;)
in (Dan({D,,0,}uPa(D,)))™ Where D is the condensation of G. The result follows from
Propositions 2 and 1. |

B Cascade identification

Informally, a cascade of events is a fast sequence of transitions; where fast is relative to the
rest of the transitions that are observable during the evolution of the process. Starting from
this informal definition, we can develop a naive approach to identifying such cascades in a
trajectory. First of all we need to identify two quantities: - As;: the fast threshold determines
when two consecutive transitions are considered to occur fast. - Ay, the minimum cascade

length determines the minimum number of fast consecutive events to be considered a cascade.

Given the two parameters the identification procedure consists of iterating over the
entire trajectory and identifying subsets of consecutive transitions with length at least A,
and with a transition time between each pair of consecutive events of less than Ay;. This
approach can also be used to identify a sentry state. Indeed, once a cascade of events has
been identified, the sentry state is the state from which the cascade begins.

The main limitation of this approach is the difficulty of identifying the correct parameters
as it requires knowing in advance common durations and sizes of event cascades.

In addition, we define two simple quantities: Naive Count - the number of times a state
starts a cascade, and Naive Score - the fraction of times that observing a specific state
coincides with the start of a cascade.

C Synthetic Experiments

Table Al Conditional Intensity Matrices used for the example in Figure 4a. Process A has no
parents and therefore its transition rate only depends on its own state: If A is in state 0 (off), then
its transition rate (to state 1 (on)) is 1.0. Process B has a single parent, process A. The states of
processes A and B determine the transition rate of process B. If A is in state 0 (off) and B is in
state 0 (off), then B transitions to state 1 (on) with rate 0.1. A CTBN is defined from its CIMs
and its initial distribution. Its graph illustrates the dependence structure in the CIMs.

A 0 1 A | B 0 1 B|C 0 1
01]-1.0 1.0 0 0| -0.1 0.1 0 0] -0.1 0.1
1|50 -50 11150 -15.0 1 15.0 -15.0
1 0 | 15.0 -15.0 1 0 |-15.0 15.0
1 0.1 -0.1 1 0.1 -0.1
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Table A2 Values of EDNT, REDNT, Naive Score, and Naive Count for the CTBN depicted in
Figure 4a. Higher values of REDNT indicate CTBN states that are more likely to be sentry states.
One should note that high-scoring states with few alarms (bold rows) are more interesting in our

application as they correspond to states that occur before strong cascading behavior.

A B C | EDNT REDNT Naive Score Naive Count
1 0 0| 6.316 1.589 0.35 304

1 0 1 6.444 1.359 0.21 13

0 1 0| 5.394 1.357 0.16 41

0 0 1 | 4.740 1.192 0.03 26

0o 1 1 5.511 1.163 0.22 153

1 1 0 6.173 1.145 0.08 57

1 1 1 5.455 1.0 0.03 19

0O 0 O | 3.976 1.0 0.02 24

Table A3 Values of EDNT, REDNT, Naive Score, and Naive Count of the states with at most

one active alarm for the CTBN depicted in Figure 5a.

A B C D E F | EDNT REDNT Naive Score Naive Count

0 0 1 0 0 O 12.98 1.46 0.24 2172

0O 0 0 1 0 0 11.33 1.28 0.25 2156

0O 1 0 0 0 O 10.76 1.21 0.04 848

0O 0 0 o0 1 0 10.75 1.21 0.14 1533

1 0 O 0 0 O 10.24 1.15 0.02 341

0O 0 0 0 0 1 9.90 1.12 0.03 651

0O 0 0 o0 0 O 8.87 1.0 0.01 426
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Figure Al Graph G of a CTBN model consisting of a chain of five processes.
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Figure A2 Graph G of a CTBN model consisting of five processes, including a cycle.




A. Bregoli, K. Rathsman, M. Scutari, F. Stella, and S. W. Mogensen

’B \,_N\,D\)

N

N -~ N

;—NE/}

A

C

N

Figure A3 Graph G of a CTBN model consisting of five processes. The graph G contains a

bifurcation after the root node A.
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Figure A4 Graph G of a CTBN model consisting of nine processes and with a more complex

structure. The sentry state has three active alarms.
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