
37th International Symposium on
Distributed Computing

DISC 2023, October 10-12, 2023, L’Aquila, Italy

Edited by

Rotem Oshman

LIPIcs – Vo l . 281 – DISC 2023 www.dagstuh l .de/ l ip i c s

Editors

Rotem Oshman
Blavatnik School of Computer Science, Tel Aviv University, Israel
roshman@tau.ac.il

ACM Classification 2012
Software and its engineering → Distributed systems organizing principles; Computing methodologies →
Distributed computing methodologies; Computing methodologies → Concurrent computing methodologies;
Hardware → Fault tolerance; Information systems → Data structures; Networks; Theory of computation;
Theory of computation → Models of computation; Theory of computation → Design and analysis of
algorithms

ISBN 978-3-95977-301-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-301-0.

Publication date
October, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.DISC.2023.0

ISBN 978-3-95977-301-0 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:roshman@tau.ac.il
https://www.dagstuhl.de/dagpub/978-3-95977-301-0
https://www.dagstuhl.de/dagpub/978-3-95977-301-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.DISC.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-301-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

DISC 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Rotem Oshman . 0:ix

Organization
. 0:xi–0:xiii

Awards
. 0:xv

2023 Principles of Distributed Computing Doctoral Dissertation Awards
. 0:xvii

2023 Edsger W. Dijkstra Prize in Distributed Computing
. 0:xix

Regular Papers

Colordag: An Incentive-Compatible Blockchain
Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern 1:1–1:22

Certified Round Complexity of Self-Stabilizing Algorithms
Karine Altisen, Pierre Corbineau, and Stéphane Devismes . 2:1–2:22

Network Agnostic Perfectly Secure MPC Against General Adversaries
Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury 3:1–3:19

One Step Forward, One Step Back: FLP-Style Proofs and the Round-Reduction
Technique for Colorless Tasks

Hagit Attiya, Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum 4:1–4:23

Topological Characterization of Task Solvability in General Models of
Computation

Hagit Attiya, Armando Castañeda, and Thomas Nowak . 5:1–5:21

Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism
Sarah Azouvi, Guy Goren, Lioba Heimbach, and Alexander Hicks 6:1–6:22

On the Node-Averaged Complexity of Locally Checkable Problems on Trees
Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid 7:1–7:21

Treasure Hunt with Volatile Pheromones
Evangelos Bampas, Joffroy Beauquier, Janna Burman, and William Guy–Obé 8:1–8:21

The FIDS Theorems: Tensions Between Multinode and Multicore Performance in
Transactional Systems

Naama Ben-David, Gal Sela, and Adriana Szekeres . 9:1–9:24

Communication Lower Bounds for Cryptographic Broadcast Protocols
Erica Blum, Elette Boyle, Ran Cohen, and Chen-Da Liu-Zhang 10:1–10:19

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Time and Space Optimal Massively Parallel Algorithm for the 2-Ruling Set
Problem

Mélanie Cambus, Fabian Kuhn, Shreyas Pai, and Jara Uitto . 11:1–11:12

Self-Stabilizing Clock Synchronization in Probabilistic Networks
Bernadette Charron-Bost and Louis Penet de Monterno . 12:1–12:18

Every Bit Counts in Consensus
Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, and
Manuel Vidigueira . 13:1–13:26

Efficient Collaborative Tree Exploration with Breadth-First Depth-Next
Romain Cosson, Laurent Massoulié, and Laurent Viennot . 14:1–14:21

A Topology by Geometrization for Sub-Iterated Immediate Snapshot Message
Adversaries and Applications to Set-Agreement

Yannis Coutouly and Emmanuel Godard . 15:1–15:20

Send/Receive Patterns Versus Read/Write Patterns in Crash-Prone
Asynchronous Distributed Systems

Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal 16:1–16:24

Modular Recoverable Mutual Exclusion Under System-Wide Failures
Sahil Dhoked, Wojciech Golab, and Neeraj Mittal . 17:1–17:24

Optimal Computation in Leaderless and Multi-Leader Disconnected Anonymous
Dynamic Networks

Giuseppe A. Di Luna and Giovanni Viglietta . 18:1–18:20

Fast Coloring Despite Congested Relays
Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin . 19:1–19:24

Distributed Certification for Classes of Dense Graphs
Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and
Ioan Todinca . 20:1–20:17

The Synchronization Power (Consensus Number) of Access-Control Objects: the
Case of AllowList and DenyList

Davide Frey, Mathieu Gestin, and Michel Raynal . 21:1–21:23

List Defective Colorings: Distributed Algorithms and Applications
Marc Fuchs and Fabian Kuhn . 22:1–22:23

Conditionally Optimal Parallel Coloring of Forests
Christoph Grunau, Rustam Latypov, Yannic Maus, Shreyas Pai, and Jara Uitto . . 23:1–23:20

On the Inherent Anonymity of Gossiping
Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko,
Rafael Pinot, and Sasha Voitovych . 24:1–24:19

Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining
Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti . 25:1–25:20

Cordial Miners: Fast and Efficient Consensus for Every Eventuality
Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro . 26:1–26:22

Contents 0:vii

Fast Reconfiguration for Programmable Matter
Irina Kostitsyna, Tom Peters, and Bettina Speckmann . 27:1–27:21

Quorum Subsumption for Heterogeneous Quorum Systems
Xiao Li, Eric Chan, and Mohsen Lesani . 28:1–28:19

Fast Deterministic Rendezvous in Labeled Lines
Avery Miller and Andrzej Pelc . 29:1–29:22

Null Messages, Information and Coordination
Raïssa Nataf, Guy Goren, and Yoram Moses . 30:1–30:21

Gorilla: Safe Permissionless Byzantine Consensus
Youer Pu, Ali Farahbakhsh, Lorenzo Alvisi, and Ittay Eyal . 31:1–31:16

Distributed Sketching Lower Bounds for k-Edge Connected Spanning Subgraphs,
BFS Trees, and LCL Problems

Peter Robinson . 32:1–32:21

Memory-Anonymous Starvation-Free Mutual Exclusion: Possibility and
Impossibility Results

Gadi Taubenfeld . 33:1–33:17

Improved and Partially-Tight Lower Bounds for Message-Passing
Implementations of Multiplicity Queues

Anh Tran and Edward Talmage . 34:1–34:20

Brief Announcements

Brief Announcement: BatchBoost: Universal Batching for Concurrent Data
Structures

Vitaly Aksenov, Michael Anoprenko, Alexander Fedorov, and Michael Spear 35:1–35:7

Brief Announcement: Multi-Valued Connected Consensus: A New Perspective on
Crusader Agreement and Adopt-Commit

Hagit Attiya and Jennifer L. Welch . 36:1–36:7

Brief Announcement: Relations Between Space-Bounded and Adaptive Massively
Parallel Computations

Michael Chen, A. Pavan, and N. V. Vinodchandran . 37:1–37:7

Brief Announcement: On Implementing Wear Leveling in Persistent
Synchronization Structures

Jakeb Chouinard, Kush Kansara, Xialin Liu, Nihal Potdar, and Wojciech Golab . . 38:1–38:7

Brief Announcement: Subquadratic Multivalued Asynchronous Byzantine
Agreement WHP

Shir Cohen and Idit Keidar . 39:1–39:6

Brief Announcement: Distributed Derandomization Revisited
Sameep Dahal, Francesco d’Amore, Henrik Lievonen, Timothé Picavet, and
Jukka Suomela . 40:1–40:5

DISC 2023

0:viii Contents

Brief Announcement: Byzantine Consensus Under Dynamic Participation with a
Well-Behaved Majority

Eli Gafni and Giuliano Losa . 41:1–41:7

Brief Announcement: Scalable Agreement Protocols with Optimal Optimistic
Efficiency

Yuval Gelles and Ilan Komargodski . 42:1–42:6

Brief Announcement: Let It TEE: Asynchronous Byzantine Atomic Broadcast
with n ≥ 2f + 1

Marc Leinweber and Hannes Hartenstein . 43:1–43:7

Brief Announcement: Recoverable and Detectable Self-Implementations of Swap
Tomer Lev Lehman, Hagit Attiya, and Danny Hendler . 44:1–44:7

Brief Announcement: Line Formation in Silent Programmable Matter
Alfredo Navarra and Francesco Piselli . 45:1–45:8

Brief Announcement: The Space Complexity of Set Agreement Using Swap
Sean Ovens . 46:1–46:6

Brief Announcement: Grassroots Distributed Systems: Concept, Examples,
Implementation and Applications

Ehud Shapiro . 47:1–47:7

Preface

Welcome to DISC 2023, the 37th International Symposium on Distributed Computing, held
on October 10–12, 2023, in L’Aquila, Italy. DISC is an international forum on the theory,
design, analysis, and implementation of distributed systems and networks, focusing on
distributed computing in all its forms. DISC is organized in cooperation with the European
Association for Theoretical Computer Science (EATCS).

DISC 2023 received 125 submissions in the “regular paper” category, and 14 submissions
in the “brief announcement” category. The program was selected by a program committee
consisting of 24 full members and 4 half-load members. The program committee was assisted
by 127 external reviewers. As in previous years, the committee used a relaxed form of
double-blind reviewing, where the submissions themselves were anonymous, but authors were
permitted to disseminate their work by uploading it to online repositories or by giving talks
about it. Each submission was evaluated by at least three reviewers, and final decisions were
made during a 2-day virtual PC meeting. 34 regular papers were accepted (an acceptance
rate of 27%), and 13 brief announcements. The keynote talks at DISC 2023 were given by
Tal Rabin on behalf of the winners of the 2023 Dijkstra Award, by Amos Korman, and by
Lorenzo Alvisi.

The following two awards are jointly sponsored by DISC and the ACM Symposium on
Principles of Distributed Computing (PODC):

The 2023 Edsger W. Dijkstra Prize in Distributed Computing was presented at DISC
2023. The award was given to Michael Ben-Or, Shafi Goldwasser and Avi Wigderson for
their paper “Completeness Theorem for Non-Cryptographic Fault-Tolerant Distributed
Computation”, to David Chaum, Claude Crépeau and Ivan Damgård for their paper
“Multiparty Unconditionally Secure Protocols”, and to Tal Rabin and Michael Ben-Or for
their paper “Verifiable Secret Sharing and Multiparty Protocols with Honest Majority”.
The 2023 Principles of Distributed Computing Doctoral Dissertation Award was presented
at PODC 2023. The award was given to Dr. Siddhartha Jayanti for his dissertation
“Simple, Fast, Scalable, and Reliable Multiprocessor Algorithms”, and to Dr. Dean
Leitersdorf for his dissertation “Fast Distributed Algorithms via Sparsity Awareness.”.

This volume includes the citations for the best paper and best student paper awards at
DISC 2023, as well as the citations for the 2023 Edsger W. Dijkstra Prize in Distributed
Computing, which was presented at DISC 2023, and for the Best Dissertation Award, which
was presented at PODC 2023.

I would like to warmly thank everyone who contributed to DISC 2023: the authors who
submitted their work to PODC, the PC members and external reviewers, the keynote speakers,
the organizing committee, the workshop chairs, members of the award committees, and
participants of the conference. I am also grateful to the members of the steering committee
and to former chairs of DISC, who shared their invaluable experience and advice; to EATCS
for their support; and to the staff of Schloss Dagstuhl – Leibniz-Zentrum für Informatik for
their help in preparing these proceedings.

October 2023 Rotem Oshman
DISC 2023 Program Chair

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

DISC, the International Symposium on Distributed Computing, is an annual forum for
presentation of research on all aspects of distributed computing. It is organized in cooperation
with the European Association for Theoretical Computer Science (EATCS). The symposium
was established in 1985 as a biannual International Workshop on Distributed Algorithms on
Graphs (WDAG). The scope was soon extended to cover all aspects of distributed algorithms
and WDAG came to stand for International Workshop on Distributed AlGorithms, becoming
an annual symposium in 1989. To reflect the expansion of its area of interest, the name was
changed to DISC (International Symposium on DIStributed Computing) in 1998, opening
the symposium to all aspects of distributed computing. The aim of DISC is to reflect the
exciting and rapid developments in this field.

Program Chair

Rotem Oshman Tel Aviv University (Israel)

Program Committee

Carole Delporte-Gallet IRIF, Université Paris Cité (France)
Corentin Travers LIS/Université d’Aix-Marseille (France)
Fabian Kuhn University of Freiburg (Germany)
Gillat Kol Princeton University (USA)
Gregory Chockler University of Surrey (UK)
Guy Goren Protocol Labs (Israel)
Jara Uitto Aalto University (Finland)
Jennifer Welch Texas A&M University (USA)
Juho Hirvonen Helsinki Institute for Information Technology and

Aalto University (Finland)
Kunal Agrawal Washington University in St. Louise (USA)
Laurent Feuilloley CNRS / Université de Lyon (France)
Manuela Fischer ETH Zurich (Switzerland)
Mark Moir Oracle Labs (USA)
Maurice Herlihy Brown University (USA)
Nicola Santoro Carleton University (Canada)
Oded Naor Technion and StarkWare (Israel)
Orr Fischer Weizmann Institute (Israel)
Paul G. Spirakis University of Liverpool (UK)
Pedro Montealegre Adolfo Ibáñez University (Chile)
Petr Kuznetsov INFRES, Telecom Paris (France)
Petra Berenbrink University of Hamburg (Germany)
Rafael Pass Tel Aviv University, Israel and Cornell University (USA)
Rati Gelashvili Aptos (USA)
Rob Johnson VMWare (USA)
Siddhartha Visveswara Jayanti Google Research and MIT (USA)
Tania Lorido Botran Roblox (USA)
Wojciech Golab University of Waterloo (Canada)
Zarko Milosevic Informal Systems (Canada)

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Organization

Organizing Committee

Alkida Balliu (co-Chair) Gran Sasso Science Institute (Italy)
Dennis Olivetti (co-Chair) Gran Sasso Science Institute (Italy)
Yannic Maus (Workshops Chair) TU Graz (Austria)
Tijn de Vosa (Environmental co-Chair) University of Salzburg (Austria)
Laurent Feuilloley (Environmental co-Chair) Université Lyon 1 and CNRS (France)
William K. Moses Jr. (Publicity Chair) Durham University (UK)
Gianlorenzo D’Angelo Gran Sasso Science Institute (Italy)

Steering Committee

Jukka Suomela (Chair) Aalto University (Finland)
Hagit Attiya (Vice Chair) Technion (Israel)
Seth Gilbert (2021 PC Chair) NUS (Singapore)
Christian Scheideler (2022 PC Chair) University of Paderborn (Germany)
Rotem Oshman (2023 PC Chair) Tel Aviv University (Israel)
Calvin Newport (Member-at-large) Georgetown University (USA)
Moti Medina (Treasurer) Bar-Ilan University (Israel)

External Reviewers

Davide Frey Shantanu Das Luciano Freitas de Souza
James Aspnes Peter Robinson George Skretas
Faith Ellen Théo Pierron Leonid Barenboim
Hossein Vahidi Christopher Hahn Grzegorz Stachowiak
Chien-Chih Chen Ami Paz Adam Gańczorz
Subhash Bhagat Martín Ríos-Wilson Alexander Spiegelman
Ivan Rapaport Michael Elkin Hagit Attiya
Nirupam Gupta Gal Sela Matej Pavlovic
Anup Joshi Balaji Arun Yuanhao Wei
Michiko Inoue Michal Dory Hagit Attiya
Felix Biermeier Thomas Nowak Ahmed Fahmy
Adam Morrison Mikaël Rabie Matej Pavlovic
Lewis Tseng Ivan Rapaport Giuseppe Prencipe
Euripides Markou Arnaud Labourel Raïssa Nataf
Gal Assa Mélanie Cambus Yannic Maus
Hafiz Imtiaz Sergio Rajsbaum Giuliano Losa
Lukas Hintze Uri Meir Chien-Chih Chen
Andrei Tonkikh Dennis Olivetti Francesco d’Amore
Achour Mostéfaoui Ran Gelles Josu Doncel
Gupta Nirupam Tomer Koren Yi-Jun Chang
Yadu Vasudev Talya Eden Sebastian Siebertz
Matthias Függer Diana Ghinea Peter Robinson
Sucharita Jayanti Gal Assa Daniel Collins
Armando Castaneda Leqi Zhu Chen-Da Liu Zhang
Yann Disser Clément Legrand-Duchesne Yitong Yin
Tijn de Vos Michal Dory Achour Mostéfaoui

Organization 0:xiii

Hsin-Hao Su Shreyas Pai Darya Melnyk
Shang-En Huang William K. Moses Jr. Leonid Barenboim
Chetan Gupta Sara Tucci-Piergiovanni Hao Tan
Zhuolun Xiang Saeed Akhoondian Amiri Christoph Grunau
Sergio Rajsbaum Ivan Rapaport Valerie King
Marios Mavronicolas Alan Kuhnle Elad Michael Schiller
Peter Davies Michel Raynal George Giakkoupis
Lioba Heimbach Maximilian Hahn-Klimroth Thomas Nowak
Themistoklis Melissourgos Yi-Jun Chang Xavier Defago
Chryssis Georgiou Keren Censor-Hillel Gabriele Di Stefano
Anissa Lamani Gregory Schwartzman Aaron Schild
Stéphane Devismes Rustam Latypov Nina Klobas
Laurent Viennot Seri Khoury Eric Ruppert
Hendrik Molter Marten Maack Giuseppe Antonio Di Luna
Hamed Hosseinpour Gal Assa Igor Zablotchi
Mina Dalirrooyfard Malin Rau Slobodan Mitrović
Jeff Giliberti Benjamin Jauregui João Paulo Bezerra
Tom Friedetzky Yukiko Yamauchi Shantanu Das
Peter Kling Mĺanie Cambus Benjamin Jauregui
Andrea Richa Giorgi Nadiradze Tigran Tonoyan
Saku Peltonen Ami Paz Ioan Todinca
Christoph Lenzen Xiaorui Sun Quentin Bramas
Gokarna Sharma Hagit Attiya Alexander Spiegelman
Armando Castaneda

Acknowledgements

DISC 2023 acknowledges the use of Easychair for handling submissions and managing the
review process and LIPIcs for producing and publishing the proceedings.

DISC is organized in cooperation with the
European Association for Theoretical Computer
Science (EATCS).

DISC 2023

Awards

Best Papers

The DISC Program Committee has selected the following two papers to receive the DISC
2023 best paper award:

Every Bit Counts in Consensus
by Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti and

Manuel Vidigueira.

This paper improves the space complexity of multi-valued consensus by presenting an
algorithm that requires only O(n1.5L+n2.5k) bits for consensus on L-bit values (with security
parameter k), an improvement of

√
n upon prior work. Moreover, the paper devises a version

of the protocol that uses stronger cryptographic assumptions – namely, the existence of
STARK proofs – and achieves near-optimal bit complexity, O(nL + n2poly(k)). Multi-valued
consensus is an important problem in practice, where the value being agreed upon is often
very large, and the paper uses interesting and novel techniques to achieve its strong results.

On the Node-Averaged Complexity of Locally Checkable Problems on Trees
by Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti and Gustav Schmid.

This paper studies the node-averaged round complexity locally-checkable labeling (LCL)
problems. The usual complexity measure in the LOCAL model is the worst-case round
complexity across all nodes. The paper establishes relationships between the worst-case and
the node-averaged complexity of LCL problems in trees, showing that every LCL problem
whose worst-case complexity is O(log n) admits an algorithm with node-averaged complexity
O(log∗ n), and that every LCL problem with worst-case complexity Θ(n1/k) requires node-
averaged complexity Ω̃(n1/(2k−1)), which is in some cases tight. Node-averaged complexity
is a new and interesting complexity measure, and the results of the paper show that node-
averaged complexity can be significantly better than the worst-case complexity, making it a
worthwhile measure to study.

Best Student Paper

The DISC Program Committee has selected the following paper to receive the DISC 2023
best student paper award:

The FIDS Theorems: Tensions between Multinode and Multicore Performance
in Transactional Systems

by Naama Ben-David, Gal Sela and Adriana Szekeres

This paper studies the performance of transactional systems that are both parallel and
distributed, meaning that they both use multiple nodes and employ multiple cores per node.
The paper shows that there is an inherent tradeoff between the scalability of the system, the
speed with which the system commits transaction in good executions, and its fault tolerance.
On the positive side, the paper shows that if any one of the three requirements is dropped,
then it is possible to construct a system satisfying the other two.

The tradeoff established and formalized in this paper is timely and relevant to large-scale
transactional systems, and serves as an analog for the famous CAP theorem for this setting.
37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2023 Principles of Distributed Computing
Doctoral Dissertation Awards

Many exceptionally high-quality doctoral dissertations were submitted for the 2023 Principles
of Distributed ComputingDoctoral Dissertation Award. After careful deliberation, the award
committee decided to share the award between:

Dr. Siddhartha Jayanti for his dissertation “Simple, Fast, Scalable, and Reliable Multi-
processor Algorithms.”
Dr. Dean Leitersdorf for his dissertation “Fast Distributed Algorithms via Sparsity
Awareness.”

Dr. Siddhartha Jayanti completed his PhD on November 27th 2022, under the supervision
of Prof. Julian Shun, at MIT. In his thesis, Dr. Jayanti identifies simplicity, speed, scalability,
and reliability as four core design goals for multiprocessor algorithms, and designs and analyzes
algorithms that meet these goals. The thesis comprises a vast number of novel results in
the scope of distributed and concurrent synchronization. His algorithmic contributions
include a scalable algorithm for concurrent union-find, a wait-free linearizable, fast array
data structure that supports standard array operations in constant time and optimal space,
and mutual exclusion (lock) algorithms with optimal complexity for real-time and persistent
memory systems. Dr. Jayanti also defines a generalization of the fundamental wake-up
problem, permitting him to prove fundamental new hardness results for many standard
data structures, including queues, stacks, priority queues, counters, and union-find data
structures. Moreover, he devises a novel simple-to-use technique for producing machine-
verified proofs of the correctness (linearizability and strong linearizability) of concurrent
algorithms, and successfully applied this method to verify fundamental data multicore data
structures, such as queues, union-find, and snapshot objects. Dr. Jayanti also analyzes a
parallel and asynchronous Markov Chain Monte Carlo (MCMC) algorithm, showing that it
can speed-up the collection of low-bias statistics from probability distributions of interest in
Machine Learning and Statistical Physics. Finally, Dr. Jayanti’s PhD dissertation introduces
the Samskrtam Technical Lexicon Project, which incorporates ideas from Panini’s generative
grammar to facilitate the coining of new technical vocabulary and increase the availability of
scientific education and literature in Indian and other world languages. As part of the project,
he uses Sanskrit roots to coin words for several concepts in algorithms and multiprocessors
in Telugu, and contributes the first modern computer science research paper in the Telugu
language, which has about 100 million speakers around the world.

Dr. Dean Leiterdorf completed his thesis on May 14th, 2022, under the supervision of Prof.
Keren Censor-Hillel, at the Technion. In his thesis, Dr. Leitersdorf designs fast distributed
algorithms for sparse matrix multiplication and demonstates their usefulness by applying
them to shortest path and subgraph existence problems. Applications of matrix multiplication
are found in many fields, including scientific computing, statistics, machine learning, and
quantum computing, and therefore fast algorithms for matrix multiplication are critical for
these. Dr. Leitersdorf does not just come up with solutions that can exploit the sparsity of
the input matrices but also the sparsity of the output matrix, which allows him to come up
with a large number of results for different communication models that partially significantly
improve the state of the art. Among these are constant-round algorithms for computing
graph spanners and approximate all-pairs-shortest-paths as well as constant-round algorithms
37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii 2023 Principles of Distributed Computing Doctoral Dissertation Awards

for computing the girth of the input graph up to an additive 1 in the Congested Clique
model. Through reductions between various models and a number of advanced techniques,
Dr. Leitersdorf extends his results also to the CONGEST model, hybrid networks, and
various other models. On top of this, he also designs a variety of algorithms that speed up
clique detection in quantum computing settings and whose runtime breaks lower bounds
known for classical distributed computing.

The award is sponsored jointly by the ACM Symposium on Principles of Distributed
Computing (PODC) and the EATCS Symposium on Distributed Computing (DISC). It is
presented annually, with the presentation taking place alternately at PODC and DISC. This
year it was presented at PODC, to be held in Orlando, Florida USA, June 19-23, 2023.

The 2023 Principles of Distributed Computing Doctoral Dissertation Award Committee

Shlomi Dolev (Chair), BGU (Israel)
Rachid Guerraoui, EPFL (Switzerland)
Fabian Kuhn, University of Freiburg (Germany)
Woelfel Philipp, University of Calgary (Canada)
Christian Scheideler, Paderborn University (Germany)

2023 Edsger W. Dijkstra Prize in Distributed
Computing

The 2023 Edsger W. Dijkstra Prize in Distributed Computing has been awarded to the
papers

Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation,
by Michael Ben-Or, Shafi Goldwasser and Avi Wigderson (STOC 1988, 1–10).
Multiparty Unconditionally Secure Protocols, by David Chaum, Claude Crèpeau and
Ivan Damgård (STOC 1988, 11–19).
Verifiable Secret Sharing and Multiparty Protocols with Honest Majority, by Tal Rabin
and Michael Ben-Or (STOC 1989, 73–85).

for introducing Information-Theoretic Secure Multiparty Computations and showing how to
achieve maximal resilience to malicious adversaries while providing unconditional security.

The area of Secure Multiparty Computation (MPC) answers the following fundamental
question about distributed computations. How does a group of parties compute a function
of their inputs while preserving not only correctness of the output but also, the secrecy of
each party’s input? Furthermore, this goal should be achieved in the case where some of the
parties are malicious and try to foil the computation.

The awarded papers opened the vibrant area of MPC in the information theoretic
setting, in which thousands of works have been published, and that is still going strong.
Protocols in the information- theoretic model often are more efficient than their computational
counterparts, in some cases by orders of magnitude, and thus have led to the most efficient
state-of-the-art designs of MPC implementations. These protocols are an indispensable tool
in the increasing demands for security and privacy in our modern digital society.

MPC and the techniques from the nominated papers have had tremendous impact on
the broader area of cryptography with such results relating to zero-knowledge proofs and
coding theory. They also have had far reaching impact on the broader area of theoretical
computer science by providing a technical basis and inspiration for such results as locally
random reductions, private information retrieval, and locally decodable codes.

The 2023 Dijkstra Award Committee

Magnús Halldórsson, Reykjavik University (chair)
Yehuda Afek, Tel-Aviv University
Idit Keidar, Technion
Rotem Oshman, Tel-Aviv University
Ulrich Schmid, TU Wien
Gadi Taubenfield, Reichman University

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Colordag: An Incentive-Compatible Blockchain
Ittai Abraham
Intel Labs, Haifa, Israel

Danny Dolev
The Hebrew University of Jerusalem, Israel

Ittay Eyal
Technion, Haifa, Israel

Joseph Y. Halpern
Cornell University, Ithaca, NY, USA

Abstract
We present Colordag, a blockchain protocol where following the prescribed strategy is, with high
probability, a best response as long as all miners have less than 1/2 of the mining power. We prove
the correctness of Colordag even if there is an extremely powerful adversary who knows future
actions of the scheduler: specifically, when agents will generate blocks and when messages will
arrive. The state-of-the-art protocol, Fruitchain, is an ε-Nash equilibrium as long as all miners
have less than 1/2 of the mining power. However, there is a simple deviation that guarantees that
deviators are never worse off than they would be by following Fruitchain, and can sometimes do
better. Thus, agents are motivated to deviate. Colordag implements a solution concept that we
call ε-sure Nash equilibrium and does not suffer from this problem. Because it is an ε-sure Nash
equilibrium, Colordag is an ε-Nash equilibrium and with probability 1 − ε is a best response.

2012 ACM Subject Classification Computing methodologies → Distributed computing method-
ologies; Theory of computation → Solution concepts in game theory; Security and privacy →
Distributed systems security

Keywords and phrases Game theory, incentives, blockchain

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.1

Funding Danny Dolev: Supported by the Federmann Cyber-Security Center in conjunction with
the Israel National Cyber Directorate.
Ittay Eyal: Supported by the Israel Science Foundation (grant No. 1641/18), Avalanche Foundation,
and IC3.
Joseph Y. Halpern: Supported in part by AFOSR grant FA23862114029, MURI grant W911NF-
19-1-0217, ARO grant W911NF-22-1-0061, and a grant from the Algorand Centers of Excellence
program managed by the Algorand Foundation.

Acknowledgements We thank Roi Bar-Zur for comments on an early version of this manuscript,
and the reviewers of the paper for their helpful comments.

1 Introduction

At the heart of Bitcoin [15] is the Nakamoto consensus protocol, which is based on proof-
of-work [7, 12, 1]. The system participants, called miners, maintain a ledger that records
all transactions – payments or so-called smart-contract operations. The transactions are
batched into blocks; a miner can publish a block only by expending computational power, at
a rate proportional to her computational power in the system. This rate is called mining
power.

The Nakamoto consensus protocol achieves desirable ledger properties even against an
adversary that controls α < 1/2 of the mining power [10, 17, 13]. That is, as long as
miners that control a majority of the cmoputing power follow the Nakamoto consensus

© Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Colordag: An Incentive-Compatible Blockchain

protocol, security is guaranteed. But Nakamoto’s protocol relies on incentives: The blocks
form a tree, and each miner is rewarded for each block it generated that is included in the
longest path (blockchain) in the tree. Unfortunately, following the Nakamoto consensus
protocol is not a best response for miners that control a large fraction (but less than 1/2)
of the total computational power [8, 16, 19]. For example, under some minimal modeling
assumptions, even a coalition that controls 1/4 of the computational power can increase
its reward by deviating from the Nakamoto Consensus protocol.1 Stated differently, the
Nakamoto consensus protocol is not a coalition-resistant equilibrium if there are coalitions
that control more than 1/4 of the mining power.

Pass and Shi [18] make major progress with their Fruitchain protocol. In Fruitchain, the
blocks form a dag (rather than a tree) with the longest chain determining rewards. However,
miners are rewarded for a special type of block, called fruit. Each fruit block c is the child of
a regular block b1, and its miner is rewarded if a subsequent block b2 points to the fruit, both
blocks b1 and b2 are on the longest chain, and the path between them is shorter than some
constant. If the longest chain is sufficiently long that the fruit c does not provide a reward,
then c is called stale. Fruitchain is an ε-Nash Equilibrium (NE), that is, a miner, even with
mining power arbitrarily close to 1/2, can improve her revenue by only a negligible amount
by deviating from the protocol. Like Bitcoin [17], Fruitchains is provably correct except with
negligible probability in executions of length polynomial in the system’s security parameter.

However, Fruitchain allows for a simple deviation by which any coalition can increase
its utility without taking any risk: Specifically, a miner points only to its own fruit when
generating blocks, ignoring fruit generated by others. This simple deviation dominates the
prescribed protocol, as it creates a small probability that the ignored fruit will become stale,
increasing the miner’s relative revenue. While the probability increase is negligible in the
staleness parameter, there is no risk to the miner. Moreover, if all agents are small and
play this simple deviation, then the probability that any of them can point to its own fruit
before it becomes stale is small; this results in a violation of the ledger properties, as progress
becomes arbitrarily slow. Our conclusion is that ε-NE is an inappropriate solution concept
in our setting; agents might still be incentivized to deviate from a ε-NE, although the benefit
is small.

We present a more robust solution concept that we call ε-sure NE. A protocol is an ε-sure
NE if, for any player, playing the prescribed protocol is a best response except for some set
of runs (executions) that has probability at most ε. If utilities are bounded (as they are in
our case), a ε-sure NE is an ε-NE, but the converse is not the case in general.

Our main contribution is the Colordag protocol, a PoW-based protocol that is an ε-sure
NE, provided that each player controls less than half the total computational power. Like
various solutions, starting from Lewenberg et al. [14, 22], Colordag constructs a directed
acyclic graph rather than a tree. This graph is used for reward calculation; the ledger consists
of a subset of blocks on the graph.

To achieve the required properties, Colordag makes use of three key ideas.
1. Due to the distributed nature of the system, two miners might generate a block before

hearing of each others’ blocks. The result is a fork where two blocks point to the same
parent. This gives an advantage to the attacker, as the two blocks only extend the longest
chain by one. To deal with forks that occur naturally, Colordag colors blocks randomly,
and calculates the reward by looking at the graphs generated by the nodes of each color
(technically, the graph minors of each color) separately. Adding more colors allows us to

1 Under the most optimistic assumptions about the underlying network, this bound increases to only 1/3.

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:3

keep the original rate of block production, while mitigating the effects of forking: the fact
that there are fewer blocks of a given color reduces the probability of forks in the minors.
Previous work [10, 2, 24] randomly attributed properties to blocks for performance or
resilience. In contrast, here coloring is used only for calculating the reward.

2. Colordag guarantees that, with high probability, malicious behavior (indeed, any deviation
from the strategy) will not result in a higher reward for the deviating agent. The basic
idea is that honest blocks of a given color will almost always be acceptable: they are on a
chain that is almost the longest in its minor. Unacceptable blocks get no reward and do
not affect the rewards of others. The approach is similar to Sliwinski and Wattenhofer’s
block staling; it is guaranteed to work as long as there is no agent has a majority of mining
power, even if players know in advance the order in which they are scheduled.

3. To disincentivize deviation, Colordag penalizes forking: Considering the graph minors of
each color separately, if there is more than one acceptable block of a given depth T in
a minor, then all blocks of depth T get reward 0. Since each miner i aims to maximize
its relative revenue (i.e., the ratio between i’s revenue and the total reward received by
miners while i is active, just as is the case in, e.g., [8, 19, 17, 11]), and (by assumption)
deviators have less power than honest agents (i.e., agents that follow the prescribed
protocol), a symmetric penalty to a deviator and an honest agent results in the deviator
suffering more than the honest agents. Sliwinski and Wattenhofer [21] also use symmetric
penalties in a blockdag for all blocks that are not connected by a directed path; each
block in a set X of such blocks is penalized by |X|c (for some constant c). However, with
their approach, an adversary can harm honest agents. For example, if c = 3 and there
is a benign honest fork, the attacker can add a third forked block, resulting in a total
penalty of 6c for honest agents (3c per block) while suffering only 3c itself, so deviation
is worthwhile for a sufficiently large minority miner. In fact, their threshold is smaller
than 1/2, and their protocol is only an ε-NE, like Fruitchain.

The rest of the paper is organized as follows. In Section 2, we describe an abstract model
of a PoW system, similar to models used in previous work, and discuss the bitcoin desiderata.
In Section 3, we formalize mining as a game, so that we can make notions like incentive
compatibility and best response precise. In Section 4, we formally describe the Colordag
mechanism: the Colordag protocol and the revenue scheme that we use. We then prove in
Section 5 that Colordag satisfies the ledger desiderata and is an ε-sure equilibrium in the face
of coalitions with less than 1/2 of the computational power, and even if the coalition knows
what the scheduler does in advance. Specifically, we show that, for the appropriate choice of
parameters, in all but a negligible fraction of histories, miners do not gain if they deviate
from the Colordag protocol. Finally, in Section 6, we discuss the values of the Colordag
parameters when dealing with a weaker adversary than we assume here and the path to a
practical implementation.

2 Model and Desiderata

Blockchain protocols operate by propagating data structures called blocks over a reliable
peer-to-peer network. We abstract this layer away and describe our model (see Section 2.1),
which is similar to previous work. The goal of the protocol is to implement a distributed
ledger (see Section 2.2), roughly speaking, a commonly-agreed upon record of transactions.

DISC 2023

1:4 Colordag: An Incentive-Compatible Blockchain

2.1 Model

The system proceeds in rounds in a synchronous fashion, as is common in many other
analyses (e.g., [8, 10, 17, 18]). A history h is a complete description of what happens to
the system over time. Formally, h is a function from rounds to a description of what has
happened in the system up to round t (which blocks were generated, which were made public,
which agents are in the system, and so on). We denote by h(t) the prefix of h up to time t.
There is a possibly unbounded number of agents, called miners, named 1, 2, We take the
miners to represent coalitions of agents, so we do not talk about coalitions of miners (and
will later assume that each miner controls less than 1/2 of the computational power). For
each history h and miner i, there exist rounds T h,i

1 and T h,i
2 such that i is active between

T h,i
1 and T h,i

2 .
Some previous analyses (e.g., [15, 8, 19, 5, 9]) focused on average rewards, and did not

consider adversarial attacks that could lead to a violation of the ledger properties, although
in an infinite execution such attacks may succeed with probability one. We aim to prove,
with high probability, both that Colordag is incentive compatible (i.e., no agent can increase
its utility by deviating from the protocol) and that, if all but at most one agent follow the
protocol, then the ledger properties hold. So, like previous work (e.g., [17, 18, 13]), we assume
that the system runs for a bounded time, up to some large Tmax. Without this assumption,
even events with arbitrarily small frequency happen with probability one.

Let Ag(h, t) be the set of active miners in the system at round t of history h, that is, all
miners i such that T h,i

1 ≤ t ≤ T h,i
2 . For any given history and time, the set Ag(h, t) is finite.

Each miner i has so-called mining power, a positive value representing her computational
power. The power of a miner i at time t, denoted Powh

t (i), is her fraction of the mining
power at time t in history h. Let Powh(i) = supt Powh

t (i), and let Pow(i) = suph Powh(i).
We will be interested in the case that, for all miners i, there exists some α < 1/2 such that
Pow(i) ≤ α.

We assume that a scheduler determines which miners are active, which miners move in
each round, and how long it takes a message to arrive. To simplify the discussion of the
scheduler, we assume (as is the case for Colordag and all other blockchain algorithms) that
each miner builds a local version of a directed acyclic graph called a blockdag. We refer to
each node and its incoming edges in the graph as a block. Our hope is that miners have an
“almost-common” view of the blockdag. Following the standard convention, we assume that
the blockdag has a commonly-agreed-upon root that we refer to as the genesis block. The
depth of a blockdag G, d(G), is the length of a longest path in G. The depth of a block b in
G, denoted d(G, b), is the length of a longest path in G from the genesis to b.2

In every round, the scheduler chooses one miner at random among the miners that are
active in that round (a miner i being chosen represents it having solved a computational
puzzle), with probability proportional to its power (as in, e.g., [8, 19, 17]); that is, miner i is
chosen in round t with probability proportional to Powt(i). If the scheduler chooses a miner i

in round t, then i either selects some set P of the nodes currently in its blockdag, with the
constraint that no node in P can be the ancestor of another node in P , and adds a new
vertex v to the blockdag with P as its parents or does nothing. If i adds (P, v), then i can
either broadcast this fact or save it for possible later broadcast. Note that a miner cannot
send (P, v) to a strict subset of miners; it is either broadcast to all miners or sent to none of

2 We follow standard graph-theoretic terminology here. In the blockchain literature, what we are calling
the depth of a node is sometimes called its height.

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:5

them (as in, e.g., [8, 10, 2] and deployed systems [15, 23]). Miners can also broadcast pairs
that they saved earlier. If P violates the constraint that no node in P can be the ancestor of
another node in P , the message (P, v) is ignored. We assume in the rest of the paper that
this does not occur, as the outcome is indistinguishable from simply not generating a block.

Denote by Gh(t) the blockdag including all blocks published at or before round t in
execution h. Let G

h(t)
i denote i’s view of Gh(t); this is the blockdag at round t of history h

according to i. For example, i may not be aware at round t that j created block b, so block
b will be in Gh(t) but not in G

h(t)
i . Note that blocks that node i has generated but not

published are not included in G
h(t)
i (although, of course, i is aware of them); however, if a

block b ∈ G
h(t)
i refers to a block b′ (i.e., b is a child of b′, since we assume that the message

broadcast by the miner that created block b has a hash of all the parents of b), then we take
b′ to have been published, and include it in G

h(t)
i . We omit the h if it is clear from context

or if we are making a probabilistic statement; that is, if we say that a certain property of the
graph holds at time t with probability p, then we mean that the set of histories h for which
the property of Gh(t) holds has probability p.

We assume that there is an upper bound ∆ ≥ 1 on the number of rounds that it takes for
a message to arrive. The arrival time of each message may be different for different miners;
that is, if miner i broadcasts (P, v) at round t, miners j and j′ might receive (P, v) in different
rounds. Messages may also be reordered (subject to the bound on message delivery time).

Note that although there is a bound on message delivery time, miners do not know the
publication time of a block. Thus, there is no way that a miner can tell if a block was
withheld for a long period of time. Interestingly, in Colordag, agents can tell to some extent
from the blockdag topology if a block was withheld for a long period of time; such blocks do
not get any reward.

In summary, this is how the scheduler works: (1) it chooses, for each agent i, in which
interval i is active and its power; (2) it chooses which agent generates a block in each round
(randomly, in proportional to their power); and, finally, (3) it chooses a message-delivery
function (i.e., a function that, given a history up to round m, decides how long it will take
each round m message to be delivered, subject to the synchrony bound). We assume that
the adversary knows the scheduler’s choices.

The scheduler’s protocol, including the choice of when agents are active and the random
choice of which agents generate a block in each round, and the strategies used by the miners
together determine a probability on the set of histories of the system. While we have specified
that all messages must be delivered within ∆ rounds, we have not specified a probability
over message delivery times, block-generation times, or when agents are active. Our results
hold whatever the probability is over message-delivery times (subject to it being at most ∆)
and on when agents are active (subject to no agent having power greater than α). Thus,
when we talk about a probability on histories, it is a probability determined by the strategies
of the miners and a scheduler that satisfies the constraints above.

2.2 Desiderata
A ledger function L takes a blockdag G and returns a sequence L(G) of blocks in G; the kth
element in the sequence is denoted Lk(G). The length of the ledger is denoted |L(G)|.
We want the ledgers that arise from the blockdags created by Colordag to satisfy certain
properties [10, 17, 13].

The first property requires that once a block allocation is set, its position in the ledger
remains the same in the view of all miners.

DISC 2023

1:6 Colordag: An Incentive-Compatible Blockchain

▶ Definition 1 (Ledger Consistency). There exists a constant K such that, for all miners i

and j, if k ≤ |L(Gh(t)
i)| − K and t ≤ t′, then Lk(Gh(t)

i) = Lk(Gh(t′)
j).

The next desideratum is that the length of the ledger should increase at a linear rate.
Let |L(G)| denote the number of elements in the sequence L(G).

▶ Definition 2 (Ledger Growth). There exists a constant g such that, for all rounds t < t′

and all miners i, if t′ − t > g, then |L(Gh(t′)
i)| ≥ |L(Gh(t)

i)| + 1.

The final ledger desideratum says that the fraction of the total number of blocks in the
ledger that are generated by honest miners should be larger than a positive constant.

▶ Definition 3 (Ledger Quality). There exist constants D > 0 and µ ∈ (0, 1) such that for all
rounds t and t′ such that t′ − t ≥ D, the fraction of blocks mined by honest miners placed on
the ledger between round t and t′ is at least µ.

Note that this common requirement is fairly weak. As we will see, Colordag miners will
be rewarded, on average, proportionally to their efforts. Indeed, to motivate miners to mine,
the system rewards miners for essentially all the blocks they generate (not just the ones on
the ledger). The revenue from each block is determined by the revenue scheme. Formally, a
revenue scheme r is a function that associates with each block b and labeled blockdag G a
nonnegative real number r(G, b), which we think of as the revenue associated with block b in
the blockdag G. Our final desideratum requires that revenue stabilizes.

▶ Definition 4 (Revenue Consistency). There exists a constant K such that, for all miners i

and j and times t, t′, and t′′ such that t′, t′′ > t + K, if b is published at time t in history h,
then r(Gh(t′)

i , b) = r(Gh(t′′)
j , b).

Most previous work (e.g., [15, 23, 18]) did not state this requirement explicitly. There,
it follows from ledger consistency, since all and only blocks in the ledger get revenue.3 In
contrast, with Colordag, a miner might get revenue for a block even if it is not on the ledger,
and may not get revenue for some blocks that are on the ledger. We thus need to separately
require that the revenue that a miner gets from a block eventually stabilizes.

3 Revenue Scheme and ε-Sure NE

It is not hard to design protocols that satisfy the blockdag desiderata. However, there is
no guarantee that the miners will actually use those protocols. We assume that miners are
rational, so our goal is to have a protocol that is incentive-compatible: it is in the miners’ best
interests (appropriately understood) to follow the protocol. Before describing our protocol,
we need to explain how the miners get utility in our setting.

3.1 Revenue Scheme
A miner’s utility in a blockdag is determined by the miner’s revenue. We denote by B

h(t)
i

the blocks generated by miner i in history h(t). Given a revenue scheme r, for each miner i,
history h, and round t, we can calculate the revenue r(Gh(t)

i , b) for every block b ∈ B
h(t)
i .

3 Ethereum’s uncle blocks [23] are off-chain but rewarded; however, their rewards are explicitly placed
in the ledger after a small number of blocks, therefore revenue consistency for Ethereum also follows
almost trivially from ledger consistency.

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:7

Given a revenue scheme r, miner i’s total revenue at round t according to r in history h of
a protocol is the sum

∑
b∈B

h(t)
i

r(Gh(t)
i , b) of the revenue obtained for each block b generated

by i while it is active in history h. For example, in Bitcoin [15], the revenue of a miner is
the number of blocks it generated that are on the so-called main chain. Finally, i’s utility
according to revenue scheme r at round t in history h is i’s normalized share of the total
revenue while it is active. Taking time(b) to be the time that block b was published, for
t ≥ T h,i

1 , we define:

ur
i (h, t) =

∑
b∈B

h(t)
i

r(Gh(t)
i , b)∑

{b:T h,i
1 ≤time(b)≤min(t,T h,i

2)} r(Gh(t)
i , b)

. (1)

This way of determining a miner’s utility from a revenue function is common (see,
e.g., [8, 19, 18, 11, 5, 4]). Intuitively, the utility is normalized because the value to a miner of
holding a unit of currency depends on the total amount of currency that has been generated.
A miner is interested in its utility during the time that it is active. Although miner i’s
utility may change over time, for a protocol that has the revenue consistency property (as
Colordag does), in every history, i’s utility eventually stabilizes (since the set of blocks that
are published between T h,i

1 and T h,i
2 for which each miner gets revenue and the revenue

that the miners get for these blocks eventually stabilize). When we talk about i’s utility in
history h, we mean the utility after all the revenue up to T h,i

2 has stabilized.

3.2 ε-sure NE
As we said in the introduction, we are interested in strategy profiles that form a ε-sure Nash
Equilibrium (NE), a strengthening of ε-NE as long as utility is bounded. We now define
these notions carefully.

In the definition of ε-sure NE, we are interested in the probability that a history in a
set H of histories occurs, denoted Pr(H). (Note that a history corresponds to a path in
the game tree.) In general, the probability of a history depends on the strategies used by
the miners. We are interested in sets of histories that have probability at least (1 − ε),
independent of the strategies used by the miners. To ensure that this is the case, we take H to
be a set of histories determined by the scheduler’s behavior. The scheduler is a probabilistic
algorithm. It chooses miners for block generation with probability Powi(t), and chooses
network propagation time arbitrarily, bounded by a constant ∆. The probabilities of the
different histories are then defined by the probabilities of the scheduler’s random coins. For
example, suppose that there are 10 agents, all with the same computational power, and we
consider histories where agent 1 is scheduled first, followed by agent 2. This set of histories
has probability 1/100, independent of the agents’ strategies.

We denote the strategy of each miner i by σi, a strategy profile by σ = (σ1, . . . , σn), and
the profile excluding the strategy of i by σ−i. The profile with miner i’s strategy replaced by
σ′

i is (σ′
i, σ−i).

▶ Definition 5 (ε-sure NE). A strategy profile σ = (σ1, . . . , σn) is an ε-sure NE if, for each
agent i, there exists a set Hi of histories with probability at least 1 − ε such that, conditional
on Hi, σi is a best response to σ−i; that is, for all strategies σ′

i ̸= σi of agent i:

ui(σ | Hi) ≥ ui((σ′
i, σ−i) | Hi).

DISC 2023

1:8 Colordag: An Incentive-Compatible Blockchain

Of course, if, for each agent i, we take Hi to consist of all histories; then we just get back
NE, so all Nash equilibria are ε-sure NE for all ε. As the next result shows, if all utilities are
in the interval [m, M] then every ε-sure NE strategy profile is an (M − m)ε-NE. Since in our
setting, the utility of a miner i is the fraction of total revenue that i obtains while i is active,
the utility is in [0, 1], so is clearly bounded.

▶ Lemma 6. If a strategy profile σ is an ε-sure NE and all players’ utilities are bounded in
the range [m, M], then σ is an (M − m)ε-Nash Equilibrium.

Proof. For a player i, there is a set of histories Hi with probability Pr(Hi) > 1 − ε where σi

is a best response. In histories not in Hi, denoted Hi, player i might improve her utility by
up to (M − m). The probability of Hi is bounded by ε. Therefore, the utility increase of a
player by switching her strategy is at most 0(1 − ε) + (M − m)ε = (M − m)ε. Thus, σ is an
(M − m)ε-NE. ◀

However, there are ε-NE that are not ε′-sure NE for any ε′ < 1. For example, consider
a game where a player chooses 0 or 1. She gets utility 0 for choosing 0 and utility ε for
choosing 1. Choosing 0 is ε-NE but is not ε′-sure NE for any ε′ as choosing 1 strictly increases
her utility in all histories. Thus, ε-sure NE is a solution that lies strictly between ε-Nash
and Nash equilibrium when utility is bounded, as it is in our case.

We will show that, for all ε, we can choose parameter settings to make Colordag an ε-sure
NE. In addition, it satisfies the ledger desiderata.

4 Colordag

The Colordag mechanism consists of a recommended strategy that we want participants to
follow and a revenue scheme. The strategy, denoted σcd (cd stands for Colordag) is extremely
simple: If chosen at round t in history h, miner i takes P to consist of the leaves of G

h(t)
i . It

thus generates a block labeled b with parents P and broadcasts (P, b), adding it to its local
view G

h(t)
i .

The reward function is more involved. Before describing it formally, we give some intuition
for it. Suppose that we give all blocks reward 1. It is easy to see that σcd is a Nash equilibrium.
But, with this reward function, so is every strategy profile where miners always publish the
blocks they generate at some point. For example, miners can hang blocks off the genesis;
this is also a best response. But if all miners choose to do this, it would be impossible to
define a ledger that preserves consistency.

There is a simple fix to the second problem: if there is more than one block of the same
depth, all blocks of that depth get reward 0. This stops hanging blocks off the genesis from
being a best response. But now we have a new problem – we lose reward consistency. At any
point, an adversary can penalize an arbitrary block b by adding a new block with the same
depth as b. To obtain reward consistency, we would want to call the adversary’s block in
such cases unacceptable, and completely ignore it. Intuitively, we want blocks that hang off
a block of depth T to be viewed as unacceptable if they are added after the blockdag has
height sufficiently greater than T . This motivates our notion of unacceptability.

Roughly speaking, our reward function gives a reward of 1 to all blocks except those that
are unacceptable or those that are forked; these get reward 0. The mechanism thus relies
on a rational miner not being able to form a longer chain privately than the honest miners
can form. (If a dishonest miner could form a longer chain privately than the honest miners
can form, it could then publish that chain and make all the blocks that the honest miners
formed during that time unacceptable.) However, forks can happen naturally, due to network

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:9

B1 Y1

R1

B2

B3

R2

Y2

Y3

R3

(a) A colored dag.

B1 B2 B3

R1 R2 R3

Y1 Y2 Y3

(b) Graph minors.

Figure 1 Coloring a dag.

b0 b1 b′

b

b′′ b2 b∗

Figure 2 An unacceptable
block.

latency, meaning honest miners’ chain-extension rate is less than their block-generation rate,
whereas the rational miner’s rate is unimpaired. To mitigate the effect of forking, we color
the nodes, effectively partitioning the blockdag into disjoint graph minors [6] (one minor for
each color); we determine forking (and acceptability) in these graph minors. We can make
the amount of forking as small as we want by using enough colors. We now present the key
components needed for the reward function, and then give the actual function.

Coloring nodes

Because messages may take up to ∆ rounds to arrive, two honest miners can both extend
a given block b, because neither has heard of the other’s extension at the point when
it is doing its own extension. To make our results as strong as possible, following the
literature [10, 13, 21], we assume that a deviating miner is able to avoid forking with its own
blocks. Thus, a deviator can extend paths in the blockdag faster than would be indicated by
her relative power. In particular, a deviator with power less than (but close to) 1/2 may be
able to (with high probability) build paths longer than the honest miners can build, due to
forking.

To deal with this problem, Colordag assigns each block a color chosen at random from
a sufficiently large set of NC colors; that is, it assigns each block a number in {1, . . . , NC}
(which we view as a color). In practice, this would be done by taking the color to be
the hash of the contents of the block mod NC . This ensures that, except with negligible
probability (1) all colors are equally likely, (2) the color of a block b is learned by the miner
that generates b only after b is generated, and (3) colors are commonly known (every miner
can compute the color of every block, just knowing its content). In our model, this is like
having the scheduler allocate a random color when it chooses a miner in a round. Figure 1a
shows a blockdag where the nodes are colored either blue (B), red (R), or yellow (Y).

After coloring each node in the graph G, we consider the graph minor Gc corresponding
to color c: The nodes in this graph minor are just the nodes of color c in G; node b′ is a
child of b in Gc iff b′ is a descendant of b in G and there is no path in G from b to b′ with an
intermediate node (i.e., one strictly between b and b′) of color c. Figure 1b shows the minors
resulting from our example.

The key point is that, by taking NC sufficiently large, we make the probability of a fork
among the blocks generated by honest miners in Gc arbitrarily small. The reasoning is
simple: Suppose that b and b′ are generated by honest miners at times tb and tb′ , respectively,
where tb′ > tb. If b and b′ have the same color and there are enough colors, then with high
probability, tb′ > tb + ∆, so b′ is a descendant of b in G, and hence also in Gc. In other
words, if two honest blocks are neither an ancestor nor a descendant of one another in G,
they are unlikely to have the same color.

DISC 2023

1:10 Colordag: An Incentive-Compatible Blockchain

Acceptable blocks

We now define what it means for a block to be acceptable. We want it to be the case that
a block is unacceptable if it has depth T but was added after the depth of the blockdag is
considerably greater than T . The way we capture this is by requiring acceptable blocks to
be on paths that are almost the same as a particular longest path in the graph.

Given a dag Gc, we “close off” Gc so that it has a unique initial node and a unique final
node (whether or not it already had them), by adding special vertices b0 and b∗, where b0 is
the parent of all the roots of Gc (essentially we consider b0 to be the genesis, belonging to
all minors) and b∗ is the child of all leaves in Gc. We refer to this graph as G+

c . We denote
by |Q| the length of a path Q, which is the number of edges in Q, and hence one less than
the number of vertices in Q.

Given a graph G, for each color c, we choose one particular longest path in G+
c from b0

to b∗. If there is more than one longest path, we use a canonical tie-breaking rule, which we
now define, as it will be useful later. Intuitively, if there are several paths of maximal length,
we order the paths by considering the point where they first differ, and choose using some
fixed tie-breaking rule that depends only on the contents of the blocks where they first differ.

▶ Definition 7 (Canonical path). Given a blockdag, the canonical path starts at the genesis
and continues as all longest paths do up to the first point where some longest paths diverge
(this could already happen at the genesis). At this point, we choose some tie-breaking rule to
decide which longest paths to follow.4 The canonical path continues as all these longest paths
until the next point of divergence. Again, at this point we use the tie-breaking rule to decide
which longest paths to follow. We apply this procedure each time longest paths diverge.

The key point is that all these tie-breaking rules are local. The decisions made are the
same (if all the prefixes of these paths exist) in all the graphs we consider.

▶ Definition 8 (Acceptable Block). A path P in G+
c from block b0 to block b∗ is Nℓ-almost-

optimal if the symmetric difference between P and the canonical longest path P ∗ (i.e., the
set of blocks in exactly one of the paths P and P ∗) has fewer than Nℓ blocks. A block b of
color c is Nℓ-acceptable iff it is on an Nℓ-almost-optimal path P of color c. The path P is
said to be a witness to the acceptability of b.

We need one more definition before we can define the revenue scheme.

▶ Definition 9 (Forked Block). An Nℓ-acceptable block b in blockdag G is Nℓ-forked if there is
another Nℓ-acceptable block b′ with the same color as b, say c, such that d(Gc, b) = d(Gc, b′).

We can now make Colordag’s revenue scheme precise. As we said, a block of color c gets
reward 1 unless it is unacceptable or it is forked in Gc. The revenue scheme takes Nℓ as a
parameter, so we denote it rcd

Nℓ
.

▶ Definition 10 (Colordag Revenue Scheme). A node b is Nℓ-compensated if b is Nℓ-acceptable
in Gc and is not Nℓ-forked; rcd

Nℓ
(G, b) = 1 if b is Nℓ-compensated; otherwise, rcd

Nℓ
(G, b) = 0.

4 For example, in practice this could be the smallest hash of the block contents.

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:11

Colordag Ledger Function

We present here a ledger function that makes the analysis easier, and satisfies all the ledger
properties. This function is somewhat inefficient, since not all blocks are a part of the ledger.
In Section 6, we show how a small modification of this approach lets us include in the ledger
the transactions that appear in all acceptable blocks in the blockdag.

The ledger function of Colordag chooses a fixed color ĉ, and given graph G, chooses the
canonical path in the subgraph of G of color ĉ. The ledger is defined by the blocks on this
path. For example, given the blockdag in Figure 1a, and assuming ĉ is yellow, the ledger is
the sequence of blocks (Y1, Y2, Y3).

▶ Definition 11 (Colordag Ledger Function). Given a blockdag G and a fixed color ĉ, Colordag’s
ledger function Lcd returns a sequence consisting of the blocks on the canonical path in Gĉ.

Reward Calculation

Since following the protocol is the miners’ best response, in practice they will generate a
single chain of each color and get rewarded per block. As we now show, the reward calculation
can be done in polynomial time, even if miners deviate. Given Nℓ, a graph G, and a block b

of color c, we want to calculate rcd
Nℓ

(G, b). The first task is to construct the graph minor Gc

of color c; this clearly can be done in time polynomial in |G|. The next step is to determine
the canonical longest path P ∗ in Gc. We can do this quickly, since it is well known that
longest paths in dags can be calculated in linear time [20]. (Indeed, it is straightforward
to keep a table of lengths of longest paths and update it as Gc grows over time.) Finally,
using depth-first search, we can quickly compute the block b2 of least depth on P ∗ that is a
descendant of b (which is b itself if b is on P ∗) and the block of greatest depth b1 on P ∗ that
is an ancestor of b. By construction there is a path from b1 to b2 that includes b. It is easy
to see that b is acceptable iff the number of nodes on the path fromn b1 to b2 that includes
b (not including b1 and b2) and the number of nodes on the canonical path from b1 to b2
(again, not including b1 and b2) is less than Nℓ. If b is forked, then similar arguments allow
us to check whether a block forking b is acceptable. If b is acceptable and no block forking b

is acceptable, then rcd
Nℓ

(G, b) = 1; otherwise, rcd
Nℓ

(G, b) = 0.

5 Analysis

In this section, we show that Colordag satisfies all the blockdag desiderata and is an ε-sure NE
(and thus also an ε-NE). Note that it follows directly from the utility definition (Equation 1)
that if all agents follow the Colordag protocol, the expected utility of each miner is its relative
power. We do the analysis under the assumption that we have a very strong adversary, one
who knows the scheduler’s protocol. This means that the adversary knows when agents
will join and leave the system, when agents will generate blocks, and when messages will
arrive. To get this strong guarantee, we may need the parameters NC and Nℓ to be large
(in general, the choice of NC and Nℓ depend on Tmax). We believe that in practice much
smaller parameters will suffice. We return briefly to this issue in the conclusion.

The first step in doing this is to identify a set of “reasonable” histories that has probability
at least 1 − ε. One of the things that makes a history reasonable is that there is little forking.
The whole point of coloring is that we can make the probability of forking arbitrarily small
in the graphs of color c, by choosing enough colors.

DISC 2023

1:12 Colordag: An Incentive-Compatible Blockchain

▶ Definition 12. A pair (b1, b2) of blocks is a natural c-fork in a history h if b1 and b2 both
have color c, they are both generated within a window of ∆ rounds, and neither is an ancestor
of the other in Gh. An interval [t1, t2] suffers at most δ-c-forking loss if, the set of blocks b1
generated in [t1, t2| for which there exists a block b2 such that (b1, b2) is a natural c-fork is a
fraction less than δ of the total number of blocks of color c generated in [t1, t2].

We now consider histories that satisfy three properties that will turn out to be key to our
arguments.

▶ Definition 13 (Safe history). A history is (NC , Nℓ, δ, δC , Tmax)-safe if, for all miners i,
and all colors c,
SH1. for every subinterval [t′

1, t′
2] of [0, Tmax], such that at least Nℓ blocks of color c are

generated in the interval [t′
1, t′

2], miner i generates less than 1/2 − δ of them;
SH2. every subinterval [t′

1, t′
2] of [0, Tmax] such that t′

2 − t′
1 ≥ Nℓ suffers at most δ-c-forking

loss; and
SH3. for every subinterval [t′

1, t′
2] of [0, Tmax] such that t′

2 −t′
1 ≥ Nℓ, there are at least δC(t′

2 −
t′
1) blocks of color c generated in [t′

1, t′
2].

Let HNC ,Nℓ,δ,δC ,Tmax denote the set of histories that are (NC , Nℓ, δ, δC , Tmax)-safe.

▶ Proposition 14. Suppose that for all miners i, Pow(i) ≤ α < 1/2. Then for all ε > 0,
there exists a positive integer T ∗

max such that for all Tmax ≥ T ∗
max, there exist NC , Nℓ < Tmax,

δ ∈ (0, 1/2), and δC ∈ (0, 1) such that Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥ 1 − ε.

To prove the proposition, we use Hoeffding’s inequality to find conditions on the parameters
on NC , Nℓ, δ, and δC for the conditions SH1-SH3 to hold given α and Tmax with probability 1−
ε/3. If all conditions are satisfied, then SH1-SH3 hold with probability at least 1 − ε. Finally,
we show that such conditions can be found for all sufficiently large Tmax values. The proof is
deferred to Appendix A.

We say that (NC , Nℓ, δ, δC , Tmax) is suitable for ε and α if Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥
1 − ε. We show that (NC , Nℓ, δ, δC , Tmax)-safe histories are “good” (in systems where
(NC , Nℓ, δ, δC , Tmax) is suitable for the desired ε, and α < 1/2). The following propositions
show that good things happen in HNC ,Nℓ,δ,δC ,Tmax . The first one shows that all of blocks
generated by honest miners are acceptable.

▶ Proposition 15. For all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax and all colors c, there exists a path
P from b0 to b∗ in G

h(t)
c that contains all blocks of honest miners of color c that are not

naturally c-forked. Moreover, every block on P is acceptable.

Proof. Fix a color c. If b and b′ are blocks of honest miners in G
h(t)
c that are not naturally

forked, then either b is an ancestor of b′ or b′ is an ancestor of b in G
h(t)
c . Thus, there is a

path P from b0 to b∗ that contains all the blocks of honest miners that are not naturally
c-forked (see Figure 3).

Now consider any block b on P . If b is on the canonical longest path P ∗, then it is
acceptable by definition. Suppose that b is not on P ∗. Let b1 be the last node on P preceding
b that is on P ∗, and let b2 be the first node on P following b that is on P ∗. Let Q (resp.,
Q∗) be the subpath of P (resp., P ∗) from b1 to b2. If the total number of nodes on Q and
Q∗, not counting b1 and b2, is less that Nℓ, then the path P ′ that is identical to P ∗ up to b1,
continues from b1 to b2 along P , and then continues along P ∗ again, is an Nℓ-almost optimal
path that contains b, showing that b is acceptable.

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:13

Q∗

Q
b0

b1

b

b2
P

P ′
P ∗

Figure 3 Honest (and hence acceptable) blocks on the path containing all non-forked honest.

b b′
P ∗

t′

P †

t

2Nℓ/δC

Figure 4 The situation if b′ is the only honest block generated after b.

It thus suffices to show that there cannot be more than Nℓ nodes on Q and Q∗, not
counting b1 and b2. Suppose, by way of contradiction, that there are. Further suppose that
b1 is generated at time t1 and b2 in generated at time t2. That means that all the blocks
on Q and Q∗ other than b1 and b2 are generated in the interval [t1 + 1, t2 − 1]. Thus, at
least Nℓ blocks are generated in this interval. Since P ∗ is a longest path, Q∗ must be at
least as long as Q (otherwise going from b1 to b2 along Q would give a longer path). But
by Proposition 14, at least a fraction 1/2 + δ in the interval [t1 + 1, t2 − 1] are generated
by honest miners. Since there is at most δ-c forking loss, it follows that the majority of the
c-colored blocks in this interval are generated by honest miners and are not naturally forked.
These blocks must all be on Q. Thus, Q must have a majority of the blocks in this interval,
giving us the desired contradiction. ◀

We are now ready to prove that Lcd satisfies the ledger desiderata (in safe histories) with
the Colordag protocol. Note that since we view a miner as representing a coalition of agents,
the fact that all but at most one miner is honest means that we allow a coalition with power
up to α < 1/2 to deviate. The proofs are deferred to Appendix B.

▶ Proposition 16 (Colordag ledger consistency). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all miners i, j and all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax , if all but at most one
miner is honest in h, t ≤ t′, and k ≤ |L(Gh(t)

i)| − Nℓ, then Lk(Gh(t)
i) = Lk(Gh(t′)

j).

▶ Proposition 17 (Colordag ledger growth). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2, then for all rounds t and t′ such that t′ − t ≥ Nℓ/δC , if all but at most one miner
is honest in h ∈ HNC ,Nℓ,δ,δC ,Tmax

i , then |Lcd(Gh(t′)
i)| ≥ |Lcd(Gh(t)

i)| + 1.

▶ Proposition 18 (Colordag ledger quality). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all rounds t and t′ such that t′ − t ≥ 2Nℓ/δC , and all h ∈ HNC ,Nℓ,δ,δC ,Tmax

i ,
at least two of the blocks of color ĉ added to L(Gh(t′)

i) in the interval [t, t′] are generated by
honest miners.

▶ Note 19. In Propositions 17 and 18, we explicitly assume that we are given an acceptable
tuple. Of course, if Nℓ and δC in the tuple are such that Nℓ/δC > Tmax, then the propositions
are essentially vacuous, since there are no times t, t′ < Tmax such that t′ − t > Nℓ/δC . Put
another way, although it is true that if the system runs for at least Nℓ/δC steps then the ledger

DISC 2023

1:14 Colordag: An Incentive-Compatible Blockchain

is guaranteed to increase in length by 1, given that the system runs for only Tmax steps, this
is not terribly interesting if Nℓ/δC > Tmax. Similar comments apply to Proposition 18. The
good news is that even for stringent choices of ε and α, there exist suitable tuples that make
Propositions 17 and 18 non-vacuous. For example, if α = .49 and ε = 10−7, and we assume
that ∆ = 5, then we can take Tmax = 1011, Nℓ = 104, NC = 10, δ = .005, and δC = 0.04,
to get a suitable tuple, even with the crude analysis in the proof of Proposition 14. In this
case, Nℓ/δ = 2 × 106, which is much less than Tmax = 1011. A more careful analysis should
give better numbers, but these suffice to make the point. (As we hinted earlier, with a more
realistic adversary, who does not have perfect knowledge of the future, we would also expect
far better numbers.) We also note that although Fruitchain does not seem to have an explicit
bound Tmax on how long the system runs, that bound does arise from the polynomial bound
of the p.p.t. environment Z ([18] Section 2.1, Constraints on (A, Z)).

The next proposition essentially shows that Colordag is an ε-sure NE.

▶ Proposition 20. If (NC , Nℓ, δ, δC , Tmax) is suitable for ε, α < 1/2, h ∈ HNC ,Nℓ,δ,δC ,Tmax ,
and ti

2 − ti
1 > Nℓ, then i does not benefit by deviating if all other miners are honest, given

revenue scheme rNℓ

cd .

Proof. By Proposition 15, all honest blocks are acceptable in h, no matter what i does.
Obviously i can make her own blocks unacceptable, but this would only affect her own
revenue and decrease her utility.

It remains to show that i decreases her utility by creating forks. Suppose that M blocks
generated in h in the interval [ti

1, ti
2] by miners other than i and M ′ blocks are generated by i.

We must have M > M ′ (SH1). If i does not deviate, then all these blocks are compensated,
so i’s utility is M ′

M+M ′ . If i deviates, i can decrease the utility of the other miners only by
forking blocks (since there is nothing that i can do to make a block unacceptable, as we
mentioned above). It is easy to see that every block of the other miners that is forked by i

comes at a cost of i forking one of his own blocks. Thus, if i deviates so as to fork M ′′

blocks, then i’s utility is M ′−M ′′

M+M ′−2M ′′ . Since M ′′ ≤ M ′ < M , simple algebra shows that
M ′

M+M ′ > M ′−M ′′

M+M ′−2M ′′ , so this deviation results in the deviator losing utility.
Note that since we assume the deviator knows the history, it can deterministically deviate

without affecting the blockdag structure. Hence the equilibrium is not strict. ◀

▶ Corollary 21. If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and α < 1/2, then Colordag with
this choice of parameters is an ε-sure NE.

Proof. This is immediate from Proposition 20, since if (NC , Nℓ, δ, δC , Tmax) is suitable for ε

and α < 1/2, then Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥ 1 − ε. ◀

Finally, we prove that the Colordag revenue scheme satisfies revenue consistency. We
begin by showing that once a block is deep enough, its revenue is set and does not change.

▶ Lemma 22. If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and α < 1/2, then for all miners i, j,
all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax

i , all blocks b, and all colors c, if d(Gh(t)
i,c , b) ≤ d(Gh(t)

i,c)−2Nℓ

and t ≤ t′, then rcd
Nℓ

(Gh(t)
i , b) = rcd

Nℓ
(Gh(t′)

j , b).

Proof. As in the proof of Proposition 16, let P ∗
t′ be the canonical longest path in G

h(t′)
j,c , let

Pt be its prefix in G
h(t)
i,c , let P ∗

t be the canonical longest path in G
h(t)
i,c , and let b′ be the last

common block on P ∗
t and Pt. As in the proof of Proposition 16, P ∗

t and Pt are identical up
to b′, and we can derive a contradiction if d(Gh(t)

i,c , b′) ≤ d(Gh(t)
i,c) − Nℓ, so

d(Gh(t)
i,c , b′) > d(Gh(t)

i,c) − Nℓ. (2)

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:15

Suppose that b is acceptable in G
h(t)
i . That means that it is on some Nℓ-almost optimal

path P in G
h(t)
i,c . Let b1 be the first block on P ∗

t that is an ancestor of b, and let b2 be the
first block on P ∗

t that is a descendant of b. Perhaps b1 = b′ and perhaps b2 = b∗ (the final
block added at the end of the graph). Let Q be the subpath of P from b1 to b2, and let Q′

be the subpath of P ∗
t from b1 to b2. Since P is Nℓ-almost optimal in G

h(t)
i , it must be the

case that |Q| + |Q′| − 2 < Nℓ. Since the depth of b is at least Nℓ less than that of b′ (from
the proposition statement and from Equation 2), it follows that b2 must precede b′. Since
P ∗

t and Pt agree up to b′, this argument also shows that P ∗
t′ with Q instead of Q′ between b1

and b2 is Nℓ-almost optimal in G
h(t′)
j,k , hence that b is acceptable in G

h(t′)
j,k . Just changing the

roles of G
h(t)
i and G

h(t′)
j , this argument shows that if b is acceptable in G

h(t′)
j , then it is also

acceptable in G
h(t)
i .

It is now almost immediate that b is not forked by an acceptable block in G
h(t)
i iff it is

not forked by an acceptable block in G
h(t′)
j .

In conclusion, block b is acceptable and not forked by an acceptable block in G
h(t)
i iff

it is acceptable and not forked by an acceptable block in G
h(t′)
j . That is, by the definition

of rcd
Nℓ

, it is compensated in G
h(t)
i iff it is compensated in G

h(t′)
j . ◀

The next proposition shows that Colordag satisfies revenue consistency.

▶ Proposition 23 (Colordag Revenue Consistency). If (NC , Nℓ, δ, δC , Tmax) is suitable for
ε and α < 1/2, then for all miners i and j and times t, t′, and t′′ such that t′, t′′ >

t + 4NℓNC/(δC(1 − δ)), if b is published at time t in history h ∈ HNC ,Nℓ,δ,δC ,Tmax
i , then

r(Gh(t′)
i , b) = r(Gh(t′′)

j , b).

Proof. Suppose that block b is published at time t and has color c. By SH3, within
2NℓNC/(δC(1 − δ)) rounds, at least 2NℓNC/(1 − δ) blocks of color c are generated. By SH1,
at least NℓNC/(1 − δ) are honest. By SH2, a fraction (1 − δ) of these are not forked. This
means at least NℓNC blocks are not forked, so the depth of Gc has increased by at least
NℓNC after 2NℓNC/(δC(1 − δ)) rounds. Now, for any pair of times t′, t′′ > t + 4NℓNC/(δCδ),
the depth of the graph is larger by at least 2Nℓ than b’s depth, therefore, by Lemma 22, the
reward for b is the same in both G

h(t′)
i and G

h(t′′)
j . ◀

6 Conclusion

We present Colordag, a protocol that incentivizes correct behavior of PoW blockchain miners
up to 50%, and is an ε-sure equilibrium. That is, unlike previous solutions, the desired
behavior is a best response in all but a set of histories of negligible probability. As long
as a majority of the participants follow the behavior prescribed by Colordag, the ledger
desiderata, as well as reward consistency, all hold.

We prove the properties of Colordag when playing against an extremely strong adversary,
one that knows before deviating when agents will generate blocks and when messages will
arrive. Intuitively, to benefit from a deviation, a deviator must produce an acceptable path
longer than Nℓ and longer than the honest path. Knowing in advance what order messages
can arrive in and whether there is forking means that a deviator knows in advance whether
the deviation can succeed. Our analysis shows that, even with this knowledge, a deviation
can succeed with only low probability. Unfortunately, to get such a strong guarantee, we may
need the parameters NC and Nℓ to be quite large Moreover, our ledger is quite inefficient, in
that it does not include transactions in blocks that are not on the canonical path in Gĉ. In
practice, we believe that both problems can be dealt with.

DISC 2023

1:16 Colordag: An Incentive-Compatible Blockchain

We start with the second problem. To improve throughput, we can use ideas that have
also appeared in previous work (e.g., [14, 2]): Suppose that b and b′ are consecutive blocks on
the ledger (which thus both have color ĉ). When we add b′ to the ledger, we also add to the
ledger not just the transactions in b′, but all the transactions of the acceptable predecessors
of b′ (of all colors) that were not already included in the ledger. These additional transactions
are ordered by the depth of the block they appear in, using color as a tiebreaker, and hash
as a second tiebreaker. For example, given the blockdag of Figure 1b, if ĉ is blue, then the
ledger function includes the transactions in the blocks B1, Y1, B2, R1, B3 (in that order); if ĉ

is red, the ledger includes the transactions in the blocks B1, R1, Y1, R2, B2, Y2, R3 (in that
order). It is not hard to check that, with this approach, all transactions in honest blocks of
honest agents will be included in the ledger, so our throughput is quite high.

We next consider the fact that we require NC and Nℓ to be quite large. This is due
to our assumption that a deviator knows what order messages can arrive in and whether
there is forking. In practice, a potential deviator will not have this information. For such
a weaker adversary, the parameters can be significantly smaller than those required to
obtain the bounds presented here. Without this a priori knowledge, the probability that
a deviation succeeds drops quickly with Nℓ. Therefore, the cost of failed attempts grows
with Nℓ, while their overall benefit drops. An analysis of this kind can be done using deep
reinforcement learning, which is helpful when the state and action spaces are too rich for an
exact solution [11, 3, 4]. This is beyond the scope of this paper, but preliminary experiments
suggest that under practical assumptions, with this more limited adversary, Colordag can
perform well with reasonable parameter choices. We hope to report on this work in the
future.

References
1 Adam Back. Hashcash – a denial of service counter-measure. http://www.cypherspace.org/

hashcash/hashcash.pdf, 2002.
2 Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:

Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 585–602, 2019.

3 Roi Bar-Zur, Ameer Abu-Hanna, Ittay Eyal, and Aviv Tamar. Werlman: To tackle whale
(transactions), go deep (RL). In IEEE Symposium on Security and Privacy (SP), 2022.

4 Roi Bar-Zur, Danielle Dori, Sharon Vardi, Ittay Eyal, and Aviv Tamar. Deep bribe: Predicting
the rise of bribery in blockchain mining with deep RL. In 6th workshop on Deep Learning
Security and Privacy (DLSP), 2023.

5 Roi Bar Zur, Ittay Eyal, and Aviv Tamar. Efficient MDP analysis for selfish-mining in
blockchains. In 2nd ACM Conference on Advances in Financial Technologies (AFT), 2020.

6 Reinhard Diestel. Graph Theory. Springer Graduate Texts in Mathematics. Springer-Verlag,
5th edition, 2017.

7 Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Pro-
ceedings CRYPTO ’92: 12th International Cryptology Conference, pages 139–147. Springer,
1992.

8 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography and Data Security, 2014.

9 Matheus V. X. Ferreira and S. Matthew Weinberg. Proof-of-stake mining games with perfect
randomness. In Proceedings of the 22nd ACM Conference on Economics and Computation,
pages 433–453, 2021.

10 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
281–310, 2015. doi:10.1007/978-3-662-46803-6_10.

http://www.cypherspace.org/hashcash/hashcash.pdf
http://www.cypherspace.org/hashcash/hashcash.pdf
https://doi.org/10.1007/978-3-662-46803-6_10

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:17

11 Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramer, Giulia Fanti, and Ari
Juels. Squirrl: Automating attack discovery on blockchain incentive mechanisms with deep
reinforcement learning. arXiv:1912.01798, 2019.

12 Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In Secure
Information Networks, pages 258–272. Springer, 1999.

13 Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to analyze
blockchain consistency. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 729–744, 2018.

14 Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In
Financial Cryptography, Puerto Rico, 2015.

15 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.
org/bitcoin.pdf, 2008.

16 Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. IACR Cryptology ePrint Archive, 2015:796,
2015. URL: http://eprint.iacr.org/2015/796.

17 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. Technical report, Cryptology ePrint Archive, Report 2016/454, 2016.

18 Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, pages 315–324, 2017.

19 Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies
in Bitcoin. In Financial Cryptography and Data Security, 2016.

20 R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley, fourth edition, 2011.
21 Jakub Sliwinski and Roger Wattenhofer. Blockchains cannot rely on honesty. https://disco.

ethz.ch/courses/distsys/lnotes/rationalblockchainpaper.pdf, 2019.
22 Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. Phantom ghostdag: a scalable

generalization of nakamoto consensus. In Proceedings of the 3rd ACM Conference on Advances
in Financial Technologies, pages 57–70, 2021.

23 Gavin Wood. Ethereum yellow paper. https://web.archive.org/web/20160820211734/http:
//gavwood.com/Paper.pdf, 2015.

24 H. Yu, Nikolić I., R. Hou, and P. Saxena. Ohie: Blockchain scaling made simple. In 2020
IEEE Symposium on Security and Privacy (SOSP), 2020.

A The Probability of a Safe History

We prove that a safe history has overwhelming probability.

▶ Proposition 14. Suppose that for all miners i, Pow(i) ≤ α < 1/2. Then for all ε > 0,
there exists a positive integer T ∗

max such that for all Tmax ≥ T ∗
max, there exist NC , Nℓ < Tmax,

δ ∈ (0, 1/2), and δC ∈ (0, 1) such that Pr(HNC ,Nℓ,δ,δC ,Tmax) ≥ 1 − ε.

Proof. We show that there exist constraints on Tmax, NC , Nℓ, and δC such that, if the
constraints are satisfied, then the probability for the set of histories that have property SH1
(resp., SH2; SH3) is at least 1 − ε/3. We then show that these constraints are satisfiable.
The result then follows from the union bound.

We start with SH2. Fix a color c, and suppose that there are NC colors. The probability
that a block b has color c is 1/NC . To simplify notation in the rest of this proof, we take
γ = 1/NC . For b to be the earlier of two blocks that are naturally c-forked, there must
be another block of color c that is generated within an interval of less than ∆ after b is
generated. Suppose that b is generated in round r. The probability that a block b generated
in round r has color c is γ. The probability that none of the blocks generated in rounds
r + 1, . . . , r + ∆ − 1 has color c is (1 − γ)∆−1, so the probability b is not naturally c-forked is
at least (1 − γ)∆−1.

DISC 2023

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/796
https://disco.ethz.ch/courses/distsys/lnotes/rational blockchain paper.pdf
https://disco.ethz.ch/courses/distsys/lnotes/rational blockchain paper.pdf
https://web.archive.org/web/20160820211734/http://gavwood.com/Paper.pdf
https://web.archive.org/web/20160820211734/http://gavwood.com/Paper.pdf

1:18 Colordag: An Incentive-Compatible Blockchain

Fix an interval [t′
1, t′

2]. The probability that that [t′
1, t′

2] suffers greater than δ-c-forking
loss is exactly the probability that there are fewer than (1 − δ)(t′

2 − t′
1) blocks of some color

c that are naturally forked by a later block. For a fixed color c, by Hoeffding’s inequality,
this probability is at most e−2(t′

2−t′
1)[(t′

2−t′
1)((1−γ)∆−1−δ)]2 . Since we are interested only in the

case that t′
2 − t′

1 ≥ Nℓ, there are NC colors, γ = 1/NC and there are at most
(

Tmax
2

)
≤ T 2

max
possible choices of t′

1 and t′
2, SH2 holds with probaiblity at least 1 − ε/3 if

NCT 2
maxe

−2N3
ℓ ((NC −1

NC
)∆−1−δ)2

< ε/3. (3)

Equation (3) is thus the constraint that needs to be satisfied for SH2.
For SH3, again, fix a color c, and suppose that there are NC colors. Then the expected

number of blocks of color c in an interval [t′
1, t′

2] is γ(t′
2 − t′

1), so by Hoeffding’s inequality,
the probability of there being fewer than δC(t′

2 − t′
1) blocks of color c in the interval [t′

1, t′
2]

is at most e−2(t′
2−t′

1)[(t′
2−t′

1)(γ−δC)]2 . Much as in the argument for SH2, it follows that SH3
holds with probability at least 1 − ε/3 if

NCT 2
maxe

−2N3
ℓ (1

NC
−δC)2

< ε/3. (4)

Equation (4) is thus the constraint that needs needs to be satisfied for SH3.
Finally, for SH1, fix M ≥ Nℓ, K such that Nℓ ≤ K ≤ M , a round t, an miner i, and a

color c, and let NC be the number of colors and αi,t,M be i’s average power in the interval
[t, t + M]. Take

δ = (1/2 − α)/2. (5)

Let Ht,M,K,i consist of all histories where, in the subinterval [t, t + M] of [0, Tmax], there
are exactly K ≥ Nℓ blocks of color c, at least a fraction 1/2 − δ of them are generated
by miner i. The probability of there being exactly K blocks of color c in the interval
is

(
M
K

)
γK(1 − γ)M−K . Applying Hoeffding’s inequality, the probability of being at least

δ + α away from the mean αi,t,M is e−2(δ+α−αi,t,M)2K . It follows that Pr(Ht,M,K,i) ≤(
M
K

)
γK(1 − γ)t′

2−Ke−2(δ+α−αi,t,M)2K .

Let Ht,M,K consist of all histories where, in the interval [t, t + M], there are exactly
K ≥ Nℓ blocks of color c, and of these, greater than 1/2 − δ were generated by some miner i.
Thus, Ht,M,K = ∪iHt,M,K,i, so

Pr(Ht,M,K) ≤
∑

i

Pr(Ht,M,K,i) ≤
∑

i

(
M

K

)
γK(1 − γ)M−Ke−2(δ+α−αi,t,M)2K .

Suppose that

Nℓ ≥ 4/δ2. (6)

Then we show that∑
i

e−2(δ+α−αi,t,M))2K ≤ ⌈1/α⌉e−2δ2K . (7)

To see this, recall that, by assumption, αi,t,M ≤ α, and
∑

i αi,t,M = 1. Straightforward
calculus (details given below) shows that if α ≥ x + z, z ≤ y ≤ x, and N > 1/4δ2, then

e−2(δ+α−x−z)2K + e−2(δ+α−y+z)2K ≥ e−2(δ+α−x)2K + e−2(δ+α−y)2K . (8)

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:19

That is, if x ≥ y, shifting a little of the weight from y to x increases the sum. It easily follows
from this that the sum is maximized if we have as many miners as possible with weight α,
and one miner with whatever weight remains. Given that the sum of the weights is 1, we
will have roughly 1/α miners with weight α. The desired inequality (7) easily follows. Thus,

Pr(Ht,M,k) ≤
(

M

K

)
γK(1 − γ)M−K⌈1/α⌉e−2δ2K .

Here are the details of the calculation for (8): It’s clear that the two sides of the inequality
are equal if z = 0, So we want to show that the left-hand side increases as z increases. Taking
the derivative, it suffices to show that 4(δ + α − x − z)Ke−2(δ+α−x−z)2K − 4(δ + α − y +
z)Ke−2(δ+α−y+z)2K ≥ 0 if z ≥ 0, or equivalently, that f(z) = (δ+α−x−z)e−2(δ+(α−x−z)2K −
(δ + α − y + z)e−2(δ+α−y+z)2K ≥ 0 if z ≥ 0. We first consider what happens if z = 0. We
must show that (δ + α − x)e−2(δ+α−x)2K ≥ (δ + α − y)Ke−2(δ+α−y)2K if x ≥ y. The two
sides are equal if x = y. Taking the derivative with respect to x, it suffices to show that
−e−2(δ+α−x)2K +4(δ+α−x)2Ke−2(δ+α−x)2K ≥ 0, or equivalently, that 4(δ+α−x)2K−1 ≥ 0.
Since K ≥ Nℓ > 1/4δ2 by (5) and δ < 1/4, we have that f(0) > 0. Next note that
f ′(z) = −e−2(δ+α−x−z)2K +4(δ +α−x−z)2Ke−2(δ+α−x−z)2K +e−2(δ+α−y+z)2K −4(δ +α−
y+z)2Ke−2(δ+α−y+z)2K . If K > 1/4δ2, then f ′(z) = η1e−2(δ+α−x−z)2K −η2e−2((δ+α−y+z)2K ,
where η1 > 0 and η2 < 0. Thus, f ′(z) > 0, as desired.

Note that ∪{t,M,K: Nℓ≤K≤M≤Tmax, t≤Tmax−M}Ht,M,K consists of all histories where there
are at least Nℓ blocks of color c and, of these, at least 1/2 − δ are generated by some miner i.

Pr(∪{t,M,K: Nℓ≤K≤M≤Tmax, t≤Tmax−M}Ht,M,K)
≤

∑
{M : Nℓ≤M≤Tmax}(Tmax − M)⌈1/α⌉

∑
{K: Nℓ≤K≤M}

(
M
K

)
γK(1 − γ)M−Ke−2(δ/2)2K

≤
∑

{M : Nℓ≤M≤Tmax} Tmax⌈1/α⌉e−2(δ/2)2Nℓ
∑

K

(
M
K

)
γK(1 − γ)M−K

≤ T 2
max⌈1/α⌉e−2(δ/2)2Nℓ .

Since SH1 must holds for all colors c, SH1 holds with probability greater than 1 − ε/3 if

NCT 2
max⌈1/α⌉e−2(δ/2)2Nℓ < ε/3. (9)

To get all of SH1, SH2, and SH3 to hold with probability at least 1 − ε, we must choose
Nℓ, NC , Tmax, δ, and δC so that constraints (3), (4), (5), (6), and (9) all hold. Given α, (5)
determines δ. We take it to have this value. Recall that δ < 1/4. Given ∆, we next choose
NC sufficiently large such that (NC −1

NC
)∆−1 > 1

2 . We then choose δC < 1
2NC

. Finally, for
reasons that will become clear shortly, we replace Tmax in the equations by N2

ℓ . (We could
equally well have used Nk

ℓ for k > 2.) With this replacement and the choices above, we can
simplify (3), (4), and (9) to

NCN4
ℓ e−2N3

ℓ /16 < ε/3
NCN4

ℓ e−2N3
ℓ (δC /2)2

< ε/ and
NCN4

ℓ ⌈1/α⌉e−2(δ/2)2Nℓ < ε/3.

(10)

Given NC , δ, δC as determined above, we can clearly choose N∗
ℓ sufficiently large to ensure

that these inequalities, together with (6), hold for all Nℓ > N∗
ℓ . Take T ∗

max = (N∗
ℓ)2. It

follows that for all Tmax ≥ T ∗
max, for

√
Tmax < Nℓ < Tmax, all the constraints hold. This

completes the proof. ◀

DISC 2023

1:20 Colordag: An Incentive-Compatible Blockchain

Q

Q∗

b′ Pt

P ∗
t

P ∗
t′

Figure 5 Paths Pt (and P ∗
t′) that are identical to P ∗

t up to b′.

g b′′
b′

b1 b2b2

b

b3

e∗

b4 b5

b+Pt

P ∗
t

P ∗
t′

Q

Q′

P †

k′ k

R

R∗ > NL D

Figure 6 Ledgers in G
h(t)
i,ĉ and G

h(t′)
j,ĉ that are identical except for their suffixes.

B Verifying the Colordag Ledger Properties

We prove the three ledger properties.

▶ Proposition 16 (Colordag ledger consistency). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all miners i, j and all histories h ∈ HNC ,Nℓ,δ,δC ,Tmax , if all but at most one
miner is honest in h, t ≤ t′, and k ≤ |L(Gh(t)

i)| − Nℓ, then Lk(Gh(t)
i) = Lk(Gh(t′)

j).

Proof. Suppose that Lk(Gh(t′)
j) = b and k ≤ |L(Gh(t)

i)| − Nℓ. Let P ∗
t′ be the canonical

longest path in G
h(t′)
j,ĉ . Let Pt be its prefix in G

h(t)
i,ĉ and let P ∗

t be the canonical longest path
in G

h(t)
i,ĉ (see Figure 5).

Let b′ be the last common block on P ∗
t and Pt. We claim that P ∗

t and Pt must be
identical up to b′. For if they diverge before b′, there must be subpaths Q∗ and Q of P ∗

t and
Pt, respectively, that are disjoint except for their first and last nodes. Since P ∗

t and P ∗
t′ are

longest paths, we must have |Q∗| = |Q| (if, for example, |Q∗| > |Q|, then we can find a path
longer that P ∗

t′ by replacing the Q segment by Q∗). The canonical choice will be the same
for P ∗

t and P ∗
t′ , providing the desired contradiction, so the prefixes are the same up to b′.

Let D = |L(Gh(t)
i)| (see Figure 6). Since P ∗

t is a longest path in G
h(t)
i,ĉ , its length is D.

Suppose, by way of contradiction, that b is not on P ∗
t . Both blocks b and b′ are on P ∗

t′ , and
block b cannot precede b′ on its prefix Pt, otherwise it would be on P ∗

t . Thus, b′ precedes b,
and we must have b′ = Lk′(Gh(t)

i), where k′ < D − Nℓ. Since |L(Gh(t)
i)| = d(Gh(t)

i,ĉ), it follows
that d(Gh(t)

i,ĉ , b′) < D − Nℓ. (We note for future reference, since it is used in the proof of
Proposition 23, that the contradiction comes from this fact.) It follows that the segment R∗

of P ∗
t from b′ to the end must have length greater than Nℓ. Moreover, if R is the segment

of Pt from b′ to the end, then R and R∗ must be disjoint except for their initial block b′.
We now get a contradiction by considering a path P † that includes all the honest blocks

in G
h(t′)
i,ĉ that are not naturally forked. Let b′′ be the last block at or preceding b′ that is

honest and not naturally forked. (If b′ is honest and not naturally forked, then b′′ = b′.)
Consider the subpath going from b′′ to b′ followed by R∗. Call this path Q (highlighted in
Figure 6). P † must intersect Q. For if not, there must be at least as many blocks on Q

as there are on P † generated at or before time t (since P ∗
t is the canonical longest path),

but none of the blocks on Q other than b′′ is an honest block that is not naturally forked.

I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern 1:21

Suppose that b′′ is generated at time t′′. It follows that in the interval [t′′ + 1, t], fewer honest
blocks that are not naturally forked are generated than dishonest blocks, contradicting the
assumption that h ∈ HNC ,Nℓ,δ,δC ,Tmax .

Without loss of generality, suppose that, starting at b′′, P † intersects with R∗ after it
intersects with R. (If P † does not intersect with R at all, we take R to be the path it
intersects with later. The argument is the same if P † intersects with R after it intersects
with R∗.) Let b1, b2, . . . , bk be the blocks on P † that are also on R∗, in the order that they
appear. For convenience, we take bk = b∗ (the virtual final block). For each pair e, e′ of
consecutive blocks in b1, . . . , bk, the path from e to e′ on Q must be at least as long as the
path from e to e′ on P † (if e′ = b∗, we take the path from e to e′ on P † to be the subpath
of P † starting from e and including all the blocks generated at or before time t). It follows
that there are at least as many blocks on Q that are not on P † as there are blocks on P †

that are generated after b′′ and at or before time t and are not on Q. We can repeat this
process with R to show, roughly speaking, that there are at least as many blocks on R that
are not on P † as there are on P † that are generated after b′′ and at or before time t that
are not on R. Suppose that b′′ is generated at time t′′. It follows that there are at least as
many blocks that are either not honest or naturally forked generated between time t′′ and t

as there are honest blocks that are not naturally forked. This contradicts the assumption
that h ∈ HNC ,Nℓ,δ,δC ,Tmax .

The reason that we said “roughly speaking” above is that this argument does not work in
one special case. Suppose that the final block on R that is also on P † is e∗. Further suppose
that there are blocks on P † that are generated at or before time t but after e∗. We cannot
conclude that the path from e∗ to b∗ on R is at least as long as the subpath of P † consisting
of blocks generated after e∗ and at or before time t, since R is not necessarily a longest path
up to time t.

We deal with this as follows. Let Q′ (highlighted in Figure 6) be the segment of P ∗
t′

starting at b′ and ending with the first honest block that is not naturally forked that is
generated after time t. Call this block b+. Note that R is a prefix of Q′. Moreover, the
subpath of Q′ from c to b+ is indeed at least as long as the subpath of P †

t′ from c to b+. The
upshot of this argument is that there are more blocks on Q and R (or Q′) that are not on P †

than there are blocks on P † after b′′ that are generated at or before time t (or up to b+, if
we consider Q′). As before, this gives a contradiction to the fact that h ∈ HNC ,Nℓ,δ,δC ,Tmax .

Therefore, our initial assumption was wrong and we conclude that b is on P ∗
t . Therefore,

it precedes the last common block b′ on both P ∗
t and P ∗

t′ . Since we have shown the two paths
coincide until b′, it follows that Lk(Gh(t)

i) = Lk(Gh(t′)
j). ◀

▶ Proposition 17 (Colordag ledger growth). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2, then for all rounds t and t′ such that t′ − t ≥ Nℓ/δC , if all but at most one miner
is honest in h ∈ HNC ,Nℓ,δ,δC ,Tmax

i , then |Lcd(Gh(t′)
i)| ≥ |Lcd(Gh(t)

i)| + 1.

Proof. Suppose that h ∈ HNC ,Nℓ,δ,δC ,Tmax . Consider rounds t and t′ such that t′−t ≥ 2Nℓ/δC .
Since t′ −t ≥ 2Nℓ/δC and h ∈ HNC ,Nℓ,δ,δC ,Tmax

i there are K ≥ 2Nℓ blocks of color ĉ generated
in this interval. Because h is safe, more than K/2 ≥ Nℓ of these blocks are honest and not
naturally forked. Let P † be a path that includes all of these blocks. Let P ∗

t denote the
canonical longest path of color ĉ up to time t. Let b be the last block on P ∗

t that is on P †.
Let M0 be the length of P ∗

t up to and including b. Suppose that there are M blocks on P ∗
t

following b, and M ′ blocks on P † following b that are generated before time t. Thus, the
length of P ∗

t is M0 + M . Note that M ≥ M ′ (since P ∗
t is a longest path) and

M + M ′ < Nℓ =⇒ M < Nℓ (11)

DISC 2023

1:22 Colordag: An Incentive-Compatible Blockchain

(otherwise, fewer than half the blocks generated between the time that b was generated
and t are honest and not naturally forked, despite the fact that at least Nℓ blocks are
generated in that interval). Now the subpath of P † up to time t′ has length greater than
M0 + M ′ + K/2 ≥ M0 + M ′ + Nℓ, so the canonical path up to time t′ must have at least
this length. Thus, for the canonical path up to time t′ we have

|Lcd(Gh(t′)
i)| ≥ M0 + M ′ + Nℓ ≥ M0 + Nℓ

Eq. 11
> M0 + M = |Lcd(Gh(t)

i)| ◀

▶ Proposition 18 (Colordag ledger quality). If (NC , Nℓ, δ, δC , Tmax) is suitable for ε and
α < 1/2 then for all rounds t and t′ such that t′ − t ≥ 2Nℓ/δC , and all h ∈ HNC ,Nℓ,δ,δC ,Tmax

i ,
at least two of the blocks of color ĉ added to L(Gh(t′)

i) in the interval [t, t′] are generated by
honest miners.

Proof. As we argued in the proof of Proposition 17, since t′ − t ≥ 2Nℓ/δC , there are at least
2Nℓ blocks of color ĉ in the interval (by SH3), so we must have at least Nℓ blocks that are
honest and not naturally forked (by SH1 and SH2). Let P ∗

t′ be the canonical longest path up
to time t′ and let P † be a path that includes all the honest blocks of color ĉ that are not
naturally forked up to time t′. Let b be the last honest block that is not naturally forked on
P ∗

t′ that is generated prior to time t (b is the genesis block if no other honest blocks on P ∗
t′

are generated prior to time t). We claim that there must be at least two honest blocks that
are not naturally forked on P ∗

t′ that come after b. First suppose that there are none. Then
there are at least as many blocks on P ∗

t′ that are generated after b as there are on P † that are
generated after b, so, as before, we get a contradiction to the fact that h ∈ HNC ,Nℓ,δ,δC ,Tmax

i .
Next suppose that there is only one block, say b′, on P ∗

t′ that is generated after b that is
honest and not naturally forked (see Figure 4). Note that there are more than Nℓ blocks
on P † after b and hence more than Nℓ on P ∗

t′ after b (since P ∗
t′ is a longest path). Consider

the subpath of P ∗
t′ strictly between b and b′ and the subpath of P † strictly between b and b′.

If the total number of blocks on these subpaths is at least Nℓ, then property SH1 does not
hold and we have a contradiction to h ∈ HNC ,Nℓ,δ,δC ,Tmax

i . If not, then the total number of
blocks on the subpath of P † strictly after b and the subpath of P ∗

t′ strictly after b must be at
least Nℓ, so again we get a contradiction to h ∈ HNC ,Nℓ,δ,δC ,Tmax

i . ◀

Certified Round Complexity of Self-Stabilizing
Algorithms
Karine Altisen #

Université Grenoble Alpes, CNRS, Grenoble INP,1 VERIMAG, 38000 Grenoble, France

Pierre Corbineau #

Université Grenoble Alpes, CNRS, Grenoble INP,1 VERIMAG, 38000 Grenoble, France

Stéphane Devismes #

Université de Picardie Jules Verne, MIS, 80039 Amiens, France

Abstract
A proof assistant is an appropriate tool to write sound proofs. The need of such tools in distributed
computing grows over the years due to the scientific progress that leads algorithmic designers to
consider always more difficult problems. In that spirit, the PADEC Coq library has been developed
to certify self-stabilizing algorithms. Efficiency of self-stabilizing algorithms is mainly evaluated
by comparing their stabilization times in rounds, the time unit that is primarily used in the self-
stabilizing area. In this paper, we introduce the notion of rounds in the PADEC library together with
several formal tools to help the certification of the complexity analysis of self-stabilizing algorithms.
We validate our approach by certifying the stabilization time in rounds of the classical Dolev et al’s
self-stabilizing Breadth-first Search spanning tree construction.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Logic and verification

Keywords and phrases Certification, proof assistant, Coq, self-stabilization, round complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.2

Funding This work has been partially funded by the ANR project SkyData (ANR-22-CE25-0008-01).

1 Introduction

Proving the correctness and analyzing the time complexity of distributed algorithms, especially
fault-tolerant ones, is usually complex and subtle due to the many uncertainties we have to
face, e.g., locality of information, asynchrony of communications, faults, topological changes,
just to quote a few. In this context, certification is an appropriate method to increase
confidence of algorithmic designers in the functional and non-functional properties of their
solutions. Indeed, the certification consists in formally writing proofs using a proof assistant,
a software solution such as Coq [40, 7] or Isabel/HOL [34] that allows to develop formal
proofs interactively and mechanically check them.

It is important to note that to guarantee the soundness of proofs, a proof assistant
requires a level of detail that is drastically higher than in paper-and-pencil proofs and
often necessitates a full reengineering of the initial proof. As a consequence, importing
a paper-and-pencil proof into a proof assistant is usually an intricate task. However, to
circumvent this difficulty, many libraries have been developed to facilitate the work of proof
designers, e.g., [8, 5, 1]. Such libraries mainly tackle two orthogonal goals: (1) they help to
write formal proofs to prevent bugs while (2) keeping them readable and understandable for
a non-expert in certification.

1 Institute of Engineering Univ. Grenoble Alpes

© Karine Altisen, Pierre Corbineau, and Stéphane Devismes;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Karine.Altisen@univ-grenoble-alpes.fr
https://orcid.org/0000-0001-8344-1853
mailto:Pierre.Corbineau@univ-grenoble-alpes.fr
https://orcid.org/0000-0001-9267-7593
mailto:Stephane.Devismes@u-picardie.fr
https://orcid.org/0000-0002-8032-9732
https://doi.org/10.4230/LIPIcs.DISC.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Certified Round Complexity of Self-Stabilizing Algorithms

PADEC [1] is a library for the certification of distributed self-stabilizing algorithms
written in the atomic-state model [21], the most commonly used model in the self-stabilizing
area. This library is based on the proof assistant Coq. It contains formal definitions and
tools whose suitability has been demonstrated through several relevant use cases from the
literature.

Self-stabilization is a versatile and lightweight fault-tolerant paradigm of distributed
computing [21, 4]. A self-stabilizing algorithm enables a distributed system to resume a
correct behavior within finite time, regardless its initial configuration; and therefore also
after a finite number of transient faults place it in an arbitrary configuration. It is worth
noting that self-stabilization makes no hypotheses on the nature (e.g., memory corruption or
topological changes) or extent of transient faults that could hit the system, and self-stabilizing
systems recover from the effects of those faults in a unified manner. Such versatility comes at
a price, e.g., after transient faults cease, there is a finite period of time, called the stabilization
phase, during which the safety properties of the system are violated. Hence, self-stabilizing
algorithms are mainly compared according to their stabilization time, the worst-case duration
of the stabilization phase.

To evaluate (stabilization) time, three main units are used in the atomic-state model:
moves, (atomic) steps, and rounds. A move corresponds to a local state update at some
process. Actually, it is rather a unit of work since it captures the amount of computations
an algorithm needs. Steps essentially captures the same information as moves: a step is a
global transition in an execution. Rounds [22, 13] evaluate the execution time according to
the speed of the slowest processes. It is a non-atomic unit contrary to the two previous ones.
Essentially, it is the adaptation to the atomic-state model of the notion of time units used in
the message-passing model [39]. Roughly speaking, from a given configuration, a round is
over as soon as all processes get a chance to move at least once.

The concept of steps have been already imported in PADEC [2]. Yet, as for moves,
complexities in steps somehow neglect the parallel aspects of the distributed algorithm they
evaluates. As a matter of fact, worst-case executions in steps are most of the time sequential;
see, e.g., [3, 2]. Perhaps, this is why the rounds are the most commonly used time units in
the self-stabilizing area.

Contribution. In this paper, we enrich the PADEC library with the concept of rounds.
Certifying complexities, especially stabilization times, in rounds is a major concern since it
allows to increase confidence in the soundness of claimed bounds. As a matter of fact, paper-
and-pencil proven complexity bounds are sometimes inaccurate due to implicit assumptions
and a lack of details. For example, the stabilization time of Huang and Chen’s Breadth-first
Search (BFS) spanning tree construction [27] was conjectured to stabilize in O(D) rounds,
where D is the network diameter. Now, this algorithm is actually made of two non-mutually
exclusive rules and the absence of priority on those rules leads to a possible execution that
stabilizes in Ω(n) rounds, where n > D is the number of processes [19].

We add the formal definition of rounds in PADEC together with several companion
formal tools whose aim is to ease the certification by making it as close as possible to the
paper-and-pencil round complexity analyses one can find in the self-stabilizing area. To
achieve this, we provide several certified meta-theorems consisting in general proof patterns
allowing the users to mimic the usual way round complexities are proven. Thus, they can
focus on the true difficulty of the result instead of drowning the proof in tedious details

K. Altisen, P. Corbineau, and S. Devismes 2:3

requested by the proof assistant.
We validate our approach and illustrate the usefulness of our general formal tools by

certifying the stabilization time in rounds of the straightforward translation into the atomic-
state model of Dolev et al’s algorithm [22], which was initially written in the Read/Write
atomicity model. This latter constructs a BFS spanning tree in a rooted bidirectional
connected network. This task is fundamental in the self-stabilizing area since it is widely used
as a basic building block of more complex self-stabilizing solutions; see, e.g., [24, 17]. Notice
that we also certify the self-stabilization of our use case assuming a weakly fair daemon.

Beyond the certification in Coq, our work leads to a better understanding of the intrinsic
nature of non-atomic time units such as rounds.

Related Work. Many formal approaches have been used in the context of distributed
computing. There exist exhaustive tool suites to validate a given distributed algorithm, such
as the TLA+ toolbox [32]. Synthesis [9, 23] aims at automatically constructing algorithms
based on a given specification, a fixed topology, and sometimes a restricted scheduling (e.g.,
synchronous execution); this technique is now often based on SMT-solvers. Verification
using model-checking [41, 31] is also fully automated and requires to fix settings similarly
to synthesis. Both synthesis and model-checking only succeed with small topologies, due
to computation limits. Notice also that model checking has been also successfully used to
prove impossibility results applying on small-scale distributed systems [20]. In contrast, a
proof assistant allows to validate a given algorithm for arbitrary-sized topologies, but is only
semi-automated and may require heavy development for each algorithm, justifying then the
development of helpful libraries.

The correctness of several non fault-tolerant distributed algorithms have been certified;
e.g., Castéran and Filou [10] consider distributed algorithms written in the local model,
and a certified proof of Lamport’s Bakery algorithm is given in [26]. Certification of fault-
tolerant, yet non self-stabilizing, distributed systems has been addressed using various proof
assistants, e.g, in Isabel/HOL [28, 12, 11, 29], TLA+ [16, 18], Coq [38], and Nuprl [36, 37].
This so-called robust fault tolerance approach aims at masking the effect of faults, whereas
self-stabilization is non-masking by essence. Hence, the techniques used for these two
approaches are widely different. In the robust context, many certification results are related
to agreement problems, such as consensus or state-machine replication, in fully connected
networks. Overall, most of these aforementioned works only certify the safety property of the
considered problem [16, 18, 36, 37, 28, 38]. However, both liveness and safety properties are
certified in [12, 11, 29]. To the best of our knowledge, the certification of time complexity of
robust fault-tolerant algorithms has never been addressed. Finally, robust fault tolerance has
been also considered in the context of mobile robot computing: using the PACTOLE Coq
framework, impossibility results for swarm robotics that are subjected to Byzantine faults
have been certified [6, 15]. Once again, to the best of our knowledge, certification of time
complexity has never been addressed in the robot context.

Several frameworks to certify self-stabilizing algorithms using the Coq proof assistant
have been proposed, e.g., [14, 1]. In particular, the PADEC framework has already been
used to certify the exact stabilization time in steps of the first Dijkstra’s self-stabilizing
token ring algorithm [2]. Certification of the correctness (safety and liveness) of the first
Dijkstra’s token ring algorithm has been previously achieved using various proof assistants,
i.e., PVS [35, 25, 30] and Isabel/HOL [33]. Interestingly, Fokkink et al. [25] have certified a
quantitative property; precisely they show that the minimum number of states per node the
algorithm needs to converge in any sequential execution is N − 1, where N is the number of
nodes. However, overall among these works, only PADEC addresses time complexity issues.

DISC 2023

2:4 Certified Round Complexity of Self-Stabilizing Algorithms

Coq Development. The development for this contribution represents about 11,000 lines of
Coq code (loc, as measured by coqwc), precisely #loc: spec = 2,698; proof = 7,892; comments

= 484. The Coq development related to the paper is available as an online browsing docu-
mentation at http://www-verimag.imag.fr/~altisen/PADEC. We encourage the reader to
visit this webpage for a deeper understanding of our work.

Roadmap. The rest of the paper is organized as follows. In Section 2, we present our use
case and the PADEC framework. Section 3 is devoted to the formalization of rounds in
PADEC. In Section 4, we illustrate how to use the general tools given in the previous section
to certify the round complexity of our use case. We make concluding remarks in Section 5.

2 A BFS Spanning Tree Algorithm and its Certification

In this section, we present an algorithm, denoted by BFS, which will be used as the common
use case all along the paper. Algorithm BFS allows us to define self-stabilization, the atomic-
state model, and its semantics. We also use this algorithm as an illustrative example to
introduce the PADEC framework and the method to certify a self-stabilizing algorithm.

2.1 Algorithm Definition and Informal Model
BFS is a self-stabilizing distributed algorithm that computes a BFS spanning tree in an
arbitrary rooted, connected, and bidirectional network. By “bidirectional”, we mean that
each node can both transmit and acquire information from its adjacent nodes in the network
topology, i.e., its neighbors. The algorithm being distributed, these are the only possible
direct communications. “Rooted” indicates that a particular node, called the root and
denoted by r, is distinguished in the network. As in the present case, algorithms for rooted
networks are (usually) semi-anonymous: all nodes have the same code except the root.

Algorithm 1 Algorithm BFS, code for each node p.
Constant Local Input:

p.neighbors ⊆ Channels; p.root ∈ {true, false}
/* p.neighbors as well as other sets below are implemented as lists */

Local Variables:
p.d ∈ N; p.par ∈ Channels

Macros:
Distp = min{q.d + 1, q ∈ p.neighbors}
P ardist returns the first channel in the list {q ∈ p.neighbors, q.d + 1 = p.d}

Action for the root, i.e., for p such that p.root = true

Action Root: if p.d ̸= 0 then p.d := 0

Actions for any non-root node, i.e., for p such that p.root = false
Action CD: if p.d ̸= Distp then p.d := Distp

Action CP : if p.d = Distp and p.par.d + 1 ̸= p.d then p.par := P ardist

Algorithm BFS is written in the atomic-state model, where nodes communicate through
locally shared variables: a node can read its variables and those of its neighbors, but can
only write to its own variables. Every node can access its neighbors (to read its variables)
through (local) channels.

http://www-verimag.imag.fr/~altisen/PADEC

K. Altisen, P. Corbineau, and S. Devismes 2:5

The network is locally defined at each node p using constant inputs. The fact that the
network is rooted is implemented using a constant Boolean input called p.root which is
false for every node except r. The input p.neighbors is the set of channels linking p to its
neighbors. When it is clear from the context, we do not distinguish a neighbor from the
channels to that neighbor.

BFS is the straightforward translation into the atomic-state model of Dolev et al’s
algorithm [22], which was initially written in the Read/Write atomicity model. Its code is
given in Algorithm 1 as a set of three locally-mutually-exclusive actions. Each action is of
the form: if condition then statement. In the following, we say that an action is enabled
when its condition is true. By extension, a node is said to be enabled when at least one of
its actions is enabled.

The semantics of the system is defined as follows. The current system configuration
is given by the current value of all variables at each node. If no node is enabled in the
current configuration, then the configuration is said to be terminal and the execution is over.
Otherwise, a step is performed: a daemon (an oracle that models the asynchronism of the
system) activates a non-empty set of enabled nodes. Each activated node then atomically
executes the statement of its enabled action, leading the system to a new configuration, and
so on and so forth.

Assumptions can be made about the daemon. Here, we assume that the daemon is
weakly fair meaning that every continuously enabled nodes is eventually chosen by the
daemon. More precisely, this means that every enabled node is eventually either activated or
neutralized. A node p is neutralized in the step from configuration γ to configuration γ′ if
p is enabled in γ but not in γ′ while being not activated during that step. Such situation
occurs when a node is made disabled by the activation of some of its neighbors.

In Algorithm BFS, each node p maintains two variables. First, each node p evaluates in p.d

its distance to the root. Then, each non-root node p maintains the pointer p.par to designate
as parent a neighbor that is closest to the root (n.b., r.par is meaningless). Algorithm BFS
is a self-stabilizing BFS spanning tree construction in the sense that, regardless the initial
configuration, it makes the system converge to a terminal configuration where par-variables
describe a BFS spanning tree rooted at r. To that goal, nodes first compute into their
d-variable their distance to the root. The root simply forces the value of r.d to be 0; see
Action Root. Then, the d-variables of other nodes are gradually corrected: every non-root
node p maintains p.d to be the minimum value of the d-variables of its neighbors incremented
by one; see Distp and Action CD. In parallel, each non-root node p chooses as parent a
neighbor q such that q.d = p.d − 1 when p.d is locally correct (i.e., p.d = Distp) but p.par is
not correctly assigned (i.e., p.par.d is not equal to p.d − 1); see Action CP .

2.2 The PADEC Library
PADEC [1] is a general framework for the certification in Coq [7] of self-stabilizing algorithms.
It includes the definition of the atomic-state model, tools for the definition of the algorithms
and their properties, lemmas for common proof patterns, and case studies. The atomic-state
model is carefully defined in PADEC to be as close as possible to the standard usage of the
self-stabilizing community. Moreover, it is made general enough to encompass every usual
hypothesis (e.g., about topology or scheduling). First, a finite network is described using
types Node and Channel, which respectively represent the nodes and the links between nodes.
Then, the distributed algorithm is defined by providing a local algorithm at each node. This
latter is defined using a type State that represents the local state of a node (i.e., the values
of its local variables) and a function run that encodes the local algorithm itself. Function run

computes a new state depending on the current state of the node and that of its neighbors.

DISC 2023

2:6 Certified Round Complexity of Self-Stabilizing Algorithms

The model semantics defines a configuration as a function of type Env := Node → State

that provides the (local) state of each node. An atomic step of the distributed algorithm
is encoded as a binary relation over configurations that checks the conditions given in the
informal model; see Section 2.1. An execution e is a finite or infinite stream of configurations,
which models a maximal sequence of configurations where any two consecutive configurations
are linked by the step relation. “Maximal” means that e is finite if and only if its last
configuration is terminal. We use the coinductive1 type Exec to represent an execution stream
and the coinductive predicate is_exec: Exec → Prop2 to check the above condition.

Daemons are also defined as predicates over executions using Linear Time Logic (LTL)
operators provided in the PADEC library. For example, the fact that an execution is
scheduled according to a weakly fair daemon is expressed by the following property: for every
node n, it is Always (a.k.a. Globally) the case that if n is enabled, then Eventually (a.k.a.
Finally) n is activated or neutralized.

The semantics that uses the step relation is referred to as the relational semantics. As
a way to strengthen the framework, PADEC also defines a functional semantics, which
produces traces (i.e., finite prefixes) of executions; those two semantics are proven to be
equivalent.

Self-stabilization in PADEC is defined according to the usual practice: the property is for-
malized as a predicate self_stabilization SPEC that depends on the predicate SPEC: Exec →
Prop, the specification of the algorithm. An algorithm is self-stabilizing w.r.t. the speci-
fication SPEC if there exists a set of legitimate configurations, encoded by some property
Leg: Env → Prop, that satisfies the following three properties in every execution e:

if e starts in a legitimate configuration (i.e., if Leg (H e) holds, where H e is the first
configuration of e), then e only contains legitimate configurations (Closure);
e eventually reaches a legitimate configuration (Convergence); and
if Leg (H e) holds, then e satisfies the intended specification, i.e., SPEC e holds (Specifica-
tion).

An algorithm is silent when each of its executions eventually reaches a terminal configuration;
in such a case, the set of legitimate configurations is chosen to be the set of terminal
configurations. Again, the closure, convergence, and silent properties use the LTL predicates
Always and Eventually.

2.3 The Formal Algorithm
The formal algorithm is encoded in PADEC as a straightforward faithful translation in Coq
of Algorithm 1. Together with its formal code, we have developed several technical results to
facilitate the formal proof and complexity analysis of Algorithm BFS.

We also had to encode the specification of BFS into PADEC. To that goal, we have
defined the network in PADEC using the PADEC types Node and Channel as well as the
predicate is_channel: Node → Channel → Node → Prop, where is_channel n c n’ means that
a channel c connects a node n to another n’. This network encodes the following graph
relation: R_Net := fun n n’: Node => ∃ c: Channel, is_channel n c n’. Namely, an edge from
Node n to Node n’ exists in the graph if and only if a channel c connects n to n’.

Then, the BFS spanning tree specification states that the algorithm should output a
subgraph T of R_Net such that T is a locally-defined3 BFS spanning tree of R_Net rooted at a
given root node r.

1 Coinduction allows to define and reason about potentially infinite objects.
2 Predicates in Coq have type Prop.
3 In our context, locally-defined means that each non-root node should be endowed with a pointer

designating its parent in T .

K. Altisen, P. Corbineau, and S. Devismes 2:7

To express the rooted BFS spanning tree, we have defined several tools about trees,
distances, and diameter. In particular, dist: Node → Node → nat is a constructive distance
function between nodes and D: nat computes the diameter of the graph. We have also
introduced a few graph properties; in particular the one expressing that a graph is a subgraph
of another one using inclusion of relations. We also needed to introduce the notion of DAG
(Directed Acyclic Graph) and rooted trees. A DAG is a directed graph that contains no
(directed) cycle or equivalently, its transitive closure is not reflexive. A graph is a (directed)
tree rooted at r if it is a DAG such that (1) every node has at most one outgoing edge (the
out-neighbor, if it exists, is the parent of the node), and (2) for every non-root node x, there
exists a path from x to r. Finally, the relation T is defined as a BFS spanning tree rooted at
r of R_Net if T is (1) a spanning tree, i.e., a subgraph of R_Net containing all nodes and a tree
rooted at r, and (2) BFS, i.e., the distance from every node to r is the same in T and R_Net.

Proving the self-stabilization and silence of Algorithm BFS for this specification then
consists in proving that all its executions eventually reach a terminal configuration where
parent pointers describe a BFS spanning tree T rooted at r, provided that R_Net is a connected
and bidirectional graph rooted at r and the daemon is weakly fair.

3 Rounds

3.1 Rounds in the Atomic-state Model

In computer science, the time complexity is the computational measure that describes the
amount of computer time an algorithm uses to solve a problem. Time complexity is estimated
by counting the number of transitions performed by the algorithm, i.e., the number of
operations that are considered to be elementary in the computational model where the time
complexity is evaluated. Of course, such operations are assumed to take a fixed amount of
time to be performed. For example, in sequential algorithmics, it is commonly assumed that
basic operations, such as divisions or multiplications, are elementary (despite their actual
implementations are often not) and so take a constant amount of time.

Here, we are interested in the complexity measure called “round” which is accurately
defined using natural language in the self-stabilizing community but requires mental gym-
nastics since by essence, rounds (i) are not atomic in the computational model they are
considered (i.e., the atomic-state model) and (ii) may be infinite in certain particular cases
which – to some extent – should not be taken into account in the complexity evaluation.

We should underline that there exist other non-atomic complexity measures in the
literature. For example, in message-passing systems, time complexity is often evaluated in
terms of time units [39]. To define this later, it is assumed that the message transmission
time is at most one time unit and the node execution time is zero. Now, the local algorithm
at each node is made of several instructions and may contain loops. In particular, in case
of bug, the node may get stuck in an infinite loop. Overall, this means that in general
the correctness and the complexity analysis should be studied independently, following the
separation of concerns principle: once the correctness has been established, some assumptions
can be made for the purpose of defining the time complexity.

Evaluation of time complexity in rounds requires first to explain how a round is built from
an execution in the atomic-state model (see Subsubsection 3.1.1), and then to define what it
means to achieve a given property within a given amount of rounds (see Subsubsection 3.1.3).

DISC 2023

2:8 Certified Round Complexity of Self-Stabilizing Algorithms

3.1.1 Natural Language Definition
In the atomic-state model, every execution e of a given algorithm is split into rounds as
follows. Let U be the set of enabled nodes in Configuration H e, the first configuration of e.
The first round of e terminates at the first configuration gr where every node in U has been
neutralized or activated. If no such a configuration exists in e, then the round is infinite and
actually consists in the whole (infinite) execution e. Otherwise, the second round of e is the
first round of the suffix of e starting from gr; and so on and so forth.

3.1.2 Infinite Rounds
It is worth noting that the existence of an infinite round is due to a starvation generated by
fairness issues. For example, imagine a situation where the activation of some node x makes
another node y enable and conversely; another node z may stay continuously enabled without
being ever activated by the daemon making the current round infinite. Such a situation
occurs when the daemon is unfair4 and the algorithm is actually unable to enforce fairness
between enabled nodes. In contrast, when the daemon is weakly fair, fairness is guaranteed
by definition. So, in every execution under the weakly fair daemon assumption, every round
is finite. Remark also that when an execution contains an infinite round, it is the last one
and the execution actually only contains a finite number of rounds. Conversely, if every
round of an execution is finite, then the execution contains infinitely many rounds. This is
in particular true for finite execution. In this latter case, infinitely many empty rounds are
defined from the terminal configuration, by definition.

3.1.3 Amount of Rounds to achieve a Property
A round is a unit of time, i.e., it is used to evaluate how many time is required to achieve
a given property. Consider an execution e where a property P: Exec → Prop is eventually
satisfied, i.e., e has a suffix that satisfies P. The goal is then to evaluate in how many rounds
P becomes satisfied. For example, evaluating the stabilization time in rounds of an execution
of some self-stabilizing algorithm consists in counting the number of initiated rounds before
a legitimate configuration is reached in the execution. If P is true at the first configuration of
e, then P is satisfied in 0 round. Otherwise, P is satisfied in i rounds, where i is the index of
the first round of e containing a configuration from which P is true.

As in the present paper, time complexity proofs often cope with upper bounds rather
than exact ones. So, we need to express the fact that an execution requires at most j rounds
to reach P. Let e be an execution containing at least j rounds. We say that e requires at most
j rounds to reach P if e contains a suffix which starts before the end of the j-th round and
satisfies P.

Remark that the assumption on e is necessary to cope with the possible existence of an
infinite round, in which case the total number of rounds in the execution is finite and maybe
smaller than j. However, contrary to more usual cases, where each unit of time is assumed
to be finite, our assumption here is weaker: we only require the existence of at least j rounds,
so e can contain an infinite round as far as it is preceded by at least j − 1 finite rounds.

We naturally extend the definition to all executions by fixing the property to true for each
execution containing less than j rounds. Therefore, to falsify this extended property, one
needs to exhibit an execution in which P is still not satisfied despite j rounds have elapsed.

4 Unfair means that no fairness is imposed to the daemon, except the activation of at least one enabled
node at each step.

K. Altisen, P. Corbineau, and S. Devismes 2:9

3.2 Rounds in PADEC
We now formally express the previous definitions so that they could be encoded in PADEC.

3.2.1 Set of Unsatisfied Nodes
To compute a round, from its beginning to its end (which may never occur), we use the set U,
called the set of unsatisfied nodes, which is computed as follows:

At the beginning of the round (say at Configuration gr), U is initialized to the set of
enabled nodes in gr; using Function UNSAT_init gr.
Then, at each step (say from g to g’), the set is updated by removing the nodes that have
been activated or neutralized during the step; using Function UNSAT_update g’ g.
The current round ends, say at Configuration g", when U becomes empty. In this case, U

is refilled at configuration g" with UNSAT_init g" since the next round begins.

Notice that sets of nodes are represented in PADEC using Boolean functions: Node → bool.
We have defined the PADEC.BoolSet library to provide tools that handle sets of elements, in
particular set operations (such as union, intersection, set difference, . . .). The library also
provides decidability results in case the set of elements is finite, which is the assumption we
made for Type Node.

3.2.2 Predicate At_most_rounds

Predicate at_most_rounds P n e defines the fact that an execution e requires at most n rounds
to reach a predicate P. It is based on an intermediate predicate, called at_most_rounds_aux, that
has an additional parameter U, a set of unsatisfied nodes. Thus, at_most_rounds is defined as
follows: at_most_rounds P n e := at_most_rounds_aux P (UNSAT_init (H e)) n e, where the set
of unsatisfied nodes (the second parameter) is initialized at the beginning of the computation
of the rounds by UNSAT_init (H e), i.e., the set of enabled nodes in the first configuration
of e.

We now give more details about the predicate at_most_rounds_aux. Recall the informal
definition: “if e contains at least n rounds, then e contains a suffix which starts before the
end of the n-th round and satisfies P”. Of course, we will perform a single traversal of the
execution to check both the “if” and “then” parts of the sentence. Actually, this is the role
of at_most_rounds_aux. Since rounds may be infinite, this predicate is typically coinductive.
The predicate at_most_rounds_aux is evaluated thanks to the following three rules. At each
step of the execution, one of the rules applies.

Rule 1. The first rule, rnd_here, detects that the targeted predicate P is reached, i.e., if
for some execution e, e satisfies P, then at_most_rounds_aux P U n e holds for any values of U

and n (even n = 0). Indeed, since P e holds, e requires at most n rounds to reach P, for any
n ≥ 0.

The two other rules achieve a traversal of the execution and update the set of unsatisfied
nodes meanwhile, according to the informal definition of a round.

Rule 2. The second rule, rnd_in, applies when going through the current round but the
round is not over (i.e., right after its update, the set of unsatisfied nodes is still not empty).
In this case, we decompose the execution as g • e, where g is its first configuration and e

the subsequent suffix. Then, to satisfy at_most_rounds_aux P U n (g • e) – which claims that,
given the current set of unsatisfied nodes U, the execution requires at most n rounds to reach P –

DISC 2023

2:10 Certified Round Complexity of Self-Stabilizing Algorithms

we need that at_most_rounds_aux P U’ n e holds, where n > 0 and U’ := UNSAT_update (H e) g

is not empty, meaning that, given the updated set of unsatisfied nodes U’, the execution e

requires at most n rounds to reach P. Indeed,
the non-empty set U’ is obtained by removing the nodes from U that have been activated
or neutralized during the step from g to H e;
and the rule applies during the current round, so the number of rounds n is positive and
does not change.

Rule 3. The last rule, rnd_chge, applies at the end of a round. So, the number of elapsed
rounds increases by one. In this case, to satisfy at_most_rounds_aux P U (n + 1) (g • e) –
which claims that, given the current set of unsatisfied nodes U, the execution requires at
most n + 1 rounds to reach P – we need that at_most_rounds_aux P U" n e holds, where
U" := UNSAT_init(H e). Indeed, this time, the set of unsatisfied nodes, UNSAT_update (H e) g,
becomes empty during the step from g to H e, so one round has passed. Consequently, the
new set of unsatisfied nodes U" should be filled with the enabled nodes of Configuration H e

and, given U", P should be satisfied within at most n rounds in e (In particular, if n = 0, e

should satisfy P; see Rule 1).

e
P

g0 g1 gkgk+1 gl−1
gl gl+1

Set of enabled
nodes at He = g0
U0= UNSAT_init g0

at_most_rounds P n e =

at_most_rounds_aux U0 n e

U1= UNSAT_update g1 g0

Uk Uk+1= UNSAT_update
gk+1 gk

One step inside
the round
Apply Rule rnd_in

Ul = UNSAT_init gl

End of the round:
UNSAT_update gl gl−1 is empty
Ul is refilled
Apply Rule rnd_chge Beginning of the

n′ round, n′ ≤ n

P is reached in the
n′-th round
Apply Rule rnd_here
(the computation of
at_most_rounds

ends here)

Figure 1 Round principle: evaluation of at_most_rounds using the rules of at_most_rounds_aux.

Illustration. Figure 1 shows how the rules of at_most_rounds_aux apply to evaluate
at_most_rounds. The horizontal line represents the execution e = g0 g1 ... starting from
g0 = H e. First, to evaluate Predicate at_most_rounds P n e, the set of unsatisfied nodes U0

is initialized to UNSAT_init g0; see the leftmost part of the figure. Then, along the steps
inside the round, Rule rnd_in is applied and the set of unsatisfied nodes is monotonically
nonincreasing. Moreover, sometimes its cardinal decreases; see e.g., the step from gk to gk+1

where Uk+1 := UNSAT_update gk+1 gk. At the end of the round, i.e., at Configuration gl, Rule
rnd_chge applies since the update of the set of unsatisfied nodes using UNSAT_update gl gl−1

produces an empty set. The set of unsatisfied nodes is then refilled using Ul := UNSAT_init gl.
Finally, P becomes satisfied during the n’-th round with n’≤n. When it happens, Rule
rnd_here applies: the evaluation stops and at_most_rounds P n e is satisfied.

Remark that if we remove the rightmost part of the figure, i.e., if P is never satisfied along
e, Rule rnd_here is never applied. In this case, the evaluation never stops, which is allowed
since at_most_rounds is coinductive. Note also that the other rules may never be applied.
Rule rnd_chge may never be applied in case the first (and last) round is infinite. Rule rnd_in

is never applied when the execution is synchronous, i.e., at each step all enabled nodes are
activated.

K. Altisen, P. Corbineau, and S. Devismes 2:11

Straightforward properties of at_most_rounds. We can prove that the predicate has several
basic, yet interesting and useful, properties, e.g.:

If at_most_rounds P n e holds, then for every n′ ≥ n, at_most_rounds P n′ e.
If Predicate P1 implies Predicate P2 all along the execution e, then at_most_rounds P1 n e

implies at_most_rounds P2 n e.
No need to detail the proofs of these properties: they are simple coinductive proofs that
directly use the definition of at_most_rounds_aux.

3.2.3 Functional Definition (Computation)
We also provide a functional definition, denoted by count_rounds P e, which returns in how
many rounds of e the predicate P is reached (for the first time). Obviously, this function
requires assumptions which enable its actual computation (precisely, which guarantees the
computation eventually stops): it requires the assumption that e eventually reaches P, this
assumption being expressed using a property that actually allows the computation to detect
whether P is satisfied. This means that the reachability of P is encoded by an assumption
– denoted by FP – that can be used in the function to compute its result. For FP, we
use a computable inductive predicate which is satisfied whenever the execution actually
reaches P. Then, count_rounds is defined as a fixpoint using a structural induction over the
FP assumption. In this function, we deal separately with the case where zero is returned:
when the assumption FP claims that P is (immediately) reached, count_rounds P e returns 0.
Otherwise, it returns the result computed by an auxiliary inductive function that requires
one more parameter: the accumulator parameter that encodes the set of unsatisfied nodes.
This auxiliary function computes the successive values of the set of unsatisfied nodes (as
explained in Subsubsection 3.2.1) until P is reached. We have two cases:

Either the assumption FP claims that P is reached, hence the auxiliary function returns
one round (to count the current round).
Or the set of unsatisfied nodes is refreshed by removing both activated and neutralized
nodes. Moreover, if this new set is empty, the function starts a new round: it adds one to
the current result and resets the set of unsatisfied nodes with the enabled nodes of the
current configuration.

As a matter of fact, we can prove that the functional and relational definitions are related as
expected. Namely, for every execution e, every number of rounds n, and every predicate P,
we have

at_most_rounds P n e ←→ exists n′, n′ ≤ n ∧ count_rounds P e = n′.
Note that this latter property is an equivalence and implies that if count_rounds P e = n′, then
∀ n ≥ n′, at_most_rounds P n e. Again, there is no need to detail the proof of this property
as it is directly obtained by induction on the FP assumption.

3.2.4 Induction Scheme
During the development of this round library, we paid a particular attention on facilitating,
as much as possible, the use of the round predicate in users’ own proofs. To do so, we have
developed tools to avoid coinductive proofs which are particularly tricky in Coq. Actually,
the fact that an execution requires at most n rounds to reach P is usually proven using
induction on n. In that spirit, we have developed an induction scheme that follows the
classical way inductions on rounds are written in paper-and-pencil proofs.

The particular induction scheme we propose is as follows: assume that we want to prove
that an execution requires at most B rounds to reach P. Assume also that we have a family
of predicate Pn (indexed on natural numbers n) such that PB implies P. We can prove the
following lemma.

DISC 2023

2:12 Certified Round Complexity of Self-Stabilizing Algorithms

▶ Lemma 1 (Lemma schema_round_induction). Assume an execution e satisfies the following
two properties:

e satisfies P0 (Base Case).
All along the execution e, and for every value n < B, if e has a suffix c satisfying Pn, then
c requires at most one round to reach Pn+1, i.e., at_most_rounds Pn+1 1 c holds (Induction
Step).

Then, e requires at most B rounds to reach PB and so P.

The proof of this induction schema is shown by induction on the parameter n. The base
case is immediate from the first property on P0 (Base Case). The induction step of the proof
uses the second property and is a direct application of the next lemma.

▶ Lemma 2 (Lemma schema_round_step). Let e be an execution and n be a number of rounds.
Let P1 and P2 be two predicates over executions. Assume
(A) e requires at most n rounds to reach P1 and
(B) all along the execution e, if e has a suffix c satisfying P1, then c requires at most one

round to reach P2, i.e., at_most_rounds P2 1 c holds.
Then, e requires at most n + 1 rounds to reach P2.

e

e

e

c

c

c

c"

c"c’

c’

P1

P2

P2

≤ n rounds

Assumption A
U
The round may not be over

Assumption B

Uinit U’ empty or not

Proof Goal

U
U becomes empty
end of the n′-th round, with n′ ≤ n

Figure 2 Proof principle of Lemma schema_round_step.

The key point to prove Lemma schema_round_step (and the fact that makes the result
non-obvious) is that the set of unsatisfied nodes may change from one assumption to the
other. Indeed (see Figure 2), using Assumption (A), e eventually reaches P1, i.e., there is some
suffix c of e where P1 c holds. Let U be the current set of unsatisfied nodes when it happens
(for the first time). Using Assumption (B), we know that P1 c holds. Hence, c requires at
most 1 round to reach P2. Now, the computation of this assertion uses UNSAT_init (H c) as
set of unsatisfied nodes instead of U. To obtain that e requires at most one more round to
reach P2 from its beginning, we need that c requires at most 1 round to reach P2 using U and
not UNSAT_init (H c). Obviously, there is no reason for U to be equal to UNSAT_init (H c).
Nevertheless, we can compare them: since unsatisfied nodes are enabled, U is included into
UNSAT_init (H c).

K. Altisen, P. Corbineau, and S. Devismes 2:13

Before presenting an overview of the proof of Lemma schema_round_step, we have two
remarks.
▶ Remark 1. Let U and U’ be two sets of unsatisfied nodes such that U ⊆ U’. If e requires
at most one round to reach P with the current set U, then this is also true with the set U’.
Namely, if at_most_rounds_aux P U 1 e, then at_most_rounds_aux P U’ 1 e.

Remark 1 is a fairly (easy to prove) intuitive property, since we can prove that the
inclusion between the two families of sets – built from U and U’, respectively – remains; see
Figure 3.
▶ Remark 2. Using the same notations as above, if U ⊆ U’ ⊆ UNSAT_init (H e) and
at_most_rounds_aux P U’ 1 e holds, then at_most_rounds_aux P U 2 e also holds.

Remark 1
e P

U

U’

Inclusion between the two sets remains.

Remark 2
e P

U

U’

U has not yet been emptied before reaching P.

U

U’

U becomes empty

Figure 3 Principles for Remarks 1 and 2.

Proof Overview of Remark 2. (See the sketch given in Figure 3 for an illustration.) Starting
the computation of rounds at e with U’:

Either U does not become empty (and so neither do U’) before reaching P, hence using U

as set of unsatisfied nodes, P is reached within at most one round of e.
Or U becomes empty before reaching P, say at Configuration gc. So, using U as set of
unsatisfied nodes, one round of e is over and U is refilled. Let Uinit be the value of
U after being refilled at gc. Let U’c be the value of U’ at gc. As U’ was included in
UNSAT_init (H e), it still contains enabled nodes only. So, U’c is included into Uinit. We
can then apply Remark 1: since P is reached from gc using U’c in at most one round, this
is also the case from gc using Uinit. Overall, this means that using U as set of unsatisfied
nodes, P is reached within at most two rounds in e. ◀

We can now conclude with the proof of Lemma schema_round_step.

Proof Overview of Lemma schema_round_step. The proof of Lemma schema_round_step uses
coinduction. For the sake of explanation, we summarize the proof using the following two
scenarios.

DISC 2023

2:14 Certified Round Complexity of Self-Stabilizing Algorithms

First scenario. if e contains less than n + 1 rounds, then the result immediately holds.

Second scenario. Assume e contains at least n + 1 rounds (n.b., the (n + 1)-th may be
infinite). Then, e contains at least n rounds and the first n rounds of e are finite. By
Assumption (A), e actually reaches P1 within at most n rounds. So, e consumes at most n

rounds to reach P1 at the first configuration of some suffix c. Let U be the set of unsatisfied
nodes at H c.

Assumption (B) ensures that in c, P2 is actually reached in at most 1 round with set of
unsatisfied nodes UNSAT_init (H c). Then, we have two cases. If the nth round terminates
at H c, U = UNSAT_init (H c) and we are done. Otherwise, at most n′ < n rounds have
terminated at Configuration H c. Now, since U only contains nodes that are enabled in H c,
we have U ⊆ UNSAT_init (H c) and we can apply Remark 2 with U’ = UNSAT_init (H c). So,
with U as set of unsatisfied nodes, P2 is reached within at most two more rounds, and we are
done. ◀

4 Round Complexity of the Algorithm

We now illustrate how to use the previous tools by sketching the certification of the stabiliza-
tion time in rounds of Algorithm BFS. Precisely, we show that BFS requires at most D + 2
rounds to reach a terminal configuration starting from an arbitrary configuration. The full
certified proof is detailed in Appendix B. Here, we focus on generic formal tools and show
how to apply them. In particular, through out the section, we will introduce two additional
useful general tools.

Another goal of this section is to convince the reader that our formalization allows to
write certified proofs that are close to the standard usages in the self-stabilizing community.
In that spirit, the Coq proof outline given below broadly follows the approach proposed
in [4].

The proof is split into the following two main parts. First, we prove (Part A) that BFS
requires at most D+1 rounds to reach a configuration from which the d-variables are correctly
assigned forever, i.e., for every node p, p.d is (forever) equal to the distance from p to the
root. Then, we prove that once d-variables are correctly assigned forever, BFS requires at
most one more round to reach a terminal configuration (Part B).

To prove Part A (and according to [4]) we use the induction scheme given in Lemma
schema_round_induction with the predicate Pk e := Always (check_dist k) e and the value
B := D + 1, where Predicate check_dist k e holds iff every node p satisfies the condition
CD k e p. This latter condition checks that (dist p r < k ∧ p.d = dist p r) ∨ (dist p r ≥ k

∧ p.d ≥ k) holds in H e, the first configuration of the execution e.
To apply Lemma schema_round_induction, we have to establish the assumptions of this

lemma, namely the Base Case and the Induction Step. To ease this proof, we have introduced
two other generic results in the PADEC Round library. The goal of the first one is to simplify
the proof when dealing with local predicates such as check_dist and Pk. Actually, Pk checks
properties that are local at each node. Precisely, it checks that every node p satisfies the
local property CD k e p all along e. For such a local property Q: Node → Exec → Prop, we
can prove that

at_most_rounds (Always (fun e’ => ∀p, Q p e’)) k e ←→
∀p, at_most_rounds (Always (Q p)) k e

Namely, the universal quantifier over the nodes can be shifted to the outer border of the
formula, which is easier to handle, since the proof can now be done using a single node. This
result, proven by a simple coinduction, is now provided in the PADEC Round library.

K. Altisen, P. Corbineau, and S. Devismes 2:15

The second generic result is the following proof scheme:

▶ Lemma 3 (Lemma at_most_rounds_scheme_per_node). Let P: Node → Exec → Prop be a
predicate and p be a node. If

either (P p e) holds when p is disabled in (H e)

or (P p) becomes true whenever p is activated or neutralized during some step of e,
then at most one round is required to reach a configuration where (P p) holds.

Indeed, either the node p is disabled at the beginning of the round and then P p holds
(due to the first assumption); or p is enabled and so belongs to the set of unsatisfied nodes.
Now, as this set is empty at the end of the round, the node has been removed because it
has been activated or neutralized meanwhile and so P p has become true during the round
(second assumption). Overall, we obtain that P p requires at most one round to be reached.

Using these tools, we have obtained Part A by proving that for every execution e,
the Base Case holds, namely, the property P0 e := Always (check_dist 0) e is satisfied;
and the Induction Step also holds, i.e., for every value of k < D + 1, if e has a suffix c

satisfying Pk, then c requires at most one round to reach Pk+1.
The detailed proof (which is based on a combinatorial study of possible values for the
d-variables) is given in Appendix B. Notice however that, by successfully applying our generic
proof schemes, we were able to make the certification of the main proof simpler and really
close to the one in [4].

Part B and Final Result. Part A proves that Algorithm BFS requires at most D + 1
rounds to reach a configuration from which Always (check_dist (D + 1)) e is achieved (i.e.,
the d-variables are correctly assigned forever). After that, at most one more round is required
to reach a configuration where the par-variables are correctly set and so to achieve the silence.
The proof (Part B) uses the same mechanism as before and mainly relies on the following
two simple facts:

As check_dist (D + 1) e holds forever, the d-variables no more change.
Furthermore, when check_dist (D + 1) e holds, a node can be activated only once (using
Action CP): the action, and so the node too, is then disabled forever.

Afterwards, we have merged Parts A and B using Lemma schema_round_step to conclude
that every execution e requires at most D + 2 rounds to reach a terminal configuration,
concluding then the proof of the round complexity for Algorithm BFS.

To complete this result, we have also proven that Algorithm BFS is silent and self-
stabilizing w.r.t. its specification. For the convergence property, we can easily show, using
the definitions of weakly_fair and at_most_rounds, that if an execution has been scheduled
using a weakly fair daemon and requires at most B rounds to converge to some property
P, then the execution eventually reaches P, i.e., the execution converges to P within finite
time. Thus, we can deduce that under the weakly fair daemon, Algorithm BFS converges
to a legitimate configuration. The rest of the proof, i.e., Algorithm BFS satisfies both the
specification and closure part of the self-stabilization property, is proven by induction; see
Appendix A for details.

Overall, we have certified the following theorem:

▶ Theorem 4. Let G be a connected bidirectional network rooted at some node r . Under a
weakly fair daemon, BFS is a silent self-stabilizing BFS spanning tree construction whose
stabilization time is at most D + 2 rounds, where D is the diameter of G.

DISC 2023

2:16 Certified Round Complexity of Self-Stabilizing Algorithms

5 Conclusion

Certification is an important tool to increase confidence of algorithmic designers in the
correctness of their solutions. This is even more important in fault-tolerant distributed
algorithmic, where models, algorithms, and intended specifications are most of the time both
complex and subtle. In this context, the PADEC library has been proposed to help the
certification (in Coq) of self-stabilizing distributed algorithms written in the atomic-state
model. This library encompasses all necessary formal tools to establish the correctness
(especially the convergence) and the time complexity of monolithic, as well as composite, self-
stabilizing algorithms. The usefulness of all these formal tools has been validated thanks to
many non-trivial use cases from the literature. The last contribution, presented here, has been
to import in PADEC the most commonly used time complexity measure in the self-stabilizing
area: the rounds. The main encountered difficulties were due to the non-atomic nature of
the rounds that made them not compositional. The definition of rounds has been provided
in PADEC together with many formal companion tools, e.g., Lemmas schema_round_induction,
schema_round_step, at_most_rounds_scheme_per_node. The suitability of these general tools has
been demonstrated with an appropriate use case from the literature: we have certified the
stabilization time of Dolev et al’s algorithm [22]. Although the intrinsic nature of rounds
implies a coinductive definition, the companion tools provided in the library avoid the user
to deal with coinductive proofs, which may be tricky in Coq. Our use case is convincing in
this sense since applying the companion tools allows to prevent the use of coinduction in its
certified proof. Actually, the only (rather simple) proofs requiring coinduction are due to the
Always (check_dist k) property which is itself coinductive.

References

1 Karine Altisen, Pierre Corbineau, and Stéphane Devismes. A framework for certified self-
stabilization. Log. Methods Comput. Sci., 13(4), 2017. doi:10.23638/LMCS-13(4:14)2017.

2 Karine Altisen, Pierre Corbineau, and Stéphane Devismes. Certification of an exact worst-case
self-stabilization time. In ICDCN ’21: International Conference on Distributed Computing
and Networking, Virtual Event, Nara, Japan, January 5-8, 2021, pages 46–55. ACM, 2021.
doi:10.1145/3427796.3427832.

3 Karine Altisen, Alain Cournier, Stéphane Devismes, Anaïs Durand, and Franck Petit. Self-
stabilizing leader election in polynomial steps. Inf. Comput., 254:330–366, 2017. doi:10.1016/
j.ic.2016.09.002.

4 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Distributed
Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2019. doi:10.2200/S00908ED1V01Y201903DCT015.

5 Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier Urbain. Certified
impossibility results for byzantine-tolerant mobile robots. In Teruo Higashino, Yoshiaki
Katayama, Toshimitsu Masuzawa, Maria Potop-Butucaru, and Masafumi Yamashita, editors,
Stabilization, Safety, and Security of Distributed Systems - 15th International Symposium,
SSS 2013, Osaka, Japan, November 13-16, 2013. Proceedings, volume 8255 of Lecture Notes in
Computer Science, pages 178–190. Springer, 2013. doi:10.1007/978-3-319-03089-0_13.

6 Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier Urbain. Certified
impossibility results for byzantine-tolerant mobile robots. In Teruo Higashino, Yoshiaki
Katayama, Toshimitsu Masuzawa, Maria Potop-Butucaru, and Masafumi Yamashita, editors,
Stabilization, Safety, and Security of Distributed Systems - 15th International Symposium,
SSS 2013, Osaka, Japan, November 13-16, 2013. Proceedings, volume 8255 of Lecture Notes in
Computer Science, pages 178–190. Springer, 2013.

https://doi.org/10.23638/LMCS-13(4:14)2017
https://doi.org/10.1145/3427796.3427832
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1007/978-3-319-03089-0_13

K. Altisen, P. Corbineau, and S. Devismes 2:17

7 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

8 Frédéric Blanqui and Adam Koprowski. Color: a coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Mathematical
Structures in Computer Science, 21(4):827–859, 2011. doi:10.1017/S0960129511000120.

9 Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. Synthesis of self-stabilising and
byzantine-resilient distributed systems. In Computer Aided Verification - 28th International
Conference, CAV 2016, pages 157–176, 2016.

10 Pierre Castéran and Vincent Filou. Tasks, types and tactics for local computation systems.
Stud. Inform. Univ., 9(1):39–86, 2011.

11 Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. Formal verification of consensus
algorithms tolerating malicious faults. In Xavier Défago, Franck Petit, and Vincent Villain,
editors, Stabilization, Safety, and Security of Distributed Systems, pages 120–134, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

12 Bernadette Charron-Bost and Stephan Merz. Formal verification of a consensus algorithm in
the heard-of model. Int. J. Software and Informatics, 3(2-3):273–303, 2009.

13 Alain Cournier, Ajoy K. Datta, Franck Petit, and Vincent Villain. Snap-Stabilizing PIF
Algorithm in Arbitrary Networks. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02), pages 199–206, 2002.

14 Pierre Courtieu. Proving self-stabilization with a proof assistant. In 16th International Parallel
and Distributed Processing Symposium (IPDPS 2002), 15-19 April 2002, Fort Lauderdale, FL,
USA, CD-ROM/Abstracts Proceedings, volume 1, page 8pp. IEEE Computer Society, 2002.

15 Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. Impossibility of gathering,
a certification. Inf. Process. Lett., 115(3):447–452, 2015.

16 Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and Hernán
Vanzetto. TLA + proofs. In FM 2012: Formal Methods - 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings, pages 147–154, 2012.

17 Ajoy Kumar Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, and Yvan
Rivierre. Competitive self-stabilizing k-clustering. Theor. Comput. Sci., 626:110–133, 2016.
doi:10.1016/j.tcs.2016.02.010.

18 Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Leslie Lamport. Adaptive register
allocation with a linear number of registers. In Distributed Computing - 27th International
Symposium, DISC 2013, 2013.

19 Stéphane Devismes and Colette Johnen. Silent self-stabilizing BFS tree algorithms revisited.
J. Parallel Distributed Comput., 97:11–23, 2016. doi:10.1016/j.jpdc.2016.06.003.

20 Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien Tixeuil.
Optimal grid exploration by asynchronous oblivious robots. In Stabilization, Safety, and
Security of Distributed Systems - 14th International Symposium, SSS 2012, Toronto, Canada,
October 1-4, 2012. Proceedings, volume 7596 of Lecture Notes in Computer Science, pages
64–76. Springer, 2012.

21 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

22 Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems assuming
only Read/Write atomicity. Distributed Computing, 7(1):3–16, 1993.

23 Fathiyeh Faghih, Borzoo Bonakdarpour, Sébastien Tixeuil, and Sandeep S. Kulkarni.
Specification-based synthesis of distributed self-stabilizing protocols. In Formal Techniques for
Distributed Objects, Components, and Systems - 36th IFIP WG 6.1 International Conference,
FORTE 2016, 2016.

24 Lin Fei, Sun Yong, Ding Hong, and Ren Yizhi. Self stabilizing distributed transactional
memory model and algorithms. Journal of Computer Research and Development, 51(9):2046,
2014.

DISC 2023

https://doi.org/10.1017/S0960129511000120
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.jpdc.2016.06.003
https://doi.org/10.1145/361179.361202

2:18 Certified Round Complexity of Self-Stabilizing Algorithms

25 Wan Fokkink, Jaap-Henk Hoepman, and Jun Pang. A note on k-state self-stabilization in a
ring with k=n. Nordic Journal of Computing, 12(1):18–26, 2005.

26 Wim H. Hesselink. Mechanical verification of lamport’s bakery algorithm. Science of Computer
Programming, 78(9):1622–1638, 2013.

27 Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing
breadth-first trees. Information Processing Letters, 41(2):109–117, 1992.

28 Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk paxos. Archive of Formal
Proofs, 2005, 2005.

29 Philipp Küfner, Uwe Nestmann, and Christina Rickmann. Formal verification of distributed
algorithms - from pseudo code to checked proofs. In Jos C. M. Baeten, Thomas Ball, and
Frank S. de Boer, editors, Theoretical Computer Science - 7th IFIP TC 1/WG 2.2 International
Conference, TCS 2012, Amsterdam, The Netherlands, September 26-28, 2012. Proceedings,
volume 7604 of Lecture Notes in Computer Science, pages 209–224, 2012.

30 S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-based mechanical
verification of fault-tolerant programs. In 19th IEEE International Conference on Distributed
Computing Systems, pages 33–40, 1999.

31 Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic verification of herman’s
self-stabilisation algorithm. Form. Asp. Comput., 24(4–6):661–670, July 2012. doi:10.1007/
s00165-012-0227-6.

32 Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

33 Stephan Merz. On the verification of a self-stabilizing algorithm. Technical report, University
of Munich, 1998.

34 Lawrence C. Paulson. Natural deduction as higher-order resolution. J. Log. Program., 3(3):237–
258, 1986. doi:10.1016/0743-1066(86)90015-4.

35 S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion algorithm. In
International Conference on Programming Concepts and Methods (PROCOMET ’98) 8–12
June 1998, Shelter Island, New York, USA, pages 424–443, Boston, MA, 1998. Springer US.

36 Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Formal specification,
verification, and implementation of fault-tolerant systems using eventml. ECEASST, 72, 2015.

37 Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Eventml: Specifica-
tion, verification, and implementation of crash-tolerant state machine replication systems. Sci.
Comput. Program., 148:26–48, 2017.

38 Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Jorge Esteves Veríssimo. Velisarios:
Byzantine fault-tolerant protocols powered by coq. In Programming Languages and Systems -
27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, pages 619–650, 2018.

39 Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2 edition,
2000. doi:10.1017/CBO9781139168724.

40 The Coq Development Team. The Coq Proof Assistant Documentation, June 2012. URL:
http://coq.inria.fr/refman/.

41 Tatsuhiro Tsuchiya, Shin’ichi Nagano, Rohayu Bt Paidi, and Tohru Kikuno. Symbolic model
checking for self-stabilizing algorithms. IEEE TPDS, 12(1):81–95, 2001. doi:10.1109/71.
899941.

A Specification and Closure of Algorithm BFS

Using the definitions given in Section 2.2, we now sketch the proof of the specification part
of the self-stabilization of Algorithm BFS. Precisely, we have to prove that the specification
of the algorithm is satisfied in any terminal configuration, i.e., the par-variables of non-root
nodes shape a BFS tree rooted at r that spans the graph R_Net. The proof actually follows
the one given in [4] for a bounded-memory version of BFS.

https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1016/0743-1066(86)90015-4
https://doi.org/10.1017/CBO9781139168724
http://coq.inria.fr/refman/
https://doi.org/10.1109/71.899941
https://doi.org/10.1109/71.899941

K. Altisen, P. Corbineau, and S. Devismes 2:19

Consider a terminal configuration g. For a node p, g p provides the local state of p in
configuration g. Furthermore, let d (g p) (resp. par (g p)) be the value of p.d (resp. p.par)
in g. The proof begins by establishing that in g, d-variables are not underestimated:

∀ p, d (g p) ≥ dist p r

The proof is a simple case analysis; see below.

Proof Overview. Let p be a node. If we have d (g p) ≥ dist p r then we are done. Oth-
erwise, dist p r > d (g p) and pick a node pmin satisfying this inequality with the smallest
d-value (we can access pmin by filtering the list of all nodes with the ad hoc criteria). Then,
we can prove that every neighbor q of pmin satisfies d (g pmin) < 1 + d (g q)).

Indeed, if dist q r ≤ d (g q), then we are done since dist pmin r ≤ 1 + dist q r (by
definition) and d (g pmin) < dist pmin r (by hypothesis).
Otherwise, dist q r > d (g q). But, in this case, d (g pmin) ≤ d (g q) since pmin is a
node with minimum d-value among the nodes satisfying the inequality, and we are done.

As pmin is not the root (indeed dist pmin r > d (g pmin) ≥ 0), Action CD is enabled at
pmin: indeed, pmin.d is not equal to q.d + 1 for some neighbor q, since for any of them, we
have proved that d (g pmin) < 1 + d (g q). Overall, this proves that pmin is enabled, which
contradicts the fact that g is terminal. ◀

We can now show that for every node p, its d-variable in g (i.e., d(g p)) is actually equal
to its distance to the root (i.e., dist g p).

Proof Overview. The proof is done by induction on the distance from nodes to the root.
Base case: Let p be a node such that dist p r = 0. Then, p is the root and as r is disabled,
we have r .d = 0.
Step case: Let d ≥ 0. Assume the property is satisfied by every node at distance d

from the root. Let q be a node at distance d + 1 from the root. Obviously, q is not
the root. Then, by definition of dist, q has a neighbor, say p, at distance d from the
root. By induction assumption, d (g p) = d. As q is disabled, we just have to prove that
Distq = d + 1, i.e., d + 1 is the minimum value in the list { x.d + 1, x in q.neighbors }.
Now, p is a neighbor of q that satisfies d + 1 = d (g p) + 1. Moreover, for every other
neighbor p’ of q, we have d + 1 ≤ d (g p’) + 1. Indeed, by definition, p’ is at distance
d, d + 1, or d + 2 from the root and we have seen that d (g p’) is not underestimated,
i.e., d (g p’) ≥ dist p’ r ≥ d. Hence, we obtain that Distq = d + 1 = d (g q), and we
are done. ◀

Using Action CP and the fact that d-variables are correctly evaluated in the terminal
configuration g, we now show that the par-variables define a BFS spanning tree rooted at
r in g. To that goal, we first define Par_Rel g n n’ as the relation describing the spanning
tree in g: Par_Rel g n n’ holds iff the node n is not the root and par (g n) is the channel
that leads to the node n’. By definition of the algorithm and since g is terminal, for every
non-root node p, Par_Rel g p q holds for some node q such that (p,q) is an edge in R_Net and
d (g p) = d (g q) + 1 (remember that these values are also the distances from the nodes to
r, hence dist p r = dist q r + 1). Therefore, we have the following properties:

Par_Rel g is a subgraph of R_Net.
r has no link to some other node using Par_Rel g.
Par_Rel g does not contain any cycle, hence it is a DAG.
Indeed, along any path of Par_Rel g, the distances from nodes to the root decreases.
By definition of Par_Rel g, every node has a single parent.

DISC 2023

2:20 Certified Round Complexity of Self-Stabilizing Algorithms

There is a path from any node p to the root in Par_Rel g and the length of this path is
exactly dist p r.
Notice that this latter property requires to explicitly build the witness path. So, we prove
that for every node at distance d from the root, there exists a path of length d from this
node to root in Par_Rel g. The proof is done by induction on d.

The base case (for root node) is trivial.
Assume that the property holds for some d ≥ 0 and consider a node p at distance
d + 1 from the root. The parent of p using Par_Rel g, say q, is at distance d to the root.
Hence, we can apply the induction hypothesis to q and then add the edge from p to q

to the path to obtain a path from p to r which exists in Par_Rel g.
Based on the previous properties, Par_Rel g is BFS spanning tree rooted at r. In particular,
the distances to the root in Par_Rel g are exactly those in R_Net. To show this latter fact, we
use the last property (there exists a path from every node to root in Par_Rel g whose length
is the distance to the root) and the fact that the path between any two nodes is unique in a
tree (Path_Rel g is a tree since it is a DAG with single parent links at each non-root nodes).

Hence the specification of the problem holds in any terminal configuration: the relation
Par_Rel g (built from the variables computed at each node) is a BFS spanning tree of R_Net

rooted at r. This concludes the specification part of the proof of self-stabilization. Indeed,
recall that the set of legitimate configurations is actually the set of terminal configurations.

Finally, since terminal configurations are closed by definition, the closure part of the
proof is trivially satisfied.

B Detailed Proof of the Round Complexity of Algorithm BFS

We detail here the proof that Algorithm BFS requires at most D + 2 rounds to reach a
terminal configuration, starting from an arbitrary configuration. Under the weakly fair
daemon, this property implies convergence. Hence, thanks to results of Appendix A, we can
conclude that BFS is self-stabilizing under the weakly fair daemon and its stabilization time
is at most D + 2 rounds.

The proof is split into the following two main parts:

Part A: First, we prove that BFS requires at most D + 1 rounds to reach a configuration
from which the d-variables are correctly assigned forever, i.e., for every node p, p.d is forever
equal to the distance from p to the root (Theorem BFS_rounds_CD in the certified proof).

Part B: Then, we prove that once d-variables are correctly assigned forever, BFS requires
at most one more round to reach a terminal configuration (Lemma last_round_action_CP in
the certified proof).

B.1 Part A
First, we recall the definition of Predicate check_dist k e, where k is a natural number and e

is an execution. Following [4], this predicate holds iff for every node p, one of the following
two conditions is satisfied in H e:
(a) either CD_a k e p := dist p r < k ∧ p.d = dist p r,
(b) or CD_b k e p := dist p r ≥ k ∧ p.d ≥ k.
Then, we have the following straightforward, yet useful, properties:
1. By definition, check_dist 0 e holds, for every execution e.

K. Altisen, P. Corbineau, and S. Devismes 2:21

2. check_dist (D + 1) e holds iff the d-variables in H e are correctly assigned.
Indeed, Case (b) of the definition does not apply in this case.

3. We can easily prove, by checking the rules of the algorithm, that for every execution
e and every k, check_dist k e is suffix-closed, meaning that once it is satisfied, it holds
forever in e.
More formally, check_dist k e implies that check_dist k c holds for every suffix c of e.

We now use the induction scheme given in Lemma schema_round_induction with the predicate
Pk e := Always (check_dist k) e and the value B := D + 1 to prove that any execution e re-
quires at most D+1 rounds to reach a configuration where PB := Always (check_dist(D + 1)) e

holds, i.e., a configuration from which the d-variables are forever correctly assigned. To
apply Lemma schema_round_induction, we have to establish the assumptions of this lemma,
namely the Base Case and the Induction Step. We now consider an arbitrary execution e

and detail the proof of these two goals.

B.1.1 Base Case
The base case, P0 := Always (check_dist 0), is trivial: indeed, check_dist 0 e holds, by
Property (1), and then we can conclude, by Property (3).

B.1.2 Induction Step
We have to prove that all along the execution e, and for every value of k < D + 1, if e has a
suffix c satisfying Pk, then c requires at most one round to reach Pk+1.

First, remark that Pk actually checks local properties at each node since it checks that
for every node p, p satisfies all along e the local property CD_a k e ∨ CD_b k e. We use the
generic tool to transform the predicate and place the universal quantifier over nodes at the
outer border of the formula: we obtain that for any execution e, the fact that e achieves
Pk in at most n rounds is equivalent to the fact that for every node p, e reaches in at most
n rounds a configuration from which the local property CD_a k e p ∨ CD_b k e p is satisfied
forever. We now consider any node p and split the proof depending on whether or not k is
null. In turns, each case is subdivided in two subcases that separately prove CD_a (k + 1) or
CD_b (k + 1) for p.

Case k = 0. We have to prove that at most one more round is required so that check_dist 1

becomes true. Then again, Property (3) allows to conclude.
(a) Proof for CD_a 1. Here, by definition of CD_a, p can be nothing but the root since the

only node at distance less than one from the root is the root itself. Hence, we must
prove that at most one round is required so that r .d becomes 0. To that goal, we apply
Lemma at_most_rounds_scheme_per_node and conclude that at most one round is required
so that the d-variable of the root becomes 0. Indeed, the assumptions of the lemma are
satisfied since:

if r is disabled, then r .d = 0, and
r .d becomes 0 when r is activated or neutralized (n.b., this latter disjunction is
equivalent to “r is activated” since r cannot be neutralized).

(b) Proof of CD_b 1. We must prove that at most one round is required for every non-root node
to have a positive d-variable. Indeed, this case concerns nodes at positive distance from the
root, by definition of CD_b 1. Again, we can apply Lemma at_most_rounds_scheme_per_node.
Indeed,

DISC 2023

2:22 Certified Round Complexity of Self-Stabilizing Algorithms

if p is disabled in (H e), then p.d = Distp > 0; and
when p is activated (resp. neutralized), p.d is set (resp. becomes equal) to Distp > 0.

Case 1 ≤ k < D + 1. We assume that check_dist k e holds and use the same mechanisms
as previously to prove that at most one round is required to reach a configuration where
CD_a (k + 1) or CD_b (k + 1) holds for p. The conclusion will be that at most one more round
is required to reach Always (check_dist (k + 1)).
(a) Proof of CD_a (k + 1). Here we assume that dist p r < k + 1. If dist p r < k, then by

applying the induction hypothesis (check_dist k e holds), we get that p.d = dist p r
forever. Otherwise dist p r = k and we apply Lemma at_most_rounds_scheme_per_node

again:
If p is disabled in (H e), then p.d = Distp = p.par.d + 1. Then, as dist p r = k, p has
a neighbor, q, at distance k − 1 from the root. Using the induction hypothesis, we
deduce that q.d = k − 1. Hence p.d ≤ k, by definition of Distp. Consider now the
node pointed by p.par. As it is a neighbor of p, it is at distance k − 1, k, or k + 1 from
the root. Cases k and k + 1 are impossible. Indeed, using the induction hypothesis,
we would get that p.par.d ≥ k and so p.d ≥ k + 1, a contradiction.
So, dist p.par r = k − 1. In this case, p.par.d = k − 1, by induction hypothesis, and
so p.d = k.
When p is activated (resp. neutralized), p.d is set to (resp. becomes) Distp. So, we
have to show that Distp = k, i.e., k − 1 is the smallest value in the d-variables of p’s
neighbors. Now, as the distance from p to r is k, every neighbor q of p is at distance
k − 1, k, or k + 1 from the root. By applying the induction hypothesis, we obtain
that the neighbors at distance greater than k − 1 from the root have their d-variables
greater than k−1; moreover, those at distance k−1 from the root have their d-variable
equal to k − 1. As p has at least one neighbor at distance k − 1 from the root, we
obtain that p.d = Distp = k = dist p r.

(b) Proof of CD_b (k + 1). Here we assume that dist p r ≥ k + 1. In this case, every neighbor
q of p is at distance at least k from r . Hence, by induction hypothesis, we obtain that
d.q ≥ k. Using this property and the definition of Distp, we can easily show that the
two conditions of Lemma at_most_rounds_scheme_per_node are fulfilled to establish that at
most one more round is required to reach a configuration where the property p.d ≥ k + 1
is satisfied.

B.2 Part B
After check_dist (D + 1) e is achieved (i.e., once the d-variables are correctly assigned forever),
at most one more round is required to reach a configuration where the par-variables are
correctly set and so to achieve the silence. The proof uses the same mechanism as before
and mainly relies on the following two simple facts:

As check_dist (D + 1) e holds forever, the d-variables no more change.
Furthermore, when check_dist (D + 1) e holds, a node can be activated only once (using
Action CP): the action, and so the node too, is then disabled forever.

B.3 Final Result
Afterwards, Parts A and B are merged using Lemma schema_round_step to conclude that
every execution e requires at most D + 2 rounds to reach a terminal configuration. This
conclude the proof of the round complexity for Algorithm BFS.

Network Agnostic Perfectly Secure MPC Against
General Adversaries
Ananya Appan1 #

University of Illinois at Urbana Champaign, USA

Anirudh Chandramouli1 #

Bar-Ilan University, Ramat Gan, Israel

Ashish Choudhury #

International Institute of Information Technology, Bangalore, India

Abstract
In this work, we study perfectly-secure multi-party computation (MPC) against general (non-threshold)
adversaries. Known protocols are secure against Q(3) and Q(4) adversary structures in a synchronous
and an asynchronous network respectively. We address the existence of a single protocol which
remains secure against Q(3) and Q(4) adversary structures in a synchronous and in an asynchronous
network respectively, where the parties are unaware of the network type. We design the first such
protocol against general adversaries. Our result generalizes the result of Appan, Chandramouli and
Choudhury (PODC 2022), which presents such a protocol against threshold adversaries.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques; Theory
of computation → Distributed algorithms; Theory of computation → Cryptographic protocols;
Theory of computation → Communication complexity

Keywords and phrases Verifiable Secret Sharing, Byzantine Agreement, Perfect Security

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.3

Related Version Full Version: https://arxiv.org/abs/2208.06223

Funding Anirudh Chandramouli : Supported by the Israel Science Foundation (grant No. 2439/20).
Ashish Choudhury: This research is an outcome of the R&D work undertaken in the project under
the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of
India, being implemented by Digital India Corporation (formerly Media Lab Asia). The author is
also thankful to the Electronics, IT & BT Government of Karnataka for supporting this work under
the CIET project.

1 Introduction

Secure multi-party computation (MPC) [40, 27, 10] is one of the central pillars in modern
cryptography. Informally, an MPC protocol allows a set of mutually distrusting parties,
P = {P1, . . . , Pn}, to securely perform any computation over their private inputs without
revealing anything additional about their inputs. In any MPC protocol, the distrust is
modelled by a centralized adversary A, who can corrupt and control a subset of the parties
during the protocol execution. We aim for perfect security, where A is a computationally
unbounded byzantine adversary who can force the corrupt parties to behave arbitrarily during
protocol execution and where all security guarantees are achieved without any error.

1 Work done as a student at IIIT Bangalore

© Ananya Appan, Anirudh Chandramouli , and Ashish Choudhury;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ananya.appan@gmail.com
https://orcid.org/0000-0002-2408-1082
mailto:anirudh.chandramouli@biu.ac.il
https://orcid.org/0000-0003-4282-1387
mailto:ashish.choudhury@iiitb.ac.in
https://orcid.org/0000-0002-2428-9537
https://doi.org/10.4230/LIPIcs.DISC.2023.3
https://arxiv.org/abs/2208.06223
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Network Agnostic Perfectly Secure MPC Against General Adversaries

Traditionally, the corruption capacity of A is modelled through a publicly-known threshold
t, where it is assumed that A can corrupt any subset of up to t parties [10, 15, 38]. A
more generic and fine-grained form of corruption capacity is the general-adversary model
(also known as the non-threshold setting) [28]. Here, A is characterized by a publicly-known
monotone adversary structure Z ⊂ 2P , which enumerates all possible subsets of potentially
corrupt parties, where A can select any one subset from Z for corruption. Notice that a
threshold adversary is a special type of non-threshold adversary, where Z consists of all subsets
of P of size up to t. It is well-known that modelling A through Z allows for more flexibility,
especially when P is small [28, 29]. The downside is that the complexity of the resultant
protocols is polynomial in the size of Z, which could be exponential in n in the worst case.

Traditionally, MPC protocols are designed assuming either a synchronous or asynchronous
communication model. In a synchronous MPC (SMPC) protocol, the communication channels
between the parties are assumed to be synchronized, and every message is assumed to be
delivered within some known time ∆. Unfortunately, maintaining such time-outs in real-world
networks like the Internet is extremely challenging. Asynchronous MPC (AMPC) protocols
operate assuming an asynchronous communication network with eventual message delivery,
where the messages can be arbitrarily, yet finitely delayed. Designing AMPC protocols is
inherently more challenging when compared to SMPC protocols. This is because, due to
the lack of an upper bound on message delays, parties won’t know how long to wait for an
expected message, since the corresponding sender party may be corrupt and may not send
the message in the first place. Consequently, to avoid an endless wait, a party can consider
messages from only a subset of parties for processing but, in the process, messages from
potentially slow but honest parties may get ignored. In fact, in any AMPC protocol, it is
impossible to ensure that the inputs of all honest parties are considered for computation,
since the wait may turn out to be endless.

Against threshold adversaries, perfectly-secure SMPC and AMPC can tolerate up to
ts < n/3 [10] and ta < n/4 [9] corrupt parties respectively. Following the notion of [29],
given an adversary structure Z and a subset of parties P ′ ⊆ P , we say that Z satisfies the
Q(k)(P ′, Z) condition if the union of any k subsets from Z does not cover P ′. That is, for
every Zi1 , Zi2 , . . . , Zik

∈ Z, the following holds:

P ′ ̸⊆ Zi1 ∪ . . . ∪ Zik
.

SMPC and AMPC against general adversaries is possible, provided the underlying adversary
structure Z satisfies the Q(3)(P , Z) [29] and Q(4)(P , Z) condition [32] respectively.

Our Motivation and Results. In an MPC protocol, it is usually assumed that the parties will
be knowing if the underlying network is synchronous or asynchronous beforehand. Suppose
that the parties are not aware of the network type. We aim to design a single MPC protocol
that is capable of adapting to the exact timing behaviour of the underlying network while
offering the best possible security guarantees in either network. We call such a protocol a
best-of-both-worlds (BoBW) or a network-agnostic MPC protocol. Recently, [2] presented a
BoBW perfectly-secure MPC protocol against threshold adversaries which could tolerate up
to ts and ta corruptions in a synchronous and asynchronous network respectively, for any
ta < ts where ta < n/4 and ts < n/3, provided 3ts + ta < n holds. We aim to generalize this
result against general adversaries, and ask the following question:

Let A be an adversary characterized by adversary structures Zs and Za in a synchronous
network and asynchronous network respectively, where Zs ̸= Za. Then, is there a BoBW

perfectly-secure MPC protocol which is secure against A, irrespective of the network type?

A. Appan, A. Chandramouli, and A. Choudhury 3:3

No prior work has addressed the above question. We present a BoBW perfectly-secure MPC
protocol provided all the following conditions hold, which we refer to throughout as Con.2

▶ Condition 1 (Con(Zs, Za)). Zs and Za satisfy the following conditions.
Zs ≠ Za, and Zs, Za satisfy the Q(3,1)(P, Zs, Za) condition, meaning that the union of
any 3 subsets from Zs and any one subset from Za, does not cover P.
Every subset in Za is a subset of some subset in Zs.

The computation and communication complexity of our protocol is polynomial in n and |Zs|.

Significance of Our Result. We focus on the case where Zs ̸= Za as, otherwise, the question
is trivial to solve 3. Let P = {P1, . . . , P8}, Zs = {{P1, P2, P3}, {P2, P3, P4}, {P3, P4, P5}, {P4,

P5, P6}, {P7}, {P8}} and Za = {{P1, P3}, {P2, P4}, {P3, P5}, {P4, P6}}. Since Zs and Za

satisfy Q(3)(P, Zs) and Q(4)(P, Za) conditions respectively, it follows that existing SMPC
and AMPC protocols can tolerate Zs and Za respectively. However, we show that even if the
parties are not aware of the exact network type, then using our protocol, one can still achieve
security against Zs if the network is synchronous or against Za if the network is asynchronous.
The above example demonstrates the flexibility offered by the non-threshold adversary model,
in terms of tolerating more faults. In the threshold model, using the protocol of [2], one
can tolerate up to ts = 2 and ta = 1 faults, in a synchronous and asynchronous network
respectively. In the non-threshold model, our protocol can tolerate subsets of size larger than
the maximum ts and ta allowed in a synchronous and asynchronous network.

We compare the communication complexity of our network-agnostic MPC protocol with
the most efficient existing synchronous and asynchronous MPC protocols in Table 1.4 Here,
(K, +, ·) denotes the finite ring (or field) over which the computations are performed.

Table 1 Amortized communication complexity per multiplication of different perfectly-secure
MPC protocols against general adversaries.

Setting Reference Condition Communication Complexity (in bits)
Synchronous [30] Q(3)(P, Z) O(|Z|2 · (n5 log |K| + n6) + |Z| · (n7 log |K| + n8))

Asynchronous [3] Q(4)(P, Z) O(|Z|2 · n7 log |K| + |Z| · n9 log n)
Network Agnostic This work Con(Zs, Za) O(|Zs|2 · n5 (log |K| + log |Zs| + log n))

1.1 Technical Overview
Like in any generic MPC protocol [27, 10, 38], we assume that the underlying computation
(which the parties want to perform securely) is modelled as some publicly-known function
f , abstracted by some arithmetic circuit cir, over some algebraic structure K, consisting
of linear and non-linear (multiplication) gates. The problem of secure computation then
reduces to secure circuit-evaluation, where the parties jointly and securely “evaluate” cir
in a secret-shared fashion, such that all the values during the circuit-evaluation remain
verifiably secret-shared and where the shares of the corrupt parties fail to reveal the exact

2 Conditions Con imply that Zs and Za satisfy the Q(3)(P, Zs) and Q(4)(P, Za) conditions respectively.
3 If Zs = Za, then AMPC is possible only if even Zs satisfies the Q(4)(P, Zs) condition. Any existing

perfectly-secure AMPC protocol (with appropriate time-outs) [32, 18, 3] will work even in the synchronous
network, with the guarantee that the inputs of all honest parties are considered for the computation

4 Conventionally, the communication complexity of any generic MPC protocol is measured in terms of
the number of bits communicated to evaluate a single multiplication gate in the underlying circuit.

DISC 2023

3:4 Network Agnostic Perfectly Secure MPC Against General Adversaries

underlying value. The secret-sharing used is typically linear [20], thus allowing the parties
to evaluate the linear gates locally (non-interactively). On the other hand, non-linear gates
are evaluated by deploying the standard Beaver’s method [8] using random, secret-shared
multiplication-triples which are generated in a circuit-independent preprocessing phase. Then,
once all the gates are securely evaluated, the parties publicly reconstruct the secret-shared
circuit-output. Apart from verifiable secret-sharing (VSS) [16], the parties also need to run
instances of a Byzantine agreement (BA) protocol [37] to ensure that all the parties are on
the “same page” during the various stages of the circuit-evaluation. The above framework
for shared circuit-evaluation is defacto used in all generic perfectly-secure SMPC and AMPC
protocols. Unfortunately, there are several obstacles while adapting the framework if the
parties are unaware of the network type.

First Obstacle – A BoBW BA Protocol. Informally, a BA protocol [37] allows parties with
private inputs to reach an agreement on a common output, even if a subset of the parties
behave maliciously. In the non-threshold setting, one can design perfectly-secure BA protocol
against Q(3) adversary structures irrespective of the network type [25, 17]. However, the
termination (also called liveness) guarantees are different for synchronous BA (SBA) and
asynchronous BA (ABA) protocols. The (deterministic) SBA protocols ensure that all honest
parties obtain their output after some fixed time (guaranteed liveness) [37]. On the other hand,
to circumvent the FLP impossibility result [24], ABA protocols are randomized and provide
almost-surely liveness [1, 7, 17], where the parties terminate the protocol asymptotically with
a probability of 1. Known SBA protocols become insecure in an asynchronous network even
if one expected message from an honest party gets arbitrarily delayed, while existing ABA
protocols can provide only almost-surely liveness in a synchronous network.

The first obstacle is to get a BoBW BA protocol against non-threshold adversaries, which
provides the security guarantees of SBA and ABA in a synchronous and an asynchronous
network respectively. We present such a BA protocol which is secure against Q(3) adversary
structures. The protocol is obtained by generalizing the BoBW BA protocol of [2] which is
secure against threshold adversaries and tolerates t < n/3 faults.

Second Obstacle – A BoBW VSS Protocol. In a VSS protocol, a designated dealer
D ∈ P has some private input s. The goal is to let D “verifiably” distribute shares of s

such that the adversary does not learn anything additional about s, if D is honest (privacy).
In a synchronous VSS (SVSS), every (honest) party obtains its shares after some known
time-out (correctness). Verifiability guarantees that even a corrupt D shares some value
“consistently” within the known time-out (commitment property). Perfectly-secure SVSS is
possible, provided the underlying adversary structure Zs satisfies Q(3) condition [34, 30].

For an asynchronous VSS (AVSS) protocol, correctness guarantees that for an honest
D, the secret s is eventually secret-shared. However, a corrupt D may not invoke the
protocol in the first place, in which case the honest parties may not obtain any shares.
Hence, the commitment property of AVSS guarantees that if D is corrupt and if some honest
party computes a share (implying that D has invoked the protocol), then all honest parties
eventually compute their shares. Perfectly-secure AVSS is possible, provided the underlying
adversary structure Za satisfies the Q(4) condition [18, 3].

Existing SVSS protocols become insecure in an asynchronous network, even if a single
expected message from an honest party is delayed. On the other hand, existing AVSS protocols
are insecure against Q(3) adversary structures (which SVSS protocols can tolerate). Since,
in our setting, the parties will not be knowing the exact network type, to maintain privacy

A. Appan, A. Chandramouli, and A. Choudhury 3:5

during the shared circuit-evaluation, we need to ensure that each value remains secret-shared
with respect to Zs rather than not Za, even if the network is asynchronous.5 The second
obstacle to perform shared circuit-evaluation in our setting is to get a perfectly-secure VSS
protocol which is secure with respect to Zs and Za in a synchronous and asynchronous
network respectively and where privacy always holds with respect to Zs, irrespective of the
network type. We are not aware of any VSS protocol with these guarantees. Hence, we
present a BoBW VSS protocol satisfying the required properties.

Our BoBW VSS protocol is obtained by carefully and non-trivially “stitching” together
the SVSS and AVSS protocols of [34] and [18] respectively. Both these protocols are further
based on the classic additive secret-sharing protocol of Ito et al [31] (designed against passive
adversaries). The secret is shared using a sharing specification SZ corresponding to a given
adversary structure Z, where SZ is the collection of “set-complements” of the subsets in
Z. That is, if Z = {Z1, . . . , Z|Z|}, then SZ = (S1, . . . , S|Z|) where Sm = P \ Zm, for
m = 1, . . . , |Z|. The idea behind the secret-sharing of [31] is then to share a secret s through
a random vector of shares (s1, . . . , s|Z|) which sum up to s, where all (honest) parties in the
group Sm hold the share sm. Since one of the subsets in SZ consists of only honest parties,
it would be ensured that if D is honest, then the probability distribution of the shares learnt
by the adversary is independent of s. The SVSS and AVSS protocols of [34] and [18] ensure
that the underlying secret is indeed shared as per the above semantics, even in the presence
of malicious corruptions, including a potentially corrupt D. We next briefly discuss these
protocols individually and then give a high-level overview of how we combine them.

SVSS Against Q(3) Adversary Structures [34]: Consider an arbitrary adversary
structure Zs satisfying the Q(3)(P, Zs) condition, and let SZs

= (S1, . . . , S|Zs|) be the
corresponding sharing specification. The protocol is executed as a sequence of phases.
To share s, during the first phase, D picks a random vector of shares (s1, . . . , s|Zs|), such
that s = s1 + . . . + s|Zs|. Then all parties in every group Sm ∈ SZs are given share sm by
D. To check whether a potentially corrupt D has given the same share to all the (honest)
parties in Sm, the parties in Sm perform a pairwise consistency check of their supposedly
common share during the second phase, and publicly broadcast the results during the
third phase, using a synchronous reliable broadcast protocol. If any party in Sm publicly
complains about an inconsistency, then during the fourth phase, D makes public the share
sm corresponding to Sm by broadcasting it. This does not violate the privacy for an
honest D, since a complaint for inconsistency from Sm implies that Sm has at least one
corrupt party and so, the adversary will already know sm. If D does not “resolve” any
complaint during the fourth phase (implying D is corrupt), then D is publicly discarded,
and everyone takes a default sharing of 0 on the behalf of D. Clearly, the protocol ensures
that by the end of the fourth phase, all honest parties in Sm have the same share, and
the sum of these shares across all the Sm sets is the value shared by D.
AVSS Against Q(4) Adversary Structures [18]: Consider an arbitrary adversary
structure Za satisfying the Q(4)(P, Za) condition, and let SZa

= (S1, . . . , S|Za|) be the
corresponding sharing specification. The AVSS protocol of [18] closely follows the SVSS
protocol of [34]. However, the phases are no longer synchronized. Moreover, during the
pairwise consistency phase, the parties cannot afford to wait to know the status of the
consistency checks between all pairs of parties, since potentially corrupt parties may never
respond. Instead, corresponding to every Sm, the parties check for the existence of a set

5 Since we are assuming that every subset in Za is a subset of some subset in Zs, privacy will be
maintained irrespective of the network type if each value remains secret-shared with respect to Zs.

DISC 2023

3:6 Network Agnostic Perfectly Secure MPC Against General Adversaries

of “core” parties Cm ⊆ Sm, with Sm \ Cm ∈ Za, which publicly confirmed that they are
pairwise consistent. To ensure that all the parties agree on the core sets, D is assigned
the task of identifying the core sets and broadcasting them (where the broadcast now
happens through an asynchronous reliable broadcast protocol). The protocol proceeds
only upon the receipt of core sets from D and their verification. While an honest D will
eventually find and broadcast valid core sets, a corrupt D may not do so, in which case the
parties obtain no shares. Once the core sets are identified and verified, it is guaranteed
that all the (honest) parties in each core set Cm have received the same share from D. The
goal is then to ensure that even the (honest) parties “outside” Cm (namely, the parties
in Sm \ Cm) get this common share. Since Za satisfies the Q(4)(P, Za) condition, the
“majority” of the parties in Cm are honest 6. Hence, the parties in Sm \ Cm can “extract”
the common share held by the parties in Cm, by applying the “majority rule” on the
shares received from the parties in Cm, during the pairwise consistency tests.
Our BoBW VSS Protocol: In our VSS protocol, the parties first start executing
the steps of the above SVSS protocol, assuming a synchronous network, where all the
instances of broadcast happen by executing an instance of a BoBW reliable broadcast
protocol ΠBC, designed as part of our BoBW BA protocol. Let TBC be the time taken by
the protocol ΠBC to produce the output in a synchronous network. If indeed the network
is synchronous, then within time 2∆+TBC, the results of pairwise consistency tests should
be publicly available, where ∆ is the upper bound on message delay in a synchronous
network. Moreover, if any inconsistency is reported, then within the time 2∆ + 2TBC, the
dealer D should have resolved all those inconsistencies by making the “disputed” shares
public. However, unlike the SVSS protocol, the parties cannot afford to discard D if it
fails to resolve any inconsistency within time 2∆ + 2TBC. This is because the network
could be asynchronous, and D’s responses may be arbitrarily delayed, even if D is honest.
A bigger challenge is that in an asynchronous network, some honest parties, say H1, might
be seeing the inconsistencies being reported within local time 2∆ + TBC, as well as D’s
responses within the local time 2∆ + 2TBC. And there might be another set of honest
parties, say H2, who might not be seeing these inconsistencies and D’s responses within
these timeouts. This may result in the parties in H1 considering the shares made public
by D, while the parties in H2 may think that the network is asynchronous and wait for the
core sets of parties to be made public by D (as done in the AVSS). However, this gives a
corrupt D an opportunity to violate the commitment property in an asynchronous network.
In more detail, consider a set Sm for which pairwise inconsistency is reported, and for
which D also finds a set of core parties Cm. Then, it might be possible that the parties in
Cm have received the common share sm from D, but in response to the inconsistencies
reported for Sm, D broadcasts the share s′

m, where s′
m ̸= sm. This will lead to a situation

where the parties in H1 consider s′
m as the share for the group Sm after the timeout of

2∆ + 2TBC. On the other hand, the parties in H2 may not see the inconsistencies and
s′

m within the timeout of 2∆ + 2TBC, but eventually see Cm and extract the share sm

corresponding to Sm.
To deal with the above challenge, apart from resolving the inconsistencies reported for
any set Sm, the dealer D also finds and broadcasts a core set of parties Cm, who have
confirmed receiving the same share from D corresponding to all the sets Sm, such that

6 Since the Q(4)(P, Za) condition is satisfied, the conditions Q(3)(Sm, Za) and, consequently, Q(2)(Cm, Za)
are also satisfied. Thus, the Q(1)(Cm \ Z⋆, Za) condition is satisfied, where Z⋆ is the actual set of
corrupt parties, implying that the set of honest parties form a “majority”.

A. Appan, A. Chandramouli, and A. Choudhury 3:7

Sm \ Cm ∈ Zs. Additionally, if there is any inconsistency reported for Sm, then apart
from D, every party in Sm also makes public its version of the share corresponding to Sm

received from D. Now, at time 2∆ + 2TBC, the parties check if D has broadcasted a core
set Cm for each Sm. Moreover, if any inconsistency has been reported corresponding to
Sm, the parties check if “sufficiently many” parties from Cm have made public the same
share which D made public. This prevents a corrupt D from making public a share that
is different from the share which it distributed to the parties in Cm.
If the network is asynchronous, then different parties may have different “opinions”
regarding whether D has broadcasted “valid” core sets Cm. Hence, at time 2∆ + 2TBC,
the parties run an instance of our BoBW BA protocol to decide what the case is. If the
parties find that D has broadcasted valid core sets Cm corresponding to each Sm, then
the parties in Sm proceed to compute their share as follows: if D has made public the
share for Sm in response to any inconsistency, then it is taken as the share for Sm. If no
share has been made public for Sm, then the parties check if “sufficiently many” parties
have reported the same share during the pairwise consistency test within time 2∆, which
we show should have happened if the network is synchronous, and if the parties maintain
sufficient timeouts. If none of these conditions holds, then the parties proceed to filter
out the common share, held by the parties in Cm, through the “majority rule”.
On the other hand, if the parties find that D has not made public core sets within time
2∆ + 2TBC, then either the network is asynchronous or D is corrupt. So the parties
resort to the steps used in AVSS. Namely, D finds and broadcasts a set of core parties
Em corresponding to each Sm, where Sm \ Em ∈ Za. 7 Then, the parties filter out the
common share, held by the parties in Em, through majority rule (see Section 4 for details).

Best-of-Both-Worlds Secure Multiplication. Apart from BoBW VSS and BA, another
key component in our MPC protocol is a BoBW multiplication protocol against general
adversaries. This is again obtained by carefully stitching together the synchronous and
asynchronous multiplication protocol of [34] and [18] respectively. The protocol takes as input
secret-shared a and b, both shared with respect to Zs, and securely outputs a secret-sharing of
a · b with respect to Zs, irrespective of the network type. Let (a1, . . . , a|Zs|) and (b1, . . . , b|Zs|)
be the vector of shares, corresponding to a and b respectively. The idea here is to securely
generate a secret-sharing of each of the summands al · bm, where l, m ∈ {1, . . . , |Zs|}. The
linearity property (see Definition 2) of the secret-sharing then guarantees that a secret-sharing
of a · b can be obtained from the secret-sharing of the summands al · bm.

To generate a secret-sharing of al · bm, the parties do the following: let Il,m be the set of
parties who have both al and bm. Since Q(3,1)(P, Zs, Za) condition is satisfied, irrespective
of the network type, Il,m will have at least one honest party. Each party in Il,m is asked
to independently secret-share al · bm through an instance of our BoBW VSS protocol. To
avoid an endless wait, the parties cannot afford for all the parties in Il,m to secret-share their
“versions” of al · bm, even if the network would have been synchronous. Hence the parties run
instances of our BoBW BA to agree on a common subset of parties Rl,m from Il,m, where
Il,m \ Rl,m ∈ Zs, who have shared some version of al · bm through VSS instances. However,
we take special care to ensure that irrespective of the network type, the set Rl,m has at
least one honest party from Il,m, who has indeed shared the summand al · bm. Note that
achieving this goal is not a challenge for the synchronous multiplication protocol of [34], since

7 Em (not to be confused with Cm) is the core set of parties corresponding to Sm which D finds in case it
is unable to find and make public valid core sets Cm “on time” for each Sm.

DISC 2023

3:8 Network Agnostic Perfectly Secure MPC Against General Adversaries

Rl,m = Il,m holds.8 Similarly, the goal is easily achievable in the asynchronous multiplication
protocol of [18].9 To ensure that the Rl,m has at least one honest party, we carefully run
instances of our BoBW BA and decide the timeouts of the parties in these BA instances (see
Section 5 for the exact details). Once the set Rl,m is decided, the parties then check if all
the parties in Rl,m have shared the same version of al · bm. If all the versions are the same,
then any one of these is taken as a secret-sharing of al · bm. Else at least one party from
Rl,m has behaved maliciously and so the parties publicly reconstruct the shares al and bm

and compute a default secret-sharing of al · bm.10

Comparison of Our Results with [2]. Even though our BoBW BA protocol is an easy
generalization of the BoBW BA protocol of [2] against threshold adversaries, our VSS protocol
and the multiplication protocol are relatively simpler and based on completely different ideas.
For instance, the BoBW VSS protocol of [2] is based on the properties of symmetric bivariate
polynomials of degree ts in two variables over a finite field, where the underlying secret is
embedded in the constant term of the polynomial and the share for each party is a distinct
univariate polynomial, lying on the bivariate polynomial (this is a two-dimensional extension
of the classical Shamir’s secret-sharing [39]). The bivariate polynomials help to verify whether
a potentially corrupt D has distributed shares consistently. However, verifying the same in the
BoBW setting is quite challenging. As a result, the VSS protocol of [2] is quite involved and
is further based on a “weaker” primitive, called weak polynomial-sharing (WPS) [36, 5], which
ensures that if the dealer is corrupt, then only a subset of the honest parties receive their
designated shares.11 On the contrary, our BoBW VSS protocol is much simpler and not based
on any WPS protocol. Intuitively this is because the “sharing-semantics” of the underlying
secret-sharing is different for VSS against the threshold and non-threshold adversaries. While
the former is based on polynomial interpolation, the latter deploys additive secret-sharing.
Consequently, there is more “redundancy” available to verify whether D has consistently
shared its secret, compared to bivariate polynomials, since each candidate share is now
available with multiple parties. To the best of our knowledge, the idea of designing VSS
based on WPS has been used only against threshold adversaries and it is not known whether
the idea can be generalized against non-threshold adversaries.

Similarly, the multiplication protocol of [2] is quite involved and based on the framework
of [19], which further involves a lot of subprotocols and deploys properties of polynomial
evaluation and interpolation over finite fields. In contrast, our multiplication protocol is
relatively simpler and straightforward and does not involve multiple sub-protocols.

1.2 Other Related Work
All existing works in the domain of BoBW protocols focus only on threshold adversaries. The
works of [12, 14, 21] show that the condition 2ts + ta < n is necessary and sufficient for BoBW
cryptographically-secure BA and MPC, tolerating computationally bounded adversaries. Using

8 In a synchronous network, a and b are secret-shared with respect to a set Z satisfying Q(3)(P, Z)
condition. This ensures that Z satisfies the Q(1)(Il,m, Z) condition and hence contains at least one
honest party. Moreover, in a synchronous network, the VSS instances of all the parties in Il,m get over
within a known time bound and hence Rl,m = Il,m holds.

9 In an asynchronous network, a and b are secret-shared with respect to a set Z satisfying Q(4)(P, Z)
condition. This ensures that Z satisfies the Q(2)(Il,m, Z) condition. Consequently, Il,m \ Rl.m ∈ Z will
hold, implying that Z satisfies the Q(1)(Rl,m, Z) condition and Rl,m contains at least one honest party.

10 The vector of shares (s, 0, . . . , 0) can be considered as a default sharing of a publicly known value s.
11 It is not known how to directly design a BoBW VSS protocol, without deploying any WPS.

A. Appan, A. Chandramouli, and A. Choudhury 3:9

the same condition, [13] presents a BoBW cryptographically-secure atomic broadcast protocol.
The work of [35] studies Byzantine fault tolerance and state machine replication protocols
for multiple thresholds, including ts and ta. The work of [26] presents a BoBW protocol for
the task of approximate agreement using the condition 2ts + ta < n. The same condition has
been used to design a BoBW distributed key-generation (DKG) protocol in [6]. A recent
work [22] has studied the problem of perfectly-secure message transmission (PSMT) [23]
over incomplete graphs, in the BoBW setting. Along with the results of [2], they note that
BoBW perfectly-secure MPC over incomplete networks is possible as long as 3ts + ta < n and
ts + 2ta < N , where N is the connectivity of the graph modelling the underlying network.

1.3 Open Problems
We do not know whether the conditions Con are indeed necessary for any BoBW perfectly-
secure MPC protocol. In fact, it is not known whether the corresponding condition 3ts+ta < n

is necessary for any BoBW perfectly-secure MPC against threshold adversaries. We conjecture
that these conditions are indeed necessary for the respective adversarial model, for any BoBW
perfectly-secure MPC. The main aim of this work (and [2]) is to show the feasibility of BoBW
perfectly-secure MPC against general adversaries over complete networks. We do not know
if an equivalent result for MPC over incomplete networks can be shown as in [22]. Improving
the efficiency of these protocols is also left for future work.

2 Preliminaries and Definitions

The parties in P are assumed to be connected by pair-wise secure channels. The underlying
communication network can be either synchronous or asynchronous, with parties being
unaware about the exact type. In a synchronous network, every sent message is delivered
within a known time ∆. In an asynchronous network, messages can be delayed arbitrarily,
but finitely, with every message sent being delivered eventually. The distrust among P is
modelled by a malicious (byzantine) adversary A, who can corrupt a subset of the parties
in P and force them to behave in any arbitrary fashion during the execution of a protocol.
For simplicity, we assume the adversary to be static, it decides the set of corrupt parties at
the beginning of the protocol execution. However, our protocols can be proved secure even
against a more powerful adaptive adversary that can decide the set of corrupt parties at run
time.

Adversary A can corrupt any one subset of parties from Zs and Za in synchronous and
asynchronous networks respectively. The adversary structures are monotone, implying that
if Z ∈ Zs (Z ∈ Za resp.), then every subset of Z also belongs to Zs (resp. Za). We say that
Zs and Za satisfy the Q(k,k′)(P, Zs, Za) condition if the union of any k subsets from Zs and
any k′ subsets from Za, does not cover P. That is, for every Zi1 , . . . , Zik

∈ Zs and every
Zj1 , . . . , Zjk′ ∈ Za, the condition P ̸⊆ Zi1 ∪ . . . ∪ Zik

∪ Zj1 ∪ . . . ∪ Zjk′ holds.
In our VSS and MPC protocols, all computations are done over a finite algebraic

structure (K, +, ·), which could be a ring or a field. Without loss of generality, we assume
that each Pi has an input xi ∈ K, and the parties want to securely compute a function
f : Kn → K, represented by an arithmetic circuit cir over K, consisting of linear and non-
linear (multiplication) gates, where cir has cM multiplication gates and a multiplicative depth
of DM .

Termination Guarantees of Our Sub-Protocols. As done in [2], for simplicity, we will
not be specifying any termination criteria for our sub-protocols. The parties will keep
on participating in these sub-protocol instances even after computing their outputs. The

DISC 2023

3:10 Network Agnostic Perfectly Secure MPC Against General Adversaries

termination criteria of our MPC protocol will ensure the termination of all underlying
sub-protocol instances. We will be using an existing randomized ABA protocol [17] which
ensures that the honest parties (eventually) obtain their respective output almost-surely
with probability 1, where the probability is over the random coins of the honest parties and
adversary in the protocol. The property of almost-surely obtaining an output carries over to
the “higher” level protocols, where ABA is used as a building block.

We next discuss the syntax and semantics of the secret-sharing used in our VSS.

▶ Definition 2 ([34]). Let S = (S1, . . . , S|S|) be a set called the sharing specification where,
for m = 1, . . . , |S|, each Sm ⊆ P. Then a value s ∈ K is said to be secret-shared with respect
to S if there exist shares s1, . . . , s|S| ∈ K such that s = s1 + . . . + s|S| and, for m = 1, . . . , |S|,
the share sm is available to every (honest) party in Sm.

A secret-sharing of s is denoted by [s], where [s]m denotes the mth share. The above secret-
sharing is linear as [c1s1+c2s2] = c1[s1]+c2[s2] holds for publicly-known c1, c2 ∈ K. Hence, the
parties can non-interactively compute any linear function over secret-shared inputs. For our
protocols, we will consider the sharing specification S = {Sm : Sm = P \ Zm and Zm ∈ Zs}.

2.1 Existing Asynchronous Primitives
Asynchronous Reliable Broadcast (Acast). An Acast protocol allows a designated sender
S ∈ P to send its input m ∈ {0, 1}ℓ identically to all the parties, even if S is potentially
corrupt. An Acast protocol ΠACast is presented in [33], provided Z satisfies the Q(3)(P, Z)
condition. The protocol also provides certain guarantees in a synchronous network, as stated
in Lemma 8 (Appendix A). The protocol, along with the proof of Lemma 8 and various
terminologies associated with ΠACast are available in the full version of this paper [4].

Public Reconstruction of a Secret-Shared Value. Let s ∈ K be a value, which is secret-
shared with respect to S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. To publicly reconstruct s,
we use the reconstruction protocol ΠRec(s, S) of [34]. In a synchronous network, the protocol
will take ∆ time, while in an asynchronous network, the parties eventually output s. The
protocol incurs a communication of O(|Zs| · n2 log |K|) bits; see [4] for the details.

3 Best-of-Both-Worlds Byzantine Agreement (BA)

We begin with the definition of BA, which is adapted from [14, 2].

▶ Definition 3 (BA). Let Π be a protocol for P where every Pi has input bi ∈ {0, 1} and a
possible output from {0, 1, ⊥}. Let A be an adversary, characterized by adversary structure
Z, where A can corrupt any set of parties from Z during the execution of Π.

Z-Guaranteed Liveness: All honest parties obtain an output.
Z-Almost-Surely Liveness: Almost-surely, all honest parties obtain some output.
Z-Validity: If all honest parties input b, every honest party with an output outputs b.
Z-Weak Validity: If all honest parties input b, every honest party with an output
outputs b or ⊥.
Z-Consistency: All honest parties with an output output the same value (may be ⊥).
Z-Weak Consistency: All honest parties with an output output a common v ∈ {0, 1, ⊥}.

A. Appan, A. Chandramouli, and A. Choudhury 3:11

A Z-perfectly-secure synchronous BA (SBA) protocol Π has Z-guaranteed liveness, Z-validity,
and Z-consistency in a synchronous network. A Z-perfectly-secure asynchronous BA (ABA)
Π has Z-almost-surely liveness, Z-validity and Z-consistency in an asynchronous network.12

To design our BoBW BA protocol, we will need a special broadcast protocol. Hence, we next
review the definition of broadcast, adapted from [14, 2].

▶ Definition 4 (Broadcast). Let Π be a protocol where a sender S ∈ P has input m ∈ {0, 1}ℓ,
and parties obtain an output. Let A be an adversary characterized by adversary structure Z.

Z-Liveness: All honest parties obtain some output.
Z-Validity: If S is honest, then every honest party with an output outputs m.
Z-Weak Validity: If S is honest, every honest party with an output outputs m or ⊥.
Z-Consistency: If S is corrupt, every honest party with an output outputs a common
value.
Z-Weak Consistency: If S is corrupt, every honest party with an output outputs a
common m⋆ ∈ {0, 1}ℓ or ⊥.

Π is a Z-perfectly-secure broadcast protocol if it has Z-Liveness, Z-Validity, and Z-
Consistency.13

We give an overview of how to generalize the BoBW BA protocol of [2] and defer to the
full version of the paper [4] for the details. The protocol is based on three components.

Component I: SBA with Asynchronous Guaranteed Liveness. We require a Z-perfectly-
secure SBA protocol ΠSBA with Q(3)(P, Z) condition, which also provides Z-guaranteed
liveness in an asynchronous network. We design a candidate for ΠSBA by generalizing the
simple SBA protocol of [11], which was designed to tolerate t < n/3 corruptions. The
protocol requires at most 3n rounds in a synchronous network and hence, within time
TSBA

def= 3n · ∆, all honest parties will get an output in a synchronous network. The protocol
incurs a communication of O(n3ℓ) bits if the inputs of the parties are of size ℓ bits. To
achieve Z-guaranteed liveness in an asynchronous network, the parties can run ΠSBA till time
TSBA, and then output ⊥ if no “valid” output is computed as per the protocol at the time
TSBA; see the full version of this paper [4] for the details.

Component II: ABA with Synchronous Guarantees. We deploy the ABA protocol ΠABA
of [17], where Z satisfies the Q(3)(P, Z) condition and where each party has an input bit.
The protocol has the following liveness guarantees in an asynchronous network.

If the inputs of all honest parties are the same, then ΠABA achieves Z-guaranteed liveness.
Else, ΠABA achieves Z-almost-surely liveness.

Protocol ΠABA also achieves Z-validity, Z-consistency, and the following liveness guarantees
in a synchronous network.

If all honest parties have the same input, then ΠABA achieves Z-guaranteed liveness, and
all honest parties obtain output within time TABA = k · ∆, for some known constant k.
Else, ΠABA achieves Z-almost-surely liveness and requires O(poly(n) · ∆) expected time.

12 The weak validity and weak consistency properties are defined here for the sake of completeness. Looking
ahead, our BoBW BA protocol will be using BA protocol(s) with these “weaker” properties.

13 Similar to BA, the weak validity and consistency properties are defined here for the sake of completeness,
since we will be designing a broadcast protocol with these weaker properties in our BoBW BA protocol.

DISC 2023

3:12 Network Agnostic Perfectly Secure MPC Against General Adversaries

Irrespective of the network type, ΠABA incurs a communication of O(|Z| · n5 log |F| + n6 log n)
bits, if all honest parties have the same input bit. Else, it incurs an expected communication
of O(|Z| · n7 log |F| + n8 log n) bits. Here F is a finite field such that |F| > n holds.

Component III: Synchronous Broadcast with Asynchronous Guarantees. We assume the
existence of a broadcast protocol ΠBC, which is a Z-perfectly-secure broadcast protocol in a
synchronous network, and which also provides Z-Liveness, Z-Weak Validity and Z-Weak
Consistency in an asynchronous network. We present a candidate for ΠBC by generalizing
the broadcast protocol of [2] with similar guarantees. The protocol incurs a communication
of O(n3ℓ) bits, where S participates with input m ∈ {0, 1}ℓ. The idea is to carefully “stitch”
together protocol ΠACast with the protocol ΠSBA. In the protocol, all honest parties have
some output at the (local) time TBC = 3∆ + TSBA. Depending upon the network type and
corruption status of S, the output is -

Synchronous Network and Honest S: m for all honest parties.
Synchronous Network and Corrupt S: a common m⋆ ∈ {0, 1}ℓ ∪ {⊥} for all honest parties.
Asynchronous Network and Honest S: either m or ⊥ for each honest party.
Asynchronous Network and Corrupt S: a common m⋆ ∈ {0, 1}ℓ or ⊥ for each honest
party.

Protocol ΠBC also gives the parties who output ⊥ at time TBC an option to switch their
output to some ℓ-bit string if the parties keep running the protocol beyond time TBC and if
certain “conditions” are satisfied for those parties. We stress that this switching provision
is only for those who output ⊥ at time TBC. While this provision is not “useful” and not
used while designing BA, it comes in handy when ΠBC is used to broadcast values in our
VSS protocol. Notice that the output-switching provision will not lead to a violation of
consistency and hence honest parties will not end up with different ℓ-bit outputs. Following
the terminology of [2], we call the process of computing output at time TBC and beyond time
TBC as the regular mode and fallback mode of ΠBC respectively. We refer to Appendix A for
the terminologies associated with the protocol ΠBC.

ΠBC+ΠABA ⇒ BoBW BA. We combine protocols ΠBC and ΠABA to get ΠBA by generalizing
the idea used in [2] against threshold adversaries. In the protocol, every party first broadcasts
its input bit (for the BA protocol) through an instance of ΠBC. If the network is synchronous,
then all honest parties should have received the inputs of all the (honest) sender parties from
the corresponding broadcast instances through regular mode by time TBC. Consequently,
at time TBC, the parties decide an output for all the n instances of ΠBC. Based on these
outputs, the parties decide their respective inputs for the ΠABA protocol. Specifically, if
“sufficiently many” outputs from the ΠBC instances are found to be same, then the parties
consider this output value as their input for the ΠABA instance. Else, they stick to their
original inputs. The overall output for ΠBA is then set to be the output from ΠABA. For the
formal description of ΠBA and the proof of Theorem 5, see [4].

▶ Theorem 5. Let Z satisfy the Q(3)(P , Z) condition. Then ΠBA achieves the following.
In a synchronous network, the protocol is a Z-perfectly-secure SBA protocol, where all
honest parties obtain an output within time TBA = TBC + TABA. The protocol incurs a
communication of O(|Z| · n5 log |F| + n6 log n) bits.
In an asynchronous network, the protocol is a Z-perfectly-secure ABA protocol, with an
expected communication of O(|Z| · n7 log |F| + n8 log n) bits.

A. Appan, A. Chandramouli, and A. Choudhury 3:13

Protocol ΠVSS(D, s, S = (S1, . . . , S|Zs|))

Phase I – Share Distribution: D randomly selects s(1), . . . , s(|Zs|) ∈ K such that s =
s(1) + . . . + s(|Zs|). For m = 1, . . . , |Zs|, it then sends s(m) to every party in the set Sm.
Phase II – Pairwise Checks: For m = 1, . . . , |Zs|, each Pi ∈ Sm does the following.

On receiving s
(m)
i from D, wait till the local time is a multiple of ∆. Send s

(m)
i to each

Pj ∈ Sm.
On receiving s

(m)
j from any Pj ∈ Sm, wait till the local time is a multiple of ∆. Do the

following.
∗ If a share s

(m)
i corresponding to Sm has been received from D, then, broadcast OK(m, i, j)

if s
(m)
i = s

(m)
j holds. Else, broadcast NOK(m, i).

∗ If s
(m)
j and s

(m)
k have been received from any Pj and Pk respectively, belonging to Sm

such that s
(m)
j ̸= s

(m)
k , then broadcast NOK(m, i).

Local Computation – Constructing Consistency Graphs: Each Pi ∈ P constructs
undirected consistency graphs G

(1)
i , . . . , G

(|Zs|)
i , where G

(m)
i is over the parties in Sm and where

the edge (Pj , Pk) is included in G
(m)
i if Pi has received OK(m, j, k) and OK(m, k, j) from the

broadcast of Pj and Pk respectively, either through regular or fallback mode.
Phase III – Resolving Complaints and Broadcasting Core Sets Based On Zs: Each
Pi ∈ P (including D) does the following at time 2∆ + TBC.

If NOK(m, j) is received from the broadcast of any Pj ∈ Sm through regular-mode corresponding
to any m ∈ {1, . . . , |Zs|}, then do the following:
∗ If Pi = D: Broadcast Resolve(m, s(m)).
∗ If Pi ̸= D: Broadcast Resolve(m, s

(m)
i), if Pi ∈ Sm and Pi has received s

(m)
i from D.

(If Pi = D): For m = 1, . . . , |Zs|, check if there exists a Cm ⊆ Sm which constitutes a clique
in graph G

(m)
D , such that Sm \ Cm ∈ Zs. If C1, . . . , C|Zs| are found, then broadcast them.

Local Computation – Verifying and Accepting Core sets: Each party Pi ∈ P (including
D) does the following at time 2∆ + 2TBC.

If C1, . . . , C|Zs| are received from the broadcast of D through regular mode, accept these if:
∗ For m = 1, . . . , |Zs|, the set Cm constitutes a clique in the consistency graph G

(m)
i at time

2∆ + TBC. In addition, Sm \ Cm ∈ Zs.
∗ For m = 1, . . . , |Zs|, if NOK(m, j) was received from the broadcast of any Pj ∈ Sm through

regular mode at time 2∆ + TBC, then the following must hold at time 2∆ + 2TBC.
· Resolve(m, s(m)) is received from the broadcast of D through regular-mode.
· Resolve(m, s(m)) is received from the broadcast of a set of parties C′

m through regular-
mode, where C′

m ⊆ Cm, and Cm \ C′
m ∈ Zs.

Phase IV – Deciding Whether Core Sets Based on Zs have Been Accepted by Any
Honest Party: At time 2∆ + 2TBC, each Pi ∈ P participates in an instance of ΠBA with input
bi = 1 if it has accepted sets C1, . . . , C|Zs|, else, with input bi = 0, and waits for time TBA.

Figure 1 Best-of-both-worlds VSS protocol: Part I.

4 Best-of-Both-Worlds VSS Protocol

The goal of our BoBW VSS protocol (Fig 1 and Fig 2) is to enable a dealer D ∈ P
to “verifiably” generate a secret-sharing of its private input s ∈ K with respect to the
specification S = {Sm : Sm = P \ Zm and Zm ∈ Zs}, irrespective of the network type. An
overview of the protocol has been given in Section 1. In the protocol, broadcast is instantiated
through ΠBC with respect to Zs (see the terminologies associated with ΠBC in Appendix A).

Theorem 6 states the properties of ΠVSS and is proven in the full version of the paper [4].

▶ Theorem 6. Protocol ΠVSS achieves the following.

DISC 2023

3:14 Network Agnostic Perfectly Secure MPC Against General Adversaries

Protocol ΠVSS(D, s, S = (S1, . . . , S|Zs|)) Contd . . .

Local Computation – Computing Shares Through Core Sets Based on Zs: If the
output of ΠBA is 1, then each party Pi ∈ P does the following.

If C1, . . . , C|Zs| are not received yet, then wait to receive them from the broadcast of D. Then
for m = 1, . . . , |Zs|, compute the share s

(m)
i corresponding to Sm as follows, if Pi ∈ Sm.

∗ If at time 2∆ + 2TBC, Resolve(m, s(m)) was received from D’s broadcast and from a set of
parties C′

m ⊆ Cm through regular-mode, where Cm \ C′
m ∈ Zs, then output s

(m)
i = s(m).

∗ Else, if a common value, say s(m), was received from a set of parties C′′
m ⊆ Cm at time 2∆

where Cm \ C′′
m ∈ Zs, then output s

(m)
i = s(m).

∗ Else wait till there exists a subset of parties C′′′
m ⊆ Cm where Cm \ C′′′

m ∈ Za, such that a
common value, say s(m), is received from all the parties in C′′′

m . Output s
(m)
i = s(m).

Phase V – Broadcasting Core Sets Based on Za: If the output of ΠBA is 0, then for
m = 1, . . . , |Zs|, dealer D does the following in its graph G

(m)
D .

Check if there exists a subset of parties Em ⊆ Sm, which constitutes a clique in the graph
G

(m)
D , such that Sm \ Em ∈ Za. Upon finding E1, . . . , E|Zs|, broadcast them.

Local Computation – Computing Shares Through Core Sets Based on Za: If the
output of ΠBA is 0, then each party Pi ∈ P does the following.

Participate in any instance of ΠBC invoked by D for broadcasting E1, . . . , E|Zs|, only after time
2∆ + 2TBC + TBA. Wait till E1, . . . , E|Zs| are received from the broadcast of D. Upon receiving,
accept these sets if each set Em constitutes a clique in the graph G

(m)
i and Sm \ Em ∈ Za.

Upon accepting, compute the share s
(m)
i corresponding to every Sm where Pi ∈ Sm as follows.

∗ If Pi ∈ Em, then output s
(m)
i received from D.

∗ Else, wait till there exists a subset E ′
m ⊆ Em, where Em \ E ′

m ∈ Zs, such that there exists a
common value, say s(m), received from all the parties in E ′

m. Output s
(m)
i = s(m).

Figure 2 Best-of-both-worlds VSS protocol: Part II.

If D is honest, then the following hold.
Zs-correctness: In a synchronous network, s is secret-shared with respect to S at time
TVSS = 2∆ + 2TBC + TBA.
Za-correctness: In an asynchronous network, almost-surely, s is eventually secret-shared
with respect to S.
Privacy: Adversary’s view remains independent of s in any network.

If D is corrupt, either no honest party obtains an output or there exists an s⋆ ∈ K, such that:
Za-commitment: In an asynchronous network, almost-surely, s⋆ is eventually secret-
shared with respect to S.
Zs-commitment: In a synchronous network, s⋆ is shared with respect to S, such that:

If any honest party outputs its shares at time TVSS, then all honest parties output their
shares at time TVSS.
If any honest party outputs its shares at time T > TVSS, then every honest party outputs
its shares by time T + 2∆.

Communication Complexity: The protocol incurs a communication of O(|Zs|·n4(log |K|+
log |Zs| + log n) + n5 log n) bits, and invokes one instance of ΠBA.

ΠVSS for L Secrets. We describe how D can share L secrets with just one instance of ΠBA
in Appendix B.

A. Appan, A. Chandramouli, and A. Choudhury 3:15

5 The Preprocessing Phase Protocol

Our preprocessing phase allows the parties to generate secret-sharing of cM multiplication-
triples, which are random for the adversary and is based on two sub-protocols.14

Agreement on a Common Subset (ACS). In protocol ΠACS, there exists a set P ′ ⊆ P such
that it will be guaranteed that Zs and Za either satisfy the Q(1,1)(P ′, Zs, Za) condition or
Q(3,1)(P ′, Zs, Za) condition 15. Moreover, each party in P ′ will have L values, which it would
like to secret-share using ΠVSS. As corrupt dealers might not invoke their instances of ΠVSS,
the parties can compute outputs from only a subset of ΠVSS instances corresponding to parties
P ′ \ Z, for some Z ∈ Zs (even in a synchronous network). However, in an asynchronous
network, different parties may compute outputs from ΠVSS instances of different subsets
of P ′ \ Z parties, corresponding to a different Z ∈ Zs. Protocol ΠACS allows parties to
agree on a common subset CS of parties, where P ′ \ CS ∈ Zs, such that all honest parties
will be able to compute their outputs corresponding to the ΠVSS instances of the parties in
CS. Moreover, in a synchronous network, all honest parties from P ′ are guaranteed to be
present in CS.16 Protocol ΠACS is obtained by generalizing the ACS protocol of [2], which
was designed for threshold adversaries. The idea is to run n instances of our BA protocol
ΠBA, one for each party, and decide which of these ΠVSS instances will produce an output for
everyone. However, we need to take special care to ensure that all honest parties are going to
make it to CS in a synchronous network; see the full version of the paper [4] for the details.

The Multiplication Protocol. Protocol ΠMult takes as input secret-shared pairs of values
{([a(ℓ)], [b(ℓ)])}ℓ=1,...,L, and securely generates {[c(ℓ)]}ℓ=1,...,L, where c(ℓ) = a(ℓ) · b(ℓ). For
simplicity, we discuss the idea when L = 1 (a brief overview of the protocol has already
been presented in Section 1). Let [a] and [b] be the inputs to the protocol and the goal
is to compute [a · b]. The parties securely compute secret-shared summands [a]l · [b]m and
then [a · b] can be computed locally from secret-shared summands [a]l · [b]m, owing to the
linearity property. A secret-sharing of the summand [a]l · [b]m is computed as follows: let
Il,m = Sl ∩ Sm. Then, irrespective of the network type, Il,m is bound to have at least one
honest party, since Zs and Za satisfy the Q(1,1)(Il,m, Zs, Za) condition. Each party in Il,m

is asked to independently secret-share the summand [a]l · [b]m through an instance of ΠVSS.
To avoid an indefinite wait, the parties agree on a common subset of parties Rl,m from Il,m,
where Il,m \ Rl,m ∈ Zs, who have shared some summand, such that Rl,m has at least one
honest party, irrespective of the network type. For this, the parties execute an instance of
the ΠACS protocol. To check if any cheating has occurred, the parties check whether all the
parties in Rl,m have shared the same “version” of the summand [a]l · [b]m. Protocol ΠMult
and its properties are available in the full version of this paper [4].

The Preprocessing Phase Protocol. Protocol ΠPreProcessing has two stages. In the first
stage, the parties securely generate secret-sharing of cM pairs of random values, by running
an instance of ΠACS, where the input for each party will be cM pairs of random values. In
the second stage, a secret-sharing of the product of each pair is computed by executing ΠMult.
Protocol ΠPreProcessing and its properties are available in the full version of this paper [4].

14 ([a], [b], [c]) constitutes a multiplication triple, where a, b ∈ K and c = a · b holds.
15 In our preprocessing phase protocol, P ′ will be Sl ∩ Sm corresponding to some Sl, Sm ∈ S and hence,

the P ′(1,1)(Q, Zs, Za) condition will be satisfied. In our MPC protocol, P ′ will be P and hence the
Q(3,1)(P ′, Zs, Za) condition will be satisfied.

16 This property will be crucial in a synchronous network.

DISC 2023

3:16 Network Agnostic Perfectly Secure MPC Against General Adversaries

6 Best-of-Both-Worlds Circuit-Evaluation Protocol

Protocol ΠCirEval for the circuit-evaluation consists of four phases. In the first phase, the
parties generate secret-sharing of cM random multiplication-triples through ΠPreProcessing.
Additionally, they invoke ΠACS to generate secret-sharing of their respective inputs for the
publicly known function f and agree on a common subset of parties CS, where P \ CS ∈ Zs,
such that the inputs of the parties in CS are secret-shared. The inputs of the remaining
parties are set to 0. Note that in a synchronous network, all honest parties will be in CS. In
the second phase, the parties securely evaluate each gate in the circuit in a secret-shared
fashion, after which the parties publicly reconstruct the secret-shared output in the third
phase. The last phase is the termination phase, where the parties wait till “sufficiently
many” parties have obtained the same output, after which they “safely” take that output
and terminate the protocol (and all the underlying sub-protocols).

ΠCirEval and the proof of Theorem 7 are available in the full version of this paper [4].

▶ Theorem 7. Let A be an adversary, characterized by adversary structures Zs and Za

in a synchronous and asynchronous network respectively, satisfying the conditions Con
(see Condition 1 in Section 1). Moreover, let f : Kn → K be a function represented by
an arithmetic circuit cir over K, consisting of cM number of multiplication gates, with a
multiplicative depth of DM , with each party having an input xi ∈ K. Then, ΠCirEval incurs
a communication cost of O(cM · |Zs|3 · n5(log |K| + log |Zs| + log n) + |Zs|2 · n6 log n) bits,
invokes O(|Zs|2 · n) instances of ΠBA, and achieves the following for some CS ⊆ P.

In a synchronous network, all honest parties output y = f(x1, . . . , xn) at time (30n +
DM + 6k + 38) · ∆, where xj = 0 for every Pj ̸∈ CS, such that P \ CS ∈ Zs, and every
honest party is present in CS; here k is a constant determined by the protocol ΠABA.
In an asynchronous network, almost-surely, the honest parties eventually output y =
f(x1, . . . , xn) where xj = 0 for every Pj ̸∈ CS and where P \ CS ∈ Zs.
The view of A remains independent of the inputs of the honest parties in CS.

References
1 I. Abraham, D. Dolev, and J. Y. Halpern. An Almost-surely Terminating Polynomial Protocol

for Asynchronous Byzantine Agreement with Optimal Resilience. In PODC, pages 405–414.
ACM, 2008.

2 A. Appan, A. Chandramouli, and A. Choudhury. Perfectly-Secure Synchronous MPC with
Asynchronous Fallback Guarantees. In PODC, pages 92–102. ACM, 2022.

3 A. Appan, A. Chandramouli, and A. Choudhury. Revisiting the Efficiency of Asynchronous
Multi Party Computation Against General Adversaries. In INDOCRYPT, volume 13774 of
Lecture Notes in Computer Science, pages 223–248. Springer International Publishing, 2022.

4 Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly secure synchronous
mpc with asynchronous fallback guarantees against general adversaries. Cryptology ePrint
Archive, Paper 2022/1047, 2022. URL: https://eprint.iacr.org/2022/1047.

5 B. Applebaum, E. Kachlon, and A. Patra. The Round Complexity of Perfect MPC with Active
Security and Optimal Resiliency. In FOCS, pages 1277–1284. IEEE, 2020.

6 R. Bacho, D. Collins, C. Liu-Zhang, and J. Loss. Network-Agnostic Security Comes for Free
in DKG and MPC. Cryptology ePrint Archive, Paper 2022/1369, 2022.

7 L. Bangalore, A. Choudhury, and A. Patra. The Power of Shunning: Efficient Asynchronous
Byzantine Agreement Revisited. J. ACM, 67(3):14:1–14:59, 2020.

8 D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In J. Feigenbaum,
editor, CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer,
1991.

https://eprint.iacr.org/2022/1047

A. Appan, A. Chandramouli, and A. Choudhury 3:17

9 M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In STOC,
pages 52–61. ACM, 1993.

10 M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation (Extended Abstract). In STOC, pages 1–10. ACM,
1988.

11 P. Berman, J. A. Garay, and K. J. Perry. Towards Optimal Distributed Consensus (Extended
Abstract). In FOCS, pages 410–415. IEEE Computer Society, 1989.

12 E. Blum, J. Katz, and J. Loss. Synchronous Consensus with Optimal Asynchronous Fallback
Guarantees. In TCC, volume 11891 of Lecture Notes in Computer Science, pages 131–150.
Springer, 2019.

13 E. Blum, J. Katz, and J. Loss. Tardigrade: An Atomic Broadcast Protocol for Arbitrary
Network Conditions. In ASIACRYPT, volume 13091 of Lecture Notes in Computer Science,
pages 547–572. Springer, 2021.

14 E. Blum, C. L. Zhang, and J. Loss. Always Have a Backup Plan: Fully Secure Synchronous
MPC with Asynchronous Fallback. In CRYPTO, volume 12171 of Lecture Notes in Computer
Science, pages 707–731. Springer, 2020.

15 D. Chaum, C. Crépeau, and I. Damgård. Multiparty Unconditionally Secure Protocols
(Extended Abstract). In STOC, pages 11–19. ACM, 1988.

16 B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faults (Extended Abstract). In 26th Annual Symposium on
Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985, pages 383–395.
IEEE Computer Society, 1985.

17 A. Choudhury. Almost-Surely Terminating Asynchronous Byzantine Agreement Against
General Adversaries with Optimal Resilience. In ICDCN, pages 167–176. ACM, 2023.

18 A. Choudhury and N. Pappu. Perfectly-Secure Asynchronous MPC for General Adversaries
(Extended Abstract). In INDOCRYPT, volume 12578 of Lecture Notes in Computer Science,
pages 786–809. Springer, 2020.

19 A. Choudhury and A. Patra. An Efficient Framework for Unconditionally Secure Multiparty
Computation. IEEE Trans. Information Theory, 63(1):428–468, 2017.

20 R. Cramer, I. Damgård, and U. M. Maurer. General Secure Multi-party Computation from any
Linear Secret-Sharing Scheme. In EUROCRYPT, volume 1807 of Lecture Notes in Computer
Science, pages 316–334. Springer Verlag, 2000.

21 G. Deligios, M. Hirt, and C. Liu-Zhang. Round-Efficient Byzantine Agreement and Multi-
party Computation with Asynchronous Fallback. In TCC, volume 13042 of Lecture Notes in
Computer Science, pages 623–653. Springer, 2021.

22 G. Deligios and C. Liu-Zhang. Synchronous Perfectly Secure Message Transmission with
Optimal Asynchronous Fallback Guarantees. IACR Cryptol. ePrint Arch., page 1397, 2022.

23 D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly Secure Message Transmission. J.
ACM, 40(1):17–47, 1993.

24 M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of Distributed Consensus with
One Faulty Process. J. ACM, 32(2):374–382, 1985.

25 M. Fitzi and U. M. Maurer. Efficient Byzantine Agreement Secure Against General Adversaries.
In DISC, volume 1499 of Lecture Notes in Computer Science, pages 134–148. Springer, 1998.

26 D. Ghinea, C. Liu-Zhang, and R. Wattenhofer. Optimal Synchronous Approximate Agreement
with Asynchronous Fallback. In PODC, pages 70–80. ACM, 2022.

27 O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority. In A. V. Aho, editor, Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages
218–229. ACM, 1987.

28 Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in secure
multi-party computation (extended abstract). In PODC, pages 25–34. ACM, 1997.

DISC 2023

3:18 Network Agnostic Perfectly Secure MPC Against General Adversaries

29 Martin Hirt and Ueli Maurer. Player simulation and general adversary structures in perfect
multiparty computation. Journal of Cryptology, 13(1):31–60, 2000.

30 Martin Hirt and Daniel Tschudi. Efficient general-adversary multi-party computation. In
ASIACRYPT, volume 8270 of Lecture Notes in Computer Science, pages 181–200. Springer,
2013.

31 M. Ito, A. Saito, and T. Nishizeki. Secret Sharing Schemes Realizing General Access Structures).
In Global Telecommunication Conference, Globecom, pages 99–102. IEEE Computer Society,
1987.

32 M. V. N. Ashwin Kumar, K. Srinathan, and C. Pandu Rangan. Asynchronous Perfectly Secure
Computation Tolerating Generalized Adversaries. In ACISP, volume 2384 of Lecture Notes in
Computer Science, pages 497–512. Springer, 2002.

33 K. Kursawe and F. C. Freiling. Byzantine Fault Tolerance on General Hybrid Adversary
Structures. Technical Report, RWTH Aachen, 2005.

34 U. M. Maurer. Secure Multi-party Computation Made Simple. In SCN, volume 2576 of Lecture
Notes in Computer Science, pages 14–28. Springer, 2002.

35 A. Momose and L. Ren. Multi-Threshold Byzantine Fault Tolerance. In CCS, pages 1686–1699.
ACM, 2021.

36 A. Patra and D. Ravi. On the Power of Hybrid Networks in Multi-Party Computation. IEEE
Trans. Information Theory, 64(6):4207–4227, 2018.

37 M. C. Pease, R. E. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
J. ACM, 27(2):228–234, 1980.

38 T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest
Majority (Extended Abstract). In STOC, pages 73–85. ACM, 1989.

39 A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.
40 A. C. Yao. Protocols for Secure Computations (Extended Abstract). In FOCS, pages 160–164.

IEEE Computer Society, 1982.

A Broadcast Protocols

A.1 Acast

The properties satsfied by protocol ΠACast [33] in a synchronous and an asynchronous network
are given in Lemma 8.

▶ Lemma 8. Let A be an adversary characterized by an adversary structure Z satisfying the
Q(3)(P, Z) condition. Then, for a sender S with input m, ΠACast achieves the following in
an asynchronous network.

Z-Liveness: If S is honest, then all honest parties eventually have an output.
Z-Validity: If S is honest, then each honest Pi with an output, outputs m.
Z-Consistency: If S is corrupt and some honest Pi outputs m⋆, then all honest parties
eventually output m⋆.

ΠACast achieves the following in a synchronous network.
Z-Liveness: If S is honest, then all honest parties obtain an output within time 3∆.
Z-Validity: If S is honest, then every honest party with an output, outputs m.
Z-Consistency: If S is corrupt and some honest party outputs m⋆ at time T , then every
honest Pi outputs m⋆ by the end of time T + 2∆.

Communication Complexity: O(n2ℓ) bits are communicated by the parties in total.

A. Appan, A. Chandramouli, and A. Choudhury 3:19

A.2 Terminologies Associated with ΠBC

▶ Terminology 9 (Terminologies for ΠBC). We say that Pi broadcasts m to mean that
Pi invokes an instance of ΠBC as S with input m, and the parties participate in this in-
stance. Similarly, we say that Pj receives m from the broadcast of Pi through regular-mode
(resp. fallback-mode), to mean that Pj has the output m at time TBC (resp. after time TBC)
during the instance of ΠBC.

B VSS for sharing L secrets

To share L secrets, D can invoke L instances of ΠVSS. However, instead of computing and
broadcasting L · |Zs| core sets, it can compute and broadcast only |Zs| core sets, on the
behalf of all the L instances of ΠVSS. The parties will need to execute a single instance of
ΠBA to decide whether D has broadcasted valid core sets. The resultant protocol will incur a
communication of O(L · |Zs| · n4(log |K| + log |Zs| + log n) + n5 log n) bits and invokes one
instance of ΠBA. To avoid repetition, we do not provide the formal details.

DISC 2023

One Step Forward, One Step Back:
FLP-Style Proofs and the Round-Reduction
Technique for Colorless Tasks
Hagit Attiya #

Department of Computer Science, Technion, Israel

Pierre Fraigniaud #

IRIF – CNRS & Université Paris Cité, France

Ami Paz #

LISN – CNRS & Université Paris-Saclay, France

Sergio Rajsbaum #

IRIF, École Polytechnique and Instituto de Matemáticas, UNAM, Mexico

Abstract
The paper compares two generic techniques for deriving lower bounds and impossibility results in
distributed computing. First, we prove a speedup theorem (a-la Brandt, 2019), for wait-free colorless
algorithms, aiming at capturing the essence of the seminal round-reduction proof establishing a
lower bound on the number of rounds for 3-coloring a cycle (Linial, 1992), and going by backward
induction. Second, we consider FLP-style proofs, aiming at capturing the essence of the seminal
consensus impossibility proof (Fischer, Lynch, and Paterson, 1985) and using forward induction.

We show that despite their very different natures, these two forms of proof are tightly connected.
In particular, we show that for every colorless task Π, if there is a round-reduction proof establishing
the impossibility of solving Π using wait-free colorless algorithms, then there is an FLP-style proof
establishing the same impossibility. For 1-dimensional colorless tasks (for an arbitrarily number
n ≥ 2 of processes), we prove that the two proof techniques have exactly the same power, and
more importantly, both are complete: if a 1-dimensional colorless task is not wait-free solvable
by n ≥ 2 processes, then the impossibility can be proved by both proof techniques. Moreover, a
round-reduction proof can be automatically derived, and an FLP-style proof can be automatically
generated from it.

Finally, we illustrate the use of these two techniques by establishing the impossibility of solving
any colorless covering task of arbitrary dimension by wait-free algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Wait-free computing, lower bounds

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.4

Related Version Full Version: http://arxiv.org/abs/2308.04213

Funding Hagit Attiya: partially supported by the Israel Science Foundation (grants 380/18 and
22/1425).
Pierre Fraigniaud : partially supported by the ANR projects DUCAT (ANR-20-CE48-0006), FREDDA
(ANR-17-CE40-0013), and QuData (ANR-18-CE47-0010).
Sergio Rajsbaum: partially supported by the ANR projects DUCAT (ANR-20-CE48-0006).

Acknowledgements The authors thank Faith Ellen and the referees for helpful comments.

© Hagit Attiya, Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:pierre.fraigniaud@irif.fr
mailto:ami.paz@lisn.fr
https://orcid.org/0000-0002-6629-8335
mailto:rajsbaum@im.unam.mx
https://doi.org/10.4230/LIPIcs.DISC.2023.4
http://arxiv.org/abs/2308.04213
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

1 Introduction

We analyze the relative power of two generic and versatile techniques for establishing lower
bounds and impossibility results in asynchronous distributed computing. We focus on solving
tasks, defined as triples Π = (I, O, ∆), where processes start with initial input values defined
by I, and decide irrevocably on output values allowed by O after communicating with each
other for some number of steps, respecting the input/output relation ∆; the sets of processes,
input values and output values are all finite.

This paper concentrates on the family of colorless tasks, including consensus, set agree-
ment [17], loop agreement [25], and various robot and graph agreement tasks [3, 16]. A
colorless task is defined only in terms of input and output values, regardless of the number
of processes involved, and regardless of which process has a particular input or output
value; accordingly, I and O consist of sets of values, without process ids. For instance,
in the binary consensus task, I =

{
{0}, {1}, {0, 1}

}
, meaning that all processes may start

with input 0, or all processes may start with input 1, or some processes may start with
input 0 while others may start with input 1. In the same task, O =

{
{0}, {1}

}
, meaning

that the only valid output configurations are when all processes output 0, or all processes
output 1. Finally, consensus specification is captured by ∆({0}) = {0}, ∆({1}) = {1}, and
∆({0, 1}) =

{
{0}, {1}

}
, meaning that, if there was an initial agreement between the input

values then the processes must stick to this agreement and output their input values, and
otherwise they are allow to output either 0 or 1, as long as they all agree on the same value.

Colorless tasks are simpler to analyze than general tasks, such as symmetry breaking
tasks [15], but they are still undecidable [24]. They have an elegant computability charac-
terization [23,28], essentially stating that a colorless task is wait-free solvable if and only if
there is a continuous map from the geometric realization of I to that of O that respects ∆.
One major interest of colorless tasks is that, whenever solvable, they can be solved by simple
algorithms, referred to as colorless algorithms [28] (see also [23, Ch. 4]). Roughly speaking,
such algorithms ignore multiplicities of input values and process states, and manipulate only
sets of values; in contrast, general algorithms manipulate vectors of values and take into
account which processes possess which value.

The two lower-bound or impossibility techniques at the core of our work are FLP-style
proofs, named after Fischer, Lynch and Paterson [19], and round-reduction proofs, whose first
occurrence might be attributed to Linial [33]. The former offers a form of forward induction
technique, while the latter offers a form of backward induction, and they both present some
form of locality. We recall these two techniques hereafter.

1.1 Stepping Forward: FLP-Style Impossibility Proofs
The celebrated FLP proof technique [19] is perhaps the most used technique for proving
impossibility results in distributed computing. It has been used to prove the impossibility of
solving consensus and several other problems [6,18,34], as well as to derive lower bounds [1,6,
31]. To prove that a task Π = (I, O, ∆) is not wait-free solvable, the FLP technique considers
a hypothetical algorithm alg solving the task, and constructs an infinite sequence σ0, σ1, . . .

of system configurations such that, for every i ≥ 0,
σi+1 is a successor of σi, and
alg cannot output in σi.

To initiate this sequence, the prover is allowed to ask the valencies of all initial configura-
tions σ ∈ I, where the valency of a configuration σ is the set of values that are output by
alg in all executions starting from σ. Based on these valencies, the prover selects an initial

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:3

configuration σ0 ∈ I. Then, given a configuration σi, the prover asks the algorithm for the
valencies of some successor configurations of σi, and one of these configurations is selected
to be the next configuration σi+1 in the sequence, and so on. This is a form of forward
induction, starting with σ0 and constructing a sequence of configurations one after the other.

If alg actually solves the task Π, then the prover will fail to construct an infinite
sequence, merely because alg can reveal the actual valencies that it produces for each
given configuration. On the other hand, if for every algorithm alg hypothetically solving Π
the prover successfully constructs an infinite sequence, then this establishes that Π is not
solvable because the sequence is constructed in such a way that alg cannot output in σi. For
instance, the FLP impossibility proof for consensus [19] constructs such an infinite sequence
σ0, σ1, . . . for every algorithm alg by establishing that (1) there exists an initial bivalent
configuration σ0 (i.e., a configuration from which an execution of alg leads all processes to
output 0, and another execution of alg leads all processes to output 1), and (2) for every
bivalent configuration σi, there exists a bivalent one-step successor σi+1 of σi that is bivalent.

An FLP-style impossibility proof is a simple case of extension-based impossibility proofs [2]
and local proofs [5], hence if such a proof exists for a task Π then there are also extension-
based and local impossibility proofs for it. All these techniques use types of valency-
arguments [6, Chapter 7], in the sense that they consider output values in executions starting
from a given configuration, and then decide on the next configuration. All these techniques
work for consensus but fail for set agreement (i.e., set agreement is not solvable, but this
impossibility cannot be established by valency arguments), and the exact set of tasks for
which each of them applies is not known.

1.2 Stepping Back: Round-Reduction Impossibility Proofs
The round-reduction proof technique in distributed computing can be traced back to the
seminal work of Linial [33] establishing a lower bound for coloring the n-node cycle Cn using
a (failure-free) synchronous algorithm. In a nutshell, he proved that for every t ≥ 1, if there
exists a t-round algorithm alg producing a proper k-coloring of Cn, then there exists a
(t−1)-round algorithm alg′ producing a proper 22k -coloring of Cn. Repeating this argument
for roughly 1

2 log∗ n times implies that if there is a (1
2 log∗ n)-round algorithm for 3-coloring

Cn then there exists a 0-round algorithm for (n − 1)-coloring it, which is impossible. Here,
log⋆ n denotes the number of times one should apply the log2 function to get from n to a
value smaller than 1.

This technique was generalized as a speedup theorem by Brandt [13]. Such a theorem is
based on establishing the existence of a map F transforming any task Π in some class T of
tasks into another task Π′ ∈ T such that, for every t ≥ 1, if Π is solvable in t rounds by an
algorithm alg from some class A of algorithms, then F (Π) is solvable in t − 1 rounds by an
algorithm alg′ ∈ A. Whenever such a theorem can be established, we get that for every
task Π ∈ T , and for every t ≥ 0, if the task F (t)(Π) obtained by iterating t times F on Π
is not solvable in zero rounds by an algorithm in A, then Π is not solvable in t rounds by
an algorithm in A, which provides a lower bound on the complexity of Π. In particular, if
F (t)(Π) is not solvable in zero rounds by an algorithm in A for all t ≥ 0, then Π cannot be
solved by an algorithm in A. We refer to this technique as a round-reduction impossibility or
and lower bound proof. In contrast with the forward induction approach of FLP-style proofs,
round-reduction is an a-posteriori technique, starting by assuming an algorithm solves a
problem in t rounds, claiming another problem is solvable in t − 1 rounds, and repeating this
argument down to 0 rounds; we hence refer to it as backward induction.

DISC 2023

4:4 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

A speedup theorem has been established in [13] for solving locally-checkable labeling
(LCL) tasks [36] using algorithms running in the anonymous LOCAL model [37]. A speedup
theorem has also been established in [20], but for general (colored) tasks and wait-free
algorithms running in the iterated immediate snapshot (IIS) model [7]. The transformations
FLOCAL and FIIS used in [13] and [20] respectively, are of very different natures. Nevertheless,
both enabled to establish lower bounds for various tasks, including sink-less orientation and
maximal independent set (MIS) in the LOCAL model (see [8,13]), and approximate agreement
in the IIS model, and even when the IIS model is enhanced with powerful objects like test&set
(see [20]).

Our first contribution is a speedup theorem for wait-free colorless algorithms solving
colorless tasks in the IIS model. It is important to note that, although the set of colorless
tasks is a subset of the set of general tasks, the speedup theorem in [20] does not imply
our speedup theorem, since the transformation FIIS used in [20] does not apply to colorless
algorithms. Specifically, if Π is solvable in t rounds by n processes running a wait-free colorless
algorithm, then FIIS(Π) is indeed solvable in t − 1 rounds by n processes, but running a
wait-free algorithm that may not be colorless. As a consequence, the theorem cannot be
iterated, which ruins the ability to design a round-reduction proof for colorless tasks. The
speedup theorem for colorless tasks we present here uses a transformation that preserves
solvability by colorless algorithms. The transformation Cl we define (Definition 4) has the
following properties, as shown in Theorem 6 and Theorem 11. Applications of this theorem
to approximate agreement and covering tasks can be found in Section 7.

▶ Theorem A. For every n ≥ 2 and every t ≥ 1, the transformation Cl maps any colorless
task Π to a colorless task Cl(Π) such that, when considering n processes running a colorless
wait-free algorithm in the IIS model:

If Π is 1-dimensional, then Π is solvable in t rounds if and only if Cl(Π) is solvable in
t − 1 rounds;
Regardless of the dimension of Π, if Π is solvable in t rounds then Cl(Π) is solvable in
t − 1 rounds.

A round-reduction impossibility or lower bound proof derived from Theorem A essentially
proceeds by computing Cl(t)(Π), and checking whether Cl(t)(Π) is solvable in zero rounds. If
the answer is negative for some t ≥ 1, the proof successfully shows that Π cannot be solved
in t rounds, and if it is negative for all t ≥ 1, the proof shows Π is not solvable; otherwise,
the proof fails. While Cl is not the only possible round-reduction operator for colorless tasks,
we focus solely on it in this work.

In the full version of this paper, we illustrate the fact that round-reduction does not
extend in a straightforward manner to all classes of algorithms. To this end, we consider
comparison-based algorithms, an important class of algorithms used for studying tasks such
as renaming and weak symmetry-breaking. We show that a closure operator similar to the
ones considered here and in [20] but restricted to comparison-based algorithms, does not
suffice for deriving a speedup theorem for comparison-based algorithms.

1.3 Round-Reduction vs. FLP-Style Impossibility Proofs
Interestingly, as for extension-based proofs, the round-reduction proofs derived from the
speedup theorem in [20] work for consensus but fail for set-agreement and the same holds for
our transformation Cl. We next show why the fact that both transformations succeed for
binary consensus but fail for set-agreement should not come as a surprise, in light of prior
results about FLP-style proofs.

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:5

Our second contribution shows that, although round-reduction proofs and FLP-style
proofs may appear very different in nature, their power in term of establishing impossibility
results can be compared. We actually show that the FLP-style proof technique is at least as
strong as the round-reduction proof technique.

▶ Theorem B (Theorem 13). For every colorless task Π and n ≥ 2, if there is a round-
reduction proof establishing the impossibility of solving Π by n processes running a wait-free
colorless algorithm, then there is an FLP-style proof establishing the same impossibility.

So, in particular, the fact that there is no round-reduction proof for the impossibility
of solving set-agreement wait-free should not come as a surprise, since it is known that
set-agreement has no extension-based impossibility proof [2,5,14], which is a proof technique
at least as strong as FLP-style proofs. Yet, the situation is a bit subtle here: the results
in [2, 5] rule out the existence of an FLP-style impossibility proof for solving set-agreement
using general algorithms, and [14] proves a similar result for anonymous algorithms (where
processes see a multi-set of the values stored in the memory and not a vector), but these
works do not necessarily rule out the existence of an FLP-style impossibility proof for solving
set agreement using colorless algorithms. The restriction to colorless algorithm allows the
claimed algorithm alg less flexibility regarding the valencies it announces to the prover, so
an FLP-style impossibility proof when restricting alg to be colorless is not ruled out by the
previous results.

Nevertheless, we were able to show that, for 1-dimensional colorless tasks, round-reduction
proofs and FLP-style proofs have exactly the same power (Corollary 14). Recall that, in
1-dimensional colorless tasks, I and O are graphs, i.e., the n processes can start with at
most two different input values and output at most two different values. This family includes
binary consensus, approximate agreement with binary inputs, and the colorless version of
wait-free checkable tasks [21], but not set-agreement. 1-dimensional colorless tasks are well
studied, and they are known to be wait-free solvable if and only if they are 1-resilient solvable,
both in the read/write model (with at least two processes) and in the message-passing model
(with at least three processes) [9, 12, 27]. In fact, we not only show equivalence between
round-reduction and FLP-style proof techniques for 1-dimensional colorless tasks, but we
show that both are complete for these tasks (Corollary 12 for the round-reduction technique
and Corollary 15 for FLP-style proofs). Hence, if a 1-dimensional colorless task is not
wait-free solvable by n ≥ 2 processes, then this impossibility can be proved by both proof
techniques.

▶ Theorem C. The round-reduction and FLP-style proof techniques are both complete for
1-dimensional colorless tasks and wait-free colorless algorithms.

Theorem C follows from the fact that, for 1-dimensional colorless tasks (and colorless
algorithms), our speedup theorem (Theorem A) also provides a necessary condition, that
is, for every 1-dimensional colorless task Π, every n ≥ 2, and every t ≥ 1, Π is solvable in t

rounds by n processes running a wait-free colorless algorithm in the IIS model if and only if
Cl(Π) is solvable in t − 1 rounds by n processes running a wait-free colorless algorithm in
the IIS model. This if-and-only-if condition provides a mechanical way for deciding whether
a given 1-dimensional colorless task Π is solvable. Indeed, the transformation Cl used in
Theorem A has a desirable property: it preserves the number of input and output values
(i.e., the vertices in I and O), and it may just potentially add some combinations of output
values that were not legal in Π but become legal in Cl(Π). As a consequence, iterating Cl
starting from Π necessarily leads to a fixed point Π∗ for Cl, i.e., Cl(Π∗) = Π∗, after a bounded

DISC 2023

4:6 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

number of iterations. It follows that a 1-dimensional colorless task Π is wait-free solvable in
the IIS model if and only if Π∗ is wait-free solvable in zero rounds, which is decidable. The
completeness of the FLP-style proof technique follows. Indeed, if a 1-dimensional colored task
Π is not wait-free solvable, then Π has a round-reduction impossibility proof (by computing
the fixed point Π∗, and showing that Π∗ is not solvable in zero rounds), from which it follows,
thanks to Theorem B, that Π has an FLP-style impossibility proof.

1.4 Applications
We illustrate the concepts and results introduced in this paper by applying them to the vast
class of covering tasks, whose colored version was introduced and studied in [21] under the
name locality-preserving tasks and further studied in [41]. To get the intuition of such a
tasks, it is easier to consider 1-dimensional covering tasks, for which I and O are graphs.
Recall that for two connected simple (i.e., no self-loops nor multiple edges) graphs G and H ,
and a function f : V (H) → V (G), the pair (H, f) is a covering of G if f is an homorphism
(i.e., it preserves edges) and, for every v ∈ V (H), the restriction of f to NH [v] is a one-to-one
mapping f : NH [v] → NG[f(v)]. For instance, for C3 = (v0, v1, v2), C6 = (u0, . . . , u5), and
f : V (C6) → V (C3) defined as f(ui) = vi mod 3, (C6, f) is a covering of C3. A covering
(O, f) of I induces a task Π = (I, O, ∆) where ∆ is essentially defined as f−1. For higher
dimensional colorless tasks, I and O are connected simplicial complexes, and f must be
simplicial, but the general idea is the same [39]. A covering (O, f) of I is trivial if I and O
are isomorphic. It is known that no non-trivial covering tasks can be solved wait-free in the
IIS model [21]. Here, we consider a colorless version of covering tasks, and study impossibility
proofs for solving them using colorless algorithms.

▶ Theorem D. Every non-trivial covering task admits an FLP-style impossibility proof for
n ≥ 2 processes running wait-free colorless algorithms.

The proof is based on showing that, for every covering task Π, the transformation F

used in our speedup theorem satisfies F (Π) = Π, i.e., Π is itself a fixed point for F . As a
consequence, since Π is not solvable in zero rounds (unless I and O are isomorphic, i.e., the
task Π is trivial), there is a round-reduction impossibility proof for Π (Theorem 19), and the
existence of an FLP-style impossibility proof for Π then follows from Theorem B. This last
fact is of particular interest, as it shows that FLP-style proofs are not limited to cases where
O is disconnected or to problems that are unsolvable even when restricted to a single input
simplex and its faces (as is the case for consensus and approximate agreement).

2 Model and Definitions

We consider the wait-free iterated immediate snapshots model (IIS). This model and its
variants have been frequently used e.g. [11,32,38] due to its simplicity, while being equivalent to
the usual wait-free read/write shared memory model for task solvability [11,22]. Furthermore,
it is known that as far as colorless task solvability is concerned, one can assume colorless
computation without loss of generality [23, 28], by which we mean that in each round of
computation processes do no consider which process wrote a value, nor by how many processes
it was written. We next provide a brief overview of the model.

Processes communicate through a sequence of shared memory objects, and the computa-
tion is split into rounds. In the i-th round, process p writes a value to the p-th location of
the i-th object, and then takes a snapshot of all the i-th object. The view of a process at the
end of a round is the set of values it read from the object, without the information of which

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:7

u0

u1 u2

v0

v1

v2

v3

v4

v5
e

e′ ′

e′

ℐ = C3

�풪 = C6
Δ

Figure 1 The Hexagone Task. In particular, ∆(e) is the complex e′ ∪ e′′.

process wrote which value, nor by how many processes it was written to the memory. As
common in lower bound proofs, we only consider full information protocols: in each round,
each process writes its entire state (or equivalently, the view read from the previous object)
to the memory.

2.1 Colorless Tasks
In this paper we consider colorless tasks [35]. See [23, Chapter 4] and [28] for an overview.

▶ Definition 1. A colorless task Π = (I, O, ∆) is defined by an input simplicial complex I,
an output simplicial complex O, and an input-output specification ∆ : I → 2O mapping every
simplex σ ∈ I to a sub-complex ∆(σ) of O with dimension at most dim(σ).

The semantics of a colorless task Π = (I, O, ∆) is that every vertex of I is an input value,
and every vertex of O is an output value. A set of processes may start with different input
values in V (I), as long as the set σ of these input values belongs to I. To solve the task, it
is required that any collection of processes starting with input values forming a set σ ∈ I
outputs only output values in the vertices V (O), as long as the set τ of these output values
forms a simplex in ∆(σ).

The next two colorless tasks will serve as running examples in the rest of the paper.

The Set Agreement Task. Set agreement is a well studied relaxation of the classical
consensus task. Let k ≥ 2. Set-agreement with input set [k] = {1, . . . , k} is the colorless task
SAk = (I, O, ∆) where I = {σ ⊆ [k] | σ ̸= ∅}, O = {τ ⊆ [k] | (τ ̸= ∅) ∧ (τ ̸= [k])}, and, for
every σ ∈ I,

∆(σ) = {τ ∈ O | τ ⊆ σ}.

Said differently, ∆(σ) = {τ ⊆ σ} if dim(σ) < k − 1, and ∆(σ) = O otherwise. SAk is solvable
(in zero rounds) for n < k processes, but not solvable for n ≥ k processes [10,29,40].

The Hexagone Task. The Hexagone Task is one basic example of the colorless covering
tasks, thoroughly studied in Section 7.2. For every t ≥ 3, let Ct denotes the t-node cycle.
The hexagone task is the task HX = (C3, C6, ∆) where C3 = (u0, u1, u2), C6 = (v0, v1, . . . , v5)
and ∆ is defined as follows (see Figure 1). For every i ∈ {0, 1, 2},

∆(ui) = {{vi}, {vi+3}} and ∆({ui, ui+1 mod 3}) = {{vi, vi+1}, {vi+3, vi+4 mod 6}},

DISC 2023

4:8 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

where formally ∆({ui, ui+1 mod 3}) also contains all the vertices contained it its edges, i.e.
{vi}, {vi+1}, {vi+3}, {vi+4 mod 6}. The map ∆ is the inverse of the maps f : V (C6) → V (C3)
defined as f(ui) = vi mod 3, where (C6, f) is a covering of C3.

2.2 Colorless Algorithms
The solvability of a colorless task may depend on the number n of processes involved in the
computation. Remarkably, it is enough to consider colorless computation for colorless tasks,
according to the following result (see, e.g., [28]), that summarizes and formalizes what we
need to know about the model of computation1. The result holds both for the wait-free
read/write memory model and for its iterated version, by the equivalence proved in [22].

1

2 3

{1,2,3}
{1,3}

{2,3}

{1,2}

{3}{2}

{1}

Figure 2 Barycentric subdivision.

▶ Lemma 2. A colorless task Π = (I, O, ∆) is read/write solvable by n processes running a
wait-free algorithm if and only if there exists t ≥ 0 and a simplicial map

f : Bary(t)(Skeln(I)) → O

that agrees with ∆, i.e., for every σ ∈ I, f(Bary(t)(Skeln(σ))) ⊆ ∆(σ). Furthermore, Π is
1-round solvable by n processes running a wait-free colorless algorithm in the IIS model if
and only if there is a simplicial map

f : Bary(Skeln(I)) → O

that agrees with ∆.

In the above, Bary(t) denotes t successive applications of the barycentric subdivision
(see Fig. 2), and Skeln denotes the (n − 1)-dimensional skeleton operator, i.e., Skeln(I) is
the subcomplex of I (resp., of σ) including all simplices of I (resp., all faces of σ) with
dimension at most n − 1. When considering colored (general) tasks, a similar result holds
when using chromatic simplicial maps and the standard chromatic subdivision; for colorless
tasks, however, the barycentric subdivision suffices since if a colorless task is solvable then
it is solvable by an algorithm ignoring multiplicities of identical views (or inputs) in the
snapshots [28].

1 Results similar to this one are known for several models of computation [23]. For instance, a corresponding
result is known for Byzantine failures [23, Theorem 6.5.1] and dependent failures [26, Theorem 4.3]
with an adversary of core size c = 2. For dependent failures in the case of wait-free computation, the
theorem states that a colorless task is solvable if and only if there exists a continuous map between
geometric realization f : Skelc−1(I) → O carried by ∆.

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:9

3 Round-Reduction Proofs

This section is essentially dedicated to the proof of Theorem A. The task transformation
Cl in this theorem is based on a closure operator similar to the one in [20], where the main
difference is that our closure operator is required to be colorless, and we stress that our
result is not implied by the (colored) theorem of [20]. That is, given a class A of algorithms,
requiring the closure operator to be in the class may not be sufficient for extending the
speedup theorem in [20] to apply to algorithms in A. We illustrate this in the full version of
the paper for comparison-based algorithms, an important class of algorithms used for studying
tasks such as renaming and weak symmetry-breaking. Using a comparison-based closure
operator does not suffice for deriving a speedup theorem for comparison-based algorithms.
On the other hand, in this section we show that for colorless algorithms, restricting the
closure operator to be colorless suffices.

3.1 Colorless Closure
We first rephrase the notions of local tasks introduced in [20] in the context of colorless tasks.

▶ Definition 3. Let Π = (I, O, ∆) be a colorless task, let σ ∈ I, and let τ ⊆ V (∆(σ)). Let
us consider τ as a simplicial complex (with a unique facet). The local task with respect to σ

and τ is the colorless task Πτ,σ = (τ, ∆(σ), ∆τ,σ) where, for every face τ ′ of τ ,

∆τ,σ(τ ′) =
{

v if τ ′ = v is a vertex,
Skeldim(τ ′)(∆(σ)) otherwise.

Note that Πτ,σ is a well-defined colorless task, because Skeldim(τ ′) guarantees that the
output complex for τ ′ has dimension at most dim(τ ′); this is true even if τ is not a simplex
of ∆(σ), as seen in the second example in Section 3.1. Note also that the validity constraint
of Πτ,σ is just that if all processes start with the same input v, i.e., if they start from the
same vertex v ∈ V (τ), then they must all output v. Without this constraint, the processes
are only constrained to output values forming a legal set σ′ of outputs w.r.t. σ, i.e., a set
σ′ ∈ ∆(σ) (and dim(σ′) ≤ dim(τ ′)).

As opposed to the general (chromatic) tasks, which each has a fixed maximum number of
participating processes, colorless tasks are defined for any number of processes. In particular,
a colorless task may be solvable for a certain number of processes, but not for another number
of processes. The definition below refers to solving local tasks with a prescribed number of
processes.

▶ Definition 4. The colorless closure of a colorless task Π = (I, O, ∆) is the colorless task
Cl(Π) = (I, O′, ∆′) where V (O′) = V (O), and, for every σ ∈ I, and every non-empty set
τ ⊆ V (O), we set τ ∈ ∆′(σ) if τ ⊆ V (∆(σ)) and Πτ,σ is solvable in one round by dim(τ) + 1
processes running a colorless algorithm. The simplices of O′ are the images of ∆′, and all
their faces.

Note that this definition is constructive, i.e., one can check the 1-round solvability of Πτ,σ,
by Lemma 2. The closure operator also has the nice property that it does not change the
allowed input and output values, and the only difference between Π and Cl(Π) is in the
addition of some allowed combinations of output values.

For a simplex τ ∈ ∆(σ), the local task Πτ,σ is solvable in 0 rounds, by having each process
starting with input v ∈ V (τ) output v. It follows that if τ ∈ ∆(σ) then τ ∈ ∆′(σ), and
therefore, for every σ ∈ I, ∆(σ) ⊆ ∆′(σ). As a consequence, the colorless closure Cl(Π) of

DISC 2023

4:10 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

a task Π is not more difficult to solve than Π. Whether or not Cl(Π) is simpler to solve
than Π is one of the foci of this paper. Before going further, we establish hereafter that the
input-output specification ∆′ of the colorless closure of a colorless task is a carrier map,
which is a condition that is often required for a task [23].

The I/O-Specification of a Colorless Closure is a Carrier Map. Let Π = (I, O, ∆) be a
colorless task. Recall that ∆ is a carrier map if, for every σ and σ′ in I, σ ⊆ σ′ =⇒ ∆(σ) ⊆
∆(σ′), where the latter inclusion must be read as ∆(σ) is a subcomplex of ∆(σ′). Being a
carrier map is not necessary for Π to be solvable. However, if two simplices σ and σ′ in I
satisfy σ ⊆ σ′ and ∆(σ) ∖ ∆(σ′) ̸= ∅, the output values outside ∆(σ′) cannot be used for
a set of processes starting with input σ′ since these output values cannot be extended in
case processes with inputs in σ′ ∖ σ eventually participate later. Therefore, we may as well
remove all simplices from ∆(σ) that are not in ∆(σ′), and restrict ourselves to input-output
specifications that are carrier maps.

▶ Lemma 5. Let Π = (I, O, ∆) be a colorless task, and let Cl(Π) = (I, O′, ∆′). If ∆ is a
carrier map then ∆′ is a carrier map.

Proof. Consider two simplices σ, σ′ ∈ I satisfying σ ⊆ σ′, and let τ ∈ ∆′(σ). By defini-
tion, the local task Πτ,σ = (τ, ∆(σ), ∆τ,σ) is solvable in one round, by a simplicial map
g : Bary(1)(τ) → ∆(σ) that agrees with ∆τ,σ. To show that τ ∈ ∆′(σ′), we show that the
local task Πτ,σ′ = (τ, ∆(σ′), ∆τ,σ′) is solvable in one round, using the same map g. Since
∆(σ) ⊆ ∆(σ′), g is a simplicial map from Bary(1)(τ) to ∆(σ′). To see that g agrees with ∆τ,σ′ ,
let τ ′ ⊆ τ . If dim(τ ′) > 0, then g(τ ′) ∈ ∆τ,σ(τ ′) = ∆(σ) ⊆ ∆(σ′) = ∆τ,σ′(τ ′). If τ ′ = {v} is
a vertex, then g(v) ∈ ∆τ,σ(v) = v = ∆τ,σ′(v). It follows that g agrees with ∆′

τ,σ′ , and thus
τ ∈ ∆′(σ′), from which we conclude that ∆′(σ) ⊆ ∆′(σ′), i.e., ∆′ is a carrier map. ◀

Examples
Let k ≥ 3. For the set-agreement task SAk, the closure is solvable in zero rounds by
having each process outputting its input, since any combination of at most k input values
forms a valid output configuration of Cl(SAk). To prove this, we show that for every
σ ∈ I we have σ ∈ ∆′(σ). First, note that for σ ∈ I such that σ ̸= [k], we have σ ∈ ∆(σ)
and σ ∈ ∆(σ) ⇒ σ ∈ ∆′(σ), so we only have to show [k] ∈ ∆′([k]). This is true since the
local task Π[k],[k] is solvable in one round, by letting each process that sees more than
one value output 1.
On the other hand, for the Hexagon task HX we have Cl(HX) = HX. To see this,
consider an input simplex σ = ({ui, ui+1 mod 3}), for some i ∈ {0, 1, 2}, its image
∆({ui, ui+1 mod 3}) = {vi, vi+1} ∪ {vi+3, vi+4 mod 6}, and two vertices in its image that
do not already constitute a simplex, i.e. w ∈ {vi, vi+1} and w′ ∈ {vi+3, vi+4 mod 6}. Let
τ = {w, w′}.
If the local task Πτ,σ = (τ, ∆(σ), ∆τ,σ) would have been solvable in one round, then
there would have been a map f : V (Bary(1)(τ)) → ∆(σ) satisfying f({w}) = w and
f({w′}) = w′. But Bary(1)({w, w′}) is

{w} {w, w′} {w′}

and any such map cannot be simplicial by continuity: if f({w, w′}) ∈ {vi, vi+1} then
{f({w′}), f({w, w′})} /∈ ∆(σ), and similarly if f({w, w′}) ∈ {vi+3, vi+4 mod 6} then
{f({w}), f({w, w′})} /∈ ∆(σ).

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:11

3.2 Colorless Speedup Theorem
We now establish our speedup theorem for colorless algorithms, as stated next and proved in
the full version of the paper.

▶ Theorem 6. For every colorless task Π = (I, O, ∆), every t > 0, and every n ≥ 2, if Π is
solvable in t rounds by n processes running a wait-free colorless algorithm then the closure
Cl(Π) is solvable in t − 1 rounds by n processes running a wait-free colorless algorithm.

Since the colorless closure task Cl(Π) = (I, O′, ∆′) of a colorless task Π = (I, O, ∆)
only potentially adds valid output simplices to ∆(σ) for forming ∆′(σ), for every σ ∈ I, it
follows that, after applying the closure operator for some finite number of times t, we get a
fixed point, i.e. a task Cl(t)(Π) such that Cl(t+1)(Π) = Cl(t)(Π). Naturally, this also implies
Cl(t′)(Π) = Cl(t)(Π) for every t′ ≥ t.

▶ Definition 7. The fixed-point of a colorless task Π is the task Π∗ = (I, O∗, ∆∗) such that
Π∗ = Cl(t)(Π) for some t ≥ 0, and Cl(t+1)(Π) = Cl(t)(Π).

As a direct consequence of the speedup theorem (Theorem 6) the fixed-point task Π∗ of
a task Π is either 0-round solvable, or not solvable at all. Indeed, consider Π∗ = (I, O∗, ∆∗)
and assume it is solvable in t > 0 rounds. By Theorem 6, Π∗ = Cl(Π∗) is solvable in t − 1
rounds. Repeating this argument for t times implies that Π∗ is 0-round solvable.

▶ Lemma 8. Let n ≥ 2. Given a colorless task Π = (I, O, ∆), its fixed-point Π∗ is either
0-round solvable by n processes running a wait-free colorless algorithm, or not solvable at all.

The next corollary illustrates both the Theorem 6’s interest and its simplicity.

▶ Corollary 9. For every n ≥ 2, the hexagon task cannot be solved by n processes running a
wait-free colorless algorithm.

Proof. If HX is solvable wait-free by n ≥ 2 processes in the IIS model, then there exists
t ≥ 0 such that HX is solvable in t rounds. We have seen that Cl(HX) = HX. It follows from
Theorem 6 that if HX is solvable wait-free, then it is solvable wait-free in zero rounds.

Consider a possible zero-round algorithm for HX with n ≥ 2 processes, and its decision
map δ. As the algorithm must produce valid outputs for executions with a single input, we have
δ(ui) ∈ {vi, vi+3} for every i ∈ {0, 1, 2}. Let vj = δ(u0) (and hence j ∈ {0, 3}). The definition
of ∆ for executions with two different inputs guarantees δ(v1) ∈ {uj , uj+1} and by the above
we have δ(v1) = uj+1. Similarly, δ(v2) = uj+2, and hence δ{v0, v2} = {uj , uj+2} /∈ ∆{v0, v2},
a contradiction. ◀

4 The Topology of the Closure

In this section, we study the topology of the colorless closure task, which, as opposed to the
general closure, displays very simple properties. For stating these properties, let us recall that
a complex K is complete if V (K) is a simplex of K. It is complete up to dimension d if every
set τ ⊆ V (K) with 0 ≤ dim(τ) ≤ d satisfies τ ∈ K. A connected component of a complex K
is the subcomplex of K induced by all the vertices in a connected component of the graph
Skel1(K). We mainly show that, for every σ ∈ I, the closure of each connected component of
∆(σ) eventually becomes complete after a bounded number of closure operations.

For a colorless task Π = (I, O, ∆), we denote by Cl(k)(Π) = (I, O(k), ∆(k)) the k-th closure
of Π, defined as Cl(k)(Π) = Cl(Cl(k−1)(Π)), where k is a positive integer and Cl(0)(Π) = Π.

DISC 2023

4:12 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

▶ Theorem 10. Given a colorless task Π = (I, O, ∆) and a simplex σ ∈ I, the following
hold.

Let D be the largest diameter of a connected component in the graph Skel1(∆(σ)), and
let ℓ = ⌈log2 D⌉ + 1. Then all the connected components of ∆(ℓ)(σ) are complete up to
dimension dim(σ).
For every k ≥ 0, a set of vertices in V (∆(σ)) is a connected component of Skel1(∆(σ)) if
and only if it is a connected component of Skel1(∆(k)(σ)).

See Appendix A for the proof of this theorem.

Examples

In Section 3.1 we have proved that the closure of k-set agreement contains any combination
of at most k input values. This fact can now be directly derived from Theorem 10, as
∆([k]) is connected and contains all the values of [k].
In the same section, we have proved that Cl(HX) = HX. This is also a direct consequence
of Theorem 10, as for every σ ∈ I, each of the connected components of ∆(σ) is full.

5 Round-Reduction is Complete for 1-Dimensional Tasks

1-dimensional tasks are tasks for which the input and output complexes are of dimension at
most 1. In this section, we establish the completeness of the round-reduction proof technique
for 1-dimensional colorless tasks, thus establishing part of Theorem C. FLP-style proofs are
also complete in this case, but the proof of this fact is deferred to the next section, where
we show that the techniques are equivalent. The next theorem asserts that for colorless
tasks of dimension at most 1 the reciprocal of Theorem 6 holds as well, thus establishing the
completeness of the round-reduction technique in this case; see Appendix A for the proof.

▶ Theorem 11. For every 1-dimensional colorless task Π = (I, O, ∆), every t > 0, and
every n ≥ 2, if the colorless closure Cl(Π) is solvable in t − 1 rounds by n processes running a
wait-free colorless algorithm, then Π is solvable in t rounds by n processes running a wait-free
colorless algorithm.

By combining Theorems 6 and 11, we obtain the desired result.

▶ Corollary 12. The round-reduction proof techniques is complete for 1-dimensional colorless
tasks and wait-free colorless algorithms.

6 Relations Between Round-Reduction and FLP-Style Proofs

In this section we establish tight connections between the FLP-style proof strategy and the
round-reduction proof technique, in the context of wait-free solvability of colorless tasks.
Specifically, we first establish Theorem B which asserts that the existence of a round-reduction
proof implies the existence of an FLP-style proof, from which the remaining part of Theorem C
(completeness of FLP-style proofs for 1-dimensional tasks) will follow. This implies that the
round-reduction techniques and FLP-style proofs have the same power when considering
impossibility proofs for 1-dimensional colorless tasks. In Theorem 16, we give a direct proof
for this: the existence of an FLP-style proof implies the existence of a round-reduction proof
for the impossibility of such tasks (complementing Theorem B, for 1-dimensional tasks). This
direct proof may suggest that a more tight connection between the two proof techniques
exists. We start by formally defining FLP-style proofs.

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:13

6.1 FLP-Style Proofs
Given a colorless task Π = (I, O, ∆), an FLP-style proof constructs an infinite sequence of
simplices σ0, σ1, . . . , where σ0 ∈ I = Bary(0)(I), and, for every t ≥ 1, σt ∈ Bary(1)(σt−1) ⊆
Bary(t)(I), as follows.

The proof P assumes for contradiction the existence of an algorithm A solving Π. P

starts by asking A to reveal, for every σ ∈ I, the valency of σ, that is, the set of output values
that are returned by A in executions starting with the input values forming the simplex σ.
Then, P chooses a simplex σ0 ∈ I; in order to create an infinite sequence, P must choose
σ0 such that A is not able to claim it terminates in 0 rounds, i.e., such that any possible
assignment of outputs to the processes in σ0 is inconsistent with the valencies of I.

Given a sequence σ0, . . . , σt constructed by P so far, σt+1 is obtained analogously, as
follows. P asks A to reveal the valencies of all simplices in Bary(1)(σt), that is, for each
σ ∈ Bary(1)(σt), the set of output values produced by A in all valid executions starting
from σ. Based on these valencies, P chooses one simplex σt+1 ∈ Bary(1)(σt); as in the choice
of σ0, it must choose σt+1 such that A is not able to assign outputs to the processes in σt+1
consistent with the valencies of Bary(1)(σt).

Let val : 2σ0 ∪ 2σ1 ∪ · · · → 2O be the function defined by the valencies returned by A. For
any correct algorithm, the function val must satisfy some basic conditions of consistency with
the task specification and with other valencies returned. We next formalize these conditions
for σt.

Consistent with itself: each σ ∈ Bary(1)(σt) satisfies val(σ) ⊆ val(σt); moreover,
∪σ∈Bary(1)(σt)val(σ) = val(σt).
Consistent with ∆: For each σ ∈ Bary(1)(σt), val(σ) ⊆ ∆(σ0).
Monotone: for each σ′ ⊆ σ ∈ Bary(1)(σt), val(σ′) ⊆ val(σ).

If this strategy can proceed forever, constructing an infinite sequence σ0, σ1, . . . of
simplices, then A does not terminate in this execution, disproving the existence of an
algorithm A solving Π. At the core of FLP-style proofs stands a choice mechanism that picks
the next simplex σt+1. We present such a mechanism for one-dimensional colorless tasks.

Our work on the FLP-style technique continues recent lines of work regarding the power
of extension-based proofs [2, 5, 14]. We allow less diverse queries compared to these works,
yet our results imply that if a one-dimensional colorless task is unsolvable, then the simple
queries we allow are sufficient for proving this impossibility.

Example. The impossibility of solving the hexagon task can be proved using an FLP-style
proof, by constructing a sequence σ0, σ1, . . . as follows. All the simplices σ0, σ1, . . . will be
edges, and we will fix i ∈ {0, 1, 2} such that each σt satisfies the invariants
(1) val(σt) ⊆ {vi, vi+1} ∪ {vi+3, vi+4}, and
(2) val(σt) ∩ {vi, vi+1} ̸= ∅ and val(σt) ∩ {vi+3, vi+4} ̸= ∅,
where the indices here and below are computed modulo 6, unless otherwise specified.

To choose σ0 and i, inspect the valencies of the three edges (ui, ui+1 mod 3), for i ∈ {0, 1, 2}.
Since val(ui) ⊆ val(ui−1 mod 3, ui) ∩ val(ui, ui+1 mod 3) and valency is monotone, the valencies
of every two edges must intersect, and thus for some i ∈ {0, 1, 2} the edge e = (ui, ui+1 mod 3)
must satisfy both val(e) ∩ {vi, vi+1} ≠ ∅ and val(e) ∩ {vi+3, vi+4} ≠ ∅; we fix this i, and set
σ0 = e, guaranteeing (2). Invariant (1) holds since the valency must be consistent with ∆.

Assume σ0, . . . , σt are chosen and satisfy both invariants, and that val(σ) is known for
each σ ∈ Bary1(σt). Since val(σ) ⊆ val(σt) for every σ ∈ Bary1(σt), Invariant (1) will hold for
any σt+1 ∈ Bary1(σt) we may choose. Let σt = {w0, w1}, then Bary1(σt) is composed of the
vertices {w0}, {w0, w1}, {w1} and the edges e0 = ({w0}, {w0, w1}) and e1 = ({w1}, {w0, w1}).

DISC 2023

4:14 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

We have val(e0) ∩ val(e1) ̸= ∅, and by Invariant (1) we also have val(e0) ∩ val(e1) ⊆
val(σt) ⊆ {vi, vi+1, vi+3, vi+4}, so at least one value v ∈ {vi, vi+1, vi+3, vi+4} satisfies v ∈
val(e0) ∩ val(e1); assume without loss of generality that v ∈ {vi, vi+1}.

The valencies of the vertices are contained in the valencies of the edges, hence val(e0) ∪
val(e1) = val(σt), so Invariant (2) implies that both (val(e0) ∪ val(e1)) ∩ {vi, vi+1} ≠ ∅
and (val(e0) ∪ val(e1)) ∩ {vi+3, vi+4} ̸= ∅ hold. Hence, at least one edge e ∈ {e0, e1} has
val(e) ∩ {vi+3, vi+4} ≠ ∅, and since v ∈ val(e) it also have val(e) ∩ {vi, vi+1} ≠ ∅. This edge
is set as σt+1, and Invariant (2) is satisfied for σt+1 as well. Since this process can continue
for every t ≥ 0, the proof is complete.

6.2 Connections Between the Proof Techniques
The next theorem, Theorem B, states that the existance of a round reduction impossibility
proof implies the existence of an FLP-style proof. The theorem is proved in Appendix A.

▶ Theorem 13. For every colorless task Π and n ≥ 2, if there is a round-reduction proof
establishing the impossibility of solving Π by n processes running a wait-free colorless algorithm,
then there is an FLP-style proof establishing the same impossibility.

We next prove Theorem C for FLP-style proofs, i.e. we show these are complete for
1-dimensional colorless tasks. For this, first observe that if there is an FLP-style proof for the
impossibility of a 1-dimensional colorless task Π, then Π is unsolvable. By the completeness
of the round-reduction proofs (cf. Corollary 12), there is a round-reduction impossibility
proof for that task. On the other hand, Theorem 13 asserts that if a colorless task has a
round-reduction impossibility proof then it also has an FLP-style impossibility proof. The
establishes the desired equivalence between the two forms of proofs for colorless tasks.

▶ Corollary 14. Let Π be a 1-dimensional colorless task. There is an FLP-style proof for
the impossibility of solving Π using wait-free colorless algorithms if and only if there is a
round-reduction proof of this impossibility for Π.

This corollary can also be proved directly: one direction is Theorem 13 (for any dimension),
and the other is given in Theorem 16 (below). We get that, for 1-dimensional tasks, the
FLP-style proof style can be mechanized, i.e., for any 1-dimensional task Π, the FLP-style
proof technique succeeds for Π if and only if Π is not wait-free solvable in the IIS model.

▶ Corollary 15. The FLP-style proof technique is complete for 1-dimensional tasks.

Proof. By Theorem 13, if the FLP-style proof technique fails for Π, then the round-reduction
proof also fails for Π as well. By Lemma 8, this implies that Π∗ is 0-round solvable. By
Theorem 11, the original task Π is solvable. ◀

In the full version of this paper, we also give a direct proof for the converse of Theorem 13
for 1-dimensional tasks, stated next.

▶ Theorem 16. For every 1-dimensional colorless task Π and n ≥ 2, if there is an FLP-style
proof for the impossibility of solving Π by n processes running a wait-free colorless algorithm,
then there is a round-reduction proof for the same impossibility.

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:15

7 Applications

Throughout this paper, we have shown how the theory we developed applies for set agreement
and the Hexagon task. We complete the paper by presenting some further applications.
Note that in terms of techniques, all these proofs are completely different from previous
proofs of similar results: round-reduction works directly on the task specification, in an
algorithmic way that does not depend on the specific task at hand. Hence, the arguments in
round-reduction proofs are applied directly on the task specification, and not on executions
of a protocol (which are encapsulated in the round-reduction theorem).

7.1 Time Lower Bound for Approximate Agreement
Let us show that the bound ⌈log2 D⌉ in Theorem 10 is tight. For this purpose, consider the
approximate agreement task. For an integer N ≥ 1, let ϵ = 1/N , and the ϵ-agreement task
defined as follows. The input complex I of ϵ-agreement is merely the edge

0 1

The output complex O is the path

0 ϵ 2ϵ . . . (N − 1)ϵ 1

Finally, the input-output specification ∆ satisfies for each set S ⊆ I

∆(S) = {T ⊆ O | min S ≤ min T and max T ≤ max S}

and specifically, for an element x ∈ I it specifies ∆({x}) = {x}.

▶ Proposition 17. For every ϵ ∈ (0, 1), ϵ-agreement cannot be solved by n ≥ 2 processes in
less than ⌈log2 1/ϵ⌉ rounds.

The proof of this preposition appears in the appendix. Note that for n > 2 processes this
bound is tight, and is the same for colored and colorless algorithm. Interestingly, for n = 2
processes there is a colored algorithm requiring only ⌈log3 1/ϵ⌉ rounds [4, 30]. Hence, while
colorless and colored algorithms have the same computability power, colored algorithms are
provably stronger in terms of time complexity.

7.2 Impossibility of Covering Tasks
Recall that, for two connected simplicial complexes I and O, and for a simplicial map
f : O → I, the pair (O, f) is a covering complex of I if, for every σ ∈ I, f−1(σ) is a union
of pairwise disjoint simplexes. This condition can be rephrased as f−1(σ) = ∪k

i=1τi with
f|τi

: τi → σ is one-one. The simplexes τi, i = 1, . . . , k, are called the sheets of σ. We often
refer to f as a covering map. The following observations follow directly from the definition
of covering complex (see, e.g., [39]).

If σ ∈ I is a simplex of dimension d, each sheet τi of σ is also a simplex of dimension d.
The two complexes I and O are locally isomorphic, in the sense that for each vertex v ∈ O
the complex star(v) is isomorphic to the complex star(f(v)). (The star of a vertex v in a
complex K is the complex star(v) consisting of all the simplexes of K that contain v.
All the simplices in O have the same number of sheets.)

We define below a colorless variant of the chromatic covering tasks introduced in [21].

DISC 2023

4:16 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

▶ Definition 18. Given a covering complex (O, f) of a complex I, the colorless covering
task (I, O, ∆) is the task where ∆ is defined, for every σ ∈ I, by

∆(σ) = {τ ∈ O | f(τ) ⊆ σ},

where f(τ) ⊆ σ means that f(τ) is a sub-complex of the complex defined by σ and all its
faces. A covering complex is non-trivial if each simplex in I has more than one sheet.

The Hexagone task discussed above is a basic example of a covering task, and another
example of a covering task can be see in Figure 4 in the appendix.

We now turn to a general impossibility result for covering tasks, proved in Appendix A.

▶ Theorem 19. No non-trivial colorless covering tasks can be solved by n ≥ 2 processes
running a wait-free colorless algorithm.

A similar result was proved in the past using an ad-hoc argument [21] for colored covering
tasks, and here we give a round-reduction based proof for colorless covering tasks. By
Theorem 13, this also means that the claim has an FLP-style proof, proving Theorem D.

8 Conclusion

The purpose of this paper is to relate round-reduction proof techniques (formally stated
in the Speedup Theorem) and FLP-style proof techniques, when applied to colorless tasks
within the framework of wait-free computing in the IIS model.

The round-reduction technique offers many good features, including the fact that it is
mechanical (it is sufficient to check whether the fixed-point closure is solvable in zero rounds),
it enables to derive not only impossibility results but also complexity lower bounds (e.g., for
approximate agreement), and it extends to wait-free computing in models stronger than IIS
(e.g., IIS augmented with Test&Set objects). On the other hand, FLP-style proofs are very
generic, and essentially apply to all models, including t-resilient models. Moreover, we have
shown that FLP-style proofs are not weaker than round-reduction proofs, and it is possible
that they are stronger. Nevertheless, we have also shown that for 1-dimensional colorless
tasks the two techniques have exactly the same power, and are both complete in the sense
that if a task is not solvable then any of the two techniques will enable to establish this fact.

It would be interesting to know whether the equivalence between the two techniques holds
for arbitrary colorless tasks, and not only for the 1-dimensional ones, and we conjecture that
this is indeed the case. Note however that if this conjecture is true, then these two proof
techniques cannot be complete, simply because it is known that set-agreement impossibility
has no extension-based proof [2, 5].

The round-reduction Cl we define and study in this work is not the only one possible
(nor are FIIS used in [20]); defining a more powerful operator for proving lower bounds on
general algorithms is a central open question left in [20], and we leave a similar question open
here with regard to colorless algorithm. Nevertheless, we have shown that for 1-dimensional
colorless tasks, Cl is in fact the most powerful operator possible – this operator is shown to be
complete for such tasks in Corollary 12. The more general question of whether there exists
if-and-only-if operators for wait-free computing, as was shown for synchronous failure-free
computing in networks, is another central open question.

Another research direction is to try to design an analog of round-reduction for other
computational models, such as t-resilient models (the speedup theorem of [20], as well as
ours, assume the ability of each process to run solo). The ultimate goal of the line of study
initiated in this paper is to better understand the relation between backward and forward
induction in the context of distributed computing.

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:17

References
1 Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient consensus

requires t + 1 rounds. Inf. Process. Lett., 71(3-4):155–158, 1999. doi:10.1016/S0020-0190(99)
00100-3.

2 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based
proofs fail. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC, pages 986–996. ACM, 2019.
doi:10.1145/3313276.3316407.

3 Dan Alistarh, Faith Ellen, and Joel Rybicki. Wait-free approximate agreement on graphs. In
Tomasz Jurdzinski and Stefan Schmid, editors, Structural Information and Communication
Complexity - 28th International Colloquium, SIROCCO, volume 12810 of Lecture Notes in
Computer Science, pages 87–105. Springer, 2021. doi:10.1007/978-3-030-79527-6_6.

4 J. Aspnes and M. Herlihy. Wait-free data structures in the asynchronous PRAM model. In
2nd ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 340–349, 1990.
doi:10.1145/97444.97701.

5 Hagit Attiya, Armando Castañeda, and Sergio Rajsbaum. Locally solvable tasks and the
limitations of valency arguments. J. Parallel Distributed Comput., 176:28–40, 2023. doi:
10.1016/j.jpdc.2023.02.002.

6 Hagit Attiya and Faith Ellen. Impossibility Results for Distributed Computing. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2014. doi:
10.2200/S00551ED1V01Y201311DCT012.

7 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, Hoboken, NJ, USA, 2004.

8 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In 60th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 481–497, 2019. doi:
10.1109/FOCS.2019.00037.

9 Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characterization of the
distributed 1-solvable tasks. J. Algorithms, 11(3):420–440, 1990. doi:10.1016/0196-6774(90)
90020-F.

10 Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In 25 ACM Symposium on Theory of Computing (STOC), pages
91–100, 1993. doi:10.1145/167088.167119.

11 Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of
wait-free computations. In 16th ACM Symposium on Principles of Distributed Computing
(PODC), pages 189–198, 1997. doi:10.1145/259380.259439.

12 Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Comput., 14(3):127–146, 2001. doi:10.1007/PL00008933.

13 Sebastian Brandt. An automatic speedup theorem for distributed problems. In 38th ACM
Symposium on Principles of Distributed Computing (PODC), pages 379–388, 2019. doi:
10.1145/3293611.3331611.

14 Kayman Brusse and Faith Ellen. Reductions and extension-based proofs. In PODC ’21:
ACM Symposium on Principles of Distributed Computing, pages 497–507. ACM, 2021. doi:
10.1145/3465084.3467906.

15 Armando Castañeda, Damien Imbs, Sergio Rajsbaum, and Michel Raynal. Generalized
symmetry breaking tasks and nondeterminism in concurrent objects. SIAM J. Comput.,
45(2):379–414, 2016. doi:10.1137/130936828.

16 Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Two convergence problems for
robots on graphs. In 2016 Seventh Latin-American Symposium on Dependable Computing,
LADC, pages 81–90. IEEE Computer Society, 2016. doi:10.1109/LADC.2016.21.

17 Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Inf. Comput., 105(1):132–158, 1993.

DISC 2023

https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1145/3313276.3316407
https://doi.org/10.1007/978-3-030-79527-6_6
https://doi.org/10.1145/97444.97701
https://doi.org/10.1016/j.jpdc.2023.02.002
https://doi.org/10.1016/j.jpdc.2023.02.002
https://doi.org/10.2200/S00551ED1V01Y201311DCT012
https://doi.org/10.2200/S00551ED1V01Y201311DCT012
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1016/0196-6774(90)90020-F
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/259380.259439
https://doi.org/10.1007/PL00008933
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3465084.3467906
https://doi.org/10.1145/3465084.3467906
https://doi.org/10.1137/130936828
https://doi.org/10.1109/LADC.2016.21

4:18 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

18 Faith E. Fich and Eric Ruppert. Hundreds of impossibility results for distributed computing.
Distributed Comput., 16(2-3):121–163, 2003. doi:10.1007/s00446-003-0091-y.

19 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

20 Pierre Fraigniaud, Ami Paz, and Sergio Rajsbaum. A speedup theorem for asynchronous
computation with applications to consensus and approximate agreement. In PODC, pages
460–470. ACM, 2022.

21 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Locality and checkability in wait-
free computing. Distributed Comput., 26(4):223–242, 2013. doi:10.1007/s00446-013-0188-x.

22 Eli Gafni and Sergio Rajsbaum. Distributed programming with tasks. In 14th International
Conference on Principles of Distributed Systems (OPODIS), LNCS 6490, pages 205–218.
Springer, 2010. doi:10.1007/978-3-642-17653-1_17.

23 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

24 Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed decision tasks. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, pages
589–598. ACM, 1997. doi:10.1145/258533.258652.

25 Maurice Herlihy and Sergio Rajsbaum. A classification of wait-free loop agreement tasks.
Theor. Comput. Sci., 291(1):55–77, 2003. doi:10.1016/S0304-3975(01)00396-6.

26 Maurice Herlihy and Sergio Rajsbaum. The topology of shared-memory adversaries. In PODC,
pages 105–113. ACM, 2010.

27 Maurice Herlihy and Sergio Rajsbaum. Simulations and reductions for colorless tasks. In
ACM Symposium on Principles of Distributed Computing, PODC, pages 253–260. ACM, 2012.
doi:10.1145/2332432.2332483.

28 Maurice Herlihy, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. From wait-free to
arbitrary concurrent solo executions in colorless distributed computing. Theor. Comput. Sci.,
683:1–21, 2017.

29 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.
ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

30 Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous com-
plexity. SIAM J. Comput., 36(2):457–497, 2006. doi:10.1137/S0097539701397412.

31 Idit Keidar and Sergio Rajsbaum. A simple proof of the uniform consensus synchronous lower
bound. Inf. Process. Lett., 85(1):47–52, 2003. doi:10.1016/S0020-0190(02)00333-2.

32 Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem
for fair adversaries. In PODC, pages 387–396. ACM, 2018.

33 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

34 Nancy A. Lynch. A hundred impossibility proofs for distributed computing. In 8th ACM
Symposium on Principles of Distributed Computing (PODC), pages 1–28, 1989. doi:10.1145/
72981.72982.

35 Nancy A. Lynch and Sergio Rajsbaum. On the borowsky-gafni simulation algorithm. In
ISTCS, pages 4–15. IEEE Computer Society, 1996.

36 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

37 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
38 Sergio Rajsbaum. Iterated shared memory models. In LATIN, volume 6034 of Lecture Notes

in Computer Science, pages 407–416. Springer, 2010.
39 Joseph Rotman. Covering complexes with applications to algebra. Rocky Mountain Journal

of Mathematics, 3(4):641–674, 1973. doi:10.1216/RMJ-1973-3-4-641.
40 Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: the topology

of public knowledge. In 25th ACM Symposium on Theory of Computing (STOC), pages
101–110, 1993. doi:10.1145/167088.167122.

https://doi.org/10.1007/s00446-003-0091-y
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/s00446-013-0188-x
https://doi.org/10.1007/978-3-642-17653-1_17
https://doi.org/10.1145/258533.258652
https://doi.org/10.1016/S0304-3975(01)00396-6
https://doi.org/10.1145/2332432.2332483
https://doi.org/10.1145/331524.331529
https://doi.org/10.1137/S0097539701397412
https://doi.org/10.1016/S0020-0190(02)00333-2
https://doi.org/10.1145/72981.72982
https://doi.org/10.1145/72981.72982
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1216/RMJ-1973-3-4-641
https://doi.org/10.1145/167088.167122

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:19

41 Hans van Ditmarsch, Éric Goubault, Marijana Lazic, Jérémy Ledent, and Sergio Rajsbaum. A
dynamic epistemic logic analysis of equality negation and other epistemic covering tasks. J.
Log. Algebraic Methods Program., 121:100662, 2021. doi:10.1016/j.jlamp.2021.100662.

A Omitted Proofs

Proof of Theorem 10. To establish the theorem, we first prove two auxiliary claims, with
the same notations as in the statement of the theorem.

▷ Claim 20. Every two vertices u ̸= w of the same connected component of ∆(σ) satisfy
{u, w} ∈ ∆(ℓ−1)(σ).

Proof of claim. Let u, v, w be three vertices of the same connected component K, such that
{u, v} ∈ K, {v, w} ∈ K, but {u, w} /∈ K, and let us show that {u, w} ∈ ∆(1)(σ). (If there are
no such three vertices then we are done.) For this, it is sufficient to define a simplicial map

f : Bary({u, w}) → ∆(σ)

which agrees with ∆{u,w},σ. We set

f({u}) = u, f({w}) = w, and f({u, w}) = v.

In this way, any edge of Bary({u, w}) is mapped to either {u, v} or {v, w}, which both belong
to ∆(σ). It follows that f is simplicial, and agrees with ∆{u,w},σ. Therefore, for any two
vertices u, w of K at distance at most 2 in the graph Skel1(K), {u, w} ∈ ∆(1)(σ). By the
same argument, any two vertices u, w of K at distance at most 4 in the graph Skel1(K) satisfy
{u, w} ∈ ∆(2)(σ), and more generally, for any two vertices u, w of K at distance at most 2r

in the graph Skel1(K), {u, w} ∈ ∆(r)(σ). As a consequence, for every two vertices u, w of K,
{u, w} ∈ ∆(ℓ−1)(σ). ◁

We next show that a similar claim holds for any set of vertices in a connected component
of ∆(σ), and not only for pairs.

▷ Claim 21. Every set τ ⊆ V (∆(σ)) of vertices of the same connected component of ∆(σ)
with 2 < |τ | ≤ |σ| satisfies τ ∈ ∆(ℓ)(σ).

Proof of claim. It is sufficient to show that the local task Π(ℓ−1)
τ,σ = (τ, ∆(ℓ−1)(σ), ∆(ℓ−1)

τ,σ) is
solvable in one round, which we do by defining a simplicial map

f : Bary(τ) → ∆(ℓ−1)(σ)

that agrees with ∆(ℓ−1)
τ,σ , as follows. Let τ = {v1, . . . , vd} where the vertices of τ are indexed

in an arbitrary order, where d = |τ |. For every singleton set {vi} ⊆ τ we set

f({vi}) = vi

while for every set S ⊆ τ of cardinality |S| > 1, we set

f(S) = v1.

Let τ ′ be a face of τ . The views encoded by different vertices in a simplex ρ ∈ Bary(τ ′) of
a barycentric subdivision are totally ordered by inclusion, so ρ may contain at most one
vertex that corresponds to singleton view (i.e., a view composed of a single vertex of τ ′). As
a consequence, there are only three possible cases:

DISC 2023

https://doi.org/10.1016/j.jlamp.2021.100662

4:20 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

f(ρ) = vi whenever ρ = {vi}, or
f(ρ) = v1 whenever ρ contains no singleton sets but possibly {v1}, or
f(ρ) = {v1, vi} for some i ∈ {2, . . . , d} whenever ρ contains the singleton {vi} plus other
non-singleton vertices.

In all three cases, the image of ρ is a simplex of ∆(ℓ−1)
τ,σ (τ ′), by Claim 20. Therefore f is

simplicial, and agrees with ∆(ℓ−1)
τ,σ , which implies that τ ∈ ∆(ℓ)(σ). ◁

We are now ready to prove Theorem 10. For the first part of the theorem, let K
be a connected component of ∆(σ), and our goal is to show that every τ ⊆ V (K) with
1 ≤ |τ | ≤ dim(σ) + 1 satisfies τ ∈ ∆(ℓ)(σ). The claim holds for |τ | = 1 (i.e., for vertices) as
every vertex of K is by definition a vertex of ∆(σ). It holds for |τ | = 2 (i.e., for edges) by
Claim 20, and for |τ | > 2 by Claim 21.

For establishing the second item, first note that one direction of the if and only if
statement is trivial, as the closure operator can only add simplices, so connected components
of Skel1(∆(k−1)(σ)) can only merge when moving to Skel1(∆(k)(σ)) and not break. For the
other direction, we proceed by induction on k ≥ 0. The statement is trivial for k = 0.

Let us assume that the statement holds for k and show that it holds for k + 1. Let u and
v be two vertices of ∆(σ) in two different connected components of ∆(σ), and by assumption
in two different connected components of ∆(k)(σ). Let us show that {u, v} /∈ ∆(k+1)(σ). For
the purpose of contradiction, let us consider a map

f : Bary({u, v}) → ∆(k)(σ)

that agrees with ∆(k)
{u,v},σ. We must have f({u}) = u, f({v}) = v, and f({u, v}) = w for

some vertex w ∈ V (∆(k)(σ)). However, u and v are in two different connected components
of ∆(k)(σ), which implies that {u, w} or {v, w} is not an edge of ∆(k)(σ). As a consequence,
f is not simplicial, and thus {u, v} /∈ ∆(k+1)(σ). In other words, no edges can be added
between different connected components of ∆(σ) during successive closure operations. ◀

Proof of Theorem 11. Let Π = (I, O, ∆) such that Cl(Π) is solvable in t − 1 rounds by n

processes. Let

δ′ : Bary(t−1)(Skeln(I)) → O

be a simplicial map agreeing with ∆. Roughly, an algorithm for solving Π consists of two
phases: first solving Cl(Π) using δ′, and, second, given the output of δ′, reconciliating these
outputs (valid for Cl(Π), but not necessarily for Π) using the algorithm solving the local
task for these outputs (see Fig. 3). More formally, les us consider a process p with input x,
i.e., x ∈ I is a vertex. After t − 1 rounds, this process gets a view w which is a vertex of
Bary(t−1)(I). Then, p proceeds with one more round of communication, and gets a view in
Bary(t−1)(I), which is either of the form {w} or of the form {w, w′} where {w, w′} is an edge
of Bary(t−1)(I). Note that the property of the Barycentric subdivision guarantee that in the
latter case w′ must contain an input x′ ≠ x of another process, where e = {x, x′} was the
actual input. Let y = δ′(w) and y′ = δ′(w′). Moreover, let e′ = {y, y′}. Note that e′ is an
edge of ∆′(e) as δ′ solves Cl(Π), but it is not necessarily an edge of ∆(e). The algorithm
solving Π is as follows:

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:21

x

x′

w

w′

{w}

{w,w′ }

{w′ }

{y}

{y, y′ }

{y′ }

e
y

y′

e′

y

y′

z
fe′ ,e

Δ′ (e) Bary(1)(e′)

δ′

Bary(t)(e)Bary(t−1)(e)
Δ(e)

e ∈ ℐ

 roundst − 1

Figure 3 Proof of Theorem 11.

If the view of p after t rounds is {w}, then p outputs y;
If the view of p after t rounds is {w, w′}, then p outputs z = fe′,e({y, y′}) where

fe′,e : Bary(1)(e′) → ∆(e)

is a simplicial map2 solving the local task Πe′,e.
This algorithm is well defined, as if p has view {w, w′}, then it knows x and x′, and it can
compute y and y′ from the views w and w′. To show correctness, let σ ∈ I, and let us
show that our algorithm produces a simplex τ ∈ ∆(σ). If σ is a vertex x, then all processes
output y ∈ ∆′(x), which is a vertex of ∆(x), as desired. If σ is an edge e = {x, x′}, then
let {w, w′} ∈ Bary(t−1)(e) be the edge of the barycentric subdivision corresponding the the
current configuration after t − 1 rounds. Assume, w.l.o.g., that, during the t-th round, some
processes (maybe none) get view {w} while some other processes (at least one) get view
{w, w′} – the latter view is a vertex of Bary(t)(e), whereas it was an edge of Bary(t−1)(e).
Note that starting from {w, w′} ∈ Bary(t−1)(e), it is not possible that some processes reads a
view {w} in Bary(t)(e) while some other processes reads {w′} in Bary(t)(e). It follows that
a group of processes may output y = δ′(x) while another group of processes may output
z = fe′,e({y, y′}). The crucial property is that fe′,e fixes vertices, that is, fe′,e({y}) = y.
Since fe′,e is simplicial and agrees with ∆e′,e, we get that

{y, z} = {fe′,e({y}), fe′,e({y, y′})} ∈ ∆e′,e(e′) = ∆(e),

as desired. This completes the proof of the theorem. ◀

Proof of Theorem 13. Fix a colorless task Π that has a round-reduction impossibility proof.
By Lemma 8, Π∗ is not 0-round solvable. For each simplex σ ∈ O, all the connected
components of ∆∗(σ) are complete up to dimension dim(σ) by Claim 21: if some simplices
of dimension at most dim(σ) are missing in ∆∗(σ) then at least one of them would have
been added to it when applying the closure operator, contradicting the fact that Π∗ is a
fixed-point.

To construct an FLP-style proof, we consider an algorithm A that claims to solve Π, and
define δ : V (I) → V (O) to map each input value x ∈ I to the output value δ(x) produced
by A in the execution where only the value x appears; δ(x) is unique since the execution

2 There might be more than one simplicial map from Bary(1)(e′) to ∆(e), in which case one selects one of
them arbitrarily for defining the algorithm solving Π.

DISC 2023

4:22 FLP-Style Proofs and the Round-Reduction Technique for Colorless Tasks

is unique and the algorithm is deterministic. The fact that Cl∗(Π) is not 0-round solvable
means that there is a simplex σ ∈ I such that δ(σ) = {δ(x) | x ∈ σ} /∈ ∆∗(σ). As the
connected components are complete up to dimension dim(σ), the simplex σ is mapped to (at
least) two different connected components, i.e. there are two input values x, x′ ∈ σ and two
connected components C, C ′ of ∆(σ) such that δ(x) ∈ C and δ(x′) ∈ C ′.

Let σ0 = {x, x′}. As σ0 ⊆ σ, the fact that ∆∗ is a carrier map (Lemma 5) implies that
the connected components of ∆(σ0) are a refinement of the connected components of ∆(σ).
Hence, there is a connected component C0 ⊆ C of ∆(σ0) such that val(x) ∩ C0 ̸= ∅, and
similarly a different connected component C ′

0 ⊆ C ′ of ∆(σ0) such that val(x′) ∩ C ′
0 ̸= ∅. Note

that Theorem 10 asserts that the connected components of ∆(σ0) and of ∆∗(σ0) are the
same.

Let us say that a configuration reachable from σ0 is bivalent (w.r.t. σ0) if a valency query
on it returns output values in at least two different connected components of ∆(σ0). Note
that σ0 is bivalent by construction, and that if the algorithm is in a bivalent configuration it
cannot decide without taking further steps.

We construct an infinite sequence σ0, σ1, . . . of bivalent configurations. Each σt will
consist only of two views

σt = {wt, w′
t}.

Assume σ0, . . . , σt are chosen and val(σ) is known for each σ ∈ Bary1(σt). Recall that
Bary1(σt) is composed of the vertices {wt}, {wt, w′

t}, {w′
t} and the edges e = ({wt}, {wt, w′

t})
and e′ = ({w′

t}, {wt, w′
t}). Let Ct be a connected component of ∆(σ0) such that val({wt, w′

t})∩
Ct ̸= ∅.

The fact that σt is bivalent implies that there is a connected component C ′
t of ∆(σ0),

C ′
t ̸= Ct, such that val(σt) ∩ C ′

t ≠ ∅. As the valencies of the vertices are contained in the
valencies of the edges, we have val(e) ∪ val(e′) = val(σt). Hence, at least one edge f ∈ {e, e′}
has val(f) ∩ C ′

t ̸= ∅. Since {wt, w′
t} ∈ f , it also has val(f) ∩ Ct ̸= ∅. The edge f is thus

bivalent, and we set it as σt+1. This process can continue for every t ≥ 0, and the proof is
complete. ◀

Proof of Proposition 17. The diameter D of O is N = 1/ϵ. Let us first show that if
0 ≤ k < ⌈log2 1/ϵ⌉, we have {0, 1} /∈ ∆(k)({0, 1}). The proof is based on the following fact:
for any two distinct vertices u and v of ∆(k)({0, 1}) at distance at least 3 in Skel1(∆(k)({0, 1})),
we have {u, v} /∈ ∆(k+1)({0, 1}). To establish this fact, let us consider any map

f : Bary(1)({u, v}) → ∆(k)({0, 1})

agreeing with ∆(k)
{u,v},{0,1}. Since f agrees with ∆(k)

{u,v},{0,1}, we must have f(u) = u and
f(v) = v. Therefore, if w = f({u, v}) then either {u, w} or {w, v} is not an edge of
∆(k)({0, 1}) because u and v are at distance greater than 2. Therefore f is not simplicial,
which shows that {u, v} /∈ ∆(k+1)({0, 1}), as claimed. It follows that, for k < ⌈log2 1/ϵ⌉, we
have {0, 1} /∈ ∆(k)({0, 1}).

This latter fact implies that the k-th closure of ϵ-agreement is not solvable in zero rounds:
an algorithm f solving this k-th closure must satisfy f(0) = 0 and f(1) = 1. As a consequence,
if some processes start with 0, and some other processes start with input 1, all these processes
jointly output the set {0, 1}, which is not a valid output as {0, 1} /∈ ∆(k)({0, 1}). ◀

Proof of Theorem 19. Consider a non-trivial covering complex (O, f) of a complex I, and
the corresponding covering task Π = (I, O, ∆). For the case of the Hexagon task we have
seen that Cl(HX) = HX, and here we start the same why.

H. Attiya, P. Fraigniaud, A. Paz, and S. Rajsbaum 4:23

a b

cx y

z

a′ ′ b′ ′

c′ ′

x′ ′ y′ ′

z′ ′

a′ b′

c′
x′ y′

z′

∀v ∈ V(ℐ),
f(v′) = f(v′ ′) = v

ℐ �풪

σ
σ′

σ′ ′

e

e′

e′ ′

∀σ ∈ ℐ,Δ(σ) = f−1(σ)

Δ(σ) = σ′ ∪ σ′ ′ Δ(e) = e′ ∪ e′ ′

Δ(y) = {y′ } ∪ {y′ ′ }

Figure 4 A 2-dimensional covering task extending the Hexagone task to a higher dimension.
Here, f(σ′) = f(σ′′) = σ, and accordingly the image of σ under ∆ is the union of the two complexes
with unique facets σ′ and σ′′.

Consider an input simplex σ ∈ I, and note that each of its sheets is a simplex, and that
its sheets do not intersect. Hence, all the connected components of ∆(σ) are complete (each
is of dimension dim(σ)), and Theorem 10 implies that ∆∗(σ) = ∆(σ), so Cl(Π) = Π. Hence,
if Π is solvable wait-free by n ≥ 2 processes in the IIS model, then by Lemma 8 it is wait-free
solvable in zero rounds.

Consider a possible zero-round algorithm for Π, and its decision map δ. Recall that δ

must be simplicial, i.e. maps simplices to simplices, and hence also paths to paths.
Fix x ∈ V (I), its image y = δ(x) ∈ V (O) under δ, and note that f(y) = x. Since (O, f)

is non-trivial, there is another vertex y′ ∈ V (O), y′ ̸= y, such that f(y′) = x. As O is
connected, it contains a path (y0 = y, y1, . . . , yk = y′) connecting y and y′, and I contains
its image C = (x0 = f(y0), . . . , xk = f(yk)) under f . Note that x = x0 = xk, so C is in fact
a cycle in I. Apply δ to C, and the fact that δ is simplicial gives a cycle δ(C) in O.

As δ(x0) = y0 but δ(xk) ̸= yk, there must exist a minimal index 0 ≤ i < k such that
δ(xi) = yi and δ(xi+1) ̸= yi+1. By the construction of the path, f(yi, yi+1) = (xi, xi+1), and
by the assumption that δ solves the task and hence comply with ∆ we have f(yi, δ(xi+1)) =
(xi, xi+1). Hence f−1(xi, xi+1) contains both (yi, yi+1) and (yi, δ(xi+1)), i.e. (xi, xi+1) has
two intersecting sheets, in contradiction to (O, f) being a covering complex. ◀

DISC 2023

Topological Characterization of Task Solvability in
General Models of Computation
Hagit Attiya #

Department of Computer Science, Technion, Haifa, Israel

Armando Castañeda #

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico

Thomas Nowak #

Laboratoire Méthodes Formelles, Université Paris-Saclay, CNRS, ENS Paris-Saclay, France
Institut Universitaire de France, Paris, France

Abstract
The famous asynchronous computability theorem (ACT) relates the existence of an asynchronous
wait-free shared memory protocol for solving a task with the existence of a simplicial map from a
subdivision of the simplicial complex representing the inputs to the simplicial complex representing
the allowable outputs. The original theorem relies on a correspondence between protocols and
simplicial maps in round-structured models of computation that induce a compact topology. This
correspondence, however, is far from obvious for computation models that induce a non-compact
topology, and indeed previous attempts to extend the ACT have failed.

This paper shows that in every non-compact model, protocols solving tasks correspond to
simplicial maps that need to be continuous. It first proves a generalized ACT for sub-IIS models,
some of which are non-compact, and applies it to the set agreement task. Then it proves that in
general models too, protocols are simplicial maps that need to be continuous, hence showing that
the topological approach is universal. Finally, it shows that the approach used in ACT that equates
protocols and simplicial complexes actually works for every compact model.

Our study combines, for the first time, combinatorial and point-set topological aspects of the
executions admitted by the computation model.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases task solvability, combinatorial topology, point-set topology

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.5

Related Version Full Version: https://arxiv.org/abs/2301.13837

Funding Hagit Attiya: partially supported by the Israel Science Foundation (grants 380/18 and
22/1425).
Armando Castañeda: partially supported by the DGAPA PAPIIT project IN108723.
Thomas Nowak: partially supported by the ANR grant ANR-21-CE48-0003.

1 Introduction

The celebrated topological approach in distributed computing relates task solvability to the
topology of inputs and outputs of the task and the topology of the protocols allowed in a
particular model of computation. This approach rests on three pillars. First, configurations,
whether of inputs, outputs or protocol states, can be modeled as simplexes, which are
finite sets. Second, the inherent indistinguishability of configurations is crisply captured
by intersections between simplexes. Third, a carrier map captures the notion of the set of
configurations that are reachable from a given configuration.

© Hagit Attiya, Armando Castañeda, and Thomas Nowak;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:armando.castaneda@im.unam.mx
https://orcid.org/0000-0002-8017-8639
mailto:thomas@thomasnowak.net
https://orcid.org/0000-0003-1690-9342
https://doi.org/10.4230/LIPIcs.DISC.2023.5
https://arxiv.org/abs/2301.13837
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Task Solvability in General Models of Computation

More concretely, in this approach, tasks are triples T = (I,O,∆), where I and O are
simplicial complexes modeling the inputs and outputs of the task, and ∆ is a carrier map
specifying the possible valid outputs, ∆(σ), for each input simplex σ ∈ I. Similarly, protocols
are triples P = (I,P,Ξ), where P is the complex modeling the final configurations of the
protocol, and Ξ is a carrier map specifying the reachable final configurations, Ξ(σ), from σ.

With this perspective in mind, it is natural to conclude that a protocol maps final states
(i.e., states in final configurations) to outputs, and for the protocol to be correct, the mapping
must be simplicial ; that is, all outputs of final states in the same simplex τ ∈ Ξ(σ) (i.e., in
the same final configuration) must be in the same output simplex of ∆(σ). Thus, a protocol
induces a simplicial map from P to O. Moreover, since decisions of processes are only based
on local information, it is natural to conclude the converse, i.e., any simplicial map implies
a protocol. (In general, a protocol specifies also the communication during an execution.
However, solvability can consider only existence of a decision function, by assuming that
the protocol is full-information.) This leads to the following purely topological solvability
characterization: a protocol P = (I,P,Ξ) solves a task T = (I,O,∆) if and only if there is
a simplicial map δ : P → O such that for every σ ∈ I, we have (δ ◦ Ξ)(σ) ⊆ ∆(σ).

The discussion so far did not depend on a particular model of computation. Indeed, this
approach seems universal and gives the impression that protocols and simplicial maps are
the same, and that for all models, the solvability question can be reduced to the existence of
a simplicial map. In fact, the correspondence between protocols and simplical maps seems
so self-evident that frequently the characterization above seems to require no proof, and is
introduced as a definition (e.g., [13, Section 4.2.2; Definition 8.4.2]).

This approach works well for cases where the model of computation has a particular
round structure1 and it induces a compact topology so that the correspondence between
protocols and simplicial maps holds. Roughly speaking, a compact topological space has no
“punctures” or “missing endpoints”, namely, it does not exclude any limit point. If a model
of computation is specified as a set of infinite executions, then a compact model will contain
all its “limit executions”. For example, the Iterated Immediate Snapshot (IIS) model ensures
that computation proceeds in sequence of (implicit) rounds; in each round, any of a finite set
of possible schedules can happen. Thus, the model contains every infinite execution with
this round structure. Models like IIS are sometimes called oblivious [7], and are known to
induce finite complexes with compact topology, where protocols and simplicial maps are the
same. Round-structured compact models have been extensively studied in the literature, and
different techniques have been developed for them (e.g., [4, 6, 10,14]).

However, this approach is not true in all models, specifically, in non-compact ones. In a
non-compact model, typically some “good” schedules only eventually happen, which then
implies that the model is not limit-closed. Examples of a non-compact models are t-resilient
asynchronous models where any process is guaranteed to eventually obtain information from
at least t− 1 other processes infinitely often, but the process can take an unbounded number
of steps before that happens. This means, for example, that the model contains every infinite
execution where a process runs solo for a finite number of steps and then obtains information
from t− 1 other processes, but it does not contain the infinite solo execution of the process,
i.e., the limit execution.

Challenging non-compact models have been mostly treated in the literature indirectly,
through “compactification”. Sometimes, compactification consists of considering only proto-
cols with a concrete round structure, as is done in some chapters of [13]. In other cases, a

1 Rounds may be explicit, like in the synchronous message-passing t-resilient model, or implicit, for
example, modeled by layers, as in the Iterated Immediate Snapshot model.

H. Attiya, A. Castañeda, and T. Nowak 5:3

computationally-equivalent round-structured compact model is analyzed instead (e.g., [17,22]).
This requires first to prove that the models are equivalent, through simulations in both
directions, and then characterize solvability in the compact model. For impossibility results,
it is also sometimes possible to identify a compact sub-model in which a problem of interest
is still unsolvable [18].

Round-structured compact models have also served to analyze other compact models. In
the famous asynchronous computability theorem (ACT) [15], fully characterizing solvability
of the non-round-structured compact read/write wait-free shared memory model, a crucial
step is showing equivalence with the IIS model. This restricts the solvability characterization
to subdivisions, which are well-behaved topological spaces, making the ACT highly useful.

Some sub-IIS models, with subsets of IIS like t-resilient computations, are non-compact.
For this reason, an attempt [11] to generalize the ACT to arbitrary sub-IIS models and tasks
had to directly address non-compact models. The idea of this so-called generalized ACT is
to somehow reuse the nice structure of IIS, modeling any sub-IIS model as a possibly infinite
subdivision.

This raises two important questions that have not been explicitly investigated so far,
which are addressed in this paper. (1) Can protocols in all models of distributed computation
be captured as simplicial maps? (2) Can the topological approach be applied to all models
of computation? The answers to these questions are not self-evident since there may be
non-compact models or non-round-structured compact models, which cannot be compactified.

We note that there is already a recent negative answer to the first question: Godard and
Perdereau [12] showed a non-compact model where consensus is unsolvable, but nevertheless,
it has a simplicial map as described above. Roughly, it considers a sub-IIS model where a
single infinite execution of IIS is removed. The resulting model is not compact. It turns out
that the complex of a protocol is an infinite subdivision that is disconnected, hence, there
is a simplicial map from it to the consensus output complex (which is disconnected too).
But the map does not imply a consensus protocol, since intuitively, the decisions must be
consistent as they approach the discontinuity of the removed execution. More specifically,
the simplicial map does not imply a protocol because it is not continuous. Section 3 details
the example based on their ideas. While continuity of simplicial maps is guaranteed in
compact models, this is not the case in non-compact ones. This example demonstrates that
the generalization in [11] is flawed as it misses the continuity property of simplicial maps.
Godard and Perdereau also correct this problem for the special case of two processes and the
consensus task.

Continuity of simplicial maps may seem trivial, but it was overlooked for long time,
before [12]. Here, we further expose its importance.

We first study task solvability in the well-structured simplicial complexes induced by
sub-IIS models. Our first contribution (Theorem 4.1) is to present a correct generalized ACT
for any number of processes and arbitrary tasks. Our approach is motivated by the critical
role of continuity. Our second contribution (Theorem 4.2) is to use our generalized ACT
theorem in order to provide an impossibility condition for set agreement in sub-IIS models,
where the continuity requirement of simplicial maps allows a natural generalization of the
known impossibility conditions for round-structured compact models.

While this settles the questions for sub-IIS models, the questions for general models
remain open. Our third contribution (Theorem 5.4) shows that the topological approach is
applicable in all models of computation, if one requires simplicial maps to be continuous.
Unlike the case of round-structured compact and sub-IIS models, proving the applicability of
the topology approach to general non-compact models is not straightforward. It requires to
combine point-set topological techniques [2] with combinatorial topology techniques [13].

DISC 2023

5:4 Task Solvability in General Models of Computation

We use this result in our fourth contribution: a proof that the approach described at the
beginning of the introduction, equating protocols and simplicial maps that are not required
to be continuous, is universal for compact models (Theorem 6.3). Namely, in every compact
model, possibly non-round-structured, it is indeed the case that there is correspondence
between protocols and simplicial maps, hence the approach works in all these cases. The
proof of this result is far from trivial, and it uses projective limits from category theory [19].

As far as we know, non-compact models have been directly studied only in [8,9,11,12,20].
A full combinatorial solvability characterization for two-process consensus under synchronous
general message-loss failures appears in [9]. For the case of two processes, these models are
all sub-IIS, hence this work is the first that directly studies non-compact models. Then, [11]
attempted to generalize ACT to general sub-IIS models and tasks, for any number of processes.
The solvability of two-process consensus is studied again in [12], now from a combinatorial
topology perspective, where it is shown that the attempt in [11] is flawed. That paper also
provides an alternative full topological solvability characterization for two-process consensus.
Recently, sub-IIS models were studied through geometrization [8], i.e., using a mapping
from IIS executions to points in the Euclidean space, which in turn induces a topology.
The geometrization is used to derive a full solvability characterization for set agreement
in sub-IIS models, and it generalizes the two-process consensus solvability characterization
of [12]. A solvability characterization for consensus (only) in general models, for any number
of processes, is presented in [20]. It is derived using point-set topology techniques from [2],
without combining them with combinatorial topology. Recent formalizations [1, 3] for proofs
based on valency arguments show that for some tasks, e.g., set agreement and renaming,
impossibility cannot be shown by inductively constructing infinite executions. This means
that arguments regarding the final protocol states are necessary in order to prove impossibility.
Our results indicate that such proofs can be carried within combinatorial topology, in general
models of computation.

In summary, our contributions are:
1. A generalized ACT for arbitrary sub-IIS models (Theorem 4.1).
2. An application of the generalized ACT to set agreement (Theorem 4.2).
3. A proof that if simplicial maps from P to O are required to be continuous, the topological

approach works for every model of computation (Theorem 5.4).
4. A proof that the usual topological approach where simplicial maps are not required to be

continuous works for every compact model (Theorem 6.3).

2 Preliminaries

This section presents the elements of combinatorial topology and point set topology used in
further sections, and defines tasks, system models and task solvability.

We start by fixing some basic notation. We denote by Π the set of processes and let
n = |Π|. For any function f : X → Y and subsets A ⊆ X and B ⊆ Y , we denote by f [A]
the image of the set A under f and by f−1[B] the inverse image of the set B under f .

2.1 Elements of Combinatorial Topology and Decision Tasks
To be the most general possible, we use the language of colored tasks [13, Definition 8.2.1], to
study one-shot distributed decision tasks like consensus or set agreement. We use the standard
concepts in [13] with the only difference that simplicial complexes might be infinite, i.e., a
possibly infinite sets of finite sets. Definitions of concepts like simplicial and carrier maps,
geometric realization, standard chromatic subdivision and more appear in the Appendix.
Here we just recall the definition of tasks.

H. Attiya, A. Castañeda, and T. Nowak 5:5

A decision task is a triple T = (I,O,∆) such that:
I, the input complex, is a finite pure chromatic simplical complex of dimension n − 1,
whose vertices are additionally labeled by a set of inputs V in. Each simplex of I specifies
private inputs for the processes that appear in the simplex.
O, the output complex, is a finite pure chromatic simplical complex of dimension n− 1,
whose vertices are additionally labeled by a set of inputs V out. As above, each simplex of
O specifies private outputs for the processes in the simplex.
∆ is a chromatic carrier map from I to O, ∆(σ), that specifies the valid outputs for every
input simplex σ in I. Namely, when the inputs are the ones specified in σ, the outputs
in any simplex of ∆(σ) are allowed.

Whenever the complex is understood from the context, we will denote by v(p, x) the
unique vertex of the complex with color p ∈ Π and label x.

2.2 Elements of Point-Set Topology
In addition to combinatorial topology, we employ point-set topology [5], i.e., the general
mathematical theory of closeness, convergence, and continuity. The topologies that we define
here are described by metrics, which are distance functions d : X ×X → [0,∞) that satisfy:
1. Positive definiteness: d(x, y) = 0 if and only if x = y

2. Symmetry: d(x, y) = d(y, x)
3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
A set equipped with a metric is called a metric space. The most basic metric is the discrete
metric, which is defined by:

d(x, y) =
{

0 if x = y

1 if x ̸= y

That is, the discrete metric can only give the information whether two elements are equal,
but implies no finer-grained notion of closeness.

A central notion in point-set topology are open sets, which are subsets O ⊆ X such that

∀x ∈ O ∃ε > 0: Bε(x) ⊆ O

where Bε(x) = {y ∈ X | d(x, y) < ε} is the open ball with radius ε around x. With respect
to the discrete metric, every subset O ⊆ X is open. This follows from the fact that the open
ball with radius 1/2 around x is equal to B1/2(x) = {x}, i.e., only contains x itself.

The general definition of a topological space is a nonempty set X together with a topology,
i.e., a set O ⊆ 2X of subsets of X that is closed under arbitrary unions and finite intersections.
The elements of O are called the open sets of the space. With the above definition, every
metric induces a topology.

A particular class of metrics that we use in this paper is that of ultrametrics. They satisfy
the stronger ultrametric triangle inequality: d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.
The discrete metric is an example of an ultrametric. In an ultrametric space, two open balls
are either disjoint or one is a subset of the other, as is shown by the following folklore lemma:

▶ Lemma 2.1. Let X be an ultrametric space. For all x, y ∈ X and all δ, ε > 0, one of the
following is true: (1) Bδ(x) ∩Bε(y) = ∅, (2) Bδ(x) ⊆ Bε(y), (3) Bε(y) ⊆ Bδ(x).

The morphisms of topological spaces X and Y are continuous functions, namely, those
functions f : X → Y such that any inverse image of an open set is open. In metric terms,
this means that for every x ∈ X and every ε > 0 there exists a δ > 0 such that dX(x, x′) < δ

DISC 2023

5:6 Task Solvability in General Models of Computation

implies dY (f(x), f(x′)) < ε for all x′ ∈ X. Here, we denoted by dX the metric on X and
by dY the metric on Y . All constant functions are continuous, as are all locally constant
functions, i.e., functions f : X → Y that are constant in some open ball Bε(x) with positive
radius ε > 0 for every x ∈ X.

Topologies for standard set-theoretic constructions can be defined from their individual
parts. For instance, the product topology of a countable collection of metric spaces Xi can
be described by the metric d : X ×X → [0,∞) with

d(x, y) =
∑
i∈N

2−i di(xi, yi)
1 + di(xi, yi)

.

We use the product metric to extend the notion of indistinguishability of local views of
configurations (these concepts are formally defined in Section 2.3) to a metric on infinite
executions. It has the following property:

▶ Lemma 2.2 ([5, § 2.3, Proposition 4]). Let (Xi)i∈N be a countable collection of metric
spaces and let X =

∏
i∈NXi be their product equipped with the product metric. For all metric

spaces Y and all functions g : Y → X, the following are equivalent:
1. The function g is continuous.
2. The function πi ◦ g is continuous for all i ∈ N where πi : X → Xi is the projection on the

component i.

The disjoint-union topology of the disjoint union X =
⊔
i∈I Xi is described by the metric

d : X ×X → [0,∞) with d(x, y) = di(x, y) if there is an index i ∈ I such that both x and y

are elements of Xi, and d(x, y) = 2 else. We use the disjoint-union metric to get a global
metric from those defined for the local views of each process, with the following property:

▶ Lemma 2.3 ([5, § 2.4, Proposition 6]). Let (Xi)i∈I be a collection of metric spaces and let
X =

⊔
i∈I Xi be their disjoint union equipped with the disjoint-union metric. For all metric

spaces Y and all functions g : X → Y , the following are equivalent:
1. The function g is continuous.
2. The function g ◦ φi is continuous for all i ∈ I where φi : Xi → X is the embedding of Xi

into X.

2.3 System Model
Let T = (I,O,∆) any task. Since our goal is to give a very general characterization of task
solvability, we work with an abstract system model that hides most of the operational details,
such as semantics of shared registers or guarantees of message delivery. We instead focus
on the structure of the set of executions induced by the local indistinguishability relations,
i.e., by the processes’ local views. We further assume that actions taken by processes do not
influence the set of possible executions. That is, we assume the existence of full-information
executions, on which we base our characterization. A full-information execution is a sequence
of configurations. A configuration is a vector with the process states and the state of the
environment (e.g., shared memory, messages in transit) in its entries. In a full-information
execution, every process relays all the information it gathered to all other processes whenever
it can. This includes its input value, the order and contents of events it perceived, and
the information relayed to it by others. In particular, we assume that there are no size
constraints on messages or shared memory.

Formally, let Exec be the set of full-information executions of n processes in which initial
configurations are chosen according to the input complex I. We assume the existence
of projection functions πp : Exec → Viewp from executions to sequences of local views of

H. Attiya, A. Castañeda, and T. Nowak 5:7

t = 0

t = 1

t = 2

execution E
process-view
sequence πp(E)

Figure 1 Prefix of a full-information execution E (left) and process-view projection πp(E) (right)
of a synchronous message-passing system with dynamic communication graphs. The depicted prefix
includes the initial configuration as well as the first two communication rounds. Process p is the
green (lower right) process. Initially, after round 0, process p only knows its own initial value. After
the first round, process p also knows the blue (upper) process’s initial value as well as the fact that
directed edge from the blue to the green process was present in the communication graph of the first
round. After the second round, process p learned the initial value of the red (lower left) process, its
own incoming edges of the second round’s communication graph, as well as the views of the blue
and the red processes after the first round.

process p. These sequences can be finite or infinite. Its element with index t contains the
local view of process p right after its tth step in the execution. The set of process views of
executions in which process p is correct will be denoted by CViewp.

A step is defined as a possibility to irrevocably decide. That is, the tth step of process p
is process p’s tth possibility to decide a value (or not) in the execution. We allow processes
to decide in their initial state, i.e., in their step with index t = 0. Step counts are local to a
process and need not be synchronized among processes. A process that only has finitely many
steps is called faulty in the execution. For an execution E ∈ Exec we write Correct(E) ⊆ Π
for the set of correct (non-faulty) processes in the execution. A participating process
p ∈ Part(E) ⊆ Π is one that takes at least one step. We have that Correct(E) ⊆ Part(E). We
write Initp(E) ∈ V in for the initial value of process p in execution E. The concrete forms
of executions and local views depend on the specifics of the computational model. Fig. 1
depicts an example execution and process-view sequence.

A (decision) protocol is a function from local views to V out ∪ {⊥} with ⊥̸∈ V out such
that decisions are irrevocable: if some view is mapped to a decision value v ∈ V out, then all
its successor views are also mapped to v. A process p thus has at most one decision value
in every execution E, which we denote by Decisionp(E) ∈ V out. A protocol solves a task
T = (I,O,∆) if it satisfies the following two conditions in every execution E ∈ Exec:

Every correct process p ∈ Correct(E) has a decision value in E.
We have {v(p,Decisionp(E)) | p ∈ Correct(E)} ∈ ∆(σ) where σ = {v(p, Initp(E)) | p ∈
Part(E)}.

Example: Lossy-Link Model. The lossy-link model [21] is a synchronous computation model
with n = 2 processes, p and q, that communicate via message passing. The communication
graph can change from round to round. In each round, the adversary chooses one of three

DISC 2023

5:8 Task Solvability in General Models of Computation

0 1

↔ ↔↔

→ ←↔

σ

→ ← ← → → ←

R = 0

R = 1

R = 2

∂σ

0 1

Figure 2 Subdivisions in the IIS model for two processes.

communication graphs: ←, →, or ↔. In a round with communication graph ←, only the
message from the right to the left processes arrives, the other message is lost. In a round with
communication graph →, only the message from the left to the right processes arrives, the
other message is lost. In a round with communication graph ↔, both messages arrive and no
message is lost. In a full-information execution, each process starts out by sending its initial
value and then records all received messages in subsequent rounds, relaying this information
to the other process. In this model, there is no notion of faulty processes; the only source
of uncertainty is the communication. We thus have Part(E) = Correct(E) = {p, q} = Π for
every full-information execution E, and thus CViewp = Viewp and CViewq = Viewq.

Since both processes are correct in every execution, both processes are participating, i.e.,
Part(E) = Π.

3 The Need of Continuity

This section explains the need of continuity of simplicial maps to model protocols in non-
compact models. This is done using in part the example in [12] showing a flaw in the attempt
to generalize the ACT [11].

For a system with two processes, left and right, the compact IIS model can be equivalently
defined as the lossy-link model described in Section 2.3. Thus, IIS for two processes consists
of all infinite sequences of communication graphs ←, →, or ↔, each graph specifying the
communication that occurs in a round. A sub-IIS model is any subset of IIS.

Let us consider an inputless version of the consensus task where the left process has fixed
input 0 and the right process has fixed input 1. Then, the input complex of the task I is
the complex made of the edge σ = {0, 1} and its faces (processes are identified with their
inputs), the output complex O has simplexes {0} and {1}, and ∆ maps σ to O, and each
{i} to itself. Complexes I and O will be denoted σ and ∂σ, respectively.

The topology of the IIS executions is well understood: the complex modeling all config-
urations at the end of round R is a finite subdivision of the input complex σ (basically a
subdivision of the real interval [0, 1]), and as R increases, the subdivision gets finer. Con-
cretely, it is the R-th standard chromatic subdivision. Figure 2(left) shows the subdivisions
for the first two rounds, where, for example, the left-most and right-most edges of the second
subdivision correspond to the configurations at the end of the finite solo executions →,→
and ←,←, respectively, where a process does not hear from the other, and the central edge
corresponds to ↔,↔, where processes hear from each other.

A key property of round-structured compact models like IIS is that, for any protocol
solving a task, there is a finite round R such that all correct processes make a decision at
round R, at the latest (assuming I is finite). With this property, it is simple to see that
consensus is impossible in IIS (see the right side of Figure 2):

H. Attiya, A. Castañeda, and T. Nowak 5:9

→ ←← ←
↔→ ←

Figure 3 A possible subdivision for the sub-IIS model M1.

1. For any round R, the complex corresponding to the decided states of a hypothetical
protocol P , is a finite subdivision K of σ, i.e., |K| = |σ|. (Recall that |K| is the geometric
realization of K.) The subdivision might be irregular because processes might make
decisions at different rounds; processes keep running after decision, hence an edge models
infinitely many infinite executions, all of them sharing the finite prefix where the decisions
are made.

2. P must map each vertex (state) of K to an output in ∂σ, with the restriction that the
left-most vertex must be mapped to 0 and the right-most vertex must be mapped to 1,
as they correspond to solo executions, hence, by validity of the consensus task (i.e.,
∆({i}) = {i}), the process that only sees its input is forced to decide it.

3. Since P solves consensus, it induces a simplicial map δ : K → ∂σ, which, as K is finite,
necessarily induces a continuous map |δ| : |K| → |∂σ|. The map |δ| is ultimately a
continuous map |σ| → |∂σ| that maps the boundary of σ to itself.

4. Finally, this continuous map does not exist because |σ| is solid whereas |∂σ| is disconnected.

The argument above goes from protocols to simplicial maps. In models like IIS, the other
direction is also true. Namely, for any given task T = (I,O,∆), for any complex K related
to I that satisfies some model-dependent properties, any simplicial map from K to O that
agrees with ∆, induces a protocol for T . Thus, to show that a task is solvable in two-process
IIS, it suffices to exhibit a finite, possibly irregular, subdivision of the input complex, in the
style of the one in Figure 2(left), and a simplicial map that is valid for the task.

The main aim of [11] is to generalize the approach above that equates simplicial maps and
protocols to arbitrary sub-IIS models, in order to exploit the already known topology of IIS.
The high-level idea is that the complexes that model a sub-IIS model are still subdivisions
but not necessarily of the input complex, and not necessarily finite.

Let us consider first the sub-IIS model M1 with all infinite executions of the form ←
followed by any infinite sequence with ←, →, or ↔ (intuitively right goes first), or →
followed by any infinite sequence with ←, →, or ↔ (intuitively left goes first). It can be
seen that consensus is solvable in this model: since ↔ cannot happen in the first round,
the process that receives no message in the first round is the “winner”. Figure 3 shows an
irregular subdivision that models all executions of M1; for example, the right-most edge
corresponds to all executions of M1 with prefix ←,←. Intuitively, in the subdivision, in some
executions processes decide in round one (represented by the edge at the left), and in the
remaining executions processes decide in round two (represented by the three edges at the
right). Clearly, there is a simplicial map from such a disconnected subdivision to ∂σ that
agrees with consensus. This simplicial map induces a consensus protocol for M1.

The argument above works well because the model is compact, hence finite subdivisions
are able to capture all its executions. However, in non-compact models, some executions can
only be modeled through infinite subdivisions, which implies that simplicial maps are not
necessarily protocols.

Consider now the sub-IIS model M2 obtained by removing from IIS the infinite execution E
described by the sequence ↔,←,←, . . . This model is not compact because it contains any
infinite execution with a finite prefix (of any length) of E, but it does not contain E itself,
the limit execution. As said, a crucial property of non-compactness is that the executions of

DISC 2023

5:10 Task Solvability in General Models of Computation

....

Figure 4 An schematic representation of an infinite subdivision for the sub-IIS model M2.

the model cannot be captured by a finite subdivision. Intuitively, an edge can only model
executions that have a common finite prefix of E of length x, but in M2 there are executions
with a prefix larger than x, hence these executions are not captured by the edge; if the
subdivision is finite, there are necessarily executions that are not modeled by any edge.

Figure 4 contains a schematized infinite subdivision K that indeed captures all executions
of M2. Intuitively, there are infinitely many edges that get closer and closer to the point
that represents the removed execution E (depicted as a vertical dashed line at the center),
but no edge actually “crosses” it (as E is not in M2). Thus the simplicial complex K is
disconnected, and there is a simplical map from K to ∂σ that agrees with consensus. Although
all executions are captured in the infinite subdivision, such a simplicial map does not imply
a protocol. The intuition is that there is a sudden jump in the decisions around E, which
ultimately implies that the decision in executions that are similar enough to the removed
limit execution E are not consistent, namely, they cannot be produced by a protocol.

It turns out that the topological space |K| is actually a subdivision of |σ|: in the limit,
|K| = |σ|. Thus, the infinite subdivision K describes a space that is not disconnected!
Moreover, for any infinite subdivision that models M2, the space associated with it is
connected, i.e., this is an invariant of the model of computation. Any simplicial map that
intends to capture a protocol should consider that |K| = |σ|. This is precisely captured by
demanding that the induced map |K| → |O| must be continuous (hence smooth around E).
Therefore, there is no continuous map |σ| → |∂σ| that maps the boundary of σ to itself, and
indeed consensus is not solvable in this model [9, Theorem III.8].

Formalizing this seemingly simple observation in arbitrary models of computation is not
obvious, and it requires a combination of combinatorial topology techniques and point-set
topology techniques, as is done in the following sections. Intuitively, distance functions in
point-set topology are used to equip protocol complexes with a topology that in turn yields
a correspondence between continuous simplicial maps and protocols.

4 Proof of the Generalized Asynchronous Computability Theorem with
an Application to Set Agreement

In this section we use the definitions and notation of Gafni, Kuznetsov, and Manolescu [11]
for sub-IIS models. They introduced the notion of terminating subdivisions of the input
complex I of a task. The idea is to repeatedly subdivide all simplexes via the standard
chromatic subdivision, except those that are already marked as terminated. The terminated
simplexes model configurations where processes have decided.

Formally, a terminating subdivision T is specified by a sequence of chromatic complexes
I0, I1, . . . and a sequence of subcomplexes Σ0 ⊆ Σ1 ⊆ . . . such that for all k ≥ 0: (1) Σk is
a subcomplex of Ik (each Ik is a non-uniform subdivision [16]) and (2) I0 = I and Ik+1
is obtained from Ik by the partial chromatic subdivision in which the simplexes in Σk are
not further subdivided (the terminated simplexes), and each simplex τ /∈ Σk is replaced
with its standard chromatic subdivision Chr τ . Precisely, we replace a simplex σ in Ik by a

H. Attiya, A. Castañeda, and T. Nowak 5:11

...

I0 I1

Figure 5 First two complexes of a three-process terminating subdivision.

coarser subdivision than Chrσ. Whereas the vertices of Chrσ are pairs (p, σ′) with p ∈ Π
and σ′ ⊆ σ, in Ik+1 we consider the pairs (p, σ′) of that form such that either σ′ /∈ Σk, or σ′

consists of a single vertex in Σk.
Figure 5 schematizes a terminating subdivision where I is made of two triangles and

terminated simplexes are marked in red.
A simplex of Σk, for some k, is called stable. The simplicial complex K(T) is the union

of all Σk; K(T) might be infinite.
The vertices of K(T) are naturally embedded in the geometric realization of I by their

definition as a vertex of the repeated chromatic subdivision Chrk I (recall that |Chrk I| = |I|,
for every k ≥ 0). In particular, we identify the geometric realization |K(T)| with a subset
of |I|. Every IIS execution can be described as an infinite sequence of simplexes σ0, σ1, . . .

such that σk ∈ Chrk I, for every k ≥ 0.
A terminating subdivision is admissible for a sub-IIS model M if K(T) covers all

executions of M , namely, for each execution σ0, σ1, . . . of M , there is a k such that |σk| ⊆ |τ |,
for some terminated simplex τ ∈ Σk.

▶ Theorem 4.1. A sub-IIS model M solves a task T = (I,O,∆) if and only if there exists a
terminating subdivision T of I and a chromatic simplicial map δ : K(T)→ O such that:
(a) T is admissible for the model M .
(b) For any simplex σ of I, if τ is a stable simplex of T such that |τ | ⊆ |σ|, then δ(τ) ∈ ∆(σ).
(c) |δ| is continuous.

Proof sketch. (⇒): This direction consisting in showing that the geometric realization of
the map δ as constructed in the proof of Gafni, Kuznetsov, and Manolescu [11, Theorem 6.1]
is continuous by generalizing the proof given by Godard and Perdereau [12, Theorem 33] for
the consensus task with two processes.

(⇐): We modify the protocol that is constructed in the proof of Gafni, Kuznetsov, and
Manolescu [11, Theorem 6.1] for process p to decide in round k if the set

Bk(v) = {w ∈ V (K(T)) | d(v, w) ≤ Dk ∧ χ(w) = p}

only contains vertices that are mapped to the same output vertex by δ, where v is the view
of the process in round k. This condition eventually holds since the subset topology on the
geometric realization of the output vertices V (O) is discrete; thus, δ is locally constant. ◀

We now use Theorem 4.1 to derive a condition for the impossibility of (n−1)-set agreement
task in IIS-sub models. Recall that in this task each process is required to eventually decide
an input value (termination) of a process participating in the execution (validity) such that
no more than n− 1 distinct values are decided (agreement).

DISC 2023

5:12 Task Solvability in General Models of Computation

Let Π = {p0, p1, . . . , pn−1}. For simplicity, we focus on the inputless version of the set
agreement task, where each process pi, 0 ≤ i ≤ n− 1, has fixed input i in every execution,
and thus the task is the triple T = (I,O,∆), where the input complex I is made of all faces
of simplex σ = {0, 1, . . . , n− 1}, and for simplicity it is denoted σ, the output complex O,
denoted ∂σ, is the complex with all proper faces of σ, and ∆ maps every proper face σ′ ⊂ σ
to the complex with all faces of σ′, and maps σ to ∂σ.

▶ Theorem 4.2. Let M be an IIS-sub model such that for any termination subdivision T

of σ that is admissible for M , |σ| = |K(T)|. Then, (n− 1)-set agreement is impossible in M .

5 Characterization of Task Solvability in General Models

In this section we present a topological solvability characterization in general models, hence
showing that the topology approach is applicable in all models of computation. As anticipated,
the characterization demands simplicial maps to be continuous, which is particularly relevant
if complexes are infinite. Differently from sub-IIS models in the previous section, where
continuity naturally arises in protocols complexes as they are subdivisions (hence embedded
in a Euclidean space), the general case requires to equip protocol complexes with a topology,
which is used to capture continuity.

Recall that the set of process views of executions in which process p is correct is denoted
CViewp. These are the executions in which we demand process p to decide on an output
value. We always have CViewp ⊆ Viewp. For every process p we define a topology on the
set CViewp of correct process-p local-view sequences induced by the distance function

dp(α, β) = 2−Tp(α,β)

where Tp(α, β) is defined as the smallest index at which the local views in the process-view
sequences α and β differ. If no such index exists, then Tp(α, β) = ∞. This means that
the distance between two process-view sequences is smaller the later the process can detect
a difference between the two. If α and β do not differ in any index, then α = β and
dp(α, β) = 2−∞ = 0. A variant of this distance function, which considers complete executions
instead of local views, was introduced by Alpern and Schneider [2].

We first establish that the distance function dp is an ultrametric.

▶ Lemma 5.1. The distance function dp is an ultrametric on CViewp.

In the next lemma, we establish the fundamental fact that the decision functions for
process p are exactly the continuous functions CViewp → V (O) when using dp on CViewp
and the discrete metric on V (O).

▶ Lemma 5.2. Let δp : CViewp → V (O) be a function. The following are equivalent:
1. There is a protocol such that process p decides the value δp(α) in every execution E ∈ Exec

with local view πp(E) = α ∈ CViewp.
2. The function δp is continuous when equipping CViewp with the topology induced by dp

and V (O) with the discrete topology.

To formulate and prove our characterization for the solvability of tasks in general models,
we define a structure that combines the notions of chromatic simplicial complexes and the
notion of point-set topology of sequences of local views. Formally, a topological chromatic
simplicial complex is a chromatic simplicial complex whose set of vertices is equipped with
a topology. A vertex map between two topological chromatic simplicial complexes is a
morphism if it is continuous, chromatic, and simplicial.

H. Attiya, A. Castañeda, and T. Nowak 5:13

The protocol complex P is a (possibly infinite) topological chromatic simplicial complex
defined as follows. The set of vertices of P is the disjoint union V (P) =

⊔
p∈Π CViewp of the

correct local-view spaces. The vertices from CViewp are colored with the process name p.
We equip the set of vertices with the disjoint-union topology, i.e., the finest topology that
makes all embedding maps ιp : CViewp → V (P) continuous.

A set σ of vertices of P is a simplex of P if and only if the local views are consistent with
the views of correct processes in an execution, i.e., if it is of the form

σ = {πp(E) | p ∈ P}

for some execution E ∈ Exec and some set P ⊆ Correct(E).
The execution map Ξ : I → 2P is defined by mapping every input simplex in I to the

local views of correct processes of executions in which the initial values of participating
processes are as in the input simplex. Formally,

Ξ(σ) =
{
{πp(E) | p ∈ P} | E ∈ Compatible(σ) ∧ P ⊆ Correct(E)

}
where Compatible(E) ⊆ Exec denotes the set of executions that are compatible with the
initial values described by the input simplex σ. That is,

Compatible(σ) = {E ∈ Exec | Part(E) ⊆ χ[σ] ∧ ∀p ∈ Part(E) : Initp(E) = ℓ(πp(σ))}

where πp(σ) denotes the unique vertex of the simplex σ with the color p, if it exists,
and ℓ(πp(σ)) is the input (label) of vertex πp(σ). The execution map Ξ assigns a subcomplex
of P to every input simplex σ in I. As in the classical finite-time setting [13, Definition 8.4.1],
the next lemma shows that it is a carrier map:

▶ Lemma 5.3. The execution map Ξ is a carrier map such that P =
⋃
σ∈I

Ξ(σ).

In contrast to the classical finite-time setting, however, the execution map is not necessarily
rigid. Whether it is depends on whether any finite execution prefix can be extended to a
fault-free execution. This is not the case, e.g., in many synchronous models. If Ξ is not rigid,
then, by definition, it is a fortiori not chromatic. It does, however, satisfy the inclusion{

χ(v) | v ∈ V (Ξ(σ))
}
⊆ χ[σ]

for all input simplices σ ∈ I. In other words, the colors of Ξ(σ) are included in the colors
of σ; no new process names appear. It turns out that the stronger assumptions of rigidity or
chromaticity are not necessary to show our solvability characterization.

▶ Theorem 5.4. The task T = (I,O,∆) is solvable if and only if there exists a continuous
chromatic simplicial map δ : P → O such that δ ◦ Ξ is carried by ∆.

Proof. (⇒): Assume that there is a protocol that solves task T . Define the vertex map
δ : P → O by setting δ(α) to be the vertex of O with color p and label v where p is the
unique process such that α ∈ CViewp and v is the decision value of process p in an execution
with local-view sequence α when executing the protocol.

The map δ is continuous on each individual CViewp by Lemma 5.2. By Lemma 2.3, it is
thus continuous on their disjoint union P. The map δ is chromatic since the color of the
vertex α ∈ CViewp is p, as is the color of δ(α).

To prove that δ is simplicial, let φ be a simplex of P. Then, by definition, there
exists an execution E ∈ Exec and a set P ⊆ Correct(E) such that φ = {πp(E) | p ∈ P}.
Set σ = {v(p, Initp(E)) | p ∈ Π} and τ = {v(p,Decisionp(E) | p ∈ Correct(E)}. Then,

DISC 2023

5:14 Task Solvability in General Models of Computation

since the protocol solves task T , we have τ ∈ ∆(σ). By definition of δ, we then have
δ[φ] = {v(p,Decisionp(E)) | p ∈ P} ⊆ τ ∈ ∆(σ) ⊆ O, which means that δ[φ] ∈ O and hence
that δ is simplicial.

It remains to prove that δ ◦ Ξ is carried by ∆. So let σ ∈ I and τ ∈ (δ ◦ Ξ)(σ). We
need to show that τ ∈ ∆(σ). By the definitions of Ξ and δ, there exists an execution
E ∈ Compatible(σ) and a set P ⊆ Correct(E) such that τ = {v(p,Decisionp(E)) | p ∈ P}.
Since the protocol solves task T , we have τ ′ = {v(p,Decisionp(E)) | p ∈ Correct(E)} ∈ ∆(σ′)
where σ′ = {v(p, Initp(E)) | p ∈ Part(E)}. Since τ ⊆ τ ′ and ∆(σ′) is a simplicial complex,
we deduce that τ ∈ ∆(σ′). Now, because E ∈ Compatible(σ), we have Part(E) ⊆ χ[σ] and
σ′ ⊆ σ. It thus follows that τ ∈ ∆(σ′) ⊆ ∆(σ) because ∆ is a carrier map.

(⇐): The restriction δp of δ to the set CViewp is continuous because δ is. By Lemma 5.2
there hence exists a protocol such that every process p decides the value ℓ(δ(πp(E))) ∈ V out

for every execution E in which p is correct.
Let E ∈ Exec be any execution and define the sets σ = {v(p, Initp(E)) | p ∈ Part(E)}

and τ = {v(p,Decisionp(E)) | p ∈ Correct(E)}. To show that the protocol solves task T , it
remains to show that τ ∈ ∆(σ). Since δ ◦Ξ is carried by ∆, it suffices to prove τ ∈ (δ ◦Ξ)(σ).
Setting φ = {πp(E) | p ∈ Correct(E)}, we have τ = δ[φ]. We are thus done if we show
φ ∈ Ξ(σ). But this follows from E ∈ Compatible(σ), which is true by construction of σ. ◀

6 Relationship to the Classical Finite-Time Approach

In this section, we formalize the relationship between our infinite protocol complex used for
the general solvability characterization in Theorem 5.4 and the classically studied finite-time
protocol complexes. Besides demonstrating that the classical formalism is a special case of
ours, we show the finite-time approach is sufficient for all compact models. More specifically,
we show that it is possible to restrict the study to finite-time protocols if the computational
model is compact. Formally, a topological space is compact if every open cover has a finite
subcover. Many computational models that are defined by safety predicates are compact.
We use the concept of projective limit from category theory [19] to formalize the relationship
between finite-time and infinite-time complexes. In particular, we show that the infinite-time
complex is the projective limit of the finite-time complexes if the model is compact.

Finite-Time Complexes. For every nonnegative integer T , we define the time-T protocol
complex P|T as follows:

The set of vertices of P|T is the disjoint union of the sets CViewp|T where p varies in the
set Π of processes.
The set CViewp|T is defined as the set of open balls of radius ε = 2−T in CViewp. These
balls are either identical or disjoint by Lemma 2.1.
All vertices of CViewp|T are colored with p.
A set of vertices of P|T is a simplex of P|T if and only if there is a simplex of P that is
formed by choosing one element in each vertex of the set.
The topology on V (P|T) is the discrete topology.

This definition makes P|T a topological chromatic simplicial complex. As a chromatic
simplicial complex, it is isomorphic to the classical finite-time construction of protocol
complexes [13]. The finite-time execution map ΞT : I → 2P|T is defined by

ΞT (σ) =
{
BT [τ]

∣∣ τ ∈ Ξ(σ)
}

where BT (α) = {β ∈ V (P) | d(α, β) < 2−T } is the function that takes each vertex α of P to
the open 2−T -ball in which it is included.

H. Attiya, A. Castañeda, and T. Nowak 5:15

Projective Limits. We will show that, if the model is compact, then P is the limit of the P|T
in a precise sense. For this, we use the notion of projective limits from category theory [19],
which we introduce in this subsection.

A category is a class of objects and a class of morphisms between objects. Every morphism
f : X → Y is assigned a domain object X and a codomain object Y . For compatible
morphisms f : X → Y and g : Y → Z, the composition g ◦ f is a morphism X → Z. The
composition operator is required to be associative. For every object X, the existence of an
identity morphism idX : X → X is required. The identity morphism satisfies f ◦ idx = f for
all morphism f : X → Y with domain X and idX ◦g = g for all morphisms g : Z → X with
codomain X.

A sequence (XT)T≥0 of objects of a category can be transformed into an inverse system
by specifying a family (fS,T)0≤S≤T of morphisms fS,T : XT → XS such that fT,T = idXT

and fR,T = fR,S ◦ fS,T for all 0 ≤ R ≤ S ≤ T . The projective limit of the sequence is
then an object X together with morphisms πT : X → XT such that πS = fS,T ◦ πT for all
0 ≤ S ≤ T and with the universal property that for any other such object Y and morphisms
ψT : Y → XT , there exists a unique morphism u : Y → X such that the following diagram
commutes for all 0 ≤ S ≤ T :

Y

X

XT XS

ψT

u

ψS

πT πS

fS,T

For every pair of integers S and T , 0 ≤ S ≤ T , define the vertex maps fS,T : P|T → P|S
by setting fS,T (B) to be the unique open 2−S-ball of P|S in which the open 2−T -ball B of
P|T is included. These are morphisms between topological chromatic simplicial complexes
and they satisfy fR,T = fR,S ◦ fS,T for all 0 ≤ R ≤ S ≤ T . This makes the sequence of
the P|T an inverse system.

▶ Lemma 6.1. The projective limit of the sequence of complexes P|T exists.

We can equip the set of executions with the metric d(E,E′) = 2−K where K = inf{k ≥ 0 |
Ek ̸= E′

k}, which measures how many configurations are identical in two execution prefixes [2].
With this topology on Exec, the projection maps πp : Exec→ Viewp are continuous. In fact,
continuity of the map means that each local view needs to be determined by some finite
prefix of the execution. We have the following lemma:

▶ Lemma 6.2. If Exec is compact, then V (P) is compact as well, and P is the projective
limit of the P|T .

Sufficiency of Finite-Time Complexes for Compact Models. We can now state the fact
that finite-time protocol complexes are sufficient to study compact models.

▶ Theorem 6.3. If V (P) is compact, then the following are equivalent:
1. The task T = (I,O,∆) is solvable.
2. There is a continuous chromatic simplicial map δ : P → O such that δ ◦Ξ is carried by ∆.
3. There is a time T such that there exists a chromatic simplicial map δT : P|T → O such

that δT ◦ ΞT is carried by ∆.
4. The task T = (I,O,∆) is solvable in a bounded number of local steps per process.

On the other hand, if V (P) is not compact, then the equivalence in Theorem 6.3 need
not hold, as is shown by the example in Section 3.

DISC 2023

5:16 Task Solvability in General Models of Computation

7 Conclusion

We put together combinatorial and point-set topological arguments to prove a generalized
asynchronous computability theorem, which applies also to non-compact computation models.
This relies on showing that in non-compact models, protocols solving tasks correspond to
simplicial maps that need to be continuous. We show an application to the set agreement task.
We also show that the usual finite-time protocol complex, where protocols and simplicial
maps are the same, suffices for all compact models.

It would be interesting to find other computation models and tasks where our techniques,
and the generalized ACT, in particular, can be applied. Another intriguing direction for
future research is to characterize which computation models lead to non-compact topological
objects.

References
1 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based

proofs fail. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
Symposium on Theory of Computing (STOC 2019), pages 986–996. ACM, New York, 2019.

2 Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, 1985.

3 Hagit Attiya, Armando Castañeda, and Sergio Rajsbaum. Locally solvable tasks and the
limitations of valency arguments. Journal of Parallel and Distributed Computing, 176:28–40,
2023. doi:10.1016/j.jpdc.2023.02.002.

4 Hagit Attiya and Sergio Rajsbaum. The combinatorial structure of wait-free solvable tasks.
SIAM Journal on Computing, 31(4):1286–1313, 2002. doi:10.1137/S0097539797330689.

5 Nicolas Bourbaki. General Topology. Chapters 1–4. Springer, Heidelberg, 1989.
6 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and

Corentin Travers. A topological perspective on distributed network algorithms. Theoretical
Computer Science, 849:121–137, 2021.

7 Étienne Coulouma, Emmanuel Godard, and Joseph Peters. A characterization of oblivious
message adversaries for which consensus is solvable. Theoretical Computer Science, 584:80–90,
June 2015. doi:10.1016/j.tcs.2015.01.024.

8 Yannis Coutouly and Emmanuel Godard. A topology by geometrization for sub-iterated
immediate snapshot message adversaries and applications to set-agreement. In Rotem Oshman,
editor, Proceedings of the 37th International Symposium on Distributed Computing (DISC
2023). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2023. To appear.

9 Tristan Fevat and Emmanuel Godard. Minimal obstructions for the coordinated attack problem
and beyond. In Proceedings of the 25th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2011), pages 1001–1011. IEEE, New York, 2011.

10 Pierre Fraigniaud, Ran Gelles, and Zvi Lotker. The topology of randomized symmetry-breaking
distributed computing. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors,
Proceedings of the 40th ACM Symposium on Principles of Distributed Computing (PODC
2021), pages 415–425. ACM, New York, 2021. doi:10.1145/3465084.3467936.

11 Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability
theorem. In Shlomi Dolev, editor, Proceedings of the 33rd ACM Symposium on Principles of
Distributed Computing (PODC 2014), pages 222–231. ACM, New York, 2014.

12 Emmanuel Godard and Eloi Perdereau. Back to the coordinated attack problem. Mathematical
Structures in Computer Science, 30(10):1089–1113, 2020. doi:10.1017/S0960129521000037.

13 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, Waltham, 2014. URL: https://store.elsevier.
com/product.jsp?isbn=9780124045781.

https://doi.org/10.1016/j.jpdc.2023.02.002
https://doi.org/10.1137/S0097539797330689
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1145/3465084.3467936
https://doi.org/10.1017/S0960129521000037
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://store.elsevier.com/product.jsp?isbn=9780124045781

H. Attiya, A. Castañeda, and T. Nowak 5:17

14 Maurice Herlihy and Sergio Rajsbaum. Simulations and reductions for colorless tasks. In
Darek Kowalski and Alessandro Panconesi, editors, Proceedings of the 31st ACM Symposium
on Principles of Distributed Computing (PODC 2012), pages 253–260. ACM, New York, 2012.
doi:10.1145/2332432.2332483.

15 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, 1999.

16 Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous complex-
ity. SIAM Journal on Computing, 36(2):457–497, 2006. doi:10.1137/S0097539701397412.

17 Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem
for fair adversaries. In Calvin Newport and Idit Keidar, editors, Proceedings of the 37th ACM
Symposium on Principles of Distributed Computing (PODC 2018), pages 387–396. ACM, New
York, 2018. URL: https://dl.acm.org/citation.cfm?id=3212765.

18 Ronit Lubitch and Shlomo Moran. Closed schedulers: a novel technique for analyzing
asynchronous protocols. Distributed Computing, 8:203–210, 1995.

19 Saunders Mac Lane. Categories for the Working Mathematician. Springer, Heidelberg, 2nd
edition, 1987.

20 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus
under general message adversaries. In Proceedings of the 38th ACM Symposium on Principles
of Distributed Computing (PODC 2019), pages 218–227. ACM, New York, 2019. doi:10.1145/
3293611.3331624.

21 Nicola Santoro and Peter Widmayer. Time is not a healer. In B. Monien and R. Cori, editors,
Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science (STACS
1989), pages 304–313. Springer, Heidelberg, 1989. doi:10.1007/bfb0028994.

22 Vikram Saraph, Maurice Herlihy, and Eli Gafni. Asynchronous computability theorems for
t-resilient systems. In Cyril Gavoille and David Ilcinkas, editors, Proceedings of the 30th
International Symposium on Distributed Computing (DISC 2016), pages 428–441. Springer,
Heidelberg, 2016. doi:10.1007/978-3-662-53426-7_31.

A Additional Details for Section 2 (Preliminaries)

A simplicial complex is a (possibly infinite) set V along with a (possibly infinite) collection
K of finite subsets of V closed under containment i.e., if σ ∈ K then σ′ ∈ K, for any σ′ ⊆ σ.
An element of V is called a vertex of K, and the vertex set of K is denoted by V (K). Each
set in K is called a simplex. A subset of a simplex is called a face of that simplex. The
dimension of a simplex σ, denoted dim σ, is one less than the number of elements of σ, i.e.,
|σ| − 1. The dimension of a complex is the smallest integer that upper bounds the dimension
of any of its simplexes, or ∞ if there is no such bound. A simplex σ in K is called a facet of
K if σ is not properly contained in any other simplex. A complex is pure if all its facets have
the same dimension. We will focus on pure complexes, either finite or infinite.

Let K be a complex and σ be a simplex of it. The star of σ in K is the complex
stσ = {τ ∈ K | σ ⊆ τ}.

Let K and L be complexes. A vertex map from K to L is a function h : V (K)→ V (L).
If h also carries simplexes of K to simplexes of L, it is called a simplicial map.

For two complexes K and L, if K ⊆ L, we say K is a subcomplex of L. Given two
complexes K and L, a carrier map Φ : K → 2L maps each simplex σ ∈ K to a subcomplex
Φ(σ) of L, such that for every two simplexes τ and τ ′ in K that satisfy τ ⊆ τ ′, we have
Φ(τ) ⊆ Φ(τ ′). We say that Φ is rigid if for every σ ∈ K, Φ(σ) is pure of dimension dim σ.

A geometric realization of a complex K is an embedding of the simplexes of K into a
real vector space such that, roughly speaking, intersections of simplexes are respected. All
geometric realizations of a complex are topologically equivalent, i.e., homeomorphic. Thus,

DISC 2023

https://doi.org/10.1145/2332432.2332483
https://doi.org/10.1137/S0097539701397412
https://dl.acm.org/citation.cfm?id=3212765
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1007/bfb0028994
https://doi.org/10.1007/978-3-662-53426-7_31

5:18 Task Solvability in General Models of Computation

Figure 6 The standard chromatic subdivision of an edge and of a triangle.

we speak of the geometric realization of K, which is denoted |K|. The standard construction
sets |K| equal to the set of functions α : V (K)→ [0, 1] such that {v ∈ V (K) | α(v) > 0} is a
simplex of K and ∥α∥1 =

∑
v∈V (K) α(v) = 1. The 1-norm induces a metric on |K| that makes

its diameter equal to 1 if K has more than one vertex. Any simplicial map h : K → L induces
a function |h| : |K| → |L|. If the complexes are finite, then |h| is necessarily continuous, and
there is no guarantee of that otherwise.

A coloring of a complex K is a function χ : V (K)→ Π. The coloring is chromatic if any
two distinct vertices of the same facet of K have distinct colors. A chromatic complex is
a simplicial complex equipped with a chromatic coloring. A labeling of a complex K is a
function ℓ : V (K)→ L, where L is a set. The set L will be a set of inputs, outputs or process
states. Below, we will consider chromatic and labeled complexes such that each vertex is
uniquely identified by its color together with its label, namely, for any two distinct vertices u
and v, (χ(u), ℓ(u)) ̸= (χ(v), ℓ(v)). For any vertex v of any such complex, we let denote by
v(p, x) the unique vertex of the complex with color p ∈ Π and label x ∈ L.

Let K be a chromatic complex. The standard chromatic subdivision of K, denoted ChrK,
is the chromatic complex whose vertices have the form (p, σ), where p ∈ Π, σ is a face of a
facet of K and p ∈ χ(σ). A set {(p0, σ0), (p1, σ1), . . . , (ps, σs)} is a simplex of ChrK if and
only if σ0 ⊆ σ1 ⊆ . . . ⊆ σs and for all 0 ≤ q, r ≤ s, if q ∈ χ(σr) then σq ⊆ σr. The chromatic
coloring χ for ChrK is defined as χ(p, σ) = p. Figure 6 contains the standard chromatic
subdivision of an edge, a 1-dimensional simplex, and a triangle, a 2-dimensional simplex.
The k-th standard chromatic subdivision, Chrk K, is obtained by iterating k times the
standard chromatic subdivision. The standard chromatic subdivision is indeed a subdivision:
|Chrk K| ∼= |K|, for every k ≥ 0.

A simplicial map h : V (K)→ V (L) is chromatic if it carries colors, i.e., χ(v) = χ(h(v)),
for every vertex v of K. A carrier map Φ : K → 2L is chromatic if Φ(σ) is pure and chromatic
of dimension dim σ, and each facet of it has colors χ(σ).

▶ Lemma 2.1. Let X be an ultrametric space. For all x, y ∈ X and all δ, ε > 0, one of the
following is true: (1) Bδ(x) ∩Bε(y) = ∅, (2) Bδ(x) ⊆ Bε(y), (3) Bε(y) ⊆ Bδ(x).

Proof. Assume that both (1) and (2) are false. We will prove that then (3) is true.
Let v ∈ Bε(y). We need to show that v ∈ Bδ(x). Since (1) is false, there exists a

z ∈ Bδ(x) ∩Bε(y). Applying the ultrametric triangle inequality twice, we have:

d(v, x) ≤ max{d(v, z), d(z, x)} ≤ max{d(v, y), d(y, z), d(z, x)}
< max{ε, ε, δ} = max{ε, δ}

It remains to prove that ε ≤ δ so that max{ε, δ} = δ and v ∈ Bδ(x).

H. Attiya, A. Castañeda, and T. Nowak 5:19

Suppose by contradiction that ε > δ. Since (2) is false, there exists a u ∈ Bδ(x) \Bε(y).
But then we have

d(u, y) ≤ max{d(u, z), d(z, y)} ≤ max{d(u, x), d(x, z), d(z, y)}
< max{δ, δ, ε} = ε ,

which means that u ∈ Bε(y), a contradiction to the choice of u. ◀

B Additional Details for Section 4 (Proof of the Generalized
Asynchronous Computability Theorem with an Application to Set
Agreement)

▶ Theorem 4.1. A sub-IIS model M solves a task T = (I,O,∆) if and only if there exists a
terminating subdivision T of I and a chromatic simplicial map δ : K(T)→ O such that:
(a) T is admissible for the model M .
(b) For any simplex σ of I, if τ is a stable simplex of T such that |τ | ⊆ |σ|, then δ(τ) ∈ ∆(σ).
(c) |δ| is continuous.

Proof. (⇒): We prove that the geometric realization of the map δ as constructed in the
proof of Gafni, Kuznetsov, and Manolescu [11, Theorem 6.1] is continuous by generalizing
the proof given by Godard and Perdereau [12, Theorem 33] for the consensus task with two
processes.

Let x ∈ |K(T)| and ε > 0. We show the existence of an η > 0 such that:

∀y ∈ |K(T)| : d(x, y) < η =⇒ d
(
|δ|(x), |δ|(y)

)
< ε (1)

Let σ be the minimal stable simplex in K(T) such that x ∈ |σ|. Since K(T) is locally finite,
the star stσ = {τ ∈ K(T) | σ ⊆ τ} is finite. Let k be the smallest round number such that
stσ ⊆ Σk. Denote by Dk the diameter of the geometric realization of simplices in Chrk I
and choose η = εDk.

We show (1) in the geometric realization of every simplex τ ∈ stσ. By the choice of k, we
have τ ∈ Chrr I for some 0 ≤ r ≤ k. Let y ∈ |τ | and denote by α the barycentric coordinates
of x with respect to τ and by β the barycentric coordinates of y with respect to τ , i.e.,
x =

∑
v∈τ α(v) · v and y =

∑
v∈τ β(v) · v with α, β ≥ 0 and ∥α∥1 = ∥β∥1 = 1. Here, we

identified each vertex v ∈ τ with its position in the geometric realization |K(T)|. We then
have:

d(x, y) = ∥x− y∥1 = diam|τ | ·
∑
v∈τ
|α(v)− β(v)| ≥ Dk ·

∑
v∈τ
|α(v)− β(v)|

By definition of the geometric realization |δ|, we have

|δ|(x) =
∑
v∈τ

α(v) · δ(v)

where, again, we identify the vertex δ(v) with its position in geometric realization |O|.
Since δ(v) is a vertex of O for every vertex v ∈ τ , we have

d
(
|δ|(x), |δ|(y)

)
≤

∑
v∈τ
|α(v)− β(v)| ≤ d(x, y)

Dk
<

η

Dk
= ε ,

which shows (1) and concludes the proof of continuity of |δ|.

DISC 2023

5:20 Task Solvability in General Models of Computation

(⇐): We modify the protocol that is constructed in the proof of Gafni, Kuznetsov, and
Manolescu [11, Theorem 6.1] for process p to decide in round k if the set

Bk(v) = {w ∈ V (K(T)) | d(v, w) ≤ Dk ∧ χ(w) = p}

only contains vertices that are mapped to the same output vertex by δ, where v is the view
of the process in round k. This condition eventually becomes true since the subset topology
on the geometric realization of the output vertices V (O) is discrete, and thus δ is locally
constant. ◀

▶ Theorem 4.2. Let M be an IIS-sub model such that for any termination subdivision T

of σ that is admissible for M , |σ| = |K(T)|. Then, (n− 1)-set agreement is impossible in M .

Proof. Let M be a sub-IIS model. By Theorem 4.1, if (n − 1)-set agreement is solvable
in model M , there is a (possibly infinite) terminating subdivision T of σ and a chromatic
simplicial map δ : K(T) → ∂σ such that (1) T is admissible for M , (2) for every input
simplex σ′ ⊆ σ, if τ is a stable simplex of T such that |τ | ⊆ |σ′|, then δ(τ) ∈ ∆(σ′), and
(3) |δ| is continuous.

Let us suppose that |σ| = |K(T)|, namely, K(T) subdivides σ. Thus, for each face
σ′ ⊆ σ, |σ′| = |K(σ′)|, where K(σ′) denotes the terminating subdivision of σ′. Consider the
identity map g : |σ| → |K(T)|. Clearly, g is continuous, with g(|σ′|) = |K(σ′)|. Consider the
function f = |δ| ◦ g : |σ| → |∂σ|. Since |δ| and g are continuous, the function f is continuous
too. We argue that f(|σ′|) ⊆ |σ′|, for every proper face σ′ ⊂ σ. Consider any proper face
σ′ ⊂ σ. We have that (a) g(|σ′|) = |K(σ′)|, by definition of g, (b) for any stable simple
τ ∈ T with |τ | ⊆ |σ′| = |K(σ′)|, δ(τ) ∈ ∆(σ′), by the properties of δ, and (c) ∆(σ′) = σ′, by
definition of ∆. We thus conclude that f(|σ′|) ⊆ |σ′|.

The following lemma is direct consequence of Lemma 4.3.5 in [13], and proves below the
impossibility of (n− 1)-set agreement whenever |K(T)| = |σ|.

▶ Lemma B.1. There is no continuous map f : |σ| → |∂σ| such that for every proper face
σ′ ⊂ σ, f(|σ′|) ⊆ |σ′|.

One can understand Lemma B.1 as a continuous version of the discrete Sperner’s lemma.
Intuitively, it states that if a continuous map f : |σ| → |∂σ| maps the boundary of σ to itself
(i.e., f(|σ′|) ⊆ |σ′|, for each σ′ ⊂ σ), similar to Sperner’s lemma hypothesis, then f cannot
exist because the mapping cannot be extended to the interior of σ, since |σ| is solid whereas
|∂σ| has a hole.

As explained above, Theorem 4.1 and assumption |K(T)| = |σ| imply that if (n− 1)-set
agreement is solvable in M , then there exists a continuous map f : |σ| → |∂σ| such that for
every proper face σ′ ⊂ σ, f(|σ′|) ⊆ |σ′|. Such continuous map f contradicts Lemma B.1.
Therefore, (n− 1)-set agreement is impossible in M . ◀

C Additional Details for Section 5 (Characterization of Task
Solvability in General Models)

▶ Lemma 5.1. The distance function dp is an ultrametric on CViewp.

Proof. If α = β, then dp(α, β) = 0. If dp(α, β) = 0, then Tp(α, β) =∞, which means that
there is no index at which they differ by definition, i.e., α = β. This shows that dp is positive
definite.

The symmetry condition dp(α, β) = dp(β, α) holds since the definition of Tp(α, β) is
symmetric in α and β.

H. Attiya, A. Castañeda, and T. Nowak 5:21

We now prove the ultrametric triangle inequality by showing:

Tp(α, γ) ≥ min
{
Tp(α, β), Tp(β, γ)

}
Assume by contradiction that Tp(α, γ) < min

{
Tp(α, β), Tp(β, γ)

}
. Set t = Tp(α, γ). Since

t < ∞ and t < Tp(α, β), all local views up to index t coincide in both sequences α and β.
Likewise, all local views up to index t coincide in both sequences β and γ. But then, by
transitivity of the equality relation on local views, all local views up to index t coincide also
in the two sequences α and γ, which means Tp(α, γ) > t = Tp(α, γ); a contradiction. ◀

▶ Lemma 5.2. Let δp : CViewp → V (O) be a function. The following are equivalent:
1. There is a protocol such that process p decides the value δp(α) in every execution E ∈ Exec

with local view πp(E) = α ∈ CViewp.
2. The function δp is continuous when equipping CViewp with the topology induced by dp

and V (O) with the discrete topology.

Proof. (⇒): To show that δp is continuous, we will show that the inverse image of any
singleton {o} ⊆ V (O) is open with respect to dp. This then implies that the inverse image of
any subset O ⊆ V (O), i.e., of any subset of V (O) that is open with respect to the discrete
topology, is open with respect to dp.

Let α ∈ δ−1
p [{o}]. Because process p decides the value o in the local view α, there exists

an index T at which this decision has already happened in α. Choose ε = 2−T . Now let
α′ ∈ CViewp with dp(α, α′) < ε. Then, by definition of dp, the local views of α and of α′ are
indistinguishable for process p up to and including index T . But then, process p needs to
have decided value o at index T in local view α′ as well. We thus have δp(α′) = o, which
means that α′ ∈ δ−1

p [{o}]. Therefore, the inverse image δ−1
p [{o}] is open with respect to dp.

(⇐): We define the protocol for process p in the following way. Decide value o ∈ V (O) in
the tth step if the set of all local views in CViewp that are indistinguishable from the current
execution in the first t steps of process p is included in the inverse image δ−1

p [{o}].
Let E ∈ Exec be an execution with p ∈ Correct(E). We will show that process p decides

value o = δp(α) where α = πp(E). By definition of o, we have α ∈ δ−1
p [{o}]. By continuity

of δp, the inverse image δ−1
p [{o}] is an open set in CViewp. There hence exists an ε > 0 such

that α′ ∈ δ−1
p [{o}] for all α′ ∈ CViewp with dp(α, α′) < ε. It remains to show that process p

eventually decides the value o and that it does not decide any other value in execution E.
Setting T = ⌈log2 ε⌉, we see that, by design of the protocol’s decision rule, process p has
decided value o at the latest in step number T . To show that process p does not decide
any other value than o, it suffices to observe that d(α, α) = 0 < 2−t for every t ≥ 0 and
α ∈ δ−1

p [{o}]. ◀

▶ Lemma 5.3. The execution map Ξ is a carrier map such that P =
⋃
σ∈I

Ξ(σ).

Proof. We first prove that Ξ is a carrier map. Let σ ⊆ τ . We need to prove that Ξ(σ) ⊆
Ξ(τ). We first show that Compatible(σ) ⊆ Compatible(τ). Let E ∈ Compatible(σ). Then
Part(E) ⊆ χ[σ] ⊆ χ[τ] since σ ⊆ τ , which means that E ∈ Compatible(τ) because the second
condition in the definition is fulfilled since πp(σ) = πp(τ) for all p ∈ χ[σ]. But then, for every
φ ∈ Ξ(σ), we also have φ ∈ Ξ(τ) since every E in the definition of Ξ(σ) is also valid for Ξ(τ).

To prove P =
⋃
σ∈I Ξ(σ), it suffices to show Exec =

⋃
σ∈I Compatible(σ). The inclusion

of Compatible(σ) in Exec is immediate by its definition. So let E ∈ Exec be any execution.
We need to show the existence of a simplex σ ∈ I such that E ∈ Compatible(σ). For this, it
suffices to choose σ = {v(p, Initp(E)) | p ∈ Part(E)}. This set is an input simplex since the
initial values in Exec are chosen according to I by definition. ◀

DISC 2023

Base Fee Manipulation in Ethereum’s EIP-1559
Transaction Fee Mechanism
Sarah Azouvi1 #

Unaffiliated, Edinburgh, UK

Guy Goren #

Protocol Labs, Haifa, Israel

Lioba Heimbach #

ETH Zurich, Switzerland

Alexander Hicks #

University College London, UK

Abstract
In 2021 Ethereum adjusted the transaction pricing mechanism by implementing EIP-1559, which
introduces the base fee – a network fee that is burned and dynamically adjusts to the network
demand. The authors of the Ethereum Improvement Proposal (EIP) noted that a miner with more
than 50% of the mining power could be incentivized to deviate from the honest mining strategy.
Instead, such a miner could propose a series of empty blocks to artificially lower demand and increase
her future rewards. In this paper, we generalize this attack and show that under rational player
behavior, deviating from the honest strategy can be profitable for a miner with less than 50% of the
mining power. We show that even when miners do not collaborate, it is at times rational for smaller
miners to join the attack. Finally, we propose a mitigation to address the identified vulnerability.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism
design; Applied computing → Economics

Keywords and phrases blockchain, Ethereum, transaction fee mechanism, EIP-1559

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.6

Supplementary Material Software (Source Code): https://github.com/liobaheimbach/Base-Fee-
Manipulation-In-Ethereum-s-EIP-1559-Transaction-Fee-Mechanism

archived at swh:1:dir:fcf6c5989632f539038fc7c1f9c82f8ef2b17154

Acknowledgements We thank Andrei Constantinescu for the helpful ideas and discussions.

1 Introduction

Ethereum occupies a central role in the blockchain and decentralized application landscape.
Not only does Ethereum’s market capitalization currently exceed $225 billion [4], but it is
also the leading platform for smart contracts and decentralized finance. Thus, Ethereum has
revolutionized the way people envision and interact with blockchain technology.

The proposal of Ethereum Improvement Proposal #1559 (EIP-1559) [3] in April 2019 and
its later deployment on Ethereum’s mainnet in August 2021, mark a significant milestone
for the Ethereum network. EIP-1559 reshaped Ethereum’s transaction fee mechanism and
remains in place to this day. One of the main goals of EIP-1559 is to simplify the bidding
process by reducing the need for complex fee estimation algorithms while ensuring that the
mechanism is incentive compatible – the best strategy for all players is to follow the protocol
as intended. In particular, the mechanism should be both truthful and not incentivize miner

1 The authors of this work are listed alphabetically.

© Sarah Azouvi, Guy Goren, Lioba Heimbach, and Alexander Hicks;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.azouvi@gmail.com
https://orcid.org/0000-0002-7133-1937
mailto:guy.goren@protocol.ai
https://orcid.org/0000-0003-2158-161X
mailto:hlioba@ethz.ch
https://orcid.org/0000-0002-8258-1712
mailto:alexander.hicks@ucl.ac.uk
https://orcid.org/0000-0002-8941-9566
https://doi.org/10.4230/LIPIcs.DISC.2023.6
https://github.com/liobaheimbach/Base-Fee-Manipulation-In-Ethereum-s-EIP-1559-Transaction-Fee-Mechanism
https://github.com/liobaheimbach/Base-Fee-Manipulation-In-Ethereum-s-EIP-1559-Transaction-Fee-Mechanism
https://archive.softwareheritage.org/swh:1:dir:fcf6c5989632f539038fc7c1f9c82f8ef2b17154;origin=https://github.com/liobaheimbach/Base-Fee-Manipulation-In-Ethereum-s-EIP-1559-Transaction-Fee-Mechanism;visit=swh:1:snp:84fdd3aabcab411364270eeda1bced1b83638819;anchor=swh:1:rev:6c4f647a034c43b57a9989e39dac69bee508ba4e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

or user bribes, as articulated by Roughgarden [19]. EIP-1559 has been shown to be incentive
compatible [19, 20] when miners are assumed to be myopic, i.e., short-sighted in the sense
that they are maximizing only their immediate profits. Furthermore, an empirical study [16]
concludes that EIP-1559 succeeded in making fees easier to estimate and in reducing delays.

EIP-1559 represents a departure from the previous first-price auction system, wherein
users submit bids and pay the exact amount of their bid if their transaction was included.
Importantly, the entirety of the fees paid by users is awarded to miners. This is no longer
the case under EIP-1559 which introduced a base fee, a portion of the transaction fee that is
burned and not awarded to miners. The base fee varies according to the fill rate of blocks –
a proxy for network demand. Blocks exceeding a predefined target size increase the base fee
and blocks below this target size decrease the base fee. Miners are then compensated for
creating blocks through a block reward and user tips, i.e., user fees exceeding the base fee.

Considering the substantial financial value being traded on the Ethereum network, it
is highly probable that profitable and rational deviations will occur when possible. Thus,
it is essential for EIP-1559 to be incentive compatible as the protocol guarantees rely on
participants following the intended behavior. Deviations from the intended behavior are
considered attacks on the systems. As we will see, the dynamic nature of the base fee opens
the door for possible rational attacks by miners. Miners have control over the fill rate of
blocks and may thus choose to mine emptier blocks in order to decrease the base fee and
increase their future profits, i.e., tips paid on top of the base fee by users. This genre of
attack strategies has been acknowledged in Ethereum’s EIP-1559 proposal and has been
explored under various assumptions in previous research works [19, 11].

This paper presents an analysis of the potential for minority attacks on Ethereum’s
EIP-1559 transaction fee mechanism under the conservative assumption of a steady demand
curve. Our results show that the mechanism is vulnerable to such a 20% minority attack.2

Additionally, we show that smaller miners may be incentivized to join in on the attack. We
provide general insights into when deviating from the prescribed strategy is rational and note
that, due to the nature of our model and assumptions, the results are applicable in a wide
range of scenarios. We also explain how the attack can be initiated by an Ethereum user
(rather than a miner), i.e., show the incentives of users to enact bribes. Finally, to address
the identified vulnerability, we propose a mitigation and evaluate its effectiveness through
simulations.

2 Basic block reward mechanism in Ethereum

Block proposals. Whether Ethereum’s blockchain relies on proof-of-work (PoW) or proof-
of-stake (PoS) as sybil resistance, it relies on a leader election to determine the proposer of
the next block. To be precise, in a PoW blockchain, miners compete to solve a computational
puzzle, and the likelihood of a miner being chosen is based on their share of the network’s
computational power. In a PoS blockchain, on the other hand, miners stake amounts of the
blockchain’s native currency to participate and are randomly selected to create a new block
with probability proportional to the amount they stake. In both cases, the ideal process is
memoryless so each leader election is independent of the previous one. Our model covers
both PoW and PoS, hence, the results of this paper apply to both types of blockchains.

When a miner is chosen to propose a block, they select a set of pending transactions to
include in the next block and broadcast it to the network. Upon successful inclusion of their

2 An individual entity with more than 30% staking power currently exists in the Ethereum network [9].

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:3

block in the blockchain, the miner receives two rewards: a fixed reward of newly minted
currency (Ether in Ethereum’s case), and a variable reward from the transaction fees of the
included transactions. The block reward is fixed, regardless of the block’s content or the
miner that proposes it, so our analysis focuses on the potential for miners to increase their
revenue via transaction fees. Therefore, we do not consider the block reward.

Transaction fees under EIP-1559. Ethereum transactions involve a set of instructions
that are carried out by miners when the transaction is added to the blockchain. To prevent
users from overwhelming the network with bogus transactions, users must pay transaction
fees. These fees should reflect the amount of computational resources needed to execute the
instructions, measured in units of gas and priced in Gwei. Note that 1 Gwei ≜ 10−9 Ether.

The EIP-1559 transaction fee includes a base fee, which is paid per unit of gas and varies
to balance the supply of gas with the demand for gas. To be exact, the base fee b[i] for block
i is determined from the base fee b[i − 1] and size s[i − 1] of the previous block as follows:

b[i] ≜ b[i − 1] ·
(

1 + ϕ · s[i − 1] − s∗

s∗

)
. (2.1)

Thus, the base fee is determined by comparing the size (measured in consumed gas units)
of the previous block to a target block size s∗. If the block is larger than the target size, it
indicates high demand for gas, and the base fee is increased to decrease demand. Conversely,
if the block size is smaller than the target, it indicates low demand for gas, and the base fee
is decreased to increase demand. The sensitivity of the base fee to the size of the previous
block is determined by the adjustment parameter ϕ that is currently set to 1

8 on Ethereum.
We note that b[0] was set to 1 Gwei initially and that the maximum valid block size is 2s∗.

When creating a transaction under the EIP-1559 mechanism, in addition to the gas
limit (g), the user must specify the fee cap (c) which is the maximum fee per gas unit they are
willing to pay, and a maximum tip per gas unit (ε) which is the priority fee. The transaction
will be included in a block only if the fee cap is greater than or equal to the base fee (b).
The total fee paid by the user is g̃ · min{b + ε, c}, where g̃ < g is the actual gas consumed by
the transaction.3 A portion of the fee g̃ · b is burnt and the remaining g̃ · min{ε, c − b} goes
to the miner as a tip. The EIP-1559 mechanism aims for users to bid small tips that only
cover a miner’s costs [3, 19]. Miners are intended to include all transactions that have a fee
cap greater or equal to the base fee and prioritize transactions with higher fees only if the
maximal block size (smax) is exceeded. For simplicity, we assume that all transactions are
of the same size and have a sufficient gas limit (i.e., g = g̃ = 1) to eliminate considerations
including knapsack and gas estimation and keep the focus on the core matter. E.g., a large
transaction is modeled by multiple smaller transactions.

3 Model and Assumptions

In the following, we present our model and outline our assumptions. We highlight that our
model follows Roughgarden’s [19] very closely with the exception that we do not restrict
miners to be myopic. Specifically, while Roughgarden [19] considers only a miner’s immediate
profits (myopici), we will also consider her future profits.

3 The gas limit (g) specifies the amount of gas units available for the execution of the transaction. The
amount of gas needed to execute a transaction is not always predictable in advance. Moreover, if the
needed amount of gas exceeds g, then g gas units are consumed and paid for but the transaction fails.

DISC 2023

6:4 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

Users. We assume that users are rational agents who want their submitted transactions
to be processed and included in the blockchain. The cost of having one’s transaction (tx)
included in the blockchain under EIP-1559 depends on the base fee (b), fee cap (ctx), and the
maximum tip (εtx), which we described in Section 2. Each transaction tx has a value vtx that
is private to the user who proposes it, which can be thought of as the maximum price that the
user is willing to pay for the transaction tx to be included in the blockchain. We, therefore,
take the utility of a user proposing tx at each block to be u(tx) = vtx − min{b + εtx, ctx} if tx
is included and 0 otherwise. The user will then adjust ctx and εtx according to her bidding
strategy, while b is determined by the size of the past blocks according to Equation 2.1.

Miners. Miners produce blocks that include transactions to be executed. In our model,
the miner to propose the next block is chosen at random. Drawings constitute independent
experiments. In each drawing, a miner X is chosen with probability px, where px is the
miner’s share of the total network power. We assume that the power distribution in the
network changes slowly, hence, to simplify the analysis we model the system as having a
fixed network power distribution, i.e., miners’ network power does not change with time.

A miner has dictatorial power over which transactions to include in the block she produces.
We assume that miners are rational agents who wish to maximize their profit and therefore
choose which transactions to include in their block according to a strategy that maximizes
their profit. Aside from their transaction picking strategy, we assume that miners behave
“honestly” – that is, as specified by the protocol. We highlight that by not considering other
forms of deviating from the protocol, we strengthen our result, showing that even “practically
honest” miners would deviate from EIP-1559.

Collaboration. We adopt a standard buyers-sellers perspective. We assume that miners
do not collaborate with each other, as they can be viewed as one miner with more power.
Similarly, we assume that users do not collaborate with one another since they are competing
for the same scarce resource. However, a user (buyer) and a miner (seller) can communicate
and adjust their strategies for mutual benefit. In particular, a (sophisticated4) user and a
miner will collaborate if it benefits both of them. That is, the user pays fewer fees for her
transaction while the miner receives more fees. The collaboration is thus rational behavior,
leading to improved outcomes for both.

Steady State. The distribution of transaction values is represented by a demand curve,
and the standard demand curve is a decreasing function; the higher the fee is, the fewer
transactions are willing to pay it. In our work, we make no assumptions about the shape of
the demand curve other than that it is a decreasing function. We consider a system in steady
state, which we define as a system in which the demand curve does not change over time,
i.e., it is the same whenever a miner creates a block. This steady state assumption is good
for several reasons: (1) it keeps us on par with Roughgarden’s work [19], (2) it simplifies
the analysis by removing noisy components that can obscure the core principles, and (3)
it is a conservative assumption that strengthen our results in comparison to others. For
example, the “steady influx” model – where there is a fixed influx of transactions to the
network – assumes that miners are able to manipulate the demand curve in their favor, i.e.,

4 It is expected that sophisticated participants will emerge, actively seeking opportunities to generate
excess profits (reduce costs). This expectation is supported by the history of traditional exchange
systems, where a multitude of players specialize in high-frequency trading.

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:5

artificially increase demand by delaying the inclusion of transactions. Thus, when the attack
strategy we will present in Section 4 is beneficial under the steady state it will be at least as
beneficial under the “steady influx” model, but not vice versa. Hence, our steady demand
curve assumption makes our results more general and robust, as it applies to a wider range
of adversarial assumptions.

The desired dynamics of EIP-1559 in the steady state are that produced blocks are of
target size s∗ and that the base fee remains constant at what we refer to as the target base
fee b∗, i.e., s[i] = s∗ and b[i] = b∗ for all i. Further, EIP-1559’s desired bidding dynamics are
for the user’s optimal strategy to be honest in reporting the value of a transaction via ctx
and to offer a minimal tip. In other words, in the steady state, EIP-1559 should lead to a
Nash-equilibrium with the following strategies: (users) honest value-reporting, and (miners)
including all txs with ctx > b∗. Then a block produced during steady state would include s∗

transactions that are each paying b∗ +ε in fees. Thus, b∗ ·s∗ is burned (red area in Figure 1a),
and ε · s∗ is received by the miner (blue area in Figure 1a).

4 A Miner’s Deviation from the Honest Strategy

In the following, we consider a miner X who controls a proportion px of the network’s mining
power, i.e., the probability that X proposes the next block is px.

Honest strategy. The honest strategy for X is always to include the maximum possible
number of transactions whose gas fee covers at least the base fee. As we consider a system
in steady state, the demand curve does not change over time. Further, the honest user bids
ctx = b∗ + ε and εtx = ε. Thus, miner X will always propose a block that is exactly the
target size s∗. The payout received by miner X for every proposed block is, therefore, s∗ · ε,
where ε is the tip the miner receives. The costs for the users are (b∗ + ε)s∗.

Deviation from honest strategy. We continue by outlining a strategy miner X and sophis-
ticated users can employ to manipulate the base fee which results in increasing X’s profit
and reducing users’ costs. When X proposes a block, for which the preceding block was not
created by X, she proposes an empty block to reduce the base fee b for subsequent blocks.
The miner will receive no payout for this block. Any other consecutive blocks X is chosen to
propose, she will propose at target size s∗, profiting from the difference between the targeted
and the reduced base fee. To highlight the miner’s profit, we assume in the following that
users are motivated by slightly reducing their costs. Specifically, users continue to submit
transactions with ctx = b∗ + (1 − α)ε and εtx = ϕ · b∗ + (1 − α)ε, where 0 < α ≤ 1. Thus, the
miner will receive at least the difference in base fees, i.e., ϕ · b∗, and the user will pay α · ε

less for her transaction. By making this assumption, we let the miner extract most of the
excess profit. In Section 7 we describe the complementary attack where most of the excess
value is gained by the users.

Whenever X proposes a s∗ sized block with an artificially reduced base fee, X receives

s∗ (ϕ · b∗ + (1 − α)ε) , (4.1)

where ϕ · b∗ is the base fee reduction and α represents the proportional reduction of the
tip paid by the users. For simplicity, we assume the attack finishes whenever miner X’s
consecutive turns as proposer finishes. The deviation can only become more profitable if
X can continue the attack after an honest proposer, thus, our results apply without the
simplification and their generality is not reduced.

DISC 2023

6:6 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

(ε + b∗)s∗: fees paid by users
b∗ · s∗: fees burned
ε · s∗: fees received

quantity

pr
ic

e

b∗

ε

s∗

(a) Sample steady state demand curve, s∗

transactions are willing to pay b∗+ε, where
b∗ is the base fee that corresponds to the
target size. The red area is the amount of
fees being burned, whereas the blue area
are the fees received by the miner.

((1 − α)ε + b∗ − b)(1 + ∆)s∗: fees paid by users
{b∗, b} · s: fees burned
((1 − α)ε + b∗ − b)s∗: fees received in attack
((1 − α)ε + b∗ − b)∆s∗: extra fees received

quantity

pr
ic

e

b∗

(1 − α)ε

b

ε

s∗

s

(b) Sample steady state demand curve with lowered base
fee b. If the base fee was lowered to b < b∗, the demand is
increased to s ≥ s∗. An honest miner will fill up the block
with all transactions, paying at least the base fee. The red area
indicates the amount of fees being burned, the blue area the
fees the attacking miner X receives, and the green area is the
additional fees received by the honest miner Y for including
all transactions. The scaling factor ∆ dictates the size of the
green area.

Figure 1 Example demand curves for Ethereum transactions. The quantity (x-axis) indicates
the number of transactions willing to pay the transaction fee (price shown y-axis).

In Theorem 1 we compute the expected reward of X following the honest strategy, as
well as the aforementioned described deviation from the honest strategy. By comparing the
payout of consecutive turns of X in both strategies, we find that it is rational also for a
miner with less than 50% of the power to deviate from the honest strategy.

▶ Theorem 1. In expectation, it is rational for miner X to deviate from the honest strategy, if

px >
ε

ϕ · b∗ + (1 − α)ε .

Proof. See Appendix A. ◀

To better illustrate, when it is rational behavior for miner X to deviate from the honest
strategy, we plot the relative difference between the expected reward of the attack and
the honest strategy in Figure 2. For many realistic parameter configurations, it is rational
behavior for miner X to perform the attack and thereby manipulate the base fee. In Figure 2a,
we plot the profitability of the attack in comparison to the honest strategy dependent on X’s
mining power px. We set ϕ = 1/8, ε/b∗ = 1/25, and α = 0.5. Notice that even miners with a
mining power of less than 0.3 are expected to profit from executing the attack. To underline
the expected profitability of the attack, even for small miners, we vary the ratio between the
tips and the base fee (ε/b∗) in Figure 2b and set px = 0.3. Additionally, we vary α, the share
of the tips the users keep for themselves, in Figure 2c, and again set px = 0.3. We conclude
that there are multiple realistic parameter configurations for which the outlined attack is
profitable, even for a miner with less than 50% of the mining power. Thus, as individual
Ethereum pools control in excess of 30% of the staking power [9] such an attack is realistic.

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:7

0.0 0.2 0.4
px

1.0

0.5

0.0

0.5

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(a) Relative difference shown as
a function of px. We set α = 0.5,
ε/b∗ = 1/25.

0.025 0.050 0.075 0.100
/b *

0

1

2

3

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]
(b) Relative difference shown as a
function of ε/b∗. We set px = 0.3,
α = 0.5.

0.00 0.25 0.50 0.75

0.0

0.1

0.2

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(c) Relative difference shown as
a function of α. We set px = 0.3,
ε/b∗ = 25.

Figure 2 Relative difference between the expected reward of attack and honest strategy as a
function of px (cf. Figure 2a), ε/b∗ (cf. Figure 2b) and α (cf. Figure 2c). We set ϕ = 1/8, as set in
Ethereum. It is rational for X to perform the attack whenever the relative difference is positive.
The equations to produce these graphs can be found in the proof of Theorem 1 in Appendix A.

5 The Attack’s Effect on Other Miners

In the following, we consider a scenario where a miner X with staking power px (0 < px < 1)
exists for which it is rational behavior to perform the base fee manipulation studied in
Section 4. We then analyze the effect of a miner Y with staking power py, where 0 < py < px,
observing that X performs the base fee manipulation attack. More precisely, we study whether
it is rational behavior for Y to join the attack partially, i.e., Y will always propose blocks at
target size and thereby help keep the base fee artificially low in Section 5.1. Additionally, we
will also study when Y would rationally join the attack entirely, i.e., Y also proposes empty
blocks when the base fee is not already artificially lowered in Section 5.2. We remark that,
throughout, we always assume that miners X and Y do not collaborate.

5.1 Joining the Attack
Consider a miner Y that observes X performing the attack outlined from Section 4. Miner Y

is selected as the proposer for a block that follows X’s turn as proposer, i.e., the base fee is
currently artificially lowered to (1 − ϕ)b∗. We analyze whether it is rational for Y to follow
the honest strategy, i.e., propose the largest block possible and thereby increase the base fee
again, or to join the attack and continue keeping the base fee artificially low.

Honest strategy. We first describe the honest strategy. When it is miner Y ’s turn to
propose a block at an artificially lower base fee, miner Y proposes a block with the most
transactions possible. Note that the number of transactions is restricted both by the demand
at the current base fee (b), as well as the maximum block size, which is twice the target size
(2s∗). We now consider the demand curve that is drawn in Figure 1b. The demand at price
b∗ + ε, where b∗ is the target base fee price and ε the tip, corresponds to a block of target
size s∗. Miner Y will propose a block with the artificially lowered base fee b = (1 − ϕ)b∗.
The demand at this new price b + ε is represented as s in Figure 1b. Recall, that we make
no assumptions about the shape of the demand curve. To make our results stronger, we

DISC 2023

6:8 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

consider the best case for the honest strategy. Namely, due to the increased demand, Y can
propose a block of maximum size (and reap the resulting extra rewards). That is, s = 2s∗,
after X’s turn. Thus, the payout for miner Y proposing a block of size 2s∗ is given by

s∗ (ϕ · b∗ + (1 − α)ε) (1 + ∆), (5.1)

where s∗ (ϕ · b∗ + (1 − α)ε) is the payout the attacking miner X would receive (cf. Equa-
tion 4.1) and ∆ ∈ [0, 1] is a scaling factor that dictates how much additional rewards miner Y

received for mining a maximum size block. While ∆ = 0 would indicate that Y earns exactly
as much as X, i.e., all extra transactions are capped at exactly the base fee, ∆ = 1 would
indicate that miner Y earns twice the rewards of X, i.e., all extra transactions are capped at
the highest possible price of b∗ + ε.

After miner Y proposes the block, she will be chosen to propose the next block with
a probability of py. We continue with the approximation from before, i.e., the effect of a
full block after an empty one leads approximately to the same point on the demand curve
– (s∗, b∗ + ε). We note that this approximation is accurate up to a term in O(ϕ2b∗) where
b ∈ Θ(ϕb∗). Thus, miner Y proposes a block of size s∗ and is awarded s∗ · ε. From thereon
out, she will continue doing so until her consecutive turns as a proposer stops.

With probability px, miner X will interrupt Y ’s turn as proposer. Miner X will start the
attack again and propose an empty block to lower the base fee. Note that our approximation
of the base fee returning to steady-state levels is the best case for Y ’s honest strategy and,
thus, makes our results stronger. For all consecutive blocks proposed by X, miner X will
propose target size blocks to keep the base fee b (i.e., (1 − ϕ)b∗). If miner Y is again selected
as a proposer after X’s turn, miner Y will proceed with her previously outlined strategy.

At any point, with a probability of 1 − py − px, the consecutive turn of the two miners
finishes. Note that for Y ’s honest strategy analysis, we are only interested in these consecutive
turns of the two miners as proposers, as we analyze the expected payout of the same sequences
for the deviation from the honest strategy which we outline in the following.

Deviation from honest strategy. We now describe a strategy Y can employ to join the
attack she observes. When it is Y ’s turn to propose a block and the base fee is artificially
lowered by X, miner Y will propose a block at the target size. Equivalently to the payout
received by miner X for such a block (cf. Section 4), miner Y ’s reward for proposing the
block is given by

s∗ (ϕ · b∗ + (1 − α)ε) . (5.2)

Following the block proposed by Y , miner Y is again selected to propose a block with
probability py and miner X with probability px. As long as the two miners have an
uninterrupted sequence of block proposals, they both keep the base fee artificially low by
always proposing target size blocks. Once their consecutive turn as proposers ends, we
consider the attack finished. In Theorem 2, we show that it can be profitable for such a
miner Y with a mining power py to join the attack, i.e., keep the base fee artificially low if
she sees a miner X with a mining power px > py perform the attack. Importantly, this is
without assuming collaboration between the two miners.

▶ Theorem 2. In expectation, it is rational for a miner Y to deviate from the honest strategy
and join X in keeping the base fee low, if

py >
∆((1 − α)ε + ϕ · b∗)

(1 − α)∆ · ε + (1 + ∆)ϕ · b∗ − α · ε
.

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:9

0.15 0.20 0.25 0.30
py

0.05

0.00

0.05

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(a) Relative difference shown as a
function of py. We set px = 0.3,
∆ = 0.2.

0.2 0.3 0.4 0.5
px

0.05

0.00

0.05

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(b) Relative difference shown as a
function of px. We set py = 0.6px,
∆ = 0.2.

0.0 0.5 1.0

0.4

0.2

0.0

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(c) Relative difference shown as
a function of ∆. We set px = 0.3,
py = 0.18.

Figure 3 Relative difference between the expected reward of attack and honest strategy as a
function of py (cf. Figure 3a), px (cf. Figure 3b) and ∆ (cf. Figure 3c). We set ϕ = 1/8, as
implemented in Ethereum, ε/b∗ = 1/25, α = 0.5 in all plots. It is rational for Y to join the attack
whenever the relative difference is positive. The equations to produce these graphs can be found in
the proof of Theorem 2 in Appendix A.

Proof. See Appendix A. ◀

To better gauge when it is profitable for miner Y to join the attack, we plot the relative
difference between the expected return from the outlined attack and the expected return
from the honest strategy in Figure 3. We vary the mining powers of miner Y (cf. Figure 3a)
and miner X (cf. Figure 3b), as well as ∆ (cf. Figure 3c). In all three plots we set
ϕ = 1/8, ε/b∗ = 1/25, and α = 0.5. In Figure 3a, we set ∆ = 0.2 and notice that even a
miner Y with a mining power slightly larger than 0.2 would be inclined to join the attacking
miner X with a mining power of 0.3 in manipulating the base fee. We observe in Figure 3b
that a miner Y that is only six-tenths of the size of miner X would also join the attack
even if miner X only controls less than 40% of the mining power. Finally, in Figure 3c, we
show the dependency of the attack’s profitability for miner Y as a function of ∆, i.e., the
additional payout received by miner Y following the honest strategy when proposing a full
block after the attack by X. Notice that while it is rational for a miner Y to join the attack
for small ∆’s, this is not the case for larger ∆’s. We remark that this is due to the rewards
from the full block mined if Y follows the honest strategy being very significant for a large
∆. Nevertheless, our results show that for realistic parameter configurations, it is rational
for a miner Y to join the attack she sees a larger miner X perform – even without assuming
collaboration between the two.

5.2 Join and Initiate the Attack
In addition to only joining the attack, it is also possible for miner Y , observing X continuously
performing the base fee manipulation, to also propose an empty block whenever she proposes
a block with the target base fee (b∗), knowing that X will aid her in keeping the base fee low
subsequently. We analyze, in the following, when it is more profitable for miner Y to join
X’s attack in her entirety, as opposed to remaining honest.

Honest strategy. The honest strategy for miner Y is identical to that described in Section 5.1.
However, now it is also important to mention that anytime miner Y proposes a block with
base fee b∗, i.e., whenever Y proposes a block that does not follow X’s attack, Y will propose
a target size (s∗) block. For proposing such a block, miner Y will receive s∗ · ε.

DISC 2023

6:10 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

Deviation from honest strategy. In the deviation from the honest strategy, Y will propose
an empty block whenever she mines a block where the base fee corresponds to the target
base fee b∗. Then with probability py, miner Y will also propose the next block and will
profit from the difference between the base fee and the target base fee by mining a target
size block. On the other hand, with probability px, miner X will propose the next block and
will also mine a target size block – keeping the base fee low. With Theorem 3, we show that
it can even be profitable for a miner Y to commence the attack if she knows that a larger
miner X will help her in keeping the base fee artificially low.

▶ Theorem 3. In expectation, it is rational for a miner Y to deviate from the honest strategy
and lower the base fee, if

py >
ε(1 − px)

(1 − α)ε + ϕ · b∗(1 − px) + (1 + ∆)εαpx − ∆px(ε + ϕ · b∗) .

Proof. See Appendix A. ◀

0.15 0.20 0.25 0.30
py

0.3

0.2

0.1

0.0

0.1

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(a) Relative difference shown as a
function of py. We set px = 0.3,
∆ = 0.2.

0.2 0.3 0.4 0.5
px

0.4

0.2

0.0

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(b) Relative difference shown as
a function of px. We set py =
0.6px, ∆ = 0.2.

0.0 0.5 1.0

0.35

0.30

0.25

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(c) Relative difference shown as a
function of ∆. We set px = 0.3, ,
py = 0.18.

Figure 4 Relative difference between the expected reward of attack and honest strategy as a
function of py (cf. Figure 4a), px (cf. Figure 4b) and ∆ (cf. Figure 4c). We set ϕ = 1/8, as
implemented in Ethereum, ε/b∗ = 1/25, α = 0.5 in all plots. It is rational for Y to initiate new
attacks in addition to X whenever the relative difference is positive. The equations to produce these
graphs can be found in the proof of Theorem 3 in Appendix A.

To better understand the parameter configuration under which it would be rational for
Y to also initiate the attack, we plot the relative difference of the reward of the attack
in comparison to the reward of the honest strategy in Figure 4. Note that we again set
ϕ = 1/8, ε/b∗ = 1/25, and α = 0.5. Figure 4a, where we also set px = 0.3 and ∆ = 0.2, shows
that it can be profitable for a miner Y to initiate the attack, i.e., mine an empty block to
lower the base fee, knowing that miner X will support her in keeping the base fee artificially
low. Notice though that the threshold where it is rational for Y to also start the attack is
reached later in comparison to the threshold where it is rational for miner Y to only join the
attack (cf. Figure 3a). A similar picture paints itself when we look at the profitability of
initiating the attack for Y as a function of X’s mining power in Figure 4a. Again we see
that for a miner Y , it can be profitable to start the attack only with the knowledge that X

will aid her in keeping the base fee low. Finally, in Figure 4c, we show the relative difference
between the expected profit of the outlined attack for Y and the honest strategy. For the
chosen parameter configuration, px = 0.3 and py = 0.18, the attack would actually never
be profitable regardless of ∆. We, thus, summarize that while it is only rational for Y to

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:11

initiate the attack for a reduced set of parameters, it is remarkable that this is even the case.
By starting the attack, Y is taking a loss for a larger miner X just based on the knowledge
that she will be supported by X in keeping the base fee low. Astonishingly, the collaboration
of the two miners is not required.

6 Possible Mitigations

To mitigate the attacks described in Sections 4 and 5, we focus on addressing the deviation
of player X, as if X does not deviate from the honest strategy, and neither does Y . We
start by examining the trivial mitigation of reducing ϕ. Theorem 1 shows that decreasing ϕ

by a factor of β will require that px is approximately β times larger for a deviation to be
profitable. For example, if Ethereum were to decrease its current ϕ of 1/8 to 1/16, it would
require px to be approximately twice as large for a deviation to be profitable. This approach
can be effective during stable periods, but it might not be able to adjust quickly enough to
changes in demand. Further, Leonardos et al. [14] show how the value of ϕ determines the
trade-off between a base fee that adjusts too quickly (which can lead to chaotic behavior)
and one that adjusts too slowly to fulfill its purpose.

The following question appears in EIP1559 FAQ [2]: “Won’t miners have the incentive to
collude to push down the base fee by making all their blocks less than half full?” In response
to the question Buterin proposes this mitigation: “Divert half of the collected base fees, that
would otherwise be burned, into a special pool. Whenever a miner mines a new block add to
her block reward a 1/8192 portion of the amount in that pool. This will incentivize miners to
maintain a higher base fee.” One might falsely presume that this solution, to the above-posed
question, might also be used to solve the deviation we outline in Section 4. However, the
two attacks are inherently different as the one we outline does not require miners to collude.
Thus, this proposal does not solve our deviation. The added cost of the attack, i.e., the lost
revenue from half of the base fee reduction, is distributed among many while the attacker’s
expected revenue remains unchanged. In the long run, this proposal only minimally reduces
the attacker’s expected revenue by b∗ · 2−13, which is typically significantly less than the
expected rewards and, therefore, ineffective.

Another straw man to consider is to use the average of the previous W block sizes instead
of just the size of the last block to measure demand in the base fee update rule. This method
may appear to be promising because it reduces the effect of an empty block on the following
block by a factor of W , and its effect on the rate of adjustment (embodied in ϕ) is easily
accounted for, adding an adjustment delay within O(W). However, this mitigation fails to
mitigate the attack, as it increases the opportunity for X to profit from later blocks that are
within a W distance from the empty block, thereby increasing the expected profitability of
the deviation. For example, if we use a two-block window (i.e., W = 2) and ϕ = 1/8, the
base fee is reduced by a smaller factor of only ϕ/W = −1/16 to b1 = 15b∗/16 as desired.
Nevertheless, even if the ensuing block is completely full (i.e., s1 = 2s∗), the base fee for
the block following it does not increase and remains b2 = b1 = 15b∗/16 which means an
additional profit opportunity for the deviation that compensates X for the reduced factor.
As a result, the deviation is not mitigated and is actually exacerbated.

We propose the following mitigation, to use a geometric sequence as weights to average
the history of block sizes. Formally, for q ∈ (0, 1) denote

savg[i] ≜ 1 − q

q

∞∑
k=1

qk · s[i − k + 1] = (1 − q) · s[i] + q · savg[i − 1], (6.1)

DISC 2023

6:12 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

and replace s[i] in Equation 2.1 by savg[i] to get the following base-fee update rule

b[i + 1] = b[i] ·
(

1 + ϕ · savg[i] − s∗

s∗

)
. (6.2)

We note that b[0] would be initialized to 1 Gwei initially and that savg would be initialized to
be the size of the first block after the transition. By applying the update rule in Equation 6.2,
we reduce the effect of the empty block on the ensuing block by a factor of (1 − q) and
discount its effects on later blocks exponentially fast (with base q). For example, using the
same parameters as before with ϕ = 1/8, if we set q = 1/2, after X’s empty block (at slot τ),
the base fee will be reduced by a factor of (1 − ϕ(1 − q)) = (1 − 1/16) to b[τ + 1] = 15b∗/16.
Now, however, making the same assumption as before (i.e., s[τ + 1] = 2s∗), the base fee for
the next block, b[τ +2], will be 495b∗/512. This decreases the potential profit margin of block
τ + 2 from b∗/16 to b∗/32 + b∗/512, which is almost a factor of 2 reduction. Therefore, the
added profit opportunity in future blocks is not enough to compensate for the lost potential
in the immediately ensuing block. As a consequence, the attack is considerably mitigated.

The above mitigation method has two additional properties: (i) its computation and
space complexity are both in O(1), and (ii) it gradually phases out the impact of a single
empty block without causing significant fluctuations. To reason about the effect our proposal
has on response times we use the following methodology. Suppose that the demand suddenly
changes and the new (desired) steady state should be reached at a new point with a base fee
that is β times higher than the current base fee (b∗). Denote by T the number of consecutive
full blocks required to reach the new base fee. We use T as a function of β to characterize
the response time of a fee-setting mechanism to sudden changes in demand.

EIP-1559 as it is currently implemented will take T (β) = ⌈log(1+ϕ) β⌉ blocks to reach the
new base fee βb∗. With our mitigation, it takes slightly longer. To be precise, in Appendix B
we show the exact delay T (β) of our mitigation proposal is the smallest integer T that
satisfies

∏T
k=1(1 + ϕ(1 − qk)) ≥ β. We further plot the T (β) for EIP-1559 and our mitigation

in Appendix B (cf. Figure 10).

Simulations
In order to gauge the effectiveness of the proposed mitigation, we conducted simulations
that compare the excess profit of an attacker (profit gained through deviation minus profit
gained through honest mining) under EIP-1559 with and without the mitigation. To account
for the probabilistic nature of the attack (profits in expectation only), we calculated the
average of the results for each data point over 10,000 runs, each using a different random
seed. Each simulation begins with X mining an empty block, the next blocks are mined by
X with probability px per block and by an honest miner with probability 1 − px. We assume
that X will then always mine target-size blocks, while the honest miners will mine blocks
at twice the target size. We keep track of the payout received by X and declare the attack
finished if the base fee has recovered to 99% of its target size. We perform 10,000 runs for
both the base fee evolution according to EIP-1559, as well as our mitigation. Simultaneously,
we keep track of the payout X would have received for the same random seed if she had
followed the honest strategy. The results of the simulation are depicted in Figures 5 and 6.

Figures 5a and 5b show X’s profit from attacking as a function of px and the ratio ε/b∗

for EIP-1559 with and without the mitigation for q ∈ {1/4, 1/2, 3/4}. The results decisively
demonstrate the benefit of our mitigation; it becomes much harder for X to profit from
attacking. Finally, Figure 6 illustrates the effect of the mitigation (with q ∈ {1/4, 1/2, 3/4})

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:13

0.20 0.25 0.30 0.35 0.40 0.45 0.50
px

0.5

0.0

0.5

1.0

1.5

R[
A]

R[
H

]
EIP-1559
with q = 0.25

with q = 0.5
with q = 0.75

(a) Difference of mean attack and mean honest return
as a function of px for EIP-1559 and the proposed
mitigation for q ∈ {1/4, 1/2, 3/4}. We set ε/b∗ =
1/25.

0.02 0.04 0.06 0.08
/b *

3

2

1

0

1

2

R[
A]

R[
H

]

EIP-1559
with q = 0.25

with q = 0.5
with q = 0.75

(b) Difference of mean attack and mean honest
return as a function of ε/b∗ for EIP-1559 and the
proposed mitigation for q ∈ {1/4, 1/2, 3/4}. We
set px = 0.4.

Figure 5 Profitability of the attack under EIP-1559 and our proposed mitigation. We plot the
mean attack profitability (cf. Figures 5a and 5b) along with the 95% confidence interval. We set
ϕ = 1/8, α = 0.5, s∗ = 1.

on the configurations at which X will attack. Most notably, the green area represents a set
of configurations in which X had attacked without the mitigation and will be attacking no
longer. The value of the proposed approach is evident from the results.

0.02 0.03 0.04 0.05
/b *

0.20
0.25
0.30
0.35
0.40
0.45
0.50

p x

both unprofitable
EIP-1559 profitable
both profitable

(a) q = 1/4.

0.02 0.03 0.04 0.05
/b *

0.20
0.25
0.30
0.35
0.40
0.45
0.50

p x

both unprofitable
EIP-1559 profitable
both profitable

(b) q = 1/2.

0.02 0.03 0.04 0.05
/b *

0.20
0.25
0.30
0.35
0.40
0.45
0.50

p x

both unprofitable
EIP-1559 profitable
both profitable

(c) q = 3/4.

Figure 6 Attack profitability under EIP-1559 and the proposed mitigation for q ∈ {1/4, 1/2, 3/4}
as a function of px and ε/b∗. Importantly, the green area shows where the mitigation can prevent
the attack but EIP-1559 cannot. We set ϕ = 1/8, α = 0.5, s∗ = 1.

7 User perspective

Until now, we have approached the topic from the miners’ point of view. Considering the
users as first-class citizens, and observing the attack through their eyes, contributes a new
perspective on the results.

Instead of the miners taking it upon themselves to initiate the attack, we can imagine
users who wish to pay lower costs coordinating the attack. Let u be a user (or group of
users) that has transactions with a g amount of gas. Assume the other users naively follow

DISC 2023

6:14 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

the strategy of the desired equilibrium. That is, they bid an honest valuation with an ε tip.
The attacker’s strategy is as follows: u bribes the miner of the current block (no matter
the miner’s power) to propose an empty one instead. Any bribe larger than s∗ε will suffice.
Consequently, the base fee reduces in the next block. If the other users naively continue to
bid with an ε tip (or they are simply slow to react), u can guarantee the inclusion of her
transactions with any tip larger than ε – making the attack profitable whenever gϕb∗ > s∗ε.

8 Discussion

Myopic vs. non-myopic. Roughgarden’s analysis [19] of the EIP-1559 protocol suggests
that, in the steady state, the honest strategies of the users and miners are incentive compatible.
Our opposing conclusion stems from a single different assumption, namely, [19] considers
miners that only care for immediate profits (referred to as myopic), while we consider
non-myopic miners that do not disregard future profits. There are valid reasons to model
miners as myopic. For example, the proposing turns of a very small miner are sporadic, and
accounting for rare future profits is negligible in comparison to the prize at hand. However,
there are strong reasons for modeling miners as non-myopic. Measurement studies have
shown that the distribution of mining power follows a power law rather than a uniform
distribution [8, 9], i.e., the biggest miners control significant portions of the mining power.
Moreover, the “shorter vision” of smaller miners is accounted for under our model. Our
quantitative results show that as a miner’s size decreases, the lesser the profitability of
the deviations. Finally, from a conceptual perspective, miners are typically players of high
stakes (the minimum stake in Ethereum is 32 ETH which is currently over $50,000), and
participation also requires some expertise, planning, and locking of assets. Therefore, it does
not seem appropriate to consider these players as ones that neglect future considerations.

Additional observations. The deviations described in this paper have an interesting property;
they appear to have a win-win-win outcome. The attacker profits, the non-attacking miners
profit, and the users profit by paying a cheaper total gas fee. But not all is rosy; there is a
hidden cost involved. In order for users to benefit, they must diligently follow the miners’
actions and compute the appropriate response. This increase in complexity for the users is
in opposition to one of the main goals of EIP-1559 – simplifying the bidding mechanism and
eliminating the need for complex fee estimation algorithms. As a result, sophisticated users
take precedence and push naïve users to the back of the line.

Although it is desirable that the leader election process be unpredictable, in practice, this
is not the case. Currently, in Ethereum, implementation considerations led to miners knowing
their own proposing slots 32–62 blocks in advance [6]. This predictability clearly favors
the attacker, who no longer needs to lose tips for the probability of winning more. Instead,
the miner only attacks when it is guaranteed to mine at least two blocks in a row. The
predictability issue has risen with the move to PoS and was not present in PoW Ethereum.5

5 Since the randomness in PoW does not depend on a peer-to-peer communication source, it does not
have a predictability concern. The predictability issue is a result of implementation constraints for the
cryptographic protocols of Verifiable Random Functions (VRFs).

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:15

9 Related work

Blockchain transaction fee mechanism. Huberman et al. [12] provide an early analysis of
Bitcoin’s first-price auction. An in-depth exploration of miner manipulation in transaction
fee mechanisms was first explored by Lavi et al. [13]. While these works study the first-price
auction used in Bitcoin and originally in Ethereum as well, our work studies the incentives
for miners to deviate from the EIP-1559 protocol currently used in Ethereum.

Stability of the base fee. As Leonardos et al. [14] show in their theoretical analysis, a key
parameter in the base fee mechanism is the adjustment parameter ϕ. In particular, they show
that stability is not guaranteed depending on system conditions (e.g., a congested network),
especially if ϕ is set to too high a value. However, there are also conditions under which
the base fee may have bounded oscillations or even converge, providing stability. In another
work, Leonardos et al. [15] show that despite the short-term chaotic behavior on the base
fee, the long-term average block size is close to the target size.

Reijsbergen et al. [18] empirically show that a stable base fee may not tell the whole
story, however, as even in cases where the base fee remains relatively stable (e.g., between 25
and 35 Gwei) and the block size is on average the target block size, block sizes can fluctuate
wildly (as explained by Leonardos et al. [14]), impacting miner revenue. One reason for this
is that the currently used value for the adjustment parameter (ϕ = 1

8) is too low during
periods where the demand rises sharply (i.e., the base fee does not increase quickly enough)
but also too high when demand is stable (inducing fluctuations in block size). Therefore,
[18] suggests making ϕ variable based on the demand. Their work does not consider bribes
and is complementary to ours. Their suggested mitigation to the stability issue is to have ϕ

adaptive according to an Additive Increase Multiplicative Decrease (AIMD). Since we do not
vary ϕ (but instead update the base fee update rule), an interesting experiment would be to
combine our mitigation technique (averaging s[i] geometrically) with their AIMD ϕ setting
and examine the results on data from the real world.

Ferreira et al. [7] show that although the first-price auction utilized under EIP-1559 is
incentive-aligned for miners, it provides a bad user experience. In particular, they observe
bounded oscillation of the base fee in experiments when bidders all associate the same value
with their transaction. While their work studies the stability of the base fee with myopic
miners, we study the manipulability of the base fee in the presence of non-myopic miners.

Manipulability of the base fee. Manipulation of the base fee has been a concern since
EIP-1559 was proposed [1] as it is straightforward to notice that the base fee could be
manipulated downwards by a miner that intentionally mines empty blocks.

The EIP as listed on Ethereum’s Github repository acknowledges the possibility of miners
mining empty blocks but determines that such a deviation from an honest mining strategy
would not lead to a stable equilibrium as other miners would benefit from this (i.e., benefiting
from the reduced base fee without the opportunity cost of mining an empty block) [3]. Their
belief was therefore that executing such a strategy would require a miner to control more
than half the hashing power (the document precedes Ethereum’s switch to PoS).

In his exposition of EIP-1559 [19], Roughgarden considered this in the case of a 100%
miner (or any miner with greater than 50% of the mining power) that would drive the base
fee down to 0 by mining empty blocks then, in order to maximize their revenue, switching to
either mining target size blocks in perpetuity, maintaining the base fee at 0 and essentially
reverting back to a first price auction, or mining sequences of under full and overfull blocks

DISC 2023

6:16 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

(relative to the target size) according to the demand. Roughgarden restricts himself to this
case and does not otherwise consider non-myopic miners, assuming that with a high enough
level of decentralization, the probability of any miner being elected to propose a block two
times in a row was too low for any miner to consider strategies over multiple blocks.

Similar to us, a concurrent work by Hougaard and Pourpouneh [11] also relaxes the
myopic assumption and proves that non-myopic miners would be incentivized to deviate
even if they are a minority. However, their analysis relies on several assumptions, that while
legitimate, provide the attacker with advantageous conditions in comparison to the more
conservative assumptions made in this paper. In particular, [11] relies on miners knowing the
exact parameters of the demand distribution of the users (which itself is restricted to each
user drawing from a uniform distribution), as well as on miners being able to manipulate
the demand curve in favor of the future blocks; inducing artificial future congestion by not
including transactions in the current block and letting them accumulate. We do not assume
any specific demand curve, only a steady demand curve, and do not rely on miners inducing
congestion, which makes our attack more profitable. Although we do assume that users act
rationally and will adapt their strategy if benefits them, while [11] assumes users are passive
and do not adapt their strategies in a rational manner.

MEV. Miner/Maximal Extractable Value (MEV) has gained significant attention in the
blockchain research community in recent years [5, 21, 17]. Similarly to this work, MEV
strategies enable a miner to accrue excess profits in comparison to naïve mining. However,
in MEV the value comes from analyzing the actual data in the transactions, whereas, in this
work, the miner’s excess profit comes from manipulating the EIP-1559 mechanism. Therefore,
many of the suggested mitigations against MEV [10] (such as obscuring transaction data
until inclusion) will not work against our attack.

10 Conclusion and Future Work

In this paper, we demonstrated that even under very conservative assumptions (steady state,
miners cannot induce congestion, unknown demand functions), there are strong incentives for
minority miners to deviate from the EIP-1559 protocol. Furthermore, we showed that once
an attack begins, previously honest miners’ rational response may be to join the deviation
and even sometimes initiate new attacks – worsening the problem rather than improving it.

To mitigate the problem, we suggested using a weighted average with the weights being a
geometric series. This direction seems promising as it has several desirable properties and
trade-offs (e.g., balancing attack mitigation with low additional response delays). However,
further research rigorously analyzing it in a broader context is warranted.

References
1 Tim Beiko. EIP-1559 Community Outreach Report. https://medium.com/ethereum-cat-

herders/eip-1559-community-outreach-report-aa18be0666b5, 2020. Accessed: 2023-01-
25.

2 Vitalik Buterin. EIP 1559 FAQ. https://notes.ethereum.org/@vbuterin/eip-1559-
faq#Won%E2%80%99t-miners-have-the-incentive-to-collude-to-push-down-the-
BASEFEE-by-making-all-their-blocks-less-than-half-full, 2021. Accessed: 2023-
01-26.

3 Vitalik Buterin, Eric Conner, Rick Dudley, Matthew Slipper, Ian Norden, and Abdelhamid
Bakhta. Fee market change for ETH 1.0 chain. https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-1559.md, 2019. Accessed: 2020-09-28.

https://medium.com/ethereum-cat-herders/eip-1559-community-outreach-report-aa18be0666b5
https://medium.com/ethereum-cat-herders/eip-1559-community-outreach-report-aa18be0666b5
https://notes.ethereum.org/@vbuterin/eip-1559-faq#Won%E2%80%99t-miners-have-the-incentive-to-collude-to-push-down-the-BASEFEE-by-making-all-their-blocks-less-than-half-full
https://notes.ethereum.org/@vbuterin/eip-1559-faq#Won%E2%80%99t-miners-have-the-incentive-to-collude-to-push-down-the-BASEFEE-by-making-all-their-blocks-less-than-half-full
https://notes.ethereum.org/@vbuterin/eip-1559-faq#Won%E2%80%99t-miners-have-the-incentive-to-collude-to-push-down-the-BASEFEE-by-making-all-their-blocks-less-than-half-full
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:17

4 CoinMarketCap. Today’s Cryptocurrency Prices by Market Cap. https://
coinmarketcap.com/, 2017. Accessed: 2023-07-21.

5 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927. IEEE, 2020.

6 Ethereum. Phase 0 – Honest Validator. https://github.com/ethereum/consensus-specs/
blob/dev/specs/phase0/validator.md#lookahead, 2022. Accessed: 2023-01-27.

7 Matheus VX Ferreira, Daniel J Moroz, David C Parkes, and Mitchell Stern. Dynamic posted-
price mechanisms for the blockchain transaction-fee market. In Proceedings of the 3rd ACM
conference on Advances in Financial Technologies, pages 86–99, 2021.

8 Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van Renesse, and Emin Gün Sirer.
Decentralization in bitcoin and ethereum networks. In Financial Cryptography and Data
Security: 22nd International Conference, FC 2018, Nieuwpoort, Curaçao, February 26–March
2, 2018, Revised Selected Papers 22, pages 439–457. Springer, 2018.

9 Dominic Grandjean, Lioba Heimbach, and Roger Wattenhofer. Ethereum proof-of-stake
consensus layer: Participation and decentralization. arXiv preprint arXiv:2306.10777, 2023.

10 Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transaction reordering manipulations
in decentralized finance. In 4th ACM Conference on Advances in Financial Technologies (AFT),
Cambridge, Massachusetts, USA, September 2022.

11 Jens Leth Hougaard and Mohsen Pourpouneh. Farsighted miners under transaction fee
mechanism eip1559. Technical report, IFRO Working Paper, 2022.

12 Gur Huberman, Jacob D Leshno, and Ciamac Moallemi. Monopoly without a monopolist:
An economic analysis of the bitcoin payment system. The Review of Economic Studies,
88(6):3011–3040, 2021.

13 Ron Lavi, Or Sattath, and Aviv Zohar. Redesigning bitcoin’s fee market. ACM Transactions
on Economics and Computation, 10(1):1–31, 2022.

14 Stefanos Leonardos, Barnabé Monnot, Daniël Reijsbergen, Efstratios Skoulakis, and Georgios
Piliouras. Dynamical analysis of the eip-1559 ethereum fee market. In Proceedings of the 3rd
ACM Conference on Advances in Financial Technologies, AFT ’21, pages 114–126, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3479722.3480993.

15 Stefanos Leonardos, Daniël Reijsbergen, Daniël Reijsbergen, Barnabé Monnot, and Georgios
Piliouras. Optimality despite chaos in fee markets. arXiv preprint arXiv:2212.07175, 2022.

16 Yulin Liu, Yuxuan Lu, Kartik Nayak, Fan Zhang, Luyao Zhang, and Yinhong Zhao. Empirical
analysis of eip-1559: Transaction fees, waiting times, and consensus security. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
’22, pages 2099–2113, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3548606.3559341.

17 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP), pages 198–214.
IEEE, 2022.

18 Daniël Reijsbergen, Shyam Sridhar, Barnabé Monnot, Stefanos Leonardos, Stratis Skoulakis,
and Georgios Piliouras. Transaction fees on a honeymoon: Ethereum’s eip-1559 one month
later. In 2021 IEEE International Conference on Blockchain (Blockchain), pages 196–204.
IEEE, 2021.

19 Tim Roughgarden. Transaction fee mechanism design for the Ethereum blockchain: An
economic analysis of EIP-1559. arXiv preprint arXiv:2012.00854, 2020.

20 Tim Roughgarden. Transaction fee mechanism design. ACM SIGecom Exchanges, 19(1):52–55,
2021.

21 Christof Ferreira Torres, Ramiro Camino, et al. Frontrunner jones and the raiders of the dark
forest: An empirical study of frontrunning on the ethereum blockchain. In 30th USENIX
Security Symposium (USENIX Security 21), pages 1343–1359, 2021.

DISC 2023

https://coinmarketcap.com/
https://coinmarketcap.com/
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#lookahead
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#lookahead
https://doi.org/10.1145/3479722.3480993
https://doi.org/10.1145/3548606.3559341

6:18 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

A Omitted Proofs

▶ Theorem 1. In expectation, it is rational for miner X to deviate from the honest strategy, if

px >
ε

ϕ · b∗ + (1 − α)ε .

Proof. We commence with the honest strategy and calculate the expected payout for
consecutive turns of X as proposer by modeling the process as a Markov chain (cf. Figure 7a).

When it is miner X’s first time as proposer in a consecutive turn, i.e., the previous
block was not mined by X, we are in state Xh. In this state, miner X proposes a block
at target size s∗ and receives tips at price ε. Thus, the payout for miner X in state Xh is
P [Xh] = s∗ · ε. With probability px, X stays in state Xh for the next block and also proposes
the next block. Else, with probability 1 − px, we enter an absorbing state. We calculate the
expected number of times X proposes consecutive blocks and, thereby, the expected payout
for X.

By linearity of expectation, it follows that the expected payout for a sequence of consecutive
turns by X as a proposer following the honest strategy is given by

E[R[Xh]] = px · E[R[Xh]] + P [Xh] ⇐⇒ E[R[Xh]] = s∗ · ε

1 − px
, (A.1)

as miner X is awarded P [Xh] every time she proposes a block. Note that the expected
reward of the honest strategy i.e., E[R[H]] corresponds to the expected payout of the Markov
process starting in state Xh, i.e., E[R[H]] = E[R[Xh]].

Xh px

(a) honest strategy of miner X.

Sa Xa

px

px

(b) attacking strategy of miner X.

Figure 7 The honest strategy (cf. Figure 7a) and deviation from the honest strategy (cf. Figure 7b)
modeled with discrete Markov chains. All states with a nonzero payout for miner X are highlighted
in gray. We transition between states with every block. Note that for all remaining probabilities,
the Markov process enters an absorbing state, and X’s consecutive turns as a proposer finish.

We now examine the reward for miner X if she chooses to carry out the attack, modeling
the deviation from the honest strategy as a Markov chain (as shown in Figure 7b). The
starting point for the attack, denoted as state Sa, is when miner X submits an empty block.
Therefore, the payout in state Sa is 0. But with a probability of px, miner X is chosen as
the proposer for the next block and enters state Xa, where she submits a block at the target
size. The payout in state Xa can be calculated by P [Xa] = s∗ (ϕ · b∗ + (1 − α)ε).

If X is not selected to propose another block in a row, we enter an absorbing state and the
attack stops. We make the approximation that whenever X’s consecutive turns as proposer
finish, honest miners will bring the base fee back to b∗ before X gets to mine another block.
It is possible that the honest miners do not bring the base fee back up to the target before
X is selected to propose again, and X could continue the attack at a lower cost. However,
assuming that the base fee had fully recovered simplifies the analysis and only makes our
results stronger, as it reduces X’s attack rewards. From state Xa we remain in state Xa for
the next block with probability px, i.e., X is selected to propose another block or enter the
absorbing state with probability 1 − px.

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:19

The expected payout for miner X in state Sa is given by E[R[Sa]] = px ·E[R[Xa]]+P [Sa],
where E[R[Xa]] is the expected payout starting from state Xa and we have E[R[Xa]] =
px · E[R[Xa]] + P [Xa]. It follows that the expected payout of the attack is

E[R[A]] = E[Sa] = px · s∗ (ϕ · b∗ + (1 − α)ε)
(1 − px) . (A.2)

Note that the payout of the attack is given by the expected payout starting from state Sa,
as the attack commences in said state.

We conclude that it is rational for miner X to deviate from the honest strategy if
E[R[A]] > E[R[H]]. It follows that X attacks when

px > ε
ϕ·b∗+(1−α)ε . ◀

▶ Theorem 2. In expectation, it is rational for a miner Y to deviate from the honest strategy
and join X in keeping the base fee low, if

py >
∆((1 − α)ε + ϕ · b∗)

(1 − α)∆ · ε + (1 + ∆)ϕ · b∗ − α · ε
.

Proof. We commence with the honest strategy of miner Y which we model as a Markov
chain in Figure 8a. Miner Y starts in state Y h

X and is tasked with proposing a block after
miner X at an artificially lowered base fee b, where b = (1 − ϕ)b∗ < b∗. The payout for
proposing a block at twice the target size s∗ is given by

P [Y h
X] = s∗ (ϕ · b∗ + (1 − α)ε) (1 + ∆). (A.3)

From state Y h
X , we move to state Y h

Y , where Y proposes a target size block, with probability
py. The payout for miner Y in state Y h

Y is given as

P [Y h
Y] = s∗ · ε, (A.4)

and we remain in this state for a subsequent block with probability py.
In both state Y h

X and state Y h
Y , the probability of moving to state Xh is px. When we

re-enter state Xh for the first time, X will propose an empty block to lower the base fee again.
Then, with a probability px, we remain in state X for the next block, where miner X will
propose target size blocks until her consecutive turn as a proposer is interrupted. Regardless,
the payout for miner Y whenever we are in state Xh is zero. We move to state Y h

Y with
probability py from state Xh and enter an absorbing state with probability 1 − py − px from
all states.

Next, we calculate the expected payout of the honest strategy and start with the expected
reward for miner Y starting from state Y h

X E[R[Y h
X]] = px ·E[R[Xh]] + py ·E[R[Y h

Y]] + P [Y h
X]

where E[R[Xh]] = px ·E[R[Xh]]+py ·E[R[Y h
X]], and E[R[Y h

Y]] = px ·E[R[Xh]]+py ·E[R[Y h
Y]]+

P [Y h
Y]. By solving the system of linear equations, we find that the expected reward from the

honest strategy is given by

E[R[H]] = E[R[Y h
X]] = (1−px)(((1−py)(1+∆)ϕ·b∗)+ε(1+∆−α(1+∆)(1−py)−∆py))s∗

(1−px−py) . (A.5)

We now consider the deviation from the honest strategy, whereby miner Y also keeps the
base fee artificially low, and model the strategy with a Markov chain in Figure 8b. State Y a

is the starting state of the deviating strategy in which Y proposes a block with target size s∗

at an artificially lowered base fee (1 − ϕ)b∗. Thus, the state’s payout is

P [Y a] = s∗ (ϕ · b∗ + (1 − α)ε) . (A.6)

DISC 2023

6:20 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

XhY h
X

Y h
Y

px

py

px

py px

py

(a) honest strategy of miner Y .

Y a Xa

px

py

py

px

(b) attacking strategy of miner Y .

Figure 8 The honest strategy (cf. Figure 8a) and the deviation from the honest strategy, i.e.,
keep the base fee artificially low, (cf. Figure 8b) modeled with discrete Markov chains for miner Y .
We transition between states with every block. All states with a nonzero payout for miner Y are
highlighted in gray. Note that for all remaining probabilities, the Markov process enters an absorbing
state.

For the next block, we stay in state Y a with probability py, move to state Xa with
probability px, or else move to an absorbing state, i.e., the consecutive turns of X and Y as
proposers end and the attack finishes. In state Xa, proposer X will also propose a target
size block, but the payout for miner Y is zero as we assume no collaboration between the
two. The transition probabilities from state Xa are identical to those from state Y a: we
move to state Y a with probability py, stay in state Xa with probability px and enter an
absorbing state with probability 1 − py − px for the next block. Thus, the expected reward
for miner Y starting in state Y a is given by E[R[Y a]] = px ·E[R[Xa]] + py ·E[R[Y a]] + P [Y a],
where E[R[Xa]] is the expected payout for miner Y starting from state Xa and we have
E[R[Xa]] = px ·E[R[Xa]] + py ·E[R[Y a]]. We follow that the expected payout of the deviating
strategy for miner Y is given by

E[R[A]] = E[R[Y a]] = (1 − px)s∗(ϕ · b∗ + (1 − α)ε)
(1 − px − py) . (A.7)

We conclude it is rational for miner Y to deviate from the honest strategy when E[R[A]] −
E[R[H]] > 0. It follows that Y attacks when

py > ∆((1−α)ε+ϕ·b∗)
(1−α)∆·ε+(1+∆)ϕ·b∗−α·ε . ◀

▶ Theorem 3. In expectation, it is rational for a miner Y to deviate from the honest strategy
and lower the base fee, if

py >
ε(1 − px)

(1 − α)ε + ϕ · b∗(1 − px) + (1 + ∆)εαpx − ∆px(ε + ϕ · b∗) .

Proof. We, again, model the honest strategy for miner Y as a Markov chain (cf. Figure 9a).
The honest strategy starts in state Y h, where miner Y proposes a block at target size s∗ and
receives a payout of

P [Y h] = s∗ · ε. (A.8)

The transition probability to state Xh is px and to state Y h, i.e., Y proposes consecutive
blocks, is py. Otherwise, the consecutive turn of X and Y as miners stops and we enter
an absorbing state. We note that the states Xh, Y h

X and Y h
Y correspond exactly to the

eponymous states in Theorem 2 (cf. Figure 8a). Thus, the actions of the miners, the payout
for miner Y , and the transition probabilities are as previously described in the proof of
Theorem 2.

S. Azouvi, G. Goren, L. Heimbach, and A. Hicks 6:21

The strategy’s payout is the expected reward starting from state Y h, which is

E[R[Y h]] = px · E[R[Xh]] + py · E[R[Y h] + P [Y h]. (A.9)

As previously in Theorem 2, we have

E[R[Y h
X]] = px · E[R[Xh]] + py · E[R[Y h

Y]] + P [Y h
X], (A.10)

E[R[Xh]] = px · E[R[Xh]] + py · E[R[Y h
X]], (A.11)

E[R[Y h
Y]] = px · E[R[Xh]] + py · E[R[Y h

Y]] + P [Y h
Y]. (A.12)

Solving the system of linear equation, we conclude that the expected payout of the honest
strategy is

E[R[H]] = E[R[Y h]] = (((1 + ∆)b∗ϕpxpy) + ε(1 − px + ((1 − α)∆ − α)pxpy))s∗

1 − px − py
. (A.13)

Y h

Xh Y h
X

Y h
Y

px

py

px

py

px py

px py

(a) honest strategy of miner Y .

Sa Xa

Y a

px

py

px

py

py

px

(b) attacking strategy of miner Y .

Figure 9 The honest strategy (cf. Figure 9a) and the deviation from the honest strategy (cf.
Figure 9b) modeled with discrete Markov chains. We transition between states with every block.
All states with a nonzero payout for miner Y are highlighted in gray. Note that for all remaining
probabilities, the Markov process enters an absorbing state and the consecutive turn of X and Y as
proposers finishes.

We proceed with the attack strategy, which we model in Figure 9b. Miner Y starts in
state Sa and mines an empty block and, therefore, receives no rewards. With probability
py we move to state Y a for the next block, i.e., Y proposes a target size (s∗) block, with
probability px we move to state Xa, i.e., X proposes a target size (s∗) block, and with
probability 1 − px − py we move to an absorbing state, i.e., the attack ends. Notice that
the states Xa and Y a are identical to those described in the proof of Theorem 3. Thus, the
expected returns starting in the respective states are as follows

E[R[Sa]] = px · E[R[Xa]] + py · E[R[Y a]], (A.14)
E[R[Y a]] = px · E[R[Xa]] + py · E[R[Y a]] + P [Y a], (A.15)
E[R[Xa]] = px · E[R[Xa]] + py · E[R[Y a]], (A.16)

and find that the expected reward of the attack strategy is

E[R[A]] = E[R[Sa]] = (ϕ · b∗ + (1 − α)ε)pys∗

1 − px − py
. (A.17)

To conclude, it is rational behavior for Y to deviate from the honest strategy, when E[R[A]]−
E[R[H]] > 0, which holds when

py >
ε(1 − px)

(1 − α)ε + ϕ · b∗(1 − px) + (1 + ∆)εαpx − ∆px(ε + ϕ · b∗) . ◀

DISC 2023

6:22 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

B Delay Incurred by the Mitigation of Section 6

Suppose we are in a steady state with a base fee b∗, when after block height τ a fixed change
in demand occurs for which the new steady state will be achieved with the new base fee
β · b∗. We denote by T the number of consecutively full blocks it takes to reach the new base
fee β · b∗.

After k consecutively full blocks, according to Eq. 6.1

savg[τ + k] = (1 − q)2s∗ + q · savg[τ + k − 1]
=

(
2(1 − q)(q0 + q1 + . . . + qk−1) + qk

)
s∗

=
(

2(1 − q)
(

1 − qk

1 − q

)
+ qk

)
s∗

= (2 − qk)s∗.

Plugging the above into Eq. 6.2 yields

b[τ + k] = bavg[τ + k − 1] ·
(

1 + ϕ · (2 − qk)s∗ − s∗

s∗

)
= bavg[τ + k − 1] ·

(
1 + ϕ(1 − qk)

)
= b[τ] ·

(
1 + ϕ(1 − q1)

) (
1 + ϕ(1 − q2)

)
· · ·

(
1 + ϕ(1 − qk)

)
= b∗ ·

k∏
i=1

(1 + ϕ(1 − qi)).

Therefore, T is the smallest integer that satisfies

b[τ + T] = b∗ ·
T∏

i=k

(1 + ϕ(1 − qk)) ≥ β · b∗ ⇐⇒
T∏

k=1
(1 + ϕ(1 − qk)) ≥ β.

0 20 40 60 80 100

0

10

20

30

40

T

EIP-1559 with q = 0.25 with q = 0.5 with q = 0.75

Figure 10 The number of consecutive full blocks T required to increase the base fee by factor β

for EIP-1559 and the proposed mitigation for q ∈ {1/4, 1/2, 3/4}.

Figure 10 plots T (β) for both EIP-1559 and our mitigation. We set ϕ = 1/8 (current
Ethereum) and use q ∈ {1/4, 1/2, 3/4}. All plots follow a logarithmic trend and the response
times to dramatic changes in demand are only mildly affected by the proposed mitigation
(even for β factors as large as 100).

On the Node-Averaged Complexity of Locally
Checkable Problems on Trees
Alkida Balliu #

Gran Sasso Science Institute, L’Aquila, Italy

Sebastian Brandt #

Helmholtz Center for Information Security, Saarbrücken, Germany

Fabian Kuhn #

University of Freiburg, Germany

Dennis Olivetti #

Gran Sasso Science Institute, L’Aquila, Italy

Gustav Schmid #

University of Freiburg, Germany

Abstract
Over the past decade, a long line of research has investigated the distributed complexity landscape
of locally checkable labeling (LCL) problems on bounded-degree graphs, culminating in an almost-
complete classification on general graphs and a complete classification on trees. The latter states
that, on bounded-degree trees, any LCL problem has deterministic worst-case time complexity O(1),
Θ(log∗ n), Θ(log n), or Θ(n1/k) for some positive integer k, and all of those complexity classes are
nonempty. Moreover, randomness helps only for (some) problems with deterministic worst-case
complexity Θ(log n), and if randomness helps (asymptotically), then it helps exponentially.

In this work, we study how many distributed rounds are needed on average per node in order to
solve an LCL problem on trees. We obtain a partial classification of the deterministic node-averaged
complexity landscape for LCL problems. As our main result, we show that every problem with
worst-case round complexity O(log n) has deterministic node-averaged complexity O(log∗ n). We
further establish bounds on the node-averaged complexity of problems with worst-case complexity
Θ(n1/k): we show that all these problems have node-averaged complexity Ω̃(n1/(2k−1)), and that
this lower bound is tight for some problems.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases distributed graph algorithms, locally checkable labelings, node-averaged
complexity, trees

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.7

Related Version Full Version: https://arxiv.org/abs/2308.04251 [1]

Funding This work has been partially funded by the European Union - NextGenerationEU under
the Italian Ministry of University and Research (MUR) National Innovation Ecosystem grant
ECS00000041 - VITALITY – CUP: D13C21000430001, and by the German Research Foundation
(DFG), Grant 491819048.

1 Introduction

The family of locally checkable labeling (LCL) problems was introduced in the seminal
work of Naor and Stockmeyer [22] and since then, understanding the distributed complexity
of computing LCLs has been at the core of the research on distributed graph algorithms.
Roughly speaking, LCLs are labelings of the nodes or edges of a graph G = (V, E) with labels
from a finite alphabet such that some local, constant-radius condition holds at all the nodes.
In the distributed context, G represents a network and one typically assumes that the nodes

© Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alkida.balliu@gssi.it
mailto:brandt@cispa.de
mailto:kuhn@cs.uni-freiburg.de
mailto:dennis.olivetti@gssi.it
mailto:schmidg@informatik.uni-freiburg.de
https://doi.org/10.4230/LIPIcs.DISC.2023.7
https://arxiv.org/abs/2308.04251
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

of G can communicate over the edges of G in synchronous rounds. If this communication is
unrestricted, this is known as the LOCAL model of computation and if messages must consist
of O(log n) bits (where n is the number of nodes), it is known as the CONGEST model. In
our paper, we focus on the LOCAL model and we therefore do not explicitly analyze the
required message sizes of our algorithms. We however believe that all our algorithms can be
made to work in the CONGEST model with minor modifications.

Often LCL problems are studied in the context of bounded-degree graphs. In this case,
LCLs include problems such as properly coloring the nodes of G with ∆ + 1 colors, where ∆
is the maximum degree of G. By now, researchers have obtained a thorough understanding
of the complexity landscape of distributed LCL problems in general bounded-degree graphs
[13, 12, 16, 23, 6, 2] and also in more special graph families such as in particular in bounded-
degree trees [17, 7, 12, 13, 3, 10]. Most of this work focuses on the classic notion of worst-case
complexity: If all nodes start a computation at time 0 and communicate in synchronous
rounds, how many rounds are needed until all nodes have decided about their outputs. In
some case however, the worst-case round complexity might be determined by a small number
of nodes that require a lot of time to compute their outputs, while most of the nodes find their
outputs much faster. Consider for example the simple randomized (∆ + 1)-coloring algorithm
where in every step, every node picks a random available color and permanently keeps this
color if there is no conflict. It is not hard to show that in every step, every uncolored
node becomes colored with constant probability [18]. Hence, while we need Ω(log n) steps
(and thus also Ω(log n) rounds) until all nodes are colored, for each individual node, the
expected time to become colored is constant and consequently the time that nodes need on
average to become colored is also constant w.h.p. In some contexts (e.g., when considering
the energy cost of a distributed algorithm), this average completion time per node is more
meaningful than the worst-case completion time and consequently, researchers have recently
showed interest in determining the node-averaged time complexity of distributed graph
algorithms [15, 9, 14, 5]. In the present paper, we continue this work and we study the
node-averaged complexity of LCL problems in bounded-degree trees. Before describing our
contributions, we first briefly summarize some of the relevant previous work.

Previous results on node-averaged complexity. The first paper that explicitly considered
the node-averaged complexity of distributed graph algorithms is by Feuilloley [15]. The paper
mainly considers LCL problems on paths and cycles (i.e., on graphs of maximum degree
2). It is known that on paths and cycles, when considering the worst-case complexity of
LCL problems, randomization does not help and the only complexities that exist are O(1),
Θ(log∗ n), and Θ(n) [22, 12, 13]. In [15], it is shown that for deterministic algorithms, the
worst-case complexity and the node-averaged complexity of LCL problems on paths and
cycles is the same. This for example implies that the classic Ω(log∗ n) lower bound of [20] for
coloring cycles with a constant number of colors also applies to node-averaged complexity.
While this is true for deterministic algorithms, it is also shown in [15] that the randomized
node-averaged complexity of 3-coloring paths and cycles is constant. As sketched above and
also explicitly proven in [9], the same is true for the more general problem of computing
a (∆ + 1)-coloring in arbitrary graphs. While the results of [15] imply results for general
LCLs on paths and cycles, the additional work on node-averaged complexity focused on the
complexity of specific graph problems, in particular on the complexity of well-studied classic
problems such as computing a maximal independent set (MIS) or a vertex coloring of the
given graph. Barenboim and Tzur [9] show that in graphs of small arboricity, some coloring
problems have a deterministic node-averaged complexity that is significantly smaller than

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:3

the corresponding worst-case complexity. For example, it is shown that if the arboricity is
constant, an O(k)-vertex coloring can be computed in node-averaged complexity O(log(k) n)
for any fixed integer k ≥ 1, where O(log(k) n) denotes the k times iterated logarithm of n.
As one of the main results of [5], it was shown that the MIS lower bound of [19] can be
generalized to show that even with randomization, computing an MIS on general (unbounded
degree) graphs requires node-averaged complexity Ω(

√
log n/ log log n). Hence, while the

problem of coloring with (∆ + 1) colors and, as also shown in [5], the problem of computing
a 2-ruling set have randomized algorithms with constant node-averaged complexity, the same
thing is not true for the problem of computing an MIS.

LCL complexity in bounded-degree trees. One of the goals of this paper is to make
a step beyond understanding individual problems and to start studying the landscape of
possible node-averaged complexities of general LCL problems. We do this by studying
LCL problems on bounded-degree trees, a graph family that we believe is relevant and
that has recently been studied intensively from a worst-case complexity point of view (e.g.,
[12, 13, 11, 7, 16, 23, 17]). In bounded-degree trees, for deterministic algorithms, exactly the
following worst-case complexities are possible: O(1), Θ(log∗ n), Θ(log n), and Θ(n1/k) for
some fixed integer k ≥ 1. It was shown in [17] (and earlier for a special subclass of LCLs
in [7] and for paths in [22, 13]) that on bounded-degree trees, there are no deterministic
or randomized optimal algorithms with a time complexity in the range ω(1) to o(log∗ n).
Further, in [12], it was shown that even for general bounded-degree graphs, there are no
deterministic LCL complexities in the range ω(log∗ n) to o(log n). Finally, it was shown
in [13] that every LCL problem that requires ω(log n) rounds on bounded-degree trees has
a worst-case deterministic and randomized complexity of the form Θ(n1/k) for some fixed
integer k ≥ 1 (and all those complexities also exist). It is further known that randomization
can only help for LCL problems with a deterministic complexity of Θ(log n). Those problems
have a randomized complexity of either Θ(log n) or Θ(log log n) (and both cases exist) [13, 11].

1.1 Our Contributions
As our main result, we show that the Θ(log n) complexity class vanishes when considering
the node-averaged complexity of LCLs on bounded-degree trees.

▶ Theorem 1. Let Π be an LCL problem for which there is an O(log n)-round deterministic
algorithm on bounded-degree trees. Then, Π can be solved deterministically with node-averaged
complexity O(log∗ n) on bounded-degree trees.

A standard example for an LCL problem that requires Θ(log n) rounds deterministically
is the problem of 3-coloring a tree. So for 3-coloring Theorem 1 states that there is a
deterministic distributed 3-coloring algorithm, for bounded degree trees, with node-averaged
complexity O(log∗ n) rounds. Meaning that the average node terminates after O(log∗ n)
rounds. Note that for 3-coloring trees deterministically, this is tight. As shown in [15],
3-coloring has deterministic node-averaged complexity Ω(log∗ n) even on paths. Below, we
will use the 3-coloring problem as a simple example to illustrate some of the challenges in
obtaining the above theorem, but first we state the rest of our results.

In addition to Theorem 1, we also investigate the node-averaged complexity of LCL
problems that require polynomial time in the worst case (i.e., time Θ(n1/k) for some integer
k ≥ 1). We show that for such problems, also the node-averaged complexity is polynomial.
However at least in some cases, it is possible to obtain a node-averaged complexity that is

DISC 2023

7:4 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

significantly below the worst-case complexity. In [13], the hierarchical 2 1
2 -coloring problem

with parameter k is defined as an example problem with worst-case complexity Θ(n1/k). We
show that the node-averaged complexity of this LCL problem is significantly smaller.

▶ Theorem 2. The deterministic node-averaged complexity of the hierarchical 2 1
2 -coloring

problem with parameter k is O(n1/(2k−1)).

Finally, we show that for a problem with worst-case complexity Θ(n1/k), this is essentially
the best possible node-averaged complexity. Meaning that we also prove that our algorithm
for hierarchical 2 1

2 -coloring problems is optimal up to one log n factor.

▶ Theorem 3. Let Π be an LCL problem with (deterministic or randomized) worst-case com-
plexity Ω(n1/k). Then, the randomized node-averaged complexity of Π is Ω(n1/(2k−1)/ log n).

Note that the algorithm of Theorem 2 is deterministic, and that the lower bound of
Theorem 3 holds for randomized algorithms as well.

1.2 High-level Ideas and Challenges
We next discuss some of the ideas that lead to the known results about solving LCL problems
on bounded-degree trees and we highlight some of the challenges that one has to overcome
and some of the ideas we use to prove Theorems 1–3.

Rake-and-compress decomposition. We start by sketching a generic algorithm that can be
used to solve all LCL problems in bounded-degree trees. The generic algorithm can be used
to obtain algorithms with an asymptotically optimal worst-case complexity for all problems
with worst-case complexity Ω(log n). As a first step, the algorithm uses a technique that
is known as rake-and-compress [21] to partition the nodes of a given tree T = (V, E) into
O(log n) layers such that each layer is either a rake layer that consists of a set of independent
nodes or it is a compress layer that consists of a sufficiently separated set of paths. Every
node in a rake layer has at most one neighbor in a higher layer, and in each path of a
compress layer, the two nodes at the end have exactly one neighbor in a higher layer and
the other nodes on the path have no neighbors in a higher layer.1 Such a decomposition
can be computed in an iterative process that produces the layers in increasing order. Given
some tree (or forest), a rake layer can be obtained by taking the set of all leaf nodes2 and
a compress layer can be created by the paths (or more precicely by the inner part of the
paths) induced by degree-2 nodes. It is not hard to show that when alternating rake and
compress layers, this process completes after creating O(log n) layers [21].

Applying the decomposition. As an example of how to use rake-and-compress to solve an
LCL problem, we look at the case of 3-coloring the nodes of a tree T . Given a decomposition
into rake and compress layers, this can be done in O(log n) rounds. First, color each of the
paths of the compress layers with O(1) colors. This requires O(log∗ n) rounds. Then, the
3-coloring of T is computed by starting at the highest layer of the decomposition. When
processing a rake layer, each node is colored with a color different from its (at most one)
neighbor in a higher layer. When processing a compress layer, we just have to 3-color the

1 The actual decomposition that we use is a bit more complicated and the formal definition (see Definition 4)
requires some additional details.

2 When two degree-1 nodes are neigbors, one just takes one of the two nodes.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:5

paths of the layer such that each node at the end of a path picks a color that differs from
the color of its neighbor in a higher layer. Given the initial O(1)-coloring of the path, this
can be done in constant time for each path. The time to compute the coloring is therefore
proportional to the number of layers and thus O(log n). The generic algorithm for solving
more general LCL problems is more involved, but still similar at a high level. While creating
the decomposition, for each node v, one can create a list of labels that can be assigned to v

such that the labeling of lower layer nodes that depend on v can still be completed. The
LCL problem needs to allow labelings that are flexible enough such that when having long
paths of nodes that each can be the root of an arbitrary subtree, the nodes of the path can
still be labeled efficiently (in constant time given an appropriate initial coloring of the path).

Implementation with low node-averaged complexity. The main challenge to achieve node-
averaged complexity o(log n) is the following. The generic algorithm first computes the
decomposition and it then computes the labeling by starting with the nodes in the highest
layers. In the worst case, we thus need Θ(log n) rounds before even the label of a single node
is determined. Moreover, most of the nodes are in the lowest layers, which are labeled at
the very end of the algorithm. We therefore need to label most of the nodes already in the
“bottom-up” phase when creating the rake and compress layers. For some problems, this is
challenging: for example, in the 3-coloring problem, if we ever obtain a node with 3 neighbors
of lower layers that have 3 different colors, then we cannot complete the solution in any valid
way. Hence, we have to label the nodes in such a way that the “top-down” phase is still able
to extend the partial labeling to a valid labeling of all the nodes. In the following high-level
discussion, for simplicity, we assume that the tree has diameter O(log n) so that it suffices to
create rake layers and we do not need compress layers. We further only look at the problem
of 3-coloring T . This problem is significantly easier to handle than the general case. The
solution for 3-coloring however already requires some of the ideas of the general case.

Let us therefore assume that we have an O(log n)-diameter O(1)-degree tree T . If we only
construct rake layers, we obtain O(log n) layers, where each layer is an independent set and
except for a single node u in the top layer, every node has exactly one neighbor in a higher
layer. We refer to u as the root and for each other node, we refer to the single neighbor in a
higher layer as the parent. Note that when assigning a color to a node v in the top-down
phase, only v’s parent has already been assigned a color. To complete the top-down phase, it
therefore suffices if every node v can choose its color from an arbitrary subset Sv of size 2 of
the colors. Hence, if we try to color some nodes already in the bottom-up phase, we have to
make sure that all the uncolored nodes still have at least two available colors. This is for
example guaranteed as long as every uncolored node has at most one colored neighbor.

When constructing the layering we therefore proceed as follows. We only color nodes that
have already been assigned to some rake layer. Whenever we decide to color a node v in
the bottom-up phase, we also directly color the whole subtree of v.3 The high-level idea of
the algorithm to achieve this is as follows. After each rake step, i.e., after each creation of
a new layer, we check whether or not there are some nodes that can be colored. Consider
the situation after the tth rake step, let G(t) be the set of nodes that have not been raked
at that time (i.e., that have not been assigned to some layer), and let R(t) be the set of
nodes that have already been assigned to some layer. Note that if a node u ∈ G(t) has some
neighbor v ∈ R(t), then u will in the end be the unique neighbor of v in a higher layer. We

3 After coloring the root of a subtree, the coloring of the subtree can be done in parallel while proceedings
with the rest of the algorithm.

DISC 2023

7:6 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

Figure 1 The graph G(t) of nodes that are not yet raked away is colored blue. The already raked
away nodes R(t) are colored green. The node u chooses v∗ since it has the largest subtree, colored
in red, attached and both v∗ as well as its entire subtree become colored.

can therefore think of the nodes in G(t) as the roots of the already raked subtrees. This is
illustrated in Figure 1. After each rake step t, each node u ∈ G(t) tries to color some node at
distance 2 in its subtree.4 Node u chooses v∗ to be a node at distance 2 in its subtree such
that the subtree rooted at v∗ has the largest number of uncolored nodes among all nodes at
distance 2 of u in the subtree of u (observe that nodes can keep track of such numbers). If
there are no colored 2-hop neigbors of v∗ outside the subtree of v∗ (i.e., no colored siblings
of v∗), then u decides to color v∗ and its complete subtree. Otherwise, no new nodes in u’s
subtree are getting colored. If v∗ and its subtree get colored, then a constant fraction of
the uncolored nodes in u’s subtree get colored. Otherwise, a sibling v′ of v∗ with a larger
subtree has already been colored while u was the root of the tree. Note that at this time,
the subtree of v∗ was already in the same state and therefore v′ colored more nodes than
v∗ does. One can use this to show that whenever the height of a raked subtree increases, a
constant fraction of the uncolored nodes gets colored. One can further show that this suffices
to show that over the whole tree, a constant fraction of the remaining nodes gets colored
every constant number of rounds and thus the node-averaged complexity is constant. The
algorithm and the analysis for the general family of LCLs for which Theorem 1 holds uses
similar basic ideas, dealing with the general case is however significantly more involved.

Improved upper bounds in the polynomial regime. We prove that the node-averaged
complexity of the hierarchical 2 1

2 -coloring problem with parameter k is O(n1/(2k−1)). In order
to give some intuition for this, we focus on the case k = 2 where the worst-case complexity
is Θ(

√
n). Instead of providing a formal definition of the problem, it is helpful to present

the problem by describing how a worst-case instance for the problem looks like, and how a
solution in such an instance looks like. A worst-case instance for this problem consists of a
path P of length Θ(

√
n), where to each node vj of P is attached a path Qj of length Θ(

√
n).

We call the nodes of the path P p-nodes and we call the nodes of a path Qj q-nodes. For
each path Qj , the algorithm has to decide to either 2-color it or to mark the whole path as

4 By only coloring nodes at distance at least 2 from u, we make sure that neighbors of nodes that are not
yet layered remain uncolored.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:7

decline. Then, the subpaths of P induced by nodes that are neighbors of q-nodes that output
decline need to be labeled with a proper 2-coloring. In particular, decline is not allowed on
p-nodes. Let us now describe an algorithm with optimal worst-case complexity for instances
with a similar structure, but where the paths may have different lengths. For q-nodes, the
algorithm first checks if the length of the path containing those nodes is O(

√
n) (note that, in

order to perform this operation, the algorithm needs to know n, and it is actually unknown
whether an LCL problem can have Θ(

√
n) worst-case complexity when n is unknown). In

such a case, the algorithm is able to produce a proper 2-coloring of the path. Otherwise,
the path is marked as decline. Then, it is possible to prove that the subpaths of P induced
by nodes having q-node neighbors that output decline must be of length O(

√
n), and hence

they can be properly 2-colored in O(
√

n) rounds. We observe that in the worst-case instance
described above, the majority of the nodes of the graph are q-nodes, and hence, from an
average point of view, it would be fine if p-nodes spend more time. In fact, it is possible to
improve the node-averaged complexity of the described algorithm by letting q-nodes run for
at most O(n1/3) rounds and p-nodes for at most O(n2/3) rounds. In this case, a worst-case
instance contains a path P of length O(n2/3) and all paths Qj are of length O(n1/3). We
obtain that both the p-nodes and the q-nodes contribute O(n4/3) to the sum of the running
times, obtaining a node-averaged complexity of O(n1/3).

Lower bounds in the polynomial regime. It is known by [10] that if an LCL problem Π
has worst-case complexity o(n1/k), then it can actually be solved in O(n1/(k+1)) rounds. The
intuition about what determines the exact value of k in the complexity of a problem is related
to how many compress layers of a rake-and-compress decomposition one can handle. In the
example presented above, namely 3-coloring, one can handle an arbitrary number of compress
paths and that is the reason why the problem can be solved in O(log n) rounds. In particular,
no matter how many rake or compress operations have been applied, we can handle any
compress path by producing a 3-coloring on it and leaving the endpoints uncolored (such
nodes can decide their color after their higher layer neighbors picked a color), and this can
be done fast. Not all problems are of this form, that is, for some problems we cannot handle
an arbitrary amount of compress paths: it is possible to define problems in which different
labels need to be used in compress paths of different layers (hierarchical 2 1

2 coloring is indeed
such a problem where in fact p-nodes are not allowed to output decline). For such problems,
it may not be possible at all to efficiently produce a valid labeling for long compress paths of
layers that are too high, say of layers strictly more than k. In order to solve this issue, we
can modify the generic algorithm sketched above by increasing the number of rake operations
that are performed between each pair of compress operations. When using Ω(n1/(k+1)) rake
operations at the beginning and between any two compress operations, the total number
of compress layers is at most k. This however makes the algorithm slower, resulting in a
complexity of Θ(n1/(k+1)) (while 3-coloring has worst-case complexity Θ(log n)).

In other words, for some LCL problems, compress paths are something that is difficult to
handle, and the number of compress layers that we can recursively handle is what determines
the complexity of a problem. If we can handle an arbitrary amount of compress layers, then
the problem can be solved in O(log n) rounds, but if we can handle only a constant amount
of compress layers, say k, then the complexity of the problem is Θ(n1/(k+1)). In [10] it is
proved that, if a problem has complexity o(n1/k), then it is possible to handle k compress
layers, implying a complexity of O(n1/(k+1)). We show that the same can be obtained by
starting from an algorithm A with node-averaged complexity o(n1/(2k−1)/ log n), implying
that if a problem has complexity Ω(n1/k), then it cannot have node-averaged complexity

DISC 2023

7:8 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

o(n1/(2k−1)/ log n), since otherwise it would imply that the problem can actually be solved in
O(n1/(k+1)) rounds in the worst case, which then leads to a contradiction. Starting from an
algorithm that only has guarantees on its node-averaged complexity instead of on its worst-
case complexity introduces many additional challenges that we need to tackle. For example,
in [10] it is argued that an o(n1/k)-rounds algorithm can never see both the endpoints of a
carefully crafted path that is too long. This kind of reasoning, that is very common when we
deal with worst-case complexity, does not work for node-averaged complexity.

Road Map. Section 2 provides some important definitions and a high-level description
of the generic algorithm to solve LCLs on bounded-degree trees with optimal worst-case
complexity. In Section 3, we present an algorithm with node-averaged complexity O(log∗ n)
that is able to solve all problems that have O(log n) worst-case complexity. The algorithm is
based on the one discussed in Section 2.1, but we need to tackle several challenges to improve
its node-averaged complexity. The proofs of Theorems 2 and 3 are in Appendices A and B.

2 Preliminaries

Node-averaged complexity. We start by defining the notion of node-averaged complexity
as in [5]. Let A be an algorithm that solves a problem Π. Assume A is run on a given
graph G = (V, E). Let v ∈ V . We define T G

v (A) to be the number of rounds after which v

terminates when running A. The node-averaged complexity of an algorithm A on a family
of graphs G is defined as follows.

AVGV (A) := max
G∈G

1
|V |
· E

 ∑
v∈V (G)

T G
v (A)

 = max
G∈G

1
|V |
·

∑
v∈V (G)

E
[
T G

v (A)
]

The complexity of Π is defined as the lowest complexity of all the algorithms that solve Π.

LCLs in the black-white formalism. We next define the class of problems that we consider:
LCLs in the black-white formalism. A problem Π described in the black-white formalism is
a tuple (Σin, Σout, CW , CB), where:

Σin and Σout are finite sets of labels.
CW and CB are both multisets of pairs, where each pair (ℓin, ℓout) is in Σin × Σout.

Solving a problem Π on a graph G means that:
G = (W ∪B, E) is a graph that is properly 2-colored, and in particular each node v ∈W

is labeled c(v) = W , and each node v ∈ B is labeled c(v) = B.
To each edge e ∈ E is assigned a label i(e) ∈ Σin.
The task is to assign a label o(e) ∈ Σout to each edge e ∈ E such that, for each node
v ∈ W (resp. v ∈ B) it holds that the multiset of incident input-output pairs is in CW

(resp. in CB).

Note that when expressing a given LCL problem on a tree T in the black-white formalism,
we often have to modify the tree T as follows. We subdivide every edge e of T by inserting
one node in the middle of the edge. Each edge is then split into two “half-edges” and the new
tree is trivially properly 2-colored (say the original nodes of T are the black nodes and the
newly inserted nodes for each edge of T are the white nodes). In the full version [1], we prove
that on trees, for any standard LCL, we can define an LCL in the black-white formalism
that has the same asymptotic node-averaged complexity as the original one, implying that
our results hold for all standard LCLs as well.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:9

2.1 A Generic Way to Solve All LCLs
The content of this section is heavily based on results presented in [13, 10, 4]. We define two
elementary procedures.

Rake: Every node of degree 1 or 0 gets removed.
Compress(b): Every path of degree-2 nodes of length at least b is split into subpaths of
length in [ℓ, 2ℓ] by ignoring one node between each two such subpaths. We remove all of
the subpaths and leave the ignored nodes to be removed by the next rake step.

We first start by providing an O(D) rounds algorithm: iteratively apply rake until the
entire tree is removed; at each step, each node v that becomes a leaf computes the set L

of all labels that can be put on the edge connecting v to its parent, satisfying that, for any
choice in L, it is possible to pick labels from the sets assigned to the edges connecting v to
its children, in a valid manner; once all edges get a set assigned, it is possible to pick a valid
labeling for all the edges by processing nodes in reverse order.

Informally, we call the set of labels computed by a node the class of the subtree rooted
at that node. In order to obtain algorithms that are faster than O(D) rounds, we must also
handle nodes of degree 2, and hence we also have to take care of paths obtained with the
compress operation. Observe that each such path has two parents, that is, the two nodes of
higher layers connected to its endpoints. We hence need a way to assign a class to the whole
path, as a function of the classes of the subtrees of lower layers connected to the nodes of
the path. However, this is challenging: how do we even define the class of a path? We would
like that, when we process nodes in reverse order, no matter what are the two labels that
get chosen for the edges connecting the endpoints of the path to nodes of higher layers, we
can still complete the labeling inside the path (and in the subtrees connected to it). Hence,
we still want to assign a set of labels to each edge connecting the path to its parents, but
now these two sets must satisfy some sort of independence property. We call a pair of sets of
labels that satisfy this property an independent class of the path.

In [13], Chang and Pettie showed that for every LCL that is solvable in O(log n) rounds,
there exists some constant ℓ such that, if the paths have length at least ℓ, then there is always
a way to compute an independent class, such that the algorithm sketched above works. In
[10] it is then shown that a similar procedure works for all problems with complexity Θ(n1/k).
The actual complexity of a problem is determined by the number of compress layers for
which it is possible to compute an independent class. Let k be this number. If k =∞, the
problem Π has worst-case complexity O(log n), while if k is some constant then Π has worst
case complexity Θ(n1/k). We will now see how to decompose any tree such that we apply
the compress operation only k times.

Tree decompositions. All problems with worst-case complexity O(log n) or O(n1/k) for any
k ∈ N can be solved by following a generic algorithm [13, 10, 4]. This algorithm decomposes
the tree into layers by iteratively removing nodes in a rake-and-compress manner [21] (and
then uses the computed decomposition to solve the given problem). We first define the
decomposition and then elaborate on how fast (and how) it can be computed.

▶ Definition 4 ((γ, ℓ, L)-decomposition). Given three integers γ, ℓ, L, a (γ, ℓ, L)-decomposition
is a partition of V (G) into 2L − 1 layers V R

1 = (V R
1,1, . . . , V R

1,γ), . . . , V R
L = (V R

L,1, . . . , V R
L,γ),

V C
1 , . . . , V C

L−1 such that the following hold.
1. Compress layers: The connected components of each G[V C

i] are paths of length in [ℓ, 2ℓ],
the endpoints have exactly one neighbor in a higher layer, and all other nodes do not have
any neighbor in a higher layer.

DISC 2023

7:10 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

2. Rake layers: The diameter of the connected components in G[V R
i] is O(γ), and for each

connected component at most one node has a neighbor in a higher layer.
3. The connected components of each sublayer G[V R

i,j] consist of isolated nodes. Each node
in a sublayer V R

i,j has at most one neighbor in a higher layer or sublayer.

In [13, 10] it is shown how to compute a (γ, ℓ, L)-decomposition where, at the end,
each node knows the layer that it belongs to. On a high level, the algorithm alternates
between performing γ Rake operations and one Compress(ℓ) operation, until the empty tree
is obtained. The following lemma provides upper bounds for the deterministic worst-case
complexity of computing a (γ, ℓ, L)-decomposition using the algorithm of [13, 10].

▶ Lemma 5 ([13, 10]). Assume ℓ = O(1). Then the following hold.
For any positive integer k and γ = n1/k(ℓ/2)1−1/k, a (γ, ℓ, k)-decomposition can be
computed in O(kn1/k) rounds.
For γ = 1 and L = O(log n), a (γ, ℓ, L)-decomposition can be computed in O(log n)
rounds.

By Lemma 5, we get that if in the former case we set L = k, and in the latter case we set
L = O(log n), then a (γ, ℓ, L)-decomposition can be computed within a running time that
matches the target complexity. In [13, 10] it is shown how to determine the value of ℓ in each
case. We now define a total order on the layers of a (γ, ℓ, L)-decomposition in the natural
way. This will be useful in the design of our algorithm in Section 3.

▶ Definition 6 (layer ordering). We define the following total order on the (sub)layers of a
(γ, ℓ, L)-decomposition.

V R
i,j < V R

i′,j′ iff i < i′ ∨ (i = i′ ∧ j < j′)
V R

i,j < V C
i

V C
i < V R

i+1,j

Accordingly, we will use terms such as “lower layer” to refer to a layer that appears earlier
in the total order than some considered other layer.

The generic algorithm with optimal worst-case complexity. We now explain the algorithm
due to [13, 10, 4] that is able to solve any LCL Π with worst-case complexity Θ(log n) or
Θ(n1/k) asymptotically optimally.
1. Determine ℓ and k from the description of Π. Compute γ, L accordingly.
2. Compute a (γ, ℓ, L)-decomposition, while also propagating label sets up.
3. Any node without neighbours in a higher layer picks a solution based on the label sets of

their children and propagate their choice downwards.
4. Nodes that receive a choice from their parents simply pick a label respecting the label

sets of their children.
Because of the way the label sets were chosen all nodes will be able to pick a valid label. For
the details of how the label sets are chosen and why all nodes will be able to pick a valid
label, we refer to the full version of the paper [1].

We note that the generic algorithm does not require a specific (γ, ℓ, L)-decomposition –
any (γ, ℓ, L)-decomposition (for the parameters γ, ℓ, L determined in the beginning of the
generic algorithm) works. We will make use of this fact when designing algorithms with a
good node-averaged complexity in Section 3.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:11

3 Algorithm for Intermediate Worst-Case Complexity Problems

In this section, we provide an algorithm with node-averaged complexity O(log∗ n) on bounded-
degree trees for all LCLs that can be solved in worst-case complexity O(log n) on such trees.
The main difference to the generic algorithm is that we compute our (γ, ℓ, L)-decomposition
in such a way that we obtain many more local maxima, that is, nodes with a layer number
that is higher than the ones of all its neighbors. We achieve this by leaving slack at the end
of compress paths and then inserting new compress paths to create local maxima.

3.1 The Decomposition Algorithm
Our algorithm is essentially a modified rake and compress procedure. During the execution
of the algorithm we will maintain a partial (γ, ℓ, L)-decomposition and change it to create
local maxima where we want them. For now we start by distinguishing between nodes that
have already been assigned a layer and those that have not.

▶ Definition 7 (free and assigned nodes). We call a node that has not been assigned to a
layer a free node. A node that has been assigned to a layer is called assigned.

Let G denote our input tree and assume that a subset of nodes has already been assigned to
some layers. Let G′ denote the subgraph of G induced by all assigned nodes. Recall that we
have a total ordering on the layers of a decomposition due to Definition 6 (that naturally
extends to partial decompositions). Our aim is to create local maxima where they are most
useful to us.

▶ Definition 8 (local maximum). A local maximum is an assigned node v ∈ V (G′) with the
following two properties:
1. Node v and all of its neighbors are assigned, i.e., they are all contained in V (G′).
2. For each neighbor w of v, the layer of w is strictly smaller than the layer of v.

In our algorithm, we will artificially promote some nodes to a higher layer in order to
produce local maxima. We choose which node to promote according to the quality of the
nodes. The quality of a node v is the number of nodes that are waiting for v to propagate its
label downwards. So if v terminates and chooses an output, then all of these nodes can also
terminate. To keep track of these dependencies, we orient (some of the) edges of the input
graph in such a way that any node u will have an oriented path from v to u if and only if u

will be able to terminate if v does (see Figure 2). In practice, this means that, if u is raked
away, we orient the single edge from u’s parent towards u and we orient the ends of compress
paths inwards. If an edge is not explicitly oriented it is not considered oriented at all. For
some given v this orientation now defines H(v), a subgraph of nodes that can be reached
over oriented paths. In other words, H(v) contains all the nodes that are only waiting for v

to choose an output and hence these could all terminate if v became a local maximum.

▶ Definition 9 (quality). For any node v ∈ V (G), let H(v) denote the set of all nodes w that
can be reached from v via a path (v = v0, v1, . . . , vj = w) such that the following hold:
1. The edge {vi−1, vi} is oriented from vi−1 to vi, for each 1 ≤ i ≤ j.
2. All nodes on the subpath from v1 to w are assigned, i.e., they are all contained in V (G′).
3. The layer of vi is smaller than or equal to the layer of vi−1, for each 2 ≤ i ≤ j, and if v0

is assigned, then the layer of v1 is smaller than or equal to the layer of v0.
If v is a local maximum, or a descendant of a local maximum, then the quality q(v) := 0.
Otherwise the quality q(v) of a node v is the number of nodes in H(v), i.e., q(v) := |H(v)|.

DISC 2023

7:12 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

Figure 2 v and v′ are free nodes. H(v) (respectively, H(v′)) contains all nodes inside the green
cone attached to v (respectively, v′). The path connecting H(v) and H(v′) is a compress path were
the ends are oriented inwards. As a result the green nodes at the end of that path contribute to
H(v) and H(v′) respectively. u and u′ are local maxima, so because of Item 3 in Definition 9 they
and the red trees hanging from them do not contribute to H(v) (respectively, H(v′)).

We chose the name quality, since we will later decide on which nodes to fix by trying to
maximize this quantity. To be more precise when stating the algorithm we also introduce
the following notions based on the orientation.

▶ Definition 10 (child, parent, descendant, ancestor, orphan). For any edge {w, w′} oriented
from w to w′, we call w′ a child of w and w the parent of w′. For any oriented path
(w, . . . , w′) that is consistently oriented from w to w′, we call w′ a descendant of w and w

an ancestor of w′. We call a node with no edges oriented towards itself an orphan.

In previous work the rake and compress procedure is done by iteratively performing some
rakes and then one compress. We change the ordering by first performing one compress and
then some rakes. To still get the same guarantees our algorithm initially performs γ rakes.
Each compress operation is done in a modified, non-standard, way: normally to remove as
many nodes as possible in each iteration, we would like to compress paths that are as short
as possible. Instead we make sure we have some extra slack at the end of each compress
path. This is to ensure that compress paths are always far enough away from nodes that we
want to promote. We then rake away this slack, by performing a set of γ rakes.

After we are done with compress and rakes we want to promote some node v∗. We define
the set Cb(r) as the set of descendants of r that have distance exactly b from r. In Figure 2,
e.g., C2(v) are the nodes inside the green cone of v that are at distance exactly 2 from v, so
u ∈ C2(v). We determine the node that we want to promote as the node v∗ of highest quality
among all nodes in Cb(r). We will later see that if v∗ is promoted, the quality of r is reduced
by a constant factor. We further define G(i) as the set of free nodes at the end of iteration
i. The full details of the algorithm are given in the full version [1]. Note that Algorithm 1
provides a description of the steps of the algorithm without specifying how the algorithm is
implemented in a distributed manner. We will take care of the latter in Section 3.3.

We will use this result to show that O(log n) iterations of Algorithm 1 are enough.

▶ Lemma 11 ([10]). Given a tree with n nodes, by performing α rakes and 1 compress with
minimum path length β, the number of remaining nodes is at most β

2α n.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:13

Algorithm 1 Compute Decomposition Informal.

Input: G = (V, E), Π
1 compute ℓ from Π
2 b← ℓ + 2
3 γ ← ℓ + 3
4 Perform γ orienting Rakes
5 for O(log n) times (until every node is assigned to a layer) do
6 for each path with length at least 4ℓ + 9 do
7 Ignore the first and last γ nodes ▷ Will be raked away.
8 Perform normal compress on the truncated path
9 Orient the ends inwards

10 Perform γ orienting Rakes ▷ Thereby raking away the slack from compress
11 for each free node r do
12 v∗ is the descendant at distance b with the largest quality
13 if The path from r to v∗ does not intersect with any compress path then
14 Promote v∗ into a local maximum by reassigning the path from r to v∗ to

a compress layer with v∗ as the end point in the next higher rake layer

To show that the algorithm is correct we prove that it computes a valid (γ, ℓ, L)-
decomposition by showing that it always maintains a valid partial (γ, ℓ, L)-decomposition.

▶ Lemma 12. After every iteration i the partial assignment of nodes to layers at time t

forms a partial (γ, ℓ, i + 1)-decomposition. Also at the end we get a (γ, ℓ, L)-decomposition
with L ∈ O(log n).

Proof. We prove the lemma by induction on the current iteration i. Everything except the
promotion of a node is trivial, so for this case we show that all three properties of Definition 4
continue to hold. The nodes in the promoted path of length b − 1 (without v∗) are now
put into a compress layer. Since the path has length b− 1 and does not intersect with any
other compress layer, we guarantee that Item 1 still holds for all compress layers. Item 2 and
Item 3 still hold since we only take away from old rake layers and hence cannot invalidate
these properties. Since we satisfy Lemma 11 every iteration we need only L ∈ O(log n)
iterations. ◀

In the next section our main goal is to prove that enough of these local maxima actually
exist and are nicely distributed in the graph.

3.2 Local Maxima and Bounding Quality
We will first see that during the execution of our algorithm we can actually decompose the
graph into a bunch of subtrees as seen in Figure 2. Consider iteration i and the corresponding
set of still free nodes G(i). We now give one of the most important definitions, that of a
subtree of assigned nodes (refer to Figure 2 to get an intuition).

▶ Definition 13 (subtree of assigned nodes). For any node v ∈ V (G) in any iteration i, the
subtree of assigned nodes T (i)(v) denotes the set that contains v and all nodes w that can be
reached from v via a path (v = v0, v1, . . . , vj = w) such that edge {va−1, va} is oriented from
va−1 to va, for each 1 ≤ a ≤ j. Additionally h(i)(v) = max{dist(v, u)}u∈T (i)(v) is the height
of the tree.

DISC 2023

7:14 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

We now express the entire input graph G in terms of these trees. Notice that any node must
either be an orphan or be in the subtree of assigned nodes of some orphan. As a result the
union over all trees of all orphans will cover the entire tree. We define sets N (i) which contain
all of the orphans that are created during our compress procedures. For every path that gets
compressed (i.e., not including promoted compress paths) up until the end of iteration i, we
add to N (i) all nodes in the path except the oriented parts at the beginning and the end.
The sets are chosen exactly such that all orphans are in one or the other set, so we obtain
the following.

▶ Lemma 14. For each positive integer i,the following holds:

V (G) =

 ⋃
v∈G(i)

T (i)(v)

 ∪
 ⋃

v∈N(i)

T (i)(v)

Furthermore the two big unions are disjoint.

Notice that for each of these subtrees of assigned nodes, the quality of the root counts
exactly how many nodes in this tree still need to terminate. Notice however that all nodes
in N (i) are either local maxima or between two local maxima and they can thus already
terminate. So by giving a good upper bound on the quality of nodes in G(i), we will show
that in each iteration a constant fraction of the remaining nodes terminate.

Creating Local maxima. We next narrow down our view to some concrete iteration i and
will hence drop some of the (i) in the exponents. Just from the design of the algorithm we
get that if the if-statement in Algorithm 1 is true and we promote v∗, v∗ will indeed be a
local maximum.

▶ Lemma 15. After v∗ is promoted, v∗ will be a local maximum.

Now we will see that if we do promote v∗ to become a local maximum, we get that q(v∗)
will be a large part of q(r), thereby showing that with each promotion we reduce the quality
by a constant fraction.

▶ Lemma 16. If v∗ is promoted, then q(v∗) ≥ q(r)
2∆b .

Proof. The statement follows from the fact that q(r) ≤ ∆b +
∑

v∈Cb(r) q(v). This is true,
because we can separate H(r) into the nodes that are close and those that are far. Concretely
a node u is close, if the path to r is strictly less than b. But only ∆b such nodes can exist. A
node u is far, if the path to r is at least b nodes long, at which point it has to pass through
one of the nodes v ∈ Cb(r). Now since u ∈ H(r) the unique path from r to u satisfies the
criteria for u to be in H(r), then the subpath from w to u must also satisfy these criteria
and u is therefore included in q(w). We then get

q(r) ≤ ∆b +
∑

v∈Cb(r)

q(v) ≤ ∆b + |Cb(r)| · q(v∗) ≤ ∆b + ∆bq(v∗) ≤ 2∆bq(v∗).

As a result u ∈ H(v) and therefore u is accounted for in q(v). The second inequality comes
from the fact v∗ has the highest quality among nodes in Cb(r). ◀

However the if-condition may not hold in every iteration, but this then means that there
is a compress path within distance b from r. This compress path cannot be from the normal
compress procedure, because of the γ nodes of slack we leave at the ends of every path. As a
consequence this path is due to a previous promotion; let x be that promoted node. This
allows us to prove the following.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:15

▶ Lemma 17. If the if-condition does not hold, then there exists a promoted node x at
distance at most 2b− 1 from r, such that q(x) ≥ q(v∗)

2∆b immediately before x was promoted.

Upperbounding the quality of a free node. The next lemma will be the main technical
result that shows that enough nodes are in subtrees of local maxima. We will show this
implicitly by upperbounding the quality of the remaining free nodes. However we will have
to introduce some more notation. We are partitioning each assigned subtree T (i)(v) into
α =

⌈
h(i)(v)+1

b

⌉
subsets S

(i)
0 (v), . . . , S

(i)
α−1(v), where, for each 0 ≤ j ≤ α− 1,

S
(i)
j (v) := {u ∈ T (i)(v) | b · j ≤ dist(u, v) < b · (j + 1)}.

Note that we have
⋃

0≤j≤α−1 S
(i)
j (v) = T (i)(v).

▶ Lemma 18. There exists a constant 0 < λ < 1 (that only depends on Π and ∆) such
that for all iterations i, the following inequality holds at the end of iteration i, for all nodes
r ∈ G(i):

q(i)(r) ≤
⌈(h(i)(r)+1)/b⌉−1∑

j=0
λj |Si

j(r)|

Intuitively, the deeper in the subtree the nodes are, the more of them are already fixed. Since
most of the nodes get removed in the first few iterations, this suffices. The full proof can be
found in the full version [1]. Glossing over a lot of details, the main idea is to use induction
over the height of the tree and use the induction hypothesis on all of the nodes in Cb(r) to
obtain an initial bound on the quality of r. Then we note that the promotion of v∗ is not yet
taken into account in this bound and we get the desired result. If v∗ cannot be promoted, by
Lemma 17 some node x was recently promoted. A careful analysis shows that also x was not
yet taken into account in the initial bound and we get the desired results.

3.3 Distributed Algorithm and Node Averaged Complexity
In this section, we will describe how we implement Algorithm 1 in a distributed manner
and how we will use it to design an algorithm A that solves the given LCL problem Π, and
we will prove an upper bound of O(log∗ n) for the node-averaged complexity of the latter
algorithm. We start by describing our distributed implementation of Algorithm 1. For the
remainder of the section, set s := 10ℓ.

Distributed implementation. The computation of ℓ from Π can be performed by every node
without any communication. Next, the nodes compute a distance-s coloring with a constant
number of colors. Since ∆ and ℓ are constant, this can be done in worst-case complexity
O(log∗ n), e.g., by using an algorithm of [8]. Using this coloring we can execute compress
operations in a constant number of rounds, by simply iterating through the color classes.
The γ rakes can trivially be implemented in γ rounds. the promotion requires only to see up
to a constant distance, as long as the qualities of all nodes are known. However these can be
computed on the fly during the algorithm.

▶ Lemma 19. Assume a distance-s coloring with a constant number of colors is given. Then
iteration i of Algorithm 1 can be executed in a constant number of rounds, for each even
positive integer i.

Next we describe our algorithm A for solving a given LCL problem Π.

DISC 2023

7:16 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

Algorithm for Π. Algorithm A proceeds as follows. Use Algorithm 1 to compute a (γ, ℓ, L)-
decomposition, where the values of γ and ℓ depend on Π, and L ∈ O(log n) (due to Lemma 12).
As soon as a node becomes a local maximum it starts to execute the steps from the original
generic algorithm to compute its class, pick an output and start propagating downwards. As
a result the entire subtree of assigned nodes of such a local maximum will terminate. The
only thing needed for this are the label sets, but they can be propagated upwards during the
execution of the decomposition algorithm with no additional cost. As a result we obtain the
following lemma.

▶ Lemma 20. Assume a distance-s coloring with a constant number of colors is given. Then
there exists an integer constant t such that the following holds: if a node v becomes a local
maximum in iteration i of Algorithm 1, then the entire tree T (i)(v) will have terminated after
ti rounds in A.

To make the runtime analysis a bit cleaner, we are going to mark all nodes in T (i)(v),
once v becomes a local maximum. We emphasize that this is solely for the purpose of the
analysis and this does not change the algorithm at all. More specifically, once any node v

becomes a local maximum, all of the nodes in T (i)(v) become marked instantly (in 0 rounds).
We obtain the following corollary from Lemma 20.

▶ Corollary 21. Assume a distance-s coloring with a constant number of colors is given. If a
node v becomes marked in iteration i, then v will have terminated in round ti, where t is the
constant from Lemma 20.

Consider some iteration i, by applying Lemma 18 on every remaining free node in G(i)

we can upperbound the total quality and therefore the total number of unmarked nodes. For
the full proof refer to the full version of the paper [1].

▶ Lemma 22. There exists a constant 0 < σ < 1, such that for every iteration i ≥ 10 of
Algorithm 1 at most 2∆bnσi nodes are not marked.

We obtain the following lemma.

▶ Lemma 23. On average, nodes become marked in O(1) iterations.

Then using this lemma together with Corollary 21 we get that an average node terminates
after a constant number of rounds. However, we still have to pay for the input distance coloring
which takes O(log∗ n), as discussed in the beginning of the section. So by first computing this
input coloring and then running the algorithm, we obtain a total node-averaged complexity
of O(log∗ n), proving Theorem 1.

References
1 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid. On the

node-averaged complexity of locally checkable problems on trees. CoRR, abs/2308.04251, 2023.
doi:10.48550/arXiv.2308.04251.

2 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. How much does
randomness help with locally checkable problems? In Proc. 39th ACM Symposium on
Principles of Distributed Computing (PODC 2020), pages 299–308. ACM Press, 2020. doi:
10.1145/3382734.3405715.

3 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global
problems in the LOCAL model. Distributed Comput., 34(4):259–281, 2021. doi:10.1007/
s00446-020-00375-2.

https://doi.org/10.48550/arXiv.2308.04251
https://doi.org/10.1145/3382734.3405715
https://doi.org/10.1145/3382734.3405715
https://doi.org/10.1007/s00446-020-00375-2
https://doi.org/10.1007/s00446-020-00375-2

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:17

4 Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally
checkable labelings with small messages. In 35th International Symposium on Distributed
Computing, DISC 2021, pages 8:1–8:18, 2021. doi:10.4230/LIPIcs.DISC.2021.8.

5 Alkida Balliu, Mohsen Ghaffari, Fabian Kuhn, and Dennis Olivetti. Node and edge averaged
complexities of local graph problems. In Proc. 41st ACM Symp. on Principles of Distributed
Computing (PODC), pages 4–14, 2022.

6 Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and
Jukka Suomela. New classes of distributed time complexity. In Proc. 50th ACM Symposium
on Theory of Computing (STOC 2018), pages 1307–1318. ACM Press, 2018. doi:10.1145/
3188745.3188860.

7 Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal
symmetry breaking in distributed computing. In Proc. 38th ACM Symposium on Principles
of Distributed Computing (PODC 2019), pages 369–378. ACM Press, 2019. doi:10.1145/
3293611.3331605.

8 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆ + 1)-coloring in linear
(in ∆) time. SIAM J. on Computing, 43(1):72–95, 2015.

9 Leonid Barenboim and Yaniv Tzur. Distributed symmetry-breaking with improved vertex-
averaged complexity. In Proc. 20th Int. Conf. on Distributed Computing and Networking
(ICDCN), pages 31–40, 2019.

10 Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees.
In Proc. 34th International Symposium on Distributed Computing (DISC 2020), volume
179 of LIPIcs, pages 18:1–18:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.DISC.2020.18.

11 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed edge
coloring and a special case of the constructive lovász local lemma. ACM Trans. Algorithms,
16(1):8:1–8:51, 2020.

12 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between random-
ized and deterministic complexity in the LOCAL model. SIAM J. Comput., 48(1):122–143,
2019. doi:10.1137/17M1117537.

13 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

14 Soumyottam Chatterjee, Robert Gmyr, and Gopal Pandurangan. Sleeping is efficient: MIS in
O(1)-rounds node-averaged awake complexity. In Proc. 39th ACM Symp. on on Principles of
Distributed Computing (PODC), pages 99–108, 2020.

15 Laurent Feuilloley. How long it takes for an ordinary node with an ordinary ID to output? In
Proc. 24th Int. Coll. on Structural Information and Communication Complexity (SIROCCO),
volume 10641, pages 263–282, 2017.

16 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for Lovász
local lemma, and the complexity hierarchy. In Proc. 31st International Symposium on
Distributed Computing (DISC 2017), volume 91 of LIPIcs, pages 18:1–18:16, 2017. doi:
10.4230/LIPIcs.DISC.2017.18.

17 Christoph Grunau, Václav Rozhon, and Sebastian Brandt. The landscape of distributed
complexities on trees and beyond. In Proc. 41st ACM Symposium on Principles of Distributed
Computing (PODC 2022), pages 37–47, 2022. doi:10.1145/3519270.3538452.

18 Öjvind Johansson. Simple distributed Delta+1-coloring of graphs. Inf. Process. Lett., 70(5):229–
232, 1999.

19 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. J. ACM, 63(2):17:1–17:44, 2016.

20 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

DISC 2023

https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1145/3519270.3538452

7:18 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

21 Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In 26th Annual
Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985,
pages 478–489. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.43.

22 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

23 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In Proc. 52nd ACM Symp. on Theory of Computing
(STOC), pages 350–363, 2020.

A Improved Algorithms in the Polynomial Regime

In this section we show that, for infinitely many LCL problems with polynomial worst-case
complexity, we can improve their node-averaged complexity. More precisely, in this section
we show that, for a class of problems with worst-case complexity Θ(n1/k), we can provide
an algorithm with node-averaged complexity O(n1/(2k−1)). As we show in Appendix B, this
complexity is almost tight, since for all problems with worst-case complexity Θ(n1/k) we can
show a lower bound of Ω̃(n1/(2k−1)).

The Hierarchical 21
2 -Coloring Problems

We now define a class of problems, already presented in [13], called hierarchical 2 1
2 -coloring,

that is parametrized by an integer k ∈ Z+. It has been shown in [13] that the problem with
parameter k has worst-case complexity Θ(n1/k). We now give a formal definition of this class
of problems.

The set of input labels is Σin = ∅. The set of output labels contains four possible labels,
that is, Σout = {W, B, E, D}, and these labels stand for white, black, exempt, and decline.
Each node has a level in {1, . . . , k + 1}, that can be computed in constant time, and the
constraints of the nodes depend on the level that they have. The level of a node is computed
as follows.
1. Let i← 1.
2. Let Vi be the set of nodes of degree at most 2 in the remaining tree. Nodes in Vi are of

level i. Nodes in Vi are removed from the tree.
3. Let i← i + 1. If i ≤ k, continue from step 2.
4. Remaining nodes are of level k + 1.
Each node must output a single label in Σout, and based on their level, they must satisfy the
following local constraints.

No node of level 1 can be labeled E.
All nodes of level k + 1 must be labeled E.
Any node of level 2 ≤ i ≤ k is labeled E iff it is adjacent to a lower level node labeled W ,
B, or E.
Any node of level 1 ≤ i ≤ k that is labeled W (resp. B) has no neighbors of level i labeled
B (resp. W) or D. In other words, W and B are colors, and nodes of the same color
cannot be neighbors in the same level.
Nodes of level k cannot be labeled D.

This problem can be expressed as a standard LCL by setting the checkability radius r to
be O(k), since in O(k) rounds a node can determine its level and hence which constraints
apply. In Section 1.2 we provided some intuition about these problems. We provide more
intuition in the full version of the paper [1].

https://doi.org/10.1109/SFCS.1985.43
https://doi.org/10.1137/S0097539793254571

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:19

Better Node-Averaged Complexity

We now show that, for this class of LCL problems, we can obtain a better node-averaged
complexity. The algorithm is similar to the one presented in [10] for the worst-case complexity,
but it is modified to obtain a better node-averaged complexity (in Appendix B we show that
this algorithm is tight up to a log n factor).

▶ Theorem 24. The node-averaged complexity of the hierarchical 2 1
2 -coloring problem with

parameter k is O(n1/(2k−1)).

Proof. At first, all nodes spend O(1) rounds to compute their level. Nodes of level k + 1
output E. Then, the algorithm proceeds in phases, for i in 1, . . . , k. In phase i, all nodes of
level i get a label, and hence let us assume that all nodes of levels 1, . . . , i− 1 already have a
label, and let us focus on level-i nodes.

Consider a node v of level i. Node v proceeds as follows. If v has a neighbor from lower
levels that is labeled W or B then v outputs E. Otherwise, v spends ti = c · γi rounds to
check the length of the path containing v induced by nodes of level i, for some constant c to
be fixed later, and γi = n2i−1/(2k−1). If this length is strictly larger than ti, then v outputs
D. Otherwise, all nodes of the path are able to see the whole path, and hence they can
output a consistent 2-coloring by using the labels W and B.

The above algorithm correctly solves the problem if we assume that no nodes in level k

output D. In the full version of the paper [1] we show that indeed nodes of level k do not
output D, hence showing the correctness of the algorithm, and then we prove a bound on
the node-averaged complexity. In the following we sketch the main idea for the correctness
of the algorithm.

Let S be the set of nodes of level i that do not directly output E at the beginning
of phase i. It is possible to assign each node of level j < i to exactly one node in S

such that to each node in S are assigned Ω(n(2i−1−1)/(2k−1)) unique nodes of lower layers.
Hence, the number of nodes that participate in phase i is at most O(n1−(2i−1−1)/(2k−1)) =
O(n(2k−2i−1)/(2k−1)). This implies that in phase k the number of participating nodes is at
most O(n(2k−2k−1)/(2k−1)) = O(n2k−1/(2k−1)) = O(γk), where the hidden constant is inversely
proportional to c. Hence, by picking c large enough, we get that in tk rounds nodes of level
k see the whole path and thus no node of level k outputs D, proving the correctness of the
algorithm. ◀

B Lower Bounds in the Polynomial Regime

In this section we show that any LCL problem that requires polynomial time for worst-case
complexity requires polynomial time also for node-averaged complexity. More precisely, we
prove the following theorem.

▶ Theorem 25. Let Π be an LCL problem with worst-case complexity Ω(n1/k) in the LOCAL
model. The node-averaged complexity of Π in the LOCAL model is Ω(n1/(2k−1)/ log n).

In order to prove this theorem, we proceed as follows (throughout this section we will
use notions presented in Section 2.1). It is known by [10] that if an LCL problem Π has
worst-case complexity o(n1/k), then it can actually be solved in O(n1/(k+1)) rounds. This
statement is proved by showing that it is possible to use an algorithm (possibly randomized)
running in o(n1/k) rounds to construct a function fΠ,k+1 that can be used to map the label
sets assigned to the edges connected to a compress path from lower layers into two label
sets for the edges connecting the endpoints of the path to their parents, in such a way

DISC 2023

7:20 On the Node-Averaged Complexity of Locally Checkable Problems on Trees

that, if the compress layers are at most k + 1, then the algorithm sketched in Section 2.1
works. This implies, as shown in Section 2.1, the existence of a deterministic algorithm
that solves Π and has worst-case complexity O(n1/(k+1)). In this section we show that it is
possible to construct a function fΠ,k+1 by starting from an algorithm A with node-averaged
complexity o(n1/(2k−1)/ log n). By Section 2.1, this implies that if there exists an algorithm
with o(n1/(2k−1)/ log n) node-averaged complexity, then there exists an algorithm with worst-
case complexity O(n1/(k+1)), implying that any LCL with worst-case complexity Ω(n1/k)
has node-averaged complexity at least Ω(n1/(2k−1)/ log n). While we will use some ideas
already presented in [10], handling an algorithm with only guarantees on its node-averaged
complexity arises many (new) issues that we need to tackle.

Our statement will be proved even for the case in which algorithm A satisfies the weakest
possible assumptions (i.e., the assumptions are so relaxed that they are satisfied by any
deterministic algorithm, any randomized Las Vegas algorithm, and any randomized Monte
Carlo algorithm). The assumptions are the following.

We assume that A is a randomized algorithm that is only required to work when the
unique IDs of nodes are assigned at random, among all possible valid assignments.
We assume that A is an algorithm that fails with probability at most 1/nc for any chosen
constant c ≥ 1.
We assume that the bound on the node-averaged complexity of A holds with probability
at least 1− 1/nc for any chosen constant c ≥ 1.

However, in the following, we will assume that the bound on the node-averaged complexity of
A holds always. In fact, observe that we can always convert an algorithm with node-averaged
complexity T that holds with probability at least 1 − 1/nc into an algorithm with node-
averaged complexity O(T) that holds always, since, even for c = 1, we can safely assume that
when the bound does not hold (that happens with probability at most 1/n), the runtime is
anyways bounded by n (since everything can be solved in n rounds in the LOCAL model).

Proof Overview

We now sketch the high-level ideas for proving that it is possible to use an algorithm with
o(n1/(2k−1)/ log n) node-averaged complexity to construct a function fΠ,k+1. All the details
are deferred to the full version of the paper [1], where, for completeness, we also prove a
result already presented in [13, 10]: Whether a function fΠ,k+1 exists can be mechanically
determined.

Recall that the input of the function fΠ,k+1 is a path, where to each node are connected
some edges (that we call incoming edges), and for each of them is provided a set of labels.
Additionally, to each endpoint of the path is connected an additional edge (called outgoing
edge). We need to compute two sets of labels, L1 and L2, one for each outgoing edge. These
sets must satisfy that, for any choice of labels (ℓ1, ℓ2) ∈ L1×L2, we can pick a label from the
sets assigned to the incoming edges, and a label for each edge of the path, that results in a
labeling that satisfies the constraints of the problem. Observe that there may exist multiple
pairs of non-empty sets satisfying the requirements, but we need a specific type of solution:
once such sets are propagated to higher layers, we still want to be able to perform the same
operation in the next compress layer. A more general property that needs to be satisfied is
that empty sets are never obtained, because this would prevent nodes from being able to
pick a valid labeling in the top-down phase. In [13, 10] it is shown how to construct such a
function, by starting from an algorithm with (possibly randomized) worst-case complexity
o(n1/k). On a high level, this is achieved as follows:

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and G. Schmid 7:21

1. Replace each incoming edge of the path with a small tree, satisfying that the class of the
tree corresponds to the label set of the edge.

2. Modify the path, by making it much longer, but by preserving its completability properties,
that is, a choice (ℓ1, ℓ2) ∈ L1 × L2 is good for the long version of the path if and only if
it is good for the original version.

3. Ask the algorithm what it would output in the middle of such a long path. Crucially,
the path is made so long that the algorithm, within its running time, cannot see the
endpoints.

4. Compute what labels can be put on the outgoing edges of the long path, in a way that
the labeling in the rest of the path can be completed in a valid way (and it is compatible
with the label sets of the incoming edges), and such that the output in the middle of
the path corresponds to the output of the algorithm. Since the output in the middle of
the path is fixed, then the outputs on the outgoing edges can be chosen independently.
Hence, in this way, we obtain an independent class for the path.

In [13, 10] it is argued why, by using such a function with the algorithm sketched in Section 2.1,
empty label sets are never obtained. While we need to adapt such a proof to the case of
node-averaged complexity, there are some additional challenges that we need to tackle.
For example, one issue that we have when trying to adapt this approach to the case of
node-averaged complexity is that an algorithm could run for a long time at some nodes, while
still keeping a low node-averaged complexity. Hence, we do not have the guarantee that, if
we make a path long, then the algorithm does not see the endpoints. In the full version of
the paper we show that, in the instances that we need to handle in order to construct a valid
function, we can prove that a stronger notion of node-averaged complexity must hold, namely
that the expected running time of each node is bounded. Then, by considering Θ(log n)
sufficiently separated nodes of a long path, we can prove that, if we consider a node in the
middle of the path and an endpoint, with high probability they are not able to communicate,
and we hence obtain a result similar to the case of worst-case complexity. Moreover, the
bound on the expected runtime will depend on the layer number, and this bound is what
governs the final lower bound complexity.

DISC 2023

Treasure Hunt with Volatile Pheromones
Evangelos Bampas # Ñ

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400
Orsay, France

Joffroy Beauquier #

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400
Orsay, France

Janna Burman #

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400
Orsay, France

William Guy–Obé #

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400
Orsay, France

Abstract
In the treasure hunt problem, a team of mobile agents need to locate a single treasure that is
hidden in their environment. We consider the problem in the discrete setting of an oriented infinite
rectangular grid, where agents are modeled as synchronous identical deterministic time-limited
finite-state automata, originating at a rate of one agent per round from the origin. Agents perish
τ rounds after their creation, where τ ≥ 1 is a parameter of the model. An algorithm solves the
treasure hunt problem if every grid position at distance τ or less from the origin is visited by at
least one agent. Agents may communicate only by leaving indistinguishable traces (pheromone)
on the nodes of the grid, which can be sensed by agents in adjacent nodes and thus modify their
behavior. The novelty of our approach is that, in contrast to existing literature that uses permanent
pheromone markers, we assume that pheromone traces evaporate over µ rounds from the moment
they were placed on a node, where µ ≥ 1 is another parameter of the model. We look for uniform
algorithms that solve the problem without knowledge of the parameter values, and we investigate
the implications of this very weak communication mechanism to the treasure hunt problem. We
show that, if pheromone persists for at least two rounds (µ ≥ 2), then there exists a treasure hunt
algorithm for all values of agent lifetime. We also develop a more sophisticated algorithm that works
for all values of µ, hence also for the fastest possible pheromone evaporation of µ = 1, but only if
agent lifetime is at least 16.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Mobile Agents, Exploration, Search, Treasure Hunt, Pheromone, Evaporation

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.8

Related Version Full Version: https://hal.science/hal-04177364v1

Acknowledgements We thank the DISC 2023 anonymous reviewers for their careful reading and
comments.

1 Introduction

Treasure hunt is the fundamental problem of employing a team of searchers to locate a
“treasure” that is hidden somewhere in their environment. It is one of the fundamental
primitives in swarm robotics and a natural abstraction of foraging behavior of animals.
Although various formulations of the problem exist at least since the 1960s, when Beck

© Evangelos Bampas, Joffroy Beauquier, Janna Burman, and William Guy–Obé;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bampas@lisn.fr
https://www.lri.fr/~bampas
https://orcid.org/0000-0002-1496-9299
mailto:jb@lisn.fr
mailto:burman@lisn.fr
mailto:william.go02@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2023.8
https://hal.science/hal-04177364v1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Treasure Hunt with Volatile Pheromones

introduced the linear search problem [14], treasure hunt as a group search problem was
first investigated from a distributed algorithms perspective by Feinerman et al. [41, 42, 43],
under the name ANTS (Ants Nearby Treasure Search). In the ANTS problem, the search is
performed by a team of randomized searchers, starting at the origin of an infinite 2-dimensional
rectangular grid and having no means of communication once they start moving. Subsequent
works considered stronger communication models, such as local communication by exchanging
constant-size messages when two agents are located on the same node [40, 39, 25, 21, 54, 53],
or communication by leaving permanent markers on grid nodes [56, 1, 2], that can be detected
by other agents.

In this paper, we introduce a new model in which not only agents communicate indirectly,
by dropping and sensing markers on nodes, but also these markers gradually evaporate
and eventually disappear. This is directly inspired by the behavior of actual pheromone
trails in nature. A common feature of the papers that we mentioned above is that the team
of searchers is of constant size. However, with evaporating pheromones, we can no longer
expect a constant-size team of constant-memory agents to explore all the grid nodes up to
arbitrary distances.1 Therefore, we propose a new model taking into account pheromone
evaporation, in which a potentially infinite number of identical, synchronous, deterministic,
time-limited finite-state automata are created at a rate of one agent per round at the origin
of a 2-dimensional grid. Agents have a finite lifetime represented by the parameter τ , and the
treasure is guaranteed to be within reach, i.e., at distance ≤ τ from the origin. Pheromone
evaporation is controlled by a parameter µ, which determines the number of rounds it takes
for a pheromone marker to disappear from the system, assuming it is not refreshed in the
meantime by a new pheromone drop on the same node. Agents can sense the presence or
absence of pheromone in their neighboring nodes, and they can compare pheromone values,
i.e., they know, for any pair of directions, which neighbor has the freshest pheromone. Agent
memory cannot depend on the parameters τ, µ.

1.1 Related work
Searching is a well-studied family of problems in which a group consisting of one or multiple
searchers (mobile agents) need to find a target placed at some unknown location. The
search is typically concluded when the first searcher finds the target. Numerous books
and research papers have been written on this subject, studying diverse models involving
stationary or mobile targets, graphs or geometric terrains, different types of knowledge about
the environment, one or many searchers, etc. [5, 6, 17, 23, 45, 47, 58].

Deterministic search on a line with a single robot was introduced in [14, 15]. In the
original formulation of [14], a probability distribution of treasure placements is known to
the agent. An optimal algorithm with competitive ratio 9, for an unknown probability
distribution, is proposed in [15]. The problem is further generalized in [8, 35], by introducing
a cost for turning, as well as a more general star topology. Further variants include searching
for multiple targets [9], maximizing the searched area with a given time budget [10], and
providing a hint to the searcher before it starts exploring [7].

1 Indeed, intuitively, if they find themselves sufficiently far from each other, then they can no longer
communicate because pheromone will evaporate before it can be sensed by another agent, whereas if
they never find themselves more than a constant distance from each other, then their overall behavior
can be described by a single finite automaton, which fails to explore a sufficiently large grid due to state
repetition that forces it to explore at most a constant-width half-line (see, e.g., [39, Lemma 5]).

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:3

Various maintenance and patrolling problems have also been formulated as linear group
search problems, under requirements and assumptions such as perpetual exploration [27, 50,
26] or distinct searcher speeds [29, 50, 13]. The closely related evacuation problem on the
line, in which the search is concluded when all searchers reach the target, has also been
studied in a series of papers [11, 22, 12, 20]. See also [30] for a survey of group search and
evacuation in different domains.

Searching with advice (hints) is studied under various assumptions in several papers. The
size of advice that must be provided to a lone deterministic searcher in a polygonal terrain
with polygonal obstacles, in order to locate the treasure at a cost linear in the length of a
shortest path from the initial position of the agent to the treasure, is investigated in [59].
An algorithm that enables a deterministic agent to find an inert treasure in the Euclidean
plane, taking advantage of hints about the general direction of the treasure, is given in [18].
In [51, 57], they explore the tradeoff between advice size and search cost in graphs. In trees,
[19] explores the impact of different kinds of initial knowledge given to a lone searcher on
the time cost of treasure hunt, and [16] considers treasure hunt with faulty hints.

The speedup in search time obtained by multiple independent random walkers has been
studied for various graph families, such as expanders and random graphs [37, 4, 38, 48, 28].
Multiple searchers following Lévy walk processes, a type of random walk in which jump
lengths are drawn from a power-law distribution, and for which there is significant empirical
evidence that it models the movement patterns of various animal species [31], are investigated
in [24]. A further abstraction of multiple independent randomized searchers is studied in [46],
where a group of non-communicating agents need to find an adversarially placed treasure,
hidden in one of an infinite set of boxes indexed by the natural numbers. In this Bayesian
search setting, searchers have random access to the boxes. A game-theoretic perspective to
the Bayesian search framework of [46] is given in [52].

The ANTS (Ants Nearby Treasure Search) problem was introduced in [41, 42, 43] as a
natural abstraction of foraging behavior of ants around their nest. They explore the tradeoff
between searcher memory and the speedup obtained by using multiple probabilistic searchers
vs using a single searcher. Searchers may not communicate once they leave the nest. A
variant of the ANTS problem in the geometric plane, with searchers that are susceptible to
crash faults, is investigated in [3]. A notion of selection complexity, which measures how
likely a given ANTS algorithm is to arise in nature, is introduced in [55], where they study
the tradeoff between selection complexity and speedup in search time.

In follow-up work [40, 39, 25, 21, 54, 53] to the original ANTS formulation, searchers
are modeled as finite state machines and can communicate outside the nest, when they are
sufficiently close to each other, by exchanging messages of constant size. Under these assump-
tions, it is shown in [40] that the optimal search time can still be achieved by probabilistic
finite state machines, matching the lower bound of [42]. The minimum number of searchers
that can solve the ANTS problem, when they are controlled by randomized/deterministic
finite/push-down automata, is investigated in [39, 25, 21]. A probabilistic fault-tolerant
constant-memory algorithm is presented in [54], for the synchronous case. An algorithm that
tolerates obstacles is presented in [53].

A different communication mechanism is considered in [56, 1, 2], where it is assumed
that agents may communicate only by leaving permanent markers (pheromones) on nodes,
which can be sensed later by other agents. Note that, although these papers use the word
“pheromone” to describe the traces that agents leave on nodes, these are assumed permanent
and do not evaporate. The usual term in the mobile agent literature to describe this type of
movable or immovable marker that agents may choose to leave on nodes, and which can be
detected later by other agents, is “token” or “pebble” [34].

DISC 2023

8:4 Treasure Hunt with Volatile Pheromones

1.2 Our contributions
We study the treasure hunt problem in the model that we outlined above, and which is
developed in detail in Section 2. Thematically, our work is closest to the literature descending
from the original ANTS problem formulation, and in particular to these papers that use
pheromone (or tokens) as a means of communication [56, 1, 2]. The novelty of our approach
is that we use evaporating pheromones as an agent communication mechanism. Indeed, in
our model, a pheromone trace disappears µ rounds after it was dropped, unless it is refreshed
by a new pheromone drop on the same node. Tokens that may disappear instantly from
the system have actually been considered before in the literature, but only in the context of
faults [44, 33, 32, 36].

To our knowledge, evaporating pheromone markers have never been considered before as
a communication mechanism, from an algorithmic point of view. We study the impact of
this weak agent communication model on the treasure hunt problem.

Our first result is a treasure hunt algorithm that works for all τ ≥ 1, assuming that the
pheromone markers persist for at least two rounds (µ ≥ 2). This algorithm is optimal in
terms of search time, number of pheromone drops, and number of agents used. Intuitively,
the algorithm dispatches agents to the North and to the South of the origin by means of
pheromone patterns around the nest. An agent knows when to leave the vertical axis in
order to explore a horizontal half-line by detecting pheromone markers that were dropped by
previous agents when they left the vertical axis. Because of the North-South dispatching
at the origin, successive agents on the same side of the origin are at distance 2 from each
other, therefore it is crucial that µ ≥ 2 for an agent to be able to detect pheromone that was
dropped by the previous agent.

Our second result is a more complex algorithm that works for all µ ≥ 1. This algorithm
is also based on a North-South dispatching of agents at the origin. The challenge here is
that, since pheromone may be detectable for only one round after being dropped, we can
no longer use the same approach as in the first algorithm. We resolve this by introducing
differentiation of agent roles as a result of observing different pheromone patterns as they
walk along the vertical axis. Now, some agents become signaling agents that stop moving at
key positions and start dropping pheromone according to a predetermined pattern, whereas
other agents become explorers that are dispatched to different horizontal half-lines according
to these signals. This algorithm works for all τ ≥ 16.

Both algorithms are deterministic and uniform, i.e., they do not assume knowledge of
the values of the parameters τ, µ. They solve the problem for all parameter values in the
specified ranges, and the required memory per agent is constant.

Some proofs have been omitted due to lack of space, and they can be found in the full
version of the paper.

2 Model and problem setting

The environment in which the agents operate is an infinite two-dimensional rectangular grid
graph, equipped with a Cartesian coordinate system. Each node of the grid is identified by a
pair of integer coordinates (x, y) ∈ Z2. The node (0, 0) is called nest, as newly created agents
appear at (0, 0). We assume that the grid is oriented, with the four outgoing edges from each
node receiving globally consistent distinct local port labels from {N, E, S, W}. Each node
stores a nonnegative integer that represents the amount of pheromone present on that node.
This value is decremented by 1 at each round and a value of zero represents the absence of
pheromone.

https://hal.science/hal-04177364v1
https://hal.science/hal-04177364v1

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:5

Given natural numbers a, b, we use the notation a ·− b for proper subtraction: a ·− b =
max(a − b, 0). Moreover, if x is a nonnegative integer, we use Bx for the set of nodes at
distance at most x from the nest, and Lx for the set of nodes at distance exactly x from the
nest. We have |Bx| = 2x2 + 2x + 1 and |Lx| = 4x.

2.1 Agent model
Agents are modeled as identical copies of a deterministic finite-state machine (FSM). An
agent can move from node to node along the edges of the grid graph, and it may decide to
drop pheromone before or after each move (but not both on the origin and on the destination
node). It computes its next move based on the relative pheromone values of the neighboring
nodes. More precisely, the agent does not have access to the actual stored pheromone values,
but it can detect the presence or absence of pheromone in any direction, as well as whether
one direction has equal, less, or more pheromone than another.

▶ Definition 1 (Agents). An agent is a finite-state machine A = (Q, q0, In, Out, δ) where:
Q is a finite set of states and q0 ∈ Q is the initial state.
In is the input alphabet. A symbol of In encodes the presence or absence of pheromone in
the four cardinal directions, as well as the result of the comparison of pheromone levels
for any pair of directions. This is clearly a finite amount of information, hence In is a
finite set.
Out = {N, S, E, W,⊥} × {before, after,⊥} is the output alphabet, where the first element
of an output symbol is the local port label through which the agent will exit the current
node (⊥ for no movement), and the second element indicates whether pheromone will be
dropped before or after the move (⊥ for no pheromone drop).
δ : Q× In→ Q× Out is the transition function.

▶ Note 2. By definition, an agent does not perceive other agents that may be present on
the same node or on neighboring nodes. Moreover, an agent does not perceive and therefore
cannot compare the pheromone level of its current node to those of neighboring nodes.

2.2 Model parameters
Agents have limited life, which is a parameter of the model and is represented by a positive
integer τ . An agent “dies” upon having performed τ state transitions, meaning that it
essentially disappears from the system.2 We will call this parameter lifetime.

We also assume that every node has a maximum amount of pheromone that it can store,
which is a second parameter of the model and is represented by a positive integer µ, which
we will call pheromone duration. Whenever any number of agents decide to drop pheromone
on a node at the same time, the pheromone value of that node is updated to µ. If an agent
drops pheromone on some node, the pheromone value of that node will decrease from µ to 0
over the following µ rounds (assuming it is not refreshed in the meantime).

2.3 Execution
Given a protocol A (FSM) and an assignment of values to the parameters (τ, µ), the execution
of the system proceeds deterministically in synchronous rounds.

2 Perhaps less fatally, we may assume that after τ transitions, an agent is so tired that it cannot continue
executing the protocol before returning to the nest for a brief nap. It may re-emerge from the nest at a
later round without retaining its state.

DISC 2023

8:6 Treasure Hunt with Volatile Pheromones

▶ Definition 3 (Execution). The execution of an FSM A for parameter values (τ, µ) is an
infinite sequence of system configurations defined as follows: In the initial configuration,
there are no agents and no pheromone present on the grid. In each round i (i ≥ 1), the
next configuration is obtained from the current configuration by synchronously executing the
following steps in the given order:
1. A new agent (copy of A) is created on node (0, 0), in the initial state q0.
2. All agents read their inputs.
3. At each node, the quantity of pheromone is decreased by 1, if not already zero (pheromone

evaporation).
4. All agents compute their transition function based on the input from step 2 and change

their state accordingly.
5. All agents that computed in step 4 a pheromone drop action “before” drop pheromone

on their current nodes. For each node on which at least one agent drops pheromone, the
pheromone quantity of that node is updated to µ.

6. All agent moves (as computed in step 4) are executed.
7. All agents that computed in step 4 a pheromone drop action “after” drop pheromone on

their current nodes. For each node on which at least one agent drops pheromone, the
pheromone quantity of that node is updated to µ.

8. If this is round i ≥ τ , the agent that was created at the beginning of round i− τ + 1 “dies”
as it has now performed τ state transitions.

▶ Note 4. As agents are anonymous and deterministic, and because pheromone does not
accumulate higher than µ on a single node, if two (or more) agents ever find themselves at
the same node and in the same state, then they will effectively continue moving as one agent
from that point on. In particular, agents do not appear simultaneously at the nest, but they
are created at a rate of one agent per round.

▶ Definition 5. For i ≥ 1, we denote by Ai the agent that is created at the beginning of
round i.

2.4 The treasure hunt problem
In the treasure hunt problem, a treasure is placed at an unknown location in the grid and the
goal is for at least one agent to visit that node. In that case, we say that the agent locates
the treasure. Locating the treasure for any (unknown) treasure location up to distance d

from the nest is trivially equivalent to exploring all nodes up to distance d from the nest.
We recast, then, the treasure hunt problem as an exploration problem:

▶ Definition 6 (Treasure hunt problem). A given FSM A solves the treasure hunt problem
for the pair of parameters (τ, µ) if, with lifetime τ and pheromone duration µ, every node at
distance τ or less is visited by at least one agent. In this case, we will also say that the FSM
is correct for (τ, µ).

We will seek a uniform algorithm that solves the problem without knowledge of the model
parameters, i.e., a single FSM that is correct for arbitrarily large values of τ and µ (ideally,
for all τ ≥ τ0 and µ ≥ µ0, for some constants τ0, µ0).

For a given FSM, we will consider the following measures of efficiency as functions of τ

and µ:
Completion time: the number of rounds until the treasure is located.
Pheromone utilization: the total number of times that any agent decides to drop pheromone
at its destination node until the treasure is located.

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:7

E

ℎInit

Vert-seek

Vert-bypass

Horiz

Figure 1 Illustration of the sequence of states for a typical agent with signature [v; h] executing
Algorithm 1.

Agent utilization: the number of agents effectively used by the algorithm, i.e., the smallest r

such that the algorithm remains correct even if the system stops creating new agents
after round r.

3 A treasure hunt algorithm for τ ≥ 1 and µ ≥ 2

We propose a deterministic and uniform algorithm that solves the treasure hunt problem for
all combinations of parameters (τ, µ) with τ ≥ 1 and µ ≥ 2. We give a compact representation
of the algorithm as a hybrid state transition diagram in Appendix A, and the full pseudocode
in Section 3.1.

Before we give an informal description of the algorithm, we define the notion of agent
signature:

▶ Definition 7 (Agent signature). Let v, h ∈ Z with |v|+ |h| = τ . We say that an agent has
signature [v; h] if it starts (from the nest) by moving |v| steps to the North (resp. South), up
to node (0, v), if v ≥ 0 (resp. v < 0), followed by |h| steps to the East (resp. West), up to
node (h, v), if h ≥ 0 (resp. h < 0).

The algorithm creates agents of all possible signatures [v; h], thus ensuring correctness by
visiting all nodes at distance ≤ τ from the nest. Each agent drops pheromone once upon
leaving the nest on its first move, and once more if and when it leaves the vertical axis.
Figure 1 shows the sequence of states of a typical agent executing the algorithm.

The first two agents use pheromone information to the East and to the West of the nest
to take signatures [0,−τ] and [0, τ] (state Init, lines 2-5). Subsequently created agents use
pheromone information to the North and to the South of the nest to alternate between the
two vertical directions: If there is more pheromone to the North of the nest then they start
moving South, otherwise they start moving North (state Init, lines 7-9).

A northbound agent (southbound agents behave symmetrically) starts moving to the
North in state Vert-seek. In this state, it checks horizontally adjacent nodes for the presence
of pheromone previously dropped by agents leaving the vertical axis. Once it finds such
pheromone traces, it switches to state Vert-bypass and keeps moving to the North until it
reaches the first node (0, v) whose East and West neighbors do not both have pheromone.

At that point, if no horizontal neighbor has pheromone then it turns East, taking
signature [v, τ − v], whereas if only the East neighbor has pheromone then it turns West,
taking signature [v, v− τ] (state Vert-bypass). Once it leaves the vertical axis, an agent keeps
moving horizontally until the end of its lifetime in state Horiz.

DISC 2023

8:8 Treasure Hunt with Volatile Pheromones

3.1 Pseudocode
We give the transition function executed by each agent during step 4 of each round (cf. Defi-
nition 3) in Algorithm 1. We denote by φx, for x ∈ {N, E, S, W}, the pheromone value of the
neighboring node in direction x. These represent the input to the FSM. In accordance with
Definition 1, the pheromone values are never used directly but only as part of comparisons
to each other and to the value 0. The output of the FSM is composed of the pair of values
(dir, drop) at the end of the transition function computation.

3.2 Correctness
▶ Theorem 8. Algorithm 1 correctly solves the treasure hunt problem for all combinations
of parameters (τ, µ) with τ ≥ 1 and µ ≥ 2.

The complete proof of Theorem 8 is available in the full version. The proof is based on
the following simple properties of Algorithm 1:

Whenever an agent switches to state Horiz it moves horizontally (East or West) and
drops pheromone. Subsequently, it keeps moving in the same direction in the same state
without dropping pheromone until the end of its lifetime.
Whenever an agent switches to state Vert-seek it moves vertically (North or South) and
drops pheromone. Subsequently, it keeps moving in the same direction in the same state
without dropping pheromone until one of the following happens: it reaches the end of its
lifetime, or it switches to state Vert-bypass moving in the same direction as before, or it
switches to state Horiz moving West.
Whenever an agent switches to state Vert-bypass it moves vertically, and it drops
pheromone only if it switches from state Init to Vert-bypass. Subsequently, it keeps
moving in the same direction in the same state without dropping pheromone until one of
the following happens: it reaches the end of its lifetime, or it switches to state Horiz.
During its first transition, every agent switches to one of the states Horiz, Vert-seek, or
Vert-bypass.

Based on these, we conclude that every agent has a signature as per Definition 7. The
rest of the proof is devoted to showing that the first 4τ agents pick up distinct signatures,
and thus they explore all nodes at distance τ or less from the nest. This is accomplished
by a series of lemmas, whose proofs are omitted. We show first that agents A1 and A2
have signatures [0; τ] and [0;−τ], respectively, and that subsequent agents are alternately
dispatched to the North and to the South half-planes. Then, the following two technical
lemmas, whose proofs are omitted, describe completely the state transitions of agents on the
vertical axis:

▶ Lemma 9. For all odd i with 3 ≤ i ≤ 4τ − 1, and for all y with 1 ≤ y ≤
⌈

i−1
4

⌉
, Ai is at

node (0, y) at the beginning of round i + y and:
1. It senses pheromone µ ·− (i− 4y) to the East and µ ·− (i− 2− 4y) to the West.
2. If y = 1, it is in state Vert-seek if i− 3 ≥ µ, otherwise it is in state Vert-bypass.
3. If y ≥ 2, it is in state Vert-seek if i− 4y + 2 ≥ µ, otherwise it is in state Vert-bypass.

▶ Lemma 10. For all even i with 4 ≤ i ≤ 4τ , and for all y with 1 ≤ y ≤
⌈

i−2
4

⌉
, Ai is at

node (0,−y) at the beginning of round i + y and:
1. It senses pheromone µ ·− (i− 4y − 1) to the East and µ ·− (i− 3− 4y) to the West.
2. If y = 1, it is in state Vert-seek if i− 4 ≥ µ, otherwise it is in state Vert-bypass.
3. If y ≥ 2, it is in state Vert-seek if i− 4y + 1 ≥ µ, otherwise it is in state Vert-bypass.

From Lemmas 9 and 10, we deduce the signatures of the first 4τ agents and conclude the
proof of Theorem 8.

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:9

Algorithm 1 A treasure hunt algorithm for τ ≥ 1, µ ≥ 2.

Variables
state ∈ {Init, Vert-seek, Vert-bypass, Horiz} ▷ Initial value: Init
dir ∈ {N, E, S, W,⊥} ▷ Initial value: ⊥
drop ∈ {before, after,⊥} ▷ Initial value: ⊥

Transition function
1: if state = Init then
2: if φN = φW = φS = φE = 0 then
3: state← Horiz; dir← E; drop← after
4: else if φE > φW then
5: state← Horiz; dir←W ; drop← after
6: else
7: state← Vert-bypass if φW > 0 else Vert-seek
8: dir← S if φN > φS else N

9: drop← after
10: end if
11: else if state = Vert-seek then
12: if φW = φE = 0 then
13: state← Vert-seek; drop← ⊥ ▷ keep searching
14: else
15: Interpret-Signals
16: end if
17: else if state = Vert-bypass then
18: if φW = φE = 0 then
19: state← Horiz; dir← E; drop← after
20: else
21: Interpret-Signals
22: end if
23: else if state = Horiz then
24: drop← ⊥
25: end if

26: procedure Interpret-Signals
27: if φW = 0 and φE > 0 then
28: state← Horiz; dir←W ; drop← after
29: else if φW > 0 then
30: state← Vert-bypass; drop← ⊥
31: end if
32: end procedure

3.3 Complexity

Recall the definitions of Bx (ball of radius x around the nest) and Lx (layer of nodes at
distance x from the nest) from Section 2.

▶ Theorem 11. If the treasure is located at distance at most d, where 1 ≤ d ≤ τ , then
Algorithm 1 locates the treasure in time at most 5d− 1.

DISC 2023

8:10 Treasure Hunt with Volatile Pheromones

Proof. From Lemmas 9 and 10, it follows that agents A1, . . . , A4d have all possible signatures
with vertical component at most d (in absolute value). Moreover, since the distance of every
agent from the nest strictly increases in each round, each agent Ai reaches distance d from
the nest in round i + d− 1. It follows that, by the time agent A4d reaches distance d from
the nest, hence by round 5d − 1, all nodes at distance d or less from the nest have been
explored. ◀

▶ Theorem 12. If the treasure is located at distance d = τ , then any treasure hunt algorithm
needs at least 5τ − 1 rounds to locate the treasure in the worst case.

Proof. A given agent can explore at most one node at distance τ within its lifetime. Since
Lτ contains 4τ nodes, a correct algorithm must create at least 4τ agents, the last of which
reaches distance τ in round 4τ + τ − 1 = 5τ − 1. It follows that, in the worst case, the
treasure cannot be located before round 5τ − 1. ◀

▶ Theorem 13. Let A be any treasure hunt algorithm that is correct for a pair of pa-
rameters (τ, µ). For every d ≤ τ , A needs at least

√
5d rounds to explore all nodes up to

distance d.

Proof. Fix a d ≤ τ and let T be the first round at the end of which A explores all nodes up
to distance d. Clearly, T ≥ d because otherwise no agent can reach any node at distance d.
We also assume that T <

√
5d, and we will show a contradiction.

Consider Bx, for x ≤ d to be determined below. Among the agents A1, . . . , AT , those with
i ≥ T −x+1 have moved at most x times by the end of round T , therefore they are unable to
explore any node outside of Bx. For every i ≤ T − x, agent Ai moves at most T − i + 1 times
by the end of round T , and it needs at least x moves before it can exit Bx. Therefore, Ai

explores at most T − i + 1− x nodes outside of Bx. Summing over all agents with i ≤ T − x

and taking also into account Bx itself, we conclude that, by the end of round T , algorithm A
can explore at most

|Bx|+
T −x∑
i=1

(
T − i + 1− x

)
= 2x2 + 2x + 1 + (T − x)(T − x + 1)

2

nodes. The above expression is minimized for x = T
5 −

3
10 < d, whence we obtain that A

explores at most

2T 2

5 + 4T

5 + 31
40

nodes. By definition of T , at that round A has explored at least Bd, therefore:

2T 2

5 + 4T

5 + 31
40 ≥ 2d2 + 2d + 1

whence it follows that T >
√

5d, a contradiction. ◀

▶ Theorem 14. Algorithm 1 effectively uses 4τ agents, and that is optimal.

Proof (sketch). By Lemmas 9 and 10, agents A1, . . . , A4τ have all possible signatures with
vertical component at most τ (in absolute value). Moreover, it can be shown that every
agent Ai only senses pheromone left by some earlier agent Aj , j < i (details omitted). It
follows that, even if no agents are generated after round 4τ , the above agents A1, . . . , A4τ

will still perform the same trajectories and explore all nodes up to distance τ . Therefore,

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:11

the effective agent utilization of Algorithm 1 is 4τ . This is optimal because there exist 4τ

nodes at distance τ , and an agent can only visit at most one node at distance τ during its
lifetime. ◀

▶ Theorem 15. The pheromone utilization of Algorithm 1 is at most O(d), and this is
asymptotically optimal.

Proof. By Theorem 11, the treasure is located in time O(d), and each of the O(d) agents that
are created until then drops pheromone at most 2 times: once when it leaves the nest, and
once if and when it leaves the vertical axis. Hence, the pheromone utilization of Algorithm 1
is O(d).

To prove optimality, consider a treasure hunt algorithm A that uses asymptotically less
than d pheromone, i.e., its pheromone utilization is bounded by some function f(d) such
that limd→∞

f(d)
d = 0. Let N be the number of states of the FSM A.

By our assumption on f(d), for every ε > 0 there exists a dε such that for all d > dε,
f(d) < ε · d. Let us fix, then, a d0 > N + 1 such that f(d0) < d0

N+1 . Moreover, it is well
known and has been observed several times in the literature (see, e.g., [39, Lemma 5]) that
a deterministic FSM that moves in a grid and does not interact with its environment can
explore at most a constant-width band, infinite in one direction. Let W be the constant that
bounds the number of nodes of any particular layer that are visited by such an agent.

Now, consider the execution of A in a system with parameters (τ, µ), where τ ≥WNd0 +1
and the treasure is located at distance d0. The number of layers on which at least one
agent drops pheromone is clearly bounded by the pheromone utilization of A, and hence by
f(d0) < d0

N+1 . It follows that there exists at least one layer d1 ≤ d0 − (N + 1), such that no
agent drops pheromone on any of the layers d1, d1 + 1, . . . , d1 + N . Therefore, any agent
that arrives at layer d0 is already repeating a sequence of states during which it drops no
pheromone.

Consider, now, the execution of A in the same system but with the treasure placed at
distance d⋆ = WNd0 + 1. As agents do not perceive the presence of treasure, they will
behave as in the previous case. In particular, even though there is an infinite number of
agents coming out of layer d0, their trajectories are contained in at most most 4d0 ·N distinct
bands of constant width W , infinite in one direction. This is because the trajectory of an
agent that is coming out of d0 is completely determined by the node from which it exits
layer d0 and the state in which it leaves the layer.

It follows that algorithm A explores at most 4WNd0 nodes of layer d⋆, but layer d⋆

contains 4d⋆ > 4WNd0 nodes. Therefore, the adversary can place the treasure at a node
that will not be explored by A. ◀

4 A treasure hunt algorithm for µ ≥ 1 and τ ≥ 16

Similarly to Algorithm 1, the algorithm that we present in this section creates agents of all
possible signatures [v; h], as per Definition 7.

The main difficulty here is that the dropped pheromone can evaporate in one round
only, in the case of µ = 1. To explore a grid up to an unknown distance τ , where τ is also
the lifetime of an agent, every node at distance τ has to be visited by at least one agent
(Definition 6). This agent cannot stop even for one round and has to follow a shortest path to
the node at distance τ . At the same time, agents have to be sent alternatively exploring each
half of the grid (north and south, in our case), and so the shortest time interval between two

DISC 2023

8:12 Treasure Hunt with Volatile Pheromones

following agents (moving to the positions to explore) is two rounds. This makes it difficult
to solve the problem with pheromone evaporating in one round. It disappears too fast to
provide any information to the next arriving agent.

In order to overcome this challenge, we use in Algorithm 2 two types of agents: signaling
agents, that stop moving at key positions and start dropping pheromone according to some
predetermined pattern, and explorer agents, that read these patterns on their way to the
extreme grid positions without stopping even for a single round. Since signaling consumes
rounds from the lifetime of signaling agents, these agents must stop at a sufficient distance
away from the extreme positions, to still have enough lifetime to signal the required pattern.
This distance is expressed by the parameter s of our algorithm. This also has an impact on
the minimum agent lifetime that is required for the algorithm to operate correctly, as the
furthest signaling agents must have enough lifetime to reach their signaling positions and
complete the required pattern. Algorithm 2 works for all values of µ, but only for τ ≥ 16.

Binary word notations. Let us define some finite binary word notations that we will use in
order to present the algorithm. The empty word is denoted by ϵ and the length of a word w

by |w|. For any word w and integer j ∈ {1, . . . , |w|}, w[j] denotes the jth most significant
bit of w. Let shiftleft(w) return a word obtained by removing the most significant bit (w[1])
from w.

We now present Algorithm 2 by refering to the pseudocode that we give in this section.
All proofs are omitted. Algorithm 2 uses a constant number of special states, as follows:
Given a binary word w of length at most 9, Pattern(w) is the first of a sequence of |w| states,
during which the agent stays on the same node and drops (or not) pheromone according
to the bit pattern w. Forward(s)-Explore(E) (resp. Forward(s)-Explore(W)) is the first of a
sequence of states during which the agent moves s steps forward (north or south, in the same
direction as it was moving before entering this state) and then turns east (resp. west) and
keeps moving in that direction until the end of its lifetime.

In the main part of the algorithm, agents leave the nest alternatively moving either north
or south, on the vertical axis, until arriving s steps away from a non-explored yet line where
they either stop for signaling (moving to state Pattern(w)) or continue moving to reach this
non-explored yet line to turn there either east (state Forward(s)-Explore(E)) or west (state
Forward(s)-Explore(W)) for exploring each half of the line, s steps away.

Such a signaling, for exploring each next line at distance h, is achieved by using three
agents. One is placed s lines before, and at one cell east from the vertical axis, i.e. at
(1, h−s) if heading north (resp. (1,−(h−s)), if heading south). The second one is also s lines
before, but at one cell west from the vertical axis, i.e. at (−1, h− s) (resp. (−1,−(h− s))).
The third agent, is at (0, h − s + 1) (resp. (0,−(h − s + 1))) . A newly arrived agent (at
(0, h − s) (resp. (0,−(h − s)))) senses the pheromone dropped by these three agents and
performs actions according to the parsing of the sensed pattern. This part of the algorithm
is controlled mainly by the Interpret-Signals-phase2() procedure (see Alg. 2).

Operating in this way, with agents “jumping” each time s steps vertically, for exploring a
line there, leaves at least the s first horizontal lines of each half of the grid unexplored. Hence,
we need a special procedure for exploring these lines. For that, up to horizontal lines at
distance s, the signaling agents stay longer for guiding some of the incoming agents to explore
these lines (some other agents are still guided to “jump” for exploring the lines s steps fur-
ther). This part of the algorithm is controlled mainly by the Interpret-Signals-phase1()
procedure (see Alg. 2).

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:13

Algorithm 2 A treasure hunt algorithm for τ ≥ 16, µ ≥ 1 and s = 6.

Variables
state ∈ {Init, Vert-seek, Vert-bypass, Horiz, Pattern(w), Forward(k)-Explore(E)

Forward(k)-Explore(W)}, w ∈ {0, 1}9, k ∈ [0, s] ▷ Initial value: Init
dir ∈ {N, E, S, W,⊥} ▷ Initial value: ⊥
drop ∈ {before, after,⊥} ▷ Initial value: ⊥
moves ∈ [0, s + 1] ▷ Initial value: 0

Transition function
1: if state = Init then
2: if φN = φW = φS = φE = 0 then
3: state← Pattern(11001); dir← E; drop← after ▷ Start signaling E
4: else if φN = φW = φS = 0 and φE > 0 then
5: state← Pattern(111); dir←W ; drop← after ▷ Start signaling W
6: else if φN = φS = 0 and φW = φE > 0 then
7: state← Pattern(01); dir← N ; drop← after ▷ Start signaling N
8: else if φS = 0 and φN = φW = φE > 0 then
9: state← Horiz; dir← E; drop← ⊥ ▷ Explore E

10: else if φS = 0 and φN = φE < φW then
11: state← Horiz; dir←W ; drop← ⊥ ▷ Explore W
12: else if φS = 0 and φN = φW > φE then
13: state← Vert-bypass; dir← N ; drop← after ▷ Go signaling E on line (0, 1)
14: else if φS = 0 and φN = φE > φW then
15: state← Vert-bypass; dir← S; drop← after ▷ Go signaling E on line (0,−1)
16: else if φS > φN and φS > φE and φS > φW then
17: state← Vert-seek; dir← N ; drop← after ▷ Go signaling W on line (0, 1)
18: else if φN > φS and φN > φE and φN > φW then
19: state← Vert-seek; dir← S; drop← after ▷ Go signaling W on line (0,−1)
20: end if
21: else if state = Vert-seek then
22: if φdir = φE = φW = 0 then
23: drop← ⊥ ▷ keep searching
24: else if moves < s + 1 then
25: state← Vert-bypass; Interpret-Signals-phase1
26: else
27: state← Vert-bypass; Interpret-Signals-phase2
28: end if
29: else if state = Vert-bypass then
30: if moves < s + 1 then
31: Interpret-Signals-phase1
32: else
33: Interpret-Signals-phase2
34: end if
35: else if state = Horiz then
36: drop← ⊥
37: else if state = Forward(k)-Explore(d) then
38: if k > 1 then
39: state← Forward(k − 1)-Explore(d)
40: else
41: state← Horiz; dir← d

42: end if
43: drop← ⊥

DISC 2023

8:14 Treasure Hunt with Volatile Pheromones

▶ Algorithm 2 (continued)
44: else if state = Pattern(w) then
45: dir← ⊥
46: if |w| > 1 ∧ w[1] = 1 then ▷ w[1] returns the first bit of the binary word w

47: drop← after
48: else
49: drop← ⊥
50: end if
51: if w ̸= ϵ then
52: state← Pattern(shiftleft(w)) ▷ shiftleft(w) removes the first bit of w

53: end if
54: end if
55: if dir ̸= ⊥ ∧moves < s + 1 then
56: moves← moves + 1
57: end if
58: procedure Interpret-Signals-phase1
59: if φdir = φE = φW = 0 then
60: state← Pattern(1 01 01 01); dir← E; drop← ⊥ ▷ Start signaling E
61: else if φdir = φW = 0 and φE > 0 then
62: state← Pattern(1 01 00 01 01); dir←W ; drop← ⊥ ▷ Start signaling W
63: else if φdir = 0 and φE = φW > 0 then
64: state← Pattern(1 01 00 01 01); drop← ⊥ ▷ Start signaling N or S
65: else if φdir = φE = φW > 0 then
66: state← Horiz; dir← E; drop← ⊥ ▷ Explore E
67: else if φdir = φE > φW then
68: state← Horiz; dir←W ; drop← ⊥ ▷ Explore W
69: else if φdir = φE < φW then
70: state← Forward(s)-Explore(E); drop← ⊥ ▷ Move forward s steps and explore E
71: else if φdir = φW > φE then
72: state← Forward(s)-Explore(W); drop← ⊥ ▷ Move forward s steps and explore W
73: else if φdir > φE and φdir > φW then
74: drop← ⊥ ▷ Continue to bypass pheromone traces
75: end if
76: end procedure
77: procedure Interpret-Signals-phase2
78: if φdir = φE = φW = 0 then
79: state← Pattern(1 01 01); dir← E; drop← ⊥ ▷ Start signaling E
80: else if φdir = φW = 0 and φE > 0 then
81: state← Pattern(1 01 01); dir←W ; drop← ⊥ ▷ Start signaling W
82: else if φdir = 0 and φE = φW > 0 then
83: state← Pattern(1 01 01); drop← ⊥ ▷ Start signaling N or S
84: else if φdir = φE = φW > 0 then
85: state← Forward(s)-Explore(E); drop← ⊥ ▷ Move forward s steps and explore E
86: else if φdir = φW > φE then
87: state← Forward(s)-Explore(W); drop← ⊥ ▷ Move forward s steps and explore W
88: else if φdir > φE and φdir > φW then
89: drop← ⊥ ▷ Continue to bypass pheromone traces
90: end if
91: end procedure

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:15

▶ Remark 16. The technical analysis shows that the algorithm works with s = 6. We give a
short intuition for this value. As briefly explained above, the point is that signaling patterns
cannot be established too far from the nest, because agents do not have enough remaining
lifetime to complete the pattern. As such, the exploration of horizontal lines that are far
from the nest must be signaled by patterns that are set up closer to the nest. In fact, s

depends on the longest such signaling pattern, dropped by a signaling agent (at a distance
further than s from the nest). This in turn establishes the closest position of such agent to
the grid extremity (at distance τ), where it can complete the signaling before it dies. In
our algorithm, to explore lines after distance s, only 6 rounds are used by a signaling agent,
which explains why s = 6. We actually need to encode 6 actions (3 for signaling agents and
3 for exploring). This requires 12 rounds of signaling due to the N/S dispatching at the nest,
but we can get away with s being only 6 because the agents arrive at different times. Still,
signaling agents have to stay alive there only for 6 rounds each.

Regarding the minimal τ which is 16, it is due to the transition from operation in the
s first lines to the next ones. During this transition, signaling agents should have enough
remaining lifetime to reach line s and to signal the required pattern (in these lines, the
signaling pattern of each agent requires 10 rounds; there are 3 + 5 actions to signal here). So
10 rounds for signaling and 6 rounds to reach the line at distance 6 gives τ ≥ 16 rounds.

Let us detail now the operation of the algorithm during the first rounds intended to
explore the x-axis (this differs from the exploration of other lines). Agents start at the nest
in state Init. Each of the first three agents are placed respectively east, west and north to the
nest and start signaling according to the predetermined pattern (lines 3, 5 and 7, Alg. 2).
This signaling instructs the 4th agent (A4) to explore the east half of the x-axis (line 9) and
the 5th agent (A5), to explore the remaining (west) half of the x-axis (line 11). The next four
agents are instructed to move to lines (0, 1) and (0,−1) (lines 13 - 19), two agents on each line,
to stop on the East and West from the vertical axis (cells (1, 1), (−1, 1), (1,−1), (−1,−1)).
This is for instructing to explore lines (0, 1), (0,−1), (0, s + 1) and (0,−s− 1) (as explained
in the previous paragraph).

Notice that starting from round 8, every even round, an agent in Vert-seek leaves the
nest to the North, and every odd round, an agent in Vert-seek leaves the nest to the South.
This alternation allows to explore both the north and the south halves of the grid, without
knowing its size.

States Vert-seek and Vert-bypass are used in a similar way as in the previous algorithm,
to overcome the difficulty caused by the pheromone traces left from previous drops in case
of µ > 1. An agent has to bypass (in state Vert-bypass) these traces (lines 74 and 89) until
arriving to a line with either no pheromone or with “fresh” pheromones, just dropped in
the previous round (treated in all other lines of the Interpret-Signals-phase1() and
Interpret-Signals-phase2() procedures). Starting with the 8th agent, agents leave the
nest in state Vert-seek and move vertically in this state until sensing some dropped pheromone,
moving then to Vert-bypass (lines 22 - 27).

▶ Theorem 17. Algorithm 2 solves the treasure hunt problem for µ ≥ 1, τ ≥ 16 and s = 6 in
11τ − 6s + 2 rounds, using 10τ − 6s + 3 agents and 28τ + O(s) + 8 pheromone drops.

DISC 2023

8:16 Treasure Hunt with Volatile Pheromones

5 Concluding remarks

We have presented the first algorithms for the treasure hunt problem under the weak commu-
nication mechanism of evaporating pheromone markers. In Algorithm 1, the assumption that
pheromone lasts for at least two rounds (µ ≥ 2) leads to a fairly simple algorithm design
with very few states. By contrast, Algorithm 2 is significantly more complicated, as it needs
to be able to handle both an extremely fast evaporation rate (µ = 1) and larger values of µ.

Algorithm 2 covers all values of the evaporation parameter µ ≥ 1, but it requires a lifetime
of τ ≥ 16. It would be interesting to determine the smallest τ0 such that there exists a
treasure hunt algorithm that works for all µ ≥ 1 and for all τ ≥ τ0. With ad-hoc arguments,
it can be seen that τ0 > 2. However, it is far from obvious how to generalize these arguments
to larger values of τ0. On the other hand, there may be room to improve the upper bound
of τ0 ≤ 16, with some fine-tuning of the signaling patterns.

Another interesting direction for future work is improving on the complexities of Algo-
rithm 2, or studying tradeoffs between completion time, pheromone utilization, and agent
utilization. Since both of our algorithms use only a constant number of pheromone drops
per agent, one idea would be to increase the frequency of pheromone drops. It seems that
this would not help to reduce agent utilization or the completion time. Indeed, the limiting
factor in Algorithm 2 seems to be not the amount of pheromone that is dropped or that
might be dropped, but indeed the number of grid positions that are available in order to set
up an efficient pattern, i.e., a pattern that resides in the neighborhood of the main axis so
that it can be immediately sensed by agents.

The assumption of detecting pheromones only in adjacent nodes to the agent, although
natural, could be relaxed. However, if the sensing range is increased even to 2 while
maintaining the principle that the agent can pinpoint exactly the position of the pheromone
and compare pheromone levels between all nodes in its 2-neighborhood, then Algorithm 1
resolves the problem for all values of the parameters. Indeed, the only reason why Algorithm 1
fails for µ = 1 is that, due to the North-South dispatching at the nest, agents are dispatched
into the same half-plane every two rounds, and therefore any pheromone dropped by an
agent evaporates before the next agent can sense it. Consequently, in order to study a
meaningful problem with an increased sensing range, some loss of information would have to
be introduced at distance 2 or more.

Our algorithms are quite far from modeling natural ant foraging patterns. Indeed,
depending on species, ants in nature tend to employ a wide range of communication methods,
including multiple types of pheromone of various degrees of volatility, repellent pheromones,
contact, or sounds [49]. However, our proposed solutions are more appropriate for artificial
agent systems, where the parameter τ might correspond to agents with limited energy, and
evaporating markers could be useful to prevent area pollution. The appropriate parameter
values will depend on the specific application.

As a general remark, we believe that the communication model of evaporating pheromone
markers is inherently interesting and we would like to study other agent coordination problems
in this model. Orthogonally, one may consider less predictable evaporation mechanisms, such
as evaporation governed by a random process, or controlled by an adversary.

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:17

References
1 Yehuda Afek, Roman Kecher, and Moshe Sulamy. Optimal pheromone utilization. In 2nd

Workshop on Biological Distributed Algorithms (BDA), 2014.
2 Yehuda Afek, Roman Kecher, and Moshe Sulamy. Optimal and resilient pheromone utilization

in ant foraging. CoRR, abs/1507.00772, 2015. arXiv:1507.00772.
3 Abhinav Aggarwal and Jared Saia. ANTS on a plane. In Andrea Werneck Richa and

Christian Scheideler, editors, Structural Information and Communication Complexity - 27th
International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020,
Proceedings, volume 12156 of Lecture Notes in Computer Science, pages 47–62. Springer, 2020.
doi:10.1007/978-3-030-54921-3_3.

4 Noga Alon, Chen Avin, Michal Koucký, Gady Kozma, Zvi Lotker, and Mark R. Tuttle. Many
random walks are faster than one. Combinatorics, Probability and Computing, 20(4):481–502,
2011. doi:10.1017/S0963548311000125.

5 Steve Alpern, Robbert Fokkink, Leszek Gąsieniec, Roy Lindelauf, and V.S. Subrahmanian,
editors. Search Theory: A Game Theoretic Perspective. Springer New York, NY, 2013.
doi:10.1007/978-1-4614-6825-7.

6 Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous. International
Series in Operations Research & Management Science. Springer New York, NY, 2003. doi:
10.1007/b100809.

7 Spyros Angelopoulos. Online search with a hint. In James R. Lee, editor, 12th Innovations in
Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference,
volume 185 of LIPIcs, pages 51:1–51:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ITCS.2021.51.

8 Spyros Angelopoulos, Diogo Arsénio, and Christoph Dürr. Infinite linear programming
and online searching with turn cost. Theoretical Computer Science, 670:11–22, 2017. doi:
10.1016/j.tcs.2017.01.013.

9 Spyros Angelopoulos, Alejandro López-Ortiz, and Konstantinos Panagiotou. Multi-target ray
searching problems. Theoretical Computer Science, 540:2–12, 2014. doi:10.1016/j.tcs.2014.
03.028.

10 Spyros Angelopoulos and Malachi Voss. Online search with maximum clearance. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 3642–3650. AAAI Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/16480.

11 Ricardo A. Baeza-Yates and René Schott. Parallel searching in the plane. Computational
Geometry, 5:143–154, 1995. doi:10.1016/0925-7721(95)00003-R.

12 Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, Ralf Klasing, Tomasz
Kociumaka, and Dominik Pajak. Linear search by a pair of distinct-speed robots. Algorithmica,
81(1):317–342, 2019. doi:10.1007/s00453-018-0447-0.

13 Evangelos Bampas, Jurek Czyzowicz, David Ilcinkas, and Ralf Klasing. Beachcombing on
strips and islands. Theoretical Computer Science, 806:236–255, 2020. doi:10.1016/j.tcs.
2019.04.001.

14 Anatole Beck. On the linear search problem. Israel Journal of Mathematics, 2:221–228, 1964.
doi:10.1007/BF02759737.

15 Anatole Beck and Donald J. Newman. Yet more on the linear search problem. Israel Journal
of Mathematics, 8:419–429, 1970. doi:10.1007/BF02798690.

16 Lucas Boczkowski, Uriel Feige, Amos Korman, and Yoav Rodeh. Navigating in trees with
permanently noisy advice. ACM Transactions on Algorithms, 17(2):15:1–15:27, 2021. doi:
10.1145/3448305.

DISC 2023

https://arxiv.org/abs/1507.00772
https://doi.org/10.1007/978-3-030-54921-3_3
https://doi.org/10.1017/S0963548311000125
https://doi.org/10.1007/978-1-4614-6825-7
https://doi.org/10.1007/b100809
https://doi.org/10.1007/b100809
https://doi.org/10.4230/LIPIcs.ITCS.2021.51
https://doi.org/10.1016/j.tcs.2017.01.013
https://doi.org/10.1016/j.tcs.2017.01.013
https://doi.org/10.1016/j.tcs.2014.03.028
https://doi.org/10.1016/j.tcs.2014.03.028
https://ojs.aaai.org/index.php/AAAI/article/view/16480
https://ojs.aaai.org/index.php/AAAI/article/view/16480
https://doi.org/10.1016/0925-7721(95)00003-R
https://doi.org/10.1007/s00453-018-0447-0
https://doi.org/10.1016/j.tcs.2019.04.001
https://doi.org/10.1016/j.tcs.2019.04.001
https://doi.org/10.1007/BF02759737
https://doi.org/10.1007/BF02798690
https://doi.org/10.1145/3448305
https://doi.org/10.1145/3448305

8:18 Treasure Hunt with Volatile Pheromones

17 Anthony Bonato and Richard J. Nowakowski. The Game of Cops and Robbers on Graphs.
American Mathematical Society, 2011.

18 Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. Deterministic
treasure hunt in the plane with angular hints. Algorithmica, 82(11):3250–3281, 2020. doi:
10.1007/s00453-020-00724-4.

19 Sébastien Bouchard, Arnaud Labourel, and Andrzej Pelc. Impact of knowledge on the cost of
treasure hunt in trees. Networks, 80(1):51–62, 2022. doi:10.1002/net.22075.

20 Sebastian Brandt, Klaus-Tycho Foerster, Benjamin Richner, and Roger Wattenhofer. Wireless
evacuation on m rays with k searchers. Theoretical Computer Science, 811:56–69, 2020.
doi:10.1016/j.tcs.2018.10.032.

21 Sebastian Brandt, Jara Uitto, and Roger Wattenhofer. A tight lower bound for semi-
synchronous collaborative grid exploration. Distributed Computing, 33(6):471–484, 2020.
doi:10.1007/s00446-020-00369-0.

22 Marek Chrobak, Leszek Gasieniec, Thomas Gorry, and Russell Martin. Group search on the line.
In Giuseppe F. Italiano, Tiziana Margaria-Steffen, Jaroslav Pokorný, Jean-Jacques Quisquater,
and Roger Wattenhofer, editors, SOFSEM 2015: Theory and Practice of Computer Science -
41st International Conference on Current Trends in Theory and Practice of Computer Science,
Pec pod Sněžkou, Czech Republic, January 24-29, 2015. Proceedings, volume 8939 of Lecture
Notes in Computer Science, pages 164–176. Springer, 2015. doi:10.1007/978-3-662-46078-8_
14.

23 Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. Search and pursuit-evasion
in mobile robotics - A survey. Autonomous Robots, 31(4):299–316, 2011. doi:10.1007/
s10514-011-9241-4.

24 Andrea E. F. Clementi, Francesco D’Amore, George Giakkoupis, and Emanuele Natale. Search
via parallel Lévy walks on Z2. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen,
editors, PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, July 26-30, 2021, pages 81–91. ACM, 2021. doi:10.1145/3465084.3467921.

25 Lihi Cohen, Yuval Emek, Oren Louidor, and Jara Uitto. Exploring an infinite space with
finite memory scouts. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 207–224. SIAM, 2017. doi:10.1137/1.9781611974782.14.

26 Jared Ray Coleman and Oscar Morales-Ponce. The snow plow problem: Perpetual maintenance
by mobile agents on the line. In 24th International Conference on Distributed Computing and
Networking, ICDCN 2023, Kharagpur, India, January 4-7, 2023, pages 110–114. ACM, 2023.
doi:10.1145/3571306.3571396.

27 Andrew Collins, Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, Evangelos Kranakis,
Danny Krizanc, Russell Martin, and Oscar Morales-Ponce. Optimal patrolling of fragmented
boundaries. In Guy E. Blelloch and Berthold Vöcking, editors, 25th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’13, Montreal, QC, Canada - July 23 - 25,
2013, pages 241–250. ACM, 2013. doi:10.1145/2486159.2486176.

28 Colin Cooper, Alan M. Frieze, and Tomasz Radzik. Multiple random walks in random
regular graphs. SIAM Journal on Discrete Mathematics, 23(4):1738–1761, 2009. doi:10.1137/
080729542.

29 Jurek Czyzowicz, Leszek Gasieniec, Konstantinos Georgiou, Evangelos Kranakis, and Fraser
MacQuarrie. The beachcombers’ problem: Walking and searching with mobile robots. Theo-
retical Computer Science, 608:201–218, 2015. doi:10.1016/j.tcs.2015.09.011.

30 Jurek Czyzowicz, Kostantinos Georgiou, and Evangelos Kranakis. Group search and evacuation.
In Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science, pages 335–370. Springer, 2019. doi:10.1007/978-3-030-11072-7_14.

https://doi.org/10.1007/s00453-020-00724-4
https://doi.org/10.1007/s00453-020-00724-4
https://doi.org/10.1002/net.22075
https://doi.org/10.1016/j.tcs.2018.10.032
https://doi.org/10.1007/s00446-020-00369-0
https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1145/3465084.3467921
https://doi.org/10.1137/1.9781611974782.14
https://doi.org/10.1145/3571306.3571396
https://doi.org/10.1145/2486159.2486176
https://doi.org/10.1137/080729542
https://doi.org/10.1137/080729542
https://doi.org/10.1016/j.tcs.2015.09.011
https://doi.org/10.1007/978-3-030-11072-7_14

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:19

31 Francesco D’Amore. On the collective behaviors of bio-inspired distributed systems. (Sur
les comportements collectifs de systèmes distribués bio-inspirés). PhD thesis, Côte d’Azur
University, Nice, France, 2022. URL: https://tel.archives-ouvertes.fr/tel-03906167.

32 Shantanu Das. Mobile agent rendezvous in a ring using faulty tokens. In Shrisha Rao,
Mainak Chatterjee, Prasad Jayanti, C. Siva Ram Murthy, and Sanjoy Kumar Saha, editors,
Distributed Computing and Networking, 9th International Conference, ICDCN 2008, Kolkata,
India, January 5-8, 2008, volume 4904 of Lecture Notes in Computer Science, pages 292–297.
Springer, 2008. doi:10.1007/978-3-540-77444-0_29.

33 Shantanu Das, Matús Mihalák, Rastislav Srámek, Elias Vicari, and Peter Widmayer. Ren-
dezvous of mobile agents when tokens fail anytime. In Theodore P. Baker, Alain Bui, and
Sébastien Tixeuil, editors, Principles of Distributed Systems, 12th International Conference,
OPODIS 2008, Luxor, Egypt, December 15-18, 2008. Proceedings, volume 5401 of Lecture Notes
in Computer Science, pages 463–480. Springer, 2008. doi:10.1007/978-3-540-92221-6_29.

34 Shantanu Das and Nicola Santoro. Moving and computing models: Agents. In Paola Flocchini,
Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Computing by Mobile Entities,
Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer
Science, pages 15–34. Springer, 2019. doi:10.1007/978-3-030-11072-7_2.

35 Erik D. Demaine, Sándor P. Fekete, and Shmuel Gal. Online searching with turn cost.
Theoretical Computer Science, 361(2-3):342–355, 2006. doi:10.1016/j.tcs.2006.05.018.

36 Yoann Dieudonné and Andrzej Pelc. Deterministic network exploration by a single agent with
Byzantine tokens. Information Processing Letters, 112(12):467–470, 2012. doi:10.1016/j.
ipl.2012.03.017.

37 Klim Efremenko and Omer Reingold. How well do random walks parallelize? In Irit Dinur,
Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop,
APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA,
August 21-23, 2009. Proceedings, volume 5687 of Lecture Notes in Computer Science, pages
476–489. Springer, 2009. doi:10.1007/978-3-642-03685-9_36.

38 Robert Elsässer and Thomas Sauerwald. Tight bounds for the cover time of multiple random
walks. Theoretical Computer Science, 412(24):2623–2641, 2011. doi:10.1016/j.tcs.2010.08.
010.

39 Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How many
ants does it take to find the food? Theoretical Computer Science, 608:255–267, 2015. doi:
10.1016/j.tcs.2015.05.054.

40 Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving the ANTS problem
with asynchronous finite state machines. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II,
volume 8573 of Lecture Notes in Computer Science, pages 471–482. Springer, 2014. doi:
10.1007/978-3-662-43951-7_40.

41 Ofer Feinerman and Amos Korman. Memory lower bounds for randomized collaborative search
and implications for biology. In Marcos K. Aguilera, editor, Distributed Computing - 26th
International Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings,
volume 7611 of Lecture Notes in Computer Science, pages 61–75. Springer, 2012. doi:
10.1007/978-3-642-33651-5_5.

42 Ofer Feinerman and Amos Korman. The ANTS problem. Distributed Computing, 30(3):149–168,
2017. doi:10.1007/s00446-016-0285-8.

43 Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sébastien Sereni. Collaborative search
on the plane without communication. In Darek Kowalski and Alessandro Panconesi, editors,
ACM Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira,
Portugal, July 16-18, 2012, pages 77–86. ACM, 2012. doi:10.1145/2332432.2332444.

DISC 2023

https://tel.archives-ouvertes.fr/tel-03906167
https://doi.org/10.1007/978-3-540-77444-0_29
https://doi.org/10.1007/978-3-540-92221-6_29
https://doi.org/10.1007/978-3-030-11072-7_2
https://doi.org/10.1016/j.tcs.2006.05.018
https://doi.org/10.1016/j.ipl.2012.03.017
https://doi.org/10.1016/j.ipl.2012.03.017
https://doi.org/10.1007/978-3-642-03685-9_36
https://doi.org/10.1016/j.tcs.2010.08.010
https://doi.org/10.1016/j.tcs.2010.08.010
https://doi.org/10.1016/j.tcs.2015.05.054
https://doi.org/10.1016/j.tcs.2015.05.054
https://doi.org/10.1007/978-3-662-43951-7_40
https://doi.org/10.1007/978-3-662-43951-7_40
https://doi.org/10.1007/978-3-642-33651-5_5
https://doi.org/10.1007/978-3-642-33651-5_5
https://doi.org/10.1007/s00446-016-0285-8
https://doi.org/10.1145/2332432.2332444

8:20 Treasure Hunt with Volatile Pheromones

44 Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Flaminia L. Luccio, Nicola Santoro,
and Cindy Sawchuk. Mobile agents rendezvous when tokens fail. In Rastislav Kralovic
and Ondrej Sýkora, editors, Structural Information and Communication Complexity, 11th
International Colloquium , SIROCCO 2004, Smolenice Castle, Slovakia, June 21-23, 2004,
Proceedings, volume 3104 of Lecture Notes in Computer Science, pages 161–172. Springer,
2004. doi:10.1007/978-3-540-27796-5_15.

45 Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph
searching. Theoretical Computer Science, 399(3):236–245, 2008. doi:10.1016/j.tcs.2008.
02.040.

46 Pierre Fraigniaud, Amos Korman, and Yoav Rodeh. Parallel Bayesian search with no coordi-
nation. Journal of the ACM, 66(3):17:1–17:28, 2019. doi:10.1145/3304111.

47 Subir Kumar Ghosh and Rolf Klein. Online algorithms for searching and exploration in the
plane. Computer Science Review, 4(4):189–201, 2010. doi:10.1016/j.cosrev.2010.05.001.

48 Andrej Ivaskovic, Adrian Kosowski, Dominik Pajak, and Thomas Sauerwald. Multiple random
walks on paths and grids. In Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium
on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover,
Germany, volume 66 of LIPIcs, pages 44:1–44:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.44.

49 Duncan E. Jackson and Francis L.W. Ratnieks. Communication in ants. Current Biology,
16(15):R570–R574, 2006. doi:10.1016/j.cub.2006.07.015.

50 Akitoshi Kawamura and Yusuke Kobayashi. Fence patrolling by mobile agents with distinct
speeds. Distributed Computing, 28(2):147–154, 2015. doi:10.1007/s00446-014-0226-3.

51 Dennis Komm, Rastislav Královic, Richard Královic, and Jasmin Smula. Treasure hunt
with advice. In Christian Scheideler, editor, Structural Information and Communication
Complexity - 22nd International Colloquium, SIROCCO 2015, Montserrat, Spain, July 14-16,
2015, Post-Proceedings, volume 9439 of Lecture Notes in Computer Science, pages 328–341.
Springer, 2015. doi:10.1007/978-3-319-25258-2_23.

52 Amos Korman and Yoav Rodeh. Multi-round cooperative search games with multiple players.
Journal of Computer and System Sciences, 113:125–149, 2020. doi:10.1016/j.jcss.2020.05.
003.

53 Tobias Langner, Barbara Keller, Jara Uitto, and Roger Wattenhofer. Overcoming obstacles
with ants. In Emmanuelle Anceaume, Christian Cachin, and Maria Gradinariu Potop-Butucaru,
editors, 19th International Conference on Principles of Distributed Systems, OPODIS 2015,
December 14-17, 2015, Rennes, France, volume 46 of LIPIcs, pages 9:1–9:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.OPODIS.2015.9.

54 Tobias Langner, Jara Uitto, David Stolz, and Roger Wattenhofer. Fault-tolerant ANTS. In
Fabian Kuhn, editor, Distributed Computing - 28th International Symposium, DISC 2014,
Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes in Computer
Science, pages 31–45. Springer, 2014. doi:10.1007/978-3-662-45174-8_3.

55 Christoph Lenzen, Nancy A. Lynch, Calvin Newport, and Tsvetomira Radeva. Searching
without communicating: tradeoffs between performance and selection complexity. Distributed
Computing, 30(3):169–191, 2017. doi:10.1007/s00446-016-0283-x.

56 Christoph Lenzen and Tsvetomira Radeva. The power of pheromones in ant foraging. In 1st
Workshop on Biological Distributed Algorithms (BDA), 2013.

57 Avery Miller and Andrzej Pelc. Tradeoffs between cost and information for rendezvous
and treasure hunt. Journal of Parallel and Distributed Computing, 83:159–167, 2015. doi:
10.1016/j.jpdc.2015.06.004.

58 Paul J. Nahin. Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton
University Press, 2007.

59 Andrzej Pelc and Ram Narayan Yadav. Advice complexity of treasure hunt in geometric
terrains. Information and Computation, 281:104705, 2021. doi:10.1016/j.ic.2021.104705.

https://doi.org/10.1007/978-3-540-27796-5_15
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1145/3304111
https://doi.org/10.1016/j.cosrev.2010.05.001
https://doi.org/10.4230/LIPIcs.STACS.2017.44
https://doi.org/10.1016/j.cub.2006.07.015
https://doi.org/10.1007/s00446-014-0226-3
https://doi.org/10.1007/978-3-319-25258-2_23
https://doi.org/10.1016/j.jcss.2020.05.003
https://doi.org/10.1016/j.jcss.2020.05.003
https://doi.org/10.4230/LIPIcs.OPODIS.2015.9
https://doi.org/10.1007/978-3-662-45174-8_3
https://doi.org/10.1007/s00446-016-0283-x
https://doi.org/10.1016/j.jpdc.2015.06.004
https://doi.org/10.1016/j.jpdc.2015.06.004
https://doi.org/10.1016/j.ic.2021.104705

E. Bampas, J. Beauquier, J. Burman, and W. Guy–Obé 8:21

A State transition diagram of Algorithm 1

Vert-bypass

Horiz

Vert-seekInit

iW = iE = 0 ∧ (iN > 0 ∨ iS > 0)
dir← S if iN > iS else N
move-drop

iE ≤ iW ∧ iW > 0
dir← S if iN > iS else N
move-drop

iW > 0
move-no-drop

iE = iW = 0
move-no-drop

iW > 0
move-no-drop

iE > iW

dir←W
move-drop

iN = iE = iS = iW = 0
dir← E
move-drop

iW = 0
dir←W if iE > 0 else E
move-drop

iW = 0 ∧ iE > 0
dir←W
move-drop

true
move-no-drop

Figure 2 A hybrid state transition diagram representing Algorithm 1. On each transition, the
guard condition is given above the horizontal line. The actions that are executed if the transition
is triggered are given below the horizontal line. The values φx, for x ∈ {N, E, S, W}, represent
the pheromone values in neighboring nodes at the beginning of the round. dir ∈ {N, E, S, W} is a
variable whose value persists between transitions. The statement move-drop instructs the agent
to move in the direction indicated by the variable dir, dropping pheromone on the destination
node. The statement move-no-drop instructs the agent to move in the direction indicated by the
variable dir, without dropping pheromone on the destination node. Exactly one guarded transition
is enabled from each state.

DISC 2023

The FIDS Theorems: Tensions Between Multinode
and Multicore Performance in Transactional
Systems
Naama Ben-David #

VMware Research, Palo Alto, California, USA

Gal Sela1 #

Technion, Haifa, Israel

Adriana Szekeres #

VMware Research, Bellevue, Washington, USA

Abstract
Traditionally, distributed and parallel transactional systems have been studied in isolation, as
they targeted different applications and experienced different bottlenecks. However, modern high-
bandwidth networks have made the study of systems that are both distributed (i.e., employ multiple
nodes) and parallel (i.e., employ multiple cores per node) necessary to truly make use of the available
hardware.

In this paper, we study the performance of these combined systems and show that there are
inherent tradeoffs between a system’s ability to have fast and robust distributed communication and
its ability to scale to multiple cores. More precisely, we formalize the notions of a fast deciding path of
communication to commit transactions quickly in good executions, and seamless fault tolerance that
allows systems to remain robust to server failures. We then show that there is an inherent tension
between these two natural distributed properties and well-known multicore scalability properties
in transactional systems. Finally, we show positive results; it is possible to construct a parallel
distributed transactional system if any one of the properties we study is removed.

2012 ACM Subject Classification Computing methodologies → Concurrent computing methodolo-
gies; Computing methodologies → Distributed algorithms

Keywords and phrases transactions, distributed systems, parallel systems, impossibility results

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.9

Related Version Full Version: https://arxiv.org/abs/2308.03919 [9]

1 Introduction

Transactional systems offer a clean abstraction for programmers to write concurrent code
without worrying about synchronization issues. This has made them extremely popular and
well studied in the last couple of decades [5, 21, 23, 41, 47, 53, 54, 48].

Many transactional systems in practice are distributed across multiple machines [14, 55, 30],
allowing them to have many benefits that elude single-machine designs. For example,
distributed solutions can scale to much larger data sets, handle much larger workloads,
service clients that are physically far apart, and tolerate server failures. It is therefore
unsurprising that distributed transactional systems have garnered a lot of attention in
the literature, with many designs aimed at optimizing their performance in various ways:
minimizing network round trips to commit transactions [29, 47, 54, 38, 15, 36], increasing
robustness and availability when server failures occur [29, 54, 47], and scaling to heavier
workloads [55, 19].

1 Part of this work was done while this author was at VMware Research.
© Naama Ben-David, Gal Sela, and Adriana Szekeres;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 9; pp. 9:1–9:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bendavidn@vmware.com
mailto:galy@cs.technion.ac.il
https://orcid.org/0000-0003-2342-6955
mailto:aszekeres@vmware.com
https://doi.org/10.4230/LIPIcs.DISC.2023.9
https://arxiv.org/abs/2308.03919
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 The FIDS Theorems for Multinode Multicore Transactional Systems

Due to increased bandwidth on modern networks, new considerations must be taken
into account to keep improving the performance of distributed transactional systems. In
particular, while traditional network communication costs formed the main bottleneck for
many applications, sequential processing within each node is now no longer enough to
handle the throughput that modern networks can deliver (through e.g., high-bandwidth links,
multicore NICs, RDMA, kernel bypassing). Thus, to keep up with the capabilities of modern
hardware, distributed transactional systems must make use of the parallelism available on
each server that they use. That is, they must be designed while optimizing both network
communication and multicore scalability.

Two main approaches have been employed by transactional storage systems to take
advantage of the multicore architecture of their servers [46]: shared-nothing or shared-
memory. The shared-nothing approach, where each core can access a distinct partition of the
database and only communicates with other cores through message passing, has a significant
drawback: cores responsible for hot data items become a throughput bottleneck while other
cores are underutilized. To be able to adapt to workloads that stress a few hot data items,
the shared memory approach, where each core can access any part of the memory, can be
used. However, shared memory must be designed with care, as synchronization overheads
can hinder scalability. Fortunately, decades of work has studied how to scale transactional
systems in a multicore shared-memory setup [7, 6, 5, 10, 12, 40, 41, 8]. Thus, there is a lot of
knowledge to draw from when designing distributed transactional systems that also employ
parallelism within each server via the shared-memory approach.

In this paper, we study such systems, which we call parallel distributed transactional
systems (PDTSs). Our main contribution is to show that there is an inherent tension between
properties known to improve performance in distributed settings and those known to improve
performance in parallel settings. To show this result, we first formalize a model that combines
both shared memory and message passing systems. While such a model has been formulated
in the past [1], it has not been formulated in the context of transactional systems.

We then describe and formalize three properties of distributed transactional systems that
improve their performance. These properties have all appeared in various forms intuitively
in the literature [54, 29, 47], but have never been formalized until now. We believe that each
of them may be of independent interest, as they capture notions that apply to many existing
systems. In particular, we first present distributed disjoint-access parallelism, a property
inspired by its counterpart for multicore systems, but which captures scalability across
different distributed shards of data. Then, we describe a property that intuitively requires a
fast path for transactions: transactions must terminate quickly in executions in which they
do not encounter asynchrony, failures, or conflicts. While many fast-path properties have
been formulated in the literature for consensus algorithms, transactions are more complex
since different transactions may require a different number of network round trips, or message
delays, in order to even know what data they should access. We capture this variability in a
property we name fast decision, intuitively requiring that once the data set of a transaction
is known, it must reach a decision within one network round trip. Finally, we present a
property called seamless fault tolerance, which requires an algorithm to be able to tolerate
some failures without affecting the latency of ongoing transactions. This has been the goal
of many recent works which focus on robustness and high availability [47, 37, 38, 29, 54].

Equipped with these properties, we then show the inherent tension that exists between
them and the well-known multicore properties of disjoint-access parallelism and invisible
reads, both of which intuitively improve cache coherence and have been shown to increase
scalability in transactional systems [42, 22]. More precisely, we present the FIDS theorem for

N. Ben-David, G. Sela, and A. Szekeres 9:3

sharded PDTSs: a PDTS that guarantees a minimal progress condition and shards data across
multiple nodes cannot simultaneously provide Fast decision, Invisible reads, distributed
Disjoint-access parallelism, and Serializability. An important implication of this result is
that serializable shared-memory sharded PDTSs that want to provide multicore scalability
cannot simply use a two-phase atomic commitment protocol (such as the popular two-phase
commit). Furthermore, we turn our attention to replicated PDTSs. We discover that a
similar tension exists for PDTSs that utilize client-driven replication. With client-driven
replication replicas do not need to communicate with each other to process transactions. It
is commonly used in conjunction with a leaderless replication algorithm to save two message
delays [29, 54, 47, 38], as well as in RDMA-based PDTSs which try to bypass the replicas’
CPUs [16, 44]. We present a robust version of the FIDS theorem, which we call the R-FIDS
theorem: a PDTS (that may or may not shard its data) and utilizes client-driven replication
cannot simultaneously provide Robustness to failures in the form of seamless fault tolerance,
Fast decision, Invisible reads, Disjoint-access parallelism, and Serializability.

Interestingly, similar impossibility proofs appear in the literature, often showing properties
of parallel transactional systems that cannot be simultaneously achieved [41, 7, 12]. Indeed,
some works have specifically considered disjoint-access parallelism and invisible reads, and
shown that they cannot be achieved simultaneously with strong progress conditions [7, 41].
However, several systems achieve both disjoint-access parallelism and invisible reads with
weak progress conditions such as the one we require [53, 48, 16]. To the best of our knowledge,
the two versions of the FIDS theorem are the first to relate multicore scalability properties
to multinode scalability ones.

Finally, we show that the FIDS theorems are minimal in the sense that giving up any
one of these properties does allow for implementations that satisfy the rest.

In summary, our contributions are as follows.
We present a transactional model that combines the distributed and parallel settings.
We formalize three distributed performance properties that have appeared in intuitive
forms in the literature.
We present the FIDS and R-FIDS theorems for parallel distributed transactional systems,
showing that there are inherent tensions between multicore and multinode scalability
properties.
We show that giving up any one of the properties in the theorems does allow designing
implementations that satisfy the rest.

The rest of the paper is organized as follows. Section 2 presents the model and some
preliminary notions. In Section 3, we define the properties of distributed transactional
systems that we focus on. We present our impossibility results in Section 4, and then in
Section 5, we show that it is possible to build a PDTS that sacrifices any one of the properties.
Finally, we discuss related works in Section 6 and future research directions in Section 7.

2 Model and Preliminaries

Communication. We consider a message-passing model among n nodes (server hosts)
and any number of client processes, as illustrated in Figure 1. Each node has P node
processes. Messages are sent either between two nodes or between clients and nodes. We
consider partial synchrony [18]; messages can be arbitrarily delayed until an a priori unknown
global stabilization time (GST), after which all messages reach their target within a known
delay ∆. An execution is said to be synchronous if GST is at the beginning of the execution.
Furthermore, node processes within a single node communicate with each other via shared

DISC 2023

9:4 The FIDS Theorems for Multinode Multicore Transactional Systems

Client process
Client process

Node

Server process

Server process

…

Shared
Memory

Client process
Node

Server process

Server process

…

Shared
Memory

Node

Node process

Node process

…

Shared
Memory

Node-Node channel

Client-Node channel

Figure 1 Communication mediums between the different types of processes considered in our model.

memory. That is, they access shared base objects through primitive operations, which are
atomic operations, such as read, write, read-modify-write (compare-and-swap, test-and-set,
fetch-and-increment, etc.), defined in the usual way. A primitive operation is said to be
non-trivial if it may modify the object. Two primitive operations contend if they access the
same object and at least one of them is non-trivial. The order of accesses of processes to
memory is governed by a fair scheduler which ensures that all processes take steps.

Transactions. We consider a database composed of a set of data items, Σ, which can be
accessed by read and write operations. Each node Ni holds some subset Σi ⊆ Σ, which may
overlap with the subsets held on other nodes. A transaction T is a program that executes
read and write operations on a subset of the data items, called its data set, DT ⊆ Σ. A
transaction T ’s write set, WT ⊆ DT , and read set, RT ⊆ DT , are the sets of data items
that it writes and reads, respectively. Two transactions are said to conflict if their data sets
intersect at an item that is in the write set of at least one of them.

Transaction Interface. An application may execute a transaction T by calling an in-
vokeTxn(T) procedure. The invokeTxn(T) procedure returns with a commit or abort value
indicating whether it committed or aborted, as well as the full read and write sets of T ,
with the order of execution of the operations (relative to each other), and with the read and
written values. We say that a transaction is decided when invokeTxn(T) returns.

Failure Model. Nodes can fail by crashing; if a node crashes then all processes on the node
crash as well. We do not consider failures where individual processes crash and we assume
clients do not fail. We denote by failure-free execution an execution without node crashes.

Handlers and Implementations. An implementation of a PDTS provides data representation
for transactions and data items, and algorithms for two types of handlers: the coordinator
handler and the message handler. Each handler is associated with a transaction and is
executed by a single process. Each process executes at most one handler at any given
time, and is otherwise idle. The coordinator handler of a transaction T is the first handler
associated with T and is triggered by an invokeTxn(T) call on some client process.

The execution of a handler involves a sequence of handler steps, which are of one of
three types: (1) an invocation or response step, which is the first or last step of the handler
respectively, (2) a primitive operation on a base object in shared memory, including its return
value, and (3) sending or receiving a message, denoted send(T , m) or receive(T , m). Each
handler step is associated with the corresponding transaction and the process that runs it.
The return value in a response step of a transaction’s coordinator handler is the return value
of invokeTxn described above, and a message handler has no return value.

Executions. An execution of a PDTS implementation is a sequence of handler steps and
node crash steps. Each node crash step is associated with a node. After a node crash step
associated with node Ni in execution E, no process on node Ni takes any steps in E. An
execution can interleave handler steps associated with different transactions and processes.
An extension E′ of E is an execution that has E as its prefix.

N. Ben-David, G. Sela, and A. Szekeres 9:5

We say that a transaction T ’s interval in an execution E begins at the invocation step of
T ’s coordinator handler, and ends when there are no sends associated with T that have not
been received whose target node has not crashed, and all handlers associated with T have
reached their response step. Note that the end of a transaction’s interval must therefore be
a response step of some handler associated with T , but might not be the response step of
T ’s coordinator handler (which may terminate earlier than some other handlers of T). We
say that two transactions are concurrent in E if their intervals overlap. We say that two
transactions, T1 and T2, contend on node Ni in E if they are concurrent, and there is at
least one primitive operation step on node Ni in E associated with T1 that contends with a
primitive operation step in E associated with T2. We say that T1 and T2 contend in E if
there is some node Ni such that they contend on node Ni in E.

The projection of an execution E on a process p, denoted E|p, is the subexecution of
E that includes exactly all of the steps associated with p in E. Two executions E and E′

are indistinguishable to a process p if the projections of E and E′ on p are identical (i.e., if
E|p = E′|p).

It is also useful to discuss knowledge of properties during an execution. The notion of
knowledge has been extensively used in other works [24, 20]. Formally, a process p knows a
property P in an execution E of a PDTS implementation I, if there is no execution E′ of I

that is indistinguishable to p from E in which P is not true.
We adopt two concepts introduced by Lamport [35, 31] to aid reasoning about distributed

systems: depth of a step, and the happened-before relation. The depth of a step s associated
with transaction T in execution E is 0 if s is the invocation of T ’s coordinator handler.
Otherwise, it equals the maximum of (i) the depths of all steps that are before s in E within
the same handler as s, and (ii) if s is a receive(T , m) step of a message sent in a send(T , m)
step, s′, then 1 plus the depth of s′. Happened-before is the smallest relation on the set of
steps of an execution E satisfying the following three conditions: 1) if a and b are steps of
the same handler and a comes before b in E, then a happened-before b; 2) if a is a send(T ,
m) step and b is a receive(T , m) step, then a happened-before b; 3) if a happened-before b

and b happened-before c, then a happened-before c.

Serializability. Intuitively, a transactional system is serializable if transactions appear to
have executed in some serial order [40]. The formal definition appears in the full version of
this paper [9].

Weak Progress. A transactional system must guarantee at least weak progress: every
transaction is eventually decided, and every transaction that did not execute concurrently
with any other transaction eventually commits.

2.1 Multicore Scalability Properties

To scale to many processes on each server node, transactional systems should reduce memory
contention between different transactions. This topic has been extensively studied in the
literature on parallel transactional systems [7, 6, 5, 11, 13, 23, 26, 41]. Here, we focus on
two well-known properties, disjoint-access parallelism and invisible reads, that are known
to reduce contention and improve scalability in parallel systems. We later show how they
interact with distributed scalability properties.

DISC 2023

9:6 The FIDS Theorems for Multinode Multicore Transactional Systems

2.1.1 Disjoint-Access Parallelism
Originally introduced to describe the degree of parallelism of implementations of shared
memory primitives [26], and later adapted to transactional memory, disjoint-access parallelism
intuitively means that transactions that are disjoint at a high level, e.g., whose data sets do
not intersect, do not contend on shared memory accesses [7, 41]. While this property may
sound intuitive, it can in fact be difficult to achieve, as it forbids the use of global locks or
other global synchronization mechanisms. Multiple versions of disjoint-access parallelism
exist in the literature, differing in which transactions are considered to be disjoint at a high
level. In this paper, we use the following definition.

▶ Definition 2.1 (Disjoint-access parallelism (DAP)). An implementation of a PDTS satisfies
disjoint-access parallelism (DAP) if two transactions whose data sets do not intersect cannot
contend.

2.1.2 Invisible Reads
The second property we consider, invisible reads, intuitively requires that transactions’ read
operations not execute any shared memory writes. This property greatly benefits workloads
with read hotspots, by dramatically reducing cache coherence traffic. Two variants of this
property are common in the literature. The first, which we call weak invisible reads, only
requires invisible reads at the granularity of transactions. That is, if a transaction is read-only
(i.e., its write set is empty), then it may not make any changes to the shared memory. This
simple property has been often used in the literature [7, 41].

▶ Definition 2.2 (Weak invisible reads). An implementation of a PDTS satisfies weak invisible
reads if, in all its executions, every transaction with an empty write set does not execute any
non-trivial primitives.

However, this property is quite weak, as it says nothing about the number of shared
memory writes a transaction may execute once it has even a single item in its write set. When
developing systems that decrease coherence traffic, this is often not enough. Indeed, papers
that refer to invisible reads in the systems literature [47, 48] require that no read operation
in the transaction be the cause of shared memory modifications. Note that an algorithm that
locally stores the read set for validation (which is the case in the above referenced systems)
can still satisfy invisible reads, since the writes are not to shared memory. Attiya et al. [6]
formalize this stronger notion of invisible reads by requiring that we be able take an execution
E and replace any transaction T in E with a transaction that has the same write set but an
empty read set, and arrive at an execution that is indistinguishable from E. Intuitively, this
captures the requirement that reads should not update shared metadata (e.g., through “read
locks”). We adopt Attiya et al.’s definition of invisible reads here, adapted to fit our model.

▶ Definition 2.3 (Invisible reads (adapted from [6])). An implementation I of a PDTS
satisfies the invisible reads property if it satisfies weak invisible reads and, additionally, for
any execution E of I that includes a transaction T with write set W and read set R, there
exists an execution E′ of I identical to E except that it has no steps of T and it includes
steps of a transaction T ′, which has the same interval as T (i.e., T ’s first and last steps in
E are replaced by T ′’s ones in E′), and writes the same values to W in the same order as in
T , but has an empty read set.

Note that the invisible reads property complements the DAP property for enhanced
multicore scalability. A system that has both allows all transactions that do not conflict,
not just the disjoint-access ones, to proceed independently, with no contention (as we will

N. Ben-David, G. Sela, and A. Szekeres 9:7

show in Lemma 4.4). Interestingly, previous works discovered some inherent tradeoffs of such
systems [7, 41], in conjunction with strong progress guarantees. In this paper, we study these
properties under a very weak notion of progress, but with added requirements on distributed
scalability (see Section 3).

3 Multinode Performance Properties

To overcome the limitations of a single machine (e.g., limited resources, lack of fault tolerance),
distributed transactional systems shard or replicate the data items on multiple nodes, and,
thus, must incorporate distributed algorithms that coordinate among multiple nodes. The
performance of these distributed algorithms largely depends on the number of communication
rounds required to execute a transaction. Ideally, at least in the absence of conflicts,
transactions can be executed in few rounds of communication, even if some nodes experience
failures. In this section we propose formal definitions for a few multinode performance
properties.

3.1 Distributed Disjoint-Access Parallelism
We start by proposing an extension of DAP to distributed algorithms, which we term
distributed-DAP, or DDAP. In addition to requiring DAP, DDAP proscribes transactions
from contending on a node unless they access common elements that reside at that node:

▶ Definition 3.1 (Distributed disjoint-access parallelism (DDAP)). An implementation of a
PDTS satisfies distributed disjoint-access parallelism (DDAP) if for any two transactions
T and T ′, and any node Ni, if T and T ′’s data sets do not intersect on node Ni (i.e.,
DT ∩ DT ′ ∩ Σi = ∅), then they do not contend on node Ni.

While the main goal of sharding is to distribute the workload across nodes, DDAP links
sharding to increased parallelism – DDAP systems can offer more node parallelism than
DAP systems through sharding.

3.2 Fast Decision
Distributed transactional systems must integrate agreement protocols (such as atomic
commitment and consensus) to ensure consistency across all nodes involved in transaction
processing. Fast variants of such protocols can reach agreement in two message delays in
“good” executions [35]. Ideally, we would like distributed transactional systems to preserve
this best-case lower bound, and decide transactions in two message delays; reducing the
number of message delays required to process transactions not only can significantly reduce
the latency as perceived by the application (processing delay within a machine is usually
smaller than the delay on the network), but can also reduce the contention footprint [21]
of the transactions (intuitively, this is the duration of time in which a transaction might
interfere with other transactions in the system).

Requiring transactions to be decided in just two message delays, however, is too restrictive
in many scenarios. The latency of a distributed transactional system depends on how many
message delays are required for a transaction to “learn” its data set (data items and their
values); the data set needs to be returned to the application when the transaction commits,
and is also used to determine whether the transaction can commit. For example, for interactive
transactions or disaggregated storage, the values must be made available to the application
(which runs in a client process) before the transaction can continue to execute. Thus, since

DISC 2023

9:8 The FIDS Theorems for Multinode Multicore Transactional Systems

the data items are remote, each read operation results in two message delays, one to request
the data from the remote node and one for the remote node to reply. For non-interactive
transactions or systems where transaction execution can be offloaded to the node processes,
the latency for learning the data set can be improved; since the client does not need to
immediately know the return value of read operations, the values of data items can be learned
through a chain of messages that continue transaction processing at the nodes containing
the remote data. More precisely, the client first determines a node, n1, that contains the
first data item the transaction needs to read; the client sends a message to n1 containing the
transaction; n1 processes the transaction, preforming the read locally, until it determines
that the transaction needs to perform a remote read from another node, n2; n1 sends a
message to n2 containing the transaction and its state so far; n2 continues processing the
transaction, performing the read locally, and so on. RPC chains [45] already provides an
implementation of this mechanism, saving one message delay per remote read operation. At
the lowest extreme, non-sharded transactional systems can learn a transaction’s entire data
set in a single message delay.

We introduce the fast decision property to describe distributed transactional systems that
can decide each transaction in “good” executions within only two message delays in addition
to the message delays it requires to “learn” the transaction’s entire data set. As explained
above, the number of message delays required to learn a transaction’s data set depends on
several design choices. We note that often, deciding a transaction’s outcome within two
message delays after learning its data set is not plausible if the execution has suboptimal
conditions, for example, if there are transactional conflicts that need to be resolved, or if
not all nodes reply to messages within some timeout. This is true even for just consensus,
where the two-message-delay decisions can happen only in favorable executions, on a fast
path [3, 34]. We therefore define the fast decision property to only be required in such
favorable executions.

To formalize fast decisions, we must be able to discuss several intuitive concepts more
formally. In particular, we begin by defining the depth of a transaction, to allow us to
formally discuss the number of message delays that the transactional system requires to
decide a transaction.

▶ Definition 3.2 (Depth of a transaction). The depth of a decided transaction T in execution
E of a PDTS implementation, dE(T), is the depth of the response step of T ’s coordinator
handler in E.

In many cases, we need to refer to the depth of a transaction T in an execution in which
T is still ongoing, and its coordinator handler has not reached its response step yet. While
we could simply refer to the depth of the deepest step of T in the execution, this would not
be appropriate: it is possible that a transaction in fact took steps along one “causal path”
that led to a large depth, but when the response step to T ’s coordinator handler happens,
its depth is actually shorter. In such a case, we really only care about the depth along the
“causal paths” that lead to the response step, since these are the ones affecting the latency to
the application. To capture this notion, we define the partial depth of a transaction T in a
prefix of an execution in which T is decided as follows.

▶ Definition 3.3 (Partial depth of a transaction). Let T be a decided transaction in execution
E of a PDTS implementation. The partial depth of T in a prefix P of E in which T is not
decided, dE(T, P), is the maximum step depth across all steps associated with T in P , which
happened-before the response step of T ’s coordinator handler in E (or 0 if there are no such
steps).

N. Ben-David, G. Sela, and A. Szekeres 9:9

We next formalize another useful concept that we need for the discussion of fast decisions;
namely, what it means to learn the data set of a transaction. For that purpose, we introduce
the following two definitions:

▶ Definition 3.4 (Decided data item). A data item d is decided to be in a transaction T ’s
read or write set in execution E of a PDTS implementation if, in all extensions of E, the
read or write set respectively in the return value of invokeTxn(T) contains d.

▶ Definition 3.5 (Decided value). A data item d’s value is decided for T in execution E

of a PDTS implementation if, in all extensions of E, the read set in the return value of
invokeTxn(T) contains d and with the same value.

Note that a data item’s value can be decided for a transaction only if that data item
is part of its read set; the definition does not apply for data items in the write set. In the
definition of the fast decision property and in the proofs, we refer in most places to knowing
the decided values and not the data items in the write set as well. This is because knowing
the read set and its values implies that a transaction’s write set is decided in case it commits;
this is the property that matters in many of the arguments we use in the paper.

Finally, we are ready to discuss the fast decision property. Intuitively, the formal definition
of the property considers favorable executions, which are synchronous, failure-free and have
each transaction run solo. For those executions, the property requires two things to hold:
first, a transaction is not allowed to spend more than two message delays without learning
some new value for its data set, and second, once its entire data set is known, it must be
decided within 2 more message delays (Corollary 3.7). This captures “speed” in both learning
the data set and deciding the transaction outcome. As discussed above, 2 message delays
is an upper bound on the minimal amount of time needed to perform a read operation
(and bring its value to the necessary process). Note that this is a tight bound for systems
processing interactive transactions, and as such, fast decision also means optimal latency for
these systems.

▶ Definition 3.6 (Fast decision). A PDTS implementation I is fast deciding if, for every
failure-free synchronous execution E of I and every decided transaction T in E that did not
execute concurrently with any other transaction, for any prefix P of E such that dE(T, P) <

dE(T) − 2, there exists a prefix of E of partial depth dE(T, P) + 2 in which the number of
values known by some process to be decided is bigger than in P .

Formalizing the allowed depth of a transaction in terms of prefixes of an execution in
which the transaction is already decided (so we know its depth in that execution) helps
capture the two requirements we want: (1) for any prefix of the execution, if we advance
from it by two message delays, we must have improved our knowledge of the values of the
read set, and (2) once the read set and its values are completely known (regardless of the
depth of the prefix in which this occurs), we must be at most 2 message delays from deciding
that transaction. Corollary 3.7 helps make this intuition concrete.

▶ Corollary 3.7. For every failure-free synchronous execution E of a fast-deciding PDTS
implementation I and every decided transaction T in E that did not execute concurrently
with any other transaction, let P be the shortest prefix of E in which the value of each item
in T ’s read set is known by some process to be decided. Then

dE(T) ≤ dE(T, P) + 2.

(Intuitively, T must be decided within at most 2 message delays from when T ’s read set
including its values are known to be decided.)

DISC 2023

9:10 The FIDS Theorems for Multinode Multicore Transactional Systems

Proof. Assume by contradiction that dE(T) > dE(T, P) + 2. Then by the fast decision
property of I, there exists a prefix of E in which the number of data items whose value is
known by some process to be decided is bigger than in P . But this is impossible, since the
values of T ’s entire read set are known to be decided in P . ◀

Several fast-deciding distributed transactional systems have been recently proposed
for general interactive transactions [29, 54, 47]; our fast decision property captures what
they informally refer to as “one round-trip commitment”. These systems use an optimistic
concurrency control and start with an execution phase that constructs their data sets with
two message delays per read operation. The agreement phase consists of validation checks
that require a single round-trip latency (integrates atomic commitment and a fast consensus
path in one single round trip). The write phase happens asynchronously, after the response
of the transaction has been emitted to the application.

3.3 Seamless Fault Tolerance
High availability is critical for transactional storage systems, as many of their applications
expect their data to be always accessible. In other words, the system must mask server
failures and network slowdowns. To achieve this, many systems in practice are designed to
be fault tolerant; the system can continue to operate despite the failures of some of its nodes.

However, oftentimes, while the system can continue to function when failures occur,
it experiences periods of unavailability, or its performance degrades by multiple orders of
magnitude while recovering [3, 51]. This is the case in systems that must manually reconfigure
upon failures [50], and those that rely on a leader [3, 39, 51, 33, 32].

These slow failure-recovery mechanisms, while providing some form of guaranteed avail-
ability, may not be sufficient for systems in which high availability is truly critical; suffering
from long periods of severe slowdowns potentially from a single server failure may not be
acceptable in some applications.

To address this issue, some works in recent years have focused on designing algorithms
that experience minimal slowdowns, or no slowdowns at all, upon failures. One approach has
been to minimize the impact of leader failures by making the leader-change mechanism light-
weight and switching leaders even when failures do not occur [52]. Another approach aims to
eliminate the leader completely; such algorithms are called leaderless algorithms [4, 47, 54, 37].
All of these approaches aim to tolerate the failure of some nodes without impacting the
latency of ongoing transactions.

In this paper, we formalize this goal of tolerating failures without impacting latency
into a property that we call s-seamless fault tolerance, where s ≤ f . In essence, s-seamless
fault tolerance requires that if only up to s failures occur in an execution, no slowdown is
experienced. To capture this formally, we require that for any execution E with up to s − 1
crashes, it be possible to find an equivalent execution E′ with one more crash event, which
may happen at any time after the crashes in E, where the depth of all transactions are the
same in E and E′. We express this in an inductive definition.

▶ Definition 3.8 (s-seamless fault tolerance). Any implementation of a PDTS satisfies 0-
seamless fault tolerance. An implementation I of a PDTS satisfies s-seamless fault tolerance
if it satisfies (s − 1)-seamless fault tolerance, and for any execution E of I with s − 1 node
crashes, for any prefix EP of E that contains the s − 1 node crashes, and any node crash
event c of a node that has not crashed in EP , there exists an execution E′ of I whose prefix
is EP · c, such that (1) stripping each of E and E′ of all steps other than invocation and
response steps of coordinator handlers results in the same sequence of invocation and response
steps (intuitively, the executions are equivalent), and (2) the depth of each decided transaction
is the same in both executions (intuitively, E′ seamlessly tolerates the node crashes).

N. Ben-David, G. Sela, and A. Szekeres 9:11

While s-seamless fault tolerance offers the extremely desirable robustness property, it
also requires that: a) no single node can be on the critical path of all transactions, and b)
no single node can be solely responsible for processing a transactional task. This can be a
double-edged sword; on the one hand, this eliminates the possibility of a leader bottleneck,
which implies better scalability. On the other hand, it disallows certain optimizations, like
reading from a single replica.

4 Impossibility Results

Having specified some key properties which make distributed transactional systems fast and
scalable, we now turn to the main result of our paper: unfortunately, there is a tension
between these multinode performance properties and the single-node multicore performance
properties discussed in Section 2. More specifically, we present the FIDS theorems, which
formalize the impossibility of achieving all of these properties simultaneously in two different
parallel distributed settings.

4.1 The FIDS Theorems
The first FIDS theorem states that no PDTS with weak progress which shards data can guar-
antee Fast decision, Invisible reads, distributed Disjoint-access parallelism, and Serializability
simultaneously. This is in contrast to known systems that achieve just the multinode proper-
ties [47, 54, 38] or just the multicore properties [53, 48, 16]. Thus, the FIDS theorem truly
shows tensions that arise when a transactional system is both parallel and distributed. This
version of the FIDS theorem considers only systems that shard data, that is, systems in
which each node only stores part of the database items. Interestingly, the impossibility holds
in this setting even without requiring any fault tolerance, and in particular, without seamless
fault tolerance. We note that the FIDS theorem applies also to systems that replicate data
in addition to sharding it; adding replication on top of a sharded system only makes it more
complex. Formally:

▶ Theorem 4.1 (The FIDS theorem for sharded transactional systems). There is no implemen-
tation of a PDTS which shards data across multiple nodes that guarantees weak progress, and
simultaneously provides fast decision, invisible reads, distributed disjoint-access parallelism,
and serializability.

For systems that maintain multiple copies of the data, but do not necessarily shard it, we
show a different version of the result. Note that in such systems, distribution comes from
replication; several nodes, each with a copy of the entire database, are used to ensure fault
tolerance. For this setting, we present the Robust-FIDS, or R-FIDS, theorem: a PDTS
with weak progress that utilizes client-driven replication and satisfies Robustness to at least
one failure through the seamless fault tolerance property, in addition to satisfying Fast
decision, Invisible reads, Disjoint-access parallelism, and Serializability, is also impossible to
implement. Formally:

▶ Theorem 4.2 (The R-FIDS theorem for replicated transactional systems). There is no
implementation of a PDTS that utilizes client-driven replication that guarantees weak progress,
and simultaneously provides 1-seamless fault tolerance, fast decision, invisible reads, disjoint-
access parallelism, and serializability.

In the reminder of this section we present an overview of the proof technique for the
two versions of the FIDS theorem; the detailed proof for each of them and the supporting
lemmas we introduce here can be found in Appendix A.

DISC 2023

9:12 The FIDS Theorems for Multinode Multicore Transactional Systems

4.2 Proof Overview
Both proofs have a similar structure; we consider example transactions that form a dependency
cycle, and show an execution in which all of them commit, thereby violating serializability.
To argue that all transactions in our execution commit, we build the execution by merging
executions in which each transaction ran solo (and therefore had to commit by weak progress),
and showing that the resulting concurrent execution is indistinguishable to each transaction
from its solo run. Starting with solo executions also gives us another property that we can
exploit; we define the solo executions to be synchronous and failure-free, and therefore they
must be fast deciding as well.

The key challenge in the proofs is how to construct a concurrent execution Econcur that
remains indistinguishable to all processes from the solo execution that they were a part
of. To do so, we divide the concurrent execution into two phases; first, we let the solo
executions run, in any interleaving, until right before the point in each execution at which
some process learns the values of its transaction’s read set. When this point is reached in
each solo execution, we carefully interleave the remaining steps in a second phase of the
concurrent execution. A key feature is that by the fast decision property, which each solo
execution satisfies, once some process learns the read set including its values, there are at
most two message delays left in each solo execution before the transaction is decided. This
bounds the amount of communication we need to worry about in the second phase of the
concurrent execution.

To show that Econcur is indistinguishable from the solo runs, we look at each of the
two phases separately. The idea is to show that no process makes any shared memory
modifications in the first phase, and then show that we can interleave messages and message
handlers in a way that allows each transaction to be oblivious to the other transactions for
at least one more intuitive “round trip”, which is all we need to reach decision according to
the fast decision property.

To show that a transaction performs no shared memory modifications in the first phase
of the concurrent execution we construct, we rely on the way we choose the transactions,
their data sets, and when in the execution their data sets are decided; in both proofs, the
transactions we choose may have empty or non-empty write sets, depending on the results
of their reads. The following lemma shows that as long as a transaction’s write set is not
known to be non-empty, the transaction cannot cause any modifications in a system that
provides weak invisible reads.

▶ Lemma 4.3. Let I be an implementation of a PDTS that provides weak invisible reads,
and let T be a transaction in an execution E of I, such that no process in E knows the
following proposition: T ’s write set is non-empty in all extensions of this execution in which
T is decided. Then T cannot cause any base object modifications in E.

This lemma, combined with the way we choose the transactions in our proofs, immediately
implies that phase 1 of Econcur is indistinguishable to all processes from the solo executions
they are a part of.

The proofs differ somewhat in how they show that Econcur is indistinguishable from the
solo runs in the second phase. We argue about restricted shared memory modifications
through the use of the DAP and invisible reads properties in the following key lemma, which
intuitively shows that transactions that do not conflict do not (visibly) contend.

▶ Lemma 4.4. Let I be an implementation of a PDTS that provides both DAP and invisible
reads, and let T be a transaction in an execution E of I, such that its final write set is W .
Then T does not cause any base object modifications visible to any concurrent transaction in
E whose data set does not overlap with W .

N. Ben-David, G. Sela, and A. Szekeres 9:13

To make phase 2 of Econcur also indistinguishable from the solo executions, we schedule
the remaining messages carefully. In particular, we schedule messages sent by reading
transactions to each node before those sent by writing transactions, and again rely on DAP
and invisible reads to argue that the reading transactions’ handlers will not cause changes
visible to those who write afterwards. However, here the two proofs diverge.

4.2.1 Sharded Systems
We first discuss the proof structure for showing that serializable sharded transactional systems
that provide weak progress cannot simultaneously achieve fast decision, invisible reads and
DDAP. That is, sharding the data across multiple nodes while achieving these properties is
impossible even if we do not tolerate any failures (Theorem 4.1).

The proof uses two nodes and two transactions, each reading from a data item on one node
and, if it sees the initial value, writing on the other node. The read set of one transaction is
the same as the (potential) write set of the other transaction. We need to argue that the
reading transaction on some node cannot cause modifications on that node that are visible
to the writing transaction. However, since the write set of each transaction overlaps with the
data set of the other, we cannot apply Lemma 4.4. Instead, we rely on DDAP, and show that
with this property, the reading transaction indeed cannot be visible to the writing one on
each node. We show a lemma very similar to Lemma 4.4 but which applies to transactions
whose write set on a specific node does not overlap the data set of another transaction on
that node.

▶ Lemma 4.5. In any implementation of a PDTS that provides both DDAP and invisible
reads, a transaction whose write set is W does not cause any modifications on shared based
objects on a node N visible to any concurrent transaction whose data set does not overlap
with W on N .

The proof of this lemma is very similar to the proof of Lemma 4.4. The only required
adjustments are using DDAP instead of DAP, and referring to T ′’s data set and T ’s write
set and modification on a certain node N .

Note that while the proof of the FIDS theorem relies on sharding, it does not need
fault tolerance. In particular, it does not make use of the seamless fault tolerance property.
However, the result does apply to systems in which the data is both sharded and replicated,
as those systems are even more complex than ones in which no replication is used.

4.2.2 Replicated but Unsharded
So far, we have considered a PDTS in which node failures cannot be tolerated; if one of the
nodes crashes, we lose all data items stored on that node, and cannot execute any transactions
that access those data items. However, in reality, server failures are common, and therefore
many practical systems use replication to avoid system failures. Of course, the impossibility
result of Theorem 4.1 holds for a PDTS even for the more difficult case in which failures are
possible and each node’s data is replicated on several backups.

However, we now turn our attention to PDTSs in which the entire database is stored
on each node. This setting makes it plausible that a client could get away with accessing
only one node to see the state of the data items of its transaction. However, we show that
the impossibility of Theorem 4.1 still holds in this setting for a system in which failures
are tolerated without affecting transaction latency (i.e., systems that satisfy seamless fault
tolerance) (Theorem 4.2).

DISC 2023

9:14 The FIDS Theorems for Multinode Multicore Transactional Systems

As explained in Section 4.2, the use of seamless fault tolerance requires us to explicitly
argue about the length of the executions in which transactions decide. To do so, we need the
following lemma, which gives a lower bound for the depth at which a transaction’s read set
and values can be decided.

▶ Lemma 4.6. There is no execution E of any serializable PDTS implementation that
tolerates at least 1 failure in which there is a transaction T and prefix P such that dE(T, P) < 2
and some process knows the decided value of some read of T in P .

Once we have this lemma, the proof of the R-FIDS theorem is then similar to the proof
of the FIDS theorem. We build a cycle of dependencies between transactions where each
neighboring pair in the cycle overlaps on a single data item that one of them reads and the
other writes. The key is that because of invisible reads, each read can happen before the
write on the same data item without leaving a trace. However, to construct this cycle in
the replicated case, we need at least 3 replicas, 3 transactions and 3 data items. This is
because we can no longer separate the read and write of a single transaction on each node.
Furthermore, we make use of Lemma 4.6, as well as the budgeted depth of a transaction in
a fast-deciding execution, to explicitly argue about the amount of communication possible
after a transaction learns its write set.

More specifically, we choose three transactions, where the write set of one equals the read
set of the next. We divide them into pairs, where within each pair, the write set of one does
not overlap with the data set of the other. We can then directly use Lemma 4.4 to argue that
the second one to be scheduled of this pair will not see changes made by the first. We exploit
fault tolerance to have the third transaction’s messages never reach that node. However,
here, we must be careful, since we defined the solo executions to be failure-free to guarantee
fast decisions. We therefore rely on seamless fault tolerance; we show indistinguishability of
the concurrent execution not from the original solo executions, but from executions of the
same depth that we know exist due to seamless fault tolerance.

Interestingly, when we convert a solo execution S to an execution F of the same depth
(but with a node failure) via the seamless fault tolerance property, we may lose its fast
decision property. That is, while the new execution must have the same depth as the original
ones, that does not guarantee that it will also be fast deciding, as the fast decision property
does not solely refer to the length of the execution. In particular, it could be the case that in
F , the data set of a transaction including its values is learned earlier, but then the transaction
takes more than 2 message delays to be decided. This would be problematic for our proof, in
which the indistinguishability relies heavily on fast decision once the data set including its
values are known. To show that this cannot happen in the executions we consider, we rely
on Lemma 4.6 that bounds the depth at which any transaction in a fault tolerant system
can learn the decided values of its reads.

5 Possibility Results

Any subset of the properties outlined in Theorem 4.2 is possible to achieve simultaneously
in a single system. Due to lack of space, we show this in the full version of this paper [9],
where we present four distributed transactional system algorithms, each sacrificing one of
the desired properties. Recall from our model description that the presented protocols
work under the assumption that the client does not fail and nodes do not recover, and as
such are not intended to be used “as is” in practice. We first present a “base” algorithm
which achieves all the desired properties (i.e., fast decision, invisible reads, DDAP, and

N. Ben-David, G. Sela, and A. Szekeres 9:15

1-seamless fault tolerance), but is not serializable. We obtain each of the four transactional
systems algorithms, by tweaking the base algorithm to sacrifice one desired property and
gain serializability.

6 Related Work

Disjoint-access parallelism was first introduced in [26] in the context of shared memory objects.
It was later adapted to the context of transactions. Over the years, it has been extensively
studied as a desirable property for scalable multicore systems [53, 49, 47, 7, 5, 41, 23].
Several versions of DAP have been considered, differing in what is considered a conflict
between operations (or transactions). A common variant of DAP considers two transactions
to conflict if they are connected in the conflict graph of the execution (where vertices are
transactions and there is an edge between two transactions if their data sets intersect) [7, 41].
In this paper, we consider a stricter version, which only defines transactions as conflicting if
they are neighbors in the conflict graph. This version has also appeared frequently in the
literature [41, 12].

Invisible reads have also been extensively considered in the literature [43, 7, 47, 49, 53, 25].
Many papers consider invisible reads on the granularity of data item accesses; any read
operation on a data item should not cause changes to shared memory [49, 47, 25]. Others,
often those that study invisible reads from a more theoretical lens, consider only the invisibility
of read-only transactions [7, 41].

Some impossibility tradeoffs for transactional systems, similar to the one we show in this
paper, are known in the literature. Attiya et al. [7] show that it is impossible to achieve
weak invisible reads, disjoint-access parallelism, and wait-freedom in a parallel transactional
system. Peluso et al. [41] show an impossibility of a similar setting, with disjoint-access
parallelism, weak invisible reads, and wait-freedom, but consider any correctness criterion
that provides real-time ordering. Bushkov et al. [12] show that it is impossible to achieve
disjoint-access parallelism and obstruction-freedom, even when aiming for consistency that is
weaker than serializability. In this paper, none of our algorithms provide the obstruction-
freedom considered in [12]; we use locks, and our algorithms can therefore indefinitely prevent
progress if process failures can occur while holding locks.

Fast paths for fast decision have been considered extensively in the replication and
consensus literature [28, 17, 34, 2, 3]. In most of these works, the conditions for remaining
on the fast path include experiencing no failures. That is, they do not provide seamless
fault tolerance. However, some algorithms, like Fast Paxos [34], can handle some failures
without leaving the fast path. In the context of transactional systems, the fast path is often
considered for conflict-free executions rather than those without failures [47, 54, 38, 29], as
we do in this paper. Seamless fault tolerance captures the idea that (few) failures should not
cause an execution to leave the fast path. Systems often have a general fault tolerance f that
is higher than the number of failures they can tolerate in a seamless manner [47, 54, 38, 29].

Seamless fault tolerance as presented in this paper is also related to leaderlessness [37, 4],
as any leader-based algorithm would slow down upon a leader failure. However, the leaderless
requirement alone is less strict than our seamless fault tolerance; Antoniadis et al. [4] defined
a leaderless algorithm as any algorithm that can terminate despite an adaptive adversary
that can choose which process to temporarily remove from an execution at any point in time.
This does not put any requirement on the speed at which the execution must terminate.

Parallel distributed transactional systems have been recently studied in the systems
literature. Meerkat [47] provides serializability and weak progress, and three of the desirable
properties we outline in this paper. It does not, however, provide invisible reads in any form

DISC 2023

9:16 The FIDS Theorems for Multinode Multicore Transactional Systems

(not even the weaker version). Eve [27] considers replication for multicore systems. It briefly
outlines how PDTS transactions are possible using its replication system, but it is not their
main focus.

7 Discussion

This paper is inspired by recent trends in network capabilities, which motivate the study of
distributed transactional systems that also take advantage of the parallelism available on
each of their servers. We formalize three performance properties of distributed transactional
systems that have appeared intuitively in various papers in the literature, and show that these
properties have inherent tensions with multicore scalability properties. In particular, in this
paper we formalized the notions of distributed disjoint-access parallelism, a fast decision path
for transactions, and robustness in the form of seamless fault tolerance. Combined with the
well-known multicore scalability properties of disjoint-access parallelism and invisible reads,
we show the FIDS theorem, and its fault tolerant version, the R-FIDS theorem, which show
that serializable transactional systems cannot satisfy all these properties at once. Finally, we
show that removing any one of these properties allows for feasible implementations.

We note that our possibility results can be seen as “proofs of concept” rather than
practical implementations. It would be interesting to design practical algorithms that give
up just one of the properties we discuss. We believe that each property has its own merit for
certain applications and workloads, and it would be interesting to determine which property
would be the best to abandon for which types of applications.

In this work, we focused on studying parallel distributed transactional systems under a
minimal progress guarantee. It would also be interesting to explore PDTSs under stronger
progress conditions, or consistency conditions other than serializability. It would be equally
interesting to see if the tension still exists between weaker variants of the properties we
considered.

References
1 Marcos K Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez Petrank, and Sam

Toueg. Passing messages while sharing memory. In Proceedings of the 2018 ACM symposium
on principles of distributed computing, pages 51–60, 2018.

2 Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and Igor
Zablotchi. The impact of RDMA on agreement. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 409–418, 2019.

3 Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J Marathe, Athanasios
Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond applications. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages
599–616, 2020.

4 Karolos Antoniadis, Antoine Desjardins, Vincent Gramoli, Rachid Guerraoui, and Igor
Zablotchi. Leaderless consensus. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pages 392–402. IEEE, 2021.

5 Hagit Attiya and Panagiota Fatourou. Disjoint-access parallelism in software transactional
memory. In Transactional Memory. Foundations, Algorithms, Tools, and Applications, pages
72–97. Springer, 2015.

6 Hagit Attiya and Eshcar Hillel. The cost of privatization in software transactional memory.
IEEE Transactions on Computers, 62(12):2531–2543, 2012.

7 Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory of Computing Systems, 49(4):698–719, 2011.

N. Ben-David, G. Sela, and A. Szekeres 9:17

8 Hillel Avni and Nir Shavit. Maintaining consistent transactional states without a global clock.
In Colloquium on Structural Information & Communication Complexity, 2008.

9 Naama Ben-David, Gal Sela, and Adriana Szekeres. The FIDS Theorems: Tensions between
Multinode and Multicore Performance in Transactional Systems, 2023. arXiv:2308.03919.

10 Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., USA, 1986.

11 Silas Boyd-Wickizer. Optimizing communication bottlenecks in multiprocessor operating system
kernels. PhD thesis, Massachusetts Institute of Technology, 2014.

12 Victor Bushkov, Dmytro Dziuma, Panagiota Fatourou, and Rachid Guerraoui. The pcl
theorem: Transactions cannot be parallel, consistent and live. In Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 178–187, 2014.

13 Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and Eddie
Kohler. The scalable commutativity rule: Designing scalable software for multicore processors.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, pages 1–17, New York, NY, USA, 2013. Association for Computing Machinery.

14 James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI’12), 2012.

15 James Cowling and Barbara H. Liskov. Granola: Low-Overhead Distributed Transaction
Coordination. In Proceedings of 2012 USENIX Annual Technical Conference (USENIX
ATC’12), pages 223–236, 2012.

16 Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann,
Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises: Distributed transactions
with consistency, availability, and performance. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages 54–70, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2815400.2815425.

17 Partha Dutta, Rachid Guerraoui, and Leslie Lamport. How fast can eventual synchrony lead to
consensus? In 2005 International Conference on Dependable Systems and Networks (DSN’05),
pages 22–27. IEEE, 2005.

18 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

19 Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog, Colin
Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim Rath, Swami
Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul, Doug Terry, and Akshat
Vig. Amazon DynamoDB: A scalable, predictably performant, and fully managed NoSQL
database service. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), 2022.

20 Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Vardi. Reasoning about knowledge.
MIT press, 2004.

21 Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. Lazy evaluation of transactions in
database systems. In SIGMOD ’14, 2014.

22 Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed Systems, 21(12):1793–
1807, 2010.

23 Rachid Guerraoui and Michal Kapalka. On obstruction-free transactions. In Proceedings of
the twentieth annual symposium on Parallelism in algorithms and architectures, pages 304–313,
2008.

24 Joseph Y Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM (JACM), 37(3):549–587, 1990.

DISC 2023

https://arxiv.org/abs/2308.03919
https://doi.org/10.1145/2815400.2815425

9:18 The FIDS Theorems for Multinode Multicore Transactional Systems

25 Maurice Herlihy, Victor Luchangco, Mark Moir, and William N Scherer III. Software transac-
tional memory for dynamic-sized data structures. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages 92–101, 2003.

26 Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of strong shared
memory primitives. In Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’94, pages 151–160, New York, NY, USA, 1994. Association
for Computing Machinery. doi:10.1145/197917.198079.

27 Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and Mike
Dahlin. All about eve: Execute-verify replication for multi-core servers. In Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementation, OSDI’12, pages
237–250, USA, 2012. USENIX Association.

28 Idit Keidar and Sergio Rajsbaum. On the cost of fault-tolerant consensus when there are no
faults: preliminary version. ACM SIGACT News, 32(2):45–63, 2001.

29 Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete. MDCC:
Multi-Data Center Consistency. In Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 113–126, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2465351.2465363.

30 Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010. doi:10.1145/1773912.1773922.

31 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978. doi:10.1145/359545.359563.

32 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, 1998.

33 Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column)
32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

34 Leslie Lamport. Fast paxos. Distributed Comput., 19(2):79–103, 2006. doi:10.1007/
s00446-006-0005-x.

35 Leslie Lamport. Lower bounds for asynchronous consensus. Distrib. Comput., 19(2):104–125,
October 2006. doi:10.1007/s00446-006-0155-x.

36 Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: Coordination-free consistent transactions
using in-network concurrency control. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP’17), SOSP ’17, 2017.

37 Iulian Moraru, David G Andersen, and Michael Kaminsky. Egalitarian paxos. In ACM
Symposium on Operating Systems Principles, 2012.

38 Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating concurrency control
and consensus for commits under conflicts. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’16, pages 517–532, USA, 2016. USENIX
Association.

39 Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 USENIX Annual Technical Conference (Usenix ATC 14), pages 305–319, 2014.

40 Christos H Papadimitriou. The serializability of concurrent database updates. Journal of the
ACM (JACM), 26(4):631–653, 1979.

41 Sebastiano Peluso, Roberto Palmieri, Paolo Romano, Binoy Ravindran, and Francesco Quaglia.
Disjoint-access parallelism: Impossibility, possibility, and cost of transactional memory im-
plementations. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, pages 217–226, 2015.

42 Amitabha Roy, Steven Hand, and Tim Harris. Exploring the limits of disjoint access parallelism.
In Proceedings of the 1st USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA,
2009.

43 William N Scherer III and Michael L Scott. Advanced contention management for dynamic
software transactional memory. In Proceedings of the twenty-fourth annual ACM symposium
on Principles of distributed computing, pages 240–248, 2005.

https://doi.org/10.1145/197917.198079
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0155-x

N. Ben-David, G. Sela, and A. Szekeres 9:19

44 Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos, Aleksandar
Dragojević, Dushyanth Narayanan, and Miguel Castro. Fast general distributed transactions
with opacity. In SIGMOD’19, 2019.

45 Yee Jiun Song, Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia Malkhi. Rpc chains:
Efficient client-server communication in geodistributed systems. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation (NSDI’09), 2009.

46 Michael Stonebraker. The case for shared nothing. In IEEE Database Eng. Bull., 1985.
47 Adriana Szekeres, Michael Whittaker, Jialin Li, Naveen Kr Sharma, Arvind Krishnamurthy,

Dan RK Ports, and Irene Zhang. Meerkat: multicore-scalable replicated transactions following
the zero-coordination principle. In Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–14, 2020.

48 Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy
transactions in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 18–32, New York, NY, USA,
2013. Association for Computing Machinery. doi:10.1145/2517349.2522713.

49 Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy
transactions in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18–32, 2013.

50 Robbert Van Renesse and Fred B Schneider. Chain replication for supporting high throughput
and availability. In OSDI, 2004.

51 Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. Apus: Fast and scalable
paxos on rdma. In Proceedings of the 2017 Symposium on Cloud Computing, pages 94–107,
2017.

52 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347–356, 2019.

53 Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. TicToc: Time Traveling
Optimistic Concurrency Control. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD’16), 2016.

54 Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K.
Ports. Building consistent transactions with inconsistent replication. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages 263–278, New York, NY,
USA, 2015. Association for Computing Machinery. doi:10.1145/2815400.2815404.

55 Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan Tschannen,
Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave Rosenthal, Xin Dong, Will
Wilson, Ben Collins, David Scherer, Alec Grieser, Young Liu, Alvin Moore, Bhaskar Muppana,
Xiaoge Su, and Vishesh Yadav. Foundationdb: A distributed unbundled transactional key
value store. In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD’21), 2021.

DISC 2023

https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2815400.2815404

9:20 The FIDS Theorems for Multinode Multicore Transactional Systems

Appendix

A Full proofs of the FIDS theorems (and the supporting lemmas)

▶ Lemma 4.3. Let I be an implementation of a PDTS that provides weak invisible reads,
and let T be a transaction in an execution E of I, such that no process in E knows the
following proposition: T ’s write set is non-empty in all extensions of this execution in which
T is decided. Then T cannot cause any base object modifications in E.

Proof. Let I be an implementation of a PDTS that satisfies weak invisible reads. Assume
by contradiction that there is a transaction T in execution E of I, such that no process in E

knows that T ’s final write set is not empty in all extensions in which T is decided, and a
process p runs a handler associated with T that performs some base object modification.

Since p does not know that T ’s final write set is not empty in all extensions of the current
execution in which T is decided, there exists an execution indistinguishable to p from E

that has an extension in which T ’s final write set is empty. Let that extension be EreadOnly.
Since T ’s final write set in EreadOnly is empty, then by weak invisible reads, T cannot cause
base object modifications in EreadOnly. Contradiction. ◀

▶ Lemma 4.4. Let I be an implementation of a PDTS that provides both DAP and invisible
reads, and let T be a transaction in an execution E of I, such that its final write set is W .
Then T does not cause any base object modifications visible to any concurrent transaction in
E whose data set does not overlap with W .

Proof. Let I be an implementation of a PDTS that satisfies DAP and invisible reads. Let T

be a transaction whose final write set in an execution E of I is W . Assume by contradiction
that there exists some transaction T ′ concurrent with T in E whose data set does not overlap
with W , but which sees a modification made by T in E. That is, there is some base object
operation step s of T ′ whose return value is affected by T ’s modification.

By invisible reads, there exists an execution E′ of I identical to E except that it includes
a transaction TnoRead in place of T with the same interval, where TnoRead has W as its write
set and an empty read set. By DAP, TnoRead does not modify in E′ any base object accessed
by any concurrent transaction whose data set does not overlap with W . In particular, TnoRead

cannot make any modifications visible to T ′ in E′. Note that step s must exist in E′, since
by definition, E′ is identical to E except in steps associated with T and TnoRead. However,
in E, s’s return value is affected by T ’s modification, and in E′, this modification does not
exist. Therefore, E′ cannot be an execution of I. Contradiction. ◀

▶ Lemma 4.5. In any implementation of a PDTS that provides both DDAP and invisible
reads, a transaction whose write set is W does not cause any modifications on shared based
objects on a node N visible to any concurrent transaction whose data set does not overlap
with W on N .

Proof. Let I be an implementation of a PDTS that satisfies DDAP and invisible reads. Let
T be a transaction whose final write set on a node N in an execution E of I is W . Assume
by contradiction that there exists some transaction T ′ concurrent with T in E whose data set
on N does not overlap with W , but which sees a modification made by T on a base object
on N in E. That is, there is some base-object operation step s of T ′ whose return value is
affected by T ’s modification.

By invisible reads, there exists an execution E′ of I identical to E except that it includes
a transaction TnoRead in place of T with the same interval, where TnoRead has W as its write
set on N and an empty read set. By DDAP, TnoRead does not modify in E′ any base object

N. Ben-David, G. Sela, and A. Szekeres 9:21

on N accessed by any concurrent transaction whose data set does not overlap with W on N .
In particular, TnoRead cannot make any modifications visible to T ′ on N in E′. Note that step
s must exist in E′, since by definition, E′ is identical to E except in steps associated with T

and TnoRead. However, in E, s’s return value is affected by T ’s modification, and in E′, this
modification does not exist. Therefore, E′ cannot be an execution of I. Contradiction. ◀

▶ Lemma 4.6. There is no execution E of any serializable PDTS implementation that
tolerates at least 1 failure in which there is a transaction T and prefix P such that dE(T, P) < 2
and some process knows the decided value of some read of T in P .

Proof. Assume by contradiction that there is some implementation I of a serializable PDTS
that tolerates at least 1 failure, an execution E of I, and a prefix P of E such that dE(T, P) ≤ 1
and some process knows the decided value of some data item d of T in P . Without loss of
generality, let process p on node N be the process that knows d’s decided value, let that
value be v and let T ’s invoking client be C. Note that since C does not have access to the
data, and any step of any process not on C’s node must be of depth at least 1, p cannot be
on C’s node, and cannot have received any message from any process other than C within
depth less than 2. Therefore p can only know the value of d on node N , but not any other
nodes. Consider the following executions.

EN−fail . EN−fail and E are identical up to right before T ’s invocation. In EN−fail , node
N fails at this point. Then, a transaction T ′ is invoked by a client C ′ ̸= C. T ′ writes a
value v′ ̸= v to d and commits. After T ′ commits, T is invoked in EN−fail . Clearly, by
serializability, T ’s read of d in EN−fail returns v′ or a more updated value, but not v.

EN−slow. EN−slow is identical to EN−fail except that node N does not fail in EN−slow.
Instead, all messages to and from N are arbitrarily delayed in EN−slow starting at the same
point at which N fails in EN−fail . Clearly, EN−slow is indistinguishable from EN−fail to all
processes not on N .

E′. E′ is identical to EN−slow except that node N receives messages from client C.
Clearly, E′ and EN−slow are indistinguishable to all processes not on N . So, T ’s read of
d must return the same value as in EN−slow, namely v′ or a more updated one, but not
v. However, note that E′ is also indistinguishable to processes on N from E in any prefix
of E of partial depth < 2 for T , since no process in N received any messages other than
those it received in E, and since clients do not receive any messages not related to their own
transactions, so C must have sent the same message(s) to N in E′ as it did in E. Therefore,
there is a prefix P ′ of E′ indistinguishable to p from P , in which v is not the decided value
of d, contradicting p’s knowledge of d’s decided value in P . ◀

▶ Theorem 4.1 (The FIDS theorem for sharded transactional systems). There is no implemen-
tation of a PDTS which shards data across multiple nodes that guarantees weak progress, and
simultaneously provides fast decision, invisible reads, distributed disjoint-access parallelism,
and serializability.

Proof. Assume by contradiction that there exists an implementation I of a PDTS with all
the properties in the theorem statement. Consider a database with 2 data items, X1, X2,
partitioned on 2 nodes, N1, N2 respectively. Consider two transactions, T1, T2, with the
following data sets: T1’s read set is {X1}. Its write set is {X2} if its read returns the initial
value of X1, in which case it writes a value different from X2’s initial value. Otherwise, its
write set is empty. For T2, its read set is {X2}, and its write set is {X1} if its read returns
the initial value of X2, and empty otherwise. If its write set is non-empty, it writes a value
different from X1’s initial value. Let T1 be executed by a client C1 and T2 be executed by a
different client C2. Consider the following executions.

DISC 2023

9:22 The FIDS Theorems for Multinode Multicore Transactional Systems

Solo Executions. We define two executions S1, S2, corresponding to T1, T2 respectively
running in isolation, without the other transaction present in the execution. Both executions
are synchronous and failure-free. By weak progress, Ti commits in Si, and by serializability,
Ti returns the initial value of its read item and therefore its write set is not empty.

Concurrent Execution. We define an execution, Econcur, where T1 and T2 execute concur-
rently. On each node, each transaction is executed on different processes. Recall that this
can happen since this is a parallel system, and the executing processes for a transaction are
arbitrarily chosen among the idle processes of each node. In Econcur, for each transaction
Ti, we let each process that executes it run until right before it knows the decided read set
and read set value of Ti. Let the prefix of Econcur that includes all these steps be P1. We
then let each process that handles Ti run until when the next step of its handler has depth
≥ dSi(Ti) − 2. Next, we let all messages sent on behalf of T1 to N1 and not yet received reach
N1 and be handled before any message sent on behalf of T2 to N1. For node N2, we let the
reverse happen; messages sent on behalf of T2 reach it and are handled before messages sent
on behalf of T1. Finally, we resume all processes, and pause node processes that handle Ti

when the next step of their handler has depth ≥ dSi
(Ti). As for the client of each transaction,

we let any messages sent to it arrive in the same order as they did in their corresponding
solo executions (we will show that it receives the same messages in Econcur).

We now claim that execution Econcur is indistinguishable to Ci from Si, and indistin-
guishable to each node process running Ti from the prefix of Si containing all this process’s
steps of depth < dSi(Ti). To do so, we consider the execution in two phases; the phase before
the two transactions achieve knowledge of their data sets including their values (up to the
end of P1), and the phase afterwards.

Phase 1 of Econcur. Note that for any prefix P of Econcur in which Ti’s read set’s value
is not known to be decided by some process, Ti’s known decided write set in P is empty.
Consider the longest prefix Pundecidedi

of P1 in which the decided write set of Ti is still empty.
Note that for every process p, its knowledge of Ti’s write set in Pundecidedi is the same as it is
in P . Therefore, by Lemma 4.3, in any such prefix P , Ti may not make any modifications to
shared base objects visible to any concurrent transaction. Therefore, in phase 1 there are no
modifications visible to either transaction that were not visible in the solo execution as well.
Thus, by the end of phase 1, Econcur’s prefix P1 is indistinguishable to both transactions
from their respective solo executions. Therefore, both transactions read the initial values of
their respective read sets, and both have a non-empty write set in Econcur.

Phase 2 of Econcur. To show that Econcur remains indistinguishable from the solo execu-
tions to their respective transactions in phase 2, we rely on the order of messages that are
received by the two nodes.

First, we note that by Lemma 4.5, Ti does not make base object modifications visible to
T(i mod 2)+1 on node Ni, since Ti’s final write set is {X(i mod 2)+1}, which does not intersect
T(i mod 2)+1’s final data set on node Ni.

Next, note that in each solo execution Si, the first process that knows the decided value of
Ti must be on node Ni, since that is where the data for the read of Ti is stored. Furthermore,
by construction of Econcur, any messages sent on behalf of Ti to Ni immediately after both
transactions gain knowledge of their write sets arrives before any such message sent on behalf
of T(i mod 2)+1, and its handler is completely executed. Thus, by the above claim, on both
nodes, all handlers of both transactions for messages sent at depth dEconcur

(Ti, P1) execute
to completion in a way that is indistinguishable to Ti from the solo execution Si.

N. Ben-David, G. Sela, and A. Szekeres 9:23

Finally, note that since Si is synchronous and failure and conflict free, and I satisfies the
fast decision property, by Corollary 3.7, the depth of Ti in Si is at most 2 more than the
partial depth of the first prefix in which Ti’s data set including its values became known. In
particular, since Si is indistinguishable to processes executing Ti from Econcur up to that
point, this means that dSi

(Ti) ≤ dEconcur
(Ti, P1) + 2. Thus, once messages from within

the handlers that were activated by messages sent in Econcur at depth dEconcur (Ti, P1) are
received, Ti must be decided in Econcur as well, since Econcur is indistinguishable from Si to
all processes running Ti up to this point. Therefore, both transactions commit successfully
in Econcur in a manner indistinguishable from their respective solo executions.

However, this yields a circular dependency between the two transactions; T2 must occur
before T1, since it returns the initial value of X2, before T1 writes to it. Similarly, T1
must occur before T2, since it returns the initial value of X1. This therefore contradicts
serializability. ◀

▶ Theorem 4.2 (The R-FIDS theorem for replicated transactional systems). There is no
implementation of a PDTS that utilizes client-driven replication that guarantees weak progress,
and simultaneously provides 1-seamless fault tolerance, fast decision, invisible reads, disjoint-
access parallelism, and serializability.

Proof. Assume by contradiction that there exists an implementation I of a parallel replicated
transactional system with all the properties stated in the theorem.

Consider a transactional system with 3 nodes N1, N2, N3. (For less than 3 nodes, there is
no PDTS that tolerates f ≥ 1 failures in the partial-synchrony model [18].) Further consider
3 transactions T1, T2, T3, 3 client processes C1, C2, C3, and 3 data items X1, X2, X3 each of
which is replicated on all 3 nodes. The data sets of the transactions are as follows: Ti’s read
set includes X(i mod 3)+1, and if the result of Ti’s read of X(i mod 3)+1 is the initial value of
X(i mod 3)+1, its write set includes Xi. Otherwise, its write set is empty. Each transaction
Ti, if its write set is non-empty, writes a value that is different from Xi’s initial value.

Transactions read and write sets
T T1 T2 T3

RT {X2} {X3} {X1}
WT {X1} if

R(X2)=⊥, else
{}

{X2} if
R(X3)=⊥, else

{}

{X3} if
R(X1)=⊥, else

{}

Consider the following executions. For each i = 1, 2, 3, in any of the following executions,
if it includes Ti then its coordinator handler is executed by Ci.

Solo Executions. Let E1, E2, E3 be failure-free synchronous executions of I, where transac-
tion Ti runs solo in Ei. Since Ei contains a single transaction and I satisfies weak progress,
transaction Ti commits in Ei. Since Ei is synchronous, has no failures and contains only Ti,
and I satisfies fast decision, Ti is fast deciding in Ei.

▷ Claim. Ti must have a depth of at most 4 in Ei.

To see this, note that by the definition of fast decision, if transaction Ti in Ei has depth at
least 3, the empty prefix of Ei must have an extension Ci of partial depth dEi

(Ti, Ci) ≤ 2 in
which the value of the read set’s item is known by some process to be decided, and therefore
the write set is known by that process to be decided as well. By Corollary 3.7, the depth of
Ti in Ei must be at most 2 more than the depth of Ci, and therefore is at most 4.

DISC 2023

9:24 The FIDS Theorems for Multinode Multicore Transactional Systems

X1 X2 X3

N1 1 2
N2 2 1
N3 1 2

Figure 2 Visual representation of execution Econcur in the proof of Theorem 4.2. The numbers in the
table represent the order of writing on each node; on node N1, X2 is written first, followed by X3, and so
on.

Since I satisfies 1-seamless fault tolerance, there exist executions E′
1, E′

2, E′
3 of I, where

the first event in E′
i is a crash of Ni, Ti runs solo and the depth of Ti in E′

i is the same as
its depth in Ei. We assume that in each E′

i, a different set of processes runs the handlers.
Lastly, since I is serializable, each E′

i is serializable, thus Ti’s read in E′
i returns the initial

value of X(i mod 3)+1, and therefore modifies Xi as part of its write set.
Since Ti’s write set is only determined from the outcome of Ti’s read, and may be empty

until that read’s value is decided, by Lemma 4.3, no base object modifications visible to
other transactions are executed by Ti in E′

i until after Ti’s read set values are known to some
process. Let the shortest prefix at which some process gains knowledge of Ti’s read set values
in E′

i be Pi. By Lemma 4.6, dE′
i
(Ti, Pi) ≥ 2.

Concurrent Execution. We define an execution Econcur with all 3 transactions. In Econcur,
all messages between processes on node Ni and any process that executes handlers associated
with Ti are arbitrarily delayed. For each i = 1, 2, 3, let processes that execute Ti in E′

i run in
Econcur identically to E′

i, in the same order of steps, until the end of Pi.
Note that up to this point, Econcur is indistinguishable to all executing processes from

the solo executions, since none of them has made any shared memory modifications visible to
the others. Therefore, the prefix Pknowledge of Econcur up to this point is an execution of I.

We continue Econcur as follows: Let all messages sent on behalf of Ti at depth dE′
i
(Ti, Pi)

be sent in Econcur, and be received and handled in the following order: on node N1, messages
for T2 are received first, and their handlers are run to completion, followed by messages for
T3. On node N2, T3’s messages are handled first, followed by messages of T1. Finally, on
node N3, messages of T1 are handled first followed by messages of T2. coordinator handlers
receive messages in the same order they received them in their corresponding solo executions.

Recall that transaction Ti reads data item X(i mod 3)+1 and, if it reads the initial value,
writes data item Xi. Thus, the service order defined above for execution Econcur (see the
order in which the nodes process their writes in Figure 2) means that on each node, the
second serviced transaction writes to data item X after the first transaction reads X, but it is
never the case that a transaction reads a data item after it was written by another transaction
on the same node. Since the data set of the second transaction to execute handlers after
prefix Pknowledge on each node does not overlap with the write set of the first one, and since
I provides invisible reads and DAP, then by Lemma 4.4, the first transaction does not make
base object modifications visible to the second transaction. In other words, on each node,
a process executing the second transaction cannot observe any changes on shared memory.
Thus, Econcur is still indistinguishable from E′

i to any node process that executes Ti up to
the end of the handlers of messages sent at depth dEconcur

(Ti, Pi). Note, however, that since
dE′

i
(Ti) ≤ 4 and dEconcur

(Ti, Pi) ≥ 2, this means that Econcur remains indistinguishable from
E′

i to these processes until Ti is decided.
Therefore, for all three transactions Ti commit in Econcur, reading the initial value of

X(i mod 3)+1 and writing a non-initial value in Xi. However, this yields a circular dependency
between the transactions (transaction T1 must happen before T2, which must happen before
T3, which must happen before T1), which contradicts serializability. ◀

Communication Lower Bounds
for Cryptographic Broadcast Protocols
Erica Blum #

University of Maryland, College Park, MD, USA

Elette Boyle #

Reichman University, Herzliya, Israel
NTT Research, Sunnyvale, CA, USA

Ran Cohen #

Reichman University, Herzliya, Israel

Chen-Da Liu-Zhang #

Hochschule Luzern, Switzerland
Web3 Foundation, Zug, Switzerland

Abstract
Broadcast protocols enable a set of n parties to agree on the input of a designated sender, even in the
face of malicious parties who collude to attack the protocol. In the honest-majority setting, a fruitful
line of work harnessed randomization and cryptography to achieve low-communication broadcast
protocols with sub-quadratic total communication and with “balanced” sub-linear communication
cost per party. However, comparatively little is known in the dishonest-majority setting. Here,
the most communication-efficient constructions are based on the protocol of Dolev and Strong
(SICOMP ’83), and sub-quadratic broadcast has not been achieved even using randomization
and cryptography. On the other hand, the only nontrivial ω(n) communication lower bounds are
restricted to deterministic protocols, or against strong adaptive adversaries that can perform “after
the fact” removal of messages.

We provide communication lower bounds in this space, which hold against arbitrary cryptography
and setup assumptions, as well as a simple protocol showing near tightness of our first bound.

Static adversary. We demonstrate a tradeoff between resiliency and communication for
randomized protocols secure against n − o(n) static corruptions. For example, Ω(n · polylog(n))
messages are needed when the number of honest parties is n/polylog(n); Ω(n

√
n) messages are

needed for O(
√

n) honest parties; and Ω(n2) messages are needed for O(1) honest parties.
Complementarily, we demonstrate broadcast with O(n · polylog(n)) total communication and
balanced polylog(n) per-party cost, facing any constant fraction of static corruptions.
Weakly adaptive adversary. Our second bound considers n/2 + k corruptions and a weakly
adaptive adversary that cannot remove messages “after the fact.” We show that any broadcast
protocol within this setting can be attacked to force an arbitrary party to send messages to k

other parties.
Our bound implies limitations on the feasibility of balanced low-communication protocols: For
example, ruling out broadcast facing 51% corruptions, in which all non-sender parties have
sublinear communication locality.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases broadcast, communication complexity, lower bounds, dishonest majority

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.10

Funding Erica Blum: Part of the work was done while the author was an intern at NTT Research.
Elette Boyle: Supported in part by AFOSR Award FA9550-21-1-0046 and ERC Project HSS (852952).

© Erica Blum, Elette Boyle, Ran Cohen, and Chen-Da Liu-Zhang;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:erblum@umd.edu
mailto:eboyle@alum.mit.edu
mailto:cohenran@runi.ac.il
mailto:chen-da.liuzhang@hslu.ch
https://doi.org/10.4230/LIPIcs.DISC.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Communication Lower Bounds for Cryptographic Broadcast Protocols

Ran Cohen: Supported in part by NSF grant no. 2055568 and by the Algorand Centres of Excel-
lence programme managed by Algorand Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of Algorand Foundation.
Chen-Da Liu-Zhang: Part of this work was done while the author was at NTT Research.

1 Introduction

In a broadcast protocol (a.k.a. Byzantine generals [42, 37]) a designated party (the sender)
distributes its input message in a way that all honest parties agree on a common output,
equal to the sender’s message if the sender is honest. Broadcast is amongst the most widely
studied problems in the context of distributed computing, and forms a fundamental building
block in virtually any distributed system requiring reliability in the presence of faults. The
focus of this work is on synchronous protocols that proceed in a round-by-round manner.

Understanding the required communication complexity of broadcast is the subject of a rich
line of research. Most centrally, this is measured as the total number of bits communicated
within the protocol, as a function of the number of parties n and corrupted parties t. Other
metrics have also been studied, such as message complexity (number of actual messages sent),
communication locality (defined as the maximal degree of a party in the induced communication
graph of the protocol execution [9]), and per-party communication requirements (measuring
how communication is split across parties).

The classical lower bound of Dolev and Reischuk [21] showed that Ω(n+ t2) messages are
necessary for deterministic protocols (a cubic message complexity is also sufficient facing
any linear number of corruptions [21, 22, 41]1). This result came as part of several seminal
impossibility results for deterministic protocols presented in the ’80s, concerning feasibility
[28], resiliency [37, 27], round complexity [26, 22], and connectivity [20, 27]. Those lower
bounds came hand in hand with feasibility results initiated by Ben-Or [4] and Rabin [44], as
well as Dolev and Strong [22], showing that randomization and cryptography are invaluable
tools in achieving strong properties within broadcast protocols.

As opposed to bounds on feasibility, resiliency, and round complexity, the impossibility of
[21] held for over 20 years, in both the honest- and dishonest-majority settings. Recently,
there has been progress in the honest-majority setting, with several works demonstrating
how randomization and cryptography can be used to bypass the classical communication
complexity bound and achieve sub-quadratic communication: with information-theoretic
security [36, 34, 35, 10] or with computational security under cryptographic assumptions
[14, 1, 17, 6, 8]; some of these protocols even achieve poly-logarithmic locality and “balanced”
sub-linear communication cost per party. While the security of some of these constructions
holds against a static adversary that specifies corruptions before the protocol’s execution
begins, some of these protocols are even secure against a weakly adaptive adversary; that
is, an adversary that cannot retract messages sent by a party upon corrupting that party.
Abraham et al. [1] showed that this relaxation is inherent for sub-quadratic broadcast, even
for randomized protocols, by demonstrating an Ω(t2) communication lower bound in the
presence of a strongly rushing adversary; that is, an adversary that can “drop” messages
by corrupting the sender after the message is sent but before it is delivered – this ability is
known as after-the-fact removal.

1 We note that [21, 22, 41] rely on cryptography, so they are not deterministic per se; however, these
protocols make a black-box use of the cryptographic primitives and are deterministic otherwise.

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:3

Focusing on the dishonest-majority setting, however, comparatively little is known about
communication complexity. Here, the most communication-efficient broadcast constructions
are based on the protocol of Dolev and Strong [22], and broadcast with o(nt) messages has
not been achieved even using randomization and cryptography. The state-of-the-art protocols,
for a constant fraction t = Θ(n) of corruptions, are due to Chan et al. [13] in the weakly
adaptive setting under a trusted setup assumption, and to Tsimos et al. [45] in the static
setting under a weaker setup assumption; however, both works require Ω(nt) communication,
namely Õ(n2).2 On the other hand, the only nontrivial ω(n) communication lower bounds
are those discussed above, restricted to deterministic protocols, or against strong adaptive
adversaries.

1.1 Our Contributions
In this work, we explore the achievable communication complexity of broadcast in the
dishonest-majority setting. We provide new communication lower bounds in this space,
which hold against arbitrary cryptographic and setup assumptions, as well as a simple
protocol showing near tightness of our first bound. Our results consider a synchronous
communication model: lower bounds in this model immediately translate into lower bounds
in the asynchronous and partially synchronous models, whereas protocols in the latter models
can only tolerate t < n/3 corruptions [23] implying that synchrony is inherently needed for
our protocol construction.

Static adversary. We begin with the setting of static corruptions. We demonstrate a simple
modification to the protocol of Chan et al. [13], incorporating techniques from Tsimos et
al. [45], which obtains a new protocol with essentially optimal Õ(n) communication. The
resulting protocol relies on the same assumptions as [13]: namely, cryptographic verifiable
random functions (VRFs)3 and a trusted public-key infrastructure (PKI) setup, where the
keys for each party are honestly generated and distributed. Further, the protocol is resilient
against any constant fraction of static corruptions as in [45], and achieves balanced Õ(1) cost
per party.

▶ Proposition 1 (sub-quadratic broadcast facing a constant fraction of static corruptions). Let
0 < ϵ < 1 be any constant. Assuming a trusted-PKI for VRFs and signatures, it is possible to
compute broadcast with Õ(n) total communication (Õ(1) per party) facing a static adversary
corrupting (1− ϵ) · n parties.

Perhaps more interestingly, in the regime of n− o(n) static corruptions, we demonstrate
a feasibility tradeoff between resiliency and communication that nearly tightly complements
the above upper bound. We show that resilience in the face of only ϵ(n) · n honest parties,
for ϵ(n) ∈ o(1), demands message complexity scaling as Ω(n/ϵ(n)). Note that a lower bound
on message complexity is stronger than for communication complexity, directly implying the
latter. Our lower bound holds for randomized protocols, given any cryptographic assumption
and any setup information that is generated by an external trusted party and given to the
parties before the beginning of the protocol, including the assumptions of the above upper
bound.

2 As standard in relevant literature, in this work Õ notation hides polynomial factors in log(n) as well as
in the cryptographic security parameter κ.

3 A verifiable random function [40] is a pseudorandom function that provides a non-interactively verifiable
proof for the correctness of its output.

DISC 2023

10:4 Communication Lower Bounds for Cryptographic Broadcast Protocols

▶ Theorem 2 (communication lower bound for static corruptions). Let ϵ(n) ∈ o(1). If there
exists a broadcast protocol that is secure against (1 − ϵ(n)) · n static corruptions, then the
message complexity of the protocol is Ω(n · 1

ϵ(n)).

For example, for n− n/ logd(n) corruptions with a constant d ≥ 1 (i.e., ϵ(n) = log−d(n)),
the message complexity must be Ω(n · logd(n)). For n−

√
n corruptions (i.e., ϵ(n) = 1/

√
n),

the message complexity must be Ω(n ·
√
n). And for n − c corruptions with a constant

c > 1 (i.e., ϵ(n) = c/n), the message complexity must be Ω(n2), in particular meaning that
sub-quadratic communication is impossible in this regime.

As noted, Theorem 2 holds for any cryptographic and setup assumptions. This captures,
in particular, PKI-style setup (such as the VRF-based PKI of Chan et al. [13]) in which the
trusted party samples a private/public key-pair for each party and gives each party its private
key together with the vector of all public keys. It additionally extends to even stronger,
more involved setup assumptions for generating correlated randomness beyond a product
distribution, e.g., setup for threshold signatures where parties’ secret values are nontrivially
correlated across one another.

Weakly adaptive adversary. The lower bound of Theorem 2 carries over directly to the
setting of weakly adaptive adversaries. Shifting back to the regime of a constant fraction of
corruptions, one may naturally ask whether a protocol such as that from Proposition 1 can
also exist within this regime.

Unfortunately, given a few minutes thought one sees that a balanced protocol with
polylogarithmic per-party communication as demonstrated by Proposition 1 cannot translate
to the weakly adaptive setting. The reason is that if the sender party speaks to at most
t other parties, then the adaptive adversary can simply corrupt each receiving party and
drop the message, thus blocking any information of the sender’s input from reaching honest
parties.

However, this attack applies only to the unique sender party. Indeed, non-sender parties
contribute no input to the protocol to be blocked; and, without the ability to perform
“after-the-fact” message removal, a weakly adaptive adversary cannot prevent communication
from being received by a party without a very large number of corruptions.

We therefore consider the locality of non-sender parties, and ask whether sublinear
locality is achievable. Our third result answers this question in the negative. That is, we show
an efficient adversary who can force any party of its choosing to communicate with a large
number of neighbors. Note that this in particular lower bounds the per-party communication
complexity of non-sender parties.

▶ Theorem 3 (non-sender locality facing adaptive corruptions). Let 0 < k < (n− 1)/2 and let
π be an n-party broadcast protocol secure against t = n/2 + k adaptive corruptions. Then,
for any non-sender party Pi∗ there exists a PPT adversary that can force the locality of Pi∗

to be larger than k, except for negligible probability.

For example, for k ∈ Θ(n), e.g., a constant fraction t = 0.51 · n of corruptions, the
locality of Pi∗ must be Θ(n), thus forming a separation from Proposition 1 for the locality
of non-sender parties. Similarly to Theorem 2, this bound holds in the presence of any
correlated-randomness setup and for any cryptographic assumptions.

We remark that our bound further indicates a design requirement for any protocol
attempting to achieve sub-quadratic o(n2) communication complexity within this setting.
To obtain o(n2) communication, it must of course be that nearly all parties have sublinear
communication locality. Our result shows that any such protocol must include instructions
causing a party to send out messages to a linear number of other parties upon determining
that it is under attack.

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:5

Summary. For completeness, Table 1 summarizes our results alongside prior work.

Table 1 Communication requirements of dishonest-majority (synchronous) broadcast. We
consider the standard, property-based definition of broadcast (see Definition 4). For each type of
adversary (strongly adaptive, weakly adaptive, and static), we consider the state-of-the-art protocols
and lower bounds in terms of setup, number of corruptions, total communication and (non-sender)
locality. For setup we distinguish bare PKI, where each party locally generates its key pair, as
opposed to trusted PKI, where all keys are generated by a trusted dealer. Reference [21] is only for
deterministic protocols.

setup corruptions total com. locality ref.

adaptive
strongly

any
bare pki

t = Θ(n)
t < n

Ω(n2)
O(n3)

Ω(n)
n

[1]
[22]

adaptive
weakly

any
trusted pki

t = Θ(n)
t = Θ(n) Õ(n2)

Ω(n)
O(n)

Thm. 3
[13]

(deterministic)
any

t = Θ(n) Ω(n2) Ω(n) [21]

bare pki t = Θ(n) Õ(n2) Õ(1) [45]
static trusted pki t = Θ(n) Õ(n) Õ(1) Prop. 1

any

e.g., t = n − O(1)
e.g., t = n −

√
n

e.g., t = n − n
polylog(n)

t = (1 − ϵ(n)) · n, ϵ(n) ∈ o(1)

Ω(n2)
Ω(n ·

√
n)

Ω(n · polylog(n))
Ω(n · 1

ϵ(n))

Thm. 2

1.2 Technical Overview
The proof of Proposition 1 follows almost immediately from [13] and [45]. We therefore focus
on our lower bounds.

Communication lower bound for static corruptions. The high-level idea of the attack
underlying Theorem 2 is to split all parties except for the sender Ps into two equal-size
subsets, A and B, randomly choose a set S of size ϵ(n)− 1 parties in A and a party Pi∗ ∈ B,
and corrupt all parties but S ∪ {Pi∗}. The adversary proceeds by running two independent
executions of the protocol. In the first, the sender runs an execution on input 0 towards A,
and all corrupted parties in ({Ps} ∪A) \ S ignore all messages from parties in B (pretending
they all crashed). In the second, the sender runs an execution on input 1 towards B, and all
corrupted parties in ({Ps} ∪ B) \ {Pi∗} ignore all messages from parties in A.

As long as the honest parties in S and the honest party Pi∗ do not communicate, the
adversary will make them output different values. This holds because, conditioned on no
communication between S and Pi∗ , the view of honest parties in S is indistinguishable from
a setting where the adversary crashes all parties in B and an honest sender has input 0; in
this case, all parties in A (and in particular in S) must output 0. Similarly, conditioned on
no communication between S and Pi∗ , the view of Pi∗ is indistinguishable from a setting
where the adversary crashes all parties in A and an honest sender has input 1; in this case,
all parties in B (and in particular Pi∗) must output 1.

The challenge now is to argue that the honest parties in S and the honest party Pi∗

do not communicate with noticeable probability. Note that this does not follow trivially
from the overall low communication complexity, as the communication patterns unfold as a
function of the adversarial behavior, which in particular depends on the choice of S and Pi∗ .
The argument instead follows from a series a delicate steps that compare the view of parties
in this execution with other adversarial strategies.

DISC 2023

10:6 Communication Lower Bounds for Cryptographic Broadcast Protocols

The underlying trick is to analyze the event of communication between S and Pi∗ by
splitting into two sub-cases: when S speaks to Pi∗ before receiving any message from Pi∗ ,
and when Pi∗ speaks to S before receiving any message from S. (Note, these events are
not disjoint.) The important observation is that before any communication is received
by the other side, then each side’s view in the attack is identically distributed as in a
hypothetical execution in which the corresponding set A or B crashes from the start. Since
these simple crash adversarial strategies are indeed independent of S and Pi∗ , then we can
easily analyze and upper bound the probability of S and Pi∗ communicating within their
hypothetical executions. To finalize the argument, we carry this analysis over to show that
with noticeable probability Pi∗ does not communicate with S in an actual execution with
the original adversary.

Locality lower bound for weakly adaptive corruptions. We proceed to consider the setting
of a constant fraction n/2 + k of weakly adaptive corruptions. As mentioned above, in the
adaptive setting it is easy to see that the sender must communicate with many parties,
since otherwise the adversary may crash every party that the sender communicates with;
therefore, the challenging part is to focus on non-sender parties. Further, when considering
strong adaptive adversaries that can perform after-the-fact message removal by corrupting
the sender, Abraham et al. [1] showed that every honest party must communicate with a
linear number of parties. In our setting, we do not consider such capabilities of the adversary.
In particular, once the adversary learns that an honest party has chosen to send a message,
this message cannot be removed or changed.

Unlike our previous lower bound which assumed n− o(n) corruptions, here we consider a
constant fraction of corruptions, so we cannot prevent sets of honest parties from communi-
cating with each other. Our approach, instead, is to keep the targeted party Pi∗ confused
about the output of other honest parties.

More concretely, our adversarial strategy splits all parties but the sender and Pi∗ into
disjoint equal-size sets S0 and S1 of parties, samples a random bit b and corrupts the sender
party and the parties in S1−b. The adversary communicates with S0 as if the sender’s input
is 0 and all parties in S1 have crashed, and at the same time plays towards S1 as if the
sender’s input is 1 and all parties in S0 have crashed. Although the adversary cannot prevent
honest parties from Sb from sending messages to the targeted party Pi∗ , it can corrupt every
party that receives a message from Pi∗ . The effect of this attack is that, although Pi∗ can
tell that the sender is cheating, Pi∗ cannot know whether parties in S0 or parties in S1 are
honest. And, moreover, Pi∗ cannot know whether the remaining honest parties know that
the sender is cheating or if they believe that the sender is honest and other parties crashed –
in which case they must output a bit (either 0 if S0 are honest or 1 if S1 are honest). To
overcome this attack, Pi∗ must communicate with sufficiently many parties such that the
adversary’s corruption budget will run out, i.e., with output locality at least k.

1.3 Further Related Work
Since the classical results from the ’80s, a significant line of work has been devoted to
understanding the complexity of broadcast protocols.4

4 In this work we consider broadcast protocols that achieve the usual properties of termination, agreement,
and validity. We note that stronger notions of broadcast have been considered in the literature, e.g., in
the adaptive setting, the works of [31, 30, 16] study corruption fairness ensuring that once any receiver
learns the sender’s input, the adversary cannot corrupt the sender and change its message). As our
main technical contributions are lower bounds, focusing on weaker requirements yields stronger results.

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:7

Communication complexity. In the honest-majority regime, we know of several protocols,
deterministic [5, 15, 41] or randomized [39, 29], that match the known lower bounds [21, 1]
for strongly adaptive adversaries. When considering static, or weakly adaptive security,
a fruitful line of works achieved sub-quadratic communication, with information-theoretic
security [36, 34, 35, 10] or with computational security [14, 1, 17, 6, 8] .

In the dishonest-majority regime, the most communication-efficient broadcast construc-
tions are based on the protocol of Dolev and Strong [22]. This protocol is secure facing any
number of strongly adaptive corruptions and the communication complexity is O(n3). When
considering weakly adaptive corruptions, Chan et al. [13] used cryptography and trusted
setup to dynamically elect a small, polylog-size committee in each round and improved the
communication to Õ(n2). In the static-corruption setting, Tsimos et al. [45] achieved Õ(n2)
communication by running the protocol of [22] over a “gossiping network” [19, 33]. This work
further achieved amortized sub-quadratic communication facing weakly adaptive corruptions
when all parties broadcast in parallel.

A line of works focused on achieving balanced protocols, where all parties incur the same
work in terms of communication complexity [35, 8, 2]. The work of [8] also showed lower
bounds on the necessary setup and cryptographic assumptions to achieve balanced protocols
when extending almost-everywhere agreement to full agreement.5 Message dissemination
protocols [18, 38] have also been proven useful for constructing balanced protocols.

The work in [32] showed that without trusted setup assumptions, at least one party must
send Ω(n1/3) messages, in the static filtering model, where each party must decide which set
of parties it will accept messages from in each round before the rounds begins. We remark
that our lower bounds hold also given trusted setup, and in the dynamic-filtering model (in
which sub-quadratic upper bounds have been achieved).

Connectivity. Obtaining communication-efficient protocols inherently relies on using a strict
subgraph of the communication network. Early works [20, 27] showed that deterministic
broadcast is possible in an incomplete graph only if the graph is (t + 1)-connected. The
influential work of King et al. [36] laid a path not only for randomized Byzantine agreement
with sub-quadratic communication, but also for protocols that run over a partial graph
[34, 35, 10, 8]. The graphs induced by those protocols yield expander graphs, and the work
of [7] showed that in the strongly adaptive setting and facing a linear number of corruptions,
no protocol for all-to-all broadcast in the plain model (without PKI setup) can maintain a
non-expanding communication graph against all adversarial strategies. Further, feasibility
of broadcast with a non-expander communication graph, admitting a sub-linear cut, was
demonstrated in weaker settings [7].

Outline of Paper
Preliminaries can be found in Section 2. In Section 3, we present the message-complexity
lower bound for static corruption,s and in Section 4, we present the locality lower bound for
weakly adaptive corruptions. The statically secure broadcast protocol with sub-quadratic
communication and poly-logarithmic locality can be found in the full version of the paper.

5 Almost-everywhere agreement [24] is a relaxed problem in which all but an o(1) fraction of the parties
must reach agreement. For this relaxation, King et al. [36] showed an efficient protocol, with poly-
logarithmic locality, communication, and rounds. This protocol serves as a stepping stone to several
sub-quadratic Byzantine agreement protocols, by extending almost-everywhere agreement to full
agreement [36, 34, 35, 10, 8].

DISC 2023

10:8 Communication Lower Bounds for Cryptographic Broadcast Protocols

2 Preliminaries

In this section, we present the security model and preliminary definitions.

Notations. We use calligraphic letters to denote sets or distributions (e.g., S), uppercase
for random variables (e.g., R), lowercase for values (e.g., r), and sans-serif (e.g., A) for
algorithms (i.e., Turing machines). For n ∈ N, let [n] = {1, . . . , n}. Let poly denote the set
all positive polynomials and let PPT denote a probabilistic (interactive) Turing machines
that runs in strictly polynomial time. We denote by κ the security parameter. A function
ν : N 7→ [0, 1] is negligible, denoted ν(κ) = negl(κ), if ν(κ) < 1/p(κ) for every p ∈ poly and
sufficiently large κ. Moreover, we say that ν : N 7→ [0, 1] is noticeable if ν(κ) ≥ 1/p(κ) for
some p ∈ poly and sufficiently large κ. When using the Õ(n) notation, polynomial factors in
log(n) and the security parameter κ are omitted.

Protocols. All protocols considered in this paper are PPT (probabilistic polynomial time):
the running time of every party is polynomial in the (common) security parameter, given as
a unary string. For simplicity, we consider Boolean-input Boolean-output protocols, where
apart from the common security parameter, a designated sender Ps has a single input bit,
and each of the honest parties outputs a single bit. We note that our protocols can be
used for broadcasting longer strings, with an additional dependency of the communication
complexity on the input-string length.

As our main results are the lower bounds, we consider protocols in the correlated random-
ness model; that is, prior to the beginning of the protocol π a trusted dealer samples values
(r1, . . . , rn)← Dπ from an efficiently sampleable known distribution Dπ and gives the value
ri to party Pi. This model captures, for example, a trusted PKI setup for digital signatures
and verifiable random functions (VRFs), where the dealer samples a public/private keys
for each party and hands to each Pi its secret key and a vector of all public keys; this is
the setup needed for our upper bound result. The model further captures more involved
distributions, such as setup for threshold signatures, information-theoretic PKI [43], pairwise
correlations for oblivious transfer [3] , and more.

We define the view of a party Pi as its setup information ri, its random coins, possibly
its input (in case Pi is the sender), and its set of all messages received during the protocol.

Communication model. The communication model that we consider is synchronous, mean-
ing that protocols proceed in rounds. In each round every party can send a message to
every other party over an authenticated channel, where the adversary can see the content of
all transmitted messages, but cannot drop/inject messages. We emphasize that our lower
bounds hold also in the private-channel setting which can be established over authenticated
channels using public-key encryption and a PKI setup; our protocol construction only requires
authenticated channels. It is guaranteed that every message sent in a round will arrive at its
destination by the end of that round. The adversary is rushing in the sense that it can use
the messages received by corrupted parties from honest parties in a given round to determine
the corrupted parties’ messages for that round.

Adversary model. The adversary runs in probabilistic polynomial time and may corrupt
a subset of the parties and instruct them to behave in an arbitrary (malicious) manner.
Some of our results (the lower bound in Section 3 and the feasibility result) consider a static
adversary that chooses which parties to corrupt before the beginning of the protocol, i.e.,

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:9

before the setup information is revealed to the parties. Note that this strengthens the lower
bound, but provides a weaker feasibility result. Our second lower bound (Section 4) considers
an adaptive adversary that can choose which parties to corrupt during the course of the
protocol, based on information it dynamically learns. We consider the atomic-multisend
model (also referred to as a weakly adaptive adversary), meaning that once a party Pi starts
sending messages in a given round, it cannot be corrupted until it completes sending all
messages for that round, and every message sent by Pi is delivered to its destination. This is
weaker than the standard model for adaptive corruptions [25, 12, 11] (also referred to as a
strongly rushing adversary), which enables the adversary to corrupt a party at any point
during the protocol and drop/change messages that were not delivered yet. Again, we note
that the weaker model we consider yields a stronger lower bound. Further, in the stronger
model, a result by Abraham et al. [1] rules out sub-quadratic protocols with linear resiliency,
even in the honest-majority setting.

Broadcast. We consider the standard, property-based definition of broadcast.

▶ Definition 4 (Broadcast protocol). An n-party protocol π, where a distinguished sender Ps

holds an initial input message x ∈ {0, 1}, is a broadcast protocol secure against t corruptions,
if the following conditions are satisfied for any PPT adversary that corrupts up to t parties:

Termination: There exists an a-priori-known round R such that the protocol is guaranteed
to complete within R rounds (i.e., every so-far honest party produces an output value).
Agreement: For every pair of parties Pi and Pj that are honest at the end of the
protocol, if party Pi outputs yi and party Pj outputs yj , then yi = yj with all but negligible
probability in κ.
Validity: If the sender is honest at the end of the protocol, then for every party Pi that
is honest at the end of the protocol, if Pi outputs yi then yi = x with all but negligible
probability in κ.

The communication locality [9, 7] of a protocol corresponds to the maximal degree of any
honest party in the communication graph induced by the protocol execution. While defining
the incoming communication edges to a party can be subtle (as adversarial parties may
“spam” honest parties; see e.g., a discussion in [7]), out-edges of honest parties are clearly
identifiable from the protocol execution. In this paper, we will focus on this simpler notion
of output-locality, and use the terminology locality of the protocol to simply refer to this
value. Our results provide a lower bound on output locality of given protocols, which in turn
directly lower bounds standard locality as in [9, 7].

▶ Definition 5 ((Output) Locality). An n-party t-secure broadcast protocol π with setup
distribution Dπ has locality ℓ, if for every PPT adversary Adv corrupting up to t parties and
every sender input x it holds that

Pr [OutEdges(π,Adv,Dπ, κ, x) > ℓ] ≤ negl(κ),

where OutEdges(π,Adv,Dπ, κ, x) is the random variable of the maximum number of parties
any honest party sends messages to, defined by running the protocol π with the adversary Adv
and setup distribution Dπ, security parameter κ and sender input x. The probability is taken
over the random coins of the honest parties, the random coins of Adv, and the sampling coins
from the setup distribution Dπ.

DISC 2023

10:10 Communication Lower Bounds for Cryptographic Broadcast Protocols

3 Message-Complexity Lower Bound for Static Corruptions

We begin with the proof of Theorem 2. The high-level idea of the lower bound is that if a
protocol has o(n2) messages, then, with noticeable probability, a randomly chosen pair of
parties do not communicate even under certain attacks.

▶ Theorem 6 (Theorem 2, restated). Let ϵ(n) ∈ o(1). If there exists a broadcast protocol that
is secure against (1− ϵ(n)) · n static corruptions, then the message complexity of the protocol
is Ω(n · 1

ϵ(n)).

Proof. Let ψ(n) = 1
12ϵ(n) and let π be a broadcast protocol with message complexity

MC = n · ψ(n) that is secure against (1− ϵ(n)) · n static corruptions. (In fact, we will prove
a stronger statement than claimed, where the message complexity of the protocol must be
greater than n · 1

12ϵ(n) .) Without loss of generality, we assume that the setup information
sampled before the beginning of the protocol (r1, . . . , rn)← Dπ includes the random string
used by each party. That is, every party Pi generates its messages in each round as a function
of ri, possibly its input (if Pi is the sender), and its incoming messages in prior rounds.
Again, without loss of generality, let P1 denote be the sender, and split the remaining parties
to two equal-size subsets A and B (for simplicity, assume that n is odd).

Consider the adversary Adv1 that proceeds as follows:
1. Choose randomly a set S ⊆ A of size ϵ(n) · n− 1 and a party Pi∗ ∈ B.
2. Corrupt all parties except for S ∪ {Pi∗}.
3. Receive the setup information of the corrupted parties {ri | Pi /∈ S ∪ {Pi∗}}.
4. Maintain two independent executions, denoted Exec0 and Exec1, as follows.

In the execution Exec0, the adversary runs in its head the parties in A \ S honestly
on their setup information {ri | Pi ∈ A \ S} and a copy of the sender, denoted P0

1,
running on input 0 and setup information r1.
The adversary communicates on behalf of the virtual parties in (A \ S) ∪ {P0

1} with
the honest parties in S according to this execution. Every corrupted party in B \ {Pi∗}
crashes in this execution, and the adversary drops every message sent by the virtual
parties in (A\S)∪{P0

1} to Pi∗ and does not deliver any message from Pi∗ to these parties.
In the execution Exec1, the adversary runs in its head the parties in B \ {Pi∗} honestly
on their setup information {ri | Pi ∈ B \ {Pi∗}} and a copy of the sender, denoted P1

1,
running on input 1 and setup information r1.
The adversary communicates on behalf of the virtual parties in (B \ {Pi∗})∪{P1

1} with
the honest Pi∗ according to this execution. Every corrupted party in A \ S crashes in
this execution, and the adversary drops every message sent by the virtual parties in
(B \ {Pi∗}) ∪ {P1

1} to honest parties in S and does not deliver any message from S to
these parties.

We start by defining a few notations. Consider the following random variables

SetupAndCoins = (R1, . . . , Rn, S, I
∗) ,

where R1, . . . , Rn are distributed according to Dπ, and S takes a value uniformly at random
in the subsets of A of size ϵ(n) ·n−1, and I∗ takes a value uniformly at random in B. During
the proof, Ri represents the setup information (including private randomness) of party Pi,
whereas the pair (S, I∗) corresponds to the random coins of the adversary Adv1 (used for
choosing S and Pi∗). Unless stated otherwise, all probabilities are taken over these random
variables.

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:11

Let AttackMain be the random variable defined by running the protocol π with the
adversary Adv1 over SetupAndCoins. That is, AttackMain consists of a vector of n+ 1
views: of the honest parties in S ∪ {PI∗} and of the corrupted parties in A\S and B \ {PI∗},
where the ith view is denoted by VIEWmain

i , and of two copies of the sender P0
1 and P1

1, denoted
VIEWmain

1-0 and VIEWmain
1-1 , respectively. Each view consists of the setup information Ri, possibly

the input, and the set of received messages in each round. Specifically,

AttackMain =
(

VIEWmain
1-0 ,VIEWmain

1-1 ,VIEWmain
2 , . . . ,VIEWmain

n

)
.

Denote by Emain
disconnect the event that PI∗ and S do not communicate in AttackMain; that

is, PI∗ does not send any message to parties in S (according to VIEWmain
I∗) and every party

PJ with J ∈ S does not send any message to PI∗ (according to VIEWmain
J). We proceed to

prove that the event Emain
disconnect occurs with noticeable probability.

▶ Lemma 7. Pr
[
Emain

disconnect
]
≥ 1

3 .

Proof. Denote by Emain
S→P the event that a party in S sends a message to PI∗ in AttackMain,

and PI∗ did not send any message to any party in S in any prior round. We begin by upper
bounding the probability of Emain

S→P.

▷ Claim 8. Pr
[
Emain

S→P
]
≤ 1

3 .

Proof. Consider a different adversary for π, denoted AdvB, that statically corrupts all
parties in B and crashes them (all other parties including the sender are honest). Let
AttackCrashB denote the random variable defined by running the protocol π with the
adversary AdvB over SetupAndCoins, in which the honest sender’s input is 1. That is,
AttackCrashB consists of a vector of n/2 + 1 views: of the honest parties in A, where
the ith view is denoted by VIEWcrash-B

i , and the sender P1 denoted by VIEWcrash-B
1 . Each view

consists of the setup information Ri, the input 1 for P1, and the set of received messages in
each round. Specifically,

AttackCrashB =
(

VIEWcrash-B
i

)
i∈A∪{1} .

Denote by Ecrash-B
S→P the event that a party in S sends a message to PI∗ in AttackCrashB

such that PI∗ did not send any message to any party in S in any prior round. Note that as
long as parties in S do not receive a message from PI∗ until some round ρ in AttackMain,
their joint view is identically distributed as their joint view in AttackCrashB up until
round ρ. Therefore,

Pr
[
Emain

S→P
]

= Pr
[
Ecrash-B

S→P
]
.

Note that, by the definition of AdvB , the distribution of AttackCrashB, and therefore
Pr

[
Ecrash-B

S→P
]
, is independent of the random variables S and I∗. Hence, one can consider the

mental experiment where R1, . . . , Rn are first sampled for setting AttackCrashB, and
later, S and I∗ are independently sampled at random. This does not affect the event Ecrash-B

S→P .
Recall that the message complexity of π is MC = n · ψ(n) for ψ(n) = 1

12ϵ(n) . Further,
S is of size |S| = ϵ(n) · n − 1 and |A| = |B| = n/2. Observe that the message complexity
upper-bounds the number of communication edges between A and B. Further, the probability
that a party in S talks first to PI∗ is upper-bounded by the probability that there exists a
communication edge between S and PI∗ . Since S and I∗ are uniformly distributed in A and
B, respectively, we obtain that this probability is bounded by

DISC 2023

10:12 Communication Lower Bounds for Cryptographic Broadcast Protocols

Pr
[
Ecrash-B

S→P
]
≤ MC · 1

|B|
· |S|
|A|

= n · ψ(n) · 1
n/2 ·

ϵ(n) · n− 1
n/2

≤ n · ψ(n) · 1
n/2 ·

ϵ(n) · n
n/2

= 4 · ψ(n) · ϵ(n)

= 4 · ϵ(n)
12 · ϵ(n) = 1

3 .

◁

Similarly, denote by Emain
P→S the event that PI∗ sends a message to a party in S in

AttackMain, such that no party in S sent a message to PI∗ in any prior round; i.e.,
changing the order from Emain

S→P. We upper bound the probability of Emain
P→S in an analogous

manner.

▷ Claim 9. Pr
[
Emain

P→S
]
≤ 1

3 .

Proof. Consider a different adversary for π, denoted AdvA, that statically corrupts all parties
in A and crashes them. Let AttackCrashA be a random variable defined by running the
protocol π with the adversary AdvA over SetupAndCoins, in which the honest sender’s
input is 0. That is, AttackCrashA consists of a vector of n/2 + 1 views: of the honest
parties in B, where the ith view is denoted by VIEWcrash-A

i , and the sender P1 denoted by
VIEWcrash-A

1 . Each view consists of the setup information Ri, the input 0 for P1, and the set
of received messages in each round. Specifically,

AttackCrashA =
(

VIEWcrash-A
i

)
i∈B∪{1} .

Denote by Ecrash-A
P→S the event that PI∗ sends a message to a party in S in AttackCrashA,

and no party in S sent a message to PI∗ in any prior round. As long as PI∗ does not receive
a message from parties in S until some round ρ in AttackMain, its view is identically
distributed as its view in AttackCrashA up until round ρ. Therefore,

Pr
[
Emain

P→S
]

= Pr
[
Ecrash-A

P→S
]
.

An analogue analysis to the previous case shows that Pr
[
Ecrash-A

P→S
]
≤ 1/3, as desired. ◁

Combined together, we get that

Pr
[
¬Emain

disconnect
]

= Pr
[
Emain

S→P ∪ Emain
P→S

]
≤ Pr

[
Emain

S→P
]

+ Pr
[
Emain

P→S
]
≤ 2

3 .

Therefore, Pr
[
Emain

disconnect
]
≥ 1/3. This concludes the proof of Lemma 7. ◀

We proceed to show that conditioned on Emain
disconnect, agreement of the protocol π is broken.

Denote by Y main
i the random variable denoting the output of Pi according to AttackMain.

Further, denote by J∗ the random variable corresponding to the minimal value in S.

▶ Lemma 10. Pr
[
Y main

I∗ ̸= Y main
J∗ | Emain

disconnect
]
≥ 1− negl(κ).

Proof. We begin by showing that conditioned on Emain
disconnect, party PI∗ outputs 0 with over-

whelming probability.

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:13

▷ Claim 11. Pr
[
Y main

I∗ = 0 | Emain
disconnect

]
≥ 1− negl(κ).

Proof. Consider again the adversary AdvA that statically corrupts all parties in A and crashes
them, with the corresponding random variable AttackCrashA. Denote by Ecrash-A

disconnect the
event that PI∗ does not send any message to parties in S (according to VIEWcrash-A

I∗). It holds
that

Pr
[
Ecrash-A

disconnect
]

= Pr
[
¬Ecrash-A

P→S
]

= 1− Pr
[
Ecrash-A

P→S
]
≥ 2/3.

First, since the sender is honest and has input 0, by validity all honest parties in B
output 0 in such execution, except for negligible probability. This holds even conditioned on
Ecrash-A

disconnect (since Ecrash-A
disconnect occurs with noticeable probability). Denote by Y crash-A

i the random
variable denoting the output of Pi according to AttackCrashA. Then,

Pr
[
Y crash-A

I∗ = 0
∣∣∣ Ecrash-A

disconnect

]
≥ 1− negl(κ). (1)

Second, note that conditioned on Ecrash-A
disconnect (by an analogous analysis of Lemma 7, this

probability is non-zero), the view of PI∗ is identically distributed in AttackCrashA as
its view in AttackMain conditioned on Emain

disconnect. Indeed, conditioned on Emain
disconnect, party

PI∗ receives messages only from corrupt parties in AttackMain, which are consistently
simulating precisely this execution where A has crashed and the sender has input 0. Therefore,

Pr
[
Y crash-A

I∗ = 0
∣∣∣ Ecrash-A

disconnect

]
= Pr

[
Y main

I∗ = 0
∣∣∣ Emain

disconnect

]
. (2)

The proof follows from Equations 1 and 2. This concludes the proof of Claim 11. ◁

We proceed to show that, conditioned on Emain
disconnect, parties in S output 1 with over-

whelming probability under the attack of Adv1. Recall that J∗ denotes the random variable
corresponding to the minimal value in S.

▷ Claim 12. Pr
[
Y main

J∗ = 1 | Emain
disconnect

]
≥ 1− negl(κ).

Proof. The proof follows in nearly an identical manner. Namely, consider the adversary
AdvB that statically corrupts all parties in B and crashes them, and the random variable
AttackCrashB. Denote by Ecrash-B

disconnect the event that for every J ∈ S, party PJ does not
send any message to PI∗ (according to VIEWcrash-B

J). It holds that

Pr
[
Ecrash-B

disconnect
]

= Pr
[
¬Ecrash-B

S→P
]

= 1− Pr
[
Ecrash-B

S→P
]
≥ 2/3.

Since the sender is honest and has input 1, by validity all honest parties in A output 1
except for negligible probability. This holds even conditioned on Ecrash-B

disconnect (since Ecrash-A
disconnect

occurs with noticeable probability). Denote by Y crash-B
i the random variable denoting the

output of Pi according to AttackCrashB, and recall that J∗ corresponds to the minimal
value in S. Then,

Pr
[
Y crash-B

J∗ = 1
∣∣∣ Ecrash-B

disconnect

]
≥ 1− negl(κ). (3)

Conditioned on Ecrash-B
disconnect, the view of PJ∗ is identically distributed in AttackCrashB

as its view in AttackMain conditioned in Emain
disconnect. Therefore,

Pr
[
Y crash-B

J∗ = 1
∣∣∣ Ecrash-B

disconnect

]
= Pr

[
Y main

J∗ = 1
∣∣∣ Emain

disconnect

]
. (4)

The proof follows from Equations 3 and 4. This concludes the proof of Claim 12. ◁

DISC 2023

10:14 Communication Lower Bounds for Cryptographic Broadcast Protocols

Since PI∗ and PJ∗ are honest, the proof of Lemma 10 follows from Claim 11 and Claim 12. ◀

Collectively, we have demonstrated an adversarial strategy Adv1 that violates the agree-
ment property of protocol π with noticeable probability:

Pr
[
Y main

I∗ ̸= Y main
J∗

]
= Pr

[
Y main

I∗ ̸= Y main
J∗ | Emain

disconnect
]
· Pr

[
Emain

disconnect
]

+ Pr
[
Y main

I∗ ̸= Y main
J∗ | ¬Emain

disconnect
]
· Pr

[
¬Emain

disconnect
]

≥ Pr
[
Y main

I∗ ̸= Y main
J∗ | Emain

disconnect
]
· Pr

[
Emain

disconnect
]

≥ (1− negl(κ)) · 1
3 .

Note that the attack succeeds for any choice of distribution for setup information, and that
the adversarial strategy runs in polynomial time, thus applying even in the presence of
computational hardness assumptions. This concludes the proof of Theorem 6. ◀

4 Locality Lower Bound for Adaptive Corruptions

We proceed with the proof of Theorem 3. Here we show how a weakly adaptive adversary
that can corrupt n/2 + k parties can target any party of its choice and force a that party
to communicate with k neighbors. We refer to Section 1.2 for a high-level overview of the
attack.

▶ Theorem 13 (Theorem 3, restated). Let 0 < k < (n−1)/2 and let π be an n-party broadcast
protocol secure against t = n/2 + k adaptive corruptions. Then, for any non-sender party
Pi∗ there exists a PPT adversary that can force the locality of Pi∗ to be larger than k, except
for negligible probability.

Proof. Let π be a broadcast protocol that is secure against t = n/2 + k adaptive corruptions.
Without loss of generality, we assume that the setup information sampled before the beginning
of the protocol (r1, . . . , rn)← Dπ includes the random string used by each party. That is,
every party Pi generates its messages in each round as a function of ri, possibly its input
(if Pi is the sender), and its incoming messages in prior rounds. Again, without loss of
generality, let P1 denote be the sender. Further, fix the party Pi∗ , and split the remaining
parties (without P1 and Pi∗) to two equal-size subsets S0 and S1 (for simplicity, assume that
n is even).

Consider the following adversary Adv that proceeds as follows:
1. Wait for the setup phase to complete. Later on, whenever corrupting a party Pi, the

adversary receive its setup information ri.
2. Corrupt the sender P1.
3. Toss a random bit b← {0, 1} and corrupt all parties in S1−b.
4. Maintain two independent executions, denoted Exec0 and Exec1, as follows.

In the execution Execb, the adversary runs in its head a copy of the sender, denoted
Pb

1, honestly running on input b and setup r1. The adversary communicates on behalf
of the virtual party Pb

1, and eventually corrupted parties in Sb, with all honest parties
Sb ∪ {Pi∗} according to this execution. The virtual parties in S1−b are emulated as
crashed in this execution.
Whenever Pi∗ sends a message to a party Pi ∈ Sb this party gets corrupted and ignores
this message (i.e., the adversary does not deliver messages from Pi∗ to Pi).

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:15

In the execution Exec1−b, the adversary runs in its head the parties in S1−b honestly
on their setup information {ri | Pi ∈ S1−b} and a copy of the sender, denoted P1−b

1 ,
running on input 1− b and setup r1. The adversary communicates on behalf of the
virtual parties in (S1−b) ∪ {P1−b

1 } with Pi∗ according to this execution. The honest
parties in Sb are emulated as crashed in this execution; that is, the adversary drops
every message sent by the virtual parties in (S1−b)∪{P1−b

1 } to Sb and does not deliver
any message from Sb to these parties.
Whenever Pi∗ sends a message to a party Pi ∈ S1−b this party ignores this message
(i.e., the adversary does not deliver the message to Pi).

We start by defining a few notations. Consider the following random variables

SetupAndCoins = (R1, . . . , Rn, B) ,

where R1, . . . , Rn are distributed according to Dπ, and B takes a value uniformly at random in
{0, 1}. During the proof, Ri represents the setup information (including private randomness)
of party Pi, whereas B corresponds to the adversarial choice of which set to corrupt. Unless
stated otherwise, all probabilities are taken over these random variables.

Let AttackMain be the random variable defined by running the protocol π with the
adversary Adv over SetupAndCoins. That is, AttackMain consists of a vector of n+ 1
views: of the parties in Sb ∪ {PI∗}, of the corrupted parties in S1−b, where the ith view
is denoted by VIEWmain

i , and of two copies of the sender P0
1 and P1

1, denoted VIEWmain
1-0 and

VIEWmain
1-1 , respectively. Each view consists of the setup information Ri, possibly the input

(for the sender), and the set of received messages in each round. Specifically,

AttackMain =
(

VIEWmain
1-0 ,VIEWmain

1-1 ,VIEWmain
2 , . . . ,VIEWmain

n

)
.

Denote by Emain
low-locality the event that the output-locality of PI∗ is at most k in AttackMain;

that is, PI∗ sends messages to at most k parties (according to VIEWmain
I∗). If Pr[Emain

low-locality] =
negl(κ), then the proof is completed. Otherwise, it holds that Pr[Emain

low-locality] is non-negligible
(in particular, Pr[Emain

low-locality] > 0). We will show that conditioned on Emain
low-locality, agreement

is broken. Denote by Y main
i the random variable denoting the output of Pi according to

AttackMain.
First, note that conditioned on Emain

low-locality, the view of Pi∗ is identically distributed no
matter which set Sb is corrupted.

▷ Claim 14. For every β ∈ {0, 1} it holds that

Pr
[
Y main

i∗ = β | Emain
low-locality ∩ (B = 0)

]
= Pr

[
Y main

i∗ = β | Emain
low-locality ∩ (B = 1)

]
.

Proof. By the construction of Adv, for each β ∈ {0, 1} party Pi∗ receives from the parties in
Sβ and from P1 messages that correspond to an execution by honest parties on sender input
β as if the parties in S1−β all crashed, and where every party in Sβ that Pi∗ talks to ignores
its message (since Pi∗ talks to at most k parties conditioned on Emain

low-locality, the adversary can
corrupt all of them).

Further, Pi∗ receives from the parties in S1−β and from P1 messages that correspond
to a simulated execution by honest parties on sender input 1− β as if the parties in Sβ all
crashed, and where every party in S1−β that Pi∗ talks to ignores its message.

Clearly, the view of Pi∗ is identically distributed in both cases; hence, its output bit is
identically distributed as well. ◁

DISC 2023

10:16 Communication Lower Bounds for Cryptographic Broadcast Protocols

We proceed to show that conditioned on Emain
low-locality, party Pi∗ outputs 0 for B = 0 and

outputs 1 for B = 1.

▷ Claim 15. For every β ∈ {0, 1} it holds that

Pr
[
Y main

i∗ = β | Emain
low-locality ∩ (B = β)

]
= 1− negl(κ).

Proof. Consider a different adversary for π, denoted Advβ , that proceeds as follows:
1. Wait for the setup phase to complete.
2. Corrupt all parties in S1−β and crash them.
3. Whenever Pi∗ sends a message to a party Pi ∈ Sβ this party gets corrupted and ignores

this message (i.e., the adversary does not deliver messages from Pi∗ to Pi).

Let AttackCrashSβ be the random variable defined by running the protocol π with
the adversary Advβ over SetupAndCoins, in which the honest sender’s input is β. That is,
AttackCrashSβ consists of a vector of n/2 views: of the parties in Sβ ∪{Pi∗} (both honest
and corrupted), where the ith view is denoted by VIEW

crash-Sβ

i , and the sender P1 denoted by
VIEW

crash-Sβ

1 . Each view consists of the setup information Ri, the input β for P1, and the set
of received messages in each round. Specifically,

AttackCrashSβ =
(

VIEW
crash-Sβ

i

)
i∈Sβ∪{1,i∗}

.

Let us denote by EcrashSβ

low-locality the event that the output-locality of PI∗ is at most k

in AttackCrashSβ ; that is, PI∗ sends messages to at most k parties (according to
VIEW

crash-Sβ

i∗). If Pr[EcrashSβ

low-locality] = negl(κ), then Advβ can force the locality of PI∗ to be
high in AttackCrashSβ , and the proof is completed. Otherwise, it holds that Pr[EcrashSβ

low-locality]
is non-negligible.

Note that since |Sβ | = (n− 1)/2 and k < (n− 1)/2, then conditioned on EcrashSβ

low-locality there
exists at least one remaining honest party in Sβ at the end of the execution with Advβ .
By validity, each such honest party must output β with overwhelming probability. Denote
by Y crash-Sβ

i the random variable denoting the output of Pi according to AttackCrashSβ .
Denote by J∗ the random variable corresponding to the minimal index of an honest party in
Sβ at the end of the execution with Advβ . Then

Pr
[
Y

crash-Sβ

J∗ = β | EcrashSβ

low-locality

]
= 1− negl(κ). (5)

Further, note that the set of all honest parties in Sβ and their joint view in an execution
with Advβ conditioned on EcrashSβ

low-locality is identically distributed as in an execution with Adv
conditioned on Emain

low-locality ∩ (B = β). Therefore,

Pr
[
Y

crash-Sβ

J∗ = β | EcrashSβ

low-locality

]
= Pr

[
Y main

J∗ = β | Emain
low-locality ∩ (B = β)

]
. (6)

Finally, by agreement, since both PJ∗ and Pi∗ are honest at the end of the execution with
Adv, conditioned on Emain

low-locality ∩ (B = β), it holds that

Pr
[
Y main

i∗ = β | Emain
low-locality ∩ (B = β)

]
= Pr

[
Y main

J∗ = β | Emain
low-locality ∩ (B = β)

]
−negl(κ). (7)

The claim follows from Equations 5, 6, and 7. ◁

By Claim 14 and Claim 15 it follows that Pr[Emain
low-locality] = negl(κ). This concludes the

proof of Theorem 13. ◀

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:17

References
1 Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication complexity of byzantine agreement, revisited. In Proceedings of
the 38th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
317–326, 2019.

2 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal communication and
improved computation. In Proceedings of the 41st Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 399–417, 2022.

3 Donald Beaver. Precomputing oblivious transfer. In 14th Annual International Cryptology
Conference (CRYPTO), pages 97–109, 1995.

4 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Proceedings of the 2nd Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 27–30, 1983.

5 Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus.
Computer Science Research, pages 313–322, 1992.

6 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous Byzantine
agreement with subquadratic communication. In Proceedings of the 18th Theory of Cryptography
Conference (TCC), part I, pages 353–380, 2020.

7 Elette Boyle, Ran Cohen, Deepesh Data, and Pavel Hubáček. Must the communication graph
of MPC protocols be an expander? In 38th Annual International Cryptology Conference
(CRYPTO), part III, pages 243–272, 2018.

8 Elette Boyle, Ran Cohen, and Aarushi Goel. Breaking the O(
√

n)-bit barrier: Byzantine
agreement with polylog bits per party. In Proceedings of the 40th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 319–330, 2021.

9 Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In Proceedings
of the 10th Theory of Cryptography Conference (TCC), pages 356–376, 2013.

10 Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. Fast Byzantine agreement. In
Proceedings of the 32th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 57–64, 2013.

11 Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 136–145, 2001.

12 Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC), pages 639–648, 1996.

13 T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Sublinear-round byzantine agreement under
corrupt majority. In Proceedings of the 23rd International Conference on the Theory and
Practice of Public-Key Cryptography (PKC), part II, pages 246–265, 2020.

14 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777:155–183, 2019.

15 Brian A Coan and Jennifer L Welch. Modular construction of a byzantine agreement protocol
with optimal message bit complexity. Information and Computation, 97(1):61–85, 1992.

16 Ran Cohen, Juan A. Garay, and Vassilis Zikas. Completeness theorems for adaptively secure
broadcast, 2023. CRYPTO ’23 (to appear).

17 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a COINcidence: Sub-quadratic
asynchronous Byzantine agreement WHP. In Proceedings of the 34th International Symposium
on Distributed Computing (DISC), pages 25:1–25:17, 2020.

18 Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applica-
tions. In Proceedings of the 28th ACM Conference on Computer and Communications Security
(CCS), pages 2705–2721, 2021.

DISC 2023

10:18 Communication Lower Bounds for Cryptographic Broadcast Protocols

19 Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 1–12, 1987.

20 Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.
21 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agreement.

Journal of the ACM, 32(1):191–204, 1985.
22 Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement.

SIAM Journal on Computing, 12(4):656–666, 1983.
23 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of

partial synchrony. Journal of the ACM, 35(2):288–323, 1988.
24 Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in networks

of bounded degree. SIAM Journal on Computing, 17(5):975–988, 1988.
25 Paul Feldman. Optimal Algorithms for Byzantine Agreement. PhD thesis, Stanford University,

1988. URL: https://dspace.mit.edu/handle/1721.1/14368.
26 Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive

consistency. Information Processing Letters, 14(4):183–186, 1982.
27 Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for

distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.
28 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus

with one faulty process. In Proceedings of the Second ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 1–7, 1983.

29 Matthias Fitzi, Chen-Da Liu-Zhang, and Julian Loss. A new way to achieve round-efficient
byzantine agreement. In Proceedings of the 40th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 355–362, 2021.

30 Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively secure
broadcast, revisited. In Proceedings of the 30th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 179–186, 2011.

31 Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
pages 466–485, 2010.

32 Dan Holtby, Bruce M. Kapron, and Valerie King. Lower bound for scalable Byzantine
agreement. Distributed Computing, 21(4):239–248, 2008.

33 Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking. Randomized
rumor spreading. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS), pages 565–574, 2000.

34 Valerie King and Jared Saia. From almost everywhere to everywhere: Byzantine agreement with
õ(n3/2) bits. In Proceedings of the 23th International Symposium on Distributed Computing
(DISC), pages 464–478, 2009.

35 Valerie King and Jared Saia. Breaking the O(n2) bit barrier: Scalable Byzantine agreement
with an adaptive adversary. Journal of the ACM, 58(4):18:1–18:24, 2011. A preliminary version
appeared at PODC’10.

36 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
990–999, 2006.

37 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

38 Chen-Da Liu-Zhang, Christian Matt, and Søren Eller Thomsen. Asymptotically optimal
message dissemination with applications to blockchains. Cryptology ePrint Archive, Paper
2022/1723, 2022. URL: https://eprint.iacr.org/2022/1723.

39 Silvio Micali. Very simple and efficient Byzantine agreement. In Proceedings of the 8th Annual
Innovations in Theoretical Computer Science (ITCS) conference, pages 6:1–6:1, 2017.

https://dspace.mit.edu/handle/1721.1/14368
https://eprint.iacr.org/2022/1723

E. Blum, E. Boyle, R. Cohen, and C.-D. Liu-Zhang 10:19

40 Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS),
pages 120–130, 1999.

41 Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine
agreement. In Proceedings of the 35th International Symposium on Distributed Computing
(DISC), pages 32:1–32:16, 2021.

42 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

43 Birgit Pfitzmann and Michael Waidner. Unconditional Byzantine agreement for any number
of faulty processors. In Proceedings of the 9th Annual Symposium on Theoretical Aspects of
Computer Science (STACS), pages 339–350, 1992.

44 Michael O. Rabin. Randomized byzantine generals. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science (FOCS), pages 403–409, 1983.

45 Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. Gossiping for communication-
efficient broadcast. In 42nd Annual International Cryptology Conference (CRYPTO), part III,
pages 439–469, 2022.

DISC 2023

Time and Space Optimal Massively Parallel
Algorithm for the 2-Ruling Set Problem
Mélanie Cambus #

Aalto University, Finland

Fabian Kuhn #

University of Freiburg, Germany

Shreyas Pai #

Aalto University, Finland

Jara Uitto #

Aalto University, Finland

Abstract
In this work, we present a constant-round algorithm for the 2-ruling set problem in the Congested
Clique model. As a direct consequence, we obtain a constant round algorithm in the MPC model with
linear space-per-machine and optimal total space. Our results improve on the O(log log log n)-round
algorithm by [HPS, DISC’14] and the O(log log ∆)-round algorithm by [GGKMR, PODC’18]. Our
techniques can also be applied to the semi-streaming model to obtain an O(1)-pass algorithm.

Our main technical contribution is a novel sampling procedure that returns a small subgraph
such that almost all nodes in the input graph are adjacent to the sampled subgraph. An MIS on
the sampled subgraph provides a 2-ruling set for a large fraction of the input graph. As a technical
challenge, we must handle the remaining part of the graph, which might still be relatively large. We
overcome this challenge by showing useful structural properties of the remaining graph and show
that running our process twice yields a 2-ruling set of the original input graph with high probability.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms; Theory
of computation → Streaming models

Keywords and phrases Ruling Sets, Parallel Algorithms, Congested Clique, Massively Parallel
Computing, Semi-Streaming

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.11

Related Version Full Version: https://arxiv.org/abs/2306.00432

Funding Mélanie Cambus: Academy of Finland, Grant 334238.
Shreyas Pai: Academy of Finland, Grant 334238.

1 Introduction

In this paper, we design and analyze a parallel algorithm for finding ruling sets. For a graph
G = (V, E) (with |V | = n and |E| = m) and integer β ≥ 1, a β-ruling set S ⊆ V is a set of
non-adjacent nodes such that for each node u ∈ V , there is a ruling set node v ∈ S within β

hops. This is a natural generalization of one of the most fundamental problems in parallel
and distributed graph algorithms: Maximal Independent Set (MIS), which corresponds to
a 1-ruling set. Ruling sets are closely related to clustering problems like Metric Facility
Location, as fast algorithms for β-ruling sets imply fast algorithms for O(β)-approximate
metric facility location [7, 18].

Our main contribution is an O(1) round algorithm for 2-ruling sets in Congested Clique,
improving on the O(log log log n) time algorithm by [16] and O(log log ∆) algorithm by [14],
where ∆ denotes the maximum degree of the input graph. While problems like minimum

© Mélanie Cambus, Fabian Kuhn, Shreyas Pai, and Jara Uitto;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 11; pp. 11:1–11:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:melanie.cambus@aalto.fi
https://orcid.org/0000-0002-7635-3924
mailto:kuhn@cs.uni-freiburg.de
https://orcid.org/0000-0002-1025-5037
mailto:shreyas.pai@aalto.fi
https://orcid.org/0000-0003-2409-7807
mailto:jara.uitto@aalto.fi
https://orcid.org/0000-0002-5179-5056
https://doi.org/10.4230/LIPIcs.DISC.2023.11
https://arxiv.org/abs/2306.00432
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Time and Space Optimal Massively Parallel Algorithm for the 2-Ruling Set Problem

spanning tree [27] and (∆ + 1)-coloring [9] surprisingly admit constant round solutions in the
Congested Clique model, the MIS problem and even β-ruling set for β = O(1) have resisted
attempts to obtain constant round algorithms. We make significant progress in this direction
by giving the first O(1) round algorithm for 2-ruling sets in Congested Clique.

The Congested Clique model [22], is a distributed synchronous message-passing model
where each node is given its incident edges as an input and the nodes perform all-to-all
communication in synchronous rounds. The crucial limitation is that the size of the messages
sent between any pair of nodes, in a single round, is limited to O(log n) bits, where n is
the number of nodes in the input graph. The goal is to minimize the number of required
synchronous communication rounds.

As a consequence of our Congested Clique algorithm, we obtain a constant round algorithm
for 2-ruling sets in the Linear Memory MPC model [19, 15, 5] and a constant pass algorithm
in the semi-streaming model [10, 11, 26]. The Congested Clique and MPC implementations
are asymptotically optimal in both time and space, as they use constant rounds and O(n+m)
total memory. In the semi-streaming model, one typically aims for very few passes, ideally
just one. While we show that constant passes are enough to solve 2-ruling sets with O(n)
space, discovering the precise number of passes required is an interesting open question. The
implementation details and definitions of the different models of computation can be found
in Section 3. Our main results are captured in the following theorem.

▶ Theorem (Main Theorem). There is a randomized parallel algorithm to the 2-ruling set
problem that can be implemented in O(1) rounds/passes (1) in the Congested Clique model,
(2) in the MPC model with O(n) words of local memory and O(n+m) words of total memory,
and (3) in the semi-streaming model with O(n) words of space. The running time guarantee
of the algorithm holds with high probability (w.h.p.)1.

1.1 Previous Works on Ruling Sets and MIS
Recall that a 2-ruling set S is a set of non-adjacent nodes, such that each node in the
input graph has a node from S within its 2-hop neighborhood. This is a strictly looser
requirement than the one of an MIS and hence, an MIS algorithm directly implies a 2-ruling
set algorithm. The classic algorithms by Luby [23] and Alon, Babai, and Itai [2] yield O(log n)
time algorithms for ruling sets. In Congested Clique and MPC, this was later improved to
Õ(
√

log ∆) [13] and the current state-of-the-art for MIS is O(log log ∆) rounds [14].
When focusing on the 2-ruling set problem, roughly a decade ago, [7] gave an expected

O(log log n) time algorithm and [16] gave an O(log log n) time algorithm w.h.p. in the
Congested Clique model. Combining the result of [16] with the O(log log ∆) algorithm for
MIS, this was improved to O(log log log n) rounds (w.h.p.). The 2-ruling set problem can
be solved deterministically in O(log log n) rounds in the Congested Clique model [28]. On
the other hand, [4] shows that Ω(log log n) rounds are required to compute an MIS in the
Broadcast Congested Clique model.

The O(log log ∆) algorithm by [14] carries over to the semi-streaming model. We note that
there is an older variant of this algorithm that also yields an O(log log ∆)-pass randomized
greedy MIS, which is given by picking a random permutation over the nodes [1]. Then
the permutation is iterated over and, whenever possible, the current node is added to the
MIS. However, this approach requires a polylogarithmic overhead in space and hence, does

1 Following the standard, we say that an event holds with high probability if it holds with probability
1 − 1/nc for a constant c ≥ 1 we can choose.

M. Cambus, F. Kuhn, S. Pai, and J. Uitto 11:3

not work in the Congested Clique model. While it is known that computing an MIS in
a single-pass of the stream requires Ω(n2) memory [8], there has been progress towards
designing single-pass semi-streaming algorithms for 2-ruling sets, but the current approaches
require significantly larger than O(n) memory: [20] shows that it can be done in O(n

√
n)

memory and this was improved to O(n4/3) by [3]. The Ω(n2)-space lower bound for MIS
was generalized to (α, α − 1)-ruling sets by [3]. An (α, β)-ruling set is a set S of nodes such
that nodes within S are distance at least α apart and every node in V \ S has a node in S

within distance β. An MIS is a (2, 1)-ruling set, and a 2-ruling set is a (2, 2)-ruling set, in
this paper we drop the α parameter for sake of convenience as it is always 2. A single-pass
semi-streaming algorithm for 2-ruling set has not been ruled out.

1.2 A High-Level Technical Overview of Our Algorithm
Our strategy is to compute an MIS iteratively on subgraphs of size O(n) until all nodes are
covered. We begin with a sampling process where each node u is sampled independently with
probability 1/

√
deg(u). Call the set of sampled vertices Vsamp. The intuition behind this

sampling probability is to maximize the probability that each node has a sampled neighbor
while ensuring O(n) edges in the sampled subgraph G[Vsamp]. To see why the sampled
subgraph is small, assume we have a d-regular graph. Hence, each node is independently
sampled with probability 1/

√
d. For an edge {u, v} to be sampled, both u and v must be

sampled together. Therefore, an edge exists in the sampled graph with probability 1/d, and
we can say that there are at most O(n) edges in the sampled graph in expectation (since the
total number of edges is nd).

We show that the same expectation holds for general graphs by orienting the edges based
on the degree of their end points and counting the number of outgoing sampled edges per
node. In order to show that G[Vsamp] has O(n) edges w.h.p., we face a technical challenge
that the random choices for all edges are not independent. The dependencies disallow the
use of standard Chernoff bounds, but we overcome the challenge by using the method of
bounded differences to show concentration. For convenience, we state the concentration
bounds in Section 4.

We classify nodes in the graph as either good or bad, based on how their initial degree
compares with the sum of sampling probabilities of their neighbors:

▶ Definition 1 (Good and Bad Nodes). A node u is good if
∑

v∈N(u) 1/
√

deg(v) ≥ γ log deg(u)
(for a constant γ). If a node is not good, it is bad.

Note that this definition is based entirely on the graph structure (i.e., degrees of all
nodes). Furthermore, it is straightforward to detect which nodes are good and bad in O(1)
rounds.

By definition, good nodes are expected to have many sampled neighbors, so they have a
relatively high probability of being covered by a node in Vsamp. So we put the good nodes
that do not have any sampled neighbors into a set V ∗ and process it later. We call V ∗ the
nodes that are set aside. Therefore, the remaining graph of uncovered nodes only consists
of bad nodes. In addition to all the good nodes without a sampled neighbor, we also add
some bad nodes that are very likely to be covered (but weren’t) into V ∗. We use the fact
that all nodes in V ∗ have a good chance of being covered to show that the graph G[V ∗]
has O(n) edges w.h.p. The main difficulty in proving this claim is that nodes are not put
independently in V ∗, and only nodes that are a certain distance apart are independent of
each other. Moreover, the probability of a single node in V ∗ with degree d being covered
is only 1 − 1/poly(d) which is not enough to do a simple union bound over all nodes. We

DISC 2023

11:4 Time and Space Optimal Massively Parallel Algorithm for the 2-Ruling Set Problem

overcome this challenge by showing that V ∗ can be partitioned into large sets of far apart
nodes, which allows us to (1) boost the probability of each set being covered, and (2) apply
a union bound over all sets.

Finally, we do an intricate counting argument that bounds the number of uncovered
bad nodes. We do this by counting the number of edges that can exist between bad nodes
and higher degree nodes, and show that the number of bad nodes with degree d is roughly
bounded by n/

√
d. Note that this bound is not enough to show that the remaining graph is

small. So we run the entire sampling and setting nodes aside process again to get the bound
to be roughly n/d, which makes it straightforward to show that the remaining graph has
O(n) edges.

2 Parallel 2-Ruling-Set

In this section, we present a parallel algorithm for finding a 2-ruling set. For technical
convenience, we assume that the maximum degree of the input graph is bounded by nα

for some constant α < 1/8, and in Section 2.3 we show how to remove this assumption.
When computing an MIS on the sampled vertices, we use a version of the Luby’s algorithm
that works as follows: in an iteration, each node picks a real number independently and
uniformly at random in [0, 1], local minima join the MIS, and these two steps are repeated
until all nodes are either in the MIS or have a neighbor in the MIS. It is well known that
this algorithm terminates in O(log n) iterations w.h.p. (see for example [12]).

Recalling the definition of good and bad nodes from Definition 1, let Bd be the set of bad
nodes in G with (initial) degree in the range [d, 2d). We describe the Parallel 2-Ruling-Set
algorithm in Algorithm 1.

Algorithm 1 Parallel 2-Ruling-Set.

Input: Graph G = (V, E), with ∆ ≤ nα (α < 1/8). Each node v ∈ V knows its degree
deg(v) in G.

1: Each node v ∈ G is independently sampled into Vsamp with probability 1/
√

deg(v).
2: We put good nodes that do not have any neighbors in Vsamp in the set V ∗.
3: Compute an MIS I on Gsamp = G[Vsamp] using Luby’s algorithm first on the bad nodes

and then on the rest of the nodes.
4: If any uncovered u ∈ Bd has a neighbor v that has at least c

√
d log5(d) neighbors in Bd,

we put u in V ∗. ▷ Bd is the set of bad nodes in G with (initial) degree in [d, 2d)
5: Compute an MIS on G[V ∗].
6: Run Lines 1 to 5 on G′ = G[V \ (I ∪ N(I) ∪ N(N(I)))] where I is the set of MIS nodes.
7: Compute an MIS on the graph induced by the uncovered nodes.

Output: The set of nodes that joined an MIS during the algorithm.

A node is considered covered if and only if it is at most 2-hops away from a node in the
MIS, and two adjacent nodes can never join the MIS. Since the last step of the algorithm
computes an MIS on the uncovered nodes, it is guaranteed to output a valid 2-ruling set,
hence proving the following theorem.

▶ Theorem 2. The Parallel 2-Ruling-Set algorithm (Algorithm 1) outputs a valid 2-ruling
set.

M. Cambus, F. Kuhn, S. Pai, and J. Uitto 11:5

2.1 Structural Properties of the Subgraphs

We will now prove key structural properties of the different subgraphs on which we compute
an MIS in Algorithm 1. This will allow for fast implementation of this algorithm in linear
memory MPC, Congested Clique, and semi-streaming models (see Section 3). We first prove
the fact that the sampled graph has a linear number of edges w.h.p.

▶ Lemma 3. The sampled graph Gsamp has O(n) edges w.h.p.

Proof. Let X be the random variable denoting the number of edges in Gsamp. Let Xu be
the indicator random variable for the event that u is sampled in Vsamp and let Ye be the
indicator random variable for the event that edge e belongs to Gsamp. We orient all edges
from the end point with lower initial degree to higher initial degree. By the degree sum
lemma, we have X =

∑
u∈V

∑
e∈Out(u) Ye, where Out(u) is defined as the set of outgoing

edges of u.
Consider an oriented edge e = (u, v) with deg(u) ≤ deg(v). We have that both u and v

are sampled with probability at most 1/
√

deg(u), so the probability that e is in Gsamp is at
most 1/ deg(u). Therefore, E[Ye] ≤ 1/ deg(u), and E[X] ≤ n.

We can interpret X as a function of the random variables Xu, u ∈ V , where changing one
coordinate changes X by at most ∆ = nα. Therefore, X follows the bounded differences
property with bounds cu = nα for all u ∈ V . Since the Xu’s are independent of each other,
we can use Lemma 18 with µ = t = n to say that: Pr[X > 2n] ≤ 2 exp(n2/n1+2α) ≤
2 exp(n1−2α) ≤ 1/poly(n). ◀

As we observed earlier, good nodes expect to see a lot of sampled neighbors, therefore it
is very unlikely that a good node has no sampled neighbors. The following lemma formalizes
this intuition.

▶ Lemma 4. In Line 2 of Algorithm 1, a good node u with deg(u) = d is added to V ∗ with
probability 1/poly(d). This event is independent of the randomness (for sampling into Vsamp)
of nodes more than distance 1 from u in G.

Proof. Since u is good, the sum of sampling probabilities of its neighbors is at least γ · log d.
So we can bound the expected number of neighbors in Vsamp as E [|N(u) ∩ Vsamp|] ≥ γ ·
log d. Since the sampling is done independently for each node, we can use Chernoff bound
(Lemma 16) to compute the probability that no neighbor of u is in Vsamp. We get that
Pr [|N(u) ∩ Vsamp| = 0] < 1/dγ/2. Hence, u is added to V ∗ with probability at most 1/poly(d).
This event only depends on the randomness of u and its neighbors in G, therefore it is
independent of the randomness of nodes at distance more than 1 from u. ◀

On the other hand, bad nodes expect to have few sampled neighbors. So a sampled bad
node will have a good probability of being a local minimum in the first iteration of Luby’s
algorithm. Therefore, nodes having many bad neighbors are very likely to have one such bad
neighbor join the MIS, and hence all such bad neighbors are 2-hop covered.

▶ Lemma 5. In Line 4 of Algorithm 1, each node u ∈ Bd is added to V ∗ with probability
at most 1/poly(d). This happens independently of the randomness (for sampling into Vsamp
and for the first Luby round when computing I) of nodes more than distance 3 from u in G.

DISC 2023

11:6 Time and Space Optimal Massively Parallel Algorithm for the 2-Ruling Set Problem

Proof. Recall that u is added to V ∗ if there is a node v ∈ N(u) such that v has more than
c
√

d · log5 d neighbors in Bd. Let v be an arbitrary such node and let Au be a subset of
N(v) ∩ Bd such that |Au| = c

√
d log5 d and u ∈ Au. We will show that at least one node of

Au joins the MIS in Line 3 of Algorithm 1 in the first Luby round with probability at least
1 − 1/poly(d).

A node w ∈ Au joins I in the first Luby round iff w is sampled and if w has the smallest
random number (in the first Luby round) among all its sampled neighbors. Note that if one
node of Au joins the MIS only depends on the randomness of the bad nodes in Au ∪ N(Au),
which are a subset of the 2-hop neighborhood of v and thus of the 3-hop neighborhood of u.

First, note that the number of nodes in Au ∪ N(Au) is at most O(d3/2 log5(d)) because
Au ⊆ Bd, so every node has at most 2d neighbors in N(Au).

Let Su be the set of sampled nodes in Au. Every node in N(Au) with at most O(
√

d log2 d)
neighbors in Au has at most O(log2 d) neighbors in Su with probability at least 1 − 1/poly(d)
(by using Chernoff bound Lemma 16 and then union bound over all such nodes in N(Au)).
On the other hand, every node w ∈ N(Au) with Ω(

√
d log2 d) neighbors in Au has Ω(log2 d)

neighbors in Su in expectation. If w is a good node, it does not participate in the first Luby
round carried out by the nodes in Au, and if w is a bad node, the expected number of sampled
neighbors of w is at most γ log(deg(w)) and we therefore have log(deg(w)) = Ω(log2 d) and
thus deg(w) = exp(Ω(log2 d)). The probability that w is sampled is therefore ≪ 1/poly(d).

With probability 1 − 1/poly(d), all the sampled bad nodes in N(Au) therefore have at
most O(log2 d) sampled neighbors in Au. Moreover, all the sampled nodes in Au have at
most O(log d) overall sampled neighbors, since Au is a subset of Bd, it has at most γ log 2d

sampled neighbors in expectation. Using a Chernoff bound (Lemma 16) gives us that each
node in Au has O(log d) sampled neighbors with probability 1 − 1/poly(d). In the following,
we condition on this event happening.

Consider the graph GS induced by the sampled nodes in Au ∪ N(Au). For any two nodes
x, y ∈ Su that are at distance at least 3 in GS , the events that x and y join the MIS I in the
first Luby step are independent. For every node x ∈ Su, there are at most O(log3 d) other
nodes in Su at distance at most 2 in GS (at most O(log d) direct neighbors and because
the direct neighbors can be in N(Au) at most O(log3 d) 2-hop neighbors). By greedily
picking nodes in Su, we can therefore find a set of size Ω(|Su|/ log3 d) of nodes in Su that
independently join the MIS I in the first Luby step. Because with probability 1 − 1/poly(d),
|Su| = Ω(log5 d), we have Ω(|Su|/ log3 d) = Ω(log2 d).

Each of those nodes independently joins I with probability at least 1/O(log d) and
therefore, one of those nodes joins I with probability at least 1 − 1/poly(d). ◀

We use the fact that nodes are added mostly independently and with low probability to
V ∗ in order to show that the graph induced by these nodes cannot have many edges.

▶ Lemma 6. The induced subgraph G[V ∗] has O(n) edges w.h.p.

Proof. A node v is placed in V ∗ if either (1) v is a good node with no neighbors in Vsamp, or
(2) v is an uncovered bad node in Bd and has a neighbor v that has at least c ·

√
d · log5(d)

neighbors in Bd. By Lemmas 4 and 5, each such node v is put in V ∗ with probability at
most 1/poly(deg(v)), and this happens independently of the randomness (for sampling into
Vsamp and for the first Luby round when computing I) of nodes at distance more than 3
from v. The exponent of the polynomial depends on c and γ.

Nodes with constant degree can be ignored, as they will contribute at most O(n) edges.
Therefore, we can assume that each node is put in V ∗ with probability at most 1/2.

M. Cambus, F. Kuhn, S. Pai, and J. Uitto 11:7

For the sake of analysis, we compute a greedy coloring of G7[V ∗]. To get G7[V ∗], we first
build the graph G7 which is the graph where we add an edge between any pair of nodes that
are at distance at most 7 in G, and then we take the induced subgraph of G7 on V ∗.

For each color class that has at least n1−8α nodes, all of which are at distance more than
7 from each other in G, they join V ∗ independently of each other. Therefore, the probability
that all nodes in a single color class belongs to V ∗ is at most (1/2)n1−8α ≪ 1/poly(n). By
union bounding over the color classes, we get that with probability 1 − 1/poly(n), the size of
each color class is less than n1−8α.

Each node in G7[V ∗] has degree at most n7α and hence there are n7α + 1 color classes.
Recall that ∆ ≤ nα in G, so if a color class C ⊆ V ∗ has less than n1−8α nodes, the number
of edges in G that are incident on C is at most n1−7α. Therefore, all color classes with less
than n1−8α nodes can only add at most O(n) edges to G[V ∗].

The lemma follows since we already showed that w.h.p., the size of each color class is less
than n1−8α. ◀

Recall that Bd is the set of bad nodes in G with (initial) degree in the range [d, 2d). Let
B∗

d be the nodes in Bd that have a neighbor v with more than c
√

d log5 d neighbors in Bd. If
a node in B∗

d is not covered by the MIS I on Vsamp, then it is put into V ∗. Let Bd = Bd \ B∗
d .

Define B = ∪log n
i=0 B2i and B = ∪log n

i=0 B2i .

▶ Lemma 7. The graph G′ = G[V \ (I ∪ N(I) ∪ N(N(I)))] of nodes that are uncovered
before Line 6 contains only nodes in B.

Proof. Nodes not in B are the good nodes and the bad nodes in B∗
d for all d. We show that

all these nodes are covered before Line 6 and hence cannot belong to G′. Nodes that are
either in Vsamp, or have a neighbor in Vsamp are covered by the MIS I computed in Line 3.
Good nodes that are not covered by I are put in V ∗ in Line 2. Similarly, nodes in B∗

d that are
not covered by I are put in V ∗ in Line 4. All nodes in V ∗ are covered because we compute
an MIS on G[V ∗] in Line 5. Therefore, all nodes not in B are covered before Line 6. ◀

2.2 Counting the Bad Nodes
Let V≥d be the set of all nodes in G of (initial) degree at least d. Intuitively, we now want to
say: (1) for each bad node in Bd, there are at least d/2 edges to higher degree nodes and (2)
from the higher degree nodes, only roughly

√
d edges to Bd. Hence, we can conclude that

d · |Bd| ≤ |V≥d2 | ·
√

d which further implies that |Bd| ≤ |V≥d2 |/
√

d.

▶ Lemma 8. Consider a bad node u with deg(u) = d. Then for at least d/2 nodes v ∈ N(u)
it holds that deg(v) ≥ d2/(2γ2 log2 d).

Proof. Otherwise, more than half of the neighbors have degree less than d2/(2γ2 log2 d).
Hence,∑

v∈N(u)

1√
deg(v)

≥ d

2 ·
√

2γ2 log2 d√
d2

= d

2 · 2γ log d

d
= γ log d ,

which is a contradiction with u being bad. ◀

▶ Lemma 9. For any d, we have that |Bd| ≤ 2|V≥d2/(2γ2 log2 d)| · log5 d/
√

d ≤ 2n log5 d/
√

d.

Proof. Let d′ = d2/(2γ2 log2 d). From Lemma 8, we know that for any u ∈ Bd, at least
d/2 edges go to V≥d′ . Furthermore, we have that any v ∈ V≥d′ has at most c

√
d log5 d

edges to Bd, since otherwise, none of v’s neighbors are in Bd. Hence, we can conclude that
d
2 · |Bd| ≤ |V≥d′ | ·

√
d log5 d which proves the lemma. ◀

DISC 2023

11:8 Time and Space Optimal Massively Parallel Algorithm for the 2-Ruling Set Problem

Now we have that just before Line 6, |Bd| ≈ n/
√

d, and we now run the entire algorithm
again on the uncovered graph G′. For G′, we define the sets V ′

≥d, B′
d, B′

d, B′, and B′

similarly as we did for G. Now we would expect that |B′
d| ≈ n/d, which is good because all

nodes have degree at most 2d.

▶ Lemma 10. The graph induced by the uncovered nodes before Line 7 has O(n) edges.

Proof. Again let d′ = d2/(2γ2 log2 d). By a similar argument as Lemma 7, the uncovered
nodes are a subset of B′. We can assume that d is at least some large enough constant, as
the nodes in all B′

d for constant d have at most O(n) edges. By Lemma 9, we have that
|Bd| ≤ 2|V≥d′ | log5 d/

√
d for any d, and we can similarly argue |B′

d| ≤ 2|V ′
≥d′ | log5 d/

√
d for

any d.
Now V ′

≥d′ ⊆ B≥d′ where B≥d′ = ∪log n
i=log d′B2i . Therefore,

|V ′
≥d′ | ≤

log n∑
i=log d′

2n log5 2i

√
2i

=
log n∑

i=log d′

2ni5

2i/2 ≤
log n∑

i=log d′

2n

2i/3 ≤ O

(
n log2/3 d

d2/3

)

Where the last inequality follows because the sum on the left is a geometric sequence with
rate 2−1/3 and it is well known that if the rate is between 0 and 1, the sum is asymptotically
dominated by the first term. Therefore, |B′

d| ≤ O(n · poly(log d)/d7/6) ≤ O(n/d). Since
each node in B′

d has degree at most 2d, and each node belongs to exactly one set, the graph
induced by nodes in B′ has O(n) edges. ◀

2.3 Degree Reduction
We define the degree reduction process similar to [14] and for sake of completeness we provide
a self-contained explanation here. Our goal is to lower the maximum degree of the input
graph G such that, after a constant number i of steps, the maximum degree is strictly less
than nα for some fixed constant α < 1/8. Let G1 = G, and ∆j = ∆(3/4)j . Let i be a value
such that for all 1 ≤ j < i, ∆j > nα/2 and ∆i ≤ nα/2. Since ∆ ≤ n, we can say that the
largest value i can take is ⌈log4/3(2/α)⌉ = O(1).

In each step j = 1 . . . i, we sample nodes Sj in Gj with probability 1/∆j , and then
compute an MIS on the subgraph induced by the sampled nodes Gj [Sj]. The residual graph
Gj+1 is obtained by removing all the neighbors of the sampled nodes. For each of these steps
to be possible, the graph induced by the sampled nodes must have O(n) edges w.h.p. In
order to guarantee the feasibility of step j, the maximum degree in the residual graph after
step j − 1 (i.e. Gj) has to be sufficiently small, which we show in the following lemma.

▶ Lemma 11. If we process a graph Gj induced by nodes picked uniformly at random with
probability 1/∆j, the maximum degree in the residual graph Gj+1 is O(∆j log n) w.h.p.

Proof. Consider a node v in the residual graph such that deg(v) > d. The probability that
a neighbor of v is sampled is at least 1/∆j . Therefore, the probability that no neighbor of v

is sampled is at most
(

1 − 1
∆j

)d

≤ exp (−d/∆j).
Denote c > 1 an arbitrary constant, and suppose that d = c∆j log n. Then, the probability

that deg(v) > d is at most exp (−c log n) = n−c. Hence, deg(v) = O(∆j log n) w.h.p. We
conclude the lemma by union bounding over all nodes of the residual graph. ◀

Therefore, the residual graph Gi+1 has maximum degree O(∆i log n) ≤ O(nα/2 log n)
≤ nα w.h.p., which is our assumption in Algorithm 1. We now finish by showing that each
induced subgraph has linear size.

M. Cambus, F. Kuhn, S. Pai, and J. Uitto 11:9

▶ Lemma 12. For all 1 ≤ j ≤ i, the graph induced by sampled nodes in step j, Gj [Sj], has
O(n) edges w.h.p.

Proof. First, consider a node v ∈ Sj , and u ∈ N(v). The probability that u ∈ Sj is
1/∆j . By Lemma 11, we condition on the high probability event that O (∆j−1 log n) is the
maximum degree of Gj . Note that this conditioning only affects the randomness used for
sampling in iterations 1, . . . , j − 1. In particular, this implies that the conditioning does
not affect the randomness used for sampling in iteration j. Therefore, the expected degree
of v in Sj is at most µ = O (log n · ∆j−1/∆j). Using Lemma 16, Pr[deg(v) ≥ (1 + c)µ] ≤
exp(−c2µ/(2 + c)) ≤ n−c, since µ ≥ log n. By union bounding over all nodes of Sj , the
maximum degree in Gj [Sj] is O (log n · ∆j−1/∆j) w.h.p.

Second, the expected number of nodes in Sj is at most µ′ = n/∆j . Using Lemma 16,
Pr[|Sj | ≥ (1 + c log n)µ′] ≤ exp(−c2 log2 nµ′/(2 + c log n)) ≤ n−c, since µ′ ≥ 1. Therefore,
|Sj | = O(n log n/∆j) w.h.p.

Now we can upper bound the number of edges in Gj [Sj] by |Sj | · ∆(Gj [Sj]). Therefore,
we can say w.h.p. that

|Sj | · ∆(Gj [Sj]) = O

(
n log n

∆j
· ∆j−1 log n

∆j

)
= O

(
n log2 n · ∆j−1

∆2
j

)
Moreover, since ∆j = ∆(3/4)j , we have that ∆j−1/∆2

j = ∆(3/4)j−1−2(3/4)j = ∆−(1/2)(3/4)j−1 =
1/
√

∆j−1. This term cancels the log2 n term since ∆j−1 > nα/2 ≫ log4 n. Hence, the number
of edges in Gj [Sj] is O(n) w.h.p. ◀

3 Implementation of Parallel 2-Ruling-Set

In this section, we show how to implement the algorithm Parallel 2-Ruling-Set in several
models of parallel computation. In each case of the implementations, we only need to bound
the runtime and memory usage of the algorithm in the corresponding model. Since we
faithfully execute the Parallel 2-Ruling-Set algorithm, the solutions computed are guaranteed
to be correct.

3.1 Congested Clique
In the Congested Clique model [22], we have n machines, where each machine is identified
with a single node in the input graph. The communication network is a clique, that is,
the machines are connected in all-to-all fashion, and the input graph is considered to be a
subgraph of the network. Machines can send unique messages to all other machines via the
edges in the clique, and the bandwidth of each edge is limited to O(log n) bits. Congested
Clique and MPC are closely related to each other, for example [17, 6] show how to implement
any Congested Clique algorithm in the MPC model.

By the definition of Parallel 2-Ruling-Set, we compute an MIS sequentially on several
subgraphs: (1) the sampled graphs Gj [Sj] (1 ≤ j ≤ i = O(1)) for reducing the degree, (2) the
graphs induced by Vsamp and V ∗ on G during the first run and on G′ during the second run,
and finally (3) the graph induced by uncovered nodes in the last step. Creating a subgraph
takes a constant number of rounds, since nodes just need to know the random choices and
aggregate information of their 1-hop neighbors.

By the lemmas in Section 2.1 and Section 2.3, all these subgraphs have O(n) edges w.h.p.
Therefore, we can use Lenzen’s routing protocol [21] to gather all the subgraphs one after
the other at a single machine in O(1) rounds. This machine computes the MIS according to
Algorithm 1, and informs the rest of the nodes whether they joined the MIS or not, which
allows us to identify the next subgraph. Therefore, we get the following result.

DISC 2023

11:10 Time and Space Optimal Massively Parallel Algorithm for the 2-Ruling Set Problem

▶ Theorem 13. There is a Congested Clique algorithm to find a 2-ruling set. The algorithm
runs in O(1) rounds w.h.p.

3.2 Linear Memory MPC Model
In the MPC model [19, 15, 5], we have M machines with S words of memory each, where
each word corresponds to O(log n) bits. Notice that an identifier of an edge or a node requires
one word to store. The machines communicate in an all-to-all fashion. The input graph is
divided among the machines and for simplicity and without loss of generality, we assume
that the edges of each node are placed on the same machine. In the linear-space MPC model,
we set S = Θ(n). Furthermore, the total space is defined as M · S and in our case, we have
M · S = Θ(m). Notice that M · S = Ω(m), for the number of edges m in the input graph,
simply to store the input.

The implementation follows as a direct consequence of the Congested Clique model. Since
the local memory is Θ(n), we can send each of the O(n) sized subgraphs one by one to a
single machine in O(1) rounds and use this machine to compute the MIS as described in the
algorithm. We obtain the following theorem.
▶ Theorem 14. There is an MPC algorithm with O(n) words of local and O(m) total memory
to find a 2-ruling set. The algorithm runs in O(1) rounds w.h.p.

3.3 Semi-streaming
Typically, in the distributed and parallel settings, the input graph is too large to fit a single
computer. Hence, it is divided among several computers (in one way or another) and the
computers need to communicate with each other to solve a problem. Another angle at
tackling large datasets and graphs is through the graph streaming models [10, 11, 26]. In
these models, the graph is not stored centrally, but an algorithm has access to the edges one
by one in an input stream, chosen randomly or by an adversary (the choice sometimes makes
a difference). We assume that each edge is processed before the next pass starts. In the
semi-streaming setting, the algorithm has Õ(n) working space, that it can use to store its
state. The goal is to make as few passes over the edge-stream as possible, ideally just a small
constant amount. Notice that in the case of many problems, such as matching approximation
or correlation clustering, simply storing the output might demand Ω(n) words.

In the semi-streaming model, we use one pass to process one subgraph of size O(n), by
storing it in memory and computing an MIS as described in the algorithm. Since there are
O(1) such subgraphs, we require O(1) passes. This leads to the following theorem.
▶ Theorem 15. There is an O(1)-pass semi-streaming algorithm with O(n) words of space
to find a 2-ruling set w.h.p.

4 Concentration Inequalities

▶ Lemma 16 (Chernoff Bounds). Let X1, . . . , Xk be independent {0, 1} random variables.
Let X denote the sum of the random variables, µ the sum’s expected value. Then,
1. For 0 ≤ δ ≤ 1, Pr[X ≤ (1 − δ)µ] ≤ exp(−δ2µ/2) and Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3),
2. For δ ≥ 1, Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/(2 + δ)).

▶ Definition 17 (Bounded Differences Property). A function f : X → R for X = X1 ×X2 · · ·×
Xn is said to satisfy the bounded differences property with bounds c1, c2, . . . , cn ∈ R+ if for
all x = (x1, x2, . . . , xn) ∈ X and all integers k ∈ [1, n] we have

sup
x′

k
∈Xk

|f(x) − f(x1, x2, . . . , xi−1, x′
k, . . . , xn)| ≤ ck

M. Cambus, F. Kuhn, S. Pai, and J. Uitto 11:11

▶ Lemma 18 (Bounded Differences Inequality [25, 24]). Let f : X → R satisfy the bounded
differences property with bounds c1, c2, . . . , cn. Consider independent random variables
X1, X2, . . . , Xn where Xk ∈ Xk for all integers k ∈ [1, n]. Let X = (X1, X2, . . . , Xn)
and µ = E[f(X)]. Then for any t > 0 we have:

Pr[|f(X) − µ| ≥ t] ≤ 2 exp
(

−t2∑n
k=1 c2

k

)

References
1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.

Correlation Clustering in Data Streams. In International Conference on Machine Learning
(ICML), pages 2237–2246, 2015.

2 Noga Alon, Lásló Babai, and Alon Itai. A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. Journal of Algorithms, 7(4):567–583, 1986.

3 Sepehr Assadi and Aditi Dudeja. Ruling Sets in Random Order and Adversarial Streams.
In Seth Gilbert, editor, 35th International Symposium on Distributed Computing (DISC
2021), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–
6:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.DISC.2021.6.

4 Sepehr Assadi, Gillat Kol, and Zhijun Zhang. Rounds vs communication tradeoffs for maximal
independent sets. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 1193–1204. IEEE, 2022.

5 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication Steps for Parallel Query
Processing. J. ACM, 64(6), 2017. doi:10.1145/3125644.

6 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Semi-mapreduce
meets congested clique, 2018. doi:10.48550/ARXIV.1802.10297.

7 Andrew Berns, James Hegeman, and Sriram V. Pemmaraju. Super-Fast Distributed Algorithms
for Metric Facility Location. In Proceedings of the International Colloquium on Automata,
Languages, and Programming (ICALP), pages 428–439, 2012.

8 Graham Cormode, Jacques Dark, and Christian Konrad. Independent Sets in Vertex-Arrival
Streams. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 45:1–
45:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2019.45.

9 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round coloring
in the congested clique. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), PODC ’20, pages 309–318, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3382734.3405751.

10 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph Distances in the Streaming Model: The Value of Space. In the Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 745–754,
2005.

11 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On Graph Problems in a Semi-Streaming Model. Theor. Comput. Sci., 348(2):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

12 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 270–277. SIAM, 2016.

13 Mohsen Ghaffari. Distributed MIS via All-to-All Communication. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), pages 141–149, 2017.
doi:10.1145/3087801.3087830.

DISC 2023

https://doi.org/10.4230/LIPIcs.DISC.2021.6
https://doi.org/10.4230/LIPIcs.DISC.2021.6
https://doi.org/10.1145/3125644
https://doi.org/10.48550/ARXIV.1802.10297
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://doi.org/10.1145/3382734.3405751
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1145/3087801.3087830

11:12 Time and Space Optimal Massively Parallel Algorithm for the 2-Ruling Set Problem

14 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Rubin-
feld. Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex
Cover. In the Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 129–138, 2018.

15 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, Searching, and Simulation
in the Mapreduce Framework. In Proceedings of the International Symposium on Algorithms
and Computation (ISAAC), pages 374–383, 2011. doi:10.1007/978-3-642-25591-5_39.

16 James Hegeman, Sriram Pemmaraju, and Vivek Sardeshmukh. Near-Constant-Time Dis-
tributed Algorithms on a Congested Clique. In Proceedings of the International Symposium on
Distributed Computing (DISC), pages 514–530, 2014. doi:10.1007/978-3-662-45174-8_35.

17 James W. Hegeman and Sriram V. Pemmaraju. Lessons from the congested clique applied to
mapreduce. Theoretical Computer Science, 608:268–281, 2015. Structural Information and
Communication Complexity. doi:10.1016/j.tcs.2015.09.029.

18 Tanmay Inamdar, Shreyas Pai, and Sriram V. Pemmaraju. Large-Scale Distributed Algorithms
for Facility Location with Outliers. In Jiannong Cao, Faith Ellen, Luis Rodrigues, and
Bernardo Ferreira, editors, 22nd International Conference on Principles of Distributed Systems
(OPODIS 2018), volume 125 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 5:1–5:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.OPODIS.2018.5.

19 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In the Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 938–948, 2010.

20 Christian Konrad, Sriram V Pemmaraju, Talal Riaz, and Peter Robinson. The complexity
of symmetry breaking in massive graphs. In 33rd International Symposium on Distributed
Computing (DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

21 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, pages 42–50.
Association for Computing Machinery, 2013. doi:10.1145/2484239.2501983.

22 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. Mst construction in o(log
log n) communication rounds. In Proceedings of the Fifteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 94–100. Association for Computing Machinery,
2003. doi:10.1145/777412.777428.

23 M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
Journal on Computing, 15:1036–1053, 1986.

24 Colin McDiarmid. Concentration, pages 195–248. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1998. doi:10.1007/978-3-662-12788-9_6.

25 Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics,
141(1):148–188, 1989.

26 S. Muthukrishnan. Data Streams: Algorithms and Applications. Theoretical Computer Science,
1(2):117–236, 2005. doi:10.1561/0400000002.

27 Krzysztof Nowicki. A deterministic algorithm for the mst problem in constant rounds of con-
gested clique. In Proceedings of the ACM Symposium on Theory of Computing (STOC), STOC
2021, pages 1154–1165, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3406325.3451136.

28 Shreyas Pai and Sriram V. Pemmaraju. Brief Announcement: Deterministic Massively Parallel
Algorithms for Ruling Sets. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 366–368, 2022. doi:10.1145/3519270.3538472.

https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1007/978-3-662-45174-8_35
https://doi.org/10.1016/j.tcs.2015.09.029
https://doi.org/10.4230/LIPIcs.OPODIS.2018.5
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1145/777412.777428
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1561/0400000002
https://doi.org/10.1145/3406325.3451136
https://doi.org/10.1145/3519270.3538472

Self-Stabilizing Clock Synchronization in
Probabilistic Networks
Bernadette Charron-Bost #

DI ENS, École Normale Supérieure, 75005 Paris, France

Louis Penet de Monterno #

École polytechnique, IP Paris, 91128 Palaiseau, France

Abstract
We consider the fundamental problem of clock synchronization in a synchronous multi-agent system.
Each agent holds a clock with an arbitrary initial value, and clocks must eventually indicate the
same value, modulo some integer P . A known solution for this problem in dynamic networks is the
self-stabilization SAP (for self-adaptive period) algorithm, which uses finite memory and relies solely
on the assumption of a finite dynamic diameter in the communication network.

This paper extends the results on this algorithm to probabilistic communication networks: We
introduce the concept of strong connectivity with high probability and we demonstrate that in any
probabilistic communication network satisfying this hypothesis, the SAP algorithm synchronizes
clocks with high probability. The proof of such a probabilistic hyperproperty is based on novel tools
and relies on weak assumptions about the probabilistic communication network, making it applicable
to a wide range of networks, including the classical push model. We provide an upper bound on
time and space complexity.

Building upon previous works by Feige et al. and Pittel, the paper provides solvability results and
evaluates the stabilization time and space complexity of SAP in two specific cases of communication
topologies.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Self-stabilization, Clock synchronization, Probabilistic networks

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.12

Acknowledgements We would like to thank Patrick Lambein-Monette, Stephan Merz, and Guillaume
Prémel for very useful discussions.

1 Introduction

There is a considerable interest in distributed systems consisting of multiple, potentially
mobile, agents. This is mainly motivated by the emergence of large scale networks, character-
ized by the lack of centralized control, the access to limited information and a time-varying
connectivity. Control and optimization algorithms deployed in such networks should be
completely distributed, relying only on local observations and information, and robust against
unexpected changes in topology such as link or node failures.

A canonical problem in distributed control is clock synchronization: In a system where
agents are equipped with local discrete clocks with common pulses, the objective is that
all clocks eventually synchronize despite arbitrary initializations. That corresponds to
synchronization in phase, as opposed to the problem of synchronization in frequency (e.g. for
instance in [34, 21, 23, 32]).

Clock synchronization is a fundamental problem arising in a number of applications,
both in engineering and natural systems. A synchronized clock is a fundamental basic
block used in many engineering systems, e.g. in the universal self-stabilizing algorithm
developed by Boldi and Vigna [9], or for deploying distributed algorithms structured into

© Bernadette Charron-Bost and Louis Penet de Monterno;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bernadette.charron-bost@ens.fr
mailto:penetdemonterno@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.DISC.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Self-Stabilizing Clock Synchronization in Probabilistic Networks

synchronized phases (e.g., the Two-Phase and Three-Phase Commit algorithms [6], or many
consensus algorithms [5, 20, 31, 14]). Clock synchronization also corresponds to a ubiquitous
phenomenon in the natural world and finds numerous applications in physics and biology,
e.g., the Kuramoto model for the synchronization of coupled oscillators [35], synchronous
flashing fireflies, collective synchronization of pancreatic beta cells [29].

In the model we consider, we assume agents take steps in synchronous rounds, but do not
have a consistent numbering of the rounds (e.g., agents regularly receive a common pulse).
The communication pattern at each round is captured by a directed graph that may change
continually from one round to the next, and the history of communications in the network
is modeled as a whole by a dynamic graph, that is an infinite sequence of directed graphs
with the same set of nodes. For a given set of agents (nodes), a communication model is
thus naturally represented by a subset of dynamic graphs, and corresponds to a probability
distribution on the set of dynamic graphs (or, equivalently, to a probability distribution on
the communication graph at each round) in the probabilistic setting.

In deterministic communication models, Charron-Bost and Monterno [12] proposed a
synchronization algorithm of periodic clocks, termed SAP (for self-adaptive period), which
is finite state and self-stabilizing, i.e., the complete initial state of each agent (not just
its clock value) can be arbitrary. This algorithm does not assume any global knowledge
on the network, and tolerates time-varying topologies. It is proved to solve the mod P -
synchronization problem in any dynamic network with a finite dynamic diameter, that is,
from any time onward and for every pair of agents i and j, there is a temporal path of
bounded length connecting i to j. In this paper, we focus instead on the probabilistic setting,
and explore the behavior of the SAP algorithm in a general probabilistic network.

In a deterministic communication model, each execution of SAP is considered individually,
and the property of mod-P synchronization must be satisfied by each possible execution
in this model. By contrast, in the probabilistic framework, the set of executions of SAP
is considered as a whole, and the correctness of SAP then corresponds to the following
hyperproperty [16]: the probability of executions of SAP in which mod P -synchronization is
achieved is greater than a chosen real p ∈ [0, 1).

Unfortunately, verifying probabilistic hyperproperties is technical, and requires to develop
novel proof strategies and new analysis tools. In particular, the notion of dynamic diameter,
which is central in the correctness proof of SAP in [12], is no more relevant in a probabilistic
framework. Indeed, we may see that in most of probabilistic networks, the dynamic diameter
is almost surely infinite (cf. Section 2.4). Instead, we provide a suitable notion of probabilistic
diameter, and define a probabilistic network to be strongly connected with high probability.

Importantly, SAP uses a finite but unbounded amount of memory, that is, in each
execution, the memory usage of each node eventually stops growing. Regarding memory
size issue, the SAP algorithm appears to be optimal since, in an unpublished companion
paper [13], we prove that there is no self-stabilizing and bounded-memory algorithm solving
the mod P -synchronization problem in a deterministic communication model if no bound on
the dynamic diameter is known.

1.1 Related work
Self-stabilizing clocks have been extensively studied in different communication models and
under different assumptions. In particular, clocks may be unbounded, in which case they are
required to be eventually equal, instead of only congruent. The synchronization problem of
unbounded clocks admits simple solutions in strongly connected networks, namely the Min
and Max algorithms [22, 27].

B. Charron-Bost and L. Penet de Monterno 12:3

Periodic clocks require more sophisticated synchronization mechanisms. In addition to
strong connectivity and static networks, the pioneer papers on periodic clock synchroniz-
ation [3, 28, 10, 1] all assume that a bound on the diameter is available. Then Boldi and
Vigna [9] proposed a synchronization algorithm, based on a self-adaptive period mechanism,
that dispenses with the latter assumption.

More recently, periodic clock synchronization has been studied in the Beeping model [17] in
which agents have severely limited communication capabilities: given a static and connected
bidirectional communication graph, in each round, each agent can either send a “beep” to all
its neighbors or stay silent. A self-stabilizing algorithm has been proposed by Feldmann et
al. [25], which is optimal both in time and space, but which requires to know a bound on the
network size. As explained above, without this global information available at each node,
such an algorithm does not exist: The best we can do with a self-stabilizing synchronization
algorithm in a network of unknown dynamic diameter1 is to use finite memory as achieved
in SAP.

There are also numerous results for mod P -synchronization with faulty agents. The fault-
tolerant solutions that have been proposed in various failure models, including the Byzantine
failure model, using algorithmic schemes initially developed for consensus (e.g., see [18, 19]).
They typically require a bidirectional connected (most of the time fully-connected) network.

All these works assume a static network. In [12], Charron-Bost et al. tackled the
dynamic setting: they extended the method of self-adaptive periods developed in [9] to
dynamic networks, and proposed the SAP algorithm for this type of networks with “dynamic
disconnectivity”.

For probabilistic communication models, the problem of clock synchronization has been
addressed by Boczkowski et al. [8] and later on by Bastide et al. [4], both in the particular
framework of the pull model [30] over the fully-connected graph: In each round each agent
receives a message from an agent sampled uniformly at random. Their focus is on minimizing
message size and they both obtain a stabilization time of O(log n) in a network of size n.
Unfortunately, the algorithms in these papers are specific to the pull model, and their good
performances highly rely on the assumption of a fully-connected network. Observe that, in
the case where P is not a power of 2, those algorithms are not bounded-memory.

Clock synchronization has been studied in another probabilistic communication model,
namely, the model of population protocols, consisting of a set of agents, interacting in randomly
chosen pairs. This is basically an asynchronous model, where the synchronization task is
quite different from the one studied in this paper since it amounts to implementing the
abstraction of rounds [2]. In other words, the point in the population protocol model is to
achieve synchronization in frequency instead of synchronization in phase.

1.2 Contribution

Our main contribution in this paper is the probabilistic correctness proof of the SAP algorithm:
we show that it synchronizes periodic clocks in the large class of networks that are strongly
connected with high probability. The probabilistic communication model is totally general in
the sense that we only assume it to be memoryless, meaning that the communication graph
at each round does not depend on the previous rounds. As a byproduct, our correctness
proof provides upper bounds on the stabilization time and the space complexity of SAP.

1 or unknown size in the static case.

DISC 2023

12:4 Self-Stabilizing Clock Synchronization in Probabilistic Networks

Verifying probabilistic hyperproperties requires to develop novel proof strategies and
analysis tools. In particular, we devise new parameters for probabilistic dynamic graphs,
namely, a hierarchy of probabilistic diameters, and prove several basic properties on these
diameters that are interesting on their own.

Finally, we apply our results for general probabilistic communication models to the
classical push model: Leveraging the fundamental properties of this rumor spreading model
established by Feige et al. [24] and Pittel [33], we prove the probabilistic correctness of SAP
in the push model and provide an estimate of its stabilization time and its space complexity,
first for a general bidirectional network, and then for the case of a fully-connected network.

2 Preliminaries

2.1 The computing model
We consider a networked system of n agents (nodes), denoted 1, 2, . . . , n. Computation
proceeds in synchronized rounds, which are communication closed in the sense that no
message received in round t is sent in a round different from t. In round t (t = 1, 2, · · ·),
each node successively (a) broadcasts a message at the beginning of round t, (b) receives
some messages, and (c) undergoes an internal transition to a new state. Communications
that occur at round t are modeled by a directed graph (digraph) G(t) = ([n], Et) where
[n] = {1, . . . , n}. We assume a self-loop at each node in all these digraphs since a node can
communicate with itself instantaneously. An infinite sequence of digraphs G = (G(t))t⩾1 is
called a dynamic graph and the set of dynamic graphs of size n is denoted Gn.

An algorithm A is given by a set Q of local states, a set of messages M, a sending
function σ : Q →M, and a transition function τ : Q×M⊕ → Q, where M⊕ is the set of
finite multisets over M. Every state in Q is a possible initial state (self-stabilization model).

An execution of A with the dynamic graph G then proceeds as follows: In round (t =
1, 2 . . .), each node applies the sending function σ to its current state to generate the message
to be broadcasted, then it receives the messages sent by its incoming neighbors in the
digraph G(t), and finally applies the transition function τ to its current state and the list of
messages it has just received to go to a next state. It is entirely determined by the collection
of initial states and the dynamic graph G.

Given an execution of A, the value of any local variable xi at the end of round t is denoted
by xi(t), and xi(0) is the initial value of xi.

2.2 Dynamic graphs and probability measure
Let us first recall that the product of two digraphs G1 = (V, E1) and G2 = (V, E2), denoted
G1 ◦G2, is the digraph with the set of nodes V and with an edge (i, j) if there exists k ∈ V

such that (i, k) ∈ E1 and (k, j) ∈ E2. For any dynamic graph G and any integers t′ ⩾ t ⩾ 1,
we let

G(t : t′) def= G(t) ◦ · · · ◦G(t′).

By convention, G(t : t) = G(t), and when 0 < t′ < t, G(t : t′) is the digraph with only a
self-loop at each node. The set of i’s in-neighbors in G(t : t′) is denoted by Ini(t : t′), and
simply by Ini(t) when t′ = t. Every edge (i, j) in G(t : t′) corresponds to a path in the round
interval [t, t′]: there exist t′ − t + 2 nodes i = k0, k1, . . . , kt′−t+1 = j such that (kr, kr+1) is
an edge of G(t + r) for each r = 0, . . . , t′ − t.

B. Charron-Bost and L. Penet de Monterno 12:5

For a fixed n ∈ N+, and a triple i ∈ [n], t ∈ N, δ ∈ N+, we let

Γt,δ
i

def= {G ∈ Gn | ∀j ∈ [n], (i, j) is an edge of G(t + 1 : t + δ)}.

If Σn denotes the Borel σ-algebra on Gn, then (Gn, Σ n) is a measurable space. Then, we
consider a probability measure on (Gn, Σ n), denoted Prn, or simply Pr. The pair (Gn, Prn)
is called a probabilistic communication network of size n.

By analogy with the terminology used in game theory (e.g., see [7]), we say that Pr is
memoryless if the random variables G(1),G(2),G(3), . . . are mutually independent.

Each execution of an algorithm A in a system with n nodes is characterized by an initial
global state in Qn and a communication graph in Gn. Hence, the set of executions of A
starting at q ∈ Qn, denoted Eq(A), is isomorphic to Gn. Thus Pr induces a probabilistic
measure on Eq(A), which will also be denoted by Pr as no confusion can arise.

2.3 The mod P-synchronization problem
Let P and n be two positive integers, and let A be an algorithm where each node i maintains
an integer variable Ci, called the clock of i. An execution of A, over a network of n agents,
is said to achieve mod P -synchronization in τ rounds if

∃c ∈ N, ∀t ⩾ τ, ∀i ∈ [n], Ci(t) ≡P t + c,

in which case the network is said to be synchronized (for mod P -synchronized) from round τ ,
i.e.,

∀t ⩾ τ, ∀i, j ∈ [n], Ci(t) ≡P Cj(t).

Then we say that the algorithm A with n agents solves the mod P -synchronization problem
in τ rounds with probability p if for every initial state q ∈ Qn of A, the measure of the set of
executions of A achieving mod P -synchronization in τ rounds is at least equal to p.

2.4 Probabilistic diameters
Let us fix a global state q ∈ Qn. For any real p ∈ [0, 1] and any integer k ∈ [n], we define the
probabilistic order k diameter as the minimum number of rounds required for k arbitrary
nodes to communicate with all the nodes in the network with probability at least p. Formally,
we let

D̂(k)(p) def= inf{δ ∈ N+ | inf
i1,··· ,ik∈[n],t∈N

Pr(Γt,δ
i1
∩ · · · ∩ Γt,δ

ik
) ⩾ p}.

Clearly, we have that D̂(1)(p) ⩽ · · · ⩽ D̂(n)(p), with equalities when p = 1. As a matter of
fact, the probabilistic proof of the SAPg algorithm that we develop in the following section
only involves the probabilistic diameters D̂(1)(p) and D̂(2)(p).

As an example, let us consider the memoryless probability measure Pr on G 2 defined by

Pr(G(t) = G1) = Pr(G(t) = G2) = 1
2 ,

where G1 and G2 are the two-node digraphs defined in Figure 1. For any round t and any
positive integer δ, we have:

Pr(Γt,δ
1) = 1− Pr

(
δ⋂

d=1
(G(t + d) = G2)

)
= 1−

δ∏
ℓ=1

Pr(G(t + d) = G2) = 1− 2−δ.

DISC 2023

12:6 Self-Stabilizing Clock Synchronization in Probabilistic Networks

1 2

(a) digraph G1.

1 2

(b) digraph G2.

Figure 1 Two digraphs.

Similarly, Pr(Γt,δ
2) = 1− 2−δ. Moreover,

Pr(Γt,δ
1 ∩ Γt,δ

2) = 1− Pr(Γt,δ
1 ∪ Γt,δ

2)

= 1− Pr
(

δ⋂
d=1

(G(t + d) = G2) ∪
δ⋂

d=1
(G(t + d) = G1)

)
= 1− 2−δ+1.

Using the definition of the probabilistic diameters and the two equations above, we obtain
the values of D̂(1)(p) and D̂(2)(p) in our example:

D̂(1)(p) = inf{δ ∈ N+ | 1− 2−δ ⩾ p} = ⌈− log2(1− p)⌉ and

D̂(2)(p) = inf{δ ∈ N+ | 1− 2−δ+1 ⩾ p} = 1 + ⌈− log2(1− p)⌉.

This simple example shows why it is not appropriate to use the parameter D(p) simply
defined by:

D(p) def= inf{δ ∈ N+ | Pr(DG ⩽ δ) ⩾ p},

where DG = inf{δ ∈ N+ | ∀i ∈ [n], ∀t ∈ N,G ∈ Γt,δ
i } is the dynamic diameter of the dynamic

graph G [11]. Indeed, for each node i ∈ {1, 2}, we have:

Pr(DG ⩽ δ) ⩽ Pr
(∞⋂

ℓ=0
Γℓδ,δ

i

)
=

∞∏
ℓ=0

Pr(Γℓδ,δ
i) = 0,

and thus D(p) is infinite if p is positive. In other words, the dynamic diameter of almost all
dynamic graphs is infinite in this example, while D̂(1)(p) is finite when p < 1.

We now state some general properties on the probabilistic diameters D̂(1)(p) and D̂(2)(p).

▶ Lemma 1. For any memoryless probability measure and all real numbers p ∈
[1

2 , 1
]
, if

D̂(1)(p) is finite, then D̂(2)(p) is finite and D̂(2)(p) ⩽ 2D̂(1)(p).

Proof. Because of the self-loops, the digraphs G(t + 1 : t + δ) and G(t + δ + 1 : t + 2δ) are
both subgraphs of G(t + 1 : t + 2δ), and hence Γt,δ

i ∪ Γt+δ,δ
i ⊆ Γt,2δ

i . It follows that:

Pr
(

Γt,2D̂(1)(p)
i ∩ Γt,2D̂(1)(p)

j

)
⩾ 1− Pr

(
Γt,2D̂(1)(p)

i

)
− Pr

(
Γt,2D̂(1)(p)

j

)
⩾ 1− Pr

(
Γt,D̂(1)(p)

i ∩ Γt+D̂(1)(p),D̂(1)(p)
i

)
− Pr

(
Γt,D̂(1)(p)

j ∩ Γt+D̂(1)(p),D̂(1)(p)
j

)
⩾ 1− 2(1− p)2.

The second inequality holds because of the above-proved inclusion, and the third one because
of the memoryless assumption. If p ∈

[1
2 , 1
]
, then 1−2(1−p)2 ⩾ p and D̂(2)(p) ⩽ 2D̂(1)(p). ◀

B. Charron-Bost and L. Penet de Monterno 12:7

Using a similar proof, it is possible to show that, for all p ∈ [1
2 , 1], for all ℓ1 and ℓ2 ⩽ ℓ1

such that ℓ1 + ℓ2 ⩽ n, if D̂(ℓ1)(p) and D̂(ℓ2)(p) are finite, then D̂(ℓ1+ℓ2)(p) is finite and
D̂(ℓ1+ℓ2)(p) ⩽ 2D̂(ℓ1)(p). Therefore, by induction on ℓ ⩽ n, if D̂(1)(p) is finite, then all
D̂(ℓ)(p) are finite and D̂(ℓ)(p) ⩽ 2⌈log2 ℓ⌉D̂(1)(p). Finally, we prove the following finiteness
result for D̂(1)(p).

▶ Lemma 2. For any memoryless probability measure, if D̂(1)(p0) is finite for some p0 ∈ (0, 1],
then D̂(1)(p) is finite for all real numbers p ∈ [0, 1).

Proof. For every node i, for every integers t ⩾ 0 and ℓ > 0, we have

Pr
(

Γt,ℓD̂(1)(p0)
i

)
⩾ Pr

(
ℓ−1⋃
h=0

Γt+hD̂(1)(p0),D̂(1)(p0)
i

)

= 1−
ℓ−1∏
h=0

Pr
(

Γt+hD̂(1)(p0),D̂(1)(p0)
i

)
⩾ 1− (1− p0)ℓ.

The first inequality holds because of the self-loops, as explained in the proof of Lemma 1.
The second one is due to the memoryless assumption on the Pr probability measure.

If p0 is positive, then limℓ→∞ 1− (1− p0)ℓ = 1. Thus, for any real number p less than
one, there exists some integer ℓ0 such that Pr(Γt,ℓ0D̂(1)(p0)

i) ⩾ p, which implies that D̂(1)(p)
is finite and D̂(1)(p) ⩽ ℓ0D̂(1)(p). ◀

Since all D̂(ℓ) are non-decreasing, Lemmas 1 and 2 imply that if D̂(1)(p0) is finite for
some p0 ∈ (0, 1], then all probabilistic diameters are finite for all p ∈ [0, 1), in which case the
network (Gn, Prn) is said to be strongly connected with high probability. This notion is linked
to the notion of dynamic diameter. Assume that a dynamic graph G has a finite dynamic
diameter DG. Let Pr be the probability measure such that Pr({G}) = 1, then for all real
numbers p ∈ (0, 1],

DG = D̂(1)(p) = D̂(2)(p) = · · · = D̂(n)(p).

3 The SAP algorithm

We present the self-stabilizing SAP algorithm designed in [12] for the mod P -synchronization
problem in dynamic networks with a finite dynamic diameter, and recall its basic properties.

3.1 Description of the algorithm
A typical approach to solve the mod P -synchronization problem consists in the following
algorithm: at each round, each node sends its own variable Ci ∈ {0, . . . , P − 1} and applies
the following update rule:

Ci ←
[

min
j∈ Ini

Cj + 1
]

P
,

where Ini denotes the current set of i’s incoming neighbors, and [c]
P

is the remainder of
the Euclidean division of c by P . Unfortunately, this naive algorithm does not work2 when
D̂(1)(p) is too large compared to the period P . To overcome this problem, the SAP algorithm
uses self-adaptive periods and the basic fact that for any positive integer M , we have

2 see Theorem 4.13 in [1].

DISC 2023

12:8 Self-Stabilizing Clock Synchronization in Probabilistic Networks

[[c]
P M

]
P

= [c]
P

.

More precisely, each node i uses two integer variables Mi and Ci, and computes the clock
value Ci not modulo P , but rather modulo the time-varying period PMi. The variable Mi is
used as a guess to find a large enough multiple of P so to make the clocks eventually stabilized.
Until synchronization, the variables Mi increase so that the shortest period PMi eventually
becomes large enough compared to the largest clock value in the network. In the rest of this
paper, St denotes the set of executions in which the system is synchronized in round t. Once
all clocks are congruent modulo P , they remain congruent forever, meaning that St ⊆ St+1.
The update rule for Mi is parametrized by a function g : N → N. The corresponding
algorithm is denoted SAPg, and its code is given below. Line 5 in the pseudo-code implies
that Ci(t) < PMi(t), and for the sake of simplicity, we assume that this inequality also holds
initially, that is, Ci(0) < PMi(0).

Algorithm 1 Pseudo-code of node i in the SAPg algorithm.
Variables:
1: Ci ∈ N;
2: Mi ∈ N+;

In each round do:
3: send ⟨Ci, Mi⟩ to all
4: receive ⟨Cj1 , Mj1⟩, ⟨Cj2 , Mj2⟩, . . . from the set Ini of incoming neighbours
5: Ci ←

[
min

j∈ Ini

Cj + 1
]

P Mi

6: Mi ← max
j∈ Ini

Mj

7: if Cj ̸≡P Cj′ for some j, j′ ∈ Ini then
8: Mi ← g(Mi)
9: end if

In the rest of the paper, the function g is supposed to be a non-decreasing and inflationary
function, i.e., x < g(x) for every positive integer x. Therefore, each Mi variable is non-
decreasing. If ℓ is a positive integer, gℓ denotes the ℓ-th iterate of g. For every positive real
number x, we let

g∗(x) def= inf{ℓ ∈ N+ | gℓ(1) ⩾ x}.

Since g is inflationary, g∗(x) is finite for all integers x, and g∗(x) ⩽ x. The algorithm is
parametrized by such a function g, and the corresponding algorithm will be denoted SAPg.

3.2 Properties of SAP’s executions
Let us consider an execution ϵ of the SAPg algorithm over a network of size n, with the
dynamic graph G. We start with three basic properties of ϵ which directly come from the
pseudo-code.

▶ Lemma 3. If (i, j) is an arc in G(s : t), then Cj(t) ⩽ Ci(s− 1) + t− s + 1.

▶ Lemma 4. If (i, j) is an arc in G(s : t), then one of the following statements is true:
1. Cj(t) ≡P Ci(s− 1) + t− s + 1;
2. Mj(t) ⩾ g(Mi(s− 1)).

▶ Lemma 5. Let d be a positive integer. If Ci(t) + d ⩽ PMi(t) holds for all nodes i, then
all the clocks Ci are greater than 0 in the round interval [t + 1, t + d− 1].

B. Charron-Bost and L. Penet de Monterno 12:9

For the probabilistic correctness proof of SAPg, we will use another property of its
executions, stated in the lemma below, which is a refinement of an analogous property
established in the deterministic case under the condition of a finite dynamic diameter [12].
The proof is given in the Appendix.

▶ Lemma 6. Let d be any positive integer, and k be a node such that Ck(t) = minj∈[n] Cj(t).
If the execution ϵ belongs to Γt,d

k and all the clocks Ci are greater than 0 in the round interval
[t + 1, t + d− 1], then the network is synchronized in round t + d.

4 Probabilistic correctness of SAP

Our approach for the correctness proof of the SAPg algorithm relies on a fundamental
probabilistic hyperproperty relating the adaptive mechanism for the periods in SAPg to the
order one probabilistic diameter of the network.

We fix some integer n, some real p ∈ (0, 1) and some initial state q ∈ Qn of SAPg. We
consider a memoryless probability measure Pr on (Gn, Σ n), and so on the set Eq of SAPg’s
executions starting in q. We assume that the probabilistic network (Gn, Prn) is strongly
connected w.h.p., and we let

t0
def= D̂(2)(p)

log
(
(1− p)−1)

p

√g∗
(2D̂(1)(p)

P

)
+
√

2

2 (1)

which is finite since g is inflationary. For all positive integers t, we consider the random
variable M(t) def= mini∈[n] Mi(t).

▶ Lemma 7. For every real number p ∈ (0, 1), we have

Pr
((

M(t0) ⩾ 2D̂(1)(p)
P

)
∪ St0

)
⩾ p. (2)

Proof. For ease of notation, we let ḡ = g∗
(

2D̂(1)(p)
P

)
and ℓ0 = t0/D̂(2)(p). In the first part

of the proof, we construct a family of independent random variables Bt that all follow a
Bernoulli distribution. In each execution in Eq that is not synchronized at round t, there
exist two nodes i1(t) and i2(t) such that

Ci1(t)(t) ̸≡P Ci2(t)(t). (3)

Then i1 and i2 can be viewed as two random variables that map any execution of SAPg to a
sequence of type N→ [n]. Let Bt be the random variable equal to 1 on Γt,D̂(2)(p)

i1(t) ∩ Γt,D̂(2)(p)
i2(t)

and equal to 0, otherwise. By definition of D̂(2)(p), each Bt follows a Bernoulli distribution
whose parameter Pr(Bt = 1) is greater than or equal to p. Since Pr is memoryless, the
random variable

B
def=

ℓ0−1∑
ℓ=0

BℓD̂(2)(p)

is a sum of independent Bernoulli variables.
We now show that in all executions in Eq that are not synchronized in round ℓ0D̂(2)(p),

it holds that

M(ℓ0D̂(2)(p)) ⩾ gB(1). (4)

DISC 2023

12:10 Self-Stabilizing Clock Synchronization in Probabilistic Networks

For that, we fix such an execution and prove by induction on ℓ0 that Eq. (4) holds in this
execution.
1. Base case: ℓ0 = 0. Then we have B = 0, and so M(ℓ0D̂(2)(p)) ⩾ 1 = gB(1) as needed.
2. Inductive case: Assume that

M(ℓ0D̂(2)(p)) ⩾ g
∑ℓ0−1

t=0
B

tD̂(2)(p)(1)

holds for for some ℓ0 ∈ N and that the system is not synchronized in round (ℓ0 +1)D̂(2)(p).
Then, the nodes i1 = i1(ℓ0D̂(2)(p)) and i2 = i2(ℓ0D̂(2)(p)) satisfy Eq. (3). Therefore, for
every node i, there exists some x ∈ {1, 2} such that

Ci((ℓ0 + 1)D̂(2)(p)) ̸≡P Cix(ℓ0D̂(2)(p)) + D̂(2)(p). (5)

If Bℓ0D̂(2)(p) = 0, then the inductive case immediately follows. Otherwise, Bℓ0D̂(2)(p) = 1,
and so the digraph G(ℓ0D̂(2)(p) + 1 : (ℓ0 + 1)D̂(2)(p)) contains all the arcs of the form
(i1, i) and (i2, i). Then for every node i, it holds that

Mi((ℓ0 + 1)D̂(2)(p)) ⩾ g(Mix
(ℓ0D̂(2)(p))) ⩾ g(M(ℓ0D̂(2)(p))). (6)

The first inequality holds by Lemma 4 and Eq. (5), and the second one because g is
non-decreasing. Using the induction hypothesis, we get

M((ℓ0 + 1)D̂(2)(p)) ⩾ g

(
g
∑ℓ0−1

t=0
B

tD̂(2)(p)(1)
)

= g
∑ℓ0

t=0
B

tD̂(2)(p)(1).

We now let x0 = 1
p

(
ḡ + log(1− p)−1 +

√
2ḡ log(1− p)−1 + log2(1− p)−1

)
, and easily check

that

ℓ0 ⩾
1
p

(
√

ḡ +
√

2 log(1− p)−1)2 ⩾
1
p

(ḡ +2 log(1−p)−1 +2
√

2ḡ log(1− p)−1) ⩾ x0 > 0. (7)

Moreover, x0 satisfies

−x0p

2

(
1− ḡ

x0p

)2
= log(1− p). (8)

We obtain

Pr
((

M(t0) ⩾ 2D̂(1)(p)
P

)
∪ St0

)
⩾ Pr

(
B ⩾ g∗

(2D̂(1)(p)
P

))

⩾ 1− Pr
(

B ⩽
ḡ

x0p
E(B)

)
⩾ 1− e

− E(B)
2

(
1− ḡ

x0p

)2

⩾ 1− e
− x0p

2

(
1− ḡ

x0p

)2

= p.

The first inequalities comes from Eq. (4). The second and the fourth inequalities hold because,
by definition of B and Eq. (7), we have E(B) ⩾ ℓ0p ⩾ x0p. The third inequality is a Chernoff
bound [15] applied to B, which is a sum of independent Bernoulli variables. The last equality
is by Eq. (8). ◀

B. Charron-Bost and L. Penet de Monterno 12:11

Combined with the basic properties of the SAPg’s executions stated in the previous
section, Lemma 7 allows us to show our main result:

▶ Theorem 8. If g is a non-decreasing and inflationary function, then the SAPg algorithm
solves the mod P -synchronization problem in any probabilistic network that is strongly
connected w.h.p. More precisely, for all p ∈ (0, 1), nodes synchronize within

D̂(2)(p)
⌈

log
(
(1− p)−1)

p

(√
g∗
(2D̂(1)(p)

P

)
+
√

2
)2
⌉

+ 3D̂(1)(p)

rounds with probability p4, if D̂(1)(p) and D̂(2)(p) denote the order one and two probabilistic
diameters of the network.

Proof. For ease of notation, we let D̂(1) = D̂(1)(p). We first define four random variables:
1. Let i0 be any node satisfying Ci0(t0) = min

i∈[n]
Ci(t0).

2. Let t1 be the smallest integer greater than or equal to t0, such that at least one node
holds a clock equal to 0 in round t1 if it exists, or is equal to infinity otherwise.

3. If t1 is finite, let i1 be any node such that Ci1(t1) = 0. Otherwise, let i1 be an arbitrary
node.

4. If t1 is finite, let i2 be any node satisfying Ci2(t1 + D̂(1)) = min
i∈[n]

Ci(t1 + D̂(1)). Otherwise,

let i2 be an arbitrary node.
Then we define the events E and E′ as

E
def= {ϵ ∈ Gn | t1 < t0 + D̂(1)} and E′ def= {ϵ ∈ Gn | M(t0) ⩾ 2D̂(1)

P }.

By Lemma 6, we have Γt0,D̂(1)

i0
∩ E ⊆ St0+D̂(1) . Since St0+D̂(1) ⊆ St0+3D̂(1) , it follows that

Pr
(
St0+3D̂(1) | Γt0,D̂(1)

i0
∩ E ∩ (E′ ∪ St0)

)
= 1. (9)

In any execution belonging to E, t1 is finite and Ci1(t1) = 0. Therefore, in any execution in
E′ ∩ E ∩ Γt1,D̂(1)

i1
, every variable Mi satisfies

PMi(t1+D̂(1)) ⩾ PM(t1+D̂(1)) ⩾ PM(t0) ⩾ 2D̂(1) = Ci1(t1)+2D̂(1) ⩾ Ci(t1+D̂(1))+D̂(1).

The first and third inequalities above are by definition of M and E′, respectively. The second
one holds because M is non-decreasing, and the last one comes from Lemma 3 and the fact
that the execution is in Γt1,D̂(1)

i1
. Lemma 5 then applies, and Lemma 6 shows that

E′ ∩ E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
⊆ St1+2D̂(1) .

Since the random variable t1 is greater than t0, we get St0 ⊆ St1+2D̂(1) , and so

Pr
(
St1+2D̂(1) | (E′ ∪ St0) ∩ E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),2D̂(1)

i2
∩ Γt0,D̂(1)

i0

)
= 1. (10)

We are now in position to bound the probability Pr(St0+3D̂(1)) from below. For the sake
of readability, the conditional probability given the event (E′ ∪St0)∩Γt0,D̂(1)

i0
is now denoted

Pr′. Then we have

DISC 2023

12:12 Self-Stabilizing Clock Synchronization in Probabilistic Networks

Pr(St0+3D̂(1)) ⩾ Pr(St0+3D̂(1) ∩ Γt0,D̂(1)

i0
∩ (E′ ∪ St0))

= Pr′(St0+3D̂(1))× Pr(Γt0,D̂(1)

i0
| E′ ∪ St0)× Pr(E′ ∪ St0)

⩾ p2 Pr′(St0+3D̂(1))

= p2 Pr′(St0+3D̂(1) | E) Pr′(E) + p2 Pr′(St0+3D̂(1) | E) Pr′(E)

⩾ p2 Pr′(St1+2D̂(1) | E) Pr′(E) + p2 Pr′(E)

⩾ p2 Pr′(St1+2D̂(1) ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
| E) Pr′(E) + p2 Pr′(E)

⩾ p2 Pr′(St1+2D̂(1) | E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
)

× Pr′(Γt1+D̂(1),D̂(1)

i2
| E ∩ Γt1,D̂(1)

i1
)

× Pr′(Γt1,D̂(1)

i1
| E) Pr′(E) + p2 Pr′(E)

⩾ p4 Pr′(E) + p2 Pr′(E)
⩾ p4

Lemma 7 and the fact that Pr is memoryless are used in the second inequality. The
third inequality is based on Eq. (9) and the fact that, in any execution in E, it holds
that St1+2D̂(1) ⊆ St0+3D̂(1) . Sixth inequality relies on Eq. (10) and the fact that Pr is
memoryless. ◀

As in the deterministic analysis of SAPg, the above bound on its stabilization time
provides an upper bound on its space complexity, namely each node uses at most

log2 P + 2 log2

(
gt0+3D̂(1)(p)(M0)

)
bits with probability p4, if t0 is defined by Eq. (1) and M0 = maxi∈[n] Mi(0). The time
bound and the space bound thus depend respectively on the functions g∗ and g, leading to a
time-space trade-off for choosing g: the faster g grows, the lower the synchronization time is,
and the higher its space complexity is.

5 The SAP algorithm in the Application to push-based models

The previous section demonstrates that the notion of probabilistic diameter is a powerful
tool for the probabilistic analysis of distributed algorithms. This section applies our general
result in Theorem 8 to a probablistic communication model, called the push model [26].
This popular model in rumor spreading consists in the following: Given a base network G

of size n, in each round t, each node randomly selects one of its outgoing neighbors in G

with equal probability to send its round t message. This communication strategy yields a
probablity measure on Gn which is clearly memoryless.

The push model has been extensively studied with various base networks. In this section,
we use two seminal works for this model: First, Feige et al. [24] introduced the notion of
almost sure rumor coverage time, denoted T (G), and provided a general upper bound on
this parameter. Interestingly, T (G) is equal to our probabilistic order one diameter for the
specific value p = 1 − 1/n, namely D̂(1)(1 − 1/n). Second, Pittel [33] refined this general
bound on T (G) in the particular case where G is fully-connected.

5.1 The push model in a general symmetric network
In the push communication model, Feige et al. [24] showed that a rumor reaches the n nodes
of a symmetric and connected network within 12n log2 n rounds with probability 1− 1/n. In
other words, the order one probabilistic diameter satisfies:

B. Charron-Bost and L. Penet de Monterno 12:13

D̂(1)(1− 1/n) ⩽ 12n log2 n.

Using Lemma 1 and the inequalities (1− 1/n)4 ⩾ 1− 4/n and g∗ ⩾ 1, Theorem 8 then yields
the following result.

▶ Corollary 9. Let g be any non-decreasing and inflationary function. For the push model in
a general symmetric connected network with n nodes, the SAPg algorithm achieves mod P -
synchronization within 324 n (log2 n)2g∗(24 P −1 n log2 n) rounds with probability 1− 4

n .

In the context of Corollary 9, Table 1 provides the probabilistic time and space complexities
of SAPg for two different choices of g, namely g = x 7→ x + 1 and g = x 7→ 2x (recall the
notation M0 = maxi∈[n] Mi(0)). It illustrates the general space-time trade-off that we have
just pointed out, at the end of Section 4.

Table 1 The SAPg algorithm for the push model in a symmetric network of size n.

g stabilization time space complexity

g = x 7→ x + 1 O
(
n2 log3 n

)
O
(
log
(
M0 + n

))
g = x 7→ 2x O

(
n log3 n

)
O
(
log M0 + n log3 n

)

5.2 The push model in fully-connected networks
In the particular case of fully-connected networks, Frieze and Grimmett [26] improved the
above upper bound on the time complexity of rumor spreading in the push model. Their
bound as well as its refinement by Pittel [33] are asymptotic in the sense that they hold for
sufficiently large networks. This is why our new bound on the stabilization time of the SAPg

algorithm in the particular case of a fully-connected network will be proved to hold only in
sufficiently large networks.

Let us briefly recall the main result in [33]: Pittel first defines the random variable Sn as

Sn(G) def= inf{δ ∈ N | G ∈ Γ0,δ
i0
},

where G ∈ Gn, and i0 is a fixed node. Since the network is fully-connected, all nodes play
the same role and Sn does not actually depend on the choice of the origin node i0.

▶ Theorem 10 (Theorem 1 in [33]). If ω : N→ N tends to infinity, then

lim
n→∞

Prn(|Sn − log n− log2 n| ⩽ ω(n)) = 1.

It follows that for every p ∈ [0, 1) and every such function ω, there exists a positive
integer Np(ω) such that for all integers n ⩾ Np(ω), it holds that

Prn

(
Sn − log n− log2 n ⩽ ω(n)

)
⩾ Prn

(
|Sn − log n− log2 n| ⩽ ω(n)

)
⩾ p. (11)

Here, log denotes the natural logarithm. In the push model, all random variables G(t) are
identically distributed. Hence, for all nodes i, and all non-negative integers t and δ, we have
Pr(Γt,δ

i) = Pr(Γ0,δ
i0

), and thus

D̂(1)(p) = inf
{

δ ∈ N | Pr(Γ0,δ
i0

) ⩾ p
}

.

Denoting by Np the integer Np(log) defined in Eq. (11), we obtain that for all integers
n ⩾ Np,

D̂(1)(p) ⩽ log2 n + 2 log n. (12)

DISC 2023

12:14 Self-Stabilizing Clock Synchronization in Probabilistic Networks

▶ Corollary 11. Let g be a non-decreasing inflationary function. For any real number
p ∈ [1

2 , 1) and any integer n ⩾ Np, the SAPg algorithm achieves mod P -synchronization within
81 log(1 − p)−1 (log2 n) g∗ (6 P −1 log2 n

)
rounds with probability p4 in the fully-connected

graph of size n and the communication push model.

As a complement to Eq. (12), we now compute the value of D̂(1)(p) in small fully-connected
networks, and thus obtain an approximation of Np. For that, we fix a node i0 ∈ [n] and an
integer t0 ∈ N, and we define the random variable Rn(t) by

Rn(t) =
∣∣∣{j ∈ [n] | (i0, j) is an arc of G(t0 + 1 : t0 + t)}

∣∣∣.
Observe that for the push model in a fully-connected graph, the probability distribution of
Rn(t) does not depend on the choices of i0 and t0. Moreover, the probability Prn is perfectly
described by the sequence of the random variables Rn(1), Rn(2), . . .

▶ Lemma 12. Let a, b ∈ {0, . . . , n}. If a ⩽ b ⩽ 2a, then

Prn(Rn(t + 1) = b | Rn(t) = a) = 1
na

a∑
ℓ=b−a

(
a

ℓ

)(
n− a

a− ℓ

){
ℓ

b− a

}
aa−ℓ(b− a)!

where { a
b } is the Stirling number of the second kind. Otherwise, Prn(Rn(t+1)=b |Rn(t) = a)

is null.

Proof. We denote by A and B the two sets of nodes that are the targets of an arc whose
source is i0 in the digraphs G(1 : t) and G(1 : t + 1), respectively. Thus a node j belongs to
B if and only if there exists an arc from A to j in G(t + 1).

In round t + 1, each node in A picks one node uniformly, among all nodes. Then the total
number of draws is na. Since each draw is equiprobable, we only have to count the number
of favorable draws, that is, the draws such that |B| = b. Let ℓ0 be the number of nodes in A

that pick a node in [n] \A in round t + 1; we have

Prn(|B| = b | |A| = a) =
a∑

ℓ=0
Prn(|B| = b ∩ ℓ0 = ℓ | |A| = a).

We now fix some ℓ0 ∈ {0, · · · , a}, and sample ℓ0 nodes among the a nodes in A. For that,
there are

(
a
ℓ0

)
possibilities. Moreover, we partition the set [n] \ A into two parts: B \ A,

of size b − a and [n] \ B. The number of possible partitionings is
(

n−a
b−a

)
. Then there are

exactly
{

ℓ0
b−a

}
(b− a)! surjective mappings from the previously chosen set of ℓ0 nodes in A

into the set B \A [36]. Finally, a− ℓ0 nodes in A pick a node belonging to A in round t + 1.
There are aa−ℓ0 possibilities. Gathering all mentioned terms, and removing terms in which{

ℓ0
b−a

}
= 0, we obtain the final expression of the lemma. ◀

Interestingly, a different expression of Prn(|B| = b | |A| = a) was used by Pittel in [33].
Lemma 12 shows that (Rn(t))t⩾1 is a Markov process, and provides an effective and efficient
way for computing the probability distribution of each random variable Rn(t) as well as the
value of D̂(1)(p). Figure 2 reports our results: The straight line represents the theoretical
bound provided by Eq. (12) as a function of the logarithm of the network size log n. For
each p ∈ {0.5, 0.95, 0.99}, the values of D̂(1)(p) provided by Lemma 12 are denoted by dots.

Figure 2 yields an estimation of Np: Choosing p = 0.5, all the values of D̂(1)(0.5) that
we have computed are smaller that the bound provided by Eq. (12). This suggests that
Corollary 11 holds for all n, that is, N0.5 = 1. Similarly, Figure 2 suggests that N0.95 = 59.
By contrast, an estimate for N0.99 would require to compute D̂(1)(0.99) for larger values of n.

B. Charron-Bost and L. Penet de Monterno 12:15

100 101 102

log n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

D̂
(1

) (p
)

p = 0.99
p = 0.95
p = 0.50

Figure 2 Some values of D̂(1)(p) in the push model, in a fully-connected network of size n.

6 Concluding Remarks

This paper provides a general solution to the mod P -synchronization problem in general
probabilistic communication models. Our proof is based on two basic assumptions on the
probabilistic network, making it applicable to a broad range of models. The case of the
push model for a general symmetric network that we have examined at the end of the paper,
provides an example of probabilistic networks for which no clock synchronization algorithms
have been yet devised.

Our paper extends the findings of [12], which proved the correctness of SAPg in a wide
class of dynamic networks, including networks that have an infinite dynamic diameter. The
probabilistic study developed in this paper significantly enlarges the scope of correctness for
SAPg, and demonstrates the versatility of this algorithm.

References

1 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to distributed
self-stabilizing algorithms. Synthesis Lectures on Distributed Computing Theory, 8(1):1–165,
2019.

2 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

3 Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in step.
Parallel Processing Letters, 1:11–18, 1991.

4 Paul Bastide, George Giakkoupis, and Hayk Saribekyan. Self-stabilizing clock synchronization
with 1-bit messages. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2021, pages 2154–2173, 2021.

DISC 2023

https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2

12:16 Self-Stabilizing Clock Synchronization in Probabilistic Networks

5 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In Proceedings of the Second Symposium on Principles of Distributed Computing,
pages 27–30, 1983.

6 Philip. A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

7 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. Memoryless determinacy of parity
and mean payoff games: a simple proof. Theoretical Computer Science, 310(1-3):365–378,
2004.

8 Lucas Boczkowski, Amos Korman, and Emanuele Natale. Minimizing message size in stochastic
communication patterns: fast self-stabilizing protocols with 3 bits. Distributed Comput.,
32(3):173–191, 2019.

9 Paolo Boldi and Sebastiano Vigna. Universal dynamic synchronous self-stabilization. Distrib-
uted Computing, 15(3):137–153, 2002.

10 Christian Boulinier, Franck Petit, and Vincent Villain. Synchronous vs. asynchronous unison.
Algorithmica, 51(1):61–80, 2008.

11 Bernadette Charron-Bost and Shlomo Moran. The firing squad problem revisited. Theoretical
Computer Science, 793:100–112, 2019.

12 Bernadette Charron-Bost and Louis Penet de Monterno. Self-Stabilizing Clock Synchronization
in Dynamic Networks. In 26th International Conference on Principles of Distributed Systems
(OPODIS 2022), volume 253 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 28:1–28:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

13 Bernadette Charron-Bost and Louis Penet de Monterno. Impossibility of self-stabilizing
synchronization with bounded memory. ., 2024.

14 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distributed
systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

15 Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

16 Michael R Clarkson and Fred B Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

17 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In 24th
International Symposium on Distributed Computing, DISC 2010, volume 6343 of Lecture Notes
on Computer Science, pages 148–162. Springer, 2010.

18 Shlomi Dolev. Possible and impossible self-stabilizing digital clock synchronization in general
graphs. Real Time Syst., 12(1):95–107, 1997.

19 Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM, 51(5):780–799, 2004.

20 Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

21 Shimon Even and Sergio Rajsbaum. Unison, canon, and sluggish clocks in networks controlled
by a synchronizer. Mathematical systems theory, 28(5):421–435, 1995.

22 Shimon Even and Sergio Rajsbaum. Unison, canon, and sluggish clocks in networks controlled
by a synchronizer. Math. Syst. Theory, 28(5):421–435, 1995.

23 Rui Fan and Nancy Lynch. Gradient clock synchronization. In Proceedings of the twenty-third
annual ACM symposium on Principles of distributed computing, pages 320–327, 2004.

24 Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast in
networks. Random Structures and Algorithms, 1(4):447–460, 1990.

25 Michael Feldmann, Ardalan Khazraei, and Christian Scheideler. Time- and space-optimal
discrete clock synchronization in the beeping model. In 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA, pages 223–233. ACM, 2020.

26 Alan M Frieze and Geoffrey R Grimmett. The shortest-path problem for graphs with random
arc-lengths. Discrete Applied Mathematics, 10(1):57–77, 1985.

B. Charron-Bost and L. Penet de Monterno 12:17

27 Mohamed Gouda and Ted Herman. Stabilizing unison. Inf. Process. Lett., 35(4):171–175,
1990.

28 Ted Herman and Sukumar Ghosh. Stabilizing phase-clocks. Information Processing Letters,
54(5):259–265, 1995.

29 Ali Jadbabaie. Natural algorithms in a networked world: technical perspective. Commun.
ACM, 55(12):100, 2012.

30 Ronald Kempe, Joseph Y. Dobra, and Moshe Y. Gehrke. Gossip-based computation of
aggregate information. In Proceeding of the 44th IEEE Symposium on Foundations of Computer
Science, FOCS, pages 482–491, Cambridge, MA, USA, 2003.

31 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, May 1998.

32 Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight bounds for clock synchron-
ization. Journal of the ACM (JACM), 57(2):1–42, 2010.

33 Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47(1):213–223,
1987.

34 TK Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM (JACM),
34(3):626–645, 1987.

35 Steven H. Strogatz. From kuramoto to crawford: exploring the onset of synchronization in
populations of coupled oscillators. Physica D, 143(1-4):1–20, 2000.

36 Horst Wegner. Stirling numbers of the second kind and bonferroni’s inequalities. Elemente
der Mathematik, 60(3):124–129, 2005.

A Extra proofs

First, we state the following lemma, which is a reformulation of Lemma 2 in [12]. We fix any
execution ϵ of SAPg.

▶ Lemma 13. If the clock value of the agent i is greater than 0 at round t, then it is equal to

Ci(t) = 1 + min
j∈ Ini(t)

Cj(t− 1).

▶ Lemma 5. Let d be a positive integer. If Ci(t) + d ⩽ PMi(t) holds for all nodes i, then
all the clocks Ci are greater than 0 in the round interval [t + 1, t + d− 1].

Proof. Let i be any node, and let ℓ ∈ [d− 1]. We have

1 + min
j∈ Ini(t+ℓ)

Cj(t + ℓ− 1) ⩽ 1 + Ci(t + ℓ− 1) ⩽ ℓ + Ci(t) < PMi(t) ⩽ PMi(t + ℓ− 1).

The first inequality is due to the self-loop at node i in G(t+ℓ), the second one is a consequence
of the self-loop and Lemma 3, the third inequality is the assumption of the lemma. The
fourth one comes from the fact that Mi is non-decreasing. It follows from line 5 that
Ci(t + ℓ) ̸= 0. ◀

▶ Lemma 6. Let d be any positive integer, and k be a node such that Ck(t) = minj∈[n] Cj(t).
If the execution ϵ belongs to Γt,d

k and all the clocks Ci are greater than 0 in the round interval
[t + 1, t + d− 1], then the network is synchronized in round t + d.

Proof. We fix an execution ϵ and a positive integer d. First, we prove by induction on
ℓ ∈ [d− 1] that

∀i ∈ [n], Ci(t + ℓ) = ℓ + min
j∈ Ini(t+1:t+ℓ)

Cj(t). (13)

DISC 2023

12:18 Self-Stabilizing Clock Synchronization in Probabilistic Networks

1. The base case ℓ = 1 is an immediate consequence of Lemma 13.
2. Inductive step: let us assume that Eq. (13) holds for some ℓ with 1 ⩽ ℓ < d − 1. For

every node i in [n], we have

Ci(t + ℓ + 1) = 1 + min
j∈ Ini(t+ℓ+1)

Cj(t + ℓ)

= 1 + ℓ + min
j∈ Ini(t+ℓ+1)

(
min

j′∈ Ini(t+1:t+ℓ)
Cj′(t)

)
= 1 + ℓ + min

j∈ Ini(t+1:t+ℓ+1)
Cj(t).

The first equality is a direct consequence of Lemma 13, the second one is by inductive
hypothesis, and the third one is due to the fact that G(t + 1 : t + ℓ + 1) = G(t + 1 :
t + ℓ) ◦G(t + ℓ + 1).

This completes the proof of Eq (13) for every integer ℓ ∈ [d− 1].
Then for each node i, we get

Ci(t + d) =
[
1 + min

j∈ Ini(t+d)
Cj(t + d− 1)

]
P Mi(t+d−1)

=
[
d + min

j∈ Ini(t+1:t+d)
Cj(t)

]
P Mi(t+d−1)

= [d + Ck(t)]P Mi(t+d−1) .

The second equality comes from a reasoning similar to the inductive case above, using Eq (13)
at round t + d− 1. It follows that all the counters Ci(t + d) are equal modulo P , i.e., the
system is synchronized in round t + d. ◀

Every Bit Counts in Consensus
Pierre Civit
Sorbonne University, Paris, France

Seth Gilbert
National University of Singapore, Singapore

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Jovan Komatovic
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Matteo Monti
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Manuel Vidigueira
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
Consensus enables n processes to agree on a common valid L-bit value, despite t < n/3 processes
being faulty and acting arbitrarily. A long line of work has been dedicated to improving the worst-
case communication complexity of consensus in partial synchrony. This has recently culminated
in the worst-case word complexity of O(n2). However, the worst-case bit complexity of the best
solution is still O(n2L + n2κ) (where κ is the security parameter), far from the Ω(nL + n2) lower
bound. The gap is significant given the practical use of consensus primitives, where values typically
consist of batches of large size (L > n).

This paper shows how to narrow the aforementioned gap. Namely, we present a new algorithm,
DARE (Disperse, Agree, REtrieve), that improves upon the O(n2L) term via a novel dispersal
primitive. DARE achieves O(n1.5L + n2.5κ) bit complexity, an effective

√
n-factor improvement

over the state-of-the-art (when L > nκ). Moreover, we show that employing heavier cryptographic
primitives, namely STARK proofs, allows us to devise DARE-Stark, a version of DARE which
achieves the near-optimal bit complexity of O(nL + n2poly(κ)). Both DARE and DARE-Stark
achieve optimal O(n) worst-case latency.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Byzantine consensus, Bit complexity, Latency

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.13

Related Version The full version of this paper, which includes detailed proofs, is available online [37].
Full Version: https://arxiv.org/abs/2306.00431

Funding Seth Gilbert: Supported in part by the Singapore MOE Tier 2 grant MOE-T2EP20122-0014.
Manuel Vidigueira: Supported in part by the FNS (#200021_215383).

1 Introduction

Byzantine consensus [65] is a fundamental primitive in distributed computing. It has recently
risen to prominence due to its use in blockchains [70, 22, 4, 32, 5, 41, 39] and various forms
of state machine replication (SMR) [8, 29, 64, 1, 11, 63, 87, 71, 74]. At the same time, the
performance of these applications has become directly tied to the performance of consensus
and its efficient use of network resources. Specifically, the key limitation on blockchain

© Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, and
Manuel Vidigueira;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 13; pp. 13:1–13:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.13
https://arxiv.org/abs/2306.00431
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Every Bit Counts in Consensus

transaction rates today is network throughput [42, 86, 27]. This has sparked a large demand
for research into Byzantine consensus algorithms with better communication complexity
guarantees.

Consensus operates among n processes: each process proposes its value, and all processes
eventually agree on a common valid L-bit decision. A process can either be correct or faulty:
correct processes follow the prescribed protocol, while faulty processes (up to t < n/3) can
behave arbitrarily. Consensus satisfies the following properties:

Agreement: No two correct processes decide different values.
Termination: All correct processes eventually decide.
(External) Validity: If a correct process decides a value v, then valid(v) = true.

Here, valid(·) is any predefined logical predicate that indicates whether or not a value is
valid.1

This paper focuses on improving the worst-case bit complexity of deterministic Byzantine
consensus in standard partial synchrony [52]. The worst-case lower bound is Ω(nL + n2)
exchanged bits. This considers all bits sent by correct processes from the moment the network
becomes synchronous, i.e., GST (the number of messages sent by correct processes before
GST is unbounded due to asynchrony [85]). The nL term comes from the fact that all n

processes must receive the decided value at least once, while the n2 term is implied by the
seminal Dolev-Reischuk lower bound [48, 85] on the number of messages. Recently, a long
line of work has culminated in Byzantine consensus algorithms which achieve optimal O(n2)
worst-case word complexity, where a word is any constant number of values, signatures
or hashes [36, 66]. However, to the best of our knowledge, no existing algorithm beats
the O(n2L + n2κ) bound on the worst-case bit complexity, where κ denotes the security
parameter (e.g., the number of bits per hash or signature). The n2L term presents a linear
gap with respect to the lower bound.

Does this gap matter? In practice, yes. In many cases, consensus protocols are used to
agree on a large batch of inputs [77, 88, 27, 42, 86]. For example, a block in a blockchain
amalgamates many transactions. Alternatively, imagine that n parties each propose a
value, and the protocol agrees on a set of these values. (This is often known as vector
consensus [14, 15, 50, 80, 49, 40].) Typically, the hope is that by batching values/transactions,
we can improve the total throughput of the system. Unfortunately, with current consensus
protocols, larger batches do not necessarily yield better performance when applied directly [46].
This does not mean that batches are necessarily ineffective. In fact, a recent line of work has
achieved significant practical improvements to consensus throughput by entirely focusing
on the efficient dissemination of large batches (i.e., large values), so-called “mempool”
protocols [42, 86, 27]. While these solutions work only optimistically (they perform well in
periods of synchrony and without faults), they show that a holistic focus on bandwidth usage
is fundamental (i.e., bit complexity, and not just word complexity).

1.1 Contributions
We introduce DARE (Disperse, Agree, REtrieve), a new Byzantine consensus algorithm for
partial synchrony with worst-case O(n1.5L + n2.5κ) bit complexity and optimal worst-case
O(n) latency. Moreover, by enriching DARE with heavier cryptographic primitives, namely

1 For traditional notions of validity, admissible values depend on the proposals of correct processes, e.g.,
if all correct processes start with value v, then v is the only admissible decision. In this paper, we focus
on external validity [25], with the observation that any other validity condition can be achieved by
reduction (as shown in [38]).

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:3

STARK proofs, we close the gap near-optimally using only O(nL + n2poly(κ)) bits. Notice
that, if you think of L as a batch of n transactions of size s, the average communication cost
of agreeing on a single transaction is only Õ(ns) bits – the same as a best-effort (unsafe)
broadcast [24] of that transaction!

To the best of our knowledge, DARE is the first partially synchronous algorithm to
achieve o(n2L) bit complexity and O(n) latency. The main idea behind DARE is to separate
the problem of agreeing from the problem of retrieving an agreed-upon value (see §1.2 for
more details). Figure 1 places DARE in the context of efficient consensus algorithms.

Protocol Model Cryptography Complexity
E[Bits]† E[Latency]†

ABC [25]‡ Async PKI, TS [68] O(n2L + n2κ + n3) O(1)
VABA [6] Async above O(n2L + n2κ) O(1)
Dumbo-MVBA [69] Async above + ECC

[19]
O(nL + n2κ) O(1)

Bits Latency
PBFT [30, 17] PSync PKI O(n2L + n4κ) O(n)
HotStuff [89] PSync above + TS O(n2L + n3κ) O(n)
Quad [36, 66] PSync above O(n2L + n2κ) O(n)
DARE PSync above + ECC O(n1.5L + n2.5κ) O(n)
DARE-Stark PSync above + STARK O(nL + n2κ) O(n)

Figure 1 Performance of various consensus algorithms with L-bit values and κ-bit security
parameter.
† For asynchronous algorithms, we show the complexity in expectation instead of the worst-case
(which is unbounded for deterministic safety guarantees due to the FLP impossibility result [54]).
‡ Threshold Signatures (TS) are used to directly improve the original algorithm.

1.2 Technical Overview
The “curse” of GST. To understand the problem that DARE solves, we must first under-
stand why existing algorithms suffer from an O(n2L) term. “Leader-based” algorithms (such
as the state-of-the-art [75, 36, 66]) solve consensus by organizing processes into a rotating
sequence of views, each with a different leader. A view’s leader broadcasts its value v and
drives other processes to decide it. If all correct processes are timely and the leader is correct,
v is decided.

The main issue is that, if synchrony is only guaranteed eventually (partial synchrony [52]),
a view might fail to reach agreement even if its leader is correct: the leader could just be slow
(i.e., not yet synchronous). The inability to distinguish the two scenarios forces protocols to
change views even if the current leader is merely “suspected” of being faulty. Since there can
be up to t faulty leaders, there must be at least t + 1 different views. However, this comes at
the risk of sending unnecessary messages if the suspicion proves false, which is what happens
in the worst case.

Suppose that, before GST (i.e., the point in time the system becomes synchronous), the
first t leaders are correct, but “go to sleep” (slow down) immediately before broadcasting their
values, and receive no more messages until GST + δ due to asynchrony (δ is the maximum
message delay after GST). Once GST is reached, all t processes wake up and broadcast their
value, for a total of O(tnL) = O(n2L) exchanged bits; this can happen before they have a

DISC 2023

13:4 Every Bit Counts in Consensus

chance to receive even a single message! This attack can be considered a “curse” of GST:
the adversarial shift of correct processes in time creates a (seemingly unavoidable) situation
where Ω(n2) messages are sent at GST (which in this case include L bits each, for a total of
Ω(n2L)). Figure 2 illustrates the attack.

GST = 0

GST +

Adversarial shift

GST

Figure 2 The adversarial shift attack on t + 1 leaders. The first line shows how leaders are
optimistically ordered in time by the protocol to avoid redundant broadcasts (the blue speaker circle
represents an avoided redundant broadcast). The second line shows how leaders can slow down
before GST and overlap at GST, making redundant broadcasts (seem) unavoidable.

DARE: Disperse, Agree, REtrieve. In a nutshell, DARE follows three phases:
1. Dispersal: Processes attempt to disperse their values and obtain a proof of dispersal for

any value. This proof guarantees that the value is both (1) valid, and (2) retrievable.
2. Agreement: Processes propose a hash of the value accompanied by its proof of dispersal

to a Byzantine consensus algorithm for small L (e.g., O(κ)).
3. Retrieval: Using the decided hash, processes retrieve the corresponding value. The

proof of dispersal ensures Retrieval will succeed and output a valid value.
This architecture is inspired by randomized asynchronous Byzantine algorithms [6, 69] which
work with expected bit complexity (the worst-case is unbounded in asynchrony [54]). As
these algorithms work in expectation, they can rely on randomness to retrieve a value (̸= ⊥)
that is valid after an expected constant number of tries. However, in order to achieve the
same effect (i.e., a constant number of retrievals) in the worst case in partial synchrony,
DARE must guarantee that the Retrieval protocol always outputs a valid value (̸= ⊥) a
priori, which shifts the difficulty of the problem almost entirely to the Dispersal phase.

Dispersal. To obtain a proof of dispersal, a natural solution is for the leader to broadcast
the value v. Correct processes check the validity of v (i.e., if valid(v) = true), store v for the
Retrieval protocol, and produce a partial signature attesting to these two facts. The leader
combines the partial signatures into a (2t + 1, n)-threshold signature (the proof of dispersal),
which is sufficient to prove that DARE’s Retrieval protocol [44] will output a valid value
after the Agreement phase.

However, if leaders use best-effort broadcast [24] (i.e., simultaneously send the value
to all other processes), they are still vulnerable to an adversarial shift causing O(n2L)
communication. Instead, we do the following. First, we use a view synchronizer [78, 20, 21]
to group leaders into views in a rotating sequence. A view has

√
n leaders and a sequence

has
√

n views. Leaders of the current view can concurrently broadcast their values while
messages of other views are ignored. Second, instead of broadcasting the value simultaneously
to all processes, a leader broadcasts the value to different subgroups of

√
n processes in

intervals of δ time (i.e., broadcast to the first subgroup, wait δ time, broadcast to the second
subgroup, . . .) until all processes have received the value. Neither idea individually is enough

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:5

to improve over the O(n2L) term. However, when they are combined, it becomes possible to
balance the communication cost of the synchronizer (O(n2.5κ) bits), the maximum cost of
an adversarial shift attack (O(n1.5L) bits), and the broadcast rate to achieve the improved
O(n1.5L + n2.5κ) bit complexity with asymptotically optimal O(δn) latency as shown in
Figure 3.

Figure 3 Overview of DARE (Disperse, Agree, REtrieve).

DARE-Stark. As we explained, the main cost of the Dispersal phase is associated with
obtaining a dispersal proof that a value is valid. Specifically, it comes from the cost of having
to send the entire value (L bits) in a single message.

With Succinct Transparent ARguments of Knowledge (STARKs), we can entirely avoid
sending the value in a single message. STARKs allow a process to compute a proof (O(poly(κ))
bits) of a statement on some value without having to share that value. As an example, a
process Pi can send ⟨h, σSTARK⟩ to a process Pj , which can use σSTARK to verify the statement
“∃v : valid(v) = true ∧ hash(v) = h”, all without Pj ever receiving v. As we detail in §6, by
carefully crafting a more complex statement, we can modify DARE’s Dispersal and Retrieval
phases to function with at most O(poly(κ)) bit-sized messages, obtaining DARE-Stark.
This yields the overall near-optimal bit complexity of O(nL + n2poly(κ)). Currently, the
main drawback of STARKs is their size and computation time in practice2, which we hope
will improve in the future.

Roadmap. We discuss related work in §2. In §3, we define the system model. We give an
overview of DARE in §4. In §5, we detail our Dispersal protocol. We go over DARE-Stark
in §6. Lastly, we conclude the paper in §7. Detailed proofs are relegated to the full version
of the paper.

2 Related Work

We address the communication complexity of deterministic authenticated Byzantine con-
sensus [65, 25] in partially synchronous distributed systems [52] for large inputs. Here, we
discuss existing results in closely related contexts, and provide a brief overview of techniques,
tools and building blocks which are often employed to tackle Byzantine consensus.3

Asynchrony. In the asynchronous setting, Byzantine agreement is commonly known as
Multi-valued Validated Byzantine Agreement, or MVBA [25]. Due to the FLP impossibility
result [54], deterministic Byzantine agreement is unsolvable in asynchrony (which implies

2 The associated constants hidden by the “big O” notation result in computation in the order of seconds,
proofs in the hundreds of KB, and memory usage several times greater [53].

3 We use “consensus” and “agreement” interchangeably.

DISC 2023

13:6 Every Bit Counts in Consensus

unbounded worst-case complexity). Hence, asynchronous MVBA solutions focus on expected
complexity. This line of work was revitalized by HoneyBadgerBFT [73], the first practical
fully asynchronous MVBA implementation. Like most other modern asynchronous MVBA
protocols, it leverages randomization via a common coin [76], and it terminates in expected
O(log n) time with an expected bit complexity of O(n2L + n3κ log n). [6] improves this to
O(1) expected time and O(n2L + n2κ) expected bits, which is asymptotically optimal with
L, κ ∈ O(1). Their result is later extended by [69] to large values, improving the complexity
to O(nL+n2κ) expected bits. This matches the best known lower bound [85, 3, 48], assuming
κ ∈ O(1).

Extension protocols [79, 56, 57, 58]. An extension protocol optimizes for long inputs
via a reduction to the same problem with small inputs (considered an oracle). Using
extension protocols, several state-of-the-art results were achieved in the authenticated and
unauthenticated models, both in synchronous and fully asynchronous settings for Byzantine
consensus, Byzantine broadcast and reliable broadcast [79]. Applying the extension protocol
of [79] to [75], synchronous Byzantine agreement can be implemented with optimal resiliency
(t < n/2) and a bit complexity of O(nL + n2κ). Interestingly, it has been demonstrated that
synchronous Byzantine agreement can be implemented with a bit complexity of O(n(L +
poly(κ))) using randomization [18]. The Dolev-Reischuk bound [48] is not violated in this
case since the implementation tolerates a negligible (with κ) probability of failure, whereas
the bound holds for deterministic protocols. In asynchrony, by applying the (asynchronous)
extension protocol of [79] to [6], the same asymptotic result as [69] is achieved, solving
asynchronous MVBA with an expected bit complexity of O(nL + n2κ).

Unconditionally secure Byzantine agreement with large inputs has been addressed by
[33, 34] under synchrony and [67] under asynchrony, assuming a common coin (implementable
via unconditionally-secure Asynchronous Verifiable Secret Sharing [35]). Despite [61] utilizing
erasure codes to alleviate leader bottleneck, and the theoretical construction of [38] with
exponential latency, there is, to the best of our knowledge, no viable extension protocol for
Byzantine agreement in partial synchrony achieving results similar to ours (o(n2L)).

Error correction. Coding techniques, such as erasure codes [19, 60, 10] or error-correction
codes [82, 14], appear in state-of-the-art implementations of various distributed tasks: Asyn-
chronous Verifiable Secret Sharing (AVSS) against a computationally bounded [44, 90, 84] or
unbounded [35] adversary, Random Beacon [43], Atomic Broadcast in both the asynchronous
[55, 62] and partially synchronous [28] settings, Information-Theoretic (IT) Asynchronous
State Machine Replication (SMR) [51], Gradecast in synchrony and Reliable Broadcast in
asynchrony [2], Asynchronous Distributed Key Generation (ADKG) [44, 45], Asynchronous
Verifiable Information Dispersal (AVID) [9], Byzantine Storage [47, 12, 59], and MVBA
[69, 79]. Coding techniques are often used to reduce the worst-case complexity by allowing
a group of processes to balance and share the cost of sending a value to an individual
(potentially faulty) node and are also used in combination with other techniques, such as
commitment schemes [31, 69].

We now list several problems related to or used in solving Byzantine agreement.

Asynchronous Common Subset (ACS). The goal in ACS [14, 15, 50] (also known as
Vector Consensus [80, 49, 40]) is to agree on a subset of n − t proposals. When considering
a generalization of the validity property, this problem represents the strongest variant of
consensus [38]. Atomic Broadcast can be trivially reduced to ACS [49, 25, 73]. There are

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:7

well-known simple asynchronous constructions that allow for the reduction of ACS to either
(1) Reliable Broadcast and Binary Byzantine Agreement [15], or (2) MVBA [25] in the
authenticated setting, where the validation predicate requires the output to be a vector of
signed inputs from at least n − t parties. The first reduction enables the implementation of
ACS with a cubic bit complexity, using the broadcast of [2]. The second reduction could be
improved further with a more efficient underlying MVBA protocol, such as DARE-Stark.

Asynchronous Verifiable Information Dispersal (AVID). AVID [26] is a form of “retrievable”
broadcast that allows the dissemination of a value while providing a cryptographic proof
that it can be retrieved. This primitive can be implemented with a total dispersal cost of
O(L + n2κ) bits exchanged and a retrieval cost of O(L + nκ) per node, relying only on
the existence of collision-resistant hash functions [9]. AVID is similar to our Dispersal and
Retrieval phases, but has two key differences. First, AVID’s retrieval protocol only guarantees
that a valid value will be retrieved if the original process dispersing the information was
correct. Second, it is a broadcast protocol, having stricter delivery guarantees for each
process. Concretely, if a correct process initiates the AVID protocol, it should eventually
disperse its own value. In contrast, we only require that a correct process obtains a proof of
dispersal for some value.

Provable Broadcast (PB) and Asynchronous Provable Dispersal Broadcast (APDB).
PB [7] is a primitive used to acquire a succinct proof of external validity. It is similar to
our Dispersal phase, including the algorithm itself, but without the provision of a proof
of dispersal (i.e., retrievability, only offering proof of validity). The total bit complexity
for n PB-broadcasts from distinct processes amounts to O(n2L). APDB [69] represents an
advancement of AVID, drawing inspiration from PB. It sacrifices PB’s validity guarantees
to incorporate AVID’s dissemination and retrieval properties. By leveraging the need to
retrieve and validate a value a constant number of times in expectation, [69] attains optimal
O(nL + n2κ) expected complexity in asynchrony. However, this approach falls short in the
worst-case scenario of a partially synchronous solution, where n reconstructions would cost
Ω(n2L).

Asynchronous Data Dissemination (ADD). In ADD [44], a subset of t+1 correct processes
initially share a common L-sized value v, and the goal is to disseminate v to all correct
processes, despite the presence of up to t Byzantine processes. The approach of [44] is
information-theoretically secure, tolerates up to one-third malicious nodes and has a bit
complexity of O(nL + n2 log n). (In DARE, we rely on ADD in a “closed-box” manner; see
§4.)

3 Preliminaries

Processes. We consider a static set Process = {P1, P2, ..., Pn} of n = 3t + 1 processes, out
of which (at most) t > 0 can be Byzantine and deviate arbitrarily from their prescribed
protocol. A Byzantine process is said to be faulty; a non-faulty process is said to be correct.
Processes communicate by exchanging messages over an authenticated point-to-point network.
Furthermore, the communication network is reliable: if a correct process sends a message to
a correct process, the message is eventually received. Processes have local hardware clocks.
Lastly, we assume that local steps of processes take zero time, as the time needed for local
computation is negligible compared to the message delays.

DISC 2023

13:8 Every Bit Counts in Consensus

Partial synchrony. We consider the standard partially synchronous model [52]. For every
execution, there exists an unknown Global Stabilization Time (GST) and a positive duration
δ such that the message delays are bounded by δ after GST. We assume that δ is known
by processes. All correct processes start executing their prescribed protocol by GST. The
hardware clocks of processes may drift arbitrarily before GST, but do not drift thereafter. We
underline that our algorithms require minimal changes to preserve their correctness even if δ

is unknown (these modifications are specified in Appendix C.2), although their complexity
might be higher.

Cryptographic primitives. Throughout the paper, hash(·) denotes a collision-resistant hash
function. The codomain of the aforementioned hash(·) function is denoted by Hash_Value.

Moreover, we assume a (k, n)-threshold signature scheme [83], where k = n − t = 2t + 1.
In this scheme, each process holds a distinct private key, and there is a single public key.
Each process Pi can use its private key to produce a partial signature for a message m

by invoking share_signi(m). A set of partial signatures S for a message m from k distinct
processes can be combined into a single threshold signature for m by invoking combine(S); a
threshold signature for m proves that k processes have (partially) signed m. Furthermore,
partial and threshold signatures can be verified: given a message m and a signature Σm,
verify_sig(m, Σm) returns true if and only if Σm is a valid signature for m. Where appropriate,
the verifications are left implicit. We denote by P_Signature and T_Signature the set of
partial and threshold signatures, respectively. The size of cryptographic objects (i.e., hashes,
signatures) is denoted by κ; we assume that κ > log n.4

Reed-Solomon codes [82]. Our algorithms rely on Reed-Solomon (RS) codes [81]. Con-
cretely, DARE utilizes (in a “closed-box” manner) an algorithm which internally builds upon
error-correcting RS codes. DARE-Stark directly uses RS erasure codes (no error correction
is required).

We use encode(·) and decode(·) to denote RS’ encoding and decoding algorithms. In a
nutshell, encode(·) takes a value v, chunks it into the coefficients of a polynomial of degree t

(the maximum number of faults), and outputs n (the total number of processes) evaluations
of the polynomial (RS symbols); Symbol denotes the set of RS symbols. decode(·) takes a set
of t + 1 RS symbols S and interpolates them into a polynomial of degree t, whose coefficients
are concatenated and output.

Complexity of Byzantine consensus. Let Consensus be a partially synchronous Byzantine
consensus algorithm, and let E(Consensus) denote the set of all possible executions. Let
α ∈ E(Consensus) be an execution, and td(α) be the first time by which all correct processes
have decided in α. The bit complexity of α is the total number of bits sent by correct
processes during the time period [GST, ∞). The latency of α is max(0, td(α) − GST).

The bit complexity of Consensus is defined as

max
α∈E(Consensus)

{
bit complexity of α

}
.

4 For κ ≤ log n, t ∈ O(n) faulty processes would have computational power exponential in κ, breaking
cryptographic hardness assumptions.

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:9

Similarly, the latency of Consensus is defined as

max
α∈E(Consensus)

{
latency of α

}
.

4 DARE

This section presents DARE (Disperse, Agree, REtrieve), which is composed of three
algorithms:
1. Disperser, which disperses the proposals;
2. Agreement, which ensures agreement on the hash of a previously dispersed proposal;

and
3. Retriever, which rebuilds the proposal corresponding to the agreed-upon hash.

We start by introducing the aforementioned building blocks (§4.1). Then, we show how
they are composed into DARE (§4.2). Finally, we prove the correctness and complexity of
DARE (§4.3).

4.1 Building Blocks: Overview
In this subsection, we formally define the three building blocks of DARE. Concretely, we
define their interface and properties, as well as their complexity.

4.1.1 Disperser
Interface & properties. Disperser solves a problem similar to that of AVID [26]. In a
nutshell, each correct process aims to disperse its value to all correct processes: eventually,
all correct processes acquire a proof that a value with a certain hash has been successfully
dispersed.

Concretely, Disperser exposes the following interface:
request disperse(v ∈ Value): a process disperses a value v; each correct process invokes
disperse(v) exactly once and only if valid(v) = true.
indication acquire(h ∈ Hash_Value, Σh ∈ T_Signature): a process acquires a pair
(h, Σh).

We say that a correct process obtains a threshold signature (resp., a value) if and only if it
stores the signature (resp., the value) in its local memory. (Obtained values can later be
retrieved by all correct processes using Retriever; see §4.1.3 and Algorithm 1.) Disperser
ensures the following:

Integrity: If a correct process acquires a hash-signature pair (h, Σh), then
verify_sig(h, Σh) = true.
Termination: Every correct process eventually acquires at least one hash-signature pair.
Redundancy: Let a correct process obtain a threshold signature Σh such that
verify_sig(h, Σh) = true, for some hash value h. Then, (at least) t + 1 correct pro-
cesses have obtained a value v such that (1) hash(v) = h, and (2) valid(v) = true.

Note that it is not required for all correct processes to acquire the same hash value (nor the
same threshold signature). Moreover, the specification allows for multiple acquired pairs.

Complexity. Disperser exchanges O(n1.5L+n2.5κ) bits after GST. Moreover, it terminates
in O(n) time after GST.

DISC 2023

13:10 Every Bit Counts in Consensus

Implementation. The details on Disperser’s implementation are relegated to §5.

4.1.2 Agreement
Interface & properties. Agreement is a Byzantine consensus algorithm.5 In Agree-
ment, processes propose and decide pairs (h ∈ Hash_Value, Σh ∈ T_Signature); moreover,
valid(h, Σh) ≡ verify_sig(h, Σh).

Complexity. Agreement achieves O(n2κ) bit complexity and O(n) latency.

Implementation. We “borrow” the implementation from [36]. In brief, Agreement is
a “leader-based” consensus algorithm whose computation unfolds in views. Each view
has a single leader, and it employs a “leader-to-all, all-to-leader” communication pattern.
Agreement’s safety relies on standard techniques [89, 30, 23, 66]: (1) quorum intersection
(safety within a view), and (2) “locking” mechanism (safety across multiple views). As for
liveness, Agreement guarantees termination once all correct processes are in the same view
(for “long enough” time) with a correct leader. (For full details on Agreement, see [36].)

4.1.3 Retriever
Interface & properties. In Retriever, each correct process starts with either (1) some
value, or (2) ⊥. Eventually, all correct processes output the same value. Formally, Retriever
exposes the following interface:

request input(v ∈ Value ∪ {⊥}): a process inputs a value or ⊥; each correct process
invokes input(·) exactly once. Moreover, the following is assumed:

No two correct processes invoke input(v1 ∈ Value) and input(v2 ∈ Value) with v1 ̸= v2.
At least t + 1 correct processes invoke input(v ∈ Value) (i.e., v ̸= ⊥).

indication output(v′ ∈ Value): a process outputs a value v′.
The following properties are ensured:

Agreement: No two correct processes output different values.
Validity: Let a correct process input a value v. No correct process outputs a value v′ ≠ v.
Termination: Every correct process eventually outputs a value.

Complexity. Retriever exchanges O(nL + n2 log n) bits after GST (and before every
correct process outputs a value). Moreover, Retriever terminates in O(1) time after GST.

Implementation. Retriever’s implementation is “borrowed” from [44]. In summary,
Retriever relies on Reed-Solomon codes [82] to encode the input value v ̸= ⊥ into n

symbols. Each correct process Q which inputs v ̸= ⊥ to Retriever encodes v into n RS
symbols s1, s2, ..., sn. Q sends each RS symbol si to the process Pi. When Pi receives t + 1
identical RS symbols si, Pi is sure that si is a “correct” symbol (i.e., it can be used to rebuild
v) as it was computed by at least one correct process. At this moment, Pi broadcasts si.
Once each correct process P receives 2t + 1 (or more) RS symbols, P tries to rebuild v (with
some error-correction). (For full details on Retriever, see [44].)

5 Recall that the interface and properties of Byzantine consensus algorithms are introduced in §1.

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:11

Algorithm 1 DARE: Pseudocode (for process Pi).

1: Uses:
2: ▷ bits: O(n1.5L + n2.5κ), latency: O(n) (see §5)
3: Disperser, instance disperser
4: ▷ bits: O(n2κ), latency: O(n) (see [36])
5: Agreement, instance agreement
6: ▷ bits: O(nL + n2 log n), latency: O(1) (see [44])
7: Retriever, instance retriever
8: upon propose(vi ∈ Value):
9: invoke disperser .disperse(vi)

10: upon disperser .acquire(hi ∈ Hash_Value, Σi ∈ T_Signature):
11: invoke agreement.propose(hi, Σi)
12: upon agreement.decide(h ∈ Hash_Value, Σh ∈ T_Signature): ▷ Pi obtains Σh

13: v ← an obtained value such that hash(v) = h (if such a value was not obtained, v = ⊥)
14: invoke retriever .input(v)
15: upon retriever .output(Value v′):
16: trigger decide(v′)

4.2 Pseudocode
Algorithm 1 gives DARE’s pseudocode. We explain it from the perspective of a correct
process Pi. An execution of DARE consists of three phases (each of which corresponds to
one building block):
1. Dispersal: Process Pi disperses its proposal vi using Disperser (line 9). Eventually,

Pi acquires a hash-signature pair (hi, Σi) (line 10) due to the termination property of
Disperser.

2. Agreement: Process Pi proposes the previously acquired hash-signature pair (hi, Σi) to
Agreement (line 11). As Agreement satisfies termination and agreement, all correct
processes eventually agree on a hash-signature pair (h, Σh) (line 12).

3. Retrieval: Once process Pi decides (h, Σh) from Agreement, it checks whether it has
previously obtained a value v with hash(v) = h (line 13). If it has, Pi inputs v to
Retriever; otherwise, Pi inputs ⊥ (line 14). The required preconditions for Retriever
are met:

No two correct processes input different non-⊥ values to Retriever as hash(·) is
collision-resistant.
At least (t + 1) correct processes input a value (and not ⊥) to Retriever. Indeed,
as Σh is obtained by a correct process, t + 1 correct processes have obtained a value
v ≠ ⊥ with hash(v) = h (due to redundancy of Disperser), and all of these processes
input v.

Therefore, all correct processes (including Pi) eventually output the same value v′ from
Retriever (due to the termination property of Retriever; line 15), which represents
the decision of DARE (line 16). Note that v′ = v ̸= ⊥ due to the validity of Retriever.

4.3 Proof of Correctness & Complexity
We start by proving the correctness of DARE.

▶ Theorem 1. DARE is correct.

Proof. Every correct process starts the dispersal of its proposal (line 9). Due to the
termination property of Disperser, every correct process eventually acquires a hash-signature
pair (line 10). Hence, every correct process eventually proposes to Agreement (line 11),

DISC 2023

13:12 Every Bit Counts in Consensus

which implies that every correct process eventually decides the same hash-signature pair
(h, Σh) from Agreement (line 12) due to the agreement and termination properties of
Agreement.

As (h, Σh) is decided by all correct processes, at least t + 1 correct processes Pi have
obtained a value v such that (1) hash(v) = h, and (2) valid(v) = true (due to the redundancy
property of Disperser). Therefore, all of these correct processes input v to Retriever
(line 14). Moreover, no correct process inputs a different value (as hash(·) is collision-resistant).
Thus, the conditions required by Retriever are met, which implies that all correct processes
eventually output the same valid value (namely, v) from Retriever (line 15), and decide it
(line 16). ◀

Next, we prove the complexity of DARE.

▶ Theorem 2. DARE achieves O(n1.5L + n2.5κ) bit complexity and O(n) latency.

Proof. As DARE is a sequential composition of its building blocks, its complexity is the
sum of the complexities of (1) Disperser, (2) Agreement, and (3) Retriever. Hence,
the bit complexity is

O(n1.5L + n2.5κ)︸ ︷︷ ︸
Disperser

+ O(n2κ)︸ ︷︷ ︸
Agreement

+ O(nL + n2 log n)︸ ︷︷ ︸
Retriever

= O(n1.5L + n2.5κ).

Similarly, the latency is O(n). ◀

5 Disperser: Implementation & Analysis

This section focuses on Disperser. Namely, we present its implementation (§5.1), and
(informally) analyze its correctness and worst-case complexity (§5.2). Formal proofs can be
found in the full version of the paper [37]. An analysis of the good (common) case can be
found in Appendix C.1.

5.1 Implementation
Disperser’s pseudocode is given in Algorithm 2. In essence, each execution unfolds in
views, where each view has X leaders (0 < X ≤ n is a generic parameter); the set of all
views is denoted by View. Given a view V , leaders(V) denotes the X-sized set of leaders
of the view V . In each view, a leader disperses its value to Y -sized groups of processes
(0 < Y ≤ n is a generic parameter) at a time (line 14), with a δ-waiting step in between
(line 15). Before we thoroughly explain the pseudocode, we introduce Sync, Disperser’s
view synchronization [36, 89, 66] algorithm.

Sync. Its responsibility is to bring all correct processes to the same view with a correct
leader for (at least) ∆ = δ n

Y + 3δ time. Precisely, Sync exposes the following interface:
indication advance(V ∈ View): a process enters a new view V .

Sync guarantees eventual synchronization: there exists a time τsync ≥ GST (synchronization
time) such that (1) all correct processes are in the same view Vsync (synchronization view)
from time τsync to (at least) time τsync + ∆, and (2) Vsync has a correct leader. We denote
by V ∗

sync the smallest synchronization view, whereas τ∗
sync denotes the first synchronization

time. Similarly, Vmax denotes the greatest view entered by a correct process before GST.6

6 When such a view does not exist, Vmax = 0

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:13

The implementation of Sync (see Appendix A) is highly inspired by RareSync, a view
synchronization algorithm introduced in [36]. In essence, when a process enters a new view,
it stays in the view for O(∆) = O(n

Y) time. Once it wishes to proceed to the next view, the
process engages in an “all-to-all” communication step (which exchanges O(n2κ) bits); this
step signals the end of the current view, and the beginning of the next one. Throughout
views, leaders are rotated in a round-robin manner: each process is a leader for exactly one
view in any sequence of n

X consecutive views. As O(n
X) views (after GST) are required to

reach a correct leader, Sync exchanges O(n
X) ·O(n2κ) = O(n3κ

X) bits (before synchronization,
i.e., before τ∗

sync + ∆); since each view takes O(n
Y) time, synchronization is ensured within

O(n
X) · O(n

Y) = O(n2

XY) time.
Disperser relies on the following properties of Sync (along with eventual synchroniza-

tion):
Monotonicity: Any correct process enters monotonically increasing views.
Stabilization: Any correct process enters a view V ≥ Vmax by time GST + 3δ.
Limited entrance: In the time period [GST, GST + 3δ), any correct process enters O(1)
views.
Overlapping: For any view V > Vmax , all correct processes overlap in V for (at least) ∆
time.
Limited synchronization view: V ∗

sync − Vmax = O(n
X).

Complexity: Sync exchanges O(n3κ
X) bits during the time period [GST, τ∗

sync + ∆], and
it synchronizes all correct processes within O(n2

XY) time after GST (τ∗
sync + ∆ − GST =

O(n2

XY)).
The aforementioned properties of Sync are formally proven in Appendix A.

Algorithm description. Correct processes transit through views based on Sync’s indications
(line 10): when a correct process receives advance(V) from Sync, it stops participating in
the previous view and starts participating in V .

Once a correct leader Pl enters a view V , it disperses its proposal via dispersal messages.
As already mentioned, Pl sends its proposal to Y -sized groups of processes (line 14) with a δ-
waiting step in between (line 15). When a correct (non-leader) process Pi (which participates
in the view V) receives a dispersal message from Pl, Pi checks whether the dispersed value
is valid (line 17). If it is, Pi partially signs the hash of the value, and sends it back to Pl

(line 20). When Pl collects 2t + 1 ack messages, it (1) creates a threshold signature for
the hash of its proposal (line 24), and (2) broadcasts the signature (along with the hash
of its proposal) to all processes via a confirm message (line 25). Finally, when Pl (or any
other correct process) receives a confirm message (line 27), it (1) acquires the received
hash-signature pair (line 28), (2) disseminates the pair to “help” the other processes (line 29),
and (3) stops executing Disperser (line 30).

5.2 Analysis
Correctness. Once all correct processes synchronize in the view V ∗

sync (the smallest synchro-
nization view), all correct processes acquire a hash-signature pair. Indeed, ∆ = δ n

Y + 3δ time
is sufficient for a correct leader Pl ∈ leaders(V ∗

sync) to (1) disperse its proposal proposal l to
all processes (line 14), (2) collect 2t + 1 partial signatures for h = hash(proposal l) (line 23),
and (3) disseminate a threshold signature for h (line 25). When a correct process receives
the aforementioned threshold signature (line 27), it acquires the hash-signature pair (line 28)
and stops executing Disperser (line 30).

DISC 2023

13:14 Every Bit Counts in Consensus

Algorithm 2 Disperser: Pseudocode (for process Pi).

1: Uses:
2: Sync, instance sync ▷ ensures a ∆ = δ n

Y + 3δ overlap in a view with a correct leader
3: upon init:
4: Value proposali ← ⊥
5: Integer received_acksi ← 0
6: Map(Hash_Value→ Value) obtained_valuesi ← empty
7: upon disperse(Value vi):
8: proposali ← vi

9: start sync
10: upon sync.advance(View V): ▷ Pi stops participating in the previous view
11: ▷ First part of the view
12: if Pi ∈ leaders(V):
13: for Integer k ← 1 to n

Y :
14: send ⟨dispersal, proposali⟩ to P(k−1)Y +1, P(k−1)Y +2, ..., PkY

15: wait δ time
16: every process:
17: upon reception of ⟨dispersal, Value vj⟩ from process Pj ∈ leaders(V) and valid(vj) = true:

18: Hash_Value h← hash(vj)
19: obtained_valuesi[h]← vj

20: send ⟨ack, share_signi(h)⟩ to Pj

21: ▷ Second part of the view
22: if Pi ∈ leaders(V):
23: upon exists Hash_Value h such that ⟨ack, h, ·⟩ has been received from 2t + 1 processes:
24: T_Signature Σh ← combine

(
{P_Signature sig | sig is received in the ack messages}

)
25: broadcast ⟨confirm, h, Σh⟩
26: every process:
27: upon reception of ⟨confirm, Hash_Value h, T_Signature Σh⟩ and verify_sig(h, Σh) = true:

28: trigger acquire(h, Σh)
29: broadcast ⟨confirm, h, Σh⟩
30: stop executing Disperser (and Sync)

Complexity. Disperser terminates once all correct processes are synchronized in a view
with a correct leader. The synchronization is ensured in O(n2

XY) time after GST (as τ∗
sync +

∆ − GST = O(n2

XY)). Hence, Disperser terminates in O(n2

XY) time after GST.
Let us analyze the number of bits Disperser exchanges. Any execution of Disperser

can be separated into two post-GST periods: (1) unsynchronized, from GST until GST + 3δ,
and (2) synchronized, from GST + 3δ until τ∗

sync + ∆. First, we study the number of bits
correct processes send via dispersal, ack and confirm message in the aforementioned
periods:

Unsynchronized period: Due to the δ-waiting step (line 15), each correct process sends
dispersal messages (line 14) to (at most) 3 = O(1) Y -sized groups. Hence, each correct
process sends O(1) · O(Y) · L = O(Y L) bits through dispersal messages.
Due to the limited entrance property of Sync, each correct process enters O(1) views
during the unsynchronized period. In each view, each correct process sends (at most)
O(X) ack messages (one to each leader; line 20) and O(n) confirm messages (line 25).
As each ack and confirm message carries κ bits, all correct processes send

n ·
(

O(Y L)︸ ︷︷ ︸
dispersal

+ O(Xκ)︸ ︷︷ ︸
ack

+ O(nκ)︸ ︷︷ ︸
confirm

)
= O(nY L + n2κ) bits via dispersal, ack and confirm messages.

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:15

Synchronized period: Recall that all correct processes acquire a hash-signature pair (and
stop executing Disperser) by time τ∗

sync + ∆, and they do so in the view V ∗
sync. As

correct processes enter monotonically increasing views, no correct process enters a view
greater than V ∗

sync.
By the stabilization property of Sync, each correct process enters a view V ≥ Vmax by
time GST + 3δ. Moreover, until τ∗

sync + ∆, each correct process enters (at most) O(n
X)

views (due to the limited synchronization view and monotonicity properties of Sync).
Importantly, no correct leader exists in any view V with Vmax < V < V ∗

sync; otherwise,
V = V ∗

sync as processes overlap for ∆ time in V (due to the overlapping property of Sync).
Hence, for each view V with Vmax < V < V ∗

sync, all correct processes send O(nXκ) bits
(all through ack messages; line 20). In Vmax and V ∗

sync, all correct processes send (1)
2 · O(XnL) bits through dispersal messages (line 14), (2) 2 · O(nXκ) bits through
ack messages (line 20), and (3) 2 · O(Xnκ) bits through confirm messages (line 25).
Therefore, all correct processes send

O(n

X
)︸ ︷︷ ︸

V ∗
sync − Vmax

· O(nXκ)︸ ︷︷ ︸
ack

+ O(XnL)︸ ︷︷ ︸
dispersal in Vmax and V ∗

sync

+ O(nXκ)︸ ︷︷ ︸
ack in Vmax and V ∗

sync

+ O(Xnκ)︸ ︷︷ ︸
confirm in Vmax and V ∗

sync

= O(nXL + n2κ) bits via dispersal, ack and confirm messages.

We cannot neglect the complexity of Sync, which exchanges O(n3κ
X) bits during the time

period [GST, τ∗
sync + ∆]. Hence, the total number of bits Disperser exchanges is

O(nY L + n2κ)︸ ︷︷ ︸
unsynchronized period

+ O(nXL + n2κ)︸ ︷︷ ︸
synchronized period

+ O(n3κ

X
)︸ ︷︷ ︸

Sync

= O(nY L + nXL + n3κ

X
).

With X = Y =
√

n, Disperser terminates in optimal O(n) time, and exchanges O(n1.5L +
n2.5κ) bits. Our analysis is illustrated in Figure 4.

GST

Unsynchronized
period

Synchronized
period

Time

All leaders faulty All leaders correct

1 2

Figure 4 Illustration of Disperser’s bit complexity.

6 DARE-Stark

In this section, we present DARE-Stark, a variant of DARE which relies on STARK proofs.
Importantly, DARE-Stark achieves O(nL + n2poly(κ)) bit complexity, nearly tight to the
Ω(nL + n2) lower bound, while preserving optimal O(n) latency.

First, we revisit Disperser, pinpointing its complexity on proving RS encoding (§6.1). We
then present DARE-Stark, which uses STARKs for provable RS encoding, thus improving
on DARE’s complexity (§6.2). For a brief overview on STARKs, a cryptographic primitive
providing succinct proofs of knowledge, we invite the interested reader to Appendix B.

DISC 2023

13:16 Every Bit Counts in Consensus

6.1 Revisiting DARE: What Causes Disperser’s Complexity?
Recall that Disperser exchanges O(n1.5L + n2.5κ) bits. This is due to a fundamental
requirement of Retriever: at least t + 1 correct processes must have obtained the value v

by the time Agreement decides h = hash(v). Retriever leverages this requirement to
prove the correct encoding of RS symbols. In brief (as explained in §4.1.3): (1) every correct
process P that obtained v ̸= ⊥ encodes it in n RS symbols s1, . . . , sn; (2) P sends each si to
Pi; (3) upon receiving t + 1 identical copies of si, Pi can trust si to be the i-th RS symbol for
v (note that si can be trusted only because it was produced by at least one correct process
– nothing else proves si’s relationship to v!); (4) every correct process Pi disseminates si,
enabling the reconstruction of v by means of error-correcting decoding. In summary, DARE
bottlenecks on Disperser, and Disperser’s complexity is owed to the need to prove the
correct encoding of RS symbols in Retriever. Succinct arguments of knowledge (such as
STARKs), however, allow to publicly prove the relationship between an RS symbol and the
value it encodes, eliminating the need to disperse the entire value to t + 1 correct processes –
a dispersal of provably correct RS symbols suffices. DARE-Stark builds upon this idea.

6.2 Implementation
Provably correct encoding. At its core, DARE-Stark uses STARKs to attest the correct
RS encoding of values. For every i ∈ [1, n], we define shardi(·) by

shardi(v ∈ Value) =
{(

hash(v), encodei(v)
)
, if and only if valid(v) = true

⊥, otherwise,
(1)

where encodei(v) represents the i-th RS symbol obtained from encode(v) (see §3). We use
proofi(v) to denote the STARK proving the correct computation of shardi(v). The design
and security of DARE-Stark rests on the following theorem.

▶ Theorem 3. Let i1, . . . , it+1 be distinct indices in [1, n]. Let h be a hash, let s1, . . . , st+1
be RS symbols, let stark1, . . . , starkt+1 be STARK proofs such that, for every k ∈ [1, t + 1],
starkk proves knowledge of some (undisclosed) vk such that shardik

(vk) = (h, sk). We have
that

v = decode({s1, . . . , sk})

satisfies valid(v) = true and hash(v) = h.

Proof. For all k, by the correctness of starkk and Equation (1), we have that (1) h = hash(vk),
(2) sk = encodeik

(vk), and (3) valid(vk) = true. By the collision-resistance of hash(·), for all
k, k′, we have vk = v′

k. By the definition of encode(·) and decode(·), we then have

v = decode({s1, . . . , sk}) = v1 = . . . = vt+1,

which implies that valid(v) = true and hash(v) = h. ◀

Algorithm description. The pseudocode of DARE-Stark is presented in Algorithm 3 from
the perspective of a correct process Pi. Similarly to DARE, DARE-Stark unfolds in three
phases:
1. Dispersal: Upon proposing a value vi (line 9), Pi sends (line 14) to each process Pk (1)

(hk, sk) = shardk(vi) (computed at line 12), and (2) starkk = proofk(vi) (computed at
line 13). In doing so (see Theorem 3), Pi proves to Pk that hk = hash(vi) is the hash of a

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:17

Algorithm 3 DARE-Stark: Pseudocode (for process Pi).

1: Uses:
2: Agreement, instance agreement
3: upon init:
4: Hash_Value proposed_hashi ← ⊥
5: Map

(
Hash_Value→ (Symbol, STARK)

)
proposal_shardsi ← empty

6: Map
(
Hash_Value→ Set(Symbol)

)
decision_symbolsi ← empty

7: Bool decidedi ← false
8: ▷ Dispersal
9: upon propose(Value vi):

10: proposed_hashi ← hash(vi)
11: for Integer k ← 1 to n:
12: (Hash hk, Symbol sk)← shardk(vi)
13: STARK starkk ← proofk(vi)
14: send ⟨dispersal, hk, sk, starkk⟩ to Pk

15: upon reception of ⟨dispersal, Hash_Value h, Symbol s, STARK stark⟩ from process Pj and stark
proves shardi(?) = (h, s):

16: proposal_shardsi[h]← (s, stark)
17: send ⟨ack, share_signi(h)⟩ to Pj

18: ▷ Agreement
19: upon ⟨ack, P_Signature sig⟩ is received from 2t + 1 processes:
20: T_Signature Σ← combine

(
{sig | sig is received in the ack messages}

)
21: invoke agreement.propose(proposed_hashi, Σ)
22: upon agreement.decide(Hash_Value h, T_Signature Σ) with proposal_shardsi[h] ̸= ⊥:
23: (Symbol s, STARK stark)← proposal_shardsi[h]
24: broadcast ⟨retrieve, h, s, stark⟩
25: ▷ Retrieval
26: upon reception of ⟨retrieve, Hash_Value h, Symbol s, STARK stark⟩ from process Pj and stark

proves shardj(?) = (h, s):
27: decision_symbolsi[h]← decision_symbolsi[h] ∪ {s}
28: upon (1) exists Hash_Value h such that decision_symbolsi[h] has t + 1 elements, and (2) decidedi =

false:
29: decidedi ← true
30: trigger decide

(
decode(decision_symbolsi[h])

)
valid proposal, whose k-th RS symbol is encodek(vi). Pk checks starkk against (hk, sk)
(line 15), stores (sk, starkk) (line 16), and sends a partial signature for hk back to Pi

(line 17).
2. Agreement: Having collected a threshold signature Σ for hash(vi) (line 20), Pi proposes

(hash(vi), Σ) to Agreement (line 21).
3. Retrieval: Upon deciding a hash h from Agreement (line 22), Pi broadcasts (if available)

the i-th RS symbol for h, along with the relevant proof (line 24). Upon receiving t + 1
symbols S for the same hash (line 28), Pi decides decode(S) (line 30).

Analysis. Upon proposing a value vi (line 9), a correct process Pi sends shardk(vi) and
proofk(vi) to each process Pk (line 14). Checking proofk(vi) against shardk(vi) (line 15),
Pk confirms having received the k-th RS symbol for vi (note that this does not require
the transmission of vi, just hash(vi)). As 2t + 1 processes are correct, Pi is guaranteed to
eventually gather a (2t + 1)-threshold signature Σ for hash(vi) (line 20). Upon doing so,
Pi proposes (hash(vi), Σ) to Agreement (line 21). Since every correct process eventually
proposes a value to Agreement, every correct process eventually decides some hash h from
Agreement (line 22). Because 2t + 1 processes signed h, at least t + 1 correct processes
(without loss of generality, P1, . . . , Pt+1) received a correctly encoded RS-symbol for h. More
precisely, for every k ∈ [1, t + 1], Pk received and stored the k-th RS symbol encoded

DISC 2023

13:18 Every Bit Counts in Consensus

from the pre-image v of h. Upon deciding from Agreement, each process Pk broadcasts
its RS symbol, along with the relevant proof (line 24). Because at most t processes are
faulty, no correct process receives t + 1 RS symbols pertaining to a hash other than h. As
P1, . . . , Pt+1 all broadcast their symbols and proofs, eventually every correct process collects
t + 1 (provably correct) RS symbols S pertaining to h (line 28), and decides decode(S)
(line 30). By Theorem 3, every correct process eventually decides the same valid value v

(with h = hash(v)).
Concerning bit complexity, throughout an execution of DARE-Stark, a correct process

engages once in Agreement (which exchanges O(n2κ) bits in total) and sends: (1) n

dispersal messages, each of size O(L
n + poly(κ)), (2) n ack messages, each of size O(κ),

and (3) n retrieve messages, each of size O(L
n + poly(κ)). Therefore, the bit complexity of

DARE-Stark is O(nL + n2poly(κ)). As for the latency, it is O(n) (due to the linear latency
of Agreement).

7 Concluding Remarks

This paper introduces DARE (Disperse, Agree, REtrieve), the first partially synchronous
Byzantine agreement algorithm on values of L bits with better than O(n2L) bit complexity
and sub-exponential latency. DARE achieves O(n1.5L + n2.5κ) bit complexity (κ is the
security parameter) and optimal O(n) latency, which is an effective

√
n factor bit-improvement

for L ≥ nκ (typical in practice). DARE achieves its complexity in two steps. First, DARE
decomposes problem of agreeing on large values (L bits) into three sub-problems: (1) value
dispersal, (2) validated agreement on small values (O(κ)), and (3) value retrieval. (DARE
effectively acts as an extension protocol for Byzantine agreement.) Second, DARE’s novel
dispersal algorithm solves the main challenge, value dispersal, using only O(n1.5L) bits and
linear latency.

Moreover, we prove that the lower bound of Ω(nL + n2) is near-tight by matching it
near-optimally with DARE-Stark, a modified version of DARE using STARK proofs that
reaches O(nL+n2poly(κ)) bits and maintains optimal O(n) latency. We hope DARE-Stark
motivates research into more efficient STARK schemes in the future, which currently have
large hidden constants affecting their practical use.

References
1 Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter, and Jay J

Wylie. Fault-scalable byzantine fault-tolerant services. ACM SIGOPS Operating Systems
Review, 39(5):59–74, 2005.

2 Ittai Abraham and Gilad Asharov. Gradecast in synchrony and reliable broadcast in asynchrony
with optimal resilience, efficiency, and unconditional security. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,
Italy, July 25 - 29, 2022, pages 392–398. ACM, 2022. doi:10.1145/3519270.3538451.

3 Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication Complexity of Byzantine Agreement, Revisited. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19, pages 317–326,
New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3293611.
3331629.

4 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Sol-
ida: A blockchain protocol based on reconfigurable byzantine consensus. arXiv preprint
arXiv:1612.02916, 2016.

5 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solidus:
An incentive-compatible cryptocurrency based on permissionless byzantine consensus. CoRR,
abs/1612.02916, 2016.

https://doi.org/10.1145/3519270.3538451
https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1145/3293611.3331629

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:19

6 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically Optimal Validated
Asynchronous Byzantine Agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing (PODC), pages 337–346, 2019.

7 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically Optimal Validated
Asynchronous Byzantine Agreement. Proceedings of the Annual ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

8 Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R
Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wattenhofer. Farsite:
Federated, available, and reliable storage for an incompletely trusted environment. ACM
SIGOPS Operating Systems Review, 36(SI):1–14, 2002.

9 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin
Zhang. Brief announcement: Asynchronous verifiable information dispersal with near-optimal
communication. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium
on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 418–420.
ACM, 2022. doi:10.1145/3519270.3538476.

10 Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct Erasure Coding
Proof Systems. Cryptology ePrint Archive, 2021.

11 Yair Amir, Claudiu Danilov, Jonathan Kirsch, John Lane, Danny Dolev, Cristina Nita-Rotaru,
Josh Olsen, and David Zage. Scaling byzantine fault-tolerant replication towide area networks.
In International Conference on Dependable Systems and Networks (DSN’06), pages 105–114.
IEEE, 2006.

12 Elli Androulaki, Christian Cachin, Dan Dobre, and Marko Vukolic. Erasure-coded byzantine
storage with separate metadata. In Marcos K. Aguilera, Leonardo Querzoni, and Marc Shapiro,
editors, Principles of Distributed Systems - 18th International Conference, OPODIS 2014,
Cortina d’Ampezzo, Italy, December 16-19, 2014. Proceedings, volume 8878 of Lecture Notes
in Computer Science, pages 76–90. Springer, 2014. doi:10.1007/978-3-319-14472-6_6.

13 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing ef-
ficient protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

14 Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous Secure Computation. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 52–61,
1993.

15 Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous Secure Computations with
Optimal Resilience. In Proceedings of the thirteenth annual ACM symposium on Principles of
distributed computing, pages 183–192, 1994.

16 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, 2018.

17 Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State Machine Replication for the
Masses with BFT-SMART. In 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 355–362. IEEE, 2014.

18 Amey Bhangale, Chen-Da Liu-Zhang, Julian Loss, and Kartik Nayak. Efficient adaptively-
secure byzantine agreement for long messages. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022,
Proceedings, Part I, volume 13791 of Lecture Notes in Computer Science, pages 504–525.
Springer, 2022. doi:10.1007/978-3-031-22963-3_17.

19 Richard E Blahut. Theory and practice of error control codes, volume 126. Addison-Wesley
Reading, 1983.

20 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making Byzantine Consensus Live.
In 34th International Symposium on Distributed Computing (DISC), volume 179, pages 1–17,
2020.

DISC 2023

https://doi.org/10.1145/3519270.3538476
https://doi.org/10.1007/978-3-319-14472-6_6
https://doi.org/10.1007/978-3-031-22963-3_17

13:20 Every Bit Counts in Consensus

21 Manuel Bravo, Gregory V. Chockler, and Alexey Gotsman. Making byzantine consensus live.
Distributed Comput., 35(6):503–532, 2022. doi:10.1007/s00446-022-00432-y.

22 Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
University of Guelph, 2016.

23 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. arXiv
preprint arXiv:1807.04938, pages 1–14, 2018. arXiv:1807.04938.

24 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011. doi:10.1007/978-3-642-15260-3.

25 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and Efficient
Asynchronous Broadcast Protocols. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages
524–541. Springer, 2001. doi:10.1007/3-540-44647-8_31.

26 Christian Cachin and Stefano Tessaro. Asynchronous Verifiable Information Dispersal. In 24th
IEEE Symposium on Reliable Distributed Systems (SRDS’05), pages 191–201. IEEE, 2005.

27 Martina Camaioni, Rachid Guerraoui, Matteo Monti, Pierre-Louis Roman, Manuel Vidigueira,
and Gauthier Voron. Chop chop: Byzantine atomic broadcast to the network limit. arXiv
preprint arXiv:2304.07081, 2023.

28 Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne Anne Pignolet, Victor Shoup, and
Dominic Williams. Internet Computer Consensus. Proceedings of the Annual ACM Symposium
on Principles of Distributed Computing, 2021:81–91, 2022. doi:10.1145/3519270.3538430.

29 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

30 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

31 Dario Catalano and Dario Fiore. Vector Commitments and Their Applications. In Public-Key
Cryptography–PKC 2013: 16th International Conference on Practice and Theory in Public-Key
Cryptography, Nara, Japan, February 26–March 1, 2013. Proceedings 16, pages 55–72. Springer,
2013.

32 Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.
33 Jinyuan Chen. Fundamental limits of byzantine agreement. CoRR, abs/2009.10965, 2020.

arXiv:2009.10965.
34 Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In Seth Gilbert, editor,

35th International Symposium on Distributed Computing, DISC 2021, October 4-8, 2021,
Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages 17:1–17:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.17.

35 Ashish Choudhury and Arpita Patra. On the communication efficiency of statistically secure
asynchronous MPC with optimal resilience. J. Cryptol., 36(2):13, 2023. doi:10.1007/
s00145-023-09451-9.

36 Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui,
Jovan Komatovic, and Manuel Vidigueira. Byzantine Consensus Is Θ(n2): The Dolev-
Reischuk Bound Is Tight Even in Partial Synchrony! In Christian Scheideler, editor, 36th
International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta,
Georgia, USA, volume 246 of LIPIcs, pages 14:1–14:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.DISC.2022.14.

37 Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, and Manuel
Vidigueira. Every Bit Counts in Consensus. arXiv preprint arXiv:2306.00431, 2023.

38 Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira.
On the Validity of Consensus. To appear in PODC 2023, abs/2301.04920, 2023. doi:
10.48550/arXiv.2301.04920.

39 Miguel Correia. From byzantine consensus to blockchain consensus. In Essentials of Blockchain
Technology, pages 41–80. Chapman and Hall/CRC, 2019.

https://doi.org/10.1007/s00446-022-00432-y
https://arxiv.org/abs/1807.04938
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1145/3519270.3538430
https://arxiv.org/abs/2009.10965
https://doi.org/10.4230/LIPIcs.DISC.2021.17
https://doi.org/10.1007/s00145-023-09451-9
https://doi.org/10.1007/s00145-023-09451-9
https://doi.org/10.4230/LIPIcs.DISC.2022.14
https://doi.org/10.48550/arXiv.2301.04920
https://doi.org/10.48550/arXiv.2301.04920

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:21

40 Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. From Consensus to Atomic
Broadcast: Time-Free Byzantine-Resistant Protocols without Signatures. The Computer
Journal, 49(1):82–96, 2006.

41 Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. Dbft: Efficient leaderless
byzantine consensus and its application to blockchains. In 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA), pages 1–8. IEEE, 2018.

42 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 34–50, 2022.

43 Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt: Scalable distributed
randomness beacon with transparent setup. In 43rd IEEE Symposium on Security and
Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 2502–2517. IEEE, 2022.
doi:10.1109/SP46214.2022.9833580.

44 Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous Data Dissemination and its Applica-
tions. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2705–2721, 2021.

45 Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and Ling
Ren. Practical asynchronous distributed key generation. In 43rd IEEE Symposium on Security
and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 2518–2534. IEEE,
2022. doi:10.1109/SP46214.2022.9833584.

46 Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin Meets Strong Consistency.
In Proceedings of the 17th International Conference on Distributed Computing and Networking,
pages 1–10, 2016.

47 Dan Dobre, Ghassan O. Karame, Wenting Li, Matthias Majuntke, Neeraj Suri, and Marko
Vukolic. Proofs of writing for robust storage. IEEE Trans. Parallel Distributed Syst.,
30(11):2547–2566, 2019. doi:10.1109/TPDS.2019.2919285.

48 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agreement.
Journal of the ACM (JACM), 1985.

49 Assia Doudou and André Schiper. Muteness Detectors for Consensus with Byzantine Processes.
In Brian A. Coan and Yehuda Afek, editors, Proceedings of the Seventeenth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’98, Puerto Vallarta, Mexico, June
28 - July 2, 1998, page 315. ACM, 1998. doi:10.1145/277697.277772.

50 Sisi Duan, Xin Wang, and Haibin Zhang. Practical Signature-Free Asynchronous Common
Subset in Constant Time. Cryptology ePrint Archive, 2023.

51 Sisi Duan, Haibin Zhang, and Boxin Zhao. Waterbear: Information-theoretic asynchronous
BFT made practical. IACR Cryptol. ePrint Arch., page 21, 2022. URL: https://eprint.
iacr.org/2022/021.

52 Cynthia Dwork, Lynch Nancy, and Larry Stockmeyer. Consensus in the Presence of Partial
Synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

53 Facebook. Winterfell: A STARK prover and verifier for arbitrary computations. URL:
https://github.com/facebook/winterfell#Performance.

54 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the Association for Computing Machinery,,
32(2):374–382, 1985.

55 Adam Ga̧gol, Damian Leśniak, Damian Straszak, and Michał Świȩtek. ALEPH: Efficient
atomic broadcast in asynchronous networks with Byzantine nodes. AFT 2019 - Proceedings
of the 1st ACM Conference on Advances in Financial Technologies, pages 214–228, 2019.
doi:10.1145/3318041.3355467.

56 Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication and
round complexity. In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages
371–380. ACM, 2016. doi:10.1145/2933057.2933082.

DISC 2023

https://doi.org/10.1109/SP46214.2022.9833580
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/TPDS.2019.2919285
https://doi.org/10.1145/277697.277772
https://eprint.iacr.org/2022/021
https://eprint.iacr.org/2022/021
https://github.com/facebook/winterfell#Performance
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/2933057.2933082

13:22 Every Bit Counts in Consensus

57 Chaya Ganesh and Arpita Patra. Optimal extension protocols for byzantine broadcast and
agreement. IACR Cryptol. ePrint Arch., page 63, 2017. URL: http://eprint.iacr.org/
2017/063.

58 Chaya Ganesh and Arpita Patra. Optimal extension protocols for byzantine broadcast and
agreement. Distributed Comput., 34(1):59–77, 2021. doi:10.1007/s00446-020-00384-1.

59 James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-overhead byzantine fault-
tolerant storage. In Thomas C. Bressoud and M. Frans Kaashoek, editors, Proceedings of
the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson,
Washington, USA, October 14-17, 2007, pages 73–86. ACM, 2007. doi:10.1145/1294261.
1294269.

60 James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Verifying distributed erasure-
coded data. In Indranil Gupta and Roger Wattenhofer, editors, Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of Distributed Computing, PODC 2007, Portland, Ore-
gon, USA, August 12-15, 2007, pages 139–146. ACM, 2007. doi:10.1145/1281100.1281122.

61 Ioannis Kaklamanis, Lei Yang, and Mohammad Alizadeh. Poster: Coded broadcast for scalable
leader-based bft consensus. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 3375–3377, 2022.

62 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 165–175. ACM, 2021. doi:10.1145/3465084.3467905.

63 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
speculative byzantine fault tolerance. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, pages 45–58, 2007.

64 Ramakrishna Kotla and Michael Dahlin. High throughput byzantine fault tolerance. In
International Conference on Dependable Systems and Networks, 2004, pages 575–584. IEEE,
2004.

65 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

66 Andrew Lewis-Pye. Quadratic worst-case message complexity for State Machine Replication
in the partial synchrony model, 2022. doi:10.48550/ARXIV.2201.01107.

67 Fan Li and Jinyuan Chen. Communication-efficient signature-free asynchronous byzantine
agreement. In IEEE International Symposium on Information Theory, ISIT 2021, Melbourne,
Australia, July 12-20, 2021, pages 2864–2869. IEEE, 2021. doi:10.1109/ISIT45174.2021.
9518010.

68 Benoît Libert, Marc Joye, and Moti Yung. Born and Raised Distributively: Fully Distributed
Non-Interactive Adaptively-Secure Threshold Signatures with Short Shares. Theoretical
Computer Science, 645:1–24, 2016.

69 Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-MVBA: Optimal Multi-
Valued Validated Asynchronous Byzantine Agreement, Revisited. Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing, pages 129–138, 2020.

70 Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth Gilbert, and Prateek
Saxena. Scp: A computationally-scalable byzantine consensus protocol for blockchains.
Cryptology ePrint Archive, 2015.

71 Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In Proceedings
of the 2019 ACM SIGSAC conference on computer and communications security, pages 1041–
1053, 2019.

72 Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In
Advances in Cryptology — CRYPTO, 1987.

73 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 31–42, 2016.

http://eprint.iacr.org/2017/063
http://eprint.iacr.org/2017/063
https://doi.org/10.1007/s00446-020-00384-1
https://doi.org/10.1145/1294261.1294269
https://doi.org/10.1145/1294261.1294269
https://doi.org/10.1145/1281100.1281122
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.48550/ARXIV.2201.01107
https://doi.org/10.1109/ISIT45174.2021.9518010
https://doi.org/10.1109/ISIT45174.2021.9518010

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:23

74 Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security, pages 1686–1699,
2021.

75 Atsuki Momose and Ling Ren. Optimal Communication Complexity of Authenticated Byzan-
tine Agreement. In 35th International Symposium on Distributed Computing (DISC), volume
209, pages 32:1–32:0. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing,
Germany, 2021.

76 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-Free Asynchronous
Binary Byzantine Consensus with t < n/3, O(n2) Messages, and O(1) Expected Time. J.
ACM, 62(4):31:1–31:21, 2015. doi:10.1145/2785953.

77 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review, page 21260, 2008.

78 Oded Naor and Idit Keidar. Expected Linear Round Synchronization: The Missing Link for
Linear Byzantine SMR. 34th International Symposium on Distributed Computing (DISC), 179,
2020.

79 Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference,
volume 179 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.DISC.2020.28.

80 Nuno Ferreira Neves, Miguel Correia, and Paulo Verissimo. Solving Vector Consensus with a
Wormhole. IEEE Transactions on Parallel and Distributed Systems, 16(12):1120–1131, 2005.

81 Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

82 Irving S Reed and Gustave Solomon. Polynomial odes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

83 Victor Shoup. Practical Threshold Signatures. In Bart Preneel, editor, Advances in Cryptology -
EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 207–220. Springer, 2000. doi:10.1007/3-540-45539-6_15.

84 Victor Shoup and Nigel P Smart. Lightweight asynchronous verifiable secret sharing with
optimal resilience. Cryptology ePrint Archive, 2023.

85 Alexander Spiegelman. In Search for an Optimal Authenticated Byzantine Agreement. In
Seth Gilbert, editor, 35th International Symposium on Distributed Computing (DISC 2021),
volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1–38:19,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.DISC.2021.38.

86 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: Dag bft protocols made practical. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2705–2718, 2022.

87 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo
Verissimo. Efficient byzantine fault-tolerance. IEEE Transactions on Computers, 62(1):16–30,
2011.

88 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

89 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.
HotStuff: BFT Consensus with Linearity and Responsiveness. Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing, pages 347–356, 2019.

90 Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller. hbacss: How
to robustly share many secrets. In 29th Annual Network and Distributed System Security
Symposium, NDSS 2022, San Diego, California, USA, April 24-28, 2022. The Internet Society,
2022. URL: https://www.ndss-symposium.org/ndss-paper/auto-draft-245/.

DISC 2023

https://doi.org/10.1145/2785953
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.4230/LIPIcs.DISC.2021.38
https://doi.org/10.4230/LIPIcs.DISC.2021.38
https://www.ndss-symposium.org/ndss-paper/auto-draft-245/

13:24 Every Bit Counts in Consensus

A Sync: Implementation

In this section, we provide the remaining pseudocode of Disperser, namely the Sync
component. For a complete formal proof of the correctness and complexity of Disperser,
please refer to the extended version of this paper. Throughout the entire section, X = Y =

√
n.

For simplicity, we assume that
√

n is an integer.

Algorithm description. The pseudocode of Sync is given in Algorithm 4, and it highly
resembles RareSync [36]. Each process Pi has an access to two timers: (1) view_timer i,
and (2) dissemination_timer i. A timer exposes the following interface:

measure(Time x): After exactly x time as measured by the local clock, the timer expires
(i.e., an expiration event is received by the host). As local clocks can drift before GST,
timers might not be precise before GST: x time as measured by the local clock may not
amount to x real time.
cancel(): All previously invoked measure(·) methods (on that timer) are cancelled. Namely,
all pending expiration events (associated with that timer) are removed from the event
queue.

We now explain how Sync works, and we do so from the perspective of a correct process
Pi. When Pi starts executing Sync (line 11), it starts measuring view_duration = ∆ + 2δ

time using view_timer i (line 12) and enters the first view (line 13).
Once view_timer i expires (line 14), which signals that Pi’s current view has finished, Pi

notifies every process of this via a view-completed message (line 15). When Pi learns that
2t + 1 processes have completed some view V ≥ viewi (line 16) or any process started some
view V ′ > viewi (line 22), Pi prepares to enter a new view (either V + 1 or V ′). Namely,
Pi (1) cancels view_timer i (line 19 or line 25), (2) cancels dissemination_timer i (line 20 or
line 26), and (3) starts measuring δ time using dissemination_timer i (line 21 or line 27).
Importantly, Pi measures δ time (using dissemination_timer i) before entering a new view
in order to ensure that Pi enters only O(1) views during the time period [GST, GST + 3δ).
Finally, once dissemination_timer i expires (line 28), Pi enters a new view (line 31).

B STARKs

First introduced in [16], STARKs are succinct, universal, transparent arguments of knowledge.
For any function f (computable in polynomial time) and any (polynomially-sized) y, a STARK
can be used to prove the knowledge of some x such that f(x) = y. Remarkably, the size of a
STARK proof is O(poly(κ)). At a very high level, a STARK proof is produced as follows: (1)
the computation of f(x) is unfolded on an execution trace; (2) the execution trace is (RS)
over-sampled for error amplification; (3) the correct computation of f is expressed as a set of
algebraic constraints over the trace symbols; (4) the trace symbols are organized in a Merkle
tree [72]; (5) the tree’s root is used as a seed to pseudo-randomly sample the trace symbols.
The resulting collection of Merkle proofs proves that, for some known (but not revealed)
x, f(x) ̸= y only with cryptographically low probability (negligible in κ). STARKs are
non-interactive, require no trusted setup (they are transparent), and their security reduces
to that of cryptographic hashes in the Random Oracle Model (ROM) [13].

C Further Analysis of DARE

In this section, we provide a brief good-case analysis of DARE and discuss how DARE can
be adapted to a model with unknown δ.

P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, M. Monti, and M. Vidigueira 13:25

Algorithm 4 Sync: Pseudocode (for process Pi).

1: Uses:
2: Timer view_timer i

3: Timer dissemination_timer i

4: Functions:
5: leaders(View V) ≡ {P(

(V mod
√

n)−1
)√

n+1
, P(

(V mod
√

n)−1
)√

n+2
, ..., P(

(V mod
√

n)−1
)√

n+
√

n
}

6: Constants:
7: Time view_duration = ∆ + 2δ = δ

√
n + 3δ + 2δ

8: Variables:
9: View viewi ← 1

10: T_Signature view_sigi ← ⊥
11: upon init: ▷ start of the algorithm
12: view_timer i.measure(view_duration)
13: trigger advance(1)
14: upon view_timer i expires:
15: broadcast ⟨view-completed, viewi, share_signi(viewi)⟩
16: upon exists View V ≥ viewi with 2t + 1 ⟨view-completed, V, P_Signature sig⟩ received messages:
17: view_sigi ← combine

(
{sig | sig is received in the view-completed messages}

)
18: viewi ← V + 1
19: view_timer i.cancel()
20: dissemination_timer i.cancel()
21: dissemination_timer i.measure(δ)
22: upon reception of ⟨enter-view, View V, T_Signature sig⟩ with V > viewi:
23: view_sigi ← sig
24: viewi ← V
25: view_timer i.cancel()
26: dissemination_timer i.cancel()
27: dissemination_timer i.measure(δ)
28: upon dissemination_timer i expires:
29: broadcast ⟨enter-view, viewi, view_sigi⟩
30: view_timer i.measure(view_duration)
31: trigger advance(viewi)

C.1 Good-Case Complexity

For the good-case complexity, we consider only executions where GST = 0 and where all
processes behave correctly. This is sometimes also regarded as the common case since, in
practice, there are usually no failures and the network behaves synchronously. Throughout
the entire subsection, X = Y =

√
n.

In such a scenario, the good-case bit complexity of DARE is O(n1.5L + n2κ). As all
processes are correct and synchronized at the starting view, Disperser terminates after only
one view. The n1.5L term comes from this view: the first

√
n correct leaders broadcast their

full L-bit proposal to all other processes. The n2.5κ term is reduced to only n2κ (only the
confirm messages sent by correct processes at line 29) since Disperser terminates after
just one view.

The good-case latency of DARE is essentially the sum of the good-case latencies of the
Dispersal, Agreement, and Retrieval phases:

O(
√

n · δ)︸ ︷︷ ︸
dispersal

+ O(δ)︸︷︷︸
agreement

+ O(δ)︸︷︷︸
retrieval

= O(
√

n · δ).

Thus, the good-case latency of DARE is O(
√

n · δ).

DISC 2023

13:26 Every Bit Counts in Consensus

C.2 DARE (and DARE-Stark) with Unknown δ

To accommodate for unknown δ, two modifications to DARE are required:
Disperser must accommodate for unknown δ. We can achieve this by having Sync
increase the ensured overlap with every new view (by increasing view_duration for every
new view).
Agreement must accommodate for unknown δ. Using the same strategy as for Sync,
Agreement can tolerate unknown δ. (The same modification makes DARE-Stark
resilient to unknown δ.)

Efficient Collaborative Tree Exploration with
Breadth-First Depth-Next
Romain Cosson #

Inria, Paris, France

Laurent Massoulié #

Inria, Paris, France

Laurent Viennot #

Inria, Paris, France

Abstract
We study the problem of collaborative tree exploration introduced by Fraigniaud, Gasieniec, Kowalski,
and Pelc [10] where a team of k agents is tasked to collectively go through all the edges of an unknown
tree as fast as possible and return to the root. Denoting by n the total number of nodes and by D

the tree depth, the O(n/ log(k) + D) algorithm of [10] achieves a O(k/ log(k)) competitive ratio with
respect to the cost of offline exploration which is at least max {2n/k, 2D}. Brass, Cabrera-Mora,
Gasparri, and Xiao [1] study an alternative performance criterion, the competitive overhead with
respect to the cost of offline exploration, with their 2n/k + O((D + k)k) guarantee. In this paper,
we introduce “Breadth-First Depth-Next” (BFDN), a novel and simple algorithm that performs
collaborative tree exploration in 2n/k + O(D2 log(k)) rounds, thus outperforming [1] for all values of
(n, D, k) and being order-optimal for trees of depth D = o(

√
n). Our analysis relies on a two-player

game reflecting a problem of online resource allocation that could be of independent interest. We
extend the guarantees of BFDN to: scenarios with limited memory and communication, adversarial
setups where robots can be blocked, and exploration of classes of non-tree graphs. Finally, we
provide a recursive version of BFDN with a runtime of Oℓ(n/k1/ℓ + log(k)D1+1/ℓ) for parameter
ℓ ≥ 1, thereby improving performance for trees with large depth.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Distributed algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases collaborative exploration, online algorithms, trees, adversarial game, compet-
itive analysis, robot swarms

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.14

Funding This work was supported by PRAIRIE ANR-19-P3IA-0001 and Tempogral ANR-22-CE48-
0001.

Acknowledgements The authors thank the anonymous reviewers for their useful remarks and
the entire Argo team at Inria for enlightening discussions. RC thanks Pierre Fraigniaud for
precious advice and Maxime Cartan for his implementation of a Python demo (available at https:
//github.com/Romcos/BFDN). A brief announcement appeared in PODC’ 23 [4] and some extensions
are available on arXiv [3].

1 Introduction

Problem setting. A team of robots1, initially located at the root of an unknown tree, is
tasked to collectively go through all the edges of a tree as fast as possible and then return to
the root. At each round, the robots move synchronously along one incident edge to reach a
neighbour, thereby discovering new adjacent edges. Following [10], we consider two distinct

1 the term “robots” is often preferred over “agents” in line with the initial work of [10].

© Romain Cosson, Laurent Massoulié, and Laurent Viennot;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 14; pp. 14:1–14:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:romain.cosson@inria.fr
https://orcid.org/0009-0004-8784-7112
mailto:laurent.massoulie@inria.fr
https://orcid.org/0000-0001-7263-0069
mailto:laurent.viennot@inria.fr
https://orcid.org/0000-0003-3657-6979
https://doi.org/10.4230/LIPIcs.DISC.2023.14
https://github.com/Romcos/BFDN
https://github.com/Romcos/BFDN
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Breadth-First Depth-Next

communication models. The complete communication model, in which communications
are unrestricted and consequently the team takes decisions in a centralized fashion. The
write-read communication model, in which robots communicate through whiteboards that
are located at all nodes and must thus take decisions in a distributed fashion.

Main results. In this paper, we present a simple and novel algorithm that achieves collabo-
rative tree exploration with k agents in 2n

k + D2(min{log(k), log(∆)} + 3) rounds for any
tree with n nodes, depth D and maximum degree ∆. This algorithm can be implemented in
the complete communication model and the write-read communication model.

The algorithm is called “Breadth-First Depth-Next” (abbreviated BFDN) and the behaviour
of the robots can be described synthetically as follows: when located at the root, a robot is
sent to the highest unexplored edge (as in a breadth-first search). Upon arrival, the robot
changes behaviour until it reaches the root again, it goes through unexplored edges when
adjacent to one and goes up towards the root otherwise (as in a depth-first search).

Our analysis involves a simple zero-sum two-player game with balls in urns. An immediate
application of this analysis is in resource allocation in the face of uncertainty. Given k workers
and k (parallelizable) tasks requiring each an unknown amount of work, we show that the
strategy of reassigning idle workers to the least crowded task is competitive in terms of
number of times a worker will have to switch between tasks. More precisely, we show that
this number is at most k log(k) + 2k.

The BFDN algorithm is easy to implement and we provide it with extensions to more
complex settings, such as i) exploration of specific classes of non-tree graphs, ii) scenarios
with constrained communications and memory, and iii) setups where an adversary chooses
at each time step which robots are allowed to move. Finally, in an attempt to improve
dependence in the tree depth D, we propose BFDNℓ, a recursive version of BFDN in the complete
communication model that explores the tree in time Oℓ

(
n

k1/ℓ + min{log(k), log(∆)}D1+1/ℓ
)

where ℓ ≥ 1 is some constant provided as input.

Useful context and related works. In the case of a single robot, the “Depth First Search”
(DFS) algorithm is optimal for traversing the edges of a tree. It can be implemented both
offline (the tree is known in advance) and online (edges are revealed when reached). One way
to describe DFS in an online fashion is to have the robot go through an adjacent unexplored
edge if possible and go up towards the root otherwise. After 2(n− 1) rounds, where n is the
number of nodes, all edges have been traversed (twice) and the robot is at the root.

In the multi-robot setting, i.e. with k ≥ 2, traversing all the edges of a tree in an offline
manner requires at least max{2n/k, 2D} ≥ n/k + D synchronous rounds [7, 13]. This is
because every edge has to be traversed in both directions and some robot has to reach the
deepest node before returning to the root. A simple algorithm [7, 13] matches this bound
up to a factor 2, with a runtime of at most 2(n/k + D): consider a depth-first search path
from the root of length 2(n − 1), and divide it in k segments each of length ⌈2(n− 1)/k⌉,
then assign one robot to reach and traverse each segment. The optimal offline k-traversal is
NP-hard to compute as [10] gave a reduction from 3-PARTITION to this problem.

To analyze the online problem (i.e. collective tree exploration), the literature initially
focused on the competitive ratio which is the worst-case ratio between the cost an online
algorithm and the optimal offline algorithm. For an online algorithm Ak using k ≥ 2 robots,
this ratio is defined up to a constant factor as maxn,D∈N maxT ∈T (n,D) Runtime(Ak, T)/(n/k+
D) where T (n, D) denotes the set of all trees with n nodes and depth D. The algorithm
proposed initially by [10] CTE (Collective Tree Exploration) runs in O(n

log k + D) rounds for

R. Cosson, L. Massoulié, and L. Viennot 14:3

any tree T ∈ T (n, D) and therefore has a competitive ratio of O(k
log k). Furthermore, it can

be implemented in the write-read communication model [10]. It was later shown by [11] that
the competitive analysis of CTE is tight as they provided a simple construction of a tree with
n = kD edges that CTE would take Dk

log2(k) time-steps to explore. To date, no algorithm is
known to have a better competitive ratio than CTE, while the best lower-bound known on
the competitive ratio, for deterministic exploration algorithms, is in Ω(log k

log log k) by [9].
The limited progress on the analysis of the competitive ratio as a function of k led most

subsequent works to investigate algorithms with super-linear dependence in (n, D), usually
assuming complete communication [13, 1, 8, 6, 5, 11]. In this spirit, [13] derived a recursive
algorithm called Yo* that runs in O(2O(

√
log D log log k) log(k)(log(k) + log(n))(n/k + D))

rounds. On the other hand, [1] proposed a novel analysis of CTE yielding a guarantee of
2n
k +O((k+D)k), displaying optimal dependence in n at the cost of large additive dependence

in (k, D). The algorithm we propose with its guarantee of 2n
k +O(D2 log(k)) complements

this line of work. Our guarantee yields a strict improvement over [1] for all values of (n, k, D),
and improves upon CTE and Yo∗ for the specific range of parameters as depicted in Figure 1.

𝐷

𝑛

𝑒log 𝑘 2

BFDN

BFDN

CTE

YO*CTE

BFDNℓ

𝑒𝑘

Figure 1 Regions of (n, D) where either of CTE, Yo∗, BFDN and BFDNℓ has the best runtime
guarantee. The runtime of algorithm Yo* was simplified to improve readability. ℓ must satisfy
ℓ ≤ cst(log k/ log log k). No trees defined in shaded region n ≤ D. See Appendix A for details.

Collaborative tree exploration has also been studied under additional assumptions. For
example, for trees which can be embedded in the 2-dimensional grid, [8] obtained an algorithm
running in O(

√
D(n

k + D)) rounds. The setting where the number of robots k is very large,
specifically k ≥ Dnc for some constant c > 1, was also investigated by [5]. Assuming global
communication, their algorithm achieves exploration in c

c−1 D + o(D) rounds. Interestingly,
their guarantees also apply to the challenging and less studied collaborative graph exploration
problem; see also [1, 2].

Open directions. In line with [1], our work advocates for the study of the competitive
overhead of collaborative exploration in complement to its competitive ratio. Recently [6]
showed that (deterministic) collaborative exploration with k = n requires at least Ω(D2),
implying that no algorithm can have a 2n

k +O(Dc) guarantee for c < 2. On the other hand,
a simple algorithm explores any tree in O(D2) rounds as soon as k ≥ n

D [13]. In view of
these results, our 2n

k +O(D2 log(k)) guarantee seems close-to-optimal. We highlight the open
question of whether there exists a 2n

k +O(D2) exploration algorithm, or even a guarantee of
the form 2n

k +O (f(D)), for some real-valued function f .

DISC 2023

14:4 Breadth-First Depth-Next

Structure of the paper. Section 2 defines algorithm BFDN and provides the main result
for the complete communication setting. Section 3 analyzes a two-player zero-sum board
game, an essential ingredient in our analysis of BFDN. Section 4 contains extensions of BFDN
to settings with: limited communications; adversarial interruption of robots; and more
general graph exploration. Finally, Section 5 provides a recursive version of BFDN that yields
improved runtime guarantees when the tree depth D gets larger compared to n.

Notations. log(·) refers to the natural logarithm and log2(·) to the logarithm in base 2. For
an integer k we use the abbreviation [k] = {1, . . . , k}.

A tree T = (V, E) is defined by its set of nodes V and edges E ⊂ V × V ; it is rooted at
some specific node denoted root ∈ V from which all robots start the exploration. For a node
v ∈ V , δ(v) is the distance of v to the root and T (v) denotes the sub-tree of T rooted at v

containing all the descendants of v. The depth of T is D = maxv∈V δ(v). We will also use a
notion of partially explored tree (defined in Section 2) that enjoys the same definitions.

2 The Breadth-First Depth-Next algorithm

Our main result on BFDN, which is described below, is the following

▶ Theorem 1. BFDN achieves online exploration of any tree with k robots in at most

2n

k
+ D2(min{log(∆), log(k)}+ 3)

rounds, where ∆ is the maximum degree, n is the number of nodes, and D is the depth.

Following [10], we shall start by showing the guarantee in the complete communication model,
and we later present in Section 4 how BFDN can be adapted to the write-read model.

Partially explored tree. At a given exploration round, V denotes the set of explored nodes,
i.e. nodes that have been occupied by at least one robot in the past, and E denotes the set
of discovered edges, i.e. edges that have at least one explored endpoint. The discovered edges
that have exactly one explored endpoint are called dangling edges. Such edges can be viewed
as a pair (u, ?), with u ∈ V . The partially explored tree or discovered tree Tonline = (V, E)
contains all the information gathered by the robots at some point of exploration. If there are
no dangling edges in Tonline, it means that exploration is complete and that the partially
explored tree equals the underlying tree Toffline ∈ T (n, D).

Collaborative exploration algorithm. A collaborative exploration algorithm in the complete
communication model is formally defined as a function that maps a partially explored tree
T = (V, E) as well as the list of positions of the agents p1, . . . , pk ∈ V k and their past
movements to a list of selected edges e1, . . . , ek ∈ (E ∪ {⊥})k that the agents will use for
their next move. Each selected edge ei ∈ E must be adjacent to the position pi. Dangling
edges may be selected. By convention, ei =⊥ is used to indicate that agent i will not move
at the next round. In pseudo-code, the routine SELECT(Roboti, e) performs the assignment
ei ← e. When all agents have selected a next move, the routine MOVE is applied and all agents
move along their selected edge synchronously. The partially explored tree (V, E) is then
updated with the new information provided by the agents that have traversed a dangling edge.
Exploration always starts with all agents located at the root, V = {root} and E the set of
all dangling edges that are adjacent to the root. The collaborative exploration algorithm

R. Cosson, L. Massoulié, and L. Viennot 14:5

is applied iteratively. Exploration terminates when the explored tree (V, E) contains no
dangling edges and when the position of all agents is back at the root. The runtime of an
exploration algorithm is defined as a function of (n, D) by the number of rounds required
before termination on any tree with n nodes and depth D.

Breadth-First Depth-Next Algorithm. We now provide a brief description of BFDN, Al-
gorithm 1. When located at the root, a robot indexed by i ∈ [k] and denoted Roboti is
assigned an anchor vi ∈ V which is a node that is adjacent to at least one dangling edge. If
no such node exists, the anchor is the root itself. The exact anchor assignment is specified
by procedure Reanchor which gives the priority to nodes that are the closest to the root and
that have the least number of anchored robots. Roboti then attains this anchor in a series of
breadth-first moves performed with procedure BF. When the anchor is reached, the robot
only makes depth-next moves with procedure DN, until it returns to the root. In a sequence
of depth-next moves, the robot always goes through a dangling edge if one is available (i.e.
adjacent and not already selected as next move by another robot), and goes one step up
towards the root otherwise. This will result in a depth-first-like exploration inside T (vi)
followed by a direct travel from vi to the root. The algorithm stops when all robots are at
the root and are not assigned a new anchor because there are no more dangling edges.

The reason why we ask that the robots go back all the way to the root before being
reassigned a new anchor, rather than having them use a shortest path from their previous
anchor to their next anchor, will become apparent when we adapt the algorithm to the
distributed write-read communication setting. In that setting, the root will play the role
of a central planner, gathering information on the advancement of exploration thanks to
returning robots.

2.1 Analysis of BFDN and proof of Theorem 1

We first prove the correctness and termination of BFDN and then bound its runtime.

Correctness. In Algorithm 1, the do-while loop is interrupted when no robot changes
position at some round (line 14). Note that the root is the only place where robots may stay
at the same position because direction up is interpreted as ⊥ at the root only (line 23). Thus
all robots are at the root when the algorithm stops. Also note that the selection of direction
up by all robots at the root implies that there are no dangling edges in the tree. Thus the
tree has been entirely explored and all robots have returned. The algorithm is correct.

Termination. To prove termination, we show that while the algorithm runs, a node is
discovered every 3D rounds at least. Since there are n nodes in the tree, the algorithm must
terminate after at most 3D × n rounds. Assume by contradiction that no node is discovered
in a sequence of 3D rounds. After 2D rounds, all robots have attained the root because all
DF moves are directed up. Then, either one robot is assigned an anchor that is adjacent to
an unexplored edge which will be traversed in the coming D rounds, or the algorithm stops.
In both cases we have a contradiction.

We now provide the following lemma which will be proved in Section 3.

▶ Lemma 2. In an execution of BFDN, for any d ∈ {1, . . . , D − 1}, the number of calls to
procedure Reanchor which return an anchor at depth d is at most k(min{log(k), log(∆)}+ 3).

DISC 2023

14:6 Breadth-First Depth-Next

Algorithm 1 BFDN “Breadth-First Depth-Next”.

Ensure: The robots traverse all edges and return to the root.
1: V = list of explored nodes ; E = list of discovered edges
2: vi ← root ∀i ∈ {1, . . . , k} ▷ Initialize anchors.
3: Si ← [] ∀i ∈ {1, . . . , k} ▷ Initialize empty stacks.
4: do ▷ Round t.
5: for i = 1 to k do ▷ Sequential decisions.
6: if Roboti is at root then
7: vi ← Reanchor(i)
8: Stack in Si the list of edges that lead to vi ▷ Reverse order.
9: if Si is not empty then

10: BF(i)
11: else
12: DN(i)
13: MOVE all robots on their selected edge and update (V, E) ▷ Synchronous moves.
14: while some robot changes position
15:
16: procedure BF(i)
17: Unstack e ∈ E from Si and SELECT(Roboti, e)
18:
19: procedure DN(i)
20: if Roboti is adjacent to some dangling and unselected edge e ∈ E then
21: SELECT(Roboti, e)
22: else
23: SELECT(Roboti, up) ▷ If Roboti is at the root, up is interpreted as ⊥.
24:
25: procedure Reanchor(i)
26: U = {v ∈ V s.t. v is adjacent to some dangling edge with δ(v) minimal}
27: if U ̸= ∅ then ▷ Choose anchor of minimum load.
28: vi ← arg minv∈U nv where ∀v ∈ V : nv = #{j ∈ [k] s.t. vj = v}
29: else ▷ The tree is explored.
30: vi ← root

Time complexity. During the execution, a given Roboti anchored at vi can spend time in
two different ways (1) being idle at the root (2) moving along a selected edge. We denote
by T1

i , T2
i the time (number of rounds) spent by Roboti in each of these phases. We have

that
∑

i∈[k](T1
i + T2

i) = kT where T is the total number of rounds of the algorithm as the k

robots operate in parallel. We now prove a series of claims.

▶ Claim 1. The total number of rounds when some robot does not move is at most D + 1.

Proof of Claim 1. Recall that if a robot does not move, it must be anchored at the root
and have selected direction up with procedure DN. This only occurs in two cases (1) there
are no more dangling edges in the discovered tree (this happens at most D times because
all robots are on their way back) (2) there are still dangling edges that are adjacent to the
root, but they are all selected (this happens at most once because at the next time-step, all
edges adjacent to the root will be explored). The number of time-steps when a robot may
not move is thus at most D + 1. ◀

R. Cosson, L. Massoulié, and L. Viennot 14:7

▶ Claim 2. In the round when a dangling edge is explored for the first time, it is traversed
by a single robot.

Proof of Claim 2: All breadth-first moves (with procedure BF) are through previously ex-
plored edges because they lead from the root to a previously explored node. Thus dangling
edges are only explored in depth-next moves (with procedure DN). In this procedure, two
robots cannot select the same dangling edge. ◀

▶ Claim 3. Consider a sequence of moves by some Roboti that starts at the root with the
assignment of an anchor v of depth δ(v) = d and that ends with the return of Roboti to the
root after Tx rounds. In this sequence, Roboti explored exactly (Tx − 2d)/2 dangling edges.

Proof of Claim 3. The sequence of moves, denoted x, has the following structure. First,
Roboti uses a shortest path from the root to v which takes d moves through previously
explored edges. Then the robot performs moves inside T (v) by going down through dangling
edges if some are available and going up towards the root otherwise. Note that exactly
half of the moves inside T (v) must be through dangling edges as there must be as many
moves down as moves up in T (v). Finally, the robot goes back from v to the root in again
d moves through explored edges. Exactly (Tx − 2d)/2 dangling edges are explored in this
sequence. ◀

We now assemble the claims and Lemma 2 together to bound the runtime of BFDN. Using
Claim 1, we have that

∑
i T1

i ≤ k(D+1). Then, we write
∑

i T2
i =

∑
d≤D−1

∑
x∈Xd

Tx where
Xd is the list of all sequences of moves x that start with the assignment of an anchor v at
depth δ(v) = d to some robot and that end with the return of that robot to the root. Using
Claim 2 and Claim 3, we have that

∑
d≤D−1

∑
x∈Xd

(Tx − 2d)/2 ≤ n− 1. Consequently,∑
i∈[k]

T2
i ≤ 2(n− 1) + 2

∑
d≤D−1

∑
x∈Xd

d.

By Lemma 2, the cardinality of Xd is at most k(min{log(k), log(∆)}+3), for d ∈ {1, . . . , D−1}.
Thus,

∑
d≤D−1

∑
x∈Xd

d ≤ D(D−1)
2 k(min{log(k), log(∆)} + 3). Finally, using

∑
i∈[k](T1

i +
T2

i) = kT, we obtain kT ≤ 2(n− 1) + D(D− 1)k(min{log(∆), log(k)}+ 3) + (D + 1)k, which
proves that the algorithm stops after at most

T ≤ 2n

k
+ D2(min{log(∆), log(k)}+ 3)

steps, thus completing Theorem 1’s proof.
Though it is not required for the the analysis above, we conclude this section with a final

claim that provides useful intuition on the algorithm.

▶ Claim 4. At all rounds, all dangling and unexplored edges, are in ∪i∈[k]T (vi).

Proof of Claim 4. Consider some dangling edge e and its explored endpoint v ∈ V . At
the round when v was explored by a robot, that robot was performing a depth-next move
because its anchor was at least as high as v which is still adjacent to a dangling edge. That
robot cannot have left T (v) before the edge e was traversed. Consequently, it is still rooted
at some ancestor vi of v, thus e ∈ ∪i∈[k]T (vi). ◀

3 A two-player zero-sum game with balls in urns

In this section we introduce a two-player zero-sum board game that essential to the analysis
of BFDN. A strategy for the player of the game is given and analyzed in Theorem 3. Its
connection with BFDN is detailed in Section 3.2 where a proof of Lemma 2 is given.

DISC 2023

14:8 Breadth-First Depth-Next

3.1 Game of balls in urns
Game description. At time t ∈ N, the board of the game is a list of k integers (nt

1, . . . , nt
k)

that represent the load of k urns with a total of k balls. When the game starts at t = 0, we
have n0

i = 1 and at every instant t we have
∑

i∈[k] nt
i = k and nt

i ≥ 0. At time t, player A
(the adversary) chooses a ball in an urn at ∈ [k] that is not empty, i.e. such that nt

at
≥ 1,

and then player B (the player) chooses an urn bt ∈ [k] and moves that ball from urn at to
urn bt. At the beginning of time t + 1, the board satisfies nt+1

at
= nt

at
− 1 and nt+1

bt
= nt

bt
+ 1.

Goal of the game. At a given time t, we denote by Ut the set of urns that have never been
selected by the adversary, Ut = {1, . . . , k} \ {a0, . . . , at−1}. The game stops when all urns in
Ut contain at least ∆ balls, i.e. nt

i ≥ ∆, ∀i ∈ Ut. If ∆ ≥ k, the game stops when all urns
have been chosen, i.e. Ut = ∅. The goal of player B is to end the game as soon as possible,
while the goal of the adversary is to play for as long as it can.

Strategy of the player. At time t, the player picks the urn bt that contains the least
number of balls among the urns that were never chosen by the adversary, i.e. bt ∈
arg mini∈[k]\{a0,...,at} nt

i. For this strategy, we state the main result of this section.

▶ Theorem 3. Under this strategy, the game ends after at most k min{log(∆), log(k)}+ 2k

steps.

Interpretation of the game. While the main focus of this paper is on collective tree
exploration, a more immediate application of the above result is in resource allocation in
the face of uncertainty. Given k workers and k (parallelizable) tasks of unknown length, our
analysis shows that the ‘best’ way to reassign idle workers online is to reassign them to the
unfinished task which has the least number of workers working on it. Using this simple rule,
the number of times a worker changes task is at most log(k) + 2 times the optimum (which
is of order k) irrespective of the individual task lengths.

Proof. The set Ut does not increase with time. We denote its cardinality ut = |Ut|. Denoting
Nt =

∑
i∈Ut

nt
i the total number of balls in urns of Ut, the possible number of balls for an

urn of Ut lies in {⌈Nt

ut
⌉, ⌊Nt

ut
⌋}. The game thus stops as soon as Nt

ut
≥ ∆ and the quantity

xt := ∆ut −Nt, must thus be positive as long as the game lasts. We distinguish two options
for the adversary at any step t:
(a) The adversary chooses an urn at that it previously chose (at ̸∈ Ut). In this case, ut+1 = ut

and Nt+1 = Nt + 1. Note that this option is available to the adversary only if some ball
lies outside of Ut, i.e. if Nt ≤ k − 1.

(b) The adversary chooses an urn at that it has never chosen before (at ∈ Ut). In this case,
ut+1 = ut − 1 and Nt+1 = Nt − nt

at
+ 1.

We now will establish that the adversary always prefer option (a) to option (b). For parameters
u, N ∈ {0, . . . , k}, we denote by R(N, u) the largest number of steps that the game may still
last after player B’s move led to a configuration where Nt = N and ut = u at any time t.
Note that by the discussion above, this value is the same for all such configurations of the
game. Clearly, ∆u−N ≤ 0⇒ R(N, u) = 0. Besides, in view of the options (a) and (b) just
listed, one has the following, assuming ∆u−N > 0:

N < k ⇒ R(N, u) = 1 + max

R(N + 1, u),
R(N − ⌈N/u⌉+ 1, u− 1),
R(N − ⌊N/u⌋+ 1, u− 1).

(1)

R. Cosson, L. Massoulié, and L. Viennot 14:9

N = k ⇒ R(N, u) = 1 + max
{

R(N − ⌈N/u⌉+ 1, u− 1),
R(N − ⌊N/u⌋+ 1, u− 1).

(2)

We now establish the following,

▶ Lemma 4. For any (u, N) ∈ {0, . . . , k}, it holds that:
i) Function M → R(M, u) is non-increasing, and
ii) The maximum in (1) for N < k is always achieved by R(N + 1, u).

Proof. For u = 0, R(M, u) ≡ 0 and there is nothing to prove. Assume that the two properties
i) and ii) hold for v = u− 1 ≥ 0. We will show that ii) holds for u. Consider N < k. By the
monotonicity assumption i),

R(N − ⌈N/u⌉+ 1, u− 1) ≥ R(N − ⌊N/u⌋+ 1, u− 1).

Assume thus that the adversary moves first to configuration (N − ⌈N/u⌉ + 1, u − 1). By
assumption ii) at rank v, its next best move is to configuration (N − ⌈N/u⌉ + 2, u − 1).
If alternatively the adversary had made a first move to (N + 1, u), it could then move to
(N + 1 − ⌈(N + 1)/u⌉ + 1, u − 1). Now by the monotonicity assumption ii) this can only
improve the adversary’s reward if N − ⌈N/u⌉ + 2 ≥ N + 1 − ⌈(N + 1)/u⌉ + 1, which is
obviously true. We have thus established ii) at rank u. Monotonicity i) at rank u readily
follows, since we now have that R(N + 1, u) = R(N, u)− 1 if ∆u−N > 0. ◀

From the lemma above, we conclude that a strategic adversary always prefer option (a) over
option (b) when it is available. Playing option (b) grants the adversary a budget to choose
option (a) for another ⌈Nt

ut
⌉ − 1 time steps. In such game, ut is thus decremented by 1 every

⌈ k
ut
⌉ steps. The game stops if ut ≤ k

∆ , thus right after ut = ⌈ k
∆⌉. Assuming ∆ ≤ k, the

game then lasts a total time of at most ⌈k
k ⌉+ ⌈ k

k−1⌉+ · · ·+ ⌈ k
⌈k/∆⌉⌉ ≤

∑k
h=⌈k/∆⌉

(
k
h + 1

)
≤

k
∑k

h≥k/∆+1
1
h + 2k ≤ k

∫ k

k/∆
dx
x + 2k ≤ k(log(k)− log(k/∆)) + 2k = k log(∆) + 2k. Instead

assuming k < ∆, the game will stop after ut = 1 and the sum is thus bounded by k
∫ k

1
dx
x +2k ≤

k log(k) + 2k. Overall, the game ends in at most k min{log(∆), log(k)}+ 2k steps. ◀

3.2 Connection to BFDN

We start by giving some intuition to connect the game above to BFDN and then provide a
proof of Lemma 2. The general picture is that balls of the game will correspond to robots
exploring the tree whereas urns of the game will correspond to the anchors at the working
depth d, i.e. the minimum depth of a dangling edge. Note that in BFDN, procedure Reanchor
applies the strategy for the player of the game described above, by reassigning the current
robot to the anchor of smallest load within set U , which is defined line 26 of Algorithm 1 by,

U = {v ∈ V s.t. v is adjacent to some dangling edge and δ(v) = d}. (3)

▶ Lemma 2 (Restated). In an execution of BFDN, for any d ∈ {1, . . . , D− 1}, the number of
calls to procedure Reanchor returning a node at depth d is at most k(min{log(k), log(∆)}+3).

Proof. We start the proof of the lemma by the following claim on BFDN.

▶ Claim 5. At some round, if all anchors are at depth at most d− 1, all nodes v explored
at depth d are in either of these (non-exclusive) situations: their sub-tree T (v) is entirely
explored, or their sub-tree T (v) hosts exactly one robot.

DISC 2023

14:10 Breadth-First Depth-Next

Proof of Claim 5. Consider an explored node v at depth d that contains a dangling edge
in its sub-tree T (v). We show that T (v) hosts one robot. The dangling edge must have an
explored endpoint v′ ∈ T (v) that was attained by a robot performing depth-next moves.
This robot cannot have left T (v′) ⊂ T (v) because v′ is still adjacent to a dangling edge,
thus that robot is still in T (v). At most one robot is in T (v) because v can only have been
attained by a single robot, since all anchors are at depth d− 1 or above. ◀

We now provide a reduction of the analysis of BFDN to the urns and balls game. We fix
some depth d ≥ 1 and bound the number Nd of times a robot is reanchored at depth d. We
denote by U0 the set U , defined by (3), in the first round when it consists of nodes at depth
d. Since all anchors were at depth less than k − 1 before that round, using Claim 5 we have
that |U0| ≤ k (in fact, |U0| ≤ k− 1 because at least one robot must be at the root). Since all
edges at depth less than d− 1 are explored, we note that U0 contains all nodes which are
possible candidates for anchors at depth d and that U ⊂ U0 for as long as it concerns nodes
at depth d. For each candidate anchor in U0, we formally re-anchor the robot exploring
the corresponding sub-tree to this anchor. This does not change the algorithm’s evolution
because there are no more dangling edges at depth less than d so all robots head back directly
to the root when they have finished explored below the associated candidate anchor.

We then increment counter c at every call of the procedure Reanchor, with possibly
multiple increments within a single round. For counter value c, we denote by ac ∈ U0 the
vertex to which the robot was previously anchored, and by bc ∈ U the vertex to which it is
anchored next. Note that all nodes in {a1, . . . , ac} can no longer be adjacent to a dangling
edge. We stop the increment the last time a robot is anchored at depth d, which happens
when there does not remain any node at depth d that is adjacent to some dangling edge.

Consider the number of calls C when for each node in U0, either a robot returning from it
has reached the root, or at least ∆ robots are anchored at it. Then C is the duration of a run
of the previous two-player game, initialized with one urn containing k − u balls and u urns
each containing one ball, where u = |U0| ∈ {0, . . . , k − 1} and where player B implements
the balancing strategy. Indeed the re-anchoring strategy of BFDN balances the numbers of
robots assigned per anchor. A direct adaptation of our analysis also holds for this modified
initial condition of the game, yielding the upper bound on C of k(min{log ∆, log k} + 2).
Once C assignments at depth d were made, at least ∆ robots are assigned to nodes at depth
d that are still adjacent to a dangling edge. In the subsequent d rounds BFDN can anchor
each robot at most one last time before there is no more dangling edge at depth d. This
yields the announced bound of k(min(log(k), log(∆)) + 3) on Nd. ◀

4 Extensions of BFDN to alternative settings

We now consider three settings where a BFDN strategy enjoys non-trivial runtime guarantees.

4.1 Restricted memory and communications
In this section, we study a setting where robots are allowed to communicate with a central
planner only when they are located at the root and where they have access to ∆ + D log(∆)
bits of internal memory. This setting encompasses the write-read communication model of
[10] as detailed in Remark 5. Formally, we precise the setting as follows. At every node,
the ports, which are defined as the endpoints of the adjacent edges, are numbered from 0
to ∆ − 1 where ∆ is the maximum degree. A node v at depth d ≤ D is identified by the
sequence of ports that leads to it from the root with d log2(∆) bits. For every node distinct

R. Cosson, L. Massoulié, and L. Viennot 14:11

from the root, we assume that port number 0 leads to the root. As before, robots operate in
rounds. All robots arriving at the root at some round t have their memory read and stored
by the planner along with their identifier. The planner can then perform any computation
and update the memory of the robots. All robots arriving at some node v distinct from the
root at some round t can observe the list of all ports at v from which a robot has returned
(these will be called “finished ports”) and are given two choices: SELECT a port number as
next move, or use a local routine PARTITION(v) enjoying the following properties,

No two robots calling PARTITION(v) will ever be sent to the same port j ≥ 1.
If a robot calling PARTITION(v) at round t is sent to port j ≥ 0, it means that PARTITION(v)
has previously sent a robot to all ports j′ ≥ j at round t or before.

In this model, BFDN is implemented as follows. In a stack of d port numbers (each represented
by log2(∆) bits) the central planner assigns to Roboti an anchor vi at depth d that it will
reach by unstacking port numbers and applying routine SELECT. When the robot reaches
this node, the stack is empty and the robot will make consecutive calls to routine PARTITION
that will eventually lead it back to the root. We ask that Roboti stores the finished port
numbers of vi using its additional ∆ bits of memory. This information will be used by the
central planner to update its candidates for future anchors, i.e. the value of the set U , as
specified by Algorithm 2 below.

▶ Remark 5. The present model encompasses the classical write-read communication model
of [10] where robots with unbounded memory communicate by synchronously writing and
then synchronously reading information on whiteboards (of infinite size) located at each node
of the tree. In this model, the information gathered at the root allows each robot located
at the root to emulate the decision taken by the central planner regarding its next anchor
assignment. Furthermore, since robots can log their passages at any node (see [10]) the local
procedure PARTITION can easily be implemented, and the assumption that robots access the
list of adjacent port number from which no robot has returned is granted.

▶ Proposition 6. In this restricted communication model, the version of BFDN described
above achieves tree exploration in at most 2n

k + D2(min{log(k), log(∆)}+ 3) rounds.

Proof. We note that the algorithm described above is the same as Algorithm 1, with a minor
difference in the definition of U in procedure Reanchor line 26, which must now be computed
using only information gathered at the root (see Algorithm 2 for details). Informally, U now
denotes the set of all nodes at working depth d which could be adjacent to a dangling edge,
given information collected at the root.

The key observation is that a candidate anchor v can be withdrawn from U as soon
as a robot which had been anchored at v returns to the root. Consider again the urns-in-
balls assignment rule bc = arg minv∈U\{a1,...,ac} nc

v, where nc
v denotes the number of robots

anchored at v upon increment c, but where nodes in U remain eligible as anchors until some
robot has returned to the root from them. The proof of Theorem 3 entails that, for such
a modified assignment rule, a robot will have returned from all nodes of U after at most
k(min{log(k), log(∆)}+ 3) reassignments, after which the root knows that there can be no
more dangling edges at depth d.

Algorithm 2 below precises how the central planner uses information gathered by returning
robots to update its knowledge of eligible anchors at the working depth d. Denoting the
list of all possible anchors at depth d by A and the list of anchors at depth d from which
a robot has returned by R, the planner implements Reanchor with set U = A \ R. When
A \ R = ∅, a robot has returned from all anchors at depth d and d is incremented. The

DISC 2023

14:12 Breadth-First Depth-Next

planner keeps track of U ′ = A′ \R′, which contains the children of A that may be adjacent
to a dangling edge, or equivalently the ports of A that are not known to be finished. This
update is performed using the memory of the returning robots. ◀

Algorithm 2 BFDN “Breadth-First Depth-Next” (central planner at the root).

Require: At most k robots arriving at the root at some round.
Ensure: Assigns a node v, represented by a sequence of port numbers, to each robot.

1: d = working depth ;
2: A = list of anchors at depth d ;
3: R = nodes of A from which a robot has returned ;
4: A′ = list of children of nodes in A ;
5: R′ = nodes of A′ from which a robot has returned ;
6: Read memory of returning robots and update R, A′, R′.
7: if A \R = ∅ then
8: if A′ \R′ = ∅ then
9: Exploration is finished and robots wait at the root.

10: else
11: d← d + 1
12: A← A′ \R′ ▷ contains at most k elements.
13: R, A′, R′ ← ∅
14: Reanchor the robots to nodes of minimum load in A \R, such that after this operation

the numbers of robots per anchor differ by at most one.

4.2 Adversarial robot break-downs
So far we assumed that all robots traverse exactly one edge per time-step. We relax this
assumption in the present section, assuming instead that some adversary decides at each
time-step and for each robot whether the robot actually moves, or instead incurs a break-
down, being stalled at its current location. Our aim remains to to explore the tree in as few
moves as possible. However we no longer require that the robots return to the root at the end
of exploration, because the adversary could decide to break-down some robot indefinitely.

Formally, at each round t ∈ N, robot i is allowed to make a move if some variable Mti = 1
whereas it is blocked at its current position if Mti = 0. For this adversarial model, we assume
that M = (Mti)t∈N,i∈[k] is an arbitrary sequence of binary values that takes only a finite
number of 1 (allowed moves). We denote the average distance travelled by the robots A(M)
which equals A(M) = 1

k

∑
t∈N

∑
i∈[k] Mti.

For this setting, we consider BFDN as specified in Algorithm 1, with the minor modification
that at each round t the only robots taking part in the assignment process are those which are
allowed to move. More precisely, we replace the for loop of Algorithm 1 (for i ∈ {1, . . . , k}
do) with an iteration over all robots that may move (for i ∈ {i : Mti = 1} do). This
modification is introduced to ensure that when multiple robots are at the same location,
blocked robots do not prevent unblocked robots from traversing dangling edges.

▶ Proposition 7. For any sequence of allowed moves M ∈ {0, 1}N×[k] satisfying A(M) ≥
2n
k + D2(log(k) + 3) all edges of the tree will be visited by the above variant of BFDN.

Proof. Again, the proof is very similar to that of Theorem 1 and all claims 1-5 all naturally
adapt to this setting. As an example, we adapt the third claim as follows.

R. Cosson, L. Massoulié, and L. Viennot 14:13

▶ Claim 3 (Restated). Consider a sequence of moves by some Roboti that starts at the root
with the assignment of an anchor v of depth δ(v) = d and that ends with the return of Roboti

to the root after Tx allowed moves of Roboti. In this sequence, Roboti has explored exactly
(Tx − 2d)/2 dangling edges.

The adversarial nature of the urns and balls game of Section 3 makes it applicable to the
present setup, and Lemma 2 straightforwardly holds except for the log(∆) guarantee. Indeed,
the adversary could choose to block all robots at a specific anchor until all k robots reach
that anchor, which happens after at most k(log(k) + 3) anchor assignments. ◀

▶ Remark 8. Other adversarial settings could be considered, for instance with an adversary
that observes the moves that the robots have selected before choosing which robots to
block. Another extension of interest would consist in relaxing the slotted time assumption to
consider instead continuous time evolution, which could capture more realistic scenarios.

4.3 Collaborative exploration of non-tree graphs
The algorithm BFDN described above can be executed on any graph if it undergoes a minor
modification: that any robot traversing on a dangling edge and arriving on a node explored
earlier by another robot should go back from where it came and “close” the corresponding
edge (this edge will never be used again). A similar technique was already proposed by [1]
to adapt the algorithm of [10] to graphs. Unfortunately, without further assumption, the
guarantees of BFDN do not generalize to graphs with n edges and radius D, where the radius
is defined as the maximum distance between a node and the origin of the robots.

We therefore make the additional assumption that at any given node, a robot knows its
distance to the origin in the underlying graph. Though restrictive, this assumption holds in
some contexts of interest. It is for instance satisfied for the exploration of grid graphs with
rectangular obstacles considered in [12] because the distance of any node with coordinates
(i, j) ∈ N2 to the origin is equal to the so-called Manhattan distance i + j.

In that context, consider the following variant of BFDN: a robot traversing a dangling edge
e will backtrack and “close” this edge if either of these two conditions is satisfied: (1) e led
to a node that is already explored (2) e led to a node that is not strictly further to the origin
than its first endpoint. In the case of (2), the node that is reached by the edge over which
the respective robot backtracks is not considered as explored.

▶ Proposition 9. Given a graph G = (V, E) with n edges, diameter D and maximum degree
∆, assuming that the k robots are aware at all times of their distance to the origin and
implement the above variant of BFDN, collaborative graph exploration is completed in at most
2n
k + D2(min{log(∆), log(k)}+ 3) rounds.

Proof. It is clear that at the end of the execution of this algorithm, the edges which have
never been closed form breadth-first tree of the graph with depth D. This tree is explored
efficiently by BFDN while other edges are traversed at most twice by a single robot (or once
by two robots, each coming from both endpoints, that will swap their identities). This leads
to a total runtime of at most 2n

k + D2(min{log(∆), log(k)}+ 3). ◀

5 Recursive Algorithms for Improved Dependence on Depth D

In this section we develop a general recursive construction of so-called anchor-based algorithms
which, applied to BFDN, yields the following result. It can be seen as a generalization of
Theorem 1 as, for ℓ = 1, it provides the same upper-bound up to a factor 4.

DISC 2023

14:14 Breadth-First Depth-Next

▶ Theorem 10. For any integer ℓ ≥ 1, BFDNℓ, an associated recursive version of BFDN,
explores a tree with n nodes, depth D, maximum degree ∆ with k robots in 4n

k1/ℓ + 2ℓ+1(ℓ +
1 + min {log(∆), log(k)/ℓ}) D1+1/ℓ rounds.

To describe our recursive construction we need the following definitions. Given a node v

in a tree T , PT [v] denotes the path from v to the root of T , and PT (v) = PT [v] \ {v}. Given
two nodes u, v in a tree T , LCAT (u, v) denotes their lowest common ancestor in T . We say
that a explored node is open as long as it has at least one dangling adjacent edge. We say
that it is closed as soon as a robot has traversed its last dangling edge. Note that open nodes
are the parents of dangling edges. We decompose the exploration of an edge into two edge
events as follows. An edge event occurs when a robot traverses an edge from parent to child
for the first time, or when a robot traverses an edge from child to parent for the first time.
There are thus at most 2(n− 1) edge events in any exploration. Edges for which only one
event has occurred are said to be half explored.

Anchor-based algorithm. Given k robots, an activity parameter k∗ ∈ [k], and a depth d,
an anchor-based algorithm A(k∗, k, d) is by definition an exploration algorithm by k robots
meeting the following requirements. Each robot is in one of the two states active or inactive.
Each active robot i is assigned to a node vi of the tree called its anchor. The algorithm must
explore the tree so as to bring anchors at depth d while maintaining a list of invariants. The
full list of so-called “Anchor-based invariants” is given in Appendix B. It mainly includes
a variant of Claim 4 called Open Node Coverage which specifies that all open nodes must
always be in ∪i∈AT (vi) where A is the set of active robots. Other invariants mainly specify
properties of the positions of the robots with respect to the partially explored tree and ensure
that we can start an execution of an anchor-based algorithm after having interrupted the
execution of another anchor-based algorithm.

Initially, the algorithm starts from any partially explored tree, with all robots active and
anchored at the root. Robots must be in so-called Parallel DFS Positions, a requirement
ensuring that all invariants are initially satisfied (see Appendix B). Active robots are allowed
to move and explore the tree while inactive robots must be at depth at most d and wait.
We distinguish two phases in the execution of the algorithm. As long as some anchor is
at depth less than d or is not closed, we say that the algorithm runs shallow. During this
first “shallow” phase, the algorithm must have at least k∗ active robots at all rounds. When
all anchors are at depth d and are all closed, we say that the algorithm runs deep. In this
second “deep” phase, it is required that all active robots trigger an edge event at each round.
However, the number of active robots may get below k∗ during that phase. At any round,
the algorithm may turn a robot into inactive or active as long as the requirements for the two
phases are met. Finally, the algorithm can terminate when all robots are inactive. The Open
Node Coverage invariant implies that the tree is then completely explored (see Appendix B).

Divide depth functor. We now define the divide depth functor D, a map that takes an
anchor-based algorithm and transforms it into another anchor-based algorithm as follows.
Given an anchor-based algorithm A(k∗, k′, d′), a number nteam of teams and a number
niter of iterations, we construct the exploration algorithm D[A(k∗, k′, d′); nteam; niter] for
terminating the exploration of a partially explored tree. It uses k = nteamk′ robots for
exploring the tree up to depth d = niterd′ in niter iterations where each iteration makes
anchors progress d′ deeper. More precisely, the i-th iteration runs parallel instances of
A(k∗, k′, d′) in at most nteam sub-trees rooted at nodes with depth (i− 1)d′. We assume that
the previous iteration has terminated with a set R of at most k∗ ≤ nteam anchors at depth

R. Cosson, L. Massoulié, and L. Viennot 14:15

(i− 1)d′. Relying on the Open Node Coverage invariant, we then restrict the exploration to
the sub-trees rooted in R. Robots are thus partitioned into nteam teams of k′ robots each.
Each node r ∈ R is taken in charge by a distinct team which runs an instance Ar(k∗, k′, d′)
of A(k∗, k′, d′) on T (r). When |R| < nteam, all robots in unassigned teams are inactive and
wait at their position until the end of the current iteration. All other teams explore in parallel
their sub-trees. We interrupt all running instances simultaneously when the overall number
of active robots gets below k∗ so that we can use their anchors as roots in the next iteration.
As any single instance has activity parameter k∗ this cannot happen until all anchors are at
depth d′ in each sub-tree, that is depth i · d′ in T . After niter iterations, this guarantees that
all nodes up to depth d have been closed and that exploration finally continues in at most
k∗ sub-trees rooted at depth d. See Appendix C for a formal description of the resulting
anchor-based algorithm B(k∗, k, d) = D[A(k∗, k′, d′); nteam; niter].

We say that an anchor-based algorithm A(k∗, k, d) has f -shallow efficiency for parameter
f if it triggers at least k∗(T− f) edge events when running shallow during T rounds where
parameter f may depend on k and d. We then have the following

▶ Proposition 11. Given an anchor-based algorithm A(k∗, k′, d′), integers nteam ≥ k∗

and niter ≥ 1, D[A(k∗, k′, d′); nteam; niter] is correct and it is an anchor-based exploration
algorithm B(k∗, k, d) for k = nteamk′ robots with depth d = niterd′. If moreover A(k∗, k′, d′)
has f ′-shallow efficiency, then D[A(k∗, k′, d′); nteam; niter] has f-shallow efficiency with
f = niterf ′ + n2

iterd′ = niter(f ′ + d).

Its proof is deferred to Appendix C. The reason for f -shallow efficiency is the following.
Consider the i-th iteration of DA,k′,d′(k∗, k, d). Moving robots towards their associated root
takes 2(i − 1)d′ rounds. Now, count the number T1 of rounds where at least one of the
instances has not run deep. As such an instance has run shallow during T1 rounds, it has
triggered at least k∗(T1 − f ′) edge events by f ′-shallow efficiency of A(k∗, k, d). During
the remaining T2 rounds of the iteration, all instances run deep. As this continues as long
as k∗ robots or more are active, at least k∗ edge events are triggered per round, that is
k∗T2 or more in total. Letting Ti = 2(i − 1)d′ + T1 + T2 denote the number of rounds
spent in the ith iteration, the number of edge events triggered during that iteration is thus
at least k∗(Ti − f ′ − 2(i − 1)d′). The algorithm runs shallow during the niter iterations
which last overall T =

∑niter

i=1 Ti. By summation, we get that it then triggers at least
k∗(T− niterf ′ − n2

iterd′) edge events as
∑niter

i=1 (i− 1) < n2
iter/2.

BFDN. Our first candidate for applying the divide depth functor is the following variant of
Algorithm 1, denoted, BFDN1(k, k, d), where the procedure Reanchor is modified for assigning
anchors at depth at most d. Precisely, we replace Line 26 with:

U = {v ∈ V s.t. v is adjacent to some unexplored edge and δ(v) is minimal and δ(v) ≤ d}.

Note that this modification implies that when there are no more dangling edges at depth at
most d, robots start to be anchored to the root and are then considered as inactive. Note
that according to Claim 5 for depth d + 1, there still remains exactly one robot in each
sub-tree rooted at depth d + 1 which is not entirely explored. These robots remain active
until they have completely explored their sub-tree. BFDN1(k, k, d) thus terminates only when
the tree has been fully explored. We also slightly modify the anchoring of robots: when a
robot i is anchored at vi it might happen that there are no more dangling edges at depth
δ(vi) or less thanks to the exploration of other robots. If this happens when vi ∈ P (ui) and
δ(vi) < d, we re-anchor robot i at the children of vi in P [ui]. This modification does not

DISC 2023

14:16 Breadth-First Depth-Next

change the movements of robot i as it is then in a sequence of depth-next moves and will go
up when reaching vi anyway. However, this modification will ensure the preservation of the
Partial Exploration invariant defined in Appendix B. It also implies that when there are no
more dangling edges at depth at most d, all anchors are then at depth d.

One can then easily check that BFDN1(k, k, d) is an anchor-based algorithm. For example,
the Open Node Coverage invariant is shown as Claim 4; see Appendix B for more details. We
also note that BFDN1(k, k, d) has c1(k)d2-shallow efficiency where c1(k) = min{log ∆, log k}+2.
Indeed, BFDN1(k, k, d) runs exactly as Algorithm 1 as long as there are dangling edges at depth
at most d, that is as long as the algorithm is running shallow. If this phase lasts T rounds,
it triggers at least k(T − c1(k)d2) edge events. The proof is similar to that of Theorem 1
using Lemma 2 with the slight subtlety that we count edge events. The reason is that when
starting from a partially explored tree where robots are in Parallel DFS Positions, the moves
when robots go up still trigger edge events although no new edge may be discovered.

The BFDNℓ(k∗, k, d) anchor-based algorithm. We construct recursively a series of
algorithms BFDNℓ(k1/ℓ, k, d) for ℓ ≥ 1 as follows. Assuming that k and d are
both ℓ-th powers of integers, we define for ℓ ≥ 2 the algorithm BFDNℓ(k∗, k, d) :=
D[BFDNℓ−1(k∗, k/nteam, d/niter); nteam; niter] with k∗ = nteam = k1/ℓ and niter = d1/ℓ. We
let k′ = k/nteam = k(ℓ−1)/ℓ and d′ = d/niter = d(ℓ−1)/ℓ denote the parameters used for
BFDNℓ−1. Note that k′ and d′ are both (ℓ−1)-th powers of integers and recursive calls all have
integer-valued parameters. The activity parameter of instances BFDNℓ−1(k∗, k′, d′) indeed
satisfies (k′)1/(ℓ−1) = k1/ℓ = k∗. As we use nteam = k∗, we indeed respect the constraint
k∗ ≤ nteam. We can bound its shallow efficiency according to the following statement:

▶ Lemma 12. Given an integer ℓ ≥ 2, two integers k and d that are both ℓth powers of
integers, BFDNℓ(k1/ℓ, k, d) is cℓ(k)d1+1/ℓ-shallow efficient with cℓ(k) = c1(k1/ℓ) + ℓ− 1.

Proof. As BFDN1(k1/ℓ, k1/ℓ, d1/ℓ) is c1(k1/ℓ)d2/ℓ-shallow efficient, by induction (Proposi-
tion 11) BFDNj(k1/ℓ, kj/ℓ, dj/ℓ) is (c1(k1/ℓ)+j−1)d(j+1)/ℓ-shallow efficient for j = 2, . . . , ℓ. ◀

▶ Definition 13 (of BFDNℓ). If k is the ℓ-th power of an integer, consider the sequence of depths
dj = 2jℓ for j = 1, 2, . . . Algorithm BFDNℓ consists in running BFDNℓ(k1/ℓ, k, d1), interrupting
it right after its last iteration (without running deep further), then running BFDNℓ(k1/ℓ, k, d2)
with the current robot positions and anchor assignments until its last iteration finishes, and
so on. When running BFDNℓ(k1/ℓ, k, dj) with j = ⌈ log2 D

ℓ ⌉, all anchors reach depth D and the
algorithm terminates. If k is not an integer to the power ℓ, we use K = ⌊k1/ℓ⌋ℓ ≤ k.

Poof of Theorem 10. Assume first that k is the ℓ-th power of some integer. In a
run of BFDNℓ, denote by Tj the number of rounds that the call to BFDNℓ(k1/ℓ, k, dj)
lasts. This call triggers at least k1/ℓ(Tj − cℓ(k)d1+1/ℓ

j) edge events by applying
Lemma 12. We can thus bound the overall running time T =

∑⌈(log2 D)/ℓ⌉
j=1 Tj

by summing over all calls: 2n ≥ k1/ℓ
(

T− cℓ(k)
∑⌈(log2 D)/ℓ⌉

j=1 d
1+1/ℓ
j

)
. As we have∑⌈(log2 D)/ℓ⌉

j=1 d
1+1/ℓ
j =

∑⌈(log2 D)/ℓ⌉
j=1 2(ℓ+1)j ≤ 2(ℓ+1)((log2 D)/ℓ+2)−1

2ℓ+1−1 ≤ 2ℓ+1D1+1/ℓ, we obtain
T ≤ 2n

k1/ℓ + 2ℓ+1cℓ(k)D1+1/ℓ. For arbitrary k, with K = ⌊k1/ℓ⌋ℓ, using K1/ℓ ≥ k1/ℓ/2, we
obtain a time bound of T ≤ 4n

k1/ℓ + 2ℓ+1(ℓ− 1 + c1(k1/ℓ))D1+1/ℓ, yielding the runtime bound
announced in Theorem 10 since c1(k1/ℓ) = 2 + min {log(∆), log(k)/ℓ}. ◀

R. Cosson, L. Massoulié, and L. Viennot 14:17

References

1 Peter Brass, Flavio Cabrera-Mora, Andrea Gasparri, and Jizhong Xiao. Multirobot tree
and graph exploration. IEEE Trans. Robotics, 27(4):707–717, 2011. doi:10.1109/TRO.2011.
2121170.

2 Peter Brass, Ivo Vigan, and Ning Xu. Improved analysis of a multirobot graph exploration
strategy. In 13th International Conference on Control Automation Robotics & Vision, ICARCV
2014, Singapore, December 10-12, 2014, pages 1906–1910. IEEE, 2014. doi:10.1109/ICARCV.
2014.7064607.

3 Romain Cosson, Laurent Massoulié, and Laurent Viennot. Breadth-first depth-next: Optimal
collaborative exploration of trees with low diameter. arXiv preprint arXiv:2301.13307, 2023.

4 Romain Cosson, Laurent Massoulié, and Laurent Viennot. Brief announcement: Efficient
collaborative tree exploration with breadth-first depth-next. In Rotem Oshman, Alexandre
Nolin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June
19-23, 2023, pages 24–27. ACM, 2023. doi:10.1145/3583668.3594568.

5 Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pajak, and Przemyslaw Uznanski.
Fast collaborative graph exploration. Inf. Comput., 243:37–49, 2015. doi:10.1016/j.ic.2014.
12.005.

6 Yann Disser, Frank Mousset, Andreas Noever, Nemanja Skoric, and Angelika Steger. A
general lower bound for collaborative tree exploration. Theor. Comput. Sci., 811:70–78, 2020.
doi:10.1016/j.tcs.2018.03.006.

7 Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindelhauer. Power-aware collective
tree exploration. In Werner Grass, Bernhard Sick, and Klaus Waldschmidt, editors, Architecture
of Computing Systems - ARCS 2006, 19th International Conference, Frankfurt/Main, Germany,
March 13-16, 2006, Proceedings, volume 3894 of Lecture Notes in Computer Science, pages
341–351. Springer, 2006. doi:10.1007/11682127_24.

8 Miroslaw Dynia, Jaroslaw Kutylowski, Friedhelm Meyer auf der Heide, and Christian Schindel-
hauer. Smart robot teams exploring sparse trees. In Rastislav Kralovic and Pawel Urzyczyn,
editors, Mathematical Foundations of Computer Science 2006, 31st International Symposium,
MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings, volume 4162 of
Lecture Notes in Computer Science, pages 327–338. Springer, 2006. doi:10.1007/11821069_29.

9 Miroslaw Dynia, Jakub Lopuszanski, and Christian Schindelhauer. Why robots need maps.
In Giuseppe Prencipe and Shmuel Zaks, editors, Structural Information and Communication
Complexity, 14th International Colloquium, SIROCCO 2007, Castiglioncello, Italy, June 5-8,
2007, Proceedings, volume 4474 of Lecture Notes in Computer Science, pages 41–50. Springer,
2007. doi:10.1007/978-3-540-72951-8_5.

10 Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective tree
exploration. Networks, 48(3):166–177, 2006. doi:10.1002/net.20127.

11 Yuya Higashikawa, Naoki Katoh, Stefan Langerman, and Shin-ichi Tanigawa. Online graph
exploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim., 28(2):480–
495, 2014. doi:10.1007/s10878-012-9571-y.

12 Christian Ortolf and Christian Schindelhauer. Online multi-robot exploration of grid graphs
with rectangular obstacles. In Guy E. Blelloch and Maurice Herlihy, editors, 24th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh, PA, USA,
June 25-27, 2012, pages 27–36. ACM, 2012. doi:10.1145/2312005.2312010.

13 Christian Ortolf and Christian Schindelhauer. A recursive approach to multi-robot exploration
of trees. In Magnús M. Halldórsson, editor, Structural Information and Communication
Complexity - 21st International Colloquium, SIROCCO 2014, Takayama, Japan, July 23-25,
2014. Proceedings, volume 8576 of Lecture Notes in Computer Science, pages 343–354. Springer,
2014. doi:10.1007/978-3-319-09620-9_26.

DISC 2023

https://doi.org/10.1109/TRO.2011.2121170
https://doi.org/10.1109/TRO.2011.2121170
https://doi.org/10.1109/ICARCV.2014.7064607
https://doi.org/10.1109/ICARCV.2014.7064607
https://doi.org/10.1145/3583668.3594568
https://doi.org/10.1016/j.ic.2014.12.005
https://doi.org/10.1016/j.ic.2014.12.005
https://doi.org/10.1016/j.tcs.2018.03.006
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/11821069_29
https://doi.org/10.1007/978-3-540-72951-8_5
https://doi.org/10.1002/net.20127
https://doi.org/10.1007/s10878-012-9571-y
https://doi.org/10.1145/2312005.2312010
https://doi.org/10.1007/978-3-319-09620-9_26

14:18 Breadth-First Depth-Next

A Comparisons between Algorithms CTE, Yo* and BFDN

We provided in Figure 1 a picture of how BFDN compares in terms of runtime with other
state-of-the art algorithms for collaborative tree exploration. The regions are defined up to
multiplicative constants that only depend on k. We included in the figure only algorithms
requiring no assumptions on the tree structure. Four algorithms thus appear in the figure:
the original “collaborative tree exploration” CTE algorithm of [10] with runtime O(n

log(k) +D),

the recursive algorithm Yo* of [13] with runtime O(2O(
√

log D log log k) log k(log n+log k)(n/k+
D)), which we reduced to smaller quantities to simplify the picture, BFDN with runtime
2n/k + D2 log(k) as well as its recursive variant BFDNℓ.

Figure 1 highlights that BFDN is the only algorithm to outperform CTE of [10] in an
unbounded range of parameters (n, D). Indeed, the other competitor, Yo*, is outperformed
by CTE when n ≥ ek or when D ≥ elog(k)2 . Yet, CTE remains the most efficient algorithm for
trees with small depth. We detail below the calculations that led to Figure 1.

Comparison between BFDN and CTE. Since the runtime of any collaborative tree algorithm
exceeds n/k and D, it is sufficient to compare the suboptimal terms of both algorithms which
are D2 log(k) and n/ log(k) for BFDN and CTE respectively. It therefore turns out that BFDN
is faster than CTE in the range D2 log(k)2 ≤ n.

Comparison between CTE and Yo*. First, we simplified the runtime of Yo* to O(log(n)n/k+
D), which gives that it can outperform the O(n/ log(k) + D) of [10] only in the range
n ≤ ek/ log(k) which we extend to n ≤ ek in the picture. After, we simplified the runtime
of Yo* to O(e

√
log(D)n/k + D) to obtain the range D ≤ elog(k)2 . Finally, we simplified

the runtime of Yo* to D log(n) log(k) to get that CTE outperforms Yo* for trees satisfying
D ≥ n

log(n) log(k)2.

Comparison between BFDN and Yo*. We used the comparisons above for ek ≤ n or elog(k)2 ≤
D, and completed by the following simplification of the runtime of Yo* to O(log(k)n/k + D).
BFDN is thus faster than Yo* when log(k)D2 ≤ log(k)n/k, that is when kD2 ≤ n/k.

Comparison between BFDNℓ and CTE. We note that BFDNℓ may outperform CTE only if
k1/ℓ > log(k), or equivalently if ℓ < log(k)

log(log(k)) , which we assumed in the caption of the
Figure. Under this condition, BFDNℓ outperforms CTE if 2ℓ log(k)D1+1/ℓ < n

log(k) . Since we
have 2ℓ < k, this condition is met if D < 1

k log(k)2 nℓ/(ℓ+1).

Comparison between BFDNℓ and BFDN. If n/k > D2, if is clear that BFDN outperforms
BFDNℓ. On the other hand, if n/k1/ℓ < D2, BFDNℓ outperforms BFDN.

B Formal description of Anchor-based Invariants

During the execution of an anchor-based algorithm, it is required that the partially explored
tree, the set A ⊆ [k] of active robots, the anchor assignment (vi)i∈A, and the positions
(ui)i∈[k] of the robots always satisfy the following invariants:

all open nodes of the currently explored tree are in ∪i∈[k]PT [ui], (DFS Open Coverage)
for any two robots i ̸= j, all nodes in PT (LCAT (ui, uj)) are closed, (Parallel Positions)

R. Cosson, L. Massoulié, and L. Viennot 14:19

for all active robot i such that vi ∈ PT [ui], all edges in the path from vi to ui are half
explored, (Partial Exploration)

for all active robot i ∈ A, δ(vi) ≤ d, (Limited Anchor Depth)

all inactive robots are located at depth at most d, (Inactive Depth)

all open nodes of the currently explored tree are in ∪i∈AT (vi), (Open Node Coverage)

if ∃i ∈ A such that either δ(vi) < d or vi is open, then at least k∗ robots are active,
(Shallow Activity)

if all anchors {vi : i ∈ A} are at depth d and are close, each active robot triggers an edge
event at each round. (Deep Activity)

Initially, robots are said to be in Parallel DFS Positions when DFS Open Coverage,
Parallel Positions and Partial Exploration are all three satisfied when assuming that all
robots are active and anchored at the root. One can easily check that other invariants are
then also satisfied.

Properties of an anchor-based algorithm. The Open Node Coverage invariant implies that
all nodes at depth less than d′ are closed where d′ = mini∈A δ(vi) is the minimum depth of
an anchor. The Shallow Activity invariant implies that the number of active robots may
decrease below k∗ only when all anchors are at depth d and consequently when all nodes up
to depth d are closed. The Open Node Coverage invariant also implies that for any dangling
edge adjacent to a explored node w, there exists at least one active robot i such that w is in
T (vi). This implies that if all anchors are at depth d and if i is the last robot with anchor vi,
it cannot become inactive unless T (vi) has been completely explored. This indeed implies
that the algorithm cannot terminate unless the full tree has been completely explored: as
long as there remains an open node w, some robot i must be active with an ancestor of w

as anchor. Recall that we require that the algorithm cannot terminate unless all robots are
inactive.

BFDN. BFDN1(k, k, d) is an anchor-based algorithm. Indeed, the Open Node Coverage
invariant is shown as Claim 4; the DFS Open Coverage and Partial Exploration invariants
come from the similarity of DN moves with a DFS traversal, while the Parallel Positions
invariant comes from the selection of distinct dangling edges when several robots are located
at the same node. The Limited Anchor Depth and Inactive Depth invariants are satisfied by
the modification of anchor selection. The Shallow Activity invariant comes from the fact
that all robots are active as long as there remain some dangling edge at depth at most d.
Finally, the Deep Efficiency invariant comes from Claim 5 as when the algorithm runs deep,
each sub-tree at depth d + 1 which is not completely explored contains exactly one robot
performing a DFS-like traversal of the sub-tree.

We also note that we can start BFDN1(k, k, d) from any partially explored tree where
robots are in Parallel DFS Positions as long as each robot i, which is in a position ui with
open ancestors, gets anchored to a node vi of P [ui] such that all nodes of P (vi) are closed.
Such a situation occurs in BFDN when a robot is performing DN moves. It is thus possible to
start a robot in any such situation so that it will then behave similarly as in BFDN. The other
robots see only closed nodes and thus get to the root according to Algorithm 1 where they
get re-anchored.

DISC 2023

14:20 Breadth-First Depth-Next

C Divide-depth Algorithm

Algorithm 3 Divide depth algorithm D[A(k∗, k′, d′); nteam; niter].

Require: An anchor-based exploration algorithm A(k∗, k′, d′), integers nteam ≥ k∗ and
niter ≥ 1, a partially explored tree T with k = nteamk′ robots in Parallel DFS Positions
and such that at most k∗ robots are at depth greater than 0.

Ensure: All nodes are explored and closed.
1: R← {root(T)} ▷ Set of sub-tree roots in next iteration.
2: A← {i ∈ [k] : ui ̸= root(T)} ▷ Set of robots having already progressed in T .
3: All robots are active and have root(T) as anchor.
4: for i = 1, . . . , d/d′ do
5: ▷ Iteration i:
6: For all r ∈ R, let kr = |{i ∈ A : vi = r}| be the number of robots having progressed

in T (r).
7: Partition robots into |R| teams (Br)r∈R of k′ robots each, one per node r ∈ R:
8: each robot i ∈ A is assigned to vi,
9: for all r ∈ R, k′ − kr robots in [k] \A are assigned to r. ▷ We rely on kr ≤ k′ and
|R| ≤ nteam.

10: All robots in team Br are assigned to anchor r: we set vi ← r for all i ∈ Br \A.
11: All robots in ∪r∈RBr \A are turned to active, and move to their anchor in 2(i− 1)d′

rounds. ▷ Moves for rebalancing robots.
12: All robots in [k] \ ∪r∈RBr are turned to inactive and wait at their current position.
13: Each team associated to r ∈ R initializes independently an instance Ar(k∗, k′, d′) for

exploring T (r).
14: At any round, we let Ar denote the set of active robots among the team exploring

T (r).
15: while |∪r∈RAr| ≥ k∗ do
16: Run in parallel one round of all instances Ar(k∗, k′, d′) for r ∈ R.
17: end while
18: A← |∪r∈RAr| ▷ Overall set of active robots.
19: R← {vi : i ∈ A} ▷ Roots of sub-trees not fully explored yet.
20: Continue running instances Ar(k∗, k′, d′) of the last iteration for all r ∈ R. ▷ Running

deep.

Proof of Proposition 11. We first check that all invariants are preserved by induction on the
iteration number i. The main argument is that all anchors are at depth i · d′ after Iteration i.
We require that the DFS Open Coverage, Parallel DFS Positions and Partial Exploration
invariants are satisfied by the initial positions of robots. All remaining invariants are also
satisfied as the only initial anchor is at depth zero. Assume that all invariants are satisfied
up to the beginning of Iteration i, and that nodes in R are at depth (i− 1)d′.

The Inactive Depth invariant ensures that inactive robots at the end of the previous
iteration are at depth (i− 1)d′ or less, and moving them according to Line 11 can indeed be
done within 2(i− 1)d′ rounds. Moreover, the Open Node Coverage invariant ensures that
all nodes at depth less than (i − 1)d′ are closed, and these movements preserve the DFS
Open Coverage and Parallel Positions invariants. The Partial Exploration invariant is also
preserved since these robots are not located in the sub-tree of their anchor. These (i− 1)d′

R. Cosson, L. Massoulié, and L. Viennot 14:21

rounds also preserve Anchor Depth and Open Node Coverage invariants as the anchors R

of nodes active in the last round of the previous iteration remain their anchor, while other
nodes are assigned to one of the anchors in R.

The fact that robots are initially in Parallel DFS Positions in each instance Ar(k∗, k′, d′)
for r ∈ R comes from the preservation of the DFS Open Coverage, Parallel Positions,
and Partial Exploration invariants at the end of the previous round as the root r was the
anchor of robots that are not located at r. Now, as all instances Ar(k∗, k′, d′) for r ∈ R

run in disjoint sub-trees, the DFS Open Coverage, Parallel Positions, Partial Exploration,
Anchor Depth and Open Node Coverage invariants are also preserved during the rest of the
iteration since each Ar(k∗, k′, d′) is anchor-based. Similarly, the Inactive Depth invariant
is satisfied as its variant in instances Ar(k∗, k′, d′) imply that inactive nodes are at depth
(i − 1)d′ + d′ = i · d′ ≤ d at most. The Shallow Activity invariant is preserved as long as
at least one instance Ar(k∗, k′, d′) is not running deep according to the Shallow Activity
invariant for that instance. This means that the number of overall active robots can drop
below k∗ only when all instances are running deep, implying that all anchors are then at
depth (i− 1)d′ + d′ = i · d′. Note that the Open Node Coverage invariant then implies that
all open nodes are in the sub-trees rooted at the anchors of the robots that were active in the
last round. The exploration can thus be reduced to these at most k∗ sub-trees as claimed in
the description of the divide depth functor.

Finally, the algorithm starts running deep only when all anchors are at depth d and are
all closed. This can happen only towards the end of the last iteration when all instances
are running deep. The reason is that if an instance is not running deep, it has at least k∗

active robots by the Shallow Activity invariant and the termination condition of the inner
while loop at Line 15 is not met. The Deep Activity invariant then follows from the fact
that instances are running in pairwise disjoint sub-trees and all satisfy the Deep Activity
invariant.

This completes the proof that D[A(k∗, k′, d′); nteam; niter] is correct and that it is an
anchor-based exploration algorithm.

The proof for f -shallow efficiency is given in Section 5. ◀

DISC 2023

A Topology by Geometrization for Sub-Iterated
Immediate Snapshot Message Adversaries and
Applications to Set-Agreement
Yannis Coutouly
Laboratoire d’Informatique et des Systèmes - Université Aix-Marseille, France
CNRS, Marseille, France

Emmanuel Godard
Laboratoire d’Informatique et des Systèmes - Université Aix-Marseille, France
CNRS, Marseille, France

Abstract
The Iterated Immediate Snapshot model (IIS) is a central model in the message adversary setting.
We consider general message adversaries whose executions are arbitrary subsets of the executions of
the IIS message adversary. We present a complete and explicit characterization and lower bounds
for solving set-agreement for general sub-IIS message adversaries.

In order to have this characterization, we introduce a new topological approach for such general
adversaries, closely associating executions to geometric simplicial complexes. This way, it is possible
to define and explicitly construct a topology directly on the considered sets of executions. We believe
this topology by geometrization to be of independent interest and a good candidate to investigate
distributed computability in general sub-IIS message adversaries, as this could provide both simpler
and more powerful ways of using topology for distributed computability.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases topological methods, geometric simplicial complex, set-agreement

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.15

Funding This work has been funded by ANR project DUCAT – ANR-20-CE48-0006.

1 Introduction

The k−set-agreement problem is a standard problem in distributed computing and it is
known to be a good benchmark for topological approaches. The k−set-agreement problem is
a distributed task where processes have to agree on no more than k different initial values.
The set-agreement problem is the k−set agreement problem with k +1 processes. A review by
Raynal can be found in [23]. Since the seminal works of Herlihy-Shavit, Borowsky-Gafni and
Saks Zaharoglou [14, 3, 25], using topological methods has proved very fruitful for distributed
computing and for distributed computability in particular. In the shared memory model,
the impossibility of wait-free k−set agreement for more than k + 1 processes is one of the
crowning achievements of topological methods in distributed computing.

Since those first results, the topological framework has been refined to be presented in a
more effective way. In particular, the Iterated Immediate Snapshot model (IIS) is a special
message adversary that has been proposed as a central model to investigate distributed
computability. In this paper we consider the set-agreement problem in the context of message
adversaries defined as subsets of executions of the IIS message adversary.

© Yannis Coutouly and Emmanuel Godard;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 15; pp. 15:1–15:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 A Topology by Geometrization for Sub-IIS Message Adversaries

1.1 Main Contributions

The main contribution is the first complete and explicit characterization of sub-IIS message
adversaries for which set-agreement is solvable. We introduce in Section 3 a geometrization
mapping geo that associates a point in RN (with a large enough N) to any execution of
IISn, the set of IIS executions for n + 1 processes. The characterization of Th. 26 states
that set-agreement is solvable for M ⊂ IISn if and only if the geometrization of M has
a “hole”, i.e. geo(M) is a strict subset of the convex hull of Sn, the simplex of dimension
n. In Section 4, we describe and prove important properties of the geometrization geo. In
particular we give a combinatorial description of the sets geo−1(x), for x ∈ RN , in Th.25.
Interestingly, we show that these sets can have only three possible size: 1, 2 and infinite size.
Together with the previous theorem, this gives a explicit and complete characterization of
the subsets of the executions of the IIS message adversary for which set-agreement is solvable.
We also apply our technique to derive new lower bounds for general message adversaries
solving set-agreement.

The geo mapping is central to our characterization. The second main contribution is
to show that there is a natural topological interpretation of this mapping. Using geo, we
present in Section 3 a new topology that is defined directly on the set of IIS executions. We
believe this topology by geometrization to be of independent interest and a good candidate
to investigate distributed computability in general sub-IIS message adversaries, as this could
provide both simpler and more powerful ways of using topology for distributed computability
of any task.

In order to handle general message adversaries, we consider here simplicial complexes
primarily as geometric simplicial complexes. The standard chromatic subdivision is the
combinatorial topology representation of one round of the Immediate Snapshot model. Its
simple and regular structure makes topological reasoning attractive. In this paper, we
introduce a new universal algorithm and show its relationship with the standard chromatic
subdivision as exposed in the geometric simplicial complex setting. This new algorithm
is called the Chromatic Averaging algorithm, it averages with specific weights vectors of
RN at each node. Running the Chromatic Average Algorithm in the IISn model yields a
geometric counterpart in RN to any given infinite execution of IISn. The geometrization
mapping geo(w) of an execution w ∈ IISn is defined as the convergence value of running the
Chromatic Average Algorithm under execution w.

The topology on the set of executions is then the topology induced from the standard
topology in RN by the mapping geo : the open sets are pre-images geo−1(Ω) of the open sets
Ω of RN . The standard euclidean topology of RN is simple and well understood, however,
since geo is not injective, it is necessary to describe so-called “non-separable sets” in order
to fully understand the new topology. In topology, two distinct elements x, y are said to
be non-separable if for any two neighbourhoods Ωx of x and Ωy of y, we have Ωx ∩ Ωy ̸= ∅.
In our setting, two executions are non-separable when they have the same image via the
mapping geo, we call such pre-image sets geo−classes. Understanding those sets is central to
the characterization of solvability of set-agreement. It is also central to precisely describe the
properties of the geometrization topology. So we introduce first the geometrization topology
and in Section 4, we investigate the geo−classes. In Section 5, we apply our framework
to derive the characterization of computability of set-agreement and lower bounds. In the
conclusion, we discuss the perspective of possible application of the geometrization topological
framework to arbitrary tasks.

Y. Coutouly and E. Godard 15:3

1.2 Related Works
In [9], the “two generals problem”, that is the consensus problem for two processes is
investigated for arbitrary sub-IIS models by Godard and Perdereau. Given that consensus for
two processes is actually set-agreement, the characterization of solvability of set-agreement
presented here is a generalization to any number of processes of the results of [9].

One of the most advanced results toward the investigation of general sub-ISS adversary
are presented in the work of Kuznetsov and Rieutord [24, 17]. Their adversaries are iterated
and are related to so-called affine task. Our work consider more general sub-IIS adversaries,
including non-iterated adversaries, but the distributed computability is presented only for
the set-agreement task.

In [8], Gafni, Kuznetsov and Manolescu investigate models that are more general subsets
of the Iterated Immediate Snapshot model, where the execution sets are closed under a
specific relation. We believe our tools can provide a simpler, and less error-prone (see [9,
Section 5.1]), framework to investigate distributed computability of sub-IIS models. In
particular, their closure relation is nicely interpreted here as exactly the non-separability
relation of the geometrization topology.

In a series of works, averaging algorithms to solve relaxed versions of the Consensus
problem, including approximate Consensus, have been investigated. In [6], Charron-Bost,
Függer, and Nowak have used matrix oriented approaches to show the convergence of
different averaging algorithms. We use a similar stochastic matrix technique here to prove
the convergence of the Chromatic Average Algorithm. In [7], Függer, Nowak and Schwarz
have shown tight bounds for solving approximate and asymptotic Consensus in quite general
message adversaries.

In [20], Nowak, Schmid, and Winkler propose knowledge-based topologies for all message
adversaries. It is then used to characterize message adversaries that can solve Consensus.
The scope of [20] is larger than the scope of this paper, however, note that contrary to
those topologies, that are implicitly defined by indistinguishability of local knowledge, the ge-
ometrization topology here is explicitly defined and fully described by Th. 25. Recently, in [2],
Attiya, Castañeda and Nowak presented a corrected version of the general characterisation
of [8] in this framework. They also give as application a characterisation for set-agreement
based upon terminating subdivisions [2, Thm. 4.2]. We believe the characterisation given
in Thm. 26 to be more precise. An interesting open question would be to compare the
geometrization topology to the knowledge-based ones defined in [20, 2].

2 Models and Definitions

2.1 Message Adversaries
We introduce and present here our notations. Let n ∈ N, we consider systems with n + 1
processes. We denote Πn = [0, .., n] the set of processes. Since sending a message is an
asymmetric operation, we will work with directed graphs. We recall the main standard
definitions in the following.

We use standard directed graph (or digraph) notations: given G, V (G) is the set of
vertices, A(G) ⊂ V (G)× V (G) is the set of arcs.

▶ Definition 1. We denote by Gn the set of directed graphs with vertices in Πn.
A dynamic graph G is a sequence G1, G2, · · · , Gr, · · · where Gr is a directed graph with

vertices in Πn. We also denote by G(r) the digraph Gr. A message adversary is a set of
dynamic graphs.

DISC 2023

15:4 A Topology by Geometrization for Sub-IIS Message Adversaries

Since that n will be mostly fixed through the paper, we use Π for the set of processes
and G for the set of graphs with vertices Π when there is no ambiguity.

Intuitively, the graph at position r of the sequence describes whether there will be, or not,
transmission of some messages sent at round r. A formal definition of an execution under a
scenario will be given in Section 2.3.

We will use the standard following notations in order to describe more easily our message
adversaries [21]. A sequence is seen as a word over the alphabet G.

▶ Definition 2. Given A ⊂ G, A∗ is the set of all finite sequences of elements of A, Aω is
the set of all infinite ones and A∞ = A∗ ∪Aω.

Given G ∈ Gω, if G = HK, with H ∈ G∗
n, K ∈ Gω

n , we say that H is a prefix of G, and K
a suffix. Pref(G) denotes the set of prefixes of G. An adversary of the form Aω is called an
oblivious adversary or an iterated adversary. A word in M⊂ Gω is called a communication
scenario (or scenario for short) of message adversary M. Given a word H ∈ G∗, it is called a
partial scenario and len(H) is the length of this word. The prefix of G of length r is denoted
G|r (not to be confused with G(r) which is the r-th letter of G, it the digraph at time r).

The following definitions provide a notion of causality when considering infinite word
over digraphs.

▶ Definition 3 ([5]). Let G a sequence G1, G2, · · · , Gr, · · · . Let p, q ∈ Π. There is a journey
in G at time r from p to q, if there exists a sequence p0, p1, . . . , pt ∈ Π, and a sequence
r ≤ i0 < i1 < · · · < it ∈ N where we have

p0 = p, pt = q,
for each 0 < j ≤ t, (pj−1, pj) ∈ A(Gij

)
This is denoted p

r
⇝
G

q. We also say that p is causally influencing q from round r in G.

2.2 Iterated Immediate Snapshot Message Adversary

We say that a graph G has the Immediacy Property if for all a, b, c ∈ V (G), (a, b), (b, c) ∈ A(G)
implies that (a, c) ∈ A(G). A graph G has the containment Property if for all a, b ∈ V (G),
(a, b) ∈ A(G) or (b, a) ∈ A(G).

▶ Definition 4 ([12]). We set ISn = {G ∈ Gn | G has the Immediacy and Containment pro-
perties}. The Iterated Immediate Snapshot message adversary for n + 1 processes is the
message adversary IISn = ISω

n .

The Iterated Immediate Snapshot model was first introduced as a (shared) memory
model and then has been shown to be equivalent to the above message adversary first as
tournaments and iterated tournaments [4, 1], then as this message adversary [12, 13]. See
also [22] for a survey of the reductions involved in these layered models.

We show how standard fault environments are conveniently described in our framework.

▶ Example 5. Consider a message passing system with n + 1 processes where, at each round,
all messages could be lost. The associated message adversary is Gω

n .

▶ Example 6. Consider a system with two processes {◦, •} where, at each round, only one
message can be lost. The associated message adversary is {◦↔•, ◦←•, ◦→•}ω. This is IIS1.

Y. Coutouly and E. Godard 15:5

2.3 Execution of a Distributed Algorithm
Given a message adversary M and a set of initial configurations I, we define what is an
execution of a given algorithm A subject to M with initialization I. An execution is
constituted of an initialization step, and a (possibly infinite) sequence of rounds of messages
exchanges and corresponding local state updates. When the initialization is clear from the
context, we will use scenario and execution interchangeably.

An execution of an algorithm A under scenario w ∈ M and initialization ι ∈ I is the
following. This execution is denoted ι.w. First, ι affects an initial state to all processes of Π.

A round is decomposed in 3 steps: sending, receiving, updating the local state. At round
r ∈ N, messages are sent by the processes using the SendAll() primitive. The fact that the
corresponding receive actions, using the Receive() primitive, will be successful depends on
G = w(r), G is called the instant graph at round r.

Let p, q ∈ Π. The message sent by p is received by q on the condition that the arc
(p, q) ∈ A(G). Then, all processes update their state according to the received values and A.
Note that, it is usually assumed that p always receives its own value, that is (p, p) ∈ A(G)
for all p and G.

Let w ∈ M, ι ∈ I. Given u ∈ Pref(w), we denote by sp(ι.u) the state of process p at
the len(u)-th round of the algorithm A under scenario w with initialization ι. This means
that sp(ι.ε) represents the initial state of p in ι, where ε denotes the empty word.

A task is given by a set I of initial configurations, a set of output values Out and a
relation ∆, the specification, between initial configurations and output configuration1. We
say that a process decides when it outputs a value in Out. Finally and classically,

▶ Definition 7. An algorithm A solves a Task (I, Out, ∆) for the message adversary M if
for any ι ∈ I, any scenario w ∈ M, there exist u a prefix of w such that the states of the
processes out = (s0(ι.u), . . . , sn(ι.u)) satisfy the specification of the task, ie ι∆out.

3 A Topology by Geometrization

In this paper we present a new topological approach for investigating distributed computability.
It extends the known simplicial complexes-based known method for finite executions to
infinite executions without considering infinite additional complexes like in [8]. This enables
to define directly a topology on the set of executions of the standard Iterated Immediate
Snapshot model IISn.

3.1 Combinatorial Topology Definitions

3.1.1 Geometric Simplicial Complexes
Before giving the definition of the geometrization topology in Sect. 3.2.2, we state the
definition of simplicial complexes, but not first as abstract complex, as is usually done
in distributed computing, but primarily as geometrical objects in RN . This is the reason
we call this definition the geometrization topology. Intuitively we will associatea point in
RN to any execution via a geometrization mapping geo. The geometrization topology is
the topology induced by geo−1 from the standard topology in RN . This also makes geo

1 Note that the standard definition in the topological setting involves carrier map that we do not consider
here for we will consider only one specific task, the Set Agreement problem.

DISC 2023

15:6 A Topology by Geometrization for Sub-IIS Message Adversaries

continuous by definition. In the standard approach, geometric simplices are also used but
they are introduced as geometric realizations of the abstract simplicial complexes. As will be
seen later, when dealing with infinite complexes, the standard topology of these simplices
does not enable to handle the computability of distributed tasks since we will need to define
an other topology. We show that the topology on infinite complexes, as defined in standard
topology textbook, is different from the one we show here to be relevant for distributed
computability. Note that to be correctly interpreted, the topology we construct is on the set
of infinite executions, not on the complexes corresponding to finite executions.

The following definitions are standard definitions from algebraic topology [19]. We fix
an integer N ∈ N for this part. We denote ||x|| the euclidean norm in RN . For a bounded
subset X ⊂ Rn, we denote diam(X) its diameter.

▶ Definition 8. Let n ∈ N. A finite set σ = {x0, . . . , xn} ⊂ RN is called a simplex of
dimension n if the vectors {x1 − x0, . . . , xn − x0} are linearly independent. We denote by |σ|
the convex hull of σ.

▶ Definition 9 ([19]). A simplicial complex is a collection C of simplices such that:
(a) If σ ∈ C and σ′ ⊆ σ, then σ′ ∈ C,
(b) If σ, τ ∈ C and |σ| ∩ |τ | ̸= ∅ then there exists σ′ ∈ C such that |σ| ∩ |τ | = |σ′|,

σ′ ⊂ σ, σ′ ⊂ τ.

We denote ≀C≀ =
⋃

S∈C

|S|, this is the geometrization of C.

Note that these definitions do not require complexes to be a finite collection of simplices.
The simplices of dimension 0 (singleton) of C are called vertices, we denote V (C) the set of
vertices of C. A complex is pure of dimension n if all maximal simplices are of dimension
n. In this case, a simplex of dimension n− 1 is called a facet. The boundary of a simplex
σ = {x0, . . . , xn} is the pure complex

⋃
i∈[0,n]{xj | j ∈ [0, n], i ̸= j} of dimension n− 1. It is

denoted δ(σ), it is the union of the facets of σ.
Let A and B be simplicial complexes. A map f : V (A)→ V (B) defines a simplicial map

if it preserves the simplices, i.e. for each simplex σ of A, the image f(σ) is a simplex of B.
By linear combination of the barycentric coordinates, f extends to the linear simplicial map
f : ≀A≀ → ≀B≀, which is continuous. See [19, Lemma 2.7].

We also have colored simplicial complexes. These are simplicial complexes C together
with a function χ : V (C)→ Π such that the restriction of χ on any maximal simplex of C is
a bijection. A simplicial map that preserves colors is called chromatic.

Finally, S. will denote “the” simplex of dimension n. Through this paper we assume a
fixed embedding in RN for S. = (x∗

0, . . . , x∗
n). We will also assume that its diameter diam(S.)

is 1.

3.1.2 The Standard Chromatic Subdivision
Here we present the standard chromatic subdivision, [12] and [15], as a geometric complex.
We start with subdivisions and chromatic subdivisions.

▶ Definition 10 (Subdivision). A subdivision of a simplex S is a simplicial complex C with
≀C≀ = |S|.

▶ Definition 11 (Chromatic Subdivision). Given (S,P) a chromatic simplex, a chromatic
subdivision of S is a chromatic simplicial complex (C,PC) such that

C is a subdivision of S(i.e.≀C≀ = |S|),
∀x ∈ V (S),PC(x) = P(x).

Y. Coutouly and E. Godard 15:7

x•

x◦
x•=ζ{x•}(x•)

ζ{x◦,x•,x•}(x•)

ζ{x◦,x•}(x•) ζ{x◦,x•}(x◦)

(a) Images by ζV for various V ⊂ {◦, •, •}. (b) Chr(S2).

Figure 1 Standard chromatic subdivision construction for dimension 2. On the left, the association
between an instant graph of IS2 (top) and a simplex of Chr(S2) (grey area) is illustrated.

Note that it is not necessary to assume V (S) ⊂ V (C) here, since the vertices of the
simplex S being extremal points, they are necessarily in V (C).

We start by defining some geometric transformations of simplices (here seen as sets of
points). The choice of the coefficients will be justified later.

▶ Definition 12. Consider a set V = (y0, . . . , yd) of size d + 1 in RN . We define the function
ζV : V −→ RN by, for all j ∈ [0, d]

ζV (yj) =
1− d

2d+1
d + 1 yj +

∑
i̸=j

1 + 1
2d+1

d + 1 yi

We now define in a geometric way the standard chromatic subdivision of colored simplex
(S,P), where S = {x0, x1, . . . , xn} and P(xi) = i.

The chromatic subdivision Chr(S) for the colored simplex S = {x0, . . . , xn} is a simplicial
complex defined by the set of vertices V (Chr(S)) = {ζV (xi) | i ∈ [0, n], V ⊂ V (S), xi ∈ V }.

For each pair (i, V), i ∈ [0, n] and V ⊂ V (S), there is an associated vertex y of Chr(S),
and conversely each vertex has an associated pair. The color of (i, V) is i. The set V is
called the view. We define Φ the following presentation of a vertex y, Φ(y) = (P(y), Vy)
where P(y) = i and Vy = V .

The simplices of Chr(S) are the set of d + 1 points {ζV0(xi0), · · · , ζVd
(xid

)} where
there exists a permutation π on [0, d] such that Vπ(0) ⊆ · · · ⊆ Vπ(d),
If ij ∈ P(Vℓ) then Vj ⊂ Vℓ.

In Fig. 1, we present the construction for Chr(S2). For convenience, we associate
◦, •, • to the processes 0, 1, 2 respectively. In Fig. 1a, we consider the triangle x◦, x•, x•
in R2, with x◦ = (0, 0), x• = (1, 0), x• = (1

2 ,
√

3
2). We have that ζ{x◦,x•}(x•) = (1

3 , 0),
ζ{x◦,x•}(x◦) = (2

3 , 0) and ζ{x◦,x•,x•}(x•) = (1
2 ,

√
3

10). The relation between instant graph (top)
and simplex

{
(2

3 , 0), (1, 0), (1
2 ,

√
3

5)
}

(grey area) is detailed in the following section.
In the following, we will be interested in iterations of Chr(Sn,P). The last property of

the definition of chromatic subdivision means with we can drop the C index in the coloring
of complex C and use P to denote the coloring at all steps. From its special role, it is called
the process color and we drop P in Chr(S,P) using in the following Chr(S) for all simplices
S of iterations of Chr(Sn).

DISC 2023

15:8 A Topology by Geometrization for Sub-IIS Message Adversaries

In [16], Kozlov showed how the standard chromatic subdivision complex relates to Schlegel
diagrams (special projections of cross-polytopes), and used this relation to prove the standard
chromatic subdivision was actually a subdivision.

In [12, section 3.6.3], a general embedding in Rn parameterized by ϵ ∈ R is given for the
standard chromatic subdivision. The geometrization here is done choosing ϵ = d

2d+1 in order
to have “well balanced” drawings.

3.2 Encoding Iterated Immediate Snapshots Configurations
3.2.1 Algorithms in the Iterated Immediate Snapshots Model
It is well known, see e.g. [12, Chap. 3&4, Def. 3.6.3], that each maximal simplex S =
{ζV0(xi0), · · · , ζVn(xin)} from the chromatic subdivision of Sn can be associated with a graph
of ISn denoted Θ(S). We have V (Θ(S)) = Πn = [0, n] and set Θ(ζVj

(xij
)) = P(xij

).The
arcs are defined using the representation Φ of points, A(Θ(S)) = {(i, j) | i ≠ j, Vi ⊆ Vj}. The
mapping θ will denote Θ−1. We can transpose this presentation to an averaging algorithm
called the Chromatic Average Algorithm presented in Algorithm 1.

Algorithm 1 The Chromatic Average Algorithm for process i.

1 x← x∗
i ;

2 Loop forever
3 SendAll((i, x));
4 V ←Receive() // set of all received messages;
5 d← sizeof(V)− 1 // i received d + 1 messages including its own ;

6 x = 1− d
2d+1

d+1 x +
∑

(j,xj)∈V,j ̸=i

1+ 1
2d+1

d+1 xj ;

Executing one round of the loop in Chromatic Average for instant graph G, the state of
process i is x′

i = ζVi
(x∗

i), where Vi is the view of i on this round, that is the set of (j, xj) it
has received; with Θ({ζV0(x∗

0), · · · , ζVn
(x∗

n)}) = G. See eg. in Fig. 1a, the simplex of the grey
area corresponds to the ordered sequence of views {x•} ⊂ {x•, x◦} ⊂ {x•, x◦, x•}, associated
to the directed graph depicted at the top right. Adjacency for a given i corresponds to the
smallest subset containing xi. By iterating, the chromatic subdivisions Chrr(Sn) are given
by the global state under all possible r rounds of the Chromatic Average Algorithm. Finite
rounds give the Iterated Chromatic Subdivision (hence the name). This is an algorithm that
is not meant to terminate (like the full information protocol). The infinite runs are used
below to define a topology on IISn.

The Chromatic Average algorithm is therefore the geometric counterpart to the Full
Information Protocol that is associated with Chr [12]. In particular, any algorithm can be
presented as the Chromatic Average together with a terminating condition and an output
function of x.

This one round transformation for the canonical Sn can actually be done for any simplex
S of dimension n of RN . For G ∈ ISn, we denote µG(S) the geometric simplex that is the
image of S by one round of the Chromatic average algorithm under instant graph G.

The definitions of the previous section can be considered as mostly textbook (as in [12]),
or folklore. To the best of our knowledge, the Chromatic Average Algorithm, as such, is
new, and there is no previous complete proof of the link between the Chromatic Average
Algorithm and iterated standard chromatic subdivisions. However, one shall remark that
people are, usually, actually drawing standard chromatic subdivisions using the Chromatic
Average Algorithm.

Y. Coutouly and E. Godard 15:9

3.2.2 A Topology for IISn

Let w ∈ IISn, w = G1G2 · · · . For the prefix of w of size r, S a simplex of dimension n, we
define geo(w|r)(S) = µGr ◦µGr−1 ◦ · · · ◦µG1(S). Finally, we set geo(w) = lim

r−→∞
geo(w|r)(Sn).

We prove in Section A.1 that this actually converges.
We define the geometrization topology on the space IISn by considering as open sets the

sets geo−1(Ω) where Ω is an open set of RN . A collection of sets can define a topology when
any union of sets of the collection is in the collection, and when any finite intersection of sets
of the collection is in the collection. This is straightforward for a collection of inverse images
of a collection that satisfies these properties.

A neighbourhood for point x is an open set containing x. In topological spaces, a pair of
distinct points x, y is called non-separable if there does not exist two disjoint neighbourhoods
of these points. The pre-images geo−1(x) that are not singletons are non-separable sets. We
will see that we always have non-separable sets and that they play an important role for task
solvability.

Subset of IISn will get the subset topology, that is , for M⊆ IISn, open sets are the
sets geo−1(Ω)∩M where Ω is an open set of RN . We set ≀M≀ = geo(M) the geometrization
of M.

Note that the geometrization should not be confused with the standard geometric realiza-
tion. They are the same at the set level but not at the topological level, see in Section A.2.
At times, in order to emphasize this difference, for a simplex S ⊂ RN , we will also use ≀S≀
instead of |S|. The geometrization of C, denoted ≀C≀, that is the union of the convex hulls
|σ| of the simplices σ of C, is endowed with the standard topology from RN . We also note
this topological space as ≀C≀.

4 Geometrization Equivalence

As will be be shown later, the geometrization has a crucial role in order to understand the
relationship between sets of possible executions and solvability of distributed tasks. In this
section, we describe more precisely the pre-images sets, that is subsets of IISn of the form
geo−1(x) for x ∈ |Sn|. In particular, we will get a description of the non-separable sets of
execution.

4.1 Definitions

We say that two executions w, w′ ∈ IISn are geo-equivalent if geo(w) = geo(w′). The set of
all w′ such that geo(w) = geo(w′) is called the equivalence class of w. Since the topology
we are interested in for ≀IISn≀ is the one induced by the standard separable space RN via
the geo−1 mapping, it is straightforward to see that non-separable sets are exactly the
geo-equivalence classes that are not singletons. In this section, we describe all equivalence
classes and show that there is a finite number of possible size for these sets.

We define the sets Solo(P), that correspond to subsets of instant graphs where the
processes in P ⊂ Π have no incoming message from processes outside of P . We have
Solo(Π) = ISn.

▶ Definition 13. In the complex Chr(Sn), with P ⊂ Π, Solo(P) is the set of simplices
T ∈ Chr(Sn) such that ∀(p, q) ∈ A(Θ(T)), q ∈ P ⇒ p ∈ P .

DISC 2023

15:10 A Topology by Geometrization for Sub-IIS Message Adversaries

We denote by KΠ the instant graph that is complete on Π. An execution w is said fair for
P , w ∈ Fair(P), if w ∈ Solo(P)ω and for all p, q ∈ P , ∀r ∈ N, we have p

r
⇝
w

q. Fairness for P

means that processes in P are only influenced by processes in P , and that any process always
influence other processes infinitely many times. We have the equivalent, and constructive
definition:

▶ Proposition 14. Let w ∈ Solo(P)ω. An execution w is Fair for P if and only if w has no
suffix in

⋃
Q̸=∅,Q⊊P Solo(Q)ω.

Proof. Assume we have a suffix s for w in Solo(Q)ω with Q ⊊ P .Let p ∈ P \Q and r the
starting index of the suffix. Then ∀q ∈ Q, we must have p

r
⇝
w

q by definition of fairness for P .
Denote q0 the first element of Q to be causally influenced by p at some time t ≥ r. So q0
receive a message from some p′ ∈ Π, p′ ̸= q0 at time t. Since s ∈ Solo(Q)ω, this means that
q0 can only receive message from processes in Q. Hence p′ ∈ Q and p′ was influenced by p at
time t− 1. A contradiction with the minimality of q0. So w is not in Fair(P).

Conversely, assume that w /∈ Fair(P). Then ∃p, q ∈ P, ∃s, ∀r ≥ s, ¬p
r
⇝
w

q. We set Q as
the set of processes that causally influence q for all r ≥ s. We have p /∈ Q so Q ⊊ P . We
denote s0, a time at which no process of Π \Q influence a process in Q. By construction,
the suffix at step s0 is in Solo(Q)ω. ◀

4.2 First Results on Geometrization
We start by presenting a series of results about geometrization. Lemma 35 gives the following
immediate corollaries.

▶ Corollary 15. Let w a run in IISn, then ∀r ∈ N, geo(w) ∈ |geo(w|r)(Sn)|.

▶ Proposition 16. Let w, w′ two geo-equivalent runs in IISn, then ∀r ∈ N, geo(w|r)(Sn) ∩
geo(w′

|r)(Sn) ̸= ∅.

Proof. The intersection of the geometrizations |geo(w|r)(Sn)| and |geo(w′
|r)(Sn)| contains at

least geo(w) by previous corollary. Since the simplices geo(w|r)(Sn) and geo(w′
|r)(Sn) belong

to the complex Chrr(Sn), they also intersect as simplices. ◀

▶ Proposition 17. Let S a maximal simplex of the chromatic subdivision ChrSn that is not
θ(K(Π)). Then there is P ⊊ Π such that Θ(S) ∈ Solo(P).

Conversely we can describe Solo(P) more precisely. We denote by δ(Sn, P) the sub-
simplex of Sn corresponding to P ⊂ Π. This is the boundary relative to P in Sn, and we
have that

⋃
P⊊Π δ(Sn, P) =

⋃
p∈Π δ(Sn, π \ p) = δ(Sn).

▶ Proposition 18 (Boundaries of Chr are Solo). Let P a subset of Π. Then Solo(P) = {S |
S a maximal simplex of Chr(Sn), |S| ∩ |δ(Sn, P)| ̸= ∅}.

Proof. Denote q such that Π = P ∪ {q}. Then by construction, Solo(P) corresponds exactly
to the simplex where the processes in P do not receive any message from q, ie the simplex
intersecting the boundary δ(Sn, P). ◀

For a given size s of P , the Solo sets are disjoint, however this does not form a partition of
Chr. Finally, by iterating the previous proposition, the boundaries of Sn are described by
Solo(P)ω.

▶ Proposition 19. Let P a subset of Π. We have ≀Solo(P)ω≀ = |δ(Sn, P)|.

Y. Coutouly and E. Godard 15:11

We can now state the main result that links geometrically fair executions and corresponding
simplices: in a fair execution, the corresponding simplices, that are included by convexity,
have to eventually be strictly included in the interior.

▶ Proposition 20 (Geometric interpretation of Fair). Let w an execution that is Fair for Π,
then ∀s ∈ N, ∃r > s ∈ N, such that δ(geo(w|s)(S)) ∩ geo(w|r)(S) = ∅.

Proof. Let s ∈ N, and an execution w. We denote T = geo(w|s. Consider a process p ∈ Π,
for all process q ̸= p we have p

s
⇝
w

q. Since w is fair in Π, we can consider r > s the time at
which p is influencing all q from round s. At his step, for all q ̸= p, the barycentric coordinate
of the vertex of geo(w|r(S) of colour q relative to the vertex of geo(w|r(S) of colour p is
strictly positive. This means that geo(w|r(S) does not intersect δ(T, Π \ p).

Since w is fair in Π, we can repeat this argument for any p ∈ Π. We denote the r∗

the maximal such r and since
⋃

p∈Π δ(T, Π \ p) = δ(T), we have that δ(geo(w|s)(S)) ∩
geo(w|r∗)(S) = ∅. ◀

4.3 A Characterization of Geo-Equivalence
We start by simple, but useful, sufficient conditions about the size of geo-classes.

▶ Proposition 21 (Fair(Π) is separable). Let w ∈ IISn, denote Σ the geo-class of w. If w

is Fair on Π, then #Σ = 1.

Proof. Let w′ ∈ Σ. We will show that w′ shares all prefixes of w. Let r ∈ N. From Prop. 20
and Lemma 35, we get that geo(w) does not belong to the boundary of geo(w|r)(S), nor
to the boundary of geo(w′

|r)(S). Assume that w and w′ have not the same prefix of size r,
that is geo(w|r)(S) ̸= geo(w′

|r)(S). From Prop. 16 geo(w|r)(S), geo(w′
|r)(S) have to intersect

(as simplices), and since they are different, they can intersect only on their boundary. This
means that geo(w) would belong to the boundary, a contradiction.

So they have the same prefixes and w′ = w. ◀

▶ Proposition 22 (Infinite Cardinal). Let n ≥ 2. Let w, w′ two distinct executions such that
geo(w) = geo(w′) and there exist s ∈ N such that ∀r > s∃Tgeo(w|r)(S) ∩ geo(w′

|r)(S) = T

with T a simplex of dimension k ≤ n− 2. Then, the geo-equivalence class of w is of infinite
size.

Proof. Let w, w′ two executions with geo(w) = geo(w′) and ∀r > s, geo(w|r)(S) ∩
geo(w′

|r)(S) = T with T of dimension k ≤ n− 2. Denote P the colors of T . Since k ≤ n− 2,
we have at least p1 ̸= p2 ∈ Π \ P . The suffix at length s of w is in Solo(P).

Hence, for the processes in P , when running in w or w′, it is not possible to distinguish
these 3 cases about the induced subgraph by {p1, p2} in the instant graphs: p1 ← p2, p1 ↔ p2
and p1 → p2.

So ∀r > s, we have 3 possible ways of completing what is happening on the induced
subgraph by processes in P in G ∈ Solo(P). So we have infinitely many different executions,
the cardinality of the geo-class of w is infinite. ◀

Let’s consider the remaining cases. Let w ∈ IISn, denote Σ the geo-class of w.

▶ Proposition 23 (Boundaries of Sn are separable). If w is Fair on Π \ {p} for some p ∈ Π
then #Σ = 1.

DISC 2023

15:12 A Topology by Geometrization for Sub-IIS Message Adversaries

Proof. We denote Q = Π \ {p}. We apply Prop. 21 for n− 1 to w′ the restriction of w to the
set of processes Q (this is possible by definition of Fair: no process of Q receives message
from outside of Q). Since w′ satisfies the condition for Prop. 21 (by definition of Fair), which
means that the geo-class of w′ is of size 1.

Since there is only one unique way of completing an execution restricted to Q to one in
Solo(Q) (adding (q, p), ∀q ∈ Q), we get that there is only w in the equivalence class. ◀

A suffix of a word w is strict if it is not equal to w.

▶ Proposition 24. If w has only a strict suffix that is Fair on Π \ {p} for some p ∈ Π then
#Σ = 2.

Proof. We denote Q = Π \ {p}. We can write w = uav where u ∈ IS∗
n, a ∈ ISn and v is

Fair on Q but av is not. We can choose u such that u has the shortest length.
We consider w′ such that geo(w′) = geo(w). Let r be the length of ua. We denote by

T the facet of geo(ua)(Sn) with colors Q. Since v is Fair for Q, we can apply to v|Q the
restriction of v to Q Prop. 20. So geo(w) is not on the boundaries of T which means, from
Prop. 16, that either geo(w′

|r)(Sn) = geo(w|r)(Sn) either geo(w′
|r)(Sn) ∩ geo(w|r)(Sn) = T .

In both cases, we can apply Prop. 21 to v′ the restriction of w to Q. Which means that
there is only one restricted execution in Q. Since there is only one way to complete to p,
there are as many elements in the class that simplices at round r that include T . Since we
have a subdivision, we have exactly two simplices sharing the facet T .

In the first case, this means that w′
|r = ua and w = w′.

In the second case, we have that w′
|r = ub for some b ̸= a. We remark that if w′

|r−1 ̸= u

this would contradict the minimality of u. Indeed, the prefixes of length r − 1 are different,
this means that av is Fair for Q. ◀

Using these previous propositions, and remarking that for any w, there exists P such
that w has a suffix in Fair(P), we can now present our main result regarding the complete
classification of geo-equivalence classes. Let n ∈ N and Σ a geo-equivalence class on Sn. Then
there are exactly 3 cardinals that are possible for Σ (only 2 when n = 1, the case of [9]):

▶ Theorem 25. Let w ∈ IISn, denote Σ the geo-class of w.
C1: If w is Fair on Π or on Π \ {p} for some p ∈ Π, then #Σ = 1;
C2: w has only a strict suffix that is Fair on Π \ {p} for some p ∈ Π then #Σ = 2;
C∞: otherwise Σ is infinite.

5 The Set-Agreement Problem

For all n, the set-agreement problem is defined by the following properties [18]. Given initial
init values in [0, n], each process outputs a value such that

Agreement the size of the set of output values is at most n,
Validity the output values are initial values of some processes,
Termination All processes terminates.

We will consider in this part sub-IIS message adversaries M, that is M ⊆ IISn. It
is well known that set-agreement is impossible to solve on IISn, we prove the following
characterization.

▶ Theorem 26. Let M⊂ IISn. It is possible to solve Set-Agreement on M if and only if
≀M≀ ̸= |Sn|.

Y. Coutouly and E. Godard 15:13

5.1 Impossibility Result
On the impossibility side, we will prove a stronger version with non-silent algorithms. An
algorithm is said to be non-silent if it sends message forever. Here, this means that a process
could have decided a value while still participating in the algorithm.

▶ Theorem 27. Let M ⊂ IISn. If ≀M≀ = ≀IISn≀ = |Sn| then it is not possible to solve
Set-Agreement on M, even with a non-silent algorithm.

We will need the following definition from combinatorial topology.

▶ Definition 28 (Sperner Labelling). Consider a simplicial complex C that is a subdivision
of a chromatic simplex (S, χ). A labelling λ : V (C) −→ Π is a Sperner labelling if for all
x ∈ V (C), for all σ ⊂ S, we have that x ∈ |σ| ⇒ λ(x) ∈ χ(σ).

▶ Lemma 29 (Sperner Lemma [26]). Let a simplicial complex C that is a subdivision of
a chromatic simplex (S, χ) with Sperner labelling λ. Then there exists σ ∈ C, such that
λ(σ) = Π.

A simplex σ with labelling using all Π colors is called panchromatic.

Proof of Theorem 27. By absurd, we assume there is a non-silent algorithm A (in full
information protocol form) solving set-agreement on M. We run the algorithm on initial
inputs init(i) = i. We translate the full information protocol to the chromatic average,
non-silent form: the initial value of i is x∗

i ; when the decision value is given, we still compute
and send the chromatic average forever. We can also assume a “normalized” version of the
algorithm: when a process receives a decision value from a neighbour, it will decide instantly
on this value. Such a normalization does not impact the correctness of the algorithm since
set-agreement is a colorless task.

The proof will use the Sperner Lemma with labels obtained from the eventual decision
value of the algorithm. However it is not possible to use directly the Sperner Lemma for the
“full subdivision under M” (which we won’t define), since this subdivision could be infinite.
The following proof will use König Lemma to get an equivalent statement.

Given t ≥ 0, we consider Chrt(Sn) under our algorithm with initial values init(i) = i.
For any vertex, we define the following labelling λt: if the process i has not terminated at
time t with state x ∈ V (Chrt(Sn)), then the Sperner label λt(x) = i, otherwise it is the
decided value. Since the decided value depends only on the local state, the label of a vertex
at time t is independent of the execution leading to it. The goal of the following is to show
that there is an entire geo-equivalence class that does not belongs to M.

By Integrity property, we have that the value decided on a face of Sn of processes i1, . . . , in,
ie for Solo(i1, . . . , in)ω are taken in i1, . . . , in. From Prop. 19, at any t, this labelling defines
therefore a Sperner labelling of a (chromatic) subdivision of S.

We consider the set S of all simplices S of dimension n of Chrt(Sn), for all t. For a given
t, from Sperner Lemma, there is at least a simplex of Chrt(Sn), that is panchromatic. There
is therefore an infinite number of simplices S that are panchromatic in S. We consider now
T ⊂ S, the set of simplices T ∈ S such that there is an infinite number of panchromatic
simplex S such that |S| ⊂ |T |. Note that T needs not be panchromatic. Since the number of
simplices of Chrt(Sn) is finite for a given t, there is at least one simplex of Chrt(Sn) that is
in T . Therefore the set T is infinite.

We build a rooted-tree structure over T : the root is Sn (indeed it is in T), the parent-child
relationship between T and T ′ is defined when T ′ ∈ Chr(T). We have an infinite tree with
finite branching. By König Lemma, we have an infinite simple path from the root. We denote

DISC 2023

15:14 A Topology by Geometrization for Sub-IIS Message Adversaries

Tt the vertex at level t of this path. We have |Tt+1| ⊂ |Tt| and (Tt)t∈N converges (same
argument as the end of Section A.1) to some y ∈ |Sn|. The increasing prefixes corresponding
to Tt define an execution w of IISn.

We will now consider two different cases, not on the fact whether or not, w ∈M, but on
the result of A on execution w.

For first case, assume that algorithm A has eventually decided on all processes on run
w at some time t0. Since it could be that w /∈ M, we cannot conclude yet. But since all
processes have decided, they do not change their label in subsequent steps. By definition,
Tt0 = geo(w|t0(Sn) contains an infinite number of panchromatic simplices, i.e. at least one.
So the simplex geo(w|t0(Sn) is panchromatic. Hence any run with prefix w|t0 cannot be in
M, since A solves set-agreement on M. Therefore w′ = w|t0Kω

Π (where KΠ is the complete
graph), is a fair execution that does not belong to M. Its entire geo-equivalence class, which
is a singleton, is not in M.

The second case is when algorithm A does not eventually decide on all processes on run
w. Therefore w /∈M. Now we show that all elements w′ of the geo-class of w are also not in
M. Assume otherwise, then A halts on w′. By Prop. 16, at any t, the simplex corresponding
to w′

|t intersects Tt on a simplex of smaller dimension whose geometrization contains y.
Consider t0 such that the execution has decided at this round for w′. Consider now Tt0+1,
it intersects the decided simplex of Chrt0(Sn) corresponding to w′, which means that the
processes corresponding to the intersection were solo in w′(t0 + 1) and in w(t0 + 1). When a
process does not belong to a set of solo processes of the round, it receives all their values.
So by normalization property of algorithm A, this means that in Tt0+1, all processes have
decided. A contradiction with the fact that A does not decide on all processes on run w. ◀

This impossibility result means that there are many strict subsets M of IISn where it is
impossible to solve set-agreement, including cases where IISn \M is of infinite size.

5.2 Algorithms for Set-Agreement
In this section, we consider message adversariesM that are of the form IISn \ geo−1(y) for a
given y ∈ |Sn|. We note w ∈ IISn, such that geo(w) = y. We have w /∈M. In other words,
M = IISn \ C, where C = geo−1(geo(w)) is the equivalence class of w. We also denote σy(r)
the simplex geo(w|r)(Sn).

5.2.1 From Sperner Lemma to Set-Agreement Algorithm
Remark that the protocol complex at time r is exactly Chrr(Sn), there is no hole “appearing”
in finite time for suchM. From Sperner Lemma, any Sperner labelling of a subdivision of Sn

admits at least one simplex that is panchromatic. In order to solve set-agreement, the idea
of Algorithm 2 is to try to confine the panchromatic, problematic but unavoidable, simplex
of Chrt(Sn) to σy(r). Since the geo-class of w is not in M, any execution will eventually
diverge from σy(r) and end in a non panchromatic simplex. We now define a special case
of Sperner labelling of the Standard Chromatic Subdivision that admits exactly one given
simplex that is panchromatic.

We consider the generic colored simplex (S, χ) where S = (x0, . . . , xn) and coloring
function χ, that could be different from P. We consider labellings of subdivisions C of S.

▶ Definition 30. Let τ ∈ C a subdivision of S. f : V (T) −→ Π is a Sperner τ−panlabelling
if: f is a Sperner labelling of C; for all simplex σ ∈ C, f(σ) = Π if and only if σ = τ .

▶ Proposition 31. Let τ be a face of Chr(S, χ), there exists a τ−panlabelling λ of Chr(S, χ).

Y. Coutouly and E. Godard 15:15

Algorithm 2 Algorithm Aw for process i.

1 x← x∗
i ; r ← 0;

2 Loop while x ∈ V (geo(w|r)(Sn)
3 r ← r + 1;
4 Send((i, x));
5 V ←Receive() // set of all received messages;
6 d← sizeof(V)− 1 // i receives d + 1 messages ;

7 x = 1− d
2d+1

d+1 x +
∑

(j,xj)∈V,j ̸=i

1+ 1
2d+1

d+1 xj ;

8 Output: Ψw(r)(x);

This technical proposition is proved in the appendix. Denote λτ (S, χ) such a Sperner
τ−panlabelling of Chr(S, χ).

Before stating the algorithm, we show how to construct a sequence of panlabellings for
Chrr(Sn). Let r ∈ N, we denote Ψw(r) the following labelling defined by recurrence.

Intuitively, it is the following labelling. In Chrr(Sn), we have σy(r) that is panchromatic,
all other simplices using at most n colors. In Chrr+1(Sn), we label vertices that do not
belongs to the subdivision of σy(r) by the labels used at step r. In vertices from Chrσy(r),
we use λθ(w(r+1)) the Sperner τ−panlabelling associated with θ(w(r + 1)) to complete the
labelling that uses at most n colors on a given simplex, except at σy(r). In order to simplify
notation, we also note λG the labelling λθ(G). Of course, we apply λw(r+1) using as input
(corner) colors, the colors from Ψw(r). This way, on the neighbours of σy(r) the labelling is
compatible.

We denote γr(x) the precursor of level r of x ∈ V (Chrr+1(Sn)), that is the vertex of
V (Chrr(Sn)) from which x is originating.

▶ Definition 32. We set Ψw(1)(x) = λw(1)(Sn,P)(x) for all x ∈ V (Chrr(Sn)), and for
r ∈ N∗

Ψw(r + 1)(p) = Ψw(r)(γr(x)) if x /∈ |geo(w|r)(Sn)|
λw(r+1)(Ψw(r)(σy(r))(x) if x ∈ |geo(w|r)(Sn)|

▶ Proposition 33. For all r, Ψw(r) is a Sperner σy(r)−panlabelling of Chrr(Sn).

Proof. The proof is done by recurrence. The case r = 1 is Prop 31. Assume that Ψw(r) is a
Sperner σy(r)−panlabelling of Chrr(Sn).

Consider now Ψw(r + 1) for Chrr+1(Sn). By construction and recurrence assumption,
panchromatic simplices can only lay in |σy(r)|. Since λw(r+1) is a Sperner panlabelling
and that the corner colors for σy are taken from Ψw(r), we have that σy(r) is the only
panchromatic simplex of Chrr+1(Sn). ◀

We now prove the correctness of Aw presented in Algorithm 2. Consider an execution
v ∈M. For Termination: since elements of the geo-class of w are not in M, there exists a
round r at which v|r ̸= w′

|r for all w′ ∈ geo−1(geo(w), i.e. the conditional at line 2 is false
for all processes and the algorithm is terminating. For Agreement: when terminating at
round r, i is not in σy(r), by loop conditional, so since Ψw(r) is only panchromatic on σy(r),
the number of decided values is less than n. Integrity comes from the fact that Ψw(r) is a
Sperner labelling.

DISC 2023

15:16 A Topology by Geometrization for Sub-IIS Message Adversaries

5.2.2 Lower Bounds
It is possible to use the impossibility result to prove the following lower bound. Algorithm 2
is therefore optimal for fair w.

▶ Theorem 34. Let A be an algorithm that solves set-agreement onM = IISn\geo−1(geo(w))
with w ∈ IISn. Then, for any execution v ∈ M, t ∈ N, such that v|t = w′

|t for some
w′ ∈ geo−1(geo(w)), A has not terminated at t.

Proof. Suppose A has decided on all process at t, with v|t = w′
|t for some w′ ∈ geo−1(geo(w)).

So A solve set-agreement on w′. A contradiction with Th. 27 since ≀M ∪ {w′}≀ = |Sn|. ◀

6 Conclusion and Implications for Topological Methods

In this note, we have presented how to construct a topology directly on the set of execu-
tions of IISn the Iterated Immediate Snapshot message adversary. Though this is not a
simple textbook topology as usual, since there are non-separable points, the properties we
presented enables to fully understand it. As a important application on using the underlying
geometrization mapping geo, we were able to characterize precisely for the first time general
subsets of IISn where set-agreement is solvable and give a topological interpretation of this
result.

We also believe this new approach could be successfully applied to other distributed
tasks and distributed models. When considering the input complex embedded in RN , the
geometrization topology could be applied on all simplices, in effect providing a new topological
framework for so called protocol complex. This could be done by applying the Chromatic
Average algorithm. This was not detailed here as we did not need it to investigate set-
agreement. Moreover, note that this construction works also for any model of computation
that corresponds to a mesh-shrinking subdivision.

This geometrization topology provides also a nice topological interpretation for the
characterization theorem. In particular the topology as defined here is the coarsest topology
such that the mapping geo is continuous. Therefore the impossibility theorem could also be
stated, using the No-Retraction Theorem of standard topology [11, Cor. 2.15]: set-agreement
is solvable on message adversaryM only if there exists a continuous function f :M−→ ∂Sn,
where M has the geometrization topology. This is interesting since ∂Sn, the boundary of Sn,
is exactly the output complex of the set-agreement task.

It should also be noted that, since we do have non-separable sets in our setting, it shows
that the standard abstract simplicial complexes approach is actually not always directly
usable, since abstract simplicial complexes are known to have separable topology. It means
that, for the first time, we have to primarily use the geometric version of simplicial complexes
to fully investigate general distributed computability. We call the topology defined here the
geometrization topology to emphasize this change of paradigm.

References
1 Yehuda Afek and Eli Gafni. Asynchrony from Synchrony, pages 225–239. Number 7730 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.
2 Hagit Attiya, Armando Castañeda, and Thomas Nowak. Topological characterization of task

solvability in general models of computation. In Rotem Oshman, editor, Proceedings of the
37th International Symposium on Distributed Computing (DISC’23), volume 281 of LIPICS.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2023.

Y. Coutouly and E. Godard 15:17

3 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In STOC ’93: Proceedings of the twenty-fifth annual ACM sym-
posium on Theory of computing, pages 91–100, New York, NY, USA, 1993. ACM Press.
doi:10.1145/167088.167119.

4 Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’97, pages 189–198. ACM, 1997.
doi:10.1145/259380.259439.

5 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408,
2012.

6 Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus in
highly dynamic networks: The role of averaging algorithms. In ICALP (2), volume 9135 of
Lecture Notes in Computer Science, pages 528–539. Springer, 2015.

7 Matthias Függer, Thomas Nowak, and Manfred Schwarz. Tight bounds for asymptotic and
approximate consensus. J. ACM, 68(6):46:1–46:35, 2021.

8 Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability
theorem. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles
of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages 222–231. ACM,
2014.

9 Emmanuel Godard and Eloi Perdereau. Back to the coordinated attack problem. Math. Struct.
Comput. Sci., 30(10):1089–1113, 2020.

10 Darald J. Hartfiel. Behavior in Markov set-chains. In Darald J. Hartfiel, editor, Markov
Set-Chains, Lecture Notes in Mathematics, pages 91–113. Springer, Berlin, Heidelberg, 1998.
doi:10.1007/BFb0094591.

11 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
12 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through

Combinatorial Topology. Morgan Kaufmann, 2013.
13 Maurice Herlihy, Sergio Rajsbaum, and Michel Raynal. Computability in distributed computing:

A tutorial. SIGACT News, 43(3):88–110, 2012.
14 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.

ACM, 46(6):858–923, 1999.
15 Dmitry N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and computation

in mathematics. Springer, 2008.
16 Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex. Homology Homotopy Appl.,

14(2):197–209, 2012. URL: http://projecteuclid.org/euclid.hha/1355321488.
17 Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem

for fair adversaries. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, pages 387–396. ACM, 2018. URL: https://dl.acm.org/citation.cfm?id=
3212765.

18 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

19 James R. Munkres. Elements Of Algebraic Topology. Addison Wesley Publishing Company,
1984.

20 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus
under general message adversaries. In PODC, pages 218–227. ACM, 2019.

21 J.E. Pin and D. Perrin. Infinite Words, volume 141 of Pure and Applied Mathematics. Elsevier,
2004.

22 Sergio Rajsbaum. Iterated shared memory models. In Alejandro López-Ortiz, editor, LATIN
2010: Theoretical Informatics, pages 407–416, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

DISC 2023

https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/259380.259439
https://doi.org/10.1007/BFb0094591
http://projecteuclid.org/euclid.hha/1355321488
https://dl.acm.org/citation.cfm?id=3212765
https://dl.acm.org/citation.cfm?id=3212765

15:18 A Topology by Geometrization for Sub-IIS Message Adversaries

23 Michel Raynal. Set Agreement, pages 1956–1959. Springer New York, New York, NY, 2016.
doi:10.1007/978-1-4939-2864-4_367.

24 Thibault Rieutord. Combinatorial characterization of asynchronous distributed computability.
(Caractérisation combinatoire de la calculabilité distribuée asynchrone). PhD thesis, University
of Paris-Saclay, France, 2018. URL: https://tel.archives-ouvertes.fr/tel-02938080.

25 M. Saks and F. Zaharoglou. "wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. on Computing, 29:1449–1483, 2000.

26 Emanuel Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes. Math.
Sem. Univ. Hamburg, 6:265–272, 1928.

A Geometrization Topology

A.1 Convexity and Metric Results
We present some metric results relating vertices of the iterated chromatic subdivision. In
particular we prove that the sequences geo(w|r)(S) converge to a point. This is related to
the known fact that the standard chromatic subdivision is mesh-shrinking [12].

The following lemma comes from the convexity of the µG transforms.

▶ Lemma 35. Let w a run, let r, r′ ∈ N, r < r′ then |geo(w|r′)(Sn)| ⊂ |geo(w|r)(Sn)|.

Proof. Consider only one step. We have that 1− d
2d+1

d+1 + d × 1+ 1
2d+1

d+1 = 1− d
2d+1 +d+ d

2d+1
d+1 = 1.

So one step of the Chromatic Average gives, on each process, a linear combination with
non-negative coefficients that sums to 1, it is therefore a barycentric combination on the
points of the simplex at the beginning of the round. It is therefore a convex mapping of this
simplex. Since composing convex mapping is also convex, and that Sn is a convex set, we get
the result by recurrence. ◀

▶ Lemma 36. There exists reals 0 < K ′ < K < 1, such that for all G of ISn, all p, q ∈ V (S),
p′, q′ ∈ V (µG(S)), such that P(p) = P(p′) and P(q) = P(q′), we have

K ′||p− q|| ≤ ||p′ − q′|| ≤ K||p− q||.

Proof. This is a consequence of µG transforms being convex when G ∈ ISn. It corresponds
to a stochastic matrix (non-negative coefficients and all lines coefficient sums to one) that is
scrambling (there is a line without null coefficients) hence contractive. See e.g. [10, Chap. 1]
for definitions and a proof for any given G of ISn.

Then K (resp. K ′) is the largest (resp. smallest) such bounds over all G ∈ ISn. ◀

While iterating the chromatic subdivision, we remark that the diameter of the corre-
sponding simplices is contracting. From Lemma 36, we have

▶ Lemma 37. Let S a simplex of RN, then diam(µGr ◦ µGr−1 ◦ · · · ◦ µG1(S)) ≤ Krdiam(S),
where K is the constant from the previous lemma.

Since the simplices are contracted by the µG functions, the sequence of isobarycenters of
(geo(w|r(S))r∈N∗ has the Cauchy property and this sequence is therefore convergent to some
point x ∈ RN . Since the diameter of the simplices converges to 0, it makes senses to say
that the limit of the simplices is the point x. Note that it would also be possible to formally
define a metric on the convex subsets of RN and consider the convergence of the simplices in
this space.

https://doi.org/10.1007/978-1-4939-2864-4_367
https://tel.archives-ouvertes.fr/tel-02938080

Y. Coutouly and E. Godard 15:19

A.2 Geometrization Topology vs Geometric Realization Topology
In this section, we provide an example of a simplicial complex whose topology as a geometric
realization is different from the topology it has in the ambient RN space, here with N = 1
but that can be generalized to any N . This is actually quite well known, see e.g. [15].

We consider C = {0} ∪ {[1
r+1 , 1

r] | r ∈ N∗}.
We denote |C| the topological space of C defined as a geometric realization. The closed

sets of |C| are the sets F such that F ∩S is closed (in R) for all S ∈ C, see [19]. Therefore |C|
has two connected components. We have F =]0, 1] is closed in |C| since F∩[1

r+1 , 1
r] = [1

r+1 , 1
r],

hence is closed for all r. Moreover, F ∩ {0} = ∅ which is also closed in R. We also have that
{0} is closed in |C|, so C can be covered by two disjoint closed sets, it is not connected.

On the other end, at the set level, ≀C≀ is exactly [0, 1]. So within the standard ambient
topology of R, ≀C≀ is connected.

Since they do not have the same number of connected components, the two spaces C as
a geometric realization and with the subset topology cannot be homeomorphic.

A full discussion of these differences could be very interesting. Given that the topologies
are the same when the complex is finite, the question at stake seems to be the passage to the
limit.

B Sperner Panlabellings of the Standard Chromatic Subdivision

In this section, n is fixed. We show how to construct a Sperner panlabelling of the standard
chromatic subdivision. We consider the generic colored simplex (S, χ) where S = (x0, . . . , xn)
and coloring function χ, that could be different from P . We consider labellings of the colored
complex Chr(S, χ).

We show the following combinatorial result about Sperner labellings.

▶ Theorem 38. Let τ be a maximal simplex of Chr(S, χ), then there exists a τ−panlabelling
λ of Chr(S, χ).

We start by some definitions related to proving the above theorem. It is possible to
associate to any simplex σ of Chr(S) a pre-order ≻ on Π that corresponds to the associate
graph Θ(σ): i ≻ j when (i, j) ∈ A(Θ(σ)). We call equivalence classes for Θ(σ), the classes
of the equivalence relation defined by i ≻ j ∧ j ≻ i. It corresponds actually to the strongly
connected components of the directed graph Θ(σ).

We define the process view of a point. This is the color of points in the view V of vertex
(i, V) of the standard chromatic subdivision.

▶ Definition 39 (Process View). The process view of point x = (χ(x), V) ∈ V (Chr(S, χ)) is
defined by : Vx = {χ(y)|y ∈ V }.

For τ ∈ Chr(S, χ), we also define the process view relative to τ of a process p, denoted
V τ

p . It is the process view of the point of τ whose color is p. It is linked to pre-order ≻: we
have V τ

p = {q | q ≻ p}.
Let τ be a fixed maximal simplex of Chr(S). We show how to construct a τ−panlabelling.

We choose a permutation φ on Π such that it defines circular permutations on the equivalent
classes of Θ(τ). Let p ∈ Π, given W ⊂ V τ

p such that p ∈ W , we denote by min∗(p, W) =
min{i ∈ N∗ | φi(p) ∈W}. Note that since φ is a permutation, there exists j > 0 such that
φj(p) = p, and since p ∈ W , the minimum is taken over a non-empty set. Finally we set
φ∗(p, W) = φmin∗(p,W)(p). This is the first point of W that is in the orbit of p in φ.

DISC 2023

15:20 A Topology by Geometrization for Sub-IIS Message Adversaries

▶ Definition 40. We define λτ : V (Chr(S))→ V (S), for x ∈ V (Chr(S)), we set

λτ (x) =
{

q if ∃q ∈ Vx and q /∈ V τ
χ(x)

φ∗(χ(x), Vx ∩ V τ
χ(x)) otherwise.

Intuitively, for a given vertex of Chr(S) with view V , if the process sees an other process
q than in τ , then it is labelled by this q, otherwise it will choose the first process in the
circular orbit of φ that is in its view.

▶ Proposition 41. The labelling λτ is a τ−panlabelling.

Proof. First we show that it is indeed a Sperner labelling. In both cases of the definition,
λτ (x) belongs to Vx. For x ∈ V (Chr(S)), for σ ⊂ S, x ∈ |σ|, with σ minimum for this
property, means that the presentation of x is Φ(x) = (i, σ) for some xi such that xi ∈ V (σ)
and χ(xi) = i.

Now we show that the only panchromatic simplex is τ . By construction, with x ∈ V (τ),
φ∗(χ(x), Vx) = φ(χ(x)) since in this case Vx = V τ

χ(x). So τ is panchromatic through λτ .

Now we consider σ ̸= τ . We have two possible cases:
1. ∃x ∈ V (σ), q ∈ Vx, q /∈ V τ

χ(x),
2. ∀x ∈ V (σ), Vx ⊆ V τ

χ(x).

We start with the first case, we denote by C the highest, for ≻ in σ, class such there
is x in C satisfying the clause (1). We show that #λτ (C) ∩ C < #C, where # denotes
the cardinal of a set. By definition of C, λ−1

τ (C) ⊆ C. Since λτ (x) /∈ C, this means that
#λτ (C)∩C ̸= #C. By assumption all classes C ′ that are higher than C choose colors in C ′,
so σ is not panchromatic under λτ .

Now, we assume we do not have case (1), this means that ∀x ∈ V (σ), λτ (x) = φ∗(χ(x), Vx).
Since σ ̸= τ , there exists x ∈ V (σ), Vx ⊊ V τ

χ(x). We choose the lowest such x for ≻ in τ . We
consider Cx the class of x in σ. We show that #λτ (Cx) < #Cx.

We denote Cτ
x the class of color χ(x) in τ . First we show that Cx ⊆ Cτ

x . Indeed, assume
there is y ∈ Cx such that y /∈ Cτ

x . Since the view of elements of the same class are the same,
this means that χ(x) ∈ Vy and y would satisfy property 1. A contradiction to the case we
are considering. And this is true for all y ∈ Cx.

Now we show Cx ⊊ Cτ
x . We have Vx ⊊ V τ

χ(x). Let y ∈ V τ
χ(x) \ Vx. If y /∈ Cτ

x , by the same
previous argument, we get a contradiction. Hence y ∈ Cτ

x and therefore Cx ⊊ Cτ
x .

We denote p = φ∗(χ(x), Cτ
x \ Cx). We note p′ = φ−1(p). We have by definition of

φ∗(., Cτ
x \Cx), that p′ ∈ Cx, therefore Cχ−1

|σ
(p′) = Cx. Now we set p′′ = φ∗(p′, Cx). The color

p′′ has at least two predecessors in the labelling: p′ by construction (since x was chosen the
lowest for ≻ then Vχ−1

|σ
(p′) = V τ

p′) and p′′′ = φ−1(p′′) which is not p′ since φ(p′) = p /∈ Cx.
So #λτ (χ−1

|σ (V τ
x)) < #V τ

x , and λτ (σ) ̸= Π. ◀

Send/Receive Patterns Versus
Read/Write Patterns
in Crash-Prone Asynchronous Distributed Systems
Mathilde Déprés #

École Normale Supérieure de Paris-Saclay, France

Achour Mostéfaoui #

LS2N, Nantes Université, France

Matthieu Perrin # Ñ

LS2N, Nantes Université, France

Michel Raynal # Ñ

Univ Rennes IRISA, Inria, CNRS, France

Abstract

This paper is on the power and computability limits of messages patterns in crash-prone asynchronous
message-passing systems. It proposes and investigates three basic messages patterns (encountered in
all these systems) each involving two processes, and compares them to their Read/Write counterparts.
It is first shown that one of these patterns has no Read/Write counterpart. The paper proposes then
a new one-to-all broadcast abstraction, denoted Mutual Broadcast (in short MBroadcast), whose
implementation relies on two of the previous messages patterns. This abstraction provides each pair
of processes with the following property (called mutual ordering): for any pair of processes p and p′,
if p broadcasts a message m and p′ broadcasts a message m′, it is not possible for p to deliver first
(its message) m and then m′ while p′ delivers first (its message) m′ and then m. It is shown that
MBroadcast and atomic Read/Write registers have the same computability power (independently of
the number of crashes). Finally, in addition to its theoretical contribution, the practical interest of
MBroadcast is illustrated by its (very simple) use to solve basic upper level coordination problems
such as mutual exclusion and consensus. Last but not least, looking for simplicity was also a target
of this article.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Com-
puter systems organization→ Fault-tolerant network topologies; Networks→ Programming interfaces

Keywords and phrases Asynchrony, Atomicity, Broadcast abstraction, Characterization, Consensus,
Crash failure, Distributed Computability, Distributed software engineering, Computability, Lattice
agreement, Message-passing, Message pattern, Mutual exclusion, Quorum, Read/write pattern,
Read/Write register, Test&Set, Simplicity, Two-process communication

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.16

Related Version Full Version: https://hal.science/hal-04087447
Previous Version: https://doi.org/10.1145/3583668.3594569

Funding This work was partially supported by the French “Étoile Montante en Pays De La Loire”
regional project BROCCOLI devoted to the computability aspects of broadcast abstractions and
the French ANR project ByBloS (ANR-20-CE25-0002-01) and PriCLeSS (ANR-10-LABX-07-81).

© Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 16; pp. 16:1–16:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mathilde.depres@ens-paris-saclay.fr
https://orcid.org/0009-0003-8694-9478
mailto:achour.mostefaoui@univ-nantes.fr
https://orcid.org/0000-0001-7208-4635
mailto:matthieu.perrin@univ-nantes.fr
https://matthieu-perrin.fr/
https://orcid.org/0000-0002-8019-0830
mailto:michel.raynal@irisa.fr
https://team.inria.fr/wide/team/michel-raynal/
https://orcid.org/0000-0002-3355-8719
https://doi.org/10.4230/LIPIcs.DISC.2023.16
https://hal.science/hal-04087447
https://doi.org/10.1145/3583668.3594569
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Send/Receive Patterns Versus Read/Write Patterns

1 Introduction

1.1 On the nature of distributed computing
The aim of parallel computing is to allow programmers to exploit data independence in order
to obtain efficient programs. In distributed computing, the situation is different: there is
a set of predefined computing entities (imposed to programmers) that need to cooperate
to a common goal. Moreover, the behavior of the underlying infrastructure (environment)
on which the distributed application is executed is not on the control of the programmers,
who have to consider it as a “hidden input”. Asynchrony and failures are the most frequent
phenomenons produced by the environment that create a “context uncertainty” distributed
computing has to cope with. In short, distributed computing is characterized by the fact
that, in any distributed run, the run itself is one of its entries [47].

1.2 From send/receive to cooperation abstractions
The operations send() and receive() constitute the machine language of underlying networks.
So, in order to solve a distributed computing problem it is usual to first define an appropriate
communication abstraction that makes easier the design of higher level algorithms. FIFO and
Causal message-ordering [10, 26, 41, 50] are examples of such communication abstractions
that make easier the construction of distributed objects such as, for example, the construction
of a causal memory on top of an asynchronous message-passing system [4]. A well-know high
level and very powerful communication abstraction is total order broadcast, which ensures
that the message delivery order is the same at all processes.

Another example is the Set-Constrained Delivery (SCD) communication abstraction
introduced in [32]. This broadcast abstraction allows processes to deliver a sequence of
sets of messages of arbitrary size (instead of a sequence of messages) satisfying a non trivial
intersection property. In terms of computability in the presence of asynchrony and process
crashes, the power of SCD-broadcast is the same as the one of atomic read/write registers.
SCD-broadcast is particularly well-suited to efficiently implement a snapshot object (as
defined in [1, 5]) with an O(n2) message complexity in asynchronous crash-prone message-
passing systems. Broadcast abstractions suited to specific problems have also been designed
(e.g., [31] for k-set agreement).

d-Solo models consider asynchronous distributed systems where any number of processes
may crash. In these models, up to d (1 ≤ d ≤ n) processes may have to run solo, computing
their local output without receiving any information from other processes. Differently from
the message-passing communication model where up to d ≥ 1 processes are allowed to run
solo, it is important noticing that the basic atomic read/write registers communication model
allows at most one process to run solo. Considering the family of d-solo models, [28] presents
a characterization of the colorless tasks that can be solved in each d-solo model.

1.3 On the read/write side
Read/write (RW) registers (i.e., the cells of a Turing machine) are at the center of distributed
algorithms when the processes communicate through a shared memory. So a fundamental
problem is the construction of atomic RW registers on top of crash-prone asynchronous
message-passing system. This problem has been solved by Attiya, Bar-Noy and Dolev who
presented in [7] a send/receive-based algorithm (ABD) for such a construction, and proved
that, from an operational point of view, such constructions are possible if and only if at most

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:3

t < n/2 processes may crash. The ABD construction is based on the explicit use of sequence
numbers, quorums and a send/receive pattern (used once to write and twice to read). The
quorums are used to realize synchronization barriers1.

Based on the same principles as ABD, algorithms building RW registers have been
designed [52]. Some strive to reduce the size of control information carried by messages
(e.g. [6, 42]) while others focus on fast read and/or fast write operations in good circumstances
(e.g. [21, 25, 43]). All these algorithms allow existing RW-based algorithms to be used on
top of crash-prone asynchronous message-passing systems.

The use of RW registers on top of a message-passing system to allow processes to use “for
free” existing shared memory-based distributed algorithms has a cost, which can be higher
than the one obtained with an algorithm directly designed on top of the basic send/receive
operations (as shown, for example, in [16] for the snapshot object defined in [1, 5]). This
means that, for some problems (as we will see for consensus), algorithms based on appropriate
communication abstractions can be more efficient than the stacking of RW-based algorithms
on top of simulated RW registers.

1.4 Content of the article
In the spirit of [24] (which states that computing is “science of abstractions”) the present
article introduces a new broadcast abstraction (denoted MBroadcast) that ensures that for
any pair of processes p and p′, if p broadcasts a message m and p′ broadcasts a message
m′, it is not possible for p to deliver first its message m and then m′ while p′ delivers first
its message m′ and then m. It is important to notice that this property is on each pair of
processes taken separately from the other processes. It is also shown how, at the upper layer,
this broadcast abstraction allows a very simple design of message-passing algorithms solving
distributed coordination and agreement problems. The main properties of MBroadcast are
the following ones.

It has the same computability power as RW registers.
It constitutes the first characterization of RW registers in terms of (binary) message
patterns.
It allows to build higher level coordination abstractions without requiring as prerequisite
the construction of an intermediary abstraction level made up of RW registers.
When looking at a message exchange between two processes p and p′, it shows that the
fact that p′ does not ignore the other process p (because it received a message from p

before receiving its own message) is a powerful control information (more technically, this
refers to the patterns MP2 and MP3 defined in Section 3).

An important point of the article is the fact that atomic RW registers can be implemented
from two simple basic message patterns on each pair of processes only. Hence the article is on
basic patterns that allow us to better understand the close relationship between RW registers
and asynchronous message-passing in the presence of process crashes. More generally, it
allows for a better understanding of the strengths and weaknesses of the world of asynchronous
crash-prone message-passing systems.

As an important side note, this article also discusses a strengthening of MBroadcast,
denoted PBroadcast, that ensures that any pair of processes deliver their own messages in
the same order (in the terms of the patterns defined in Section 3, it means that the only

1 Let us notice that, in the traditional use of the send/receive patterns, a process that broadcasts a
message (i.e., sends a message m to all the processes including itself) is allowed to locally deliver m
without waiting for a specific delivery condition to be satisfied.

DISC 2023

16:4 Send/Receive Patterns Versus Read/Write Patterns

possible pattern is MP2). On a computability viewpoint, it shows that if the only binary
message pattern that can occur is MP2, then Test&Set, the consensus number of which is 2,
can be built.

1.5 Roadmap
The article is composed of 8 sections, structured in two parts. The first part consists of
sections 2-5, while the second part consists of sections 6-7. Section 2 presents the underlying
computing model. Section 3 presents three basic binary message patterns (denoted MP1,
MP2 and MP3) encountered in asynchronous message-passing computations, and establishes
a “correspondence” linking these message patterns with read/write patterns on atomic
registers. Section 4 introduces the high level MBroadcast and PBroadcast communication
abstractions. Section 5 shows that MBroadcast and atomic read/write (RW) registers have
the same computability power.

The second part illustrates uses of MBroadcast, that show the conceptual gain offered
by this communication abstraction (i.e., simplicity). More precisely, Section 6 presents an
MBroadcast-based rewriting of Lamport’s bakery algorithm suited to message-passing (i.e.,
suited to state machine replication [37]). Section 7 presents a simple version of the well-known
Paxos consensus algorithm [36].2 It is important to state that none of the algorithms built on
top of MBroadcast uses quorums (as we will see, this means if each binary message exchange
pattern satisfies the pattern MP2 or the pattern MP3 these algorithms work correctly even
if a majority of processes crashes).

Finally, Section 8 concludes the article (where design simplicity is considered as a first
class citizen property). The proofs of the algorithms are presented in an appendix.3

2 Distributed Computing Model

The computing model is the classical asynchronous crash-prone message-passing model.

2.1 Process model
The computing model is composed of a set of n sequential processes denoted p1, ..., pn.
Sometimes, when considering two processes, they are denoted p and p′.

Each process is asynchronous which means that it proceeds at its own speed, which
can be arbitrary and remains always unknown to the other processes. A process may halt
prematurely (crash failure), but executes correctly its local algorithm until it possibly crashes.
The model parameter t denotes the maximal number of processes that may crash in a run.
A process that crashes in a run is said to be faulty. Otherwise, it is correct or non-faulty.

2.2 Communication model
Each pair of processes communicate by sending and receiving messages through two uni-
directional channels, one in each direction. Hence, the communication network is a complete
network: any process pi can directly send a message to any process pj (including itself). A

2 It is worth noticing that mutex and consensus are the two most famous distributed computing prob-
lems [49]. Additionally, Appendix B presents a very simple MBroadcast-based algorithm that builds a
lattice agreement object.

3 The definition of MBroadcast was first presented in a short version at PODC 2023 [18], and an extended
version is available on the web [19].

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:5

process pi invokes the operation “send type(m) to pj” to send the message m (whose type is
type) to pj . The operation “receive type(m) from pj” allows pi to receive from pj a message
m whose type is type.

Each channel is reliable (no loss, no corruption, no creation of messages), not necessarily
first-in/first-out, and asynchronous (while the transit time of each message is finite, there is
no upper bound on message transit times). Let us notice that, due to process and message
asynchrony, no process can know if another process crashed or is only very slow.

It is assumed that, in addition to basic send/receive operations, the network is enriched
with FIFO and causal message deliveries, i.e. it provides the processes with the operations
fifo_broadcast(), causal_broadcast(), causal_send(), and causal_delivery() [10, 26, 34, 41, 50,
47]. Two messages m and m′ are causally related if (i) they have been sent by the same
process and m was sent before m′, or (ii) a process received m before sending m′, or (iii)
there is chain of messages m, m1, ..., mx, m′ such that each pair of consecutive messages is
causally related by (i) or (ii). It is important to note that the addition of this assumption
does not change the computability power of the communication model, since causal message
delivery can always be implemented on top of send/receive channels. It is also important to
note that, while the implementation of these operations requires messages to carry additional
control information, it does not require the use of additional implementation messages.

2.3 Notation
The acronym CAMPn,t[∅] is used to denote the previous Crash-prone Asynchronous Message-
Passing model without additional computability power. CAMPn,t[H] denotes CAMPn,t[∅]
enriched with the additional computational power denoted by H.

The acronym CARWn,t[∅] is used to denote the n-process asynchronous system where up
to t processes may crash and communication is through read/write registers. CARWn,t[H]
denotes CARWn,t[∅] enriched with H.

3 Three Basic Binary Message Patterns and their RW Counterparts

3.1 Three basic binary message patterns
Let us consider two processes p and p′ that concurrently exchange messages, namely, p sends
a message m to itself and p′, while p′ sends the message m′ ≠ m to itself and p. Depending
on the order in which messages are delivered at each process, there are exactly three cases to
consider (swapping p and p′ does not give rise to new message patterns).

Message pattern MP1. This case is represented at Figure 1a. It is a symmetric pattern in
which p delivers first the message m it broadcast and then the message m′ broadcast by
p′, while p′ delivers first its message m′ and then the message m broadcast by p. This
pattern captures the case where, when a process delivers its own message, it has no
information on the fact the other processes broadcast or not a message.

Message pattern MP2. This case is represented at Figure 1b. It describes an asymmetric
pattern from a message delivery point of view in which both p and p′ deliver first m

broadcast by p and then m′ broadcast by p′. In this pattern both p and p′ deliver the
messages in the same order (an analogous pattern occurs when we swap p and p′).

Message pattern MP3. This case is represented at Figure 1c. Similarly to MP1 this is a
symmetric pattern in the sense that p delivers first the message m′ from p′ and then its
message m, while p′ delivers first the message m from p and then its message m′. The
fundamental difference between MP1 and MP3 lies in the fact that when p (resp. p′)
delivers its own message, it has already delivered the message sent by the other process
p′ (resp. p).

DISC 2023

16:6 Send/Receive Patterns Versus Read/Write Patterns

p

p′

m

m′

(a) Pattern MP1:
forbidden by MBroadcast
and by PBroadcast.

p

p′

m

m′

(b) Pattern MP2:
allowed by MBroadcast
and by PBroadcast.

p

p′

m

m′

(c) Pattern MP3:
allowed by MBroadcast,
forbidden by PBroadcast.

p

p′

x.Write(1)

x′.Write(1)

x′.Read() → 0

x.Read() → 0

(d) Pattern RW1:
forbidden by atomic memory.

p

p′

x.Write(1)

x′.Write(1)

x′.Read() → 0

x.Read() → 1

(e) Pattern RW2:
allowed by atomic memory.

p

p′

x.Write(1)

x′.Write(1)

x′.Read() → 1

x.Read() → 1

(f) Pattern RW3:
allowed by atomic memory.

p

p′

Test-and-set() → 0

Test-and-set() → 0

(g) Pattern TS1:
forbidden by atomic Test&Set.

p

p′

Test-and-set() → 0

Test-and-set() → 1

(h) Pattern TS2:
allowed by atomic Test&Set.

p

p′

Test-and-set() → 1

Test-and-set() → 1

(i) Pattern TS3:
forbidden by atomic Test&Set.

Figure 1 The three binary message patterns, versus the three binary atomic memory patterns
and the three binary atomic test-and-set patterns.

3.2 From message patterns to RW patterns
To deeply understand the meaning and the scope of the three previous message-based
communication patterns, let us consider their “counterpart” in a context where p and p′

cooperate through atomic one-bit RW registers initialized to 0. The RW register x, written
by p and read by p′, corresponds to m. The RW register x′, written by p′ and read by p

corresponds to m′. Both registers are initialized to 0. In each case, the read/write pattern
depicted at the bottom of Figure 1 simulates the message exchange pattern above it. More
precisely we have the following.

RW pattern RW1. Figure 1d corresponds to the message pattern MP1: p writes 1 in x and
reads the initial value of x′, namely, the value 0. Concurrently, p′ writes 1 in x′ and reads
the initial value of x, namely, the value 0.

RW pattern RW2. Figure 1e corresponds to the message pattern MP2: p writes 1 in x and
then reads the initial value 0 from x′, while p′ writes 1 in x′ and then reads the value of
x, namely, the value 1.

RW pattern RW3. Figure 1f corresponds to the message pattern MP3: each process writes
first “its” variable (x for p, x′ for p′), and then reads the other variable and obtains 1.

3.3 Comparing message patterns and RW patterns
It is easy to see that the RW patterns RW2 and RW3 produce the same cooperation as the
message patterns MP2 and MP3, respectively. Differently, while the message pattern MP1
can occur in an asynchronous message-passing system, the RW pattern RW1 cannot occur
in a RW memory. This is due to the fact that, in RW1, the write of x by p and the write
of x′ by p′ are linearized [29, 35] and, as a process writes a RW register before reading the
other register, it is impossible that both read operations return 0 (it is easy to show that
this remains true if the registers are only safe, regular, or part of a sequentially consistent
memory). This is a fundamental difference between cooperation/communication through
message passing and cooperation/communication through RW registers.

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:7

At the core of the approach. The fact that there is no RW pattern corresponding to
pattern MP1 is implicitly used to solve many cooperation/synchronization problems in RW
systems. The most famous is the “write first and then read” pattern used in all mutex
algorithms [51]. When a process wants to enter the critical section, it first raises a flag to
inform the other processes it starts competing, and only then it reads the flags (which are
up or down) of the other processes. The total order imposed by the atomicity on the flag
risings prevents RW1 from occurring.

Actually preventing the message pattern MP1 from occurring without bounding the
number of process crashes is “equivalent” to the assumption t < n/2 without constraints on
message exchange patterns, in the sense that both prevent partitioning and consequently
allow atomic RW registers to be built despite crashes and asynchrony.

3.4 On the test-and-set side
For comparison, Figures 1g, 1h and 1i consider three communication patterns where the two
processes cooperate through the Test&Set special instruction on an atomic register. In a
similar way as with message patterns and RW patterns, we can define three TS patterns,
depending on which processes obtain 0, the same outcome as in a solo execution; and which
processes obtain the same outcome 1 as if their operation was linearized in second position.

TS pattern TS1. Figure 1g corresponds to the RW pattern RW1, in which both processes
obtain 0, and hence to the message pattern MP1.

TS pattern TS2. Figure 1h corresponds to the asymmetric RW pattern RW2, in which one
process obtains 0 and the other process obtains 1. Hence, it also corresponds to the
message pattern MP2.

TS pattern TS3. Figure 1i corresponds to the symmetric RW pattern RW3, in which both
processes obtain 1, and hence to the message pattern MP3.

This time, only the asymmetric communication pattern TS2 is admitted. The fact
that the pattern TS3 is impossible is a major difference between read/write registers and
test-and-set registers, that can be used to solve consensus between two processes.

4 Mutual Broadcast

4.1 Mutual broadcast: Definition
Mutual-broadcast (MBroadcast) is a broadcast abstraction that allows a process to broadcast
a message that will be delivered at least by all the correct processes. This abstraction provides
the processes with two operations denoted mbroadcast() and mdeliver(). When a process
invokes mbroadcast(m) we say “it mbroadcasts the message m”. The invocation of mdeliver()
returns a message m and we say that a process “mdelivers m” or that “m is mdelivered”. To
simplify the presentation (and without loss of generality), it it assumed that all the messages
that are mbroadcast are different. The following properties define MBroadcast.

Validity. If a process pi mdelivers a message m from a process pj , then pj previously invoked
mbroadcast(m).

No-duplication. A process mdelivers a message m at most once.
Mutual ordering. For any pair of processes p and p′, if p mbroadcasts a message m and

p′ mbroadcasts a message m′, it is not possible that p mdelivers m before m′ and p′

mdelivers m′ before m.
Local termination. If a correct process invokes mbroadcast(m), it returns from its invocation.
Global CS-termination. If a correct process invokes mbroadcast(m), all correct processes

mdeliver m. (“CS” is used to stress the fact that the sender is required to be correct.)

DISC 2023

16:8 Send/Receive Patterns Versus Read/Write Patterns

Let us notice that, at the user level, the Mutual ordering property prevents the pattern
MP1 from occurring, boils down to the pattern MP2 when a process delivers its message
first, and does not prevent pattern MP3 from occurring (which occurs when each process
delivers first the message from the other process before its own message).

As it is the case with other broadcast abstractions, MBroadcast can be enriched with
other properties, defined in [18], that do not change its computing power but add more usage
comfort in some algorithms. We denote by fifo-MBroadcast, causal-MBroadcast and reliable-
MBroadcast the MBroadcast abstraction that also respect the properties of fifo-broadcast,
causal-broadcast and reliable-broadcast, respectively.

4.2 What does MBroadcast do
When looking at MBroadcast from a binary communication point of view between two
processes p and p′, it appears that MBroadcast ensures that, for any message exchanged
by p and p′, the message patterns produced is MP2 or MP3. Moreover, it is possible that
some of their message exchange patterns are MP2 while others are MP3, and this remains
unknown to the processes.

p1

p2

p3

m1

m2

m3

p1

p2

p3

m1

m2

m3

(a) Pattern MP3
between m1 and m2.

p1

p2

p3

m1

m2

m3

(b) Pattern MP3
between m1 and m3.

p1

p2

p3

m1

m2

m3

(c) Pattern MP2
between m2 and m3.

Figure 2 Example of message deliveries with three processes.

Figure 2 presents an example with three processes, that shows MBroadcast message
deliveries. As we can see p1 mdelivers the sequence of messages m2, m3, m1, p2 mdelivers
the sequence of messages m1, m2, m3, and p3 mdelivers the sequence of messages m2, m1,
m3. So, the processes mdeliver the three messages in different orders. Nevertheless, when we
consider the projection of these messages exchange on each pair of processes, we observe that
the processes p1 and p2 mdeliver m1 and m2 according to the pattern MP3. As depicted in
Figure 2.a each process mdelivers the message from the other process before its own message.
The same message pattern MP3 occurs for the messages exchanged by p1 and p3 (Figure 2.b).
Differently, as shown in Figure 2.c, the messages exchanged by p2 and p3 obey the pattern
MP2: both processes mdeliver first m2 and then m3. The fundamental point is that the
pattern MP1 never occurs: MBroadcast prevents it from occurring, which implicitly prevents
system partitioning and hides the system parameter t to the algorithms build on top of
MBroadcast.

4.3 A real-time property
When combined with the fact that a message cannot be received before it has been sent,
MBroadcast ensures that if a process p mdelivers a message m it has mbroadcast before
a process p′ mbroadcast a message m′, p′ cannot mdeliver m′ before m. This pattern is
described in Figure 3. In other words, sending a “blank” synchronization message and waiting
for its delivery is sufficient to “harvest” all the messages that were already mdelivered by their
senders. To benefit from this property, we consider the synchronized broadcast operation
based on a synchronization barrier as defined in Algorithm 1.

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:9

Algorithm 1 Synchronized MBroadcast.
operation synchro_mbroadcast(m) is

% code for pi

(1) mbroadcast(m);
(2) wait (m has been mdelivered from pi)
end operation.

p

p′

•

•

synchro_mbroadcast(m)

synchro_mbroadcast(m′)

Figure 3 A real-time property.

The operation synchro_mbroadcast() inherits the properties defining MBroadcast, as well
as the following property.

▶ Property 1. If a process p returns from the invocation of synchro_mbroadcast(m) before
p′ invokes synchro_mbroadcast(m′), p′ cannot return from synchro_mbroadcast(m′) before it
has mdelivered m.

4.4 Pair Broadcast: MP2 Alone Characterizes Test&Set()
Pair broadcast: Definition. Pair broadcast (in short PBroadcast) is a broadcast abstraction
that allows a process to broadcast a message that will be delivered at least by all the correct
processes. This abstraction provides the processes with two operations denoted pbroadcast()
and pdeliver(). When a process invokes pbroadcast(m) we say “it pbroadcasts the message
m”. The invocation of pdeliver() returns a message m and we say that a process “pdelivers m”
or that “m is pdelivered”. To simplify the presentation (and without loss of generality), it it
assumed that all the messages that are pbroadcast are different. PBroadcast is defined as the
same Validity, No-duplication, Local termination and Global CS-termination properties as
MBroadcast, and the Pair ordering property (that is a strengthening of the Mutual ordering
property):

Pair ordering. For any pair of processes p and p′, if p pbroadcasts a message m and p′

pbroadcasts a message m′, and if m and m′ are both pdelivered by p and p′, then p and
p′ pdeliver m and m′ in the same order.

Let us notice that, at the user level, the Pair ordering property only allows the pattern
MP2 to occur. So, it prevents both the patterns MP1 and MP3 from occurring. It follows
that PBroadcast is strictly stronger than Mutual ordering.

On the computability side of PBroadcast. When only two processes participate in an
execution, the pair ordering property implies that all messages are pdelivered by the two
processes in the same order. In other words, PBroadcast boils down to total-order broadcast
in a system composed of only two processes. In particular, it is possible to solve consensus
between any pair of processes when PBroadcast is available, and consequently the Test&Set()
operation whose consensus number is 2 [27] (and more generally the objects of the class
Common2 defined in [3]) can be built on top of PBroadcast. Appendix C details such a
construction. Conversely, Appendix C also presents an algorithm that builds PBroadcast
in the model CAMPn,t[consensus2] (CAMPn,t[∅] enriched with consensus objects available
between any pair of processes). Therefore, it is easy to see that PBroadcast has consensus
number 2, and is part of the equivalence class Common2.

Unsurprisingly, PBroadcast, that only allows the message pattern MP2 to occur, is
computationnaly equivalent to the Test&Set() operation, that only allows the memory
pattern TS2 to occur. This is similar to the fact that preventing the message pattern MP1
from occuring makes MBroadcast equivalent to shared memory that prevents the memory
pattern RW1.

DISC 2023

16:10 Send/Receive Patterns Versus Read/Write Patterns

Algorithm 2 MBroadcast on top of CARWn,t[∅].
operation mbroadcast(m) is % code for pi

(1) SENT [i]← SENT [i]⊕m;
(2) catch_up();
(3) mdelivery of m from pi.
end operation.

periodically do catch_up().

internal uninterruptible routine catch_up() is
(4) for j from 1 to i− 1 and then from i + 1 to n do
(5) msgj ← SENT [j];
(6) for k from deliveredi[j] to |msgj| − 1 do mdelivery of msgj[k + 1] from pj end for;
(7) deliveredi[j]← |msgj|
(8) end for.

Remark on trivial extension attempts. It seems intuitive that, if imposing an order on the
messages sent by pairs of processes gives a broadcast with consensus number two, imposing
an order on the messages sent by triplets of processes should give a broadcast with consensus
number three. Unfortunately, albeit at first glance it seems counter-intuitive, this is not
the case. Indeed, let us consider n ≥ 4 processes p1, ..., pn broadcasting respectively
messages m1, ..., mn using an abstraction providing the following guarantee: each triplet of
processes (pi, pj , pk) receives the same first message among mi, mj and mk. In particular, it
is impossible that all processes receive their own message first, so there is a process pi that
receives mj sent by pj ̸= pi as its first message. Remark that pj must receive its own message
first since receiving mk ̸= mj first would violate the property for the triplet (pi, pj , pk).
Therefore, any process pk must receive pj ’s message first since receiving mℓ ̸= mj first would
violate the property for the triplet (pj , pk, pℓ). This fact can be exploited to solve consensus
between n processes. It follows that imposing an order on the messages sent by triplets of
processes provide us with a broadcast whose consensus number is ∞.

5 MBroadcast versus RW Registers

This section first shows that MBroadcast can be implemented on top of RW registers, and
then shows that RW registers can be implemented on top of MBroadcast. Hence, MBroadcast
and RW registers have the same computability power. It is important to notice that the
algorithms described below are independent of t, so they can cope with any number of process
crashes.

5.1 From regular RW registers to MBroadcast
This section shows that reliable-MBroadcast can be build on top of RW registers in the
presence of asynchrony and process crashes. The algorithm only assumes regular registers,
hence it also works on top of atomic registers [35].

Shared memory and local variables.
The n processes share an array of n SWMR regular registers denoted SENT [1..n] such
that, for any i, SENT [i] can be read by any process and written only by pi. It contains
the (initially empty) list of messages mbroadcast by pi. The first message deposited in
SENT [i] will be in position 1, the second in position 2, etc.
Each process pi manages an array of local counters (initialized to 0) denoted deliveredi

such that, for any j ̸= i, deliveredi[j] contains the number of messages mdelivered from
pj (deliveredi[i] is not used).

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:11

Algorithm 3 Atomic RW register on top of CAMPn,t[MBroadcast].
operation write(v) is % code for pi

(1) synchro_mbroadcast synch();
(2) let ti such that ⟨ti, i⟩ > clocki;
(3) synchro_mbroadcast write(v, ⟨ti, i⟩)
end operation.

operation read() is
(4) synchro_mbroadcast synch();
(5) v ← vali;
(6) synchro_mbroadcast write(v, clocki);
(7) return(v)
end operation.

when write(v, c) is mdelivered from pj do
(8) if c > clocki then vali ← v; clocki ← c end if.

Description of the algorithm. Algorithm 2 builds reliable-MBroadcast on top of n regular
RW registers. When a process pi invokes mbroadcast(m) it adds m at the end of the shared
list SENT [i] (⊕ stands for concatenation), invokes the internal uninterruptible routine
catch_up() and then locally mdelivers m.

The internal routine catch_up() is repeatedly invoked to allow pi to mdeliver the messages
mbroadcast by the other processes.

▶ Theorem 2. Algorithm 2 builds MBroadcast on top of regular RW registers. (Proof in
Appendix A.)

5.2 From MBroadcast to atomic RW registers
Combined with the previous section, this section shows that MBroadcast and atomic RW
registers have the same computational power. The algorithm, closely inspired from the ABD
algorithm, builds an MWMR atomic register.

Local variables. Each process pi manages three local variables.
vali contains the current value of the register as known by pi.
ti is the date of the last write issued by pi.
clocki is a pair (timestamp) ⟨date, writer⟩ defining the identity of the value in vali as a
timestamp: writer is the identity of the writer of vali and date the associated Lamport’s
logical date. Let us remind that all the logical dates are totally ordered according to the
usual lexicographical order.

Description of the algorithm. Algorithm 3 implements an MWMR atomic register on top
of MBroadcast, i.e., in the model CAMPn,t[MBroadcast].

When pi invokes write(), it first mbroadcasts a pure control message synch() to resyn-
chronize its local state with respect to possible write operations that modify the last value
of the register (line 1). Then, it computes the timestamp associated with value it wants to
write (line 2), and propagates its write operation using a synchronized MBroadcast (line 3).

The read operation is similar. Lines 4-5 provide pi with the value it has to return, while
line 6 implements the “reads have to write” strategy needed to ensure atomicity of the read
operation [7, 9, 39, 46]. Finally, when pi mdelivers a write() message, it updates its local
context if the new timestamp is higher than the one it currently has in its local variables.

DISC 2023

16:12 Send/Receive Patterns Versus Read/Write Patterns

▶ Theorem 3. Algorithm 3 implements an atomic RW register on top of
CAMPn,t[MBroadcast]. (Proof in Appendix A.)

Suppressing Line 1 (resp. Line 6) builds an SWMR atomic register (resp. an SWMR regular
register). Algorithm 3 can also be easily adapted to work with the four types of MWMR
regular registers defined in [53].

5.3 A remark on complexity

Although Algorithms 2 and 3 prove that mbroadcast and atomic RW registers have the
same computability power, the same cannot be said from a complexity point of view, since n

single-writer multi-reader atomic registers must be used and read in Algorithm 2 to implement
MBroadcast.

In fact, this complexity is necessary, even with the use of multi-writer multi-reader atomic
registers. It was proven in [30], that at least n multi-writer multi-reader atomic registers
are necessary to implement an array of one single-writer multi-reader atomic register per
process. This lower bound also applies to MBroadcast since, if k < n registers were sufficient
to implement MBroadcast, Algorithm 2 could, in turn, be used to simulate the array of n

single-writer multi-reader registers. This justifies our introduction of a new abstraction, that
allows algorithms with better complexities than read/write registers.

Conversely, it is possible to implement the MBroadcast abstraction in the system model
CAMPn,t[t < n/2] (CAMPn,t[∅] enriched with the constraint t < n/2), using the algorithm
presented in [18], whose cost is only O(n) implementation messages when mutual broadcast
delivery concerns only correct processes.

5.4 What is actually needed to build a RW register

It follows from the previous results that the operational condition
(MP2 ∨ MP3) or (t < n/2)

is necessary and sufficient to build an atomic RW register on top of a crash-prone asynchronous
message-passing system. It is worth noticing that the first sub-condition MP2 ∨ MP3 is on
the messages exchanged by each pair of processes (and, for any pair of processes, can change
from one message exchange to another one without being explicitly known by the processes)
while the other one t < n/2 is on global system parameters.

What is captured by MP2 ∨ MP3 is the fact that, for each pair of processes, as soon as
one of them does not ignore the message from the other one (which is not a pattern captured
by MP1), it is possible to build an atomic RW register.

Remark: From consensus on pairs of processes to multi-writer multi-reader registers.
Since PBroadcast is stronger than MBroadcast, the implementation of PBroadcast in the
model CAMPn,t[consensus2] presented in Appendix C also provides an implementation of
MBroadcast that can be exploited to implement an atomic register (using Algorithm 3),
in any message-passing system where consensus is available between any pair of processes.
In particular, the assumption that t < n

2 is not required in this case. Remark that this
fact could have been previously established by using the consensus between two processes
to implement single-reader single-writer registers, that have the same computability power
as multi-writer multi-reader registers [35], but, to our knowledge, it had never been stated
explicitly.

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:13

Algorithm 4 An MBroadcast-based version of Lamport’s Bakery algorithm.
operation acquire() is % code for pi

(1) fifo_synchro_mbroadcast hello();
(2) let ti such that ⟨ti, i⟩ > max(ticketsi);
(3) fifo_synchro_mbroadcast ticket(ti);
(4) wait

(
⟨ti, i⟩ = min(ticketi)

)
end operation.

operation release() is
(5) fifo_broadcast goodbye(ti)
end operation.

when hello() is fifo-mdelivered from pj do
(6) ticketi ← ticketi ∪ ⟨0, j⟩.

when ticket(t) is fifo-mdelivered from pj do
(7) ticketi ←

(
ticketi \ {⟨0, j⟩}

)
∪ {⟨t, j⟩}.

when goodbye(t) is fifo-delivered from pj do
(8) ticketi ← ticketi \ {⟨t, j⟩}.

6 MBroadcast in Action: Mutex

Preliminary remark. As announced in the Introduction, this section and the next section
illustrate uses of the MBroadcast abstraction, where design simplicity is considered as a
first class criterion. As already said, it is important to notice that none of the algorithms
presented below is explicitely based on quorums. Moreover, as the reader will see, the mutex
algorithm and the consensus algorithm have the same structure as Algorithm 3.

6.1 Mutex

Considering the asynchronous message-passing system (i.e. the computing model
CAMPn,t[∅]) this section addresses the mutual exclusion problem (mutex). This prob-
lem was introduced by E.W. Dijkstra in 1965 [20]. From a historical point of view it is the
first distributed computing problem (see [51] for a historical survey on RW-based mutex
algorithms). It is defined by two operations denoted acquire() and release(), that are used
to bracket a section of code, called critical section, such that the following properties are
satisfied.

Safety. At most one process at a time can be executing the critical section.
Liveness. If a process invokes acquire(), it eventually enters the critical section.

One of the most famous mutex algorithms is the Bakery algorithm due to L. Lam-
port [33, 37]. This algorithm is based on non-atomic RW registers. This section presents an
MBroadcast-based re-writing of this algorithm suited to the asynchronous message-passing
communication model.

6.2 An MBroadcast-based rewriting of Lamport’s Bakery algorithm

Local variables. Each process pi manages two local variables.
An initially empty set ticketi that will contain timestamps ⟨t, id⟩ where t is a ticket
number and id a process identity.
The variable ti contains the last ticket number used by pi.

DISC 2023

16:14 Send/Receive Patterns Versus Read/Write Patterns

Description of the algorithm. Algorithm 4 is an MBroadcast-based version of Lam-
port’s Bakery algorithm [33]. When a process pi invokes acquire(), it first invokes
fifo_synchro_mbroadcast hello() to make public the fact that it starts competing to access
the critical section (line 1). When this synchronized fifo_synchro_mbroadcast() invocation
terminates, pi knows that processes that will start competing afterwards are informed it
started competing. Process pi then computes a ticket number higher than all the ticket
numbers it knows (line 2) and invokes again fifo_synchro_mbroadcast to inform the processes
that its request for the critical section is timestamped ⟨ticketi, i⟩ (line 3). Finally, pi waits
until its request has the smallest timestamp (according to lexicographical order) (line 4).

When a process pi fifo-mdelivers the message hello() from process pj , it adds the pair
⟨0, j⟩ to its set ticketi, which registers the requests of all the competing processes as known
by pi (line 6);

When a process pi fifo-mdelivers the message ticket(t) from process pj , it replaces the
pair ⟨0, j⟩ by the pair ⟨t, j⟩ in its local ticketi, which now stores the request of pj with its
competing timestamp (line 7).

When a process pi invokes release(), it invokes synchro_mbroadcast goodbye() to inform
the other processes it is no longer interested in the critical section. (line 5). Consequently
when a process pi fifo-delivers a message goodbye() from a process pj , it updates accordingly
its local set of requests ticketi (line 8).

▶ Theorem 4. Considering the system model CAMPn,t[MBroadcast], Algorithm 4 ensures
that there is at most one process at a time in the critical section (safety), and that if no
process crashes while executing acquire(), release(), or the code inside the critical section,
then all invocations of acquire() and release() terminate (liveness). (Proof in Appendix A.)

Remark. Using the failure detector introduced in [17], it is possible to implement mutex in
the presence of process crashes occurring while a process is executing acquire(), release(), or
the code inside the critical section.

7 MBroadcast in Action: Consensus

The consensus problem was introduced by Lamport, Shostak and Pease [38, 44] in the context
of synchronous systems prone to Byzantine process failures. As stated previously, here we
consider it in the context of asynchrony and process crashes. Let us recall that consensus is
a fundamental problem that lies at the center of the set of distributed agreement problems.

7.1 Definition
Consensus is defined by a single one-shot operation denoted propose() that takes a value as
input parameter and returns a value as result. When a process invokes propose(v), we say it
proposes v. If the returned value is w, we say the process decides w. Consensus is defined
by the following three properties. Validity: If a process decides v, some process proposed v.
Agreement: No two processes decide different values. Termination: If a process does not
crash, it decides a value.

7.2 Enriching the model with additional computability power
It is well-known that consensus cannot be solved in asynchronous distributed systems
where even a single process may crash, be the underlying communication medium message-
passing [23] or RW registers [40]. We consider here that this additional computability power

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:15

Algorithm 5 An MBroadcast-based variant of Lamport’s Paxos algorithm.
operation propose(vi) is % code for pi

(1) vali ← vi;
(2) while (decidedi = ⊥) do
(3) if (leader() = i) then
(4) let ti such that ⟨ti, i⟩ > clocki;
(5) synchro_mbroadcast begin(ti);
(6) if ⟨ti, i⟩ = clocki then synchro_mbroadcast voted(t, vali) end if;
(7) if ⟨ti, i⟩ = clocki then reliable_broadcast success(vali) end if
(8) end if
(9) end while;
(10) return(decidedi)
end operation.

when begin(t) is mdelivered from pj do
(11) if ⟨t, j⟩ > clocki then clocki ← ⟨t, j⟩ end if.

when voted(t, v) is mdelivered from pj do
(12) if ⟨t, j⟩ > clocki then clocki ← ⟨t, j⟩; vali ← v end if.

when success(v) is reliable-delivered from pj do
(13) decidedi ← v.

is given by the failure detector denoted Ω, which is the weakest failure detector with which
consensus can be solved [11]. Ω provides the processes with a single operation denoted
leader(). This operation has no input, and each of its invocations returns a process identifier.
It is defined by the following property. Eventual leadership: In any execution, there exists a
process identifier j such that (1) pj is a correct process and (2) the number of times leader()
returns an identifier k ̸= j to any process is finite.

7.3 An MBroadcast-based variant of the Paxos consensus algorithm
Local variables. Each process pi manages three local variables.

decidedi, initialized to ⊥ (a default value that cannot be proposed to consensus), will
contain the decided value.
ti is a scalar logical time (its initial value is irrelevant). Each round of the algorithm
initiated by pi is uniquely identified by a timestamp ⟨ti, i⟩, that plays the same role as
the ballot number in Lamport’s article. Recall that any two such pairs can be ordered by
lexicographical order.
clocki, initialized to ⟨0, 0⟩, contains the timestamp identifying the current round.

Description of the algorithm. Algorithm 5 solves the consensus problem in the system
model CAMPn,t[MBroadcast, Ω]. When a process pi invokes propose(vi) it first initializes
vali (its current local estimate of the decided value) to vi (line 1). It then enters a loop it
will exit when decidedi is different from ⊥ (lines 2-9). If decidedi ≠ ⊥, it decides it (line 10).
Otherwise, pi checks if it is the leader by calling leader() on Ω (line 3). If it is not, it re-enters
the while loop. If leader() = i, pi competes to impose its current estimate to be the decided
value. To this end, it first computes a new timestamp ⟨ti, i⟩ greater than any timestamp it
knows (line 4) (this timestamp identifies its current competition to impose a decided value)
and invokes synchro_mbroadcast begin(ti) to inform the other processes it starts competing
(line 5). Process pi then checks if the timestamp ⟨ti, i⟩ is equal to clocki (line 6). If it is not
the case, it aborts the competition. Otherwise, it invokes synchro_mbroadcast voted(t, vali)
(line 7) to inform the processes that it champions vali timestamped ⟨ti, i⟩. Then, it checks
again that ⟨ti, i⟩ = clocki, and aborts its competition if it is not. It then discovers that it has

DISC 2023

16:16 Send/Receive Patterns Versus Read/Write Patterns

won the competition and informs the other processes that vali is the decided value (line 7).
Let us notice that between its reads at line 6 and line 7, the value of clocki may have been
modified. When pi mdelivers begin(t) or voted(t, v) from a process pj , it updates its local
variables accordingly. It does the same when it delivers the message success(v).

▶ Theorem 5. Algorithm 5 solves consensus in CAMPn,t[MBroadcast,Ω]. (Proof in [19].)

8 Conclusion

Having a better understanding of the power and weaknesses of the basic communication
mechanisms provided by asynchronous crash-prone distributed systems is a central issue
of distributed computing. The aim of this article was to be a step in such an approach.
To this end, the article investigated basic relations linking send/receive message patterns
and read/write patterns. It introduced three basic message patterns, each involving a pair
of processes, and showed that only two of these patterns have a RW counterpart. This
gives a new and deeper view of the different ways processes communicate (and consequently
cooperate) in RW systems and in message-passing systems. Then the article introduced a new
message-passing communication abstraction denoted Mutual Broadcast, the computability
power of which is the same as the one of RW registers. Its main property (called mutual
ordering) is the fact that, for each pair of processes p and p′, if p broadcasts a message m

and p′ broadcasts a message m′, it is not possible for p to deliver first (its message) m and
then m′ while p′ delivers first (its message) m′ and then m. In a very interesting way, it
appears that this implicit synchronization embedded in the MBroadcast abstraction allows
for the design of simple algorithms in which, among other properties, no notion of quorums
is explicitly required. The simplicity of MBroadcast-based algorithms has been highlighted
with examples including simple re-writing of existing algorithms such Lamport’s Bakery and
Paxos algorithms.

Nevertheless the quest for the Grail of a deeper understanding of message-passing systems
is not complete. On the side of shared memory systems an apex has been attained with
Herlihy’s consensus hierarchy and its extensions [2, 13, 27, 45, 48]. The same has not yet
been achieved for message-passing systems: is there a consensus hierarchy based on specific
broadcast abstractions? If the answer is “yes”, which is this hierarchy? The case for the
consensus number ∞ is total order broadcast [12], the case for the consensus number 2
is PBroadcast, but no specific broadcast abstraction is known for each consensus number
x ∈ [3..+∞). We conjecture that there are no such specific broadcast abstractions.4

References
1 Yehuda Afek, Danny Dolev, Hagit Attiya, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. In Proc. of the 9th Annual ACM Symposium on Principles of
Distributed Computing, Quebec, Canada, August 22-24, 1990, pages 1–13, 1990.

2 Yehuda Afek, Faith Ellen, and Eli Gafni. Deterministic objects: Life beyond consensus. In
Proc. of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 97–106, 2016.

4 Let us remind that, it has been shown in [15] that the weakest failure detector to implement Test&Set
and Compare&Swap in asynchronous shared-memory systems prone to any number of crashes is the
same failure detector (namely, Ω).

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:17

3 Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for a class of
synchronization objects (extended abstract). In Proc. of the Twelth Annual ACM Symposium
on Principles of Distributed Computing, Ithaca, New York, USA, August 15-18, 1993, pages
159–170, 1993.

4 Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli, and Phillip W Hutto. Causal
memory: Definitions, implementation, and programming. Distributed Computing, 9(1):37–49,
1995.

5 James H. Anderson. Multi-writer composite registers. Distributed Comput., 7(4):175–195,
1994.

6 Hagit Attiya. Efficient and robust sharing of memory in message-passing systems. J. Algorithms,
34(1):109–127, 2000.

7 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, 1995.

8 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agreement.
Distributed Computing, 8(3):121–132, 1995.

9 Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and
advanced topics (2. ed.). Wiley series on parallel and distributed computing. Wiley, 2004.

10 Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of failures.
ACM Trans. Comput. Syst., 5(1):47–76, 1987.

11 Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, 1996.

12 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

13 Eli Daian, Giuliano Losa, Yehuda Afek, and Eli Gafni. A wealth of sub-consensus deterministic
objects. In 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans,
LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages 17:1–17:17, 2018.

14 Luciano Freitas de Souza, Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni.
Accountability and reconfiguration: Self-healing lattice agreement. In 25th International
Conference on Principles of Distributed Systems, OPODIS 2021, December 13-15, 2021,
Strasbourg, France, volume 217 of LIPIcs, pages 25:1–25:23, 2021.

15 Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Tight failure detection
bounds on atomic object implementations. J. ACM, 57(4):22:1–22:32, 2010.

16 Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal. Imple-
menting snapshot objects on top of crash-prone asynchronous message-passing systems. IEEE
Trans. Parallel Distributed Syst., 29(9):2033–2045, 2018.

17 Carole Delporte-Gallet, Hugues Fauconnier, and Michel Raynal. On the weakest information
on failures to solve mutual exclusion and consensus in asynchronous crash-prone read/write
systems. J. Parallel Distributed Comput., 153:110–118, 2021.

18 Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Brief announcement:
The mbroadcast abstraction. In Proc. of the 2023 ACM Symposium on Principles of Distributed
Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023, pages 282–285, 2023.

19 Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Send/Receive
Patterns versus Read/Write Patterns: the MB-Broadcast Abstraction (Extended Version).
Research report, University of Nantes, 2023. URL: https://hal.archives-ouvertes.fr/
hal-04087447.

20 Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569, 1965.

21 Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Marko Vukolic. Fast access to distributed
atomic memory. SIAM J. Comput., 39(8):3752–3783, 2010.

22 Jose M. Faleiro, Sriram K. Rajamani, Kaushik Rajan, G. Ramalingam, and Kapil Vaswani.
Generalized lattice agreement. In Darek Kowalski and Alessandro Panconesi, editors, ACM

DISC 2023

https://hal.archives-ouvertes.fr/hal-04087447
https://hal.archives-ouvertes.fr/hal-04087447

16:18 Send/Receive Patterns Versus Read/Write Patterns

Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal,
July 16-18, 2012, pages 125–134. ACM, 2012.

23 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

24 Michael J. Fischer and Michael Merritt. Appraising two decades of distributed computing
theory research. Distributed Comput., 16(2-3):239–247, 2003.

25 Chryssis Georgiou, Theophanis Hadjistasi, Nicolas Nicolaou, and Alexander A. Schwarzmann.
Implementing three exchange read operations for distributed atomic storage. J. Parallel
Distributed Comput., 163:97–113, 2022.

26 Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical Report Tech Report 94-1425, Cornell University, 1994. Extended
version of "Fault-Tolerant Broadcasts and Related Problems” in Distributed systems, 2nd
Edition, Addison-Wesley/ACM, pp. 97-145 (1993.

27 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, 1991.

28 Maurice Herlihy, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. From wait-free to
arbitrary concurrent solo executions in colorless distributed computing. Theor. Comput. Sci.,
683:1–21, 2017.

29 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

30 Damien Imbs, Petr Kuznetsov, and Thibault Rieutord. Progress-space tradeoffs in single-
writer memory implementations. In 21st International Conference on Principles of Distributed
Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, volume 95 of LIPIcs, pages
9:1–9:17, 2017.

31 Damien Imbs, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Which broadcast
abstraction captures k-set agreement? In Andréa W. Richa, editor, 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
volume 91 of LIPIcs, pages 27:1–27:16, 2017.

32 Damien Imbs, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Set-constrained
delivery broadcast: A communication abstraction for read/write implementable distributed
objects. Theor. Comput. Sci., 886:49–68, 2021.

33 Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974.

34 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

35 Leslie Lamport. On interprocess communication. part I: basic formalism. Distributed Comput.,
1(2):77–85, 1986.

36 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.
37 Leslie Lamport. Deconstructing the bakery to build a distributed state machine. Commun.

ACM, 65(9):58–66, 2022.
38 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.

ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.
39 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
40 Loui M.C. and Abu-Amara H.H. Memory requirements for agreement among unreliable

asynchronous processes. Advances in Computing Research, 4:163-183. JAI Press, 1987.
41 Anshuman Misra and Ajay D. Kshemkalyani. Solvability of byzantine fault-tolerant causal

ordering problems. In Mohammed-Amine Koulali and Mira Mezini, editors, Proc. of the 10th
International Conference on Networked Systems, NETYS 2022, Virtual Event, volume 13464
of Lecture Notes in Computer Science, pages 87–103. Springer, 2022.

42 Achour Mostéfaoui and Michel Raynal. Two-bit messages are sufficient to implement atomic
read/write registers in crash-prone systems. In George Giakkoupis, editor, Proc. of the 2016

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:19

ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,
July 25-28, 2016, pages 381–389. ACM, 2016.

43 Achour Mostéfaoui, Michel Raynal, and Matthieu Roy. Time-efficient read/write register in
crash-prone asynchronous message-passing systems. Computing, 101(1):3–17, 2019.

44 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

45 Matthieu Perrin, Achour Mostéfaoui, Grégoire Bonin, and Ludmila Courtillat-Piazza. Extend-
ing the wait-free hierarchy to multi-threaded systems. Distributed Computing, 35(4):375–398,
2022.

46 Michel Raynal. Concurrent Programming - Algorithms, Principles, and Foundations. Springer,
2013.

47 Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach.
Springer, 2018.

48 Michel Raynal. Concurrent crash-prone shared memory systems: a few theoretical notions.
Morgan & Claypool Publishers, 2022.

49 Michel Raynal. Mutual exclusion vs consensus: both sides of the same coin? Bull. EATCS,
140, 2023.

50 Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction and a simple
way to implement it. Information Process. Letters, 39(6):343–350, 1991.

51 Michel Raynal and Gadi Taubenfeld. A visit to mutual exclusion in seven dates. Theor.
Comput. Sci., 919:47–65, 2022.

52 Eric Ruppert. Implementing shared registers in asynchronous message-passing systems. In
Encyclopedia of Algorithms - 2008 Edition. Springer, 2008.

53 Cheng Shao, Jennifer L. Welch, Evelyn Pierce, and Hyunyoung Lee. Multiwriter consistency
conditions for shared memory registers. SIAM J. Comput., 40(1):28–62, 2011.

A Missing proofs

A.1 From atomic RW registers to MBroadcast
▶ Theorem 2. Algorithm 2 builds MBroadcast on top of regular RW registers.

Proof. Let us consider an execution of Algorithm 2. We prove each property of reliable-
mutual-broadcast.

Proof of the Validity property. Suppose pi mutual-delivers m from pj . If i = j, this
happens on line 3, so m was mbroadcast by pi. Otherwise, it happens on line 6, so m was
read on line 5 and written on line 1 by pj , that mbroadcast m.

Proof of the No-duplication property. Suppose pi mdelivers twice the kth message mbroad-
cast by pj . By Lines 6-7, at the second mdelivery we have deliveredi[j] ≥ k, which is
impossible by line 6.

Proof of the Local termination property. All operations of Algorithm 2 terminate because
they do not contain while loops or recursive calls, and messages that are mbroadcast by pi

are delivered by pi on line 3.

Proof of the Global CF-Termination property. Suppose pi mdelivers a message m from
pj . Then pj inserted it in SENT [j] and never deleted it. Therefore all correct processes
eventually mdeliver m when later they execute catch_up().

DISC 2023

16:20 Send/Receive Patterns Versus Read/Write Patterns

Proof of the Global CS-Termination property. It is a direct consequence of Global CF-
Termination.

Proof of the Mutual ordering property. Suppose that pi mbroadcasts mi and pj mbroad-
casts mj . At least one of the two scenarios must happen:

pi completes its write on SENT [i] (line 1) before pj starts its read on SENT [i] (line 5).
In that case, since SENT [i] is regular, pj reads mi from SENT [i] and mdelivers it during
its execution of catch_up() (line 2), before mdelivering mj on line 3.
Or pj completes its write on SENT [j] (line 1) before pi starts its read on SENT [j] (line 5),
so pi mdeliver mj before mi. ◀

A.2 From MBroadcast to atomic RW registers

▶ Theorem 3. Algorithm 3 implements an atomic RW register on top of
CAMPn,t[MBroadcast].

Proof. Let us first remark that Algorithm 3 contains no loop, so all its operations terminate.
Let us consider an execution admitted by Algorithm 3. For each operation o, we define

the timestamp ts(o) of o as follows. If o is a write by pi, then ts(o) = ⟨ti, i⟩ at the end of
line 2. If o is a read by pi, then ts(o) = clocki at the beginning of line 6. In other words,
ts(o) is the timestamp of the value that is read or written by o. We also define the binary
relation → between operations as o1 → o2 if either 1) o1 was terminated before o2 was started
(denoted by o1 →1 o2), or 2) o2 is a write and ts(o1) < ts(o2) (denoted by o1 →2 o2), or 3)
o1 is a write, o2 is a read, and ts(o1) ≤ ts(o2) (denoted by o1 →3 o2).

Let us first notice that, if o1 → o2, then ts(o1) ≤ ts(o2), and if moreover o2 is a write,
then ts(o1) < ts(o2). This is true by definition for →2 and →3. For →1, the first part is a
direct consequence of the blocking-mutual-ordering property between the Write message
sent at the end of o1 (line 3 or 6) and the synch message sent at the beginning of o2 (line 1
or 4). Moreover, if o2 is a write, then ts(o2) > ts(o1) by line 2.

Let us prove that → is cycle-free. Indeed, suppose there is a cycle o1 → o2 → . . . → ok = o1
containing at least two operations. By what precedes, all operations in the cycle have the
same timestamp, hence there cannot be any write operation. Moreover, there cannot be only
reads, because they would be ordered only by →1 which is cycle-free.

Finally, the reflexive and transitive closure of → can be extended into a total order
that respects real time thanks to →1, and such that any read returns the initial value if its
timestamp is ⟨0, 0⟩, or the value written by the preceding write since vali and clocki are
updated jointly on line 8, thanks to →2 and →3. Hence, the algorithm is linearizable. ◀

A.3 Proof of the Mutex algorithm

▶ Theorem 4. Considering the system model CAMPn,t[MBroadcast], Algorithm 4 ensures
that there is at most one process at a time in the critical section (safety), and that if no
process crashes while executing acquire(), release(), or the code inside the critical section,
then all invocations of acquire() and release() terminate (liveness).

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:21

Proof.
Proof of the safety property. Suppose, by contradiction, that two processes pi and pj are
in the critical section at the same time, and let ti and tj be their respective order values
after line 2. Without loss of generality, let us suppose that ⟨ti, i⟩ < ⟨tj , j⟩. Two cases are
consistent with the Mutual Ordering property applied to pi’s hello() message and pj ’s
ticket(tj) message.

If pi receives ticket(tj) before it fifo-mbroadcasts hello(), then ⟨tj , j⟩ ∈ ticketi after
line 2 thanks to line 7, and, due to fifo ordering, this will remain true as long as pj

remains in critical section. Then, pi picks ti such that ⟨ti, i⟩ > ⟨tj , j⟩ (line 2). This is in
contradiction with the fact that ⟨ti, i⟩ < ⟨tj , j⟩.
If pj fifo-mdelivers hello() from pi before it fifo-mbroadcasts ticket(tj), then, when pj

entered the critical section, either ⟨0, i⟩ ∈ ticketj (by line 6) or ⟨ti, i⟩ ∈ ticketj (by line 7),
due to the fifo ordering. In both cases, this contradicts the fact that ⟨tj , j⟩ = min(ticketj)
(line 4).

Proof of the liveness property. Let us observe that the release() operation has no loop,
and the acquire() operation has a single wait() statement (line 4). Suppose, by contradiction,
that some process pi remains forever blocked at line 4. Without loss of generality, let us
assume that its timestamp is the smallest one, (i.e. all processes with a lower timestamp
eventually entered and exited the critical section).

After all correct processes have received the message ticket(ti) sent by pi (line 3), all
processes pj that execute line 2 pick a value tj such that ⟨tj , j⟩ > ⟨ti, i⟩. In other words,
a finite number of timestamps ⟨tj , j⟩ < ⟨ti, i⟩ are ever picked in the execution, and, by
minimality of ⟨ti, i⟩, all these timestamps let their process enter the critical section. As
all critical sections terminate, they also all leave critical section and send a goodbye()
message, that is eventually received by pi. After pi has received all these messages, a finite
number of processes pj will call acquire() again and pick tj such that ⟨tj , j⟩ > ⟨ti, i⟩. When
pi has received all the respective ticket(tj) messages, it will have ⟨t, i⟩ = min(ticketi). A
contradiction. ◀

B MBroadcast in Action: Lattice Agreement

One of the very first articles on the use of lattices to solve distributed computing problems
is [8] where a snapshot object is built from a lattice data structure. Later developments
appeared in [22]. More recently, lattice agreement has been used as a building block to solve
accountability and reconfiguration issues encountered in distributed computing [14].

B.1 Definition
A bounded join-semilattice (L, ⊥, ⊑, ⊔) is composed of a set L of elements partially ordered
according to a relation ⊑, such that there is a smallest element ⊥ and for all x, y ∈ L, there
exists a least upper bound of x and y, denoted by x ⊔ y.

Lattice agreement is similar to consensus, namely each process may propose a value and
decide a value. It is defined by the following properties.

Validity. The value decided by a process pi is the least upper bound of a subset of the
proposed values and contains the value proposed by pi.

Consistency. If pi decides xi and pj decides xj , then xi ⊑ xj or xj ⊑ xi.
Termination. If a process does not crash, it decides a value.

DISC 2023

16:22 Send/Receive Patterns Versus Read/Write Patterns

Algorithm 6 Lattice agreement in CAMPn,t[MBroadcast].
operation propose(vi) is % code for pi

(1) repeat previ ← viewi;
(2) synchro_mbroadcast state(viewi ⊔ vi)
(3) until (previ = viewi);
(4) return(viewi)
end operation.

when state(v) is mdelivered from pj do
(5) viewi ← viewi ⊔ v.

B.2 An MBroadcast-based lattice agreement algorithm
Local variables. Each process pi manages two local variables.

viewi contains the current view of the value that pi will return. It is initialized to ⊥.
previ is an auxiliary variable.

Description of the algorithm. Algorithm 6 solves lattice agreement in the system model
CAMPn,t[MBroadcast]. It is based on the classical double-scan principle. When a process pi

invokes propose(vi) it repeatedly mbroadcasts its current view of the decided value enriched
with the value vi it proposes, until viewi has not been modified since the previous mbroadcast.
When it mdelivers a message state(v), pi updates its local view viewi. Let us notice that
viewi can be updated before pi invokes propose(vi).

▶ Theorem 6. Algorithm 6 solves lattice agreement in the system model
CAMPn,t[MBroadcast]. (Proof in [19].)

C On the Computability Side: MP2 Alone Characterizes Test&Set()

C.1 From two-process consensus to PBroadcast
Algorithm 7 implements PBroadcast on top of consensus between two processes. It is inspired
by the implementation of the total-order broadcast given in [12]. The main difference lies in
the fact that the messages are not globally ordered by all processes, but rather by each pair
of processes independently.

As far as shared objects are concerned, for all i and j ̸= i, CONSENSUS{i, j} denotes
an unbounded sequence of consensus instances between pi and pj . The kth element of this
sequence is denoted CONSENSUS{i, j}[k].

Moreover, each process pi manages two local variables.
deliveredi is the set of all messages that pi has already pdelivered (initially ∅).
orderedi, an array of n integer values (initially 0, orderedi[i] is not used), such that
orderedi[j] is the number of consensus instances between pi and pj in which pi took part,
i.e. the index of the next consensus object CONSENSUS{i, j} that can be used by pi.

Each pair of processes (pi, pj) agrees on a sequence of all messages pbroadcast by pi or
pj , thanks to the sequence of consensus instances saved in CONSENSUS{i, j} (Lines 5-6).
Notice that it is possible that the same message happens twice in this sequence, in which
case only the first occurrence will be considered in the order in which messages are delivered
(Lines 9-12).

In order to pbroadcast a message m, a process pi first broadcasts a message pb(m) on line 1
to ensure that m will eventually win a consensus against messages from pj . Upon delivery of
this message, pj helps pi to win a consensus by proposing m as well on CONSENSUS{i, j}
until some consensus is won by m. It is assumed that there is no concurrency between the
execution of pbroadcast(m) and the code associated to the reliable delivery of pb(m).

M. Déprés, A. Mostéfaoui, M. Perrin, and M. Raynal 16:23

Algorithm 7 PBroadcast on top of CAMPn,t[consensus2].
operation pbroadcast(m) is % code for pi

(1) reliable_broadcast pb(m);
(2) for j from 1 to i− 1 and then from i + 1 to n do order(m, j) end for;
(3) deliver(m, i)
end operation.

when pb(m) is reliable-delivered from pj

(4) if j ̸= i then order(m, j); deliver(m, j) end if.

operation order(m, j) is
(5) repeat m′ ← CONSENSUS{i, j}[orderedi[j]].propose(m);
(6) orderedi[j]← orderedi[j] + 1;
(7) if m′ ̸= m then deliver(m′, j) end if
(8) until m′ = m
end operation.

operation deliver(m, j) is
(9) if m /∈ deliveredi then
(10) deliveredi ← deliveredi ∪ {m};
(11) pdelivery of m from pj

(12) end if
end operation.

Then pi tries to insert its message m in the sequences it shares will all the other processes,
until m is the next message it has agreed to pdeliver with all other processes (line 2), and
then pdelivers m (line 3).

▶ Theorem 7. Algorithm 7 implements reliable-PBroadcast. (Proof in [19].)

C.2 From PBroadcast to Test&Set()
For simplicity, this section considers one-shot Test&Set(). It can be easily generalized to
multi-shot Test&Set().

Definition of Test&Set(). A test&set object is an object that can take only two values
true or false. Its initial value is true. It provides the processes with a single one-shot
atomic operation denoted Test&Set(), that sets the value of the object to false and returns
the previous value of the object. As the operation is atomic, its executions can be linearized
and the only invocation that returns true is the first that appears in the linearization order.
From a computability point of view the consensus number of Test&Set() is 2 [3, 27].

A PBroadcast-based implementation of Test&Set() and its proof. Algorithm 8 is a
PBroadcast-based implementation of a Test&Set() object. It uses a series of two-process
tournaments to elect one and only one winner. To this end each process pi manages two
local variables.

roundi is an integer between 0 and max (2, ⌈log2(n)⌉ + 1) (initially 0) that represents pi’s
current progress.
vyingi a Boolean, initially true, that becomes false after pi has lost a tournament.

The levels of the tournament tree are associated with rounds such that at each round r,
two winners from round r − 1 compete by PBroadcasting a message compete(r) (line 2).
Since both processes pdeliver both messages in the same order, the first message decides
which process reaches round r + 1. More precisely, the tournament tree is such that the
set of processes is partitioned into subsets of size 2r, i.e. {p1, ..., p2r }, {p2r+1, ..., p2×2r }, ...,

DISC 2023

16:24 Send/Receive Patterns Versus Read/Write Patterns

Algorithm 8 Test&Set() on top of CAMPn,t[PBroadcast].
operation Test&Set() is % code for pi

(1) while roundi < 2 ∨ (roundi ≤ ⌈log2(n)⌉ ∧ vyingi) do
(2) synchro_pbroadcast compete(roundi)
(3) end while;
(4) return(vyingi)
end operation.

when compete(r) is pdelivered from pj do
(5) if i = j then roundi ← r + 1
(6) else if roundi = 0 ∧ r = 1 then vyingi ← false
(7) else if roundi < r ∧

⌊
i−1
2r

⌋
=

⌊
j−1
2r

⌋
then vyingi ← false

(8) end if.

{
p⌊ n−1

2r ⌋×2r+1, ..., pn

}
. Hence, pi looses round r if it receives a message compete(r) from

another process pj playing in the same set at round r, i.e. such that
⌊

i−1
2r

⌋
=

⌊
j−1
2r

⌋
, when

roundi < r (line 7), which indicates that pi did not receive its own message compete(r) yet
(line 5). Processes play until they loose a round or they win the finale at round ⌈log2(n)⌉
(condition roundi ≤ ⌈log2(n)⌉ ∧ vyingi on line 1). Then, they return the content of their
variable vyingi, which can be true only for a process that won all its tournaments.

In order to ensure linearizability, Algorithm 8 adds a round 0 to prevent late processes
to win if they start their execution after another process played its first tournament: pi

forfeits if it receives a message compete(1) from another process before its own message
compete(0) (line 6). In this case, pi still participates in round 1, so its message compete(1)
forces even slower processes to forfeit as well (condition roundi < 2 on line 1).

▶ Theorem 8. Algorithm 8 implements a wait-free linearizable Test&Set() object in the
system model CAMPn,t[PBroadcast]. (Proof in [19].)

Modular Recoverable Mutual Exclusion Under
System-Wide Failures
Sahil Dhoked #

Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA

Wojciech Golab #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Neeraj Mittal #

Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA

Abstract
Recoverable mutual exclusion (RME) is a fault-tolerant variation of Dijkstra’s classic mutual exclusion
(ME) problem that allows processes to fail by crashing as long as they recover eventually. A growing
body of literature on this topic, starting with the problem formulation by Golab and Ramaraju
(PODC’16), examines the cost of solving the RME problem, which is quantified by counting the
expensive shared memory operations called remote memory references (RMRs), under a variety of
conditions. Published results show that the RMR complexity of RME algorithms, among other
factors, depends crucially on the failure model used: individual process versus system-wide. Recent
work by Golab and Hendler (PODC’18) also suggests that explicit failure detection can be helpful in
attaining constant RMR solutions to the RME problem in the system-wide failure model. Follow-up
work by Jayanti, Jayanti, and Joshi (SPAA’23) shows that such a solution exists even without
employing a failure detector, albeit this solution uses a more complex algorithmic approach.

In this work, we dive deeper into the study of RMR-optimal RME algorithms for the system-wide
failure model, and present contributions along multiple directions. First, we introduce the notion of
withdrawing from a lock acquisition rather than resetting the lock. We use this notion to design a
withdrawable RME algorithm with optimal O(1) RMR complexity for both cache-coherent (CC)
and distributed shared memory (DSM) models in a modular way without using an explicit failure
detector. In some sense, our technique marries the simplicity of Golab and Hendler’s algorithm with
Jayanti, Jayanti and Joshi’s weaker system model. Second, we present a variation of our algorithm
that supports fully dynamic process participation (i.e., both joining and leaving) in the CC model,
while maintaining its constant RMR complexity. We show experimentally that our algorithm is
substantially faster than Jayanti, Jayanti, and Joshi’s algorithm despite having stronger correctness
properties. Finally, we establish an impossibility result for fully dynamic RME algorithms with
bounded RMR complexity in the DSM model that are adaptive with respect to space, and provide a
wait-free withdraw section.

2012 ACM Subject Classification Theory of computation → Concurrent algorithms

Keywords and phrases mutual exclusion, shared memory, persistent memory, fault tolerance, system-
wide failure, RMR complexity, dynamic joining, dynamic leaving

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.17

Funding Wojciech Golab: Researcher supported in part by an Ontario Early Researcher Award, a
Google Faculty Research Award, as well as the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

Acknowledgements We thank the anonymous reviewers for their helpful feedback and insightful
suggestions.

© Sahil Dhoked, Wojciech Golab, and Neeraj Mittal;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 17; pp. 17:1–17:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sahil.dhoked@utdallas.edu
https://orcid.org/0000-0003-2893-377X
mailto:wgolab@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
mailto:neerajm@utdallas.edu
https://orcid.org/0000-0002-8734-1400
https://doi.org/10.4230/LIPIcs.DISC.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Modular Recoverable Mutual Exclusion Under System-Wide Failures

1 Introduction

One of the most common techniques to mitigate race conditions in a concurrent system is to
use mutual exclusion (ME), which establishes a critical section (CS) in which a program can
access a shared resource without risking interference from other processes. Correct use of
mutual exclusion or mutex locks ensures that the system always stays in a consistent state,
and produces correct outcomes. The ME problem was first defined by Dijkstra more than
half a century ago in [16], later formalized by Lamport [35, 36], and then widely studied in
scientific literature (e.g., see [4, 41]) under a variety of assumptions regarding both the degree
of synchrony and the set of synchronization primitives available for accessing shared memory.
The vast majority of research in this area in recent years emphasizes so-called local spin
algorithms, which incur a bounded number of remote memory references (RMRs) – expensive
memory operations that trigger communication on the interconnect joining processors with
memory – in each attempt to acquire and release the lock. Whether or not a memory
operation incurs an RME depends on the underlying shared memory model – cache-coherent
(CC) or distributed shared memory (DSM) (e.g., see [38, 12, 20]).

Over decades of research, the study of shared memory algorithms has started to shift
away from traditionally strong modelling assumptions, such as a failure-free execution
environment where processes agree ahead of time on a set of named shared objects, toward
richer models based on faulty shared memories [1, 40], anonymous systems [42, 47], and faulty
processes [7, 8, 23, 39]. Alternative models are particularly interesting and important for
the ME problem in asynchronous environments since solutions rely intrinsically on blocking
synchronization, and failures can have undesirable and even disastrous ripple effects. For
example, if one process crashes in the critical section, or even while acquiring or releasing a
mutex lock, several other processes who are contending for the same lock can potentially
stall. Although such failures are not common, they can occur in the real world due to
software bugs, or even hardware failures in large scale platforms where processing elements
are interconnected in complex ways.

The recoverable mutual exclusion (RME) problem, formulated recently by Golab and
Ramaraju [23, 24], is the most recent attempt to marry resilience against process failures with
mathematical rigour in the ongoing study of lock-based synchronization. The RME problem
involves designing an algorithm that ensures mutual exclusion under the assumption that
processes may fail at any point during their execution, either independently or simultaneously.
Since a slow process cannot be distinguished reliably from a crashed process in an asynchronous
environment [11, 18], one expects informally that an RME algorithm must receive some
help from the environment in responding to a failure. The primary mechanism for this in
Golab and Ramaraju’s model is the crucial assumption that a crashed process1 eventually
recovers and cleans up the internal state of the RME lock by attempting to acquire and
release it again, which can be regarded as an implicit form of failure detection. Golab and
Hendler’s work on system-wide failures [22] adds an explicit epoch-based failure detector
that helps synchronize a cohort of recovering processes, which simplifies the RME problem
to the point where it can be solved for n processes using common synchronization primitives
with (optimal) O(1) RMR complexity for both CC and DSM models.

The growing body of work on the RME problem focuses primarily on fundamental
correctness properties of RME and techniques for implementing these properties, with little
attention paid to how RME locks could be used in practice to implement fault-tolerant data
structures. Results are especially sparse for RMR-efficient algorithms in the system-wide

1 More precisely, a process that crashes outside of the lock’s non-critical section.

S. Dhoked, W. Golab, and N. Mittal 17:3

Algorithm 1 Process execution model.
while true do

Non-Critical Section (NCS)
Recover();
Enter();
Critical Section (CS)
Exit();

 OR

Withdraw();

failure model, which is arguably the more practical failure model; in a well-designed software
system, processes are more likely to fail together due to a power outage than individually
due to software bugs. Somewhat surprisingly, only two studies have been published in this
space so far, namely work by Golab and Hendler (GH) [22], and Jayanti, Jayanti and Joshi
(JJJ) [28, 29]. Both works follow roughly the same algorithmic technique, which starts with
a conventional mutex algorithm (base mutex), and applies a transformation to reset the base
mutex carefully after a system-wide failure. GH is a black box technique that uses a single
instance of the base mutex and requires an explicit failure detector (as explained earlier),
whereas JJJ avoids the failure detector but uses a somewhat complex arrangement of three
instances of a base mutex (with wait-free exit) and provides a weaker fairness guarantee.

In this work, we advance the state of the art with respect to RME locks for system-wide
failures along several directions. First, we introduce a new algorithmic technique called
withdrawing whereby a process can remove itself from a queue of waiting processes upon
failure without resetting the entire queue to its initial state. This technique allows us to
combine the simplicity of the GH algorithm with the weaker assumptions of the JJJ model.
We demonstrate the power of our approach by constructing a novel RME lock with optimal
O(1) RMR complexity for both CC and DSM models using the well-known Mellor-Crummey
and Scott’s (MCS) mutex lock [38, 17] as the building block. Our algorithm requires only one
instance of this base mutex and provides first-come-first-served (FCFS) fairness, like GH, and
yet does not rely on a failure detector, similar to JJJ. Furthermore, we make the argument
that the ability to withdraw is a useful feature for an RME lock to not only use internally, but
also expose to the application, and formulate the withdrawable recoverable mutual exclusion
problem. In particular, we show in Appendix A that withdrawability alone can be sufficient
for an application’s recovery goals using the example of a lock-based concurrent linked-list
presented in [25]. We also advocate for modular algorithmic designs that separate optional
features like Golab and Ramaraju’s critical section re-entry (CSR) property from the core
functions of an RME lock. Second, we present a variation of our RME algorithm for the CC
model that supports fully dynamic process participation (i.e., support for both joining and
leaving) while maintaining its most desirable features. Our algorithmic approach not only
allows for a separation of concerns but, as we show experimentally, also gives us a substantial
performance advantage over JJJ, which relies crucially on critical section ownership state to
achieve correct recovery. Finally, we establish an impossibility result for fully dynamic RME
algorithms that are RMR-efficient in the DSM model, adaptive with respect to space, and
provide a wait-free withdraw section.

Roadmap. The rest of the text is organized as follows. We present our system model
and formulate the withdrawable RME problem in Section 2. We present an RMR-optimal
RME lock with a wait-free withdraw section assuming system-wide failures for both CC and
DSM models in Section 3, a transformation to add the CSR property in Section 4, and a
fully dynamic variant for the CC model in Section 5. Section 6 describes an impossibility
result about designing a fully dynamic RME algorithm with a wait-free withdraw section for

DISC 2023

17:4 Modular Recoverable Mutual Exclusion Under System-Wide Failures

the DSM model under certain conditions. We discuss related work in Section 7. Section 8
summarizes our conclusions and outlines directions for future research. Discussion of a use case
for withdrawable locks, detailed experiments, and an equivalence result for withdrawability
and abortability are presented in Appendix A, B, and C, respectively.

2 System Model

Our model is based on [22, 23, 24]. We consider an asynchronous shared memory system in
which processes communicate by performing single-word read, write and read-modify-write
(RMW) operations on shared variables, and also have access to private variables. Our
algorithms use two RMW primitives: (i) Fetch-And-Store (FAS), which retrieves the old
value and blindly writes a new value, and (ii) Compare-And-Swap (CAS), which conditionally
writes a new value if the old value matches a given comparison value, and returns a boolean
success indicator.

We assume the crash-recover failure model, meaning that a process may fail at any time
during its execution by crashing, and may recover by resuming execution from the beginning
of its program. Failures are system-wide [22], meaning that all processes crash simultaneously,
as opposed to the individual failure model considered in [23, 24, 15]. Upon crashing, a process
loses its call stack, and its private variables (including the program counter) are reset to
their initial values; however shared variables are stored in persistent memory and retain their
most recently written value prior to the crash.

The execution model of a process with respect to a recoverable lock is depicted in
algorithm 1. A process typically executes the NCS (non-critical section), Recover, Enter,
CS (critical section) and Exit sections, in that order, and then returns to the NCS. The
internal structure of the lock is cleaned up, if needed, inside the Recover section, then the
Enter section is used to acquire the lock, and the Exit section releases it. A process can also
execute the NCS and Withdraw sections, which bypasses the CS and yet allows the internal
structure of the lock to be cleaned up after a failure if needed inside the Withdraw section.
A system-wide failure returns every process to the NCS by resetting its program counter to
the initial value.

The Withdraw section is a new feature in our model, as compared to [23, 24], that provides
the application more flexibility in using the recoverable lock. This becomes especially useful
when an RME lock is used as a component to build another more advanced RME lock
satisfying additional desirable properties, as illustrated in this work; the specific execution
path taken by a process depends on the needs of the program using the lock. A trivial way
to implement Withdraw section is to simply execute the Recover, Enter and Exit sections
in order, with an empty CS (e.g., as on Line 50 in Figure 6 of [21]). However, this naïve
implementation is inherently blocking, and can cause deadlock in the application if not
used carefully. On the other hand, as we show in this work, it is possible to implement the
Withdraw section efficiently in a wait-free manner (i.e., bounded number of steps).

A system execution is modeled as a sequence of process steps called a history. In each
step, a process performs some local computation affecting only its private variables, and
executes at most one shared memory operation. A process p is said to be live in a history H

if it leaves the NCS at least once, meaning that H contains at least one step by p. We also
consider crash steps that represent system-wide failures and do not belong to any process,
but we do not model executions of the NCS and CS as steps. The projection of a history H

onto a process p, denoted H|p, is the maximal subsequence of H comprising all steps of p as
well as crash steps. The concatenation of histories G and H is denoted G ◦ H . An epoch is a
contiguous subhistory of a history H between (and excluding) two consecutive crash steps.

S. Dhoked, W. Golab, and N. Mittal 17:5

A c-passage of a process p is a sequence of steps by p from the first step of the Recover
section to the last step of the Exit section, or a crash failure, whichever occurs first. A
w-passage of a process p is a sequence of steps by p from the first step of the Withdraw
section to the last step of the Withdraw section, or a crash failure, whichever occurs first.
A passage is either a c-passage or a w-passage. A passage is failure-free unless a process
crashes before completing the last step of the Exit or Withdraw section. A super-passage of
a process p is a maximal non-empty sequence of consecutive passages executed by p, where
only the last passage in the sequence can be failure-free. A history H is fair if it is finite, or
it is infinite and every process that is live in H either takes infinitely many steps or stops
taking steps after completing a failure-free passage and returning to the NCS.

Two passages interfere if their respective super-passages overlap (i.e., neither ends before
the other starts). A passage by a process p is 0-failure-concurrent (0-FC) if p crashes in the
respective super-passage. A passage is k-failure-concurrent (k-FC), k > 0, if it interferes
with some (k − 1)-FC passage (possibly itself). Clearly, k-FC implies (k + 1)-FC for all k ≥ 0.
Intuitively, the parameter k in the notion of failure-concurrency measures the maximum
“distance” of a given passage from any failure, where two interfering passages are said to be
at a “distance” of one from each other.

Unless otherwise stated, we allow dynamic participation of processes. A new process can
join the system at run time and use the lock to execute a CS, referred to as dynamic joining
[28, 29]. As part of joining, a process may need to allocate some memory – shared as well as
private – needed to synchronize with other processes. We also consider the dual problem in
which any existing process can leave the system at run time after completing a failure-free
passage, referred to as dynamic leaving. In this case, the departing process needs to know
that it can safely reclaim its memory (unless a separate garbage collection mechanism is
being used). We say that an algorithm is fully dynamic if it supports dynamic joining as well
as dynamic leaving. The original MCS algorithm (without wait-free exit) is fully dynamic.
The RME algorithms in [28, 29] only support dynamic joining but not dynamic leaving.

2.1 RME Correctness and Other Properties Reformulated

This section summarizes the correctness properties of RME, reformulated as needed to
accommodate Withdraw section and w-passage. New additions are typeset in italics.

Mutual Exclusion (ME) At most one process is in the CS at any point in any history.
Starvation Freedom (SF) Let H be an infinite fair history in which every process fails only

a finite number of times during each of its super-passages. If a process p leaves the NCS
in some step of H, then p eventually either enters the CS or begins executing Withdraw
section.

If a process fails inside the CS, then a shared resource (e.g., a data structure) may be
left in an inconsistent state. In such cases, it may be desirable to allow the same process to
re-enter CS and “fix” the shared resource, if needed, before any other process can enter the
CS (e.g., [24, 21, 22, 27]). This property is referred to as critical section re-entry (CSR). We
use a stronger variant of CSR in this work, which is defined as:

Bounded Critical Section Reentry (BCSR) For any history H , if a process p crashes inside
the CS, then, until p has reentered the CS or begun executing Withdraw, any subsequent
execution of Recover and Enter sections by p either completes within a bounded number
of p’s own steps or ends with p crashing.

DISC 2023

17:6 Modular Recoverable Mutual Exclusion Under System-Wide Failures

In addition to the above qualitative properties, it is also desirable for an RME algorithm
to satisfy the following:

Bounded Exit (BE) For any infinite history H, any execution of Exit by any process p

either completes in a bounded number of p’s own steps or ends with p crashing.
Bounded Recovery (BR) For any infinite history H, any execution of Recover by process

p either completes in a bounded number of p’s own steps or ends with p crashing.
Bounded Withdraw (BW) For any infinite history H, any execution of Withdraw by process

p either completes in a bounded number of p’s own steps or ends with p crashing.

Note that the Withdraw section can in some cases serve an application’s recovery goals
better than Golab and Ramaraju’s CSR property [23, 24], which we reformulated earlier. As
a specific example, consider the linked list in Chapter 9 of Herlihy and Shavit [25], which
we reproduce in Appendix A along with a discussion of recoverability. The Add and Remove
methods both use hand-over-hand locking to traverse the list, and both operations take effect
atomically at a single line of code that writes a pointer (Line 163 and Line 178, respectively).
Since garbage collection is used to reclaim list nodes, strict linearizability [2, 6] can be
achieved easily by simply repairing the locks (via either Recover/Enter/Exit or Withdraw).
Re-entering the CS in this case is unnecessary since the linked list structure itself cannot be
corrupted by a crash failure, not to mention that the application would need to determine
specifically which linked list operation was interrupted by a failure to reach the correct CS
as each node-level lock protects multiple critical sections.

Many applications require a lock to provide some guarantees about fairness. Intuitively,
a fairness property imposes a constraint on when and/or how often a process trying to enter
the CS can be overtaken by another process. Definitions of such properties refer to a doorway,
which is a bounded prefix of the Enter section, and intuitively determines the order in which
processes acquire the lock. We consider the following two notions of fairness, the first of
which has novel formulation for the system-wide failure model:

First-Come-First-Served (FCFS) For any two concurrent c-passages π and π′ belonging
to processes p and p′, respectively, if p completes its doorway in π before p′ starts its
doorway in π′, then p′ does not enter the CS in π′ before p enters the CS in π.

k-First-Come-First-Served (k-FCFS), where k ≥ 0 For any two c-passagees π and π′ be-
longing to processes p and p′, respectively, where neither passage is k-FC, if p completes
its doorway in π before p′ starts its doorway in π′, then p′ does not enter the CS in π′

before p enters the CS in π.

Intuitively, FCFS imposes constraints on all c-passages, whereas k-FCFS imposes constraints
only on those c-passages that are sufficiently far away from any failure. Note that FCFS
implies 0-FCFS and k-FCFS implies (k + 1)-FCFS for all k ≥ 0. Further, FCFS and (B)CSR
are mutually incompatible properties. An RME algorithm can satisfy at most one of these
properties; but it can simultaneously satisfy k-FCFS, for some k, as well as BCSR.

2.2 Complexity Measures
In terms of complexity measures, we are concerned in this work with time and space. Time
complexity is quantified by counting remote memory references (RMRs), which are defined
in an architecture-dependent manner. In the cache-coherent (CC) model, we conservatively
count every shared memory operation as an RMR, except where a process p reads a variable
that p has already read earlier, and which has not been updated (i.e., accessed by any means
other than a read) since p’s most recent read. In the distributed shared memory (DSM)

S. Dhoked, W. Golab, and N. Mittal 17:7

Algorithm 2 MCS algorithm with wait-free exit (adapted from [17, 15]).

1 struct QNode {
2 locked: boolean variable, initially FALSE;
3 next: reference to QNode, initially null;
4 };
5 global shared variables
6 Tail: reference to QNode, initially null;

7 per-process shared/persistent variables
8 Poolp: array [0, 1] of QNode, all elements

initially {FALSE, null};
9 Minep: reference to QNode, initially &Pool[0];

10 Currp: integer variable ∈ {0, 1}, initially 0;

11 private variables
12 pred: reference to QNode;

13 Procedure Enter()
14 Minep := &Poolp[Currp];
15 Minep.locked := TRUE;
16 Minep.next := null;
17 pred := FAS(Tail, Minep);
18 if pred = null then return;
19 if CAS(pred.next, null, Minep) then
20 await ¬Minep.locked;

21 Procedure Exit()
22 if CAS(Tail, Minep, null) then return;
23 CAS(Minep.next, null, Minep);
24 if Minep.next ̸= Minep then
25 Minep.next.locked := FALSE;
26 Currp := 1 − Currp;

model, each shared variable is statically allocated to a memory module that is local to exactly
one process and remote to all others. Space complexity is simply the number of memory
words used per process.

3 An RMR-Optimal RME Algorithm with Dynamic Joining for CC and
DSM Models

In this section, we present an RME algorithm for system-wide failures that satisfies the ME
and SF correctness properties, and has O(1) RMR complexity in both CC and DSM models.
Later, we describe a separate transformation to add the BCSR property to any RME lock.

3.1 Background: MCS Algorithm with Wait-Free Exit
The MCS algorithm is a queue-based ME algorithm that has optimal O(1) RMR complexity
in both the CC and DSM models. It maintains a (single) queue of all outstanding requests
for critical section; requests are satisfied in the order in which they are inserted into the
queue. Pseudocode for the algorithm is given in algorithm 2, and has been modified from
the original version [38] to also satisfy the BE property as described in [17].

A request is represented using a QNode, which consists of two fields: (i) a boolean variable,
locked, to indicate whether the node is currently locked and thus its owner does not have
permission to enter its critical section, and (ii) a reference to QNode, next, to store the address
of the successor node.

To enter its critical section, a process first appends its node to the queue (Line 17). If
the queue was not empty (implying that it has a predecessor), it tries to create a forward
link from its predecessor’s node to its own node (Line 19). If successful, it waits for its node
to be unlocked by its predecessor (Line 20). If it either did not have a predecessor (Line 18)
or failed to create the link (Line 19), then it implies that the process holds the lock; in this
case the process simply returns.

When leaving its critical section, a process first attempts to remove its node from the
queue (Line 22). The attempt will fail if another process has already appended its node to
the queue. In that case, the process notifies its successor that the critical section is now
empty by either writing a special value to the next field of its node (if the link has not been
created yet) (Line 23) or unlocking its successor’s node (if the link has already been created)
(Line 25).

DISC 2023

17:8 Modular Recoverable Mutual Exclusion Under System-Wide Failures

In the original MCS algorithm, a process can reuse the same node immediately after
completing its exit section for its next CS request. However, in the wait-free exit version,
immediate reuse may create a deadlock. Using a pool of two nodes and alternating between
them [17] solves this problem (Line 26). Intuitively, once a process is “enabled” to enter
its critical section, then it can be inferred indirectly that the node it used for its previous
request has served its purpose and no process would access its fields anymore; thus, it can be
reclaimed for its next request. Similar techniques have been used to achieve the wait-free
exit property in other queue-based locks [12, 43, 37, 26], but our particular RME algorithm
is derived from the queue-based ME lock described in [17].

3.2 The Main Idea
We modify the augmented MCS algorithm described in Section 3.1 to obtain an RMR-optimal
RME algorithm under the system-wide failure model that satisfies the ME and SF but not
the BCSR property. Assume, for now, that processes do not reuse queue nodes. The key idea
is that, if a process crashes while executing its passage, it terminates or aborts its interrupted
attempt to use the lock (for executing its critical section), and initiates a new attempt to
use the lock using a fresh node. A process aborts its attempt by basically executing steps
of the exit section and unlocking its successor node, if any. Note that a process aborts its
attempt even if it crashed in its critical section. Intuitively, this “clears” the queue of any
“old” nodes, which is then “repopulated” using “new” nodes.

Note that, in the (augmented) MCS algorithm used for solving the ME problem, queue
nodes are unlocked in a serial manner in the same order in which they were appended to the
queue. However, in the RME variant, queue nodes associated with aborted attempts may be
unlocked out of order and even concurrently. This out-of-order unlocking of queue nodes
associated with aborted attempts does not violate the ME property because none of these
queue nodes, which were appended to the queue before the failure, can be used by its owner
now to execute its critical section.

However, the above approach interferes with the node reuse mechanism used in the
augmented MCS algorithm. A slow process p may erroneously unlock a reused node owned
by a fast process q because q’s node was the successor of p’s node in an earlier epoch. To
address this problem, we replace the locked field in a queue node with a field that stores
the address of the predecessor node. A process unlocks its successor node by replacing the
contents of this field in its successor’s node with a null value using a CAS instruction, which
will succeed only if the (successor) node has not been reused.

3.3 A Formal Description
Pseudocode of the RMR-optimal RME algorithm for system-wide failures is presented in
algorithm 3. To avoid repetition, we only describe the differences between algorithm 2
(augmented MCS) and algorithm 3.

As explained earlier, the locked field in QNode (Line 2) has been replaced with the pred
field (Line 28); a process stores the address of its predecessor node in pred (Line 55). The
steps of the Exit section in algorithm 2 have been abstracted into a Cleanup method in
algorithm 3, which is then invoked from the Exit, Recover and Withdraw sections. A process
unlocks its successor node by clearing the pred field of the (successor) node using a CAS
instruction (Line 50). At the beginning of the Cleanup method, a process also deletes the
link from its predecessor node to its own node (Lines 45–46). This step is required to prevent
too many “older” predecessors from performing a CAS instruction on the pred field of its
node. Although these CAS instructions will fail, they may still cause the process to incur an
RMR while spinning on pred field in the CC model.

S. Dhoked, W. Golab, and N. Mittal 17:9

Algorithm 3 An RMR-optimal RME algorithm for tolerating system-wide failures that
satisfies the ME and SF properties.

27 struct QNode {
28 pred: reference to QNode, initially null;
29 next: reference to QNode, initially null;
30 };
31 global shared variables
32 Tail: reference to QNode, initially null;

33 per-process shared/persistent variables
34 Poolp: array [0, 1] of QNode, all elements

initially {null, null};
35 Minep: reference to QNode, initially &Pool[0];
36 Currp: integer variable ∈ {0, 1}, initially 0;

37 private variables
38 pred: reference to QNode;

39 Procedure Withdraw()
40 Cleanup();

41 Procedure Recover()
42 Cleanup();
43 Currp := 1 − Currp;

44 Procedure Cleanup()
45 if Minep.pred ̸= null then
46 CAS(Minep.pred.next, Minep, null);
47 CAS(Tail, Minep, null);
48 CAS(Minep.next, null, Minep);
49 if Minep.next ̸= Minep then
50 CAS(Minep.next.pred, Minep, null);

51 Procedure Enter()
52 Minep := &Poolp[Currp];
53 Minep.pred := null;
54 Minep.next := null;
55 pred := FAS(Tail, Minep);
56 Minep.pred := pred;
57 if Minep.pred = null then return;
58 if CAS(Minep.pred.next, null, Minep) then
59 await Minep.pred = null;

60 Procedure Exit()
61 Cleanup();

Recall that, in the ME algorithm described in algorithm 2, a process alternates between
two nodes. The same idea works in the recoverable version, except that we perform the node
switch at the end of the Recover section.

We refer to the algorithm described in algorithm 3 as MCS-SW (SW stands for system-
wide). The doorway of MCS-SW consists of Lines 52–55. We have:

▶ Theorem 1. MCS-SW satisfies the ME, SF, BE, BR, BW and FCFS properties of the
RME problem. It has O(1) RMR complexity in both CC and DSM models, as well as O(1)
space complexity per process. Finally, it uses bounded variables and supports dynamic joining.

4 Adding the BCSR Property

To our knowledge, two RMR-preserving transformations have been proposed to add the
BCSR property to an RME lock that only satisfies the ME and SF properties. The first
transformation, given by Golab and Ramaraju [23, 24], assumes the individual failure model.
The second transformation, given by Golab and Hendler [22], assumes the system-wide failure
model. Neither transformation can be applied to the RME lock described in Section 3.

The first transformation works under the assumption that a process cannot detect the
failure of another process. This implies that, if a process p has entered its CS during a
passage, then no other process can gain entry into its CS even if p fails during its CS until p

has started its exit section, possibly in a future passage. While this assumption holds for
any RME lock designed for independent failure model without explicit failure detection, it
may not hold for an RME lock designed for the system-wide failure model (with or without
explicit failure detection). Specifically, the RME lock in Section 3 exploits the property that
one’s own failure also implies the failure of every other process in the system. So, a process
p can gain entry into its CS after another process q fails while executing its CS without
requiring q to start its exit section. The second transformation, on the other hand, requires
an explicit epoch-based failure detector.

Note that the transformation for the CC model is relatively straightforward and involves
spinning on a global variable. However, the one for the DSM model is non-trivial because
spinning on a global variable may incur unbounded RMRs in the worst case. In this section,

DISC 2023

17:10 Modular Recoverable Mutual Exclusion Under System-Wide Failures

we present a new transformation that can be applied to any RME lock for system-wide
failures without using an explicit failure detector, and incurs only O(1) RMRs in both CC
and DSM models. Additionally, it preserves all properties of MCS-SW except for fairness
which now weakens to 0-FCFS, a direct consequence of CSR.

4.1 The Main Idea

The RMR-optimal RME algorithm described in Section 3 does not satisfy the BCSR property.
This is because, when processes append new nodes to the queue after aborting their interrupted
attempts, these new nodes may be appended to the queue in a different order. As a result, a
process that crashes while executing its critical section may need to wait for one or more
processes to complete their critical sections before it can reenter its own because nodes of
other processes now precede its own node in the queue.

To add the BCSR property, we maintain a global variable that stores the identifier of the
process currently in CS. A process writes its identifier to the variable when it gains entry
into the CS and resets it upon leaving the CS. If a process crashes during its CS, then, upon
starting a new c-passage, it can return from Recover and Enter methods of the target lock
immediately if the variable contains its own identifier. We refer to this path to enter the
CS as legacy path. Otherwise, it first acquires the base lock and then possibly waits for the
process with legacy admission into the CS to leave, if applicable. We refer to this path to
enter the CS as regular path.

Jayanti, Jayanti and Joshi define a capturable object that can be used to synchronize
access to the CS between processes taking the two paths, while incurring only O(1) RMRs
in both CC and DSM models [29]. However, their capturable object uses an unbounded
sequence number as well as a read-modify-write instruction. We use a similar, but simpler,
approach that avoids the two limitations. Our approach exploits the fact that any legacy
admission can only happen at the beginning of an epoch (period between two consecutive
system-wide failures), after which all admissions are regular.

The main idea is that a process that takes the regular path, say p, uses its own memory
location (basically a boolean variable) to spin and stores the address of its spin location in
another global variable before spinning (provided that the CS is already occupied). The
process leaving the CS is responsible for signalling p by writing to the location provided by p.

4.2 A Formal Description

Pseudocode of the transformation to attain the BCSR property is presented in algorithm 4.
We refer to the transformation as CSR-SW.

The algorithm uses the following shared variables: (i) base RME lock, BLock, that
satisfies the ME and SF properties (e.g., the lock in algorithm 3), (ii) integer, CSOwner,
to store the identifier of the process that currently owns the CS, (iii) location, CSWait,
to store the address of the boolean variable on which a process will spin, (iv) per process
boolean variable, Locked, for spinning until signalled, and (v) per process variable, skipRE ,
to track whether a process skipped acquiring the base RME lock in this current passage.

In the Recover method, a process first checks if it already owns the CS (Line 71). If yes,
it makes a note of it (Line 72) and completes the super-passage of the base lock by invoking
its Withdraw method (Line 73) (legacy path). Otherwise, it starts a new passage of the base
lock by invoking its Recover method (Line 76) (regular path).

S. Dhoked, W. Golab, and N. Mittal 17:11

Algorithm 4 An RMR-optimal transformation to achieve the BCSR property.

62 global shared variables
63 BLock: instance of recoverable (base) lock;
64 CSOwner: process identifier, initially ⊥;
65 CSWait: reference to a boolean variable,

initially null;

66 per-process shared/persistent variables
67 Lockedp: boolean variable, initially null;

68 private variables
69 skipRE: boolean variable;

70 Procedure Recover()
71 if CSOwner = p then
72 skipRE := TRUE;
73 BLock.Withdraw();
74 else
75 skipRE := FALSE;
76 BLock.Recover();

77 Procedure Enter()
78 if CSOwner = p then return;
79 BLock.Enter();
80 Lockedp := TRUE;
81 CSWait := &Lockedp;
82 if CSOwner = ⊥ then Lockedp := FALSE;
83 await not(Lockedp);
84 CSOwner := p;

85 Procedure Exit()
86 CSOwner := ⊥;
87 if CSWait ̸= null then ∗CSWait := FALSE;
88 if ¬skipRE then BLock.Exit();

89 Procedure Withdraw()
90 if CSOwner = p then
91 CSOwner := ⊥;
92 if CSWait ̸= null then ∗CSWait := FALSE;
93 BLock.Withdraw();

In the Enter method, if a process already owns the CS, it returns immediately (Line 78)
(legacy path). Otherwise, it acquires the base lock (Line 79). It next initializes its spin
location (Line 80), announces the address of its spin location (Line 81) and busy-waits if
the CS is already occupied (Lines 82 and 83). Finally, it claims the ownership of the CS
(Line 84) (regular path).

In the Exit method, a process releases the ownership of the CS (Line 86) and signals the
waiting process if any (Line 87). If it took the regular path, it completes the super-passage
of the base lock by invoking its Exit method (Line 88).

In the Withdraw method, if a process currently owns the CS, it releases its ownership
(Line 91) and signals the waiting process if any (Line 92). It then invokes the Withdraw
method of the base lock (Line 93).

The doorway of the target lock consists of Line 78 along with the doorway of the base
lock if acquired. We have:

▶ Theorem 2. CSR-SW preserves the ME, SF, BR, BE, BW and k-FCFS for k ≥ 0 properties
of the base lock, and adds the BCSR property to the target lock. It uses bounded variables
and supports dynamic joining. Finally, it preserves the RMR and space complexities of the
base lock.

Intuitively, the ME property holds for the following reasons. First, regular admissions
to the CS are serialized using the base lock. Second, there is at most one legacy admission
to the CS during an epoch. Third, a regular admission can only occur if the process with
legacy admission has vacated the CS.

Intuitively, the SF property holds for the following reasons. First, the base lock satisfies
the SF property. Second, only a process that takes the regular path, after acquiring the base
lock, needs to busy-wait for the CS to become empty due to legacy admission. If such a
process, say p, finds CSOwner to have a non-bottom value implying that another process,
say q, is currently in the CS, then p would have already written the address of its spin
location to CSWait. Clearly, upon leaving CS, q is guaranteed to find the address of p’s
spin location and signal p to quit its busy-wait loop.

▶ Corollary 3. The target lock obtained by applying CSR-SW to MCS-SW satisfies the ME,
SF, BCSR, BE, BR, BW and 0-FCFS properties. It uses bounded variables and supports
dynamic joining. Finally, it has O(1) RMR complexity in both CC and DSM models, and
uses O(1) space per process.

DISC 2023

17:12 Modular Recoverable Mutual Exclusion Under System-Wide Failures

5 A Fully Dynamic RMR-Optimal RME Algorithm for the CC Model

The RME algorithms in [29] as well as those presented in Sections 3 and 4 support dynamic
joining. While a process can leave the system if it has no super-passage in progress, it cannot
reclaim its memory since other processes may still dereference one of its locations (e.g., the
next field of its queue node). A separate garbage collection mechanism is required to identify
nodes whose memory can be safely reclaimed. We describe an RMR-optimal RME algorithm
for the CC model that allows a process to not only join the system at any time but also leave
at any time and safely deallocate its memory when leaving. The algorithm, however, uses an
unbounded sequence number.

Our RME algorithm is derived from Lee’s ME lock [37, 29], which is specifically designed
for the CC model, and uses the idea described in Section 3. Like the MCS lock, Lee’s lock
is also queue-based and requests are satisfied in the order in which they are appended to
the queue. However, the queue is implicit and a queue node does not store next pointers. A
process instead spins on a memory location in its predecessor’s node until it is signalled by
the predecessor. Further, unlike in the MCS lock, a process does not attempt to remove its
node from the queue.

Algorithm 5 describes the pseudocode of the RME algorithm with support for dynamic
leaving, based on Lee’s ME lock. We refer to the algorithm as LeeDL-SW. Note that the
original Lee’s lock consists of Lines 118–121 for acquiring the lock and Line 112 for releasing
the lock. To acquire the lock, a process switches its queue node (Line 118), initializes it
(Line 119), appends it to the queue (Line 120) and waits until signalled by its predecessor
(Line 121). To release the lock, a process simply signals its successor (Line 112).

We now describe adding recoverability, as well as the optional critical section re-entry
and dynamic leaving properties to Lee’s lock, while preserving its RMR optimality. For
convenience, the code lines used to achieve critical section re-entry and dynamic leaving
properties are tagged with one and two “◀” symbols, respectively, at the end of each line.

Adding recoverability. We define a Cleanup method in which a process attempts to remove
its node from the queue (Lines 110 and 111) and then signal its successor in case it has one
(Line 112). The Cleanup method is invoked from the Recover, Exit and Withdraw methods.

Adding critical section re-entry. We use a shared variable to keep track of the process
currently executing its CS (CSOwner). Once a process has been signalled by its predecessor
(i.e., it has acquired Lee’s lock), the process has to wait until the CS has become empty
(Line 122) and then claims the ownership of the CS (Line 123). A process releases the
ownership of the CS as part of the Cleanup method (Line 109). If a process fails during its
CS, it can immediately return from the Recover and Enter methods if it already owns the
CS (Lines 114 and 117).

Adding dynamic leaving. A process can leave the system only if it has no super-passage in
progress. Moreover, before leaving the system, the process must invoke the SafeToReclaim
method. It then either waits for the method to complete or for a system-wide failure to
occur. Once either of these two events has occurred, it can safely reclaim all its memory.

We use a sequence number to keep track of the rough number of times the CS has
been occupied (CSBusy). A process increments this sequence number after obtaining the
ownership of the CS (Line 124). Note that the count need not be exact due to failures. The
purpose of the SafeToReclaim method is to ensure that the caller does not have a successor

S. Dhoked, W. Golab, and N. Mittal 17:13

Algorithm 5 An RMR-optimal RME lock for the CC model that supports dynamic
joining as well as dynamic leaving. Code in red color is only required for the CSR property.

94 struct QNode{
95 locked: boolean variable, initially FALSE;
96 };
97 global shared variables
98 Tail: reference to QNode, initially null;
99 CSOwner: process identifier, initially ⊥; ◀

100 CSBusy: integer variable, initially 0; ◀◀

101 per-process shared/persistent variables
102 Poolp: array [0, 1] of QNode, all elements

initially {FALSE};
103 Facep: integer variable, initially 0;
104 Leavingp: boolean variable, initially

FALSE ; ◀◀

105 private variables
106 pred, tail: reference to QNode;
107 busy: integer variable;

108 Procedure Cleanup()
109 if CSOwner = p then CSOwner := ⊥; ◀

110 if Tail = &Poolp[Facep] then
111 CAS(Tail, &Poolp[Facep], null)

112 Poolp[Facep].locked := FALSE;

113 Procedure Recover()
114 if CSOwner = p then return; ◀
115 Cleanup();

116 Procedure Enter()
117 if CSOwner = p then return; ◀

118 Facep := 1 − Facep;
119 Poolp[Facep].locked := TRUE;
120 pred := FAS(Tail, &Poolp[Facep]);
121 if pred ̸= null then await not(pred.locked) ;
122 await CSOwner = ⊥; ◀
123 CSOwner := p; ◀

124 CSBusy := CSBusy + 1; ◀◀

125 Procedure Exit()
126 Cleanup();

127 Procedure Withdraw()
128 Cleanup();

129 Procedure SafeToReclaim() ◀◀
130 if not(Leaving) then ◀◀
131 Leaving := TRUE; ◀◀

132 tail := Tail; ◀◀
133 if tail = null then return; ◀◀

134 busy := CSBusy; ◀◀

135 await (Tail ̸= tail) or
(CSBusy > busy); ◀◀

136 if Tail = null then return; ◀◀

137 await (CSBusy > busy); ◀◀

that is still executing its Enter method and thus may dereference one of its queue nodes.
Clearly, the condition holds if the queue is empty (i.e., the tail pointer is null). Note that,
when a process invokes the SafeToReclaim method, the tail pointer cannot point to any of
its two queue nodes since the process would have completed a failure-free instance of the
Cleanup method with respect to each of its nodes. Thus, if a process finds that the queue
is not empty when leaving, it can infer that one or more nodes have been appended to the
queue after its most recent append operation. The issue is that some of these nodes may have
been appended to the queue before the last failure, and thus will be eventually abandoned
by their owners.

In the SafeToReclaim method, the process first reads the tail pointer and returns if the
queue is empty (Lines 132 and 133). Otherwise, it reads the sequence number mentioned
earlier (Line 134). It then waits until either the tail pointer or the sequence number has
advanced (Line 135). It next re-reads the tail pointer and returns if the queue is now empty
(Line 136). If not, it implies that a new node has been added to the queue since the last
system-wide failure. Thus, either the sequence number will eventually advance (Line 137) or
the system will crash (Lines 130 and 131). The process can safely reclaim its memory in
either case.

It is possible that a process may incur multiple RMRs while spinning on the tail pointer.
This may happen when the same node is appended to the queue again or when a failed CAS
instruction is executed on the tail pointer. In the first case, we can show that the sequence
number has also advanced. In the second case, we can show that failed CAS instructions can
generate at most three RMRs for a spinning process. This is because a process signals its
successor only after trying to remove its node from the queue.

DISC 2023

17:14 Modular Recoverable Mutual Exclusion Under System-Wide Failures

▶ Theorem 4. LeeDL-SW satisfies the ME, SF, BCSR, BE, BR, BW and 0-FCFS properties.
It supports dynamic joining as well as dynamic leaving. Finally, it has O(1) RMR complexity
in the CC model, and uses O(1) space per process.

We implemented the RME algorithm from this section and compared it against the
CC-specific version of Jayanti, Jayanti and Joshi’s (JJJ) RME algorithm (Section 3 of [29]).
With BCSR property, our algorithm provided 50-75% better throughput than JJJ at low
levels of parallelism, and around 15% better throughput at higher levels of parallelism.
Without BCSR property, our algorithm was roughly 2-3× faster than JJJ. Details of our
experiments are provided in Appendix B.

6 On Achieving Dynamic Joining and Leaving, Wait-Free Withdraw,
Adaptive Space, and Bounded RMR Complexity in the DSM Model

In this section, we present an impossibility result for the DSM model (without explicit failure
detection), and for a particular class of RME algorithms characterized according to the
following combination of properties:

1. Bounded RMR complexity per passage. A process can only busy-wait by spinning on a
variable that is local to it in the DSM model, and can only access a bounded number of
remote memory locations per passage.

2. Adaptive space complexity with external memory allocation. The algorithm’s state com-
prises O(1) memory words shared by all processes, called the global state, and O(1)
additional memory words per process called process-local state. The process-local state
for process p is allocated by process p externally (i.e., outside of the RME algorithm)
and is local to process p in the DSM model.

3. Memory safety. Externally allocated memory can be accessed by the RME algorithm
only after it has been allocated and before it has been freed (i.e., use-after-free is not
permitted).

4. Dynamic joining and leaving. Any process can become active in an execution history
after allocating its process-local state. Any active process can leave after a failure-free
passage, meaning that it can free its process-local state in a bounded number of its own
steps and then halt in the NCS.

5. Wait-free withdraw: Any process can complete any invocation of the Withdraw method in
a bounded number of its own steps.

We now present the main result of this section:

▶ Theorem 5. No RME algorithm can satisfy properties 1–5 simultaneously.

Proof. Suppose for contradiction that some RME algorithm A does satisfy each of the
properties 1–5. Since the algorithm’s global state comprises only O(1) memory words by
property 2, it is easy to find two processes p and q such that all the global state is remote to
q. We first construct a finite failure-free execution history H0 involving these two processes
and having the structure H0 = Gp

0 ◦ Gq
0 where p begins a c-passage and enters the CS in Gp

0,
and q begins a c-passage in Gq

0 and enters a busy-wait loop since it cannot enter the CS
concurrently with p. It follows that q must be spinning on its local memory at the end of Gq

0
since A has bounded RMR complexity (property 1) and since every variable in the global
state is remote to q by our choice of q. Next, observe that since H0 exists, the execution
H1 = Gp

0 ◦ f ◦ Gq
0 is also possible where f is a crash step (system-wide failure). This is

because q cannot distinguish between the prefixes Gp
0 and Gp

0 ◦ f without an explicit failure

S. Dhoked, W. Golab, and N. Mittal 17:15

detector. We extend H1 to the history H2 = Gp
0 ◦ f ◦ Gq

0 ◦ Gp
1 where p calls the Withdraw

method in Gp
1 and q takes no additional steps. It follows that p must eventually access q’s

local memory in some step s of Gp
1 as otherwise q is stuck in a busy-wait loop forever if we

extend H2 by interleaving steps of p and q in a fair order. Next, we transform Gp
1 to Gp

2 by
truncating this suffix at the step immediately before p accesses q’s memory in step s, and
observe that the history H3 = Gp

0 ◦ Gq
0 ◦ f ◦ Gp

2 is also possible, once again because there is
no explicit failure detector. Process q cannot distinguish between the prefixes Gp

0 and Gp
0 ◦ f ,

as explained earlier, and p cannot distinguish between Gp
0 ◦ f ◦ Gq

0 and Gp
0 ◦ Gq

0 ◦ f since only
q takes steps in Gq

0. Finally, we transform H3 to H4 = Gp
0 ◦ Gq

0 ◦ f ◦ Gp
2 ◦ Gq

1 where q executes
the Withdraw method in Gq

1, frees its local memory, and leaves the execution (property 4)
while p takes no additional steps. Such a history is possible since the Withdraw method is
bounded (property 5). Extending H4 by p’s step s, which it is poised to execute at the end
of fragment Gp

2, leads to a contradiction of memory safety (property 3) as p accesses q’s local
memory after q has already freed it. ◀

7 Related Work

Golab and Ramaraju’s formulation of the RME problem [23, 24] is a theoretical take on the
practical problem of making mutual exclusion locks robust against crash failures, which can
be traced back to several earlier works [7, 8, 39, 46]. A pervasive pattern in this area of
shared memory research is that fault-tolerant locks rely in various ways on support from the
execution environment, for example where a centralized recovery process is invoked after a
crash to clean up the internal state of the lock, where an explicit failure detector allows a
waiting process to usurp a critical section held by a crashed process, or where shared variables
are reset automatically to specific values during a failure. The RME problem formulation
avoids such specific assumptions, and instead considers that a crashed process recovers and
resumes execution eventually, unless it failed in the NCS.

Both classic ME algorithms and more recent RME algorithms are evaluated primarily
with respect to remote memory reference (RMR) complexity in the cache-coherent (CC)
and distributed shared memory (DSM) multiprocessor architectures, space complexity, as
well as the set of correctness properties (e.g., starvation freedom and fairness) achieved.
In terms of worst-case RMR bounds for the individual process failure model, Golab and
Ramaraju [23] established that RME can be solved for n processes using reads and writes
with O(log n) RMRs per passage, which matches the lower bound of Attiya, et al. [5]. The
latter bound applies to both ME and RME, and can be generalized for ME to comparison
primitives using the RMR-efficient construction of Golab, et al. [20]. For algorithms that
use other read-modify-write primitives, such as Fetch-And-Store or Fetch-And-Increment,
a sub-logarithmic (i.e., O(log n/log log n)) upper bound was established jointly by Golab and
Hendler [21] as well as Jayanti, Jayanti, and Joshi [27], and proven to be tight by Chan and
Woelfel [10]. Katzan and Morrison [34] also proposed an O(logw n) RMRs solution using
w-bit Fetch-And-Add, which matches [21, 27] when w ∈ Θ(log n) and reduces to O(1) in the
extreme case when w ∈ Θ(n); it was recently shown to be tight by Chan et al. in [9].

Most RME algorithms that tolerate individual process failures work correctly and achieve
the same RMR complexity in the system-wide failure model. Golab and Hendler [22] solved
the problem directly for system-wide failures using a failure detector and commonly supported
primitives, and showed that the RMR complexity can be reduced to O(1) using O(log n)-bit
Fetch-And-Store or Fetch-And-Increment primitives. Jayanti, Jayanti, and Joshi [33, 29] were
the first to present RMR-optimal RME algorithms for system-wide failures that do not use
an explicit failure detector. Their approach is presented as a way to transform a traditional

DISC 2023

17:16 Modular Recoverable Mutual Exclusion Under System-Wide Failures

ME lock into an RME lock (under certain conditions) by maintaining three copies of the ME
lock and using an intricate synchronization mechanism to guide requesting processes to an
uncorrupted copy while concurrently resetting a possibly corrupted copy.

Some (ME) locks support the abort feature, which allows a process to abandon – within
a bounded number of its own steps – its attempt to acquire the lock [19, 3, 30, 31]. This
is useful in situations when a process may only wish to wait for a fixed amount of time to
acquire the lock, and, if unable to do so, would prefer to cancel the attempt and perform
some other task before reattempting to acquire the lock. The notion of abortability has
been extended to RME locks as well in [32, 34]. We show in Appendix C that abortable
RME and withdrawable RME are equivalent problems under individual failures and certain
assumptions by giving RMR-preserving transformations that convert one type of lock into
the other. Surprisingly, the two problems may not be same under system-wide failures. In
particular, as we show in this work, it is possible to design an RMR-optimal RME lock
that supports a wait-free withdraw section assuming system-wide failures. Note that any
abortable RME lock under system-wide failures will also implement an abortable ME lock in
a failure-free environment. However, the best known abortable ME lock has Ω(log n/log log n)
RMR complexity in the worst-case [3]. Intuitively, the reason for this gap is that a process
may receive the abort signal at any time during its passage, whereas a process can execute
the withdraw section only at the beginning of its passage after a failure to simplify recovery.

A comprehensive discussion of the RME problem and its solutions can be found in [14].

8 Conclusion and Future Work

In this work, we have presented a modular way to design an RMR-optimal RME lock for both
CC and DSM models under system-wide failures without relying on an explicit failure detector.
Our approach is flexible in the sense that an application can pick and choose the properties
the RME lock should satisfy depending on its needs (e.g., CSR, FRF2, etc.). Further, we
have proposed the notion of withdrawing from a lock acquisition as opposed to resetting the
lock after a failure. The latter is more complex and requires greater synchronization among
processes. Moreover, withdrawable RME locks make it easier in some scenarios to write
fault-tolerant application programs for persistent memory.

In the future, we plan to conduct more comprehensive experiments to compare the
performance of different RME lock alternatives to better understand how their features (e.g.,
correctness properties, reliance on a failure detector) impact performance. We also plan to
design a fully dynamic RMR-optimal RME algorithm for the DSM model, and investigate
whether the blocking synchronization used in our dynamic algorithm for the CC model is
inherently necessary.

References
1 Yehuda Afek, David S. Greenberg, Michael Merritt, and Gadi Taubenfeld. Computing with

faulty shared objects. Journal of the ACM (JACM), 42(6):1231–1274, 1995.
2 Marcos K. Aguilera and Svend Frølund. Strict linearizability and the power of aborting.

Technical Report HPL-2003-241, Hewlett-Packard Labs, 2003.

2 FRF refers to failure-robust fairness, a type of fairness property defined in [22] for the system-wide
failure model, which constraints the number of times a given process can be overtaken by other processes
as regard to their super-passages. It is possible to provide a general transformation that adds the FRF
property to any RME lock similar to that for the BCSR property [13].

S. Dhoked, W. Golab, and N. Mittal 17:17

3 Adam Alon and Adam Morrison. Deterministic abortable mutual exclusion with sublogarithmic
adaptive RMR complexity. In Proc. of the 37th ACM Symposium on Principles of Distributed
Computing (PODC), pages 27–36, 2018.

4 James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual exclusion: major
research trends since 1986. Distributed Computing (DC), 16(2-3):75–110, 2003.

5 Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR lower bounds for mutual
exclusion and other problems. In Proc. of the 40th ACM Symposium on Theory of Computing
(STOC), pages 217–226, 2008.

6 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-
volatile main memory. In Proc. of the 19th International Conference on Principles of Distributed
Systems (OPODIS), pages 20:1–20:17, 2016.

7 Philip Bohannon, Daniel Lieuwen, and Avi Silberschatz. Recovering scalable spin locks. In
Proc. of the 8th IEEE Symposium on Parallel and Distributed Processing (SPDP), pages
314–322, 1996.

8 Philip Bohannon, Daniel Lieuwen, Avi Silberschatz, S. Sudarshan, and Jacques Gava. Re-
coverable user-level mutual exclusion. In Proc. of the 7th IEEE Symposium on Parallel and
Distributed Processing (SPDP), pages 293–301, 1995.

9 David Yu Cheng Chan, George Giakkoupis, and Philipp Woelfel. Word-size rmr trade-offs
for recoverable mutual exclusion. In Proc. of the 43rd ACM Symposium on Principles of
Distributed Computing (PODC), 2023.

10 David Yu Cheng Chan and Philipp Woelfel. A tight lower bound for the RMR complexity
of recoverable mutual exclusion. In Proc. of the 40th ACM Symposium on Principles of
Distributed Computing (PODC), 2021.

11 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

12 Travis S. Craig. Building FIFO and priority-queuing spin locks from atomic swap. Technical
Report 93-02-02, Department of Computer Science, University of Washington, 1993.

13 Sahil Dhoked. Synchronization and Fault Tolerance Techniques in Concurrent Shared Memory
Systems. PhD thesis, The University of Texas at Dallas, 2022.

14 Sahil Dhoked, Wojciech Golab, and Neeraj Mittal. Recoverable Mutual Exclusion. Springer
Nature, 2023.

15 Sahil Dhoked and Neeraj Mittal. An adaptive approach to recoverable mutual exclusion. In
Proc. of the 39th ACM Symposium on Principles of Distributed Computing (PODC), pages
1–10, New York, NY, USA, 2020. doi:10.1145/3382734.3405739.

16 Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM (CACM), 8(9):569, 1965.

17 Rotem Dvir and Gadi Taubenfeld. Mutual exclusion algorithms with constant RMR complexity
and wait-free exit code. In James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão,
editors, Proc. of the International Conference on Principles of Distributed Systems (OPODIS),
volume 95, pages 17:1–17:16, Dagstuhl, Germany, October 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

18 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32:374–382, 1985.

19 George Giakkoupis and Philipp Woelfel. Randomized abortable mutual exclusion with constant
amortized RMR complexity on the CC model. In Proc. of the 36th ACM Symposium on
Principles of Distributed Computing (PODC), pages 221–229, 2017.

20 Wojciech Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. RMR-efficient
implementations of comparison primitives using read and write operations. Distributed
Computing (DC), 25(2):109–162, 2012.

21 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.
In Proc. of the 36th ACM Symposium on Principles of Distributed Computing (PODC), pages
211–220, 2017.

DISC 2023

https://doi.org/10.1145/3382734.3405739

17:18 Modular Recoverable Mutual Exclusion Under System-Wide Failures

22 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion under system-wide failures.
In Proc. of the 37th ACM Symposium on Principles of Distributed Computing (PODC), pages
17–26, 2018.

23 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. In Proc. of the 35th
ACM Symposium on Principles of Distributed Computing (PODC), pages 65–74, 2016.

24 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. Distributed Computing
(DC), 32(6):535–564, 2019.

25 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint.
Morgan Kaufman, 2012.

26 Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. Towards an ideal queue lock. In
Proc. of the 21st International Conference on Distributed Computing and Networking (ICDCN),
January 2020.

27 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. A recoverable mutex algorithm with
sub-logarithmic RMR on both CC and DSM. In Proc. of the 38th ACM Symposium on
Principles of Distributed Computing (PODC), pages 177–186, 2019.

28 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. Constant rmr recoverable mutex under
system-wide crashes, 2023. arXiv:2302.00748.

29 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. Constant RMR system-wide failure
resilient durable locks with dynamic joining. In Proc. of the 35th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 227–237, 2023.

30 Prasad Jayanti and Siddhartha V. Jayanti. Constant amortized RMR complexity deterministic
abortable mutual exclusion algorithm for CC and DSM models. In Proc. of the 38th ACM
Symposium on Principles of Distributed Computing (PODC), pages 167–176, 2019.

31 Prasad Jayanti and Anup Joshi. Recoverable mutual exclusion with abortability. In Mo-
hamed Faouzi Atig and Alexander A. Schwarzmann, editors, Proc. of the International
Conference on Networked Systems (NetSys), pages 217–232, 2019.

32 Prasad Jayanti and Anup Joshi. Recoverable mutual exclusion with abortability. In Proc. of
7th International Conference on Networked Systems (NETYS), pages 217–232, 2019.

33 Anup Joshi. Recoverable Mutual Exclusion Algorithms for Crash-Restart Shared-Memory
Systems. PhD thesis, Dartmouth College, May 2020.

34 Daniel Katzan and Adam Morrison. Recoverable, abortable, and adaptive mutual exclusion
with sublogarithmic RMR complexity. In Proc. of the 24th International Conference on
Principles of Distributed Systems (OPODIS), pages 15:1–15:16, 2021.

35 Leslie Lamport. The mutual exclusion problem: part I – a theory of interprocess communication.
Journal of the ACM (JACM), 33(2):313–326, 1986.

36 Leslie Lamport. The mutual exclusion problem: part II – statement and solutions. Journal of
the ACM (JACM), 33(2):327–348, 1986.

37 Hyonho Lee. Local-spin mutual exclusion algorithms on the DSM model using fetch-&-store
objects. Master’s thesis, University of Toronto, 2003.

38 John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems (TOCS), 9(1):21–65,
1991.

39 Maged M. Michael and Yong-Jik Kim. Fault tolerant mutual exclusion locks for shared memory
systems, 2009. US Patent 7,493,618.

40 Thomas Moscibroda and Rotem Oshman. Resilience of mutual exclusion algorithms to transient
memory faults. In Proc. of the 30th ACM Symposium on Principles of Distributed Computing
(PODC), pages 69–78, 2011.

41 Michel Raynal. Algorithms for Mutual Exclusion. MIT, 1986.
42 Michel Raynal and Gadi Taubenfeld. Mutual exclusion in fully anonymous shared memory

systems. Information Processing Letters, 158:105938, 2020.
43 I. Rhee. Optimizing a FIFO, scalable spin lock using consistent memory. In Proc. of the 17th

IEEE Real-Time Systems Symposium (RTSS), pages 106–114, December 1996.

https://arxiv.org/abs/2302.00748

S. Dhoked, W. Golab, and N. Mittal 17:19

44 Andy Rudoff. Re: cascade lake doesn’t support clwb? [discussion post]. https://groups.
google.com/g/pmem/c/DRdYIc70RHc/m/rtoP681rAAAJ, 2021. Google Groups.

45 Andy Rudoff and the Intel PMDK Team. Persistent memory development kit, 2020. [last
accessed 2/11/2021]. URL: https://pmem.io/pmdk/.

46 Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming. Prentice Hall,
2006.

47 Gadi Taubenfeld. Coordination without prior agreement. In Elad Michael Schiller and
Alexander A. Schwarzmann, editors, Proc. of the 36th ACM Symposium on Principles of
Distributed Computing (PODC), pages 325–334, 2017.

A A Recoverable Lock-Based Concurrent Linked List

We begin with a non-recoverable linked list algorithm adapted from Chapter 9 of Herlihy
and Shavit’s book [25], and shown below in algorithm 6. The list uses two sentinel nodes –
head and tail – which ensures that a traversal can always acquire locks on consecutive nodes.
The items stored in these sentinel nodes are minimum and maximum values from the domain
of values stored in the list, and cannot be added or removed once the list is initialized.

Algorithm 6 A concurrent linked list based on fine-grained locking.

138 struct LLNode {
139 item: value stored in this node;
140 next: reference to next linked list node;
141 M : mutex lock;
142 };
143 global shared variables
144 head: reference to head sentinel node of

linked list;

145 private variables
146 pred, curr , newNode: reference to LLNode;

147 boolean Procedure Add(item)
148 pred := head;
149 pred.M .Enter();
150 curr := pred.next;
151 curr .M .Enter();
152 while curr .item < item do
153 pred.M .Exit();
154 pred := curr ;
155 curr := curr .next;
156 curr .M .Enter();

157 if curr .item = item then
158 curr .M .Exit();
159 pred.M .Exit();
160 return FALSE;

161 newNode := new LLNode;
162 newNode.next := curr ;
163 pred.next := newNode;
164 curr .M .Exit();
165 pred.M .Exit();
166 return TRUE;

167 boolean Procedure Remove(item)
168 pred := head;
169 pred.M .Enter();
170 curr := pred.next;
171 curr .M .Enter();
172 while curr .item < item do
173 pred.M .Exit();
174 pred := curr ;
175 curr := curr .next;
176 curr .M .Enter();

177 if curr .item = item then
178 pred.next := curr .next;
179 curr .M .Exit();
180 pred.M .Exit();
181 return TRUE;

182 curr .M .Exit();
183 pred.M .Exit();
184 return FALSE;

A recoverable (i.e., strictly linearizable [2]) version of the above algorithm is obtained by
allocating the node structure and program variables (including curr and pred) in persistent
memory, replacing the node-level ME locks with RME locks, and adding a recovery procedure
that cleans up any locks that may have been corrupted by a crash. Program variables that
were private before the transformation now need appropriate initial values since they may be
accessed by the recovery procedure before they can be explicitly initialized. A value of null
is appropriate for the linked list since the variables are all pointers to LLNode.

DISC 2023

https://groups.google.com/g/pmem/c/DRdYIc70RHc/m/rtoP681rAAAJ
https://groups.google.com/g/pmem/c/DRdYIc70RHc/m/rtoP681rAAAJ
https://pmem.io/pmdk/

17:20 Modular Recoverable Mutual Exclusion Under System-Wide Failures

Algorithm 7 Recovery protocol based on withdrawable RME locks.
185 Procedure Recover()
186 if pred ̸= null then pred.M .Withdraw();
187 if curr ̸= null and curr ̸= pred then curr .M .Withdraw();

Recovery Using Withdrawable RME Locks. We begin by explaining how recovery can be
achieved using the withdrawable RME locks introduced in this work. The recovery procedure
executed by a process after a failure (or at the start of every execution) is presented in
algorithm 7. The idea is to clean up any locks a process may have held at the time of a
crash failure by executing the Withdraw section, and allow a garbage collector to deal with
memory leaks. No further action is required since the fundamental structure of the linked
list cannot be corrupted by a system-wide failure. The relevant locks are identified by the
curr and pred variables, which usually point to the last two linked list nodes accessed, and
sometimes to a single node (e.g., if a crash occurs immediately after Line 174). The entire
recovery protocol is wait-free as long as the locks provide wait-free Withdraw sections, which
means that it cannot possibly introduce deadlock.

Recovery Using RME Locks in the Style of Jayanti, Jayanti, and Joshi. For comparison,
we consider an alternative design of the recovery procedure based on Jayanti, Jayanti, and
Joshi’s RME lock [29], which lacks a Withdraw section and uses a slightly different interface
in which the Recover section directs a process to either return to the NCS or proceed to
the CS via its return value. As explained in Section 7, the JJJ algorithm can be used to
simulate a Withdraw section, but that would go against the intent of their reformulation
of the RME problem, which is to resume execution of the CS if that is where the failure
occurred. Applying the latter principle to the linked list, we immediately run into difficulties.
To begin with, the recovery procedure must consider different cases depending on the return
values of the Recover section: IN_REM vs. IN_CS. With two locks to recover, there are
four principal cases to analyze:

1. pred.M .Recover() returns IN_REM and curr .M .Recover() returns IN_REM (e.g.,
crash at line 148): nothing to do

2. pred.M .Recover() returns IN_REM and curr .M .Recover() returns IN_CS (e.g.,
crash at line 153): resume traversal

3. pred.M .Recover() returns IN_CS and curr .M .Recover() returns IN_REM (e.g.,
crash at line 155): resume traversal

4. pred.M .Recover() returns IN_CS and curr .M .Recover() returns IN_CS (e.g., crash
at line 161): resume traversal

Upon closer inspection of the above four cases, we note additional complications. First,
the traversal may need to be resumed either inside the Add procedure or inside the Remove
procedure, and so the algorithm must be augmented with additional state to keep track of
which procedure the process was executing; this hurts performance and effectively increases
the number of cases during recovery from four to seven as the traversal may need to resume
at slightly different points in cases 2–4 (case 1 applies equally well to both Add and Remove).
Moreover, in case 4 alone we must consider separately the subcase when pred = curr and
the subcase when pred ̸= curr , which increases the total number of cases from seven to nine.
Without fleshing out the recovery protocol in full detail, we conclude that the solution would
be substantially more complex than our solution in algorithm 7.

S. Dhoked, W. Golab, and N. Mittal 17:21

MA MB MC MD ME

Figure 1 Illustration of deadlock scenario with coarse-grained idempotent actions.

Recovery Using RME Locks in the Style of Golab and Ramaraju. Finally, we consider
recovery using plain RME locks, as defined by Golab and Ramaraju [23, 24]. Such locks
lack a Withdraw section, and are based on the classic concept of idempotent actions: a
process recovers by simply repeating its entire passage. A course-grained interpretation of
this paradigm has each process repeating the entire linked list operation it was performing at
the time of failure, which easily leads to deadlock. In the example structure illustrated below
in Figure 1, process p could crash in the CS of lock MD, at the same time process q could
crash in the CS of another lock MB closer to the head of the list, then p could block while
entering MB during recovery because it is effectively still held by q, and q could subsequently
block while entering the lock MA in the predecessor node, which is still held by p due to
hand-over-hand locking.

A more fine-grained interpretation of idempotent actions has each process recovering
only the one or two locks it was accessing at the time of failure, similarly to algorithm 7 but
with a sequence of calls to Recover, Enter, and Exit in place of a single call to Withdraw.
However, once again we run into the possibility of deadlock. If a process p tries to recover
pred first and then curr , as in algorithm 7, then consider what happens if the system-wide
failure occurred immediately after p released pred.M at line 153: another process q could
race ahead and traverse the linked list after the crash, acquire the same lock pred.M , then
block on curr .M where p effectively still holds the CS, and cause p to block forever while
trying to enter pred.M . We achieve a better outcome in this scenario if p tries to recover
curr first and then pred, however even this strategy can cause deadlock if processes access
multiple linked list structures and recover them in conflicting orders. This holds even if the
RME locks provide wait-free Recover and Exit sections since a process can block in Enter.
To summarize, although we can envision correct recovery protocols for linked data structures
that use plain RME locks in the style of Golab and Ramaraju, such protocols are much
harder to design than algorithm 7 as actions must be ordered carefully to avoid deadlocks.

B Experimental Evaluation

This section presents an empirical comparison of RME algorithms designed specifically for
system-wide failures that do not use an explicit failure detector. The hardware platform
is a 20-core 2nd generation Intel Xeon processor with Optane Persistent Memory, which
supports the CC model. We compare Jayanti, Jayanti and Joshi’s RME algorithm for the
CC model (Section 3 of [29]), hereby referred to as JJJ, with a simplified version of our
RME algorithm from Section 5 that lacks dynamic leaving. Both RME algorithms are based
on Lee’s ME algorithm [37]. Both algorithms were implemented in C++ using the Intel
Persistent Memory Development Kit [45] on Linux. Shared variables were implemented
using the std::atomic template class, and memory operations were applied with sequential
consistency for simplicity. The libpmemobj library was used for memory allocation to ensure
that shared variables are mapped to persistent memory, and for persistent pointers to deal
with address space relocation across failures.

The cache system on our hardware platform is not part of the persistent domain and
hence volatile. As a result, if the most recent value of a variable that is meant to be persistent
has not been flushed to the persistent memory before a failure, then it will be lost. To

DISC 2023

17:22 Modular Recoverable Mutual Exclusion Under System-Wide Failures

1 2 4 6 8 10 12 14 16 18 20
0

2

4

6

·105

Number of threads (one thread per core)

Pa
ss

ag
es

pe
r

se
co

nd

1 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

·106

Number of threads (one thread per core)

Pa
ss

ag
es

pe
r

se
co

nd

JJJ’s Algorithm Our Algorithm

(a) System throughput with CSR property. (b) System throughput without CSR prop-
erty.

Figure 2 Scalability comparison of RME algorithms on one processor in failure-free execution.

run correctly on our hardware platform, recoverable algorithms designed for the CC model
must be annotated by judicious placement of persistence instructions in the source code.
The PMDK provides the pmem_persist function for this purpose, which internally applies a
cache line write-back and store fence. Naïvely persisting variables after every shared memory
operation is sufficient to ensure correctness with respect to fundamental correctness properties
that refer to the program’s state (e.g., ME, SF, CSR), but does not preserve the RMR
complexity of busy-wait loops. This is because our hardware platform implements the cache
line write-back instruction in a simplistic way that always invalidates the cache line [44]. The
naïve approach is easily optimized for algorithms that use simple busy-wait loops, namely
ones that spin on a single variable until it reaches a specific value, by persisting the spin
variable only after the last iteration of the loop.3 Even this final persistence instruction can
be skipped in the entry section of Lee’s ME algorithm since the value of the spin variable is
not relevant for recovery when this algorithm is used as a building block of an RME algorithm.
It is also safe to omit the persistence instruction when a process reads a single-writer shared
variable owned by that process, such as an element of the Face array in Lee’s algorithm.
We apply these optimizations to both our and JJJ’s algorithm.

Figure 2 presents the scalability of the two algorithms on our hardware platform. Each
point plotted is the average of five repetitions, each lasting 5 s. The error bars represent
the sample standard deviation, and are imperceptibly small in most cases. The throughput
numbers (total number of passages completed per second) presented include the overhead of
persistence instructions and the higher latency of persistent memory over DRAM. Figure 2a
presents data for variations of the two RME algorithms that satisfy the CSR property, while
Figure 2b considers variations of the same algorithms that do not satisfy the CSR property.
The non-CSR version of our algorithm is obtained by deleting lines of pseudocode that track
CS ownership (specifically, code ending with one “◀”). JJJ’s algorithm, in contrast, relies on
CS ownership state to achieve mutual exclusion among recovering processes, and so the same
transformation is not applicable. Note that Line 14 in Figure 3 of [29] is safe to remove and
Line 26 in Figure 3 of [29] must be adjusted.

3 This also applies for the two spin loops executed in parallel in the entry section of JJJ’s algorithm.

S. Dhoked, W. Golab, and N. Mittal 17:23

Algorithm 8 Equivalence between an RME lock that supports a wait-free Withdraw
method and an abortable RME lock that supports a wait-free Exit method under individual
failures.

a : Abortability to Withdrawability.
188 global shared variables
189 M: instance of abortable RME lock;
190 per-process shared/persistent variables
191 Abortp: abort flag;

192 Procedure Withdraw()
193 Abortp := TRUE;
194 if M.Recover() then
195 if M.Enter() then
196 M.Exit();

197 Abortp := FALSE;

198 Procedure Recover()
199 if Abortp then
200 Withdraw();
201 M.Recover();

202 Procedure Enter()
203 M.Enter();

204 Procedure Exit()
205 M.Exit();

b : Withdrawability to Abortability.

206 global shared variables
207 M: instance of withdrawable RME lock;
208 per-process shared/persistent variables
209 Abortp: abort flag;

210 boolean Procedure Recover()
211 M.Recover() ∥ await Abortp;
212 if Abortp then
213 M.Withdraw();
214 return FALSE;
215 else return TRUE;

216 boolean Procedure Enter()
217 M.Enter() ∥ await Abortp;
218 if Abortp then
219 M.Withdraw();
220 return FALSE;
221 else return TRUE;

222 Procedure Exit()
223 M.Withdraw();

As the graphs show, with the CSR property, our algorithm has around 75% and 50%
higher throughput than JJJ’s algorithm for one and two threads, respectively. The gap
stabilizes to around 15% at higher levels of parallelism. Without the CSR property, the gap
between the two algorithm is much higher; specifically, our algorithm is 2-3 times faster than
JJJ’s algorithm. Further, while the performance of JJJ’s algorithm is immune to whether or
not the CSR property holds, our algorithm sees a significant speedup by a factor of 2-3 when
the CSR property is not required.

C Abortability and Withdrawability

To support the notion of abortability in our execution model, we modify the Recover and
Enter methods to return a boolean value. A return value of true indicates that the method
was executed to completion, whereas a return value of false indicates the attempt to acquire
the lock was abandoned and the method terminated prematurely. An application indicates
its desire to abort by raising a boolean flag. Note that an attempt to acquire the lock can
only be abandoned if the flag is raised. A process typically executes a passage by invoking the
Recover, Enter and Exit methods in order. However, if either Recover or Enter returns
false (which would only happen if the abort flag was raised), then the passage is considered
to be complete and subsequent methods are not invoked.

In this section, we show the following equivalence between the two types of RME locks
under the individual failure model. An RME lock that supports a wait-free Withdraw
method can be transformed into an abortable RME lock that supports a wait-free Exit
method. Conversely, an abortable RME lock that supports a wait-free Exit method can be
transformed into an RME lock that supports a wait-free Withdraw method. Further, both
transformations only incur O(1) additional RMRs and thus are RMR preserving.

DISC 2023

17:24 Modular Recoverable Mutual Exclusion Under System-Wide Failures

Abortability to withdrawability. The transformation is given in algorithm 8a. In the
Withdraw method of the target lock, a process attempts to execute the Recover, Enter and
Exit methods of the base abortable lock in sequence with the abort flag raised (by the
algorithm). If either Recover or Enter returns false (indicating that the attempt to acquire
the lock was abandoned), the method immediately returns without invoking the remaining
methods. Otherwise, the process completes the super-passage of the base abortable lock by
executing the Exit method. Clearly, all three methods are wait-free in the presence of the
abort signal.

Withdrawability to abortability. The transformation is given in algorithm 8b. The main idea
is that, in the Recover (respectively, Enter) method of the target lock, the process invokes
the Recover (respectively, Enter) method of the base withdrawable lock and concurrently
monitors the abort flag. If the abort flag is raised (by the environment), the process simulates
a failure by prematurely terminating the method, and executes the Withdraw method instead
to complete the super-passage of the base lock.

Optimal Computation in Leaderless and
Multi-Leader Disconnected Anonymous Dynamic
Networks
Giuseppe A. Di Luna1 #

DIAG, Sapienza University of Rome, Italy

Giovanni Viglietta1 #

Department of Computer Science and Engineering, University of Aizu, Japan

Abstract
We give a simple characterization of which functions can be computed deterministically by anonymous
processes in dynamic networks, depending on the number of leaders in the network. In addition,
we provide efficient distributed algorithms for computing all such functions assuming minimal
or no knowledge about the network. Each of our algorithms comes in two versions: one that
terminates with the correct output and a faster one that stabilizes on the correct output without
explicit termination. Notably, these are the first deterministic algorithms whose running times scale
linearly with both the number of processes and a parameter of the network which we call dynamic
disconnectivity (meaning that our dynamic networks do not necessarily have to be connected at all
times). We also provide matching lower bounds, showing that all our algorithms are asymptotically
optimal for any fixed number of leaders.

While most of the existing literature on anonymous dynamic networks relies on classical mass-
distribution techniques, our work makes use of a recently introduced combinatorial structure called
history tree, also developing its theory in new directions. Among other contributions, our results
make definitive progress on two popular fundamental problems for anonymous dynamic networks:
leaderless Average Consensus (i.e., computing the mean value of input numbers distributed among
the processes) and multi-leader Counting (i.e., determining the exact number of processes in the
network). In fact, our approach unifies and improves upon several independent lines of research on
anonymous networks, including Nedić et al., IEEE Trans. Automat. Contr. 2009; Olshevsky, SIAM J.
Control Optim. 2017; Kowalski–Mosteiro, ICALP 2019, SPAA 2021; Di Luna–Viglietta, FOCS 2022.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Distributed algorithms

Keywords and phrases anonymous dynamic network, leaderless network, disconnected network,
history tree

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.18

Related Version Full Version: https://arxiv.org/abs/2207.08061

Funding Giovanni Viglietta was partially funded by JSPS KAKENHI Grant number 23K10985.

1 Introduction

Dynamic networks. An increasingly prominent area of distributed computing focuses on
algorithmic aspects of dynamic networks, motivated by novel technologies such as wireless
sensors networks, software-defined networks, networks of smart devices, and other networks
with a continuously changing topology [9, 32, 34]. Typically, a network is modeled by a
system of n processes that communicate in synchronous rounds; at each round, the network’s
topology changes unpredictably.

1 Both authors contributed equally to this research.

© Giuseppe A. Di Luna and Giovanni Viglietta;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 18; pp. 18:1–18:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diluna@diag.uniroma1.it
mailto:viglietta@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2023.18
https://arxiv.org/abs/2207.08061
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Optimal Computation in Anonymous Dynamic Networks

Disconnected networks. In the dynamic setting, a common assumption is that the network
is 1-interval-connected, i.e., connected at all rounds [30, 37]. However, this is not a suitable
model for many real systems, due to the very nature of dynamic entities (think of P2P
networks of smart devices moving unpredictably) or due to transient communication failures,
which may compromise the network’s connectivity. A weaker assumption is that the union
of all the network’s links across any T consecutive rounds induces a connected graph on the
processes [28, 39]. We say that such a network is T -union-connected, and we call T ≥ 1 its
dynamic disconnectivity.2

Anonymous processes. Several works have focused on processes with unique IDs, which
allow for efficient algorithms for many different tasks [8, 29, 30, 31, 34, 37]. However, unique
IDs may not be available due to operational limitations [37] or to protect user privacy:
A famous example are COVID-19 tracking apps, where assigning temporary random IDs
to users was not enough to eliminate privacy concerns [43]. Systems where processes are
indistinguishable are called anonymous. The study of static anonymous networks has a long
history, as well [6, 7, 10, 11, 12, 21, 42, 45].

Networks with leaders. It is known that several fundamental problems for anonymous
networks (a notable example being the Counting problem, i.e., determining the total number
of processes n) cannot be solved without additional “symmetry-breaking” assumptions. The
most typical choice is the presence of a single distinguished process called leader [1, 2, 3, 4,
16, 21, 23, 25, 33, 41, 46] or, less commonly, a subset of several leaders (and knowledge of
their number) [24, 26, 27, 28].

Apart from the theoretical importance of generalizing the usual single-leader scenario,
studying networks with multiple leaders also has a practical impact in terms of privacy.
Indeed, while the communications of a single leader can be traced, the addition of more
leaders provides differential privacy for each of them.

Leaderless networks. In some networks, the presence of reliable leaders may not always be
guaranteed: For example, in a mobile sensor network deployed by an aircraft, the leaders
may be destroyed as a result of a bad landing; also, the leaders may malfunction during
the system’s lifetime. This justifies the extensive existing literature on networks with no
leaders [14, 15, 35, 36, 38, 44, 47]. Notably, a large portion of works on leaderless networks
have focused on the Average Consensus problem, where the goal is to compute the mean of a
list of numbers distributed among the processes [5, 13, 14, 20, 39, 40].

1.1 Our Contributions
Summary. Focusing on anonymous dynamic networks, in this paper we completely elucidate
the relationship between leaderless networks and networks with (multiple) leaders, as well
as the impact of the dynamic disconnectivity T on the efficiency of distributed algorithms.
We remark that only a minority of existing works consider networks that are not necessarily
connected at all times.

The full version of this paper is found at [19].

2 We use the term “disconnected” to refer to T -union-connected networks in the sense that they may
not be connected at any round. It is worth noting that non-trivial (terminating) computation requires
some conditions on temporal connectivity to be met, such as a finite dynamic disconnectivity and its
knowledge by all processes (refer to Proposition 2).

G. A. Di Luna and G. Viglietta 18:3

Computability. We give an exact characterization of which functions can be computed
in anonymous dynamic networks with and without leaders, respectively. Namely, with
at least one leader, all the so-called multi-aggregate functions are computable; with no
leaders, only the frequency-based multi-aggregate functions are computable (see Section 2 for
definitions). Interestingly, computability is independent of the dynamic disconnectivity T .
Our contribution considerably generalizes a recent result on the functions computable with
exactly one leader and with T = 1 [17].

Complete problems. While computing the so-called Generalized Counting function FGC

was already known to be a complete problem for the class of multi-aggregate functions [17],
in this work we expand the picture by identifying a complete problem for the class of
frequency-based multi-aggregate functions, as well: the Frequency function FR (both FGC

and FR are defined in Section 2). By “complete problem” we mean that computing such
a function allows the immediate computation of any other function in the class with no
overhead in terms of communication rounds.

Algorithms. We give efficient deterministic algorithms for computing the Frequency function
(Section 3) and the Generalized Counting function (Section 4). Since the two problems are
complete, we automatically obtain efficient algorithms for computing all functions in the
respective classes.

For each problem, we give two algorithms: a terminating version, where each process
is required to commit on its output and never change it, and a stabilizing version, where
processes are allowed to modify their outputs, provided that they eventually stabilize on the
correct output.

The stabilizing algorithms for both problems run in 2Tn rounds regardless of the number
of leaders, and do not require any knowledge of the dynamic disconnectivity T or the number
of processes n. Our terminating algorithm for leaderless networks runs in T (n+N) rounds
with knowledge of T and an upper bound N ≥ n; the terminating algorithm for ℓ ≥ 1
leaders runs in (ℓ2 + ℓ+ 1)Tn rounds with no knowledge about n. The latter running time
is reasonable (i.e., linear) in most applications, as ℓ is typically a constant or very small
compared to n.

A comparison of our results with the state of the art on Average Consensus and Counting
problems is illustrated in Table 1 and discussed in Appendix A.

Negative results. Some of our algorithms assume processes to have a-priori knowledge of
some parameters of the network; in Section 5 we show that all of these assumptions are
necessary. We also provide lower bounds that asymptotically match our algorithms’ running
times, assuming that the number of leaders ℓ is constant (which is a realistic assumption in
most applications).

Multigraphs. All of our results hold more generally if networks are modeled as multigraphs,
as opposed to the simple graphs traditionally encountered in nearly all of the literature.
This is relevant in many applications: in radio communication, for instance, multiple links
between processes naturally appear due to the multi-path propagation of radio waves.

DISC 2023

18:4 Optimal Computation in Anonymous Dynamic Networks

Table 1 Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

Problem Reference Leaders Disconn. Term. Notes Running time

Average
Consensus

[35] ` = 0 X ✏-convergence, T unknown, upper bound
on processes’ degrees known

O(Tn
3 log(1/✏))

[14] ` = 0 ✏-convergence O(n4 log(n/✏))

[13] ` = 0 randomized Monte Carlo O(n)

[26] ` � 1 X ` known O(n5 log3(n)/`)

this work
` = 0 X T unknown 2Tn

` = 0 X X T and N � n known T (n+N)

(Generalized)
Counting

[17]
` = 1 2n� 2

` = 1 X 3n� 2

[28] ` � 1 X ` known O(n4 log3(n)/`)

[27] ` � 1 X X ` and T known, O(logn)-size messages eO(n2T+3
/`)

this work
` � 1 X ` known, T unknown 2Tn

` � 1 X X ` and T known (`2 + `+ 1)Tn

Table 1: Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

Problem Reference Leaders Disconn. Term. Notes Running time

Average
Consensus

[41] ` = 0 X ✏-convergence, T unknown, upper bound
on processes’ degrees known

O(Tn
3 log(1/✏))

[16] ` = 0 ✏-convergence O(n4 log(n/✏))

[15] ` = 0 randomized Monte Carlo O(n)

[31] ` � 1 X ` known O(n5 log3(n)/`)

this work
` = 0 X T unknown 2Tn

` = 0 X X T and N � n known T (n+N)

(Generalized)
Counting

[24]
` = 1 2n� 2

` = 1 X 3n� 2

[33] ` � 1 X ` known O(n4 log3(n)/`)

[32] ` � 1 X X ` and T known, O(logn)-size messages eO(n2T+3
/`)

this work
` � 1 X ` known, T unknown 2Tn

` � 1 X X ` and T known (`2 + `+ 1)Tn

Table 1: Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

connected network, [16] gives an algorithm that converges in O
�
n
4 log(n/✏)

�
rounds. We remark

that both algorithms are only ✏-convergent; therefore, not only does our stabilizing algorithm
improve on their running times, but it solves a more di�cult problem under weaker assumptions.

The algorithm in [15] stabilizes to the actual average in a linear number of rounds, but it is a
randomized Monte Carlo algorithm and requires the network to be connected at each round. In
contrast, our linear-time stabilizing algorithm is deterministic and works in disconnected networks.

As for terminating algorithms, the one in [31] terminates in O
�
n
5 log3(n)/`

�
rounds assuming

the presence of a known number ` of leaders and an always connected network. Since the number of
leaders is known, our terminating algorithm for Generalized Counting also solves Average Consensus
with a running time that improves upon [31] and does not require the network to be connected. We
remark that our algorithm terminates in linear time when ` is constant.

Generalized Counting. Our results on this problem are direct generalizations of [24] to the
case of multiple leaders and disconnected networks. The best previous counting algorithm with
multiple known leaders is the one in [33], which terminates in O

�
n
4 log3(n)/`

�
rounds and assumes

the network to be connected at each round. In the same setting, our stabilizing and terminating
algorithms have running times of 2n rounds and (`2 + `+ 1)n rounds, respectively.

The only other result for disconnected networks is the recent preprint [32], which gives an
algorithm that terminates in eO

�
n
2T+3

/`
�
rounds using O(log n)-sized messages. Our terminating

algorithm has a linear dependence on both n and T , which is an exponential improvement upon the
running time of [32], but it requires polynomial-size messages.

[27]

2 Definitions and Preliminaries

We will give preliminary definitions and results, and recall some properties of history trees from [24].

Processes and networks. A dynamic network is modeled by an infinite sequence G = (Gt)t�1,
where Gt = (V,Et) is an undirected multigraph whose vertex set V = {p1, p2, . . . , pn} is a system of
n anonymous processes and Et is a multiset of edges representing links between processes.

Each process pi starts with an input �(pi), which is assigned to it at round 0. It also has an
internal state, which is initially determined by �(pi). At each round t � 1, every process composes

6

Figure 1: Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

leader flag is set are called leaders (or supervisors). We will denote the number of leaders as `.
Each process also returns an output at the end of each round, which is determined by its current

internal state. A system is said to stabilize if the outputs of all its processes remain constant from a
certain round onward; note that a process’ internal state may still change even when its output is
constant. A process may also decide to explicitly terminate and no longer update its internal state.
When all processes have terminated, the system is said to terminate, as well.

We say that A computes a function F if, whenever the processes are assigned inputs �(p1), �(p2),
. . . , �(pn) and all processes execute the local algorithm A at every round, the system eventually
stabilizes with each process pi giving the desired output F (pi,�). A stronger notion of computation
requires the system to not only stabilize but also to explicitly terminate with the correct output.
The (worst-case) running time of A, as a function of n, is the maximum number of rounds it takes
for the system to stabilize (and optionally terminate), taken across all possible dynamic networks of
size n and all possible input assignments.
Classes of functions. Let µ� = {(z1,m1), (z2,m2), . . . , (zk,mk)} be the multiset of all processes’

2 Definitions and Preliminaries

We will give preliminary definitions and results, and recall some properties of history trees
from [17].

Processes and networks. A dynamic network is modeled by an infinite sequence G =
(Gt)t≥1, where Gt = (V,Et) is an undirected multigraph whose vertex set V = {p1, p2, . . . , pn}
is a system of n anonymous processes and Et is a multiset of edges representing links between
processes.

Each process pi starts with an input λ(pi), which is assigned to it at round 0. It also has
an internal state, which is initially determined by λ(pi). At each round t ≥ 1, every process
composes a message (depending on its internal state) and broadcasts it to its neighbors in Gt

through all its incident links. By the end of round t, each process reads all messages coming
from its neighbors and updates its internal state according to a local algorithm A. Note that
A is deterministic and is the same for all processes. The input of each process also includes
a leader flag. The processes whose leader flag is set are called leaders (or supervisors). We
will denote the number of leaders as ℓ.

Each process also returns an output at the end of each round, which is determined by its
current internal state. A system is said to stabilize if the outputs of all its processes remain
constant from a certain round onward; note that a process’ internal state may still change
even when its output is constant. A process may also decide to explicitly terminate and no
longer update its internal state. When all processes have terminated, the system is said to
terminate, as well.

We say that A computes a function F if, whenever the processes are assigned inputs
λ(p1), λ(p2), . . . , λ(pn) and all processes execute the local algorithm A at every round,
the system eventually stabilizes with each process pi giving the desired output F (pi, λ). A
stronger notion of computation requires the system to not only stabilize but also to explicitly
terminate with the correct output. The (worst-case) running time of A, as a function of n, is
the maximum number of rounds it takes for the system to stabilize (and optionally terminate),
taken across all possible dynamic networks of size n and all possible input assignments.

G. A. Di Luna and G. Viglietta 18:5

Classes of functions. Let µλ = {(z1,m1), (z2,m2), . . . , (zk,mk)} be the multiset of all pro-
cesses’ inputs. That is, for all 1 ≤ i ≤ k, there are exactly mi processes pj1 , pj2 , . . . , pjmi

whose
input is zi = λ(pj1) = λ(pj2) = · · · = λ(pjmi

); note that n =
∑k

i=1 mi. A multi-aggregate
function is defined as a function F of the form F (pi, λ) = ψ(λ(pi), µλ), i.e., such that the
output of each process depends only on its own input and the multiset of all processes’ inputs.

The special multi-aggregate functions FC(pi, λ) = n and FGC(pi, λ) = µλ are called the
Counting function and the Generalized Counting function, respectively. It is known that,
if a system can compute the Generalized Counting function FGC , then it can compute any
multi-aggregate function in the same number of rounds: thus, FGC is complete for the class
of multi-aggregate functions [17].

For any α ∈ R+, we define α ·µλ as {(z1, α ·m1), (z2, α ·m2), . . . , (zk, α ·mk)}. We say that
a multi-aggregate function F (pi, λ) = ψ(λ(pi), µλ) is frequency-based if ψ(z, µλ) = ψ(z, α ·µλ)
for every positive integer α and every input z (see [22]). That is, F depends only on the
“frequency” of each input in the system, rather than on their actual multiplicities. Notable
examples include statistical functions such as mean, variance, maximum, median, mode,
etc. The problem of computing the mean of all input values is called Average Consensus
[5, 13, 14, 15, 20, 26, 35, 36, 38, 39, 40, 44, 47].

The frequency-based multi-aggregate function FR(pi, λ) = 1
n · µλ is called Frequency

function, and is complete for the class of frequency-based multi-aggregate functions, as stated
below (the proof is simple, and is found in [19]).

▶ Proposition 1. If FR can be computed (with termination), then all frequency-based multi-
aggregate functions can be computed (with termination) in the same number of rounds, as
well. ⌟

History trees. History trees were introduced in [17] as a tool of investigation for anonymous
dynamic networks; an example is found in Figure 1. A history tree is a representation of a
dynamic network given some inputs to the processes. It is an infinite graph whose nodes
are partitioned into levels Lt, with t ≥ −1; each node in Lt represents a class of processes
that are indistinguishable at the end of round t (with the exception of L−1, which contains a
single node r representing all processes). The definition of distinguishability is inductive:
at the end of round 0, two processes are distinguishable if and only if they have different
inputs. At the end of round t ≥ 1, two processes are distinguishable if and only if they were
already distinguishable at round t− 1 or if they have received different multisets of messages
at round t.

Each node in level L0 has a label indicating the input of the processes it represents. There
are also two types of edges connecting nodes in adjacent levels. The black edges induce an
infinite tree rooted at node r ∈ L−1 which spans all nodes. The presence of a black edge
{v, v′}, with v ∈ Lt and v′ ∈ Lt+1, indicates that the child node v′ represents a subset of the
processes represented by the parent node v. The red multi-edges represent communications
between processes. The presence of a red edge {v, v′} with multiplicity m, with v ∈ Lt and
v′ ∈ Lt+1, indicates that, at round t+ 1, each process represented by v′ receives m (identical)
messages from processes represented by v.

As time progresses and processes exchange messages, they are able to locally construct
finite portions of the history tree. In [17], it is shown that there is a local algorithm A∗

that allows each process to locally construct and update its own view of the history tree
at every round. The view of a process p at round t ≥ 0 is the subgraph of the history tree
which is spanned by all the shortest paths (using black and red edges indifferently) from
the root r to the node in Lt representing p (see Figure 1). As proved in [17, Theorem 3.1],
the view of a process at round t contains all the information that the process may be able

DISC 2023

18:6 Optimal Computation in Anonymous Dynamic Networks

BA

B

B

A

A B

C C

Network at round 0

BA

B

B

A

A B

C C

Network at round 1

BA

B

B

A

A B

C C

Network at round 2

Level

Level

Level

Level

0L

1L

2L

History tree

CBA

1a

1b

1a

2a

3a

4a

5a

6b

1b

5b

2b

22 2

r

2a 3a 4a 5a

2b 3b 4b 5b

6b

2

2

3b

4b

1−L

Figure 1 The first rounds of a dynamic network with n = 9 processes and the corresponding
levels of the history tree. Level Lt consists of all nodes at distance t + 1 from the root r. The
multiplicities of the red multi-edges of the history tree are explicitly indicated only when greater
than 1. The letters A, B, C denote processes’ inputs; all other labels have been added for the reader’s
convenience, and indicate classes of indistinguishable processes (non-trivial classes are also indicated
by dashed blue lines). Note that the two processes in b4 are still indistinguishable at the end of
round 2, although they are linked to the distinguishable processes b5 and b6. This is because such
processes were in the same class a5 at round 1. The subgraph in the green blob is the view of the
two processes in b1.

to use at that round. This justifies the convention that all processes always execute A∗,
constructing their local view of the history tree and broadcasting (a representation of) it
at every round, regardless of their task. Then, they simply compute their task-dependent
outputs as a function of their respective views.

We define the anonymity of a node v of the history tree as the number of processes
that v represents, and we denote it as a(v). It follows that

∑
v∈Lt

a(v) = n for all t ≥ −1,
and that the anonymity of a node is equal to the sum of the anonymities of its children.
Naturally, a process is not aware of the anonymities of the nodes in its view of the history
tree, unless it can somehow infer them from the view’s structure itself. In fact, computing
the Generalized Counting function is equivalent to determining the anonymities of all the
nodes in L0. Similarly, computing the Frequency function corresponds to determining the
value a(v)/n for all v ∈ L0.

Computation in disconnected networks. Although the network Gt at each individual round
may be disconnected, we assume the dynamic network to be T -union-connected. That is,
there is a dynamic disconnectivity parameter T ≥ 1 such that the sum of any T consecutive
Gt’s is a connected multigraph. Thus, for all i ≥ 1, the multigraph

(
V,

⋃i+T −1
t=i Et

)
is

connected (we remark that a union of multisets adds together the multiplicities of equal
elements).3 The next two results are easy to prove (see [19]).

3 Our T -union-connected networks should not be confused with the T -interval-connected networks
from [30]. In those networks, the intersection (as opposed to the union) of any T consecutive Et’s
induces a connected (multi)graph. In particular, a T -interval-connected network is connected at every
round, while a T -union-connected network may not be, unless T = 1. Incidentally, a network is
1-interval-connected if and only if it is 1-union-connected.

G. A. Di Luna and G. Viglietta 18:7

▶ Proposition 2. Any non-trivial function is impossible to compute with termination unless
the processes have some knowledge about T . (A function is “trivial” if it can be computed
locally.) ⌟

▶ Proposition 3. A function F can be computed (with termination) within f(n) rounds
in any dynamic network with T = 1 if and only if F can be computed (with termination)
within T · f(n) rounds in any dynamic network with T ≥ 1, assuming that T is known to all
processes. ⌟

Relationship with the dynamic diameter. A concept closely related to the dynamic
disconnectivity T of a network is its dynamic diameter (or temporal diameter) D, which is
defined as the maximum number of rounds it may take for information to travel from any
process to any other process at any point in time [9, 32]. It is a simple observation that
T ≤ D ≤ T (n− 1).

We chose to use T , as opposed to D, to measure the running times of our algorithms for
several reasons. Firstly, T is well defined (i.e., finite) if and only if D is; however, T has a
simpler definition, and is arguably easier to directly estimate or enforce in a real network.
Secondly, Proposition 3, as well as all of our theorems, remain valid if we replace T with
D; nonetheless, stating the running times of our algorithms in terms of T is better, because
T ≤ D.

3 Computation in Leaderless Networks

We will give a stabilizing and a terminating algorithm that efficiently compute the Frequency
function FR in all leaderless networks with finite dynamic disconnectivity T . As a consequence,
all frequency-based multi-aggregate functions are efficiently computable as well, due to
Proposition 1. Moreover, Proposition 16 states that no other functions are computable in
leaderless networks, and Proposition 17 shows that our algorithms are asymptotically optimal.
All missing proofs are found in [19].

3.1 Stabilizing Algorithm
We will use the procedure in Listing 1 as a subroutine in some of our algorithms. Its purpose
is to construct a homogeneous system of k − 1 independent linear equations involving the
anonymities of all the k nodes in a level of a process’ view. We will first give some definitions.

In (a view of) a history tree, if a node v ∈ Lt has exactly one child (i.e., there is exactly
one node v′ ∈ Lt+1 such that {v, v′} is a black edge), we say that v is non-branching. We
say that two non-branching nodes v1, v2 ∈ Lt, whose respective children are v′

1, v
′
2 ∈ Lt+1,

are exposed with multiplicity (m1,m2) if the red edges {v′
1, v2} and {v′

2, v1} are present with
multiplicities m1 ≥ 1 and m2 ≥ 1, respectively. A strand is a path (w1, w2, . . . , wk) in (a
view of) a history tree consisting of non-branching nodes such that, for all 1 ≤ i < k, the
node wi is the parent of wi+1. We say that two strands P1 and P2 are exposed if there are
two exposed nodes v1 ∈ P1 and v2 ∈ P2.

Intuitively, the procedure in Listing 1 searches for a long-enough sequence of levels in the
given view V, say from Ls to Lt, where all nodes are non-branching. That is, the nodes in
Ls ∪ Ls+1 ∪ · · · ∪ Lt can be partitioned into k = |Ls| = |Lt| strands. Then the procedure
searches for pairs of exposed strands, each of which yields a linear equation involving the
anonymities of some nodes of Lt, until it obtains k − 1 linearly independent equations. Note

DISC 2023

18:8 Optimal Computation in Anonymous Dynamic Networks

Listing 1 Constructing a system of equations in the anonymities of some nodes in a view.
1 # Input: a view V with levels L−1, L0, L1, . . ., Lh

2 # Output: (t, S), where t is an integer and S is a system of linear equations
3
4 Assign s := 0
5 For t := 0 to h

6 If Lt contains a node with no children, return (−1, ∅)
7 If Lt contains a node with more than one child, assign s := t + 1
8 Else
9 Let k = |Ls| = |Lt| and let ui be the ith node in Lt

10 Let Pi be the strand starting in Ls and ending in ui ∈ Lt

11 Let P = {P1, P2, . . . , Pk}
12 Let G be the graph on P whose edges are pairs of exposed strands
13 If G is connected
14 Let G′ ⊆ G be any spanning tree of G

15 Assign S := ∅
16 For each edge {Pi, Pj} of G′

17 Find any two exposed nodes v1 ∈ Pi and v2 ∈ Pj

18 Let (m1, m2) be the multiplicity of the exposed pair (v1, v2)
19 Add to S the equation m1xi = m2xj

20 Return (t, S)

that the search may fail (in which case Listing 1 returns t = −1) or it may produce incorrect
equations. The following lemma specifies sufficient conditions for Listing 1 to return a correct
and non-trivial system of equations for some t ≥ 0 (the proof is in [19]).

▶ Lemma 4. Let V be the view of a process in a T -union-connected network of size n taken
at round t′, and let Listing 1 return (t, S) on input V. Assume that one of the following
conditions holds:
1. t ≥ 0 and t′ ≥ t+ Tn, or
2. t′ ≥ 2Tn.

Then, 0 ≤ t ≤ Tn, and S is a homogeneous system of k − 1 independent linear equations
(with integer coefficients) in k = |Lt| variables x1, x2, . . . , xk. Moreover, S is satisfied by
assigning to xi the anonymity of the ith node of Lt, for all 1 ≤ i ≤ k. ⌟

▶ Theorem 5. There is an algorithm that computes FR in all T -union-connected anonymous
networks with no leader and stabilizes in at most 2Tn rounds, assuming no knowledge of T
or n. ⌟

3.2 Terminating Algorithm
We will now give a certificate of correctness that can be used to turn the stabilizing algorithm
of Theorem 5 into a terminating algorithm. The certificate relies on a-priori knowledge of
the dynamic disconnectivity T and an upper bound N on the size of the network n; these
assumptions are justified by Proposition 2 and Proposition 18, respectively.

▶ Theorem 6. There is an algorithm that computes FR in all T -union-connected anonymous
networks with no leader and terminates in at most T (n+N) rounds, assuming that T and
an upper bound N ≥ n are known to all processes.4 ⌟

4 If the dynamic diameter D of the network is known, the termination time improves to T n + D rounds.

G. A. Di Luna and G. Viglietta 18:9

4 Computation in Networks with Leaders

We will give a stabilizing and a terminating algorithm that efficiently compute the Generalized
Counting function FGC in all networks with ℓ ≥ 1 leaders and finite dynamic disconnectivity
T . Therefore, all multi-aggregate functions are efficiently computable as well, due to [17,
Theorem 2.1]. Moreover, Proposition 19 states that no other functions are computable in
networks with leaders, and Proposition 21 shows that our algorithms are asymptotically
optimal for any fixed ℓ ≥ 1.

4.1 Stabilizing Algorithm
We will once again make use of the subroutine in Listing 1, this time assuming that the number
of leaders ℓ ≥ 1 is known to all processes. This assumption is justified by Proposition 20.
The next theorem uses the same ideas as Theorems 5 and 6, and is proved in [19].

▶ Theorem 7. There is an algorithm that computes FGC in all T -union-connected anonymous
networks with ℓ ≥ 1 leaders and stabilizes in at most 2Tn rounds, assuming that ℓ is known
to all processes, but assuming no knowledge of T or n. ⌟

4.2 Terminating Algorithm
We will now present the main result of this paper. As already remarked, giving an efficient
certificate of correctness for the (Generalized) Counting problem with multiple leaders is a
highly non-trivial task for which a radically different approach is required. Note that it is
not possible to simply adapt the single-leader algorithm in [17] by setting the anonymity
of the leader node in the history tree to ℓ instead of 1. Indeed, as soon as some leaders
get disambiguated, the leader node splits into several children nodes whose anonymities are
unknown (we only know that their sum is ℓ). There is no way around this difficulty other
than developing a new technique.

Our algorithm is rather involved, and the proofs of several technical lemmas are provided
in [19], due to lack of space.

The subroutine ApproxCount. A large portion of this section is devoted to a subroutine
called ApproxCount, which will be repeatedly invoked by our main algorithm. The purpose
of ApproxCount is to compute an approximation n′ of the total number of processes n (or
report various types of failure). It takes as input a view V of a process, the number of
leaders ℓ, and two integer parameters s and x, representing the index of a level of V and the
anonymity of a leader node in Ls, respectively.

The subroutine roughly follows the general structure of the algorithm in [17, Section 4.2]:
namely, anonymities are first “guessed” and then proven correct when some “certificates” are
satisfied. However, the way these basic concepts are defined and the way the underlying
principles are implemented is entirely new, due to the added difficulty that here we have a
strand of leader nodes in the view V hanging from the first leader node τ in level Ls, where
the anonymity a(τ) is an unknown number not greater than ℓ (as opposed to a(τ) = 1, which
is assumed in [17]).

ApproxCount begins by assuming that a(τ) is the given parameter x, and then it makes
deductions on the anonymities of other nodes until it is able to make an estimate n′ > 0 on
the total number of processes, or report failure in the form of an error code n′ ∈ {−1,−2,−3}.
In particular, since the algorithm requires the existence of a long-enough strand hanging
from τ , it reports failure if some descendants of τ (in the relevant levels of V) have more
than one child.

DISC 2023

18:10 Optimal Computation in Anonymous Dynamic Networks

Another important difficulty that is unique to the multi-leader case is that, even if
V contains a long-enough strand of leader nodes, some nodes in the strand may still be
branching in the history tree (that is, the chain of leader nodes is branching, but only one
branch appears in V). We will have to keep this in mind when reasoning about V.

In the following, we give some preliminary definitions and results in order to formally state
our subroutine and prove its correctness and running time. We remark that ApproxCount
assumes that the network is 1-union-connected, as this is sufficient for our main algorithm to
work for any T -union-connected network (refer to the proof of Theorem 15).

Discrepancy δ. Suppose that ApproxCount is invoked with arguments V, s, x, ℓ, where
1 ≤ x ≤ ℓ, and let τ be the first leader node in level Ls of V (if τ does not exist, the procedure
immediately returns the error code n′ = −1). We define the discrepancy δ as the ratio x/a(τ).
Clearly, 1/ℓ ≤ δ ≤ ℓ. Note that, since a(τ) is not a-priori known by the process executing
ApproxCount, then neither is δ.

Conditional anonymity. ApproxCount starts by assuming that the anonymity of τ is x, and
makes deductions on other anonymities based on this assumption. Thus, we will distinguish
between the actual anonymity of a node a(v) and the conditional anonymity a′(v) = δa(v)
that ApproxCount may compute under the initial assumption that a′(τ) = x = δa(τ).

Guessing conditional anonymities. Let u be a node of a history tree, and assume that the
conditional anonymities of all its children u1, u2, . . . , uk have been computed: such a node
u is called a guesser. If v is not among the children of u but it is at their same level, and the
red edge {v, u} is present with multiplicity m ≥ 1, we say that v is guessable by u. In this
case, we can make a guess g(v) on the conditional anonymity a′(v):

g(v) = a′(u1) ·m1 + a′(u2) ·m2 + · · · + a′(uk) ·mk

m
, (1)

where mi is the multiplicity of the red edge {ui, v
′} for all 1 ≤ i ≤ k, and v′ is the parent

of v (possibly, mi = 0). Note that g(v) may not be an integer. Although a guess may be
inaccurate, it never underestimates the conditional anonymity:

▶ Lemma 8. If v is guessable, then g(v) ≥ a′(v). Moreover, if v has no siblings, g(v) =
a′(v). ⌟

Heavy nodes. The subroutine ApproxCount assigns guesses in a well-spread fashion, i.e.,
in such a way that at most one node per level is assigned a guess.

Suppose now that a node v has been assigned a guess. We define its weight w(v) as the
number of nodes in the subtree hanging from v that have been assigned a guess (this includes
v itself). Recall that subtrees are determined by black edges only. We say that v is heavy if
w(v) ≥ ⌊g(v)⌋.

▶ Lemma 9. Assume that δ ≥ 1. In a well-spread assignment of guesses, if w(v) > a′(v),
then some descendants of v are heavy (the descendants of v are the nodes in the subtree
hanging from v other than v itself). ⌟

Correct guesses. We say that a node v has a correct guess if v has been assigned a guess
and g(v) = a′(v). The next lemma gives a criterion to determine if a guess is correct.

G. A. Di Luna and G. Viglietta 18:11

Listing 2 The subroutine ApproxCount invoked in Listing 3.
1 # Input: a view V and three integers s, x, ℓ

2 # Output: a pair of integers (n′, t)
3
4 Let L−1, L0, L1, . . . be the levels of V
5 Assign t := s

6 If Ls does not contain any leader nodes, return (−1, t)
7 Let τ be the first leader node in Ls

8 Mark all nodes in V as not guessed and not counted
9 Assign u := τ; assign a′(u) := x; mark u as counted

10 While u has a unique child u′ in V
11 Assign u := u′; assign a′(u) := x; mark u as counted
12 While there are guessable levels and a counting cut has not been found
13 Let v be a guessable non-counted node of smallest depth in V
14 Let Lt′ be the level of v; assign t := max{t, t′}
15 Assign a guess g(v) to v as in Equation (1); mark v as guessed
16 Let Pv be the black path from v to its ancestor in Ls

17 If there is a heavy node in Pv

18 Let v′ be the heavy node in Pv of maximum depth
19 If g(v′) is not an integer, return (−3, t)
20 Assign a′(v′) := g(v′); mark v′ as counted and not guessed
21 If v′ is the root or a leaf of a non-trivial complete isle I

22 For each internal node w of I

23 Assign a′(w) :=
∑

w′ leaf of I and descendant of w
a′(w′)

24 Mark w as counted and not guessed
25 If no counting cut has been found, return (−2, t)
26 Else
27 Let C be a counting cut between Ls and Lt

28 Let n′ =
∑

v∈C
a′(v)

29 Let ℓ′ =
∑

v leader node in C
a′(v)

30 If ℓ′ < ℓ, return (−1, t)
31 If ℓ′ > ℓ, return (−3, t)
32 Return (n′, t)

▶ Lemma 10. Assume that δ ≥ 1. In a well-spread assignment of guesses, if a node v is
heavy and no descendant of v is heavy, then v has a correct guess or the guess on v is not an
integer. ⌟

When the criterion in Lemma 10 applies to a node v, we say that v has been counted. So,
counted nodes are nodes that have been assigned a guess, which was then confirmed to be
the correct conditional anonymity.

Cuts and isles. Fix a view V of a history tree H. A set of nodes C in V is said to be a cut
for a node v /∈ C of V if two conditions hold: (i) for every leaf v′ of V that lies in the subtree
hanging from v, the black path from v to v′ contains a node of C, and (ii) no proper subset
of C satisfies condition (i). A cut for the root r whose nodes are all counted is said to be a
counting cut.

Let s be a counted node in V , and let F be a cut for v whose nodes are all counted. Then,
the set of nodes spanned by the black paths from s to the nodes of F is called isle; s is the
root of the isle, while each node in F is a leaf of the isle. The nodes in an isle other than the
root and the leaves are called internal. An isle is said to be trivial if it has no internal nodes.

DISC 2023

18:12 Optimal Computation in Anonymous Dynamic Networks

Listing 3 Solving the Counting problem with ℓ ≥ 1 leaders.
1 # Input: a view V and a positive integer ℓ

2 # Output: either a positive integer n or "Unknown"
3
4 Assign n∗ := −1 and s := 0 and c := 0
5 Let b be the number of leader branches in V
6 While c ≤ ℓ − b

7 Assign t∗ := −1
8 For x := ℓ downto 1
9 Assign (n′, t) := ApproxCount(V, s, x, ℓ) # see Listing 2

10 Assign t∗ := max{t∗, t}
11 If n′ = −1, return "Unknown"
12 If n′ = −2, break out of the for loop
13 If n′ > 0
14 If n∗ = −1, assign n∗ := n′

15 Else if n∗ ̸= n′, return "Unknown"
16 Assign c := c + 1 and break out of the for loop
17 Assign s := t∗ + 1
18 Let Lt′ be the last level of V
19 If t′ ≥ t∗ + n∗, return n∗

20 Else return "Unknown"

If s is an isle’s root and F is its set of leaves, we have a(s) ≥
∑

v∈F a(v), because s may
have some descendants in the history tree H that do not appear in the view V. This is
equivalent to a′(s) ≥

∑
v∈F a

′(v). If equality holds, then the isle is said to be complete; in
this case, we can easily compute the conditional anonymities of all the internal nodes by
adding them up starting from the nodes in F and working our way up to s.

Overview of ApproxCount. Our subroutine ApproxCount is found in Listing 2. It repeatedly
assigns guesses to nodes based on known conditional anonymities, starting from τ and its
descendants. Eventually some nodes become heavy, and the criterion in Lemma 10 causes
the deepest of them to become counted. In turn, counted nodes eventually form isles; the
internal nodes of complete isles are marked as counted, which gives rise to more guessers, and
so on. In the end, if a counting cut is created, the algorithm checks whether the conditional
anonymities of the leader nodes in the cut add up to ℓ.

Algorithmic details of ApproxCount. The algorithm ApproxCount uses flags to mark nodes
as “guessed” or “counted”; initially, no node is marked. Thanks to these flags, we can check
if a node u ∈ V is a guesser: let u1, u2, . . . , uk be the children of u that are also in V (recall
that a view does not contain all nodes of a history tree); u is a guesser if and only if it is
marked as counted, all the ui’s are marked as counted, and a′(u) =

∑
i a

′(ui) (which implies
a(u) =

∑
i a(ui), and thus no children of u are missing from V).

ApproxCount will ensure that nodes marked as guessed are well-spread at all times; if a
level of V contains a guessed node, it is said to be locked. A level Lt is guessable if it is not
locked and has a non-counted node v that is guessable, i.e., there is a guesser u in Lt−1 and
the red edge {v, u} is present in V with positive multiplicity.

The algorithm starts by assigning a conditional anonymity a′(τ) = x to the first leader
node τ ∈ Ls. (If no leader node exists in Ls, it immediately returns the error code −1,
Line 6.) It also finds the longest strand Pτ hanging from τ , assigns the same conditional

G. A. Di Luna and G. Viglietta 18:13

anonymity x to all of its nodes (including the unique child of the last node of Pτ) and marks
them as counted (Lines 7–11). Then, as long as there are guessable levels and no counting cut
has been found yet, the algorithm keeps assigning guesses to non-counted nodes (Line 12).

When a guess is made on a node v, some nodes in the path from v to its ancestor in
Ls may become heavy; if so, let v′ be the deepest heavy node. If g(v′) is not an integer,
the algorithm returns the error code −3 (Line 19). (As we will prove later, this can only
happen if δ ≠ 1 or some nodes in the strand Pτ have children that are not in the view V.)
Otherwise, if g(v′) is an integer, the algorithm marks v′ as counted (Line 20), in accordance
with Lemma 10. Furthermore, if the newly counted node v′ is the root or a leaf of a complete
isle I, then the conditional anonymities of all the internal nodes of I are determined, and
such nodes are marked as counted; this also unlocks their levels if such nodes were marked
as guessed (Lines 21–24).

In the end, the algorithm performs a “reality check” and possibly returns an estimate n′ of
n, as follows. If no counting cut was found, the algorithm returns the error code −2 (Line 25).
Otherwise, a counting cut C has been found. The algorithm computes n′ (respectively, ℓ′)
as the sum of the conditional anonymities of all nodes (respectively, all leader nodes) in C.
If ℓ′ = ℓ, then the algorithm returns n′ (Line 32). Otherwise, it returns the error code −1
if ℓ′ < ℓ (Line 30) or the error code −3 if ℓ′ > ℓ (Line 31). In all cases, the algorithm also
returns the maximum depth t of a guessed or counted node (excluding τ and its descendants),
or s if no such node exists.

Consistency condition. In order for our algorithm to work properly, a condition has to
be satisfied whenever a new guess is made. Indeed, note that all of our previous lemmas
on guesses rest on the assumption that the conditional anonymities of a guesser and all of
its children are known. However, while the node τ has a known conditional anonymity (by
definition, a′(τ) = x), the same is not necessarily true of the descendants of τ and all other
nodes that are eventually marked as counted by the algorithm. This justifies the following
definition.

▶ Condition 1. During the execution of ApproxCount, if a guess is made on a node v at
level Lt′ of V, then τ has a (unique) descendant τ ′ ∈ Lt′ and a(τ) = a(τ ′).

As we will prove next, as long as Condition 1 is satisfied during the execution of
ApproxCount, all of the nodes between levels Ls and Lt that are marked as counted do have
correct guesses (i.e., their guesses coincide with their conditional anonymities). Note that in
general there is no guarantee that Condition 1 will be satisfied at any point; it is up to the
main counting algorithm that invokes ApproxCount to ensure that the condition is satisfied
often enough for our computations to be successful.

Correctness. In order to prove the correctness of ApproxCount, it is convenient to show
that it also maintains some invariants, i.e., properties that are always satisfied as long as
some conditions are met.

▶ Lemma 11. Assume that δ ≥ 1. Then, as long as Condition 1 is satisfied, the following
hold.

(i) The nodes marked as guessed are always well spread.
(ii) Whenever Line 13 is reached, there are no heavy nodes.
(iii) Whenever Line 13 is reached, all complete isles are trivial.
(iv) The conditional anonymity of any node between Ls and Lt that is marked as counted

has been correctly computed. ⌟

DISC 2023

18:14 Optimal Computation in Anonymous Dynamic Networks

Running time. We will now study the running time of ApproxCount. We will prove two
lemmas that allow us to give an upper bound on the number of rounds it takes for the
algorithm to return an output, provided that some conditions are satisfied.

▶ Lemma 12. Assume that δ ≥ 1. Then, as long as Condition 1 holds, whenever Line 13 is
reached, at most δn levels are locked. ⌟

We say that a node v of the history tree H is missing from level Li of the view V if v is
at the level of H corresponding to Li but does not appear in V. Clearly, if a level of V has
no missing nodes, all previous levels also have no missing nodes.

▶ Lemma 13. Assume that δ ≥ 1. Then, as long as level Lt of V is not missing any nodes
(where t is defined and updated as in ApproxCount), whenever Line 13 is reached, there are
at most n− 2 levels in the range from Ls+1 to Lt that lack a guessable non-counted node. ⌟

Main lemma. The following lemma gives some conditions that guarantee that ApproxCount
has the expected behavior; it also gives some bounds on the number of rounds it takes for
ApproxCount to produce an approximation n′ of n, as well as a criterion to determine if
n′ = n.

▶ Lemma 14. Let ApproxCount(V, s, x, ℓ) return (n′, t). Assume that τ exists and x ≥ a(τ).
Let τ ′ be the (unique) descendant of τ in V at level Lt, and let Lt′ be the last level of V.
Then:

(i) If x = a(τ) = a(τ ′), then n′ ̸= −3.
(ii) If n′ > 0 and t′ ≥ t+ n′ and a(τ) = a(τ ′), then n′ = n.
(iii) If t′ ≥ s+ (ℓ+ 2)n−1, then s ≤ t ≤ s+ (ℓ+ 1)n− 1 and n′ ≠ −1. Moreover, if n′ = −2,

then Lt contains a leader node with at least two children in V. ⌟

Terminating algorithm. We are finally able to state our main terminating algorithm. It
assumes that all processes know the number of leaders ℓ ≥ 1 and the dynamic disconnectivity
T . Again, this is justified by Proposition 20 and Proposition 2.

▶ Theorem 15. There is an algorithm that computes FGC in all T -union-connected anonym-
ous networks with ℓ ≥ 1 leaders and terminates in at most (ℓ2 + ℓ+ 1)Tn rounds, assuming
that ℓ and T are known to all processes, but assuming no knowledge of n.

Proof. Due to Proposition 3, since T is known and appears as a factor in the claimed running
time, we can assume that T = 1 without loss of generality. Also, note that determining n
is enough to compute FGC . Indeed, if a process determines n at round t′, it can wait until
round max{t′, 2Tn} and run the algorithm in Theorem 7, which is guaranteed to give the
correct output by that time.

In order to determine n assuming that T = 1, we let each process run the algorithm in
Listing 3 with input (V, ℓ), where V is the view of the process at the current round t′. We
will prove that this algorithm returns a positive integer (as opposed to “Unknown”) within
(ℓ2 + ℓ+ 1)n rounds, and the returned number is indeed the correct size of the system n.

Algorithm description. Let b be the number of branches in V representing leader processes
(Line 5). The initial goal of the algorithm is to compute ℓ − b + 1 approximations of n
using the information found in as many disjoint intervals L1, L2, . . . , Lℓ−b+1 of levels of V
(Lines 6–17).

G. A. Di Luna and G. Viglietta 18:15

If there are not enough levels in V to compute the desired number of approximations, or
if the approximations are not all equal, the algorithm returns “Unknown” (Lines 11 and 15).

In order to compute an approximation of n, say in an interval of levels Li starting at
Ls, the algorithm goes through at most ℓ phases (Lines 8–16). The first phase begins by
calling ApproxCount with starting level Ls and x = ℓ, i.e., the maximum possible value for
the anonymity of a leader node (Line 9). Specifically, ApproxCount chooses a leader node in
τ ∈ Ls and tries to estimate n using as few levels as possible.

Let (n′, t) be the pair of values returned by ApproxCount. If n′ = −1, this is evidence
that V is still missing some relevant nodes, and therefore “Unknown” is immediately returned
(Line 11). If n′ = −2, then a descendant of τ with multiple children in V was found, say at
level Lt, before an approximation of n could be determined. As this is an undesirable event,
the algorithm moves Li after Lt and tries again to estimate n (Line 12). If n′ = −3, then x

may not be the correct anonymity of the leader node τ (see the description of ApproxCount),
and therefore the algorithm calls ApproxCount again, with the same starting level Ls, but
now with x = ℓ− 1. If n′ = −3 is returned again, then x = ℓ− 2 is tried, and so on. After
all possible assignments down to x = 1 have failed, the algorithm just moves Li forward and
tries again from x = ℓ.

As soon as n′ > 0, this approximation of n is stored in the variable n∗. If it is different
from the previous approximations, then “Unknown” is returned (Line 15). Otherwise, the
algorithm proceeds with the next approximation in a new interval of levels Li+1, and so on.

Finally, when ℓ−b+1 approximations of n (all equal to n∗) have been found, a correctness
check is performed: the algorithm takes the last level Lt∗ visited thus far; if the current
round t′ satisfies t′ ≥ t∗ +n∗, then n∗ is accepted as correct; otherwise “Unknown” is returned
(Lines 18–20).

Correctness and running time. We will prove that, if the output of Listing 3 is not
“Unknown”, then it is indeed the number of processes, i.e., n∗ = n. Since the ℓ − b + 1
approximations of n have been computed on disjoint intervals of levels, there is at least
one such interval, say Lj , where no leader node in the history tree has more than one child
(because there can be at most ℓ leader branches). With the notation of Lemma 14, this implies
that a(τ) = a(τ ′) whenever ApproxCount is called in Lj . Also, since the option x = ℓ is tried
first, the assumption x ≥ a(τ) of Lemma 14 is initially satisfied. Note that ApproxCount
cannot return n′ = −1 or n′ = −2, or else Lj would not yield any approximation of n.
Moreover, by statement (ii) and by the terminating condition (Line 19), if n′ > 0 while
x ≥ a(τ), then n∗ = n′ = n. On the other hand, by statement (i), we necessarily have n′ > 0
by the time x = a(τ).

It remains to prove that Listing 3 actually gives an output other than “Unknown”
within the claimed number of rounds; it suffices to show that it does so if it is executed at
round t′ = (ℓ2 + ℓ+ 1)n. It is known that all nodes in the first t′ − n = ℓ(ℓ+ 1)n levels of
the history tree are contained in the view V at round t′ (cf. [17, Corollary 4.3]). Also, it is
straightforward to prove by induction that the assumption of statement (iii) of Lemma 14
holds every time ApproxCount is invoked. Indeed, in any interval of (ℓ+ 1)n levels, either a
branching leader node is found or a new approximation of n is computed. Since there can be
at most ℓ leader branches, at least one approximation of n is computed within ℓ(ℓ+1)n levels.
Because all nodes in these levels must appear in V , the condition a(τ) = a(τ ′) of Lemma 14
is satisfied in all intervals L1, L2, . . . , Lℓ−b+1. Reasoning as in the previous paragraph, we
conclude that all such intervals must yield the correct approximation of n. So, every time
Line 15 is executed, we have n∗ = n′, and the algorithm cannot return “Unknown”. ◀

DISC 2023

18:16 Optimal Computation in Anonymous Dynamic Networks

5 Negative Results

In this section we list several negative results and counterexamples, some of which are well
known (in particular, Proposition 16 is implied by [22, Theorem III.1]). The purpose is to
justify all of the assumptions made in Sections 3 and 4. All proofs are found in [19].

5.1 Leaderless Networks
▶ Proposition 16. No function other than the frequency-based multi-aggregate functions can
be computed with no leader, even when restricted to simple connected static networks. ⌟

▶ Proposition 17. No algorithm can solve the Average Consensus problem in a T -union-
connected leaderless network in less than 2Tn−O(T) rounds. ⌟

▶ Proposition 18. No algorithm can solve the leaderless Average Consensus problem with
explicit termination if nothing is known about the size of the network, even when restricted
to simple connected static networks. ⌟

5.2 Networks with Leaders
▶ Proposition 19. No function other than the multi-aggregate functions can be computed
(with or without termination), even when restricted to simple connected static networks with
a known number of leaders. ⌟

▶ Proposition 20. No algorithm can compute the Counting function FC (with or without
termination) with no knowledge about ℓ, even when restricted to simple connected static
networks with a known and arbitrarily small ratio ℓ/n. ⌟

▶ Proposition 21. For any ℓ ≥ 1, no algorithm can compute the Counting function FC (with
or without termination) in all simple T -union-connected networks with ℓ leaders in less than
T (2n− ℓ) −O(T) rounds. ⌟

6 Conclusions

We have shown that anonymous processes in disconnected dynamic networks can compute all
the multi-aggregate functions and no other functions, provided that the network contains a
known number of leaders ℓ ≥ 1. If there are no leaders or the number of leaders is unknown,
the class of computable functions reduces to the frequency-based multi-aggregate functions.
We have also identified the functions FGC and FR as the complete problems for each class.
Notably, the network’s dynamic disconnectivity T does not affect the computability of
functions, but only makes computation slower.

We also gave efficient stabilizing and terminating algorithms for computing all the above
functions. Some of our algorithms make assumptions on the processes’ a-priori knowledge
about the network; we proved that such assumptions are actually necessary. All our algorithms
have optimal linear running times in terms of T and the size of the network n.

In one case, there is still a small gap in terms of the number of leaders ℓ. Namely, for
terminating computation with ℓ ≥ 1 leaders, we have a lower bound of T (2n − ℓ) − O(T)
rounds (Proposition 21) and an upper bound of (ℓ2 +ℓ+1)Tn rounds (Theorem 15). Although
these bounds asymptotically match if the number of leaders ℓ is constant (which is a realistic
assumption in most applications), optimizing them with respect to ℓ is left as an open
problem.

G. A. Di Luna and G. Viglietta 18:17

Observe that our stabilizing algorithms use an unbounded amount of memory, as processes
keep adding nodes to their view at every round. This can be avoided if the dynamic
disconnectivity T (as well as an upper bound on n, in case of a leaderless network) is known:
In this case, processes can run the stabilizing and the terminating version of the relevant
algorithm in parallel, and stop adding nodes to their views when the terminating algorithm
halts. It is an open problem whether a stabilizing algorithm for FGC or FR can use a finite
amount of memory with no knowledge of T .

Our algorithms require processes to send each other explicit representations of their
history trees, which have cubic size in the worst case [17]. It would be interesting to develop
algorithms that only send messages of logarithmic size, possibly with a trade-off in terms of
running time. We are currently able to do so for leaderless networks and networks with a
unique leader, but not for networks with more than one leader [18].

References
1 D. Angluin, J. Aspnes, and D. Eisenstat. Fast Computation by Population Protocols with a

Leader. Distributed Computing, 21(3):61–75, 2008.
2 J. Aspnes, J. Beauquier, J. Burman, and D. Sohier. Time and Space Optimal Counting in

Population Protocols. In Proceedings of the 20th International Conference on Principles of
Distributed Systems (OPODIS ’16), pages 13:1–13:17, 2016.

3 J. Beauquier, J. Burman, S. Clavière, and D. Sohier. Space-Optimal Counting in Population
Protocols. In Proceedings of the 29th International Symposium on Distributed Computing
(DISC ’15), pages 631–646, 2015.

4 J. Beauquier, J. Burman, and S. Kutten. A Self-stabilizing Transformer for Population
Protocols with Covering. Theoretical Computer Science, 412(33):4247–4259, 2011.

5 D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Inc., USA, 1989.

6 P. Boldi and S. Vigna. An Effective Characterization of Computability in Anonymous Networks.
In Proceedings of the 15th International Conference on Distributed Computing (DISC ’01),
pages 33–47, 2001.

7 P. Boldi and S. Vigna. Fibrations of Graphs. Discrete Mathematics, 243:21–66, 2002.
8 A. Casteigts, F. Flocchini, B. Mans, and N. Santoro. Shortest, Fastest, and Foremost

Broadcast in Dynamic Networks. International Journal of Foundations of Computer Science,
26(4):499–522, 2015.

9 A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-Varying Graphs and
Dynamic Networks. International Journal of Parallel, Emergent and Distributed Systems,
27(5):387–408, 2012.

10 J. Chalopin, S. Das, and N. Santoro. Groupings and Pairings in Anonymous Networks. In
Proceedings of the 20th International Conference on Distributed Computing (DISC ’06), pages
105–119, 2006.

11 J. Chalopin, E. Godard, and Y. Métivier. Local Terminations and Distributed Computability
in Anonymous Networks. In Proceedings of the 22nd International Symposium on Distributed
Computing (DISC ’08), pages 47–62, 2008.

12 J. Chalopin, Y. Métivier, and T. Morsellino. Enumeration and Leader Election in Partially
Anonymous and Multi-hop Broadcast Networks. Fundamenta Informaticae, 120(1):1–27, 2012.

13 B. Charron-Bost and P. Lambein-Monette. Randomization and Quantization for Average
Consensus. In Proceedings of the 57th IEEE Conference on Decision and Control (CDC ’18),
pages 3716–3721, 2018.

14 B. Charron-Bost and P. Lambein-Monette. Computing Outside the Box: Average Consensus
over Dynamic Networks. In Proceedings of the 1st Symposium on Algorithmic Foundations of
Dynamic Networks (SAND ’22), pages 10:1–10:16, 2022.

DISC 2023

18:18 Optimal Computation in Anonymous Dynamic Networks

15 B. Chazelle. The Total s-Energy of a Multiagent System. SIAM Journal on Control and
Optimization, 49(4):1680–1706, 2011.

16 G. A. Di Luna, P. Flocchini, T. Izumi, T. Izumi, N. Santoro, and G. Viglietta. Population
Protocols with Faulty Interactions: The Impact of a Leader. Theoretical Computer Science,
754:35–49, 2019.

17 G. A. Di Luna and G. Viglietta. Computing in Anonymous Dynamic Networks Is Linear. In
Proceedings of the 63rd IEEE Symposium on Foundations of Computer Science (FOCS ’22),
pages 1122–1133, 2022.

18 G. A. Di Luna and G. Viglietta. Brief Announcement: Efficient Computation in Congested
Anonymous Dynamic Networks. In Proceedings of the 42nd ACM Symposium on Principles of
Distributed Computing (PODC ’23), pages 176–179, 2023.

19 G. A. Di Luna and G. Viglietta. Optimal Computation in Leaderless and Multi-Leader
Disconnected Anonymous Dynamic Networks. arXiv:2207.08061 [cs.DC], pages 1–37, 2023.

20 L. Faramondi, R. Setola, and G. Oliva. Performance and Robustness of Discrete and Finite
Time Average Consensus Algorithms. International Journal of Systems Science, 49(12):2704–
2724, 2018.

21 P. Fraigniaud, A. Pelc, D. Peleg, and S. Pérennes. Assigning Labels in Unknown Anonymous
Networks. In Proceedings of the 19th ACM Symposium on Principles of Distributed Computing
(PODC ’00), pages 101–111, 2000.

22 J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis. Distributed Anonymous Discrete Function
Computation. IEEE Transactions on Automatic Control, 56(10):2276–2289, 2011.

23 D. R. Kowalski and M. A. Mosteiro. Polynomial Counting in Anonymous Dynamic Networks
with Applications to Anonymous Dynamic Algebraic Computations. In Proceedings of the 45th
International Colloquium on Automata, Languages, and Programming (ICALP ’18), pages
156:1–156:14, 2018.

24 D. R. Kowalski and M. A. Mosteiro. Polynomial Anonymous Dynamic Distributed Computing
Without a Unique Leader. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP ’19), pages 147:1–147:15, 2019.

25 D. R. Kowalski and M. A. Mosteiro. Polynomial Counting in Anonymous Dynamic Networks
with Applications to Anonymous Dynamic Algebraic Computations. Journal of the ACM,
67(2):11:1–11:17, 2020.

26 D. R. Kowalski and M. A. Mosteiro. Supervised Average Consensus in Anonymous Dynamic
Networks. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’21), pages 307–317, 2021.

27 D. R. Kowalski and M. A. Mosteiro. Efficient Distributed Computations in Anonymous
Dynamic Congested Systems with Opportunistic Connectivity. arXiv:2202.07167 [cs.DC],
pages 1–28, 2022.

28 D. R. Kowalski and M. A. Mosteiro. Polynomial Anonymous Dynamic Distributed Computing
Without a Unique Leader. Journal of Computer and System Sciences, 123:37–63, 2022.

29 F. Kuhn, T. Locher, and R. Oshman. Gradient Clock Synchronization in Dynamic Networks.
Theory of Computing Systems, 49(4):781–816, 2011.

30 F. Kuhn, N. Lynch, and R. Oshman. Distributed Computation in Dynamic Networks. In
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC ’10), pages 513–522,
2010.

31 F. Kuhn, Y. Moses, and R. Oshman. Coordinated Consensus in Dynamic Networks. In
Proceedings of the 30th ACM Symposium on Principles of Distributed Computing (PODC ’11),
pages 1–10, 2011.

32 F. Kuhn and R. Oshman. Dynamic Networks: Models and Algorithms. SIGACT News,
42(1):82–96, 2011.

33 O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Naming and Counting in Anonymous Un-
known Dynamic Networks. In Proceedings of the 15th International Symposium on Stabilizing,
Safety, and Security of Distributed Systems (SSS ’13), pages 281–295, 2013.

G. A. Di Luna and G. Viglietta 18:19

34 O. Michail and P. G. Spirakis. Elements of the Theory of Dynamic Networks. Communications
of the ACM, 61(2):72, 2018.

35 A. Nedić, A. Olshevsky, A. E. Ozdaglar, and J. N. Tsitsiklis. On Distributed Averaging
Algorithms and Quantization Effects. IEEE Transactions on Automatic Control, 54(11):2506–
2517, 2009.

36 A. Nedić, A. Olshevsky, and M. G. Rabbat. Network Topology and Communication-
Computation Tradeoffs in Decentralized Optimization. Proceedings of the IEEE, 106(5):953–976,
2018.

37 R. O’Dell and R. Wattenhofer. Information Dissemination in Highly Dynamic Graphs. In
Proceedings of the 5th Joint Workshop on Foundations of Mobile Computing (DIALM-POMC
’05), pages 104–110, 2005.

38 A. Olshevsky. Linear Time Average Consensus and Distributed Optimization on Fixed Graphs.
SIAM Journal on Control and Optimization, 55(6):3990–4014, 2017.

39 A. Olshevsky and J. N. Tsitsiklis. Convergence Speed in Distributed Consensus and Averaging.
SIAM Journal on Control and Optimization, 48(1):33–55, 2009.

40 A. Olshevsky and J. N. Tsitsiklis. A Lower Bound for Distributed Averaging Algorithms on
the Line Graph. IEEE Transactions on Automatic Control, 56(11):2694–2698, 2011.

41 N. Sakamoto. Comparison of Initial Conditions for Distributed Algorithms on Anonymous
Networks. In Proceedings of the 18th ACM Symposium on Principles of Distributed Computing
(PODC ’99), pages 173–179, 1999.

42 J. Seidel, J. Uitto, and R. Wattenhofer. Randomness vs. Time in Anonymous Networks. In
Proceedings of the 29th International Symposium on Distributed Computing (DISC ’15), pages
263–275, 2015.

43 T. Sharma and M. Bashir. Use of Apps in the COVID-19 Response and the Loss of Privacy
Protection. Nature Medicine, 26(8):1165–1167, 2020.

44 J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, 1984.

45 M. Yamashita and T. Kameda. Computing on an Anonymous Network. In Proceedings of the
7th ACM Symposium on Principles of Distributed Computing (PODC ’88), pages 117–130,
1988.

46 M. Yamashita and T. Kameda. Computing on Anonymous Networks. I. Characterizing the
Solvable Cases. IEEE Transactions on Parallel and Distributed Systems, 7(1):69–89, 1996.

47 Y. Yuan, G.-B. Stan, L. Shi, M. Barahona, and J. Goncalves. Decentralised Minimum-Time
Consensus. Automatica, 49(5):1227–1235, 2013.

A Impact on Fundamental Problems and State of the Art

As a byproduct of the results mentioned in Section 1.1, we are able to optimally solve two
popular fundamental problems: Generalized Counting for multi-leader networks (because
it is a multi-aggregate function) and Average Consensus for leaderless networks (because
the mean is a frequency-based multi-aggregate function). As summarized in Table 1 and as
discussed below, our results improve upon the state of the art on both problems in terms
of (i) running time, (ii) assumptions on the network and the processes’ knowledge, and
(iii) quality of the solution. Altogether, we settle open problems from ICALP 2019 [24],
SPAA 2021 [26], and FOCS 2022 [17]. For a more thorough discussion and a comprehensive
survey of related literature, refer to [19].

DISC 2023

18:20 Optimal Computation in Anonymous Dynamic Networks

Average Consensus. This problem has been studied for decades by the distributed control
and distributed computing communities [5, 13, 14, 15, 26, 35, 38, 40, 44, 47]. In the following,
we argue that our results directly improve upon the current state of the art on this problem.
A more detailed discussion can be found in the surveys [20, 36, 39] and in [19].

A convergent algorithm with a running time of O
(
Tn3 log(1/ϵ)

)
is given in [35]. The

algorithm works in T -union-connected networks with no knowledge of T , but it rests on the
assumption that the degree of each process in the network has a known upper bound. Assum-
ing an always connected network, [14] gives an algorithm that converges in O

(
n4 log(n/ϵ)

)
rounds. We remark that both algorithms are only ϵ-convergent; therefore, not only does
our stabilizing algorithm improve upon their running times, but it solves a more difficult
problem under weaker assumptions.

The algorithm in [13] stabilizes to the actual average in a linear number of rounds, but
it is a randomized Monte Carlo algorithm and requires the network to be connected at
each round. In contrast, our linear-time stabilizing algorithm is deterministic and works in
disconnected networks.

As for terminating algorithms, the one in [26] terminates in O
(
n5 log3(n)/ℓ

)
rounds

assuming the presence of a known number ℓ of leaders and an always connected network.
Since the number of leaders is known, our terminating algorithm for Generalized Counting
also solves Average Consensus with a running time that improves upon [26] and does not
require the network to be connected. We remark that our algorithm terminates in linear
time when ℓ is constant.

Generalized Counting. Our results on this problem are direct generalizations of [17] to the
case of multiple leaders and disconnected networks. The best previous counting algorithm
with multiple known leaders is the one in [28], which terminates in O

(
n4 log3(n)/ℓ

)
rounds

and assumes the network to be connected at each round. In the same setting, our stabilizing
and terminating algorithms have running times of 2n rounds and (ℓ2 + ℓ + 1)n rounds,
respectively.

The only other result for disconnected networks is the recent preprint [27], which gives
an algorithm that terminates in Õ

(
n2T +3/ℓ

)
rounds using O(log n)-sized messages. Our

terminating algorithm has a linear dependence on both n and T , which is an exponential
improvement upon the running time of [27], but it requires polynomial-sized messages.

Fast Coloring Despite Congested Relays
Maxime Flin #

Reykjavik University, Iceland

Magnús M. Halldórsson #

Reykjavik University, Iceland

Alexandre Nolin #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
We provide a O(log6 log n)-round randomized algorithm for distance-2 coloring in CONGEST with
∆2 + 1 colors. For ∆ ≫ poly log n, this improves exponentially on the O(log ∆ + poly log log n)
algorithm of [Halldórsson, Kuhn, Maus, Nolin, DISC’20].

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Graph coloring

Keywords and phrases CONGEST model, distributed graph coloring, power graphs

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.19

Related Version Full Version: https://arxiv.org/abs/2308.01359 [17]

Funding Maxime Flin: Funded by the Icelandic Research Fund (grant 2310015).
Magnús M. Halldórsson: Partially supported by the Icelandic Research Fund (grant 217965).

1 Introduction

In the LOCAL model of distributed computing, we are given a communication network in the
form of an n-node graph G = (V, E), where each node has a unique O(log n)-bit identifier.
Time is divided into discrete intervals called rounds, during which nodes send/receive one
message to/from each of their neighbors in G. In the CONGEST model, each message
additionally is restricted to O(log n) bits.

Coloring problems are amongst the most intensively studied problems in the distributed
graph literature for they capture the main challenges of symmetry breaking and resolving
conflicts (see, e.g., [4]). We consider the distance-2 ∆2 + 1-coloring problem in CONGEST,
where ∆ is the maximum degree of G. The task is to assign each node a color from
{1, 2, . . . , ∆2 + 1} that is different from nodes within distance 2 in G. Namely, we want to
color the square graph G2 while communicating on G with O(log n)-bit messages.

The distance-2 coloring problem is particularly interesting as a petri dish for examining
the impact of bandwidth constraints. When we seek a coloring of G, each node can directly
communicate with all nodes that it conflicts with, which are precisely its neighbors. In
G2, a node can conflict with ∆2 other nodes, but only communicate directly with ∆ of
them. Thus, the bandwidth used by a node is at most ∆ log n bits, both for incoming and
outgoing messages, which can be much smaller than the number of neighbors in G2. In
fact, it is altogether non-trivial to obtain even a poly(log n)-round algorithm for distance-2
∆2 + 1-coloring, which was only achieved in 2020 [27].

Distance-2 coloring is also interesting in its own right. In particular, it arises naturally
when assigning frequencies to antennas in wireless networks. More generally, symmetry
breaking on power graphs appears naturally in numerous settings [35, 6, 20, 21, 11, 13]. See,
e.g., [38, Section 1.2] for a recent treatment.

© Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 19; pp. 19:1–19:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maximef@ru.is
https://orcid.org/0009-0005-2693-0470
mailto:mmh@ru.is
https://orcid.org/0000-0002-5774-8437
mailto:alexandre.nolin@cispa.de
https://orcid.org/0000-0002-3952-0586
https://doi.org/10.4230/LIPIcs.DISC.2023.19
https://arxiv.org/abs/2308.01359
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fast Coloring Despite Congested Relays

Finally, the distance-2 coloring problem is the only explicit problem studied when the
conflict graph H to be colored is different from the communication graph G. In the LOCAL
model, this distinction is of little concern, as the square graph can be simulated within G with
an overhead of factor 2 in the round complexity. This is what motivates the usual assumption
that H = G. In CONGEST however, bandwidth constraints preclude such local reductions.
This is a major challenge toward understanding the complexity landscape in CONGEST. In
fact, such local transformations are ubiquitous in the distributed graph literature. Notable
examples include reductions to Maximal Independent Set [4, Section 3.9], coloring algorithms
based on the Lovász Local Lemma [41, 10, 8], or subroutines working with cluster graphs
[24, 40, 13].

Our Contributions. We provide a poly log log n-round randomized algorithm to find a
distance-2 coloring of G. Our algorithm uses ∆2 + 1 colors, which is a natural analog to
∆ + 1 at distance-1.

▶ Theorem 1. There is a randomized algorithm for distance-2 coloring any n-node graph
G with maximum degree ∆, using ∆2 + 1 colors, and running in O(log6 log n) rounds of
CONGEST.

This is an exponential improvement over the previous best known bound O(log n) [28],
as a function of n alone. Interestingly, for more general power graphs Gk with k ≥ 3, it is
provably hard to verify an arbitrary coloring [18]. Thus, any poly log log n algorithm coloring
Gk when k ≥ 3 and ∆≫ poly log log n would need a different approach.

Theorem 1 requires non-constructive pseudorandom compression techniques, so can be
viewed as either existential or requiring exponential local computation. However, we give an
explicit and efficient algorithm that achieves such a coloring with O(log2 n) bandwidth. We
emphasize that even with O(log2 n) bandwidth, it is not clear that fast coloring algorithms
can be implemented at distance-2. Our O(log2 n)-bandwidth algorithm preserves the intuition
behind our techniques. In fact, reducing the bandwidth to O(log n) is a technical issue that
is almost entirely solved by previous work [32].

1.1 Related Work
Coloring has been extensively studied in the distributed literature [44, 6, 4, 33, 9, 31], and
it was the topic of the paper of Linial [36] that defined the LOCAL model. The best round
complexity of randomized (∆ + 1)-coloring in LOCAL (as a function of n alone) progressed
from O(log n) in the 80’s [37, 2, 34], through O(log3 log n) [6, 33, 9], to the very recent
Õ(log2 log n) [22]. These algorithms made heavy use of both the large bandwidth and the
multiple-message transmission feature of the LOCAL model.

In CONGEST, Halldórsson, Kuhn, Maus, and Tonoyan [29] gave a O(log5 log n)-round
CONGEST algorithm, later improved to O(log3 log n) in [32, 25]. Very recently, Flin, Ghaffari,
Halldórsson, Kuhn, and Nolin [15] provided a O(log3 log n)-round algorithm in broadcast
CONGEST, in which nodes are restricted to broadcast one O(log n)-bit message per round.
While these algorithms drastically reduced the bandwidth requirements compared to their
earlier LOCAL and CONGEST counterparts, they still use more bandwidth than what distance-
2 coloring allows. Indeed, at distance-2 a node cannot receive a distinct message from each
neighbor.

Recent years have seen several results for problems on power graphs in CONGEST
[26, 27, 28, 38, 7]. Ghaffari and Portmann [26] gave the first sublogarithmic network
decomposition algorithm with a mild dependency on the size of identifiers. Keeping a mild

M. Flin, M. M. Halldórsson, and A. Nolin 19:3

dependency on the size of identifiers is crucial in CONGEST as a common technique, called
shattering, is to reduce the problem to small poly log n-size instances on which we run a
deterministic algorithm, typically a network decomposition algorithm. While the instance size
decreases exponentially, identifiers remain of size O(log n) bit. Hence, deterministic algorithms
with linear dependency on the size of identifiers, such as [43], yield no sub-logarithmic
algorithms. The later O(log5 n) CONGEST algorithm by [24] with mild dependency on the
ID space was extended by [40] to work on power graphs with exponentially large IDs in
time O(log7 n). Very recently, [38] gave a O(k2 log ∆ log log n + k4 log5 log n) randomized
CONGEST algorithm to compute a maximal independent set in Gk. Along the way, [38]
extended the faster Õ(log3 n) network decomposition of [23] to power graphs in CONGEST
with a mild dependency on the ID space.

When (1 + ε)∆2 colors are available, the distance-2 coloring problem is much easier and
is known to be solvable in O(log4 log n) rounds [30]. The first poly(log n)-round CONGEST
algorithm for distance-2 (∆2 +1)-coloring was given in [27], while a O(log ∆)+poly(log log n)-
round algorithm was given in [28]. The original publication of this last result had a higher
dependence in n, later reduced by improved network decomposition results of [23, 38] and a
faster deterministic algorithm of [25]. We state this for later use, and give more details in
the full version [17, Appendix F]:

▶ Proposition 2 ([28, Lemma 3.12+3.15] + [38, Appendix A] + [25]). Let H be a subgraph
of G2 where G is the communication network, and suppose ∆(H) ≤ poly log n. Suppose
each node v, of degree dH(v) in H, knows a list L(v) of dH(v) + 1 colors from some color
space |U| ≤ poly(n). There is a randomized algorithm coloring H in O(log5 log n) rounds of
CONGEST such that each node receives a color from its list.

The best bound known for a deterministic CONGEST algorithm using ∆2 + 1 colors
is O(∆2 + log∗ n) rounds [27]. Very recently, [7] gave a handful of deterministic coloring
algorithms on power graphs, including a O(∆4)-coloring algorithm in O(log ∆ · log∗ n)
rounds (which is an adaptation of Linial’s algorithm) and a O(∆2)-coloring algorithm in
O(∆ log ∆ + log ∆ · log∗ n) rounds (which is an adaptation of the O(

√
∆ poly log ∆ + log∗ n)

algorithm of [19, 5, 39]) for the distance-2 setting.

Open Problems. Along the way we introduce various tools whose range of application
extends to more general coloring problems. In particular, almost all steps of our algorithm
work if each v ∈ V uses colors {1, 2, . . . , d̃(v) + 1}, for d̃(v) a locally computable upper bound
on degrees. It would be interesting to know if d̃(v) + 1-coloring could be solved. The more
difficult list variants of this problem, where nodes must adopt colors from lists of size ∆2 + 1
or d̃(v) + 1, are also open. Key aspects of our approach fail for list coloring and, in fact, it is
not even known if ∆ + 1-list-coloring of G is achievable in poly log log n rounds of broadcast
CONGEST. It would also be interesting to push the complexity of ∆2 + 1-coloring of G2

down to O(log∗ n) when ∆ ≥ poly log n, to fully match the state of the art at distance one.
While we conjecture that minor modifications to our algorithm1 might be able to reduce
its complexity by one or more log log n factors, achieving O(log∗ n) would require a new
approach, as many steps of our algorithm use Ω(log log ∆) rounds.

1 Such as reducing the nodes’ uncolored degrees to O(log n/ log log n) instead of O(log n), or slightly
reducing the number of layers produced by one of the subroutines (SliceColor).

DISC 2023

19:4 Fast Coloring Despite Congested Relays

Generate

slack

ACD

construction

Color w/

linear slack

Select

outliers

Color w/

linear slack

Synchronized

Color Trial

Low-deg coloring

Color w/

proportional slackdense

sparse

inliers

outliers

medium
dense

very dense

Figure 1 The structure of ultrafast coloring algorithms.

1.2 Our Techniques in a Nutshell

In this section, we highlight the main challenges and sketch the main ideas from our work.
Precise definitions are in Section 2 and a more detailed but still high-level overview of our
algorithm can be found in Section 3.

Fast Distributed Coloring. All sublogarithmic distributed coloring algorithms [33, 9, 29,
31, 32, 15] follow the overall structure displayed in Figure 1. The key concept is the one
of slack: the slack of a node is the difference between the number of colors available to
that node (i.e., not used by a colored neighbor) and its number of uncolored neighbors (see
Definition 3). Nodes with slack proportional to their uncolored degree can be colored fast.
The algorithm uses a combination of creating excess colors (by coloring two neighbors with
the same color) and reducing the uncolored degree in order for all nodes to get a slack linear
in their uncolored degree.

We first generate slack by a single-round randomized color trial. We next partition the
nodes into the sparse nodes and dense clusters (called almost-cliques). Among the dense
clusters, we separate a fraction of the nodes as outliers. Both the sparse nodes and the outliers
can be colored fast using the linear slack available to them. The remaining inliers then
go through a synchronized color trial (SCT), where the nodes are assigned a near-uniform
random color which avoids color clashes between nodes in the same cluster. The remaining
nodes now should have slack proportional to their number of uncolored neighbors. The
ultra-dense clusters need a special treatment, but they induce a low-degree graph. The above
structure is necessary for high-degree graphs, while for low-degree graphs one can afford less
structured methods.

At the outset, several parts of this schema already exist for distance-2 coloring. In particu-
lar, generating slack is trivial, a poly(log log n)-round algorithm for coloring poly(log n)-degree
graphs is known from [28], and coloring with slack Ω(∆2) follows from [30]. Almost-clique
decompositions (ACD) have been well studied and need only a minor tweak here. We use
a particularly simple form of SCT, introduced for the streaming and broadcast CONGEST
settings [16, 15]: permute the colors of the clique palette – the set of colors not used within
the almost-clique – and distribute them uniformly at random among the nodes. We produce
the clique palette by giving the nodes data structure access for looking up their assigned
color.

Challenges. The biggest challenge in deriving efficient algorithms for the distance-2 setting
is that there are no efficient methods known (and possibly not existing) to compute (or
approximate) basic quantities like the distance-2 degree of a node. One can easily count the
number of 2-paths from a given node, but not how many distinct endpoints they have. This
seriously complicates the porting of all previous methods from the distance-1 setting, as we
shall see.

M. Flin, M. M. Halldórsson, and A. Nolin 19:5

A related issue is that a node cannot keep track of all the colors used by its distance-2
neighbors, since it has ∆2 of them but only bandwidth O(∆ log n) bits. Hence, it cannot
maintain its true palette (the set of available colors), which means that the standard method
of coloring with proportional slack [44, 9] (that can be achieved in O(log∗ n) rounds in
distance-1) is not available.

Using Multiple Sources of Slack. We use slack from four sources in our analysis. The
(usual) initial slack generation step gives the dense nodes slack proportional to their external
degree – their degree to outside of their almost-clique. The method of colorful matching
[3] provides slack proportional to the average anti-degree of the cluster, where anti-degree
counts non-neighbors in one’s almost-clique. And finally we get two types of slack for free:
the discrepancy between the node’s pseudodegree and its true degree on one hand, and the
difference between ∆2 and the pseudodegree on the other hand, where pseudodegrees are
easy-to-compute estimates of distance-2 degrees. Only by combining all four sources can we
ensure that the final step of coloring with proportional slack can be achieved fast.

Selecting Outliers. The outliers are nodes with exceptionally high degree parameters, either
high external degree (to the outside of the almost-clique) or anti-degree (non-neighbors within
the cluster). As we cannot estimate their true values, we work with pseudodegrees: the
number of 2-paths to external neighbors, or how many additional 2-paths are necessary to
reach all anti-neighbors. The selection of outliers is crucial for the success of the last step
of the algorithm, where we need to ensure that nodes have true slack proportional to the
number of uncolored neighbors. To select outliers, we use a sophisticated filtering technique,
giving us bounds in terms of certain related parameters, that then can be linked to the slack
that the nodes obtain.

Coloring Fast with Slack. With the right choice of inliers and suitable analysis of SCT,
we argue that remaining uncolored nodes have slack proportional to their uncolored degree.
We provide a new procedure to color these nodes, extending a method from the first fast
CONGEST algorithm [29]. It needs to be adapted to biased sampling and to handle nodes
with different ranges of slack. It outputs a series of low-degree graphs, which are then colored
by the method of [28].

1.3 Organization of the Paper
After introducing some definitions and results from previous work in Section 2, we give a
detailed overview of the full algorithm in Section 3. In Section 4, we go over the technical
details involving the coloring of dense nodes, assuming a O(log2 n) bandwidth. Various
technical parts, as well as details on reducing bandwidth to O(log n), are in the full version [17].

2 Preliminaries & Definitions

Distributed Graphs. For any integer k ≥ 1, let [k] represent the set {1, 2, . . . , k}. We
denote by G = (V, E) the communication network, n = |V | its number of nodes, and ∆ its
maximum degree. The square graph G2 has vertices V and edges between pairs u, v ∈ V

if distG(u, v) ≤ 2. For a node v ∈ V , we denote its unique identifier by ID(v). For a
graph H = (VH , EH), the neighborhood in H of v is NH(v) = {u ∈ VH : uv ∈ EH}.
A subgraph K = (VK , EK) of H = (VH , EH) with VK ⊆ VH is an induced subgraph if

DISC 2023

19:6 Fast Coloring Despite Congested Relays

EK = {uv ∈ EH : u, v ∈ VK}, i.e., it contains all edges of EH between nodes of VK . We
call anti-edge in H a pair u, v ∈ VH such that uv /∈ EH , i.e., an edge missing from H (or,
equivalently, in the complement of H).

The degree of v in H is dH(v) = |NH(v)|, and we shall denote by N2(v) = NG2(v) the
distance-2 neighbors of v, and the distance-2 degree of v by d(v) = |N2(v)|. We also drop
the subscript for distance-1 neighbors and write N(v) for NG(v).

Distributed Coloring. A partial c-coloring C is a function mapping vertices V to colors
[c] ∪ {⊥} such that if uv ∈ E, either C(u) ̸= C(v) or ⊥ ∈ {C(u), C(v)}. The coloring is
complete if C(v) ̸= ⊥ for all v ∈ V (i.e., all nodes have a color). A deg +1-list-coloring
instance is an input graph H = (VH , EH) where each node has a list L(v) of dH(v) + 1 colors
from some color space U . A valid deg +1-list-coloring is a proper coloring C : VH → U such
that C(v) ∈ L(v) for each v ∈ VH .

Our algorithm computes a monotone sequence of partial colorings until all nodes are
colored. In particular, once a node adopts a color, it never changes it. The palette of v

with respect to the current partial coloring C is Ψ(v) def= [∆2 + 1] \ C(N2(v)), i.e., the set
of colors that are not used by distance-2 neighbors. For a set S ⊆ V , we shall denote the
uncolored vertices of S by S◦ def= {v ∈ S : C(v) = ⊥} and, reciprocally, the colored vertices of
S by S• def= S \ S◦. We shall denote the uncolored (distance-2) degree with respect to C by
d◦(v) def= |N ◦

G2(v)|.

2.1 Slack Generation
A key notion to all fast randomized coloring algorithm is the one of slack. It captures the
number of excess colors: a node with slack s will always have s available colors, regardless
of the colors tried concurrently by neighbors. For our problem, the slack is more simply
captured by the following definition.

▶ Definition 3 (Slack). Let H be an induced subgraph of G2. The slack of v in H (with
respect to the current coloring of G2) is

sH(v) def= |Ψ(v)| − d◦
H(v) .

There are three ways a node can receive slack: if it has a small degree originally, if two
neighbors adopt the same color, or if an uncolored neighbor is inactive (does not belong to
H). We consider the first two types of slack permanent because a node never increases its
degree, and nodes never change their adopted color. On the other hand, the last type of
slack is temporary: if some inactive neighbors become active, the node loses the slack which
was provided by those neighbors.

The sparsity of a node counts the number of missing edges in its neighborhood. We
stress that, contrary to previous work in ∆ + 1-coloring [9, 29, 15], we use the local sparsity –
defined in terms of the node’s degree d(v) – as opposed to the global sparsity, instead defined
in term of ∆. This is to separate the contribution to slack of same-colored neighbors from
the degree slack, ∆2 − d(v). While global sparsity measures both, local sparsity focuses on
the former.

▶ Definition 4 (Local Sparsity, [1, 31]). The sparsity of v (in the square graph G2) is

ζv
def= 1

d(v)

((
d(v)

2

)
− |E(N2(v))|

)
.

A node v is ζ-sparse if ζv ≥ ζ; if ζv ≤ ζ it is ζ-dense.

M. Flin, M. M. Halldórsson, and A. Nolin 19:7

For a node v, observe that each time that both endpoints of a missing edge in N2(v) are
colored the same, the node v gains slack as its uncolored degree decreases by 2 while its
palette loses only 1 color. Therefore, when a node has many missing edges in its neighborhood,
it has the potential to gain a lot of slack [42, 12]. This potential for slack is turned into
permanent slack by the following simple algorithm (GenerateSlack): each node flips a random
coin (possibly with constant bias); each node whose coin flip turned heads picks a color at
random and tries it, i.e., colors itself with it if none of its neighbors is also trying it. As
we state the result with local sparsity (which is in terms of d(v)) while nodes try colors in
[∆2 + 1], the next statement has a d(v)/∆2 factor compared to previously published versions.

▶ Proposition 5 (Slack Generation, [42, 12, 29]). There exists a (small) universal constant
γslack > 0 such that after GenerateSlack, w.p. exp(−Ω(ζv · d(v)/∆2)), node v receives slack
γslack · ζv · d(v)

∆2 .

2.2 Sparse-Dense Decomposition

All recent fast randomized distributed coloring algorithms [33, 9, 29, 31, 14, 15] decompose
the graph into a set of sparse nodes and several dense clusters. Such a decomposition was
first introduced by [42].

▶ Definition 6. For ε ∈ (0, 1/3), a distance-2 ε-almost-clique decomposition (ACD) is a
partition of V (G) in sets Vsparse, K1, . . . , Kk such that
1. nodes in Vsparse either are Ω(ε2∆2)-sparse in G2 or have degree d(v) ≤ ∆2 − Ω(ε2∆2),
2. for all i ∈ [k], sets Ki are called almost-cliques, and verify

a. |Ki| ≤ (1 + ε)∆2,
b. for each v ∈ Ki, |N2(v) ∩Ki| ≥ (1− ε)∆2.

There are several ways to compute this decomposition in CONGEST [28, 29, 32, 16]. We
refer the reader to the version of [32, Section 4.2]. The existing distance-2 algorithm of [28]
uses O(log ∆) rounds and the CONGEST algorithms by [29] require too much bandwidth at
distance-2. We mention that [16] implements [32] without representative hash functions and
that it can be done here as well. We refer the reader to the full version, [17, Section D], for
more details.

▶ Lemma 7 (Adaptation of [16, Section B.1]). There exists a CONGEST randomized algorithm
partitioning the graph into Vsparse, K1, . . . , Kk for some integer k ≥ 0 such as described in
Definition 6. It runs in O(ε−4) rounds.

▶ Definition 8 (External and Anti-Degrees). For a node v ∈ K and some almost-clique K,
we call ev = |N2(v) \ K| its external degree and av = |K \ N2(v)| its anti-degree. We
shall denote by eK =

∑
v∈C ev/|K| the average external degree and aK =

∑
v∈K av/|K| the

average anti-degree.

It was first observed by [29] that sparsity bounds external and anti-degrees.

▶ Lemma 9 ([29, Lemmas 6.2]). There exists two constants Cext = Cext(ε) > 0 and Canti =
Canti(ε) > 0 such that for all v ∈ K, the bounds ev ≤ Cextζv and av ≤ Cantiζv holds.

DISC 2023

19:8 Fast Coloring Despite Congested Relays

2.3 Pseudo-degrees
Bandwidth constraints, such as that of the CONGEST model, can severely restrict nodes in
their ability to learn information about their neighborhood in a power graph of G. This
includes a node’s palette (which colors are not yet used by its neighbors in the power graph)
but also its degree and related quantities. This motivates the use of similar, but readily
computable quantities.

▶ Definition 10 (Distance-2 Pseudo-Degrees). In the distance-2 setting, for any node v ∈ V ,
let its pseudo-degree d̃(v) and its uncolored pseudo-degree d̃◦(v) be

d̃(v) def=
∑

u∈NG(v)

|NG(u)| and d̃◦(v) def= |N ◦
G(v)|+

∑
u∈NG(v)

|N ◦
G\{v}(u)| . (1)

For a dense node v ∈ K, its pseudo-external degree ẽv and its pseudo-anti degree ãv are

ẽv
def=

∑
u∈NG(v)

|NG(u) \K| and ãv
def= |K| −

∑
u∈NG(v)

|NG(u) ∩K| . (2)

Note that pseudo-degree and pseudo-external degree are overestimates of a node’s actual
degree and external degree, while pseudo-anti degree is an underestimate of a dense node’s
actual anti-degree. The estimates are accurate for nodes with a tree-like 2-hop neighborhood.

For dense nodes, we also introduce notation for the deviations between the pseudo-degrees
and actual G2-degrees. Such deviations result in slack, which we exploit later in the paper.

θext
v

def= ẽv − ev , θanti
v

def= av − ãv , and θv
def= θext

v + θanti
v = d̃(v)− d(v) .

We also write θext
K =

∑
v∈K θext

v /|K| for the average value within a clique.
Pseudo-degrees partially allow nodes to estimate their degree slack, the number of colors

that v is guaranteed to always have available due to the palette being larger than its degree.
Intuitively, the deviations θext

v and θanti
v capture the part of its degree slack that a dense node

v does not know about.

∆2 + 1− d(v)︸ ︷︷ ︸
degree slack

= ∆2 + 1− d̃(v)︸ ︷︷ ︸
known to v

+ θext
v + θanti

v︸ ︷︷ ︸
unknown to v

(3)

3 Detailed Overview of the Full Algorithm

We now give a streamlined overview of our algorithm and describe with some details the
technical ideas behind it. See Algorithm 1 for a high-level description of its steps. Since
there exists a O(log5 log n)-round algorithm when ∆ ≤ poly log n (Proposition 2), we assume
∆ ≥ Ω(log3.5 n). Henceforth, we assume we are given the almost-clique decomposition
Vsparse, K1, . . . , Kk (Lemma 7).

Coloring Sparse Nodes (Steps 2 & 3). The coloring of sparse nodes was already handled
in [30]. After GenerateSlack, all sparse nodes have slack proportional to ∆2 (Proposition 5).
In particular, their palettes always represent a constant fraction of the color space [∆2 + 1].
This allows them to sample colors in their palette efficiently without learning most of their
distance-2 neighbors’ colors. The algorithm is summarized by the following proposition:

▶ Proposition 11 (Coloring Nodes with Slack Linear in ∆2, [30]). Suppose ∆ ≥ Ω(log3.5 n).
Let H be an induced subgraph of G2 for which all nodes have slack γ ·∆2 for some universal
constant γ > 0 known to all nodes. There exists an algorithm coloring all nodes of H in
O(log∗ n) rounds.

M. Flin, M. M. Halldórsson, and A. Nolin 19:9

Algorithm 1 High-Level Algorithm.

Input : Graph G with ∆ ≥ Ω(log3.5 n)
Output : A distance-2 coloring C of G

1 Vsparse, K1, . . . , Kk = ComputeACD(ε) (Section 2.2)
2 GenerateSlack (Proposition 5)
3 ColoringSparseNodes (Proposition 11)
4 Matching ([17, Appendix C])
5 ComputeOutliers ([17, Section 6])
6 ColorOutliers (Proposition 11)
7 SynchColorTrial (Section 4.2)
8 L1, . . . , Lℓ ← SliceColor, for some ℓ = O(log log n) (Section 4.3 and [17, Section 5])
9 foreach i ∈ [ℓ] do

10 LearnPalette (Section 4.4)
11 ColorSmallDegree(Li) (Proposition 2)

Reducing Degrees with Slack. Since coloring sparse nodes is already known, from now on,
we focus our attention on dense nodes. Reducing coloring problems to low-degree instances
that one then solves with an algorithm that benefits from the low degree is a common scheme
in randomized algorithms for distributed coloring [6, 9]. In particular, when nodes have slack
linear in their degree, it was observed by [44, 12, 9] that if nodes try multiple colors from
their palette, degrees decrease exponentially fast, resulting in a O(log∗ n)-round algorithm
in LOCAL. This observation motivates the structure of all ultrafast coloring algorithms: 1)
generate Ω(ev) slack with GenerateSlack, 2) reduce degrees to O(ev) with SynchColorTrial,
and 3) complete the coloring with slack. Unfortunately, this approach is not feasible for
us because it requires too much bandwidth. As a result, we do something intermediate
that takes advantage of slack but only tries a single color at a time to accommodate our
bandwidth limitations. In O(log log n) rounds, our method creates O(log log n) instances of
the maximum degree O(log n).

Another key technical detail of these methods is that nodes try colors from their palettes.
At distance-2, perfect sampling in one’s palette is not feasible for nodes do not have sufficient
bandwidth. We show that they can nevertheless sample colors from a good enough approxi-
mation of their palette, in the sense that it preserves the slack. Our involved sampling process
requires our degree reduction algorithm to work with weaker guarantees than previous work
[29, 31].

▶ Lemma 12 (Slice Color). Let C, α, κ > 0 be some universal constants. Suppose each node
knows an upper bound b(v) ≥ d◦(v) on its uncolored degree. Suppose that for all nodes with
b(v) ≥ C log n, and a value s(v) ≥ α · b(v), there exists an algorithm that samples a color
Cv ∈ Ψ(v) ∪ {⊥} (where ⊥ represents failure) with the following properties:

Pr(Cv = ⊥) ≤ 1/ poly(n) , (4)

Pr(Cv = c | Cv ̸= ⊥) ≤ κ

d◦(v) + s(v) . (5)

Then, there is a O(log log ∆ + κ · log(κ/α))-rounds algorithm extending the current partial
coloring so that uncolored vertices are partitioned into ℓ = O(log log ∆) layers L1, . . . , Lℓ

such that each uncolored node knows to which layer it belongs and each G[Li] has uncolored
degree O(log n).

DISC 2023

19:10 Fast Coloring Despite Congested Relays

Coloring Dense Nodes. We assume the sparse nodes are colored (Step 3) and focus on the
dense nodes (Steps 4 to 11). Dense nodes receive slack proportional to their external degree
(Step 2, Proposition 5 and Lemma 9) in all but the densest almost-cliques.

Steps 4, 5 & 6: Setting up (Section 4.1). We begin by two pre-processing steps to
ensure uncolored nodes have useful properties further in the algorithm. Computing a colorful
matching (Step 4, Proposition 17) creates Θ(aK) slack in the clique palette Ψ(K). This is a
crucial step to ensure we can approximate nodes palettes (see Step 8). We then compute a
(small) fraction OK ⊆ K of atypical nodes called outliers (Step 5, Lemma 14). Outliers have
Ω(|K|) slack from their inactive inlier neighbors, and can thus be colored in O(log∗ n) rounds
(Step 6, Proposition 11). Inliers IK

def= K \ OK verify ẽv ≤ O(eK + θext
K) and ãv ≤ O(aK)

(Equation (6)).
While the colorful matching algorithm is rather straightforward to implement even

at distance-2, computing outliers is a surprisingly challenging task. The reason is that,
contrary to distance-1, nodes do not know good estimates for aK . Fortunately, a node only
overestimates its anti-degree (i.e., ãv ≥ av) and we know that 0.9|K| nodes have av ≤ 100aK .
By learning approximately the distributions of anti-degrees, we can set a threshold τ such
that all nodes with ãv ≤ τ verify ãv ≤ 200aK .

Step 7: Synchronized Color Trial (Section 4.2). This now standard step exploits the
small external degree of dense nodes to color most of them. We distributively sample a
permutation π of [|IK |] such that the i-th node in IK (with respect to any arbitrary order)
knows π(i) (Lemma 28). Each node then learns the π(i)-th color in Ψ(K) and tries that
color (Lemma 29). This leaves O(aK + eK + log n) uncolored node in each almost-clique
(Lemma 18). To implement these steps, we split nodes into small random groups to spread
the workload. The main technical novelty here is an algorithm to aggregate the partial
information of each group (Lemma 20).

Step 8: Slice Color (Section 4.3). In the densest almost-cliques, the synchronized color
trial already leaves O(log n) nodes uncolored with uncolored degree O(log n). In other
almost-cliques, nodes have slack proportional to their uncolored degree O(aK + eK + ẽv):
Θ(aK) slack from the colorful matching (Step 4), Ω(ev) + θext

v = Ω(ẽv) from slack generation
and pseudo-external-degree. If these are not large enough, it must be that ∆2− d̃(v) ≥ Ω(eK),
i.e., the node has enough slack from its small degree.

While at distance-1 we could use slack to color fast, doing the same at distance-2
requires more work because nodes do not know their palettes. The first key observation,
is that the clique-palette preserves the slack. More precisely, for all inliers v ∈ IK , we have
|Ψ(K) ∩Ψ(v)| ≥ d◦(v) + Ω(aK + eK + ẽv) (Lemma 23). The proof of this statement is very
technical and requires careful balancing of all four sources of slack: the colorful matching,
the sparsity slack, the pseudo-degree slack and the degree slack. We also emphasize this is
why inliers need to verify ãv ≤ O(aK): when we use colors from the clique-palette, we lose
up to av colors used by anti-neighbors, which we compensate using the colorful matching
and pseudo-anti-degree slack Θ(aK) + θanti

K .
It remains to sample uniform colors in Ψ(K) ∩ Ψ(v). Based on Lemma 23, it can

be observed that |Ψ(K) ∩ Ψ(v)| ≥ Ω(|Ψ(K)|). Hence, each node v finds a random color
Cv ∈ Ψ(K) ∩ Ψ(v) to try w.h.p. by sampling Θ(log n) uniform colors in Ψ(K). With
Θ(log2 n) bandwidth, this step can easily be implemented (Lemma 24) by sampling indices in
|Ψ(K)| and using the same tools as for the synchronized color trial (Step 7). With Θ(log n)

M. Flin, M. M. Halldórsson, and A. Nolin 19:11

bandwidth, we use representative hash functions [30]. Intuitively, we use a poly(n)-sized
family of hash functions mapping [∆2 + 1] to some [Θ(|Ψ(K)|)]. To “sample” colors, we
take a hash function at random and pick as sampled colors those hashing below Θ(log n).
Since a hash function h can be described in O(log n) bits and the hashes h(Ψ(K)) ∩ [σ]
and h(C(N(v) \K)) ∩ [σ] can be described using a O(log n)-bitmap, the algorithm works in
CONGEST.

The above allows us to apply SliceColor after SynchColorTrial. In O(log log n) rounds, we
compute ℓ = O(log log n) layers L1, L2, . . . , Lℓ such that the maximum uncolored degree in
each induced graph G[Li] is O(log n) (Lemma 12).

Steps 10 & 11: Coloring Small Degree Instances (Section 4.4). We go through each
layer L1, L2, . . . , Lℓ sequentially, each time coloring all nodes in Li. Actually constructing
small degree instances for solving with a deterministic algorithm requires the nodes to learn
colors from their palette – a tough ordeal in the distance-2 setting. Our argument is two-fold:
in not-too-dense almost-cliques, a simple sampling argument works (Lemma 26). In very
dense almost-cliques where aK , eK , θext

K ≤ O(log n), we use a different argument exploiting
the very high density of the cluster to disseminate colors fast (Lemma 27). We point out
that at this step, it is crucial that uncolored nodes have typical degrees av, ev ≤ O(log n),
which is ensured by our inlier selection (Step 5). Once nodes know a list of d◦(v) + 1 colors
from their palettes, we can use a small-degree algorithm from [28, 23, 38, 25] to complete
the coloring of Li in O(log5 log n) rounds (Proposition 2). Overall, coloring small degree
instances needs O(log6 log n) rounds, which dominates the complexity of our algorithm.

4 Coloring Dense Nodes

Henceforth, we assume that we are given an ε-almost-clique decomposition Vsparse, K1, . . . , Kk

for ε = 10−5 2, where Vsparse is already colored. We further assume we ran GenerateSlack and
that each node v with ζv ≥ Ω(log n) has slack Ω(ζv) (Proposition 5). In this section, we
describe an algorithm that colors dense nodes. More formally, we prove the following result:

▶ Proposition 13 (Coloring Dense Nodes). After GenerateSlack and coloring sparse nodes,
there is a O(log6 log n)-round randomized algorithm for completing a ∆2 + 1-coloring of the
dense nodes, w.h.p.

We assume access to O(log2 n) bandwidth throughout the rest of the paper, and defer
of how to achieve O(log n) bandwidth to the full version [17, Section 7]. The use of extra
bandwidth is very limited and explicitly stated. The reduction in bandwidth only introduces
minor changes to the algorithm, and is mostly achieved through techniques from [32].

4.1 Leader, Outliers & Colorful Matching
A useful property of almost-cliques, used by [29, 31, 15], is their relative uniform sparsity.
The first step of these algorithms is to dissociate the typical nodes, called inliers, from the
atypical ones, called outliers. At distance-2, however, detecting outliers is difficult. For
instance, the algorithm of [15] requires to keep only nodes with anti-degree av ≤ O(aK).
Such a trivial task at distance one requires work at distance-2 because nodes are unable to
approximate their degree accurately (up to a constant factor). To circumvent this limitation
of the distance-2 setting, we instead compute outliers using pseudo-degrees (Definition 10).

2 Note that we made no attempt to optimize the constants.

DISC 2023

19:12 Fast Coloring Despite Congested Relays

▶ Lemma 14 (Compute Outliers). We compute in O(log log ∆) rounds a set OK in each
almost-clique K such that IK

def= K \OK has size 0.95|K| and each v ∈ IK verifies that

ẽv ≤ 200(eK + θext
K) , and ãv ≤ 200aK . (6)

The general idea behind Lemma 14 is that a large fraction of the almost-clique has a
typical sparsity, external degree and anti-degree. By learning approximately the distribution
of pseudo-external degrees and pseudo-anti-degrees, the leader can select a large enough
fraction of K verifying Equation (6). As the proof of Lemma 14 is quite technical, we defer
it to the full version of the paper, [17, Section 6].

Outliers can be colored in O(log∗ n) rounds, thanks to the Ω(∆2) slack provided by their
inactive inlier neighbors. Starting from Section 4.2, we will assume outliers are all colored,
thus focus on coloring inliers.

Colorful Matching. A major issue when coloring dense nodes in G2 is that they do not
know their palette. We overcome this by using the clique palette as an approximation.

▶ Definition 15 (Clique Palette). For an almost-clique K, define its clique palette as
Ψ(K) = [∆2 + 1] \ C(K), i.e., the set of colors in {1, 2, . . . , ∆2 + 1} that are not already used
by a node of K.

This idea was first (implicitly) used by [3] to prove their palette sparsification theorem
on almost-cliques. This was since used formally in [16, 15]. Note that in large almost-cliques
(such that |K| = (1 + ε)∆2), the clique-palette can be empty after coloring the outliers. To
remedy this issue, [3] compute first a colorful-matching:

▶ Definition 16 (Colorful Matching). In a clique K, a colorful matching M is a set of
anti-edges in K (edges in the complement) such that both endpoints are colored the same.

Flin, Ghaffari, Halldórsson, Kuhn and Nolin gave a CONGEST algorithm to compute
a colorful matching of size Θ(aK/ε) in O(1/ε) rounds in cliques with a high average anti-
degree [15]. We review this algorithm and argue it can be implemented on G2 with constant
overhead in the full version of the paper (see [17, Appendix C]).

▶ Proposition 17 (Distance-2 Colorful Matching). Let β ≤ O(1/ε). There exists a O(β)-
round randomized algorithm Matching that computes a colorful matching of size βaK in all
almost-cliques of G2 with aK ≥ Ω(log n).

4.2 Synchronized Color Trial
Synchronizing color trials in dense components is a fundamental part of all known sub-
logarithmic algorithm [33, 9, 29, 31]. We implement a variant of [31] where a uniform
permutation determines which node tries which color. Contrary to [31], we use colors from
the clique palette Ψ(K) (Definition 15), which is easier to implement in our setting. This
approach was also used by [15] to implement the synchronized color trial in Broadcast-
CONGEST. A major difference with [15] is that at distance-2, nodes cannot learn the whole
clique-palette Ψ(K).

▶ Lemma 18 (Synchronized Color Trial, [31]). Let K be an almost-clique with |IK | ≥ Ω(|K|)
inliers. Fix the randomness outside K arbitrarily. Let π be a uniform random permutation
of [|IK |]. If the i-th node in IK (for any arbitrary order) tries the π(i)-th color in Ψ(K) (if
it exists), then, with high probability, at most O(eK + aK + log n) are uncolored in K.

M. Flin, M. M. Halldórsson, and A. Nolin 19:13

To implement the synchronized color trial, a node v needs only to know π(v) and the
π(v)-th color of Ψ(K). We use an approach similar to [15]: randomly partition nodes into
groups T1, . . . , Tk to spread the workload. Concretely, we use the following fact, which is a
straightforward consequence of Chernoff and Definition 6.2b.

▶ Fact 19. Let K be an almost-clique and k ≤ |K|/(C log n) for some large enough C > 0.
Suppose each v ∈ K samples t(v) ∈ [k] uniformly at random. Then, w.h.p., each Ti = {v ∈
K : t(v) = i} satisfies that any u, w ∈ K have |N2(u) ∩N2(w) ∩ Ti| ≥ (C/4) log n. We say
set Ti 2-hop connects K.

Note that the two hops mentioned in Fact 19 are in G2, i.e., for two nodes u, w ∈ K

where Ti 2-hop connects K, u and w can be at distance 4 in G.
Contrary to [15], at distance-2, nodes do not have the bandwidth to learn the whole

clique-palette nor the full random permutation. Fortunately, they only need to know their
position in the permutation and the one corresponding color. The main technical novelty in
our distance-2 implementation lies in an algorithm to compute prefix-sums

∑
j<i xj where

each random group Ti holds a value xi (Lemma 20). We first explain how to aggregate such
prefix sums and then show it is enough for implementing the synchronized color trial.

▶ Lemma 20 (Prefix Sums). Let T1, . . . , Tk ⊆ K be disjoint sets that 2-hop connect K. If
each Ti holds a poly log n-bit integer xi, then there is a O(1)-round algorithm such that for
all i ∈ [k], each v ∈ Ti learns

∑
j<i xj.

Proof. Compute a BFS tree rooted at some arbitrary wK ∈ K and spanning N2(wK) ∩K.
We order distance-2 neighbors of wK with the lexicographical order induced by the BFS tree:
distance-2 neighbors u ∈ NG2(wK) are ordered first by ID(v), where v is the parent of u in
the BFS tree, and then by ID(u). Call u1, u2, . . . , u|NG2 (wK)∩K| distance-2 neighbors of wK

with respect to that ordering.For each i ∈ [k], node ui learns xi. Since Ti 2-hop connects
K, there must exist a node r ∈ N(ui) ∩N(Ti) which can relay xi from its neighbor in Ti

to ui. For each distance-1 neighbor vj ∈ N(wK) ∩K of wK (i.e., depth-1 nodes in the BFS
tree), let uij

, uij+1, . . . , uij+1−1 be its children in the BFS tree. Each vj can learn all values
xij , . . . , xij+1−1 with a broadcast. Node vj then sends the sum Sj

def=
∑ij+1−1

k=ij
xk to wK ,

which responds with
∑

k<j Sj =
∑

k<ij
xk. For each child uij+t with 0 ≤ t ≤ ij+1 − ij , the

node vj communicates

∑
k<j

Sk +
ij+t−1∑

k=ij

xk =
∑

k<ij+t

xk

to uij+t, which is exactly the prefix sum it had to learn. Each ui can then transmit its prefix
sum to Ti using the same path it used to learn xi. ◀

We briefly sketch the algorithm for implementing the synchronized color trial using
Lemma 20 and random groups in the following lemma. See Appendix A for more details.

▶ Lemma 21. Let v1, . . . , v|IK | ∈ IK be the inliers of some almost-clique K. In O(log log n)
rounds of CONGEST, with high probability,
1. we can sample a uniform permutation π of [|IK |] such that vi knows π(i); and
2. each vi can learn iv-th color of Ψ(K), for any iv ∈ [∆ + 1] (and fail if |Ψ(K)| < iv).

Proof Sketch. We begin by explaining how to sample the permutation. Each node v ∈ IK

picks an integer t(i) ∈ [Θ(|K|/ log n)] at random. Let Ti = {v ∈ S : t(v) = i}. By Chernoff
bound, w.h.p., |Ti| = O(log n) and 2-hop connects K (Fact 19). In particular, each Ti has

DISC 2023

19:14 Fast Coloring Despite Congested Relays

hop-diameter at most 4 and we can relabel nodes of Ti using O(log log n)-bit labels in O(1)
rounds. Using small labels, each Ti can sample a permutation ρi of itself in O(log log n)
rounds. The permutation of IK is defined by π(v) =

∑
j<t(v) |Tj |+ ρt(v)(v); hence, using the

prefix sum algorithm (Lemma 20), nodes learn
∑

j<t(v) |Tj | and have the required information
to compute their position in π.

For learning colors, we split nodes into Θ(∆2/ log n) groups randomly. Random group Ti

is tasked with learning which colors in range Ri = {i ·Θ(log n), . . . , (i + 1) ·Θ(log n) − 1}
are used by a node in K. With high probability, each Ti 2-hop connects K; thus, using
O(log n)-bitmaps and simple aggregation, nodes in Ti learn Ri∩C(K) in O(1) rounds. Hence,
each node in Ti learns Ri \ C(K) = Ri ∩Ψ(K). By computing prefix sums

∑
j<i |Rj ∩Ψ(K)|,

nodes of Ti learn which range of queries i ∈ [|Ψ(K)|] they must respond. Since each Ti 2-hop
connects K, each node in K has a relay to the group which must answer its query. ◀

4.3 Slack Color (with extra bandwidth)
After the synchronized color trial, uncolored nodes have degree proportional to the slack they
received from GenerateSlack (Proposition 5). Contrary to [9, 29, 31], nodes cannot trivially
try colors from their palettes, for they lack direct knowledge of it. In this section, we give a
solution that uses O(log2 n) bandwidth and refer to [17] for the CONGEST implementation.
The idea is to sample Θ(log n) colors from the clique palette, which is accessible by Lemma 29.
Note that this step is needed only in high-sparsity cliques: if aK + eK ≤ O(log n), then its
remaining uncolored nodes after the synchronized color trial have degree O(log n). This
motivates the following definition:

▶ Definition 22 (Kmod, Kvery). Let C > 0 be a large enough constant. We say that almost-
clique K is very dense if aK < C log n and eK , θext

K < 4C log n. Reciprocally, we say K

is moderately dense if it is not very dense. We call Kmod the set of moderately dense
almost-cliques and Kvery the very dense ones.

Lemma 23 shows that in moderately dense almost-cliques, the clique palette preserves
the slack provided by early steps of the algorithm (slack generation, colorful matching and
degree slack).

▶ Lemma 23 (The Clique Palette Preserves Slack). After GenerateSlack and Matching, for
all inlier v ∈ IK with K ∈ Kmod, we have |Ψ(v) ∩ Ψ(K)| ≥ d◦(v) + Ω(ẽv + eK + aK). In
particular, for any such v ∈ IK with K ∈ Kmod, we have |Ψ(v) ∩Ψ(K)| ≥ Ω(|Ψ(K)|).

Proof. Clearly, |K| = |N2(v) ∩K| + av. We carefully add all contributions to the degree
slack of a node

∆2 = (∆2 − d̃(v)) + d̃(v) = |N2(v) ∩K|+ ev + (∆2 − d̃(v)) + θext
v + θanti

v .

The clique palette loses one color for each colored node but saves one for each edge in the
colorful matching. Recall that K◦ denotes the uncolored part of K. The clique palette has
size at least

|Ψ(K)| ≥ ∆2 − (|K| − |K◦|) + |M | ≥ |K◦|+ ev + |M | − av + (∆2 − d̃(v)) + θext
v + θanti

v .

Let s be the slack received w.h.p. by v after GenerateSlack: if ev ≥ C log n then s
def= Ω(ζv) ≥

Ω(ev) (Proposition 5 and Lemma 9), otherwise s = 0. The palette of v is of size at least

|Ψ(v)| ≥ d◦(v) + s + (∆2 − d̃(v)) + θext
v + θanti

v .

M. Flin, M. M. Halldórsson, and A. Nolin 19:15

Notice |Ψ(v)\Ψ(K)| ≤ av and |Ψ(K)\Ψ(v)| ≤ e•
v (recall e•

v is the number of colored external
neighbors). A double counting argument bounds the number of colors in both v’s palette
and the clique palette:

2|Ψ(v) ∩Ψ(K)| = |Ψ(v)|+ |Ψ(K)| − |Ψ(v) \Ψ(K)| − |Ψ(K) \Ψ(v)|

≥ d◦(v) + |K◦|+ (ev − e•
v) + s + |M |+ 2(θanti

v − av + θext
v + ∆2 − d̃(v))

≥ 2d◦(v) + s + |M | − 2ãv + 2θext
v + 2(∆2 − d̃(v)) , (7)

where the second inequality uses |K◦|+(ev−e•
v) ≥ d◦(v) and θanti

v −av = (av− ãv)−av = −ãv.
The remaining of this proof is a careful case analysis to show that Equation (7) implies

|Ψ(v)∩Ψ(K)| ≥ d◦(v) + Ω(ẽv + eK + aK). Each case of our analysis corresponds to a regime
for aK and eK , since v receives slack from the coloring matching only when aK > Ω(log n)
(Proposition 17) and from slack generation when ev ≥ Ω(log n) (Proposition 5). We defer
the detail of this case analysis to Appendix B.

Constant density. Observe that if |Ψ(K)| > 2ev then |Ψ(v) ∩ Ψ(K)| ≥ |Ψ(K)| − ev ≥
|Ψ(K)|/2. Otherwise if ev ≥ |Ψ(K)|/2, we use |Ψ(v)∩Ψ(K)| ≥ Ω(ev) (which we just proved)
to deduce that |Ψ(v) ∩Ψ(K)| ≥ Ω(ev) ≥ Ω(|Ψ(K)|). ◀

Lemma 24 is the main implication of Lemma 23. It states that we can use random sampling
in the clique palette, instead of nodes’ palettes, to try colors in SliceColor (Lemma 12). In
particular, after SynchColorTrial (Step Algorithm 1 in Algorithm 1), SliceColor with the
sampling process described in Lemma 24 reduces degrees to O(log n) in O(log log n) rounds.

▶ Lemma 24. There is an O(1)-round algorithm (using O(log2 n) bandwidth) that when run
after GenerateSlack and Matching, achieves the following: It samples a random color Cv ∈
Ψ(v) ∪ {⊥} for all uncolored dense nodes v ∈ K ∈ Kmod such that Pr(Cv = ⊥) ≤ 1/ poly(n)
and Pr(Cv = c) ≤ 1

d◦(v)+Ω(aK +eK +ẽv)
for all colors c ∈ Ψ(v) ∩Ψ(K).

Proof. Fix a node v ∈ K. Nodes of K can learn |Ψ(K)| by Lemma 29. Then v samples
x = Θ(log n) indices in [|Ψ(K)|]. By Lemma 29, using O(log2 n) bandwidth, each node can
learn in O(1) rounds the colors corresponding to the indices they sampled. They broadcast
this list of colors (using O(log2 n) bandwidth) and drop all colors used by neighbors (i.e.,
that are not in their palette). Finally, node v picks Cv uniformly at random among the
remaining ones. Since |Ψ(K) ∩Ψ(v)| ≥ Ω(|Ψ(K)|), by sampling Θ(log n) colors, we sample
at least one color Ψ(K) ∩ Ψ(v) with high probability (i.e., Pr(Cv = ⊥) ≤ 1/ poly(n)). To
argue about the uniformity (Equation (5)), we observe that sampling x = Θ(log n) indices
in [|Ψ(K)|] and then trying a random one of those is equivalent to sampling a uniform
permutation π of [|Ψ(K)|] (the x sampled indices are π−1(1), . . . , π−1(x)) and trying the
color c ∈ Ψ(K) ∩Ψ(v) with the smallest π(c) (if min π(Ψ(K) ∩Ψ(v)) < x). Hence, if we call
Z = min π(Ψ(K) ∩Ψ(v)), we have

Pr(Cv = c) = Pr(Z < x ∧ π(c) = Z)

≤ Pr(π(c) = Z) = 1
|Ψ(K) ∩Ψ(v)|

≤ 1
d◦(v) + Ω(aK + eK + ẽv) . (by Lemma 23)

◀

DISC 2023

19:16 Fast Coloring Despite Congested Relays

4.4 Learning Small Palettes (with extra bandwidth)
Assume we are given sets L1, . . . , Lℓ for some ℓ = O(log log n) such that the maximum
uncolored degree in each G[Li] is at most O(log n). We explain how nodes learn a list L(v)
of d◦(v) + 1 colors in their palette, with respect to the current coloring of G2.

▶ Lemma 25 (Learn Palette). Let H be an induced subgraph of G2 with maximum uncolored
degree O(log n). There is a O(log log n)-round algorithm at the end of which each node in H

knows a set L(v) ⊆ Ψ(v) of d◦
H(v) + 1 colors with high probability.

The argument is two-fold, we deal with v ∈ K ∈ Kmod nodes and very dense nodes
v ∈ K ∈ Kvery separately. We again assume O(log2 n) bandwidth. The O(log n) bandwidth
argument can be found in [17].

Moderately Dense Almost-Cliques. Using the sampling algorithm from Lemma 24, nodes
can sample C log n many colors in their palette in O(1) rounds, for any arbitrarily large
constant C > 0. Since uncolored degrees in H are O(log n), this suffices for Lemma 25.

▶ Lemma 26. Let H be an induced subgraph of G2 with maximum uncolored degree C ′ log n

for a large constant C ′ > 0. There is a O(1)-round algorithm (using O(log2 n) bandwidth)
for v ∈ K ∈ Kmod to learn a list L(v) of d◦

H(v) + 1 colors from their palettes.

Very Dense Almost-Cliques. In very dense almost-cliques, the clique palette Ψ(K) does
not approximate their palette well enough: Lemma 23 does not apply. We correct for that
by adding colors used by anti-neighbors. They filter out colors used by external neighbors
with O(log2 n) bandwidth, because they have O(log n) such neighbors.

▶ Lemma 27. Suppose each K ∈ Kvery has O(log n) uncolored nodes (hence d◦(v) ≤ O(log n)
for all v ∈ K ∈ Kvery). There is a O(log log n)-round randomized algorithm (using O(log2 n)
bandwidth) for all uncolored nodes v ∈ K ∈ Kvery to learn a list L(v) of d◦

H(v) + 1 colors
from their palettes.

Proof. By repeating messages randomly, we can broadcast any O(log2 n)-many messages
to all nodes in K (see Lemma 31). In particular, when |Ψ(K)| = O(log2 n), all nodes in K

learn all colors in Ψ(K) in O(1) rounds (see Lemma 32). If |Ψ(K)| ≥ Ω(log2 n), nodes learn
in O(1) rounds a set D ⊆ Ψ(K) of Θ(log2 n) colors.

Assume first that nodes learned all colors of Ψ(K). Recall nodes have ev = O(log n)
external neighbors (because K ∈ Kvery and v ∈ IK); hence, they can learn all colors used by
their external neighbors in O(1) rounds by using O(log2 n) bandwidth. Since each uncolored
v knows Ψ(K) and the colors of its external neighbors, it thereby knows Ψ(K) ∩Ψ(v).

With a BFS, we can relabel uncolored node of K in the range [O(log n)]. Since uncolored
nodes are inliers, they have anti-degree av ≤ O(aK) ≤ O(log n) each. At most O(log2 n)
nodes in K are anti-neighbors of (at least one) uncolored node. We can run O(log n) BFS in
parallel, one rooted at each uncolored node, such that each node knows to which uncolored
node it is connected (at distance-2). This takes O(log log n) rounds, even with bandwidth
O(log n), because each BFS uses O(log log n)-bit messages (thanks to the relabeling) and
we run O(log n) of them. Then, the O(log2 n) nodes with an uncolored anti-neighbor can
describe their list of uncolored anti-neighbors using a O(log n)-bitmap. Using Lemma 31,
they broadcast this information as well as their color to all nodes.

M. Flin, M. M. Halldórsson, and A. Nolin 19:17

Nodes use lists L(v) def= (Ψ(K) ∪ C(K \N2(v))) ∩Ψ(v), i.e., the clique palette augmented
with the colors of their anti-neighbors, minus colors used by external neighbors. Adding
∆2+1 ≥ |N2(v)∩K|+ev and |K| ≤ |N2(v)∩K|+av, we get |Ψ(K)| ≥ ∆2+1−(|K|−|K◦|) ≥
|K◦| + 1 + ev − av. Since each colored external neighbor removes as most one color, lists
have size (recall e•

v and a•
v are the colored external degree and anti-degrees respectively)

|L(v)| ≥ |Ψ(K)| − e•
v + a•

v ≥ |K◦|+ (ev − e•
v)− (av − a•

v) + 1 = d◦(v) + 1 .

Suppose we are in the second case of Lemma 26, i.e., nodes learn a set D ⊆ Ψ(K) of
Θ(log2 n) colors. Nodes set L(v) = D \ C(N2(v) \K) = D ∩Ψ(v), i.e., remove colors used by
external neighbors. Since they have ev ≤ O(log n), this provides large enough lists. For the
detailed analysis, see the end of Appendix C. ◀

References
1 Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆ + 1) vertex coloring. In

APPROX/RANDOM, volume 176 of LIPIcs, pages 6:1–6:22. LZI, 2020. doi:10.4230/LIPIcs.
APPROX/RANDOM.2020.6.

2 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. of Algorithms, 7(4):567–583, 1986. doi:10.1016/
0196-6774(86)90019-2.

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) vertex coloring.
In SODA, pages 767–786. SIAM, 2019. doi:10.1137/1.9781611975482.48.

4 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals
and Recent Developments. Morgan & Claypool Publishers, 2013. doi:10.2200/
S00520ED1V01Y201307DCT011.

5 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆ +
1)-coloring and applications. J. ACM, 69(1):5:1–5:26, 2022. doi:10.1145/3486625.

6 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM, 63(3):20:1–20:45, 2016. doi:10.1145/
2903137.

7 Leonid Barenboim and Uri Goldenberg. Speedup of distributed algorithms for power graphs
in the CONGEST model. Technical Report 2305.04358, arXiv, 2023. doi:10.48550/arXiv.
2305.04358.

8 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity
of distributed edge coloring with small palettes. In SODA, pages 2633–2652. SIAM, 2018.
doi:10.1137/1.9781611975031.168.

9 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆ + 1)-coloring via ultrafast graph
shattering. SIAM J. Computing, 49(3):497–539, 2020. doi:10.1137/19M1249527.

10 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász
local lemma and graph coloring. Distributed Comput., 30(4):261–280, 2017. doi:10.1007/
s00446-016-0287-6.

11 Michael Elkin and Shaked Matar. Near-additive spanners in low polynomial deterministic
CONGEST time. In PODC, pages 531–540. ACM, 2019. doi:10.1145/3293611.3331635.

12 Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ − 1)-edge-coloring is much easier than
maximal matching in the distributed setting. In SODA, pages 355–370. SIAM, 2015. doi:
10.1137/1.9781611973730.26.

13 Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhoň. Local
distributed rounding: Generalized to MIS, matching, set cover, and beyond. In SODA, pages
4409–4447. SIAM, 2023. doi:10.1137/1.9781611977554.ch168.

14 Manuela Fischer, Magnús M. Halldórsson, and Yannic Maus. Fast distributed Brooks’ theorem.
In SODA, pages 2567–2588. SIAM, 2023. doi:10.1137/1.9781611977554.ch98.

DISC 2023

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.6
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/3486625
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2903137
https://doi.org/10.48550/arXiv.2305.04358
https://doi.org/10.48550/arXiv.2305.04358
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1137/19M1249527
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1145/3293611.3331635
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1137/1.9781611977554.ch168
https://doi.org/10.1137/1.9781611977554.ch98

19:18 Fast Coloring Despite Congested Relays

15 Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin.
Coloring fast with broadcasts. In SPAA, pages 455–465. ACM, 2023. doi:10.1145/3558481.
3591095.

16 Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin.
A distributed palette sparsification theorem. Technical Report 2301.06457, arXiv, 2023.
doi:10.48550/arxiv.2301.06457.

17 Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin. Fast coloring despite congested
relays. Technical Report 2308.01359, arXiv, 2023. Full version of this paper. doi:10.48550/
arxiv.2308.01359.

18 Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. Distributed testing of
distance-k colorings. In SIROCCO, volume 12156 of LNCS, pages 275–290. Springer, 2020.
doi:10.1007/978-3-030-54921-3_16.

19 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In FOCS,
2016. doi:10.1109/FOCS.2016.73.

20 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In SODA,
pages 270–277. SIAM, 2016. doi:10.1137/1.9781611974331.ch20.

21 Mohsen Ghaffari. Distributed maximal independent set using small messages. In SODA, pages
805–820. SIAM, 2019. doi:10.1137/1.9781611975482.50.

22 Mohsen Ghaffari and Christoph Grunau. Faster deterministic distributed MIS and approximate
matching. STOC, abs/2303.16043, 2023. doi:10.48550/arXiv.2303.16043.

23 Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhoň.
Improved distributed network decomposition, hitting sets, and spanners, via derandomization.
In SODA, pages 2532–2566. SIAM, 2023. doi:10.1137/1.9781611977554.ch97.

24 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network
decomposition. In SODA, 2021. arXiv:2007.08253.

25 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In FOCS, pages 1009–1020. IEEE Computer Society,
2021. doi:10.1109/FOCS52979.2021.00101.

26 Mohsen Ghaffari and Julian Portmann. Improved network decompositions using small messages
with applications on MIS, neighborhood covers, and beyond. In DISC, volume 146 of LIPIcs,
pages 18:1–18:16. LZI, 2019. doi:10.4230/LIPIcs.DISC.2019.18.

27 Magnús M. Halldórsson, Fabian Kuhn, and Yannic Maus. Distance-2 coloring in the CONGEST
model. In PODC, pages 233–242. ACM, 2020. doi:10.1145/3382734.3405706.

28 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin. Coloring fast
without learning your neighbors’ colors. In DISC, pages 39:1–39:17. LZI, 2020. doi:10.4230/
LIPIcs.DISC.2020.39.

29 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized
distributed coloring in CONGEST. In STOC, pages 1180–1193. ACM, 2021. doi:10.1145/
3406325.3451089.

30 Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST via efficient
color sampling. Theor. Comput. Sci., 948:113711, 2023. doi:10.1016/j.tcs.2023.113711.

31 Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. In STOC, pages 450–463. ACM, 2022. doi:10.1145/3519935.
3520023.

32 Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion in
distributed coloring. In PODC, pages 26–36. ACM, 2022. doi:10.1145/3519270.3538438.

33 David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in
sublogarithmic rounds. Journal of the ACM, 65:19:1–19:21, 2018. doi:10.1145/3178120.

34 Öjvind Johansson. Simple distributed ∆ + 1-coloring of graphs. Inf. Process. Lett., 70(5):229–
232, 1999. doi:10.1016/S0020-0190(99)00064-2.

https://doi.org/10.1145/3558481.3591095
https://doi.org/10.1145/3558481.3591095
https://doi.org/10.48550/arxiv.2301.06457
https://doi.org/10.48550/arxiv.2308.01359
https://doi.org/10.48550/arxiv.2308.01359
https://doi.org/10.1007/978-3-030-54921-3_16
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611975482.50
https://doi.org/10.48550/arXiv.2303.16043
https://doi.org/10.1137/1.9781611977554.ch97
https://arxiv.org/abs/2007.08253
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.4230/LIPIcs.DISC.2019.18
https://doi.org/10.1145/3382734.3405706
https://doi.org/10.4230/LIPIcs.DISC.2020.39
https://doi.org/10.4230/LIPIcs.DISC.2020.39
https://doi.org/10.1145/3406325.3451089
https://doi.org/10.1145/3406325.3451089
https://doi.org/10.1016/j.tcs.2023.113711
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.1145/3519270.3538438
https://doi.org/10.1145/3178120
https://doi.org/10.1016/S0020-0190(99)00064-2

M. Flin, M. M. Halldórsson, and A. Nolin 19:19

35 Sven Oliver Krumke, Madhav V. Marathe, and S. S. Ravi. Models and approximation
algorithms for channel assignment in radio networks. Wirel. Networks, 7(6):575–584, 2001.
doi:10.1023/A:1012311216333.

36 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Computing, 21(1):193–201,
1992. doi:10.1137/0221015.

37 M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J.
Computing, 15:1036–1053, 1986. doi:10.1137/0215074.

38 Yannic Maus, Saku Peltonen, and Jara Uitto. Distributed symmetry breaking on power
graphs via sparsification. In PODC, pages 157–167. ACM, 2023. full version available at
arxiv:2302.06878. doi:10.1145/3583668.3594579.

39 Yannic Maus and Tigran Tonoyan. Linial for lists. Distributed Comput., 35(6):533–546, 2022.
doi:10.1007/s00446-022-00424-y.

40 Yannic Maus and Jara Uitto. Efficient CONGEST algorithms for the Lovász local lemma. In
DISC, volume 209 of LIPIcs, pages 31:1–31:19. LZI, 2021. doi:10.4230/LIPIcs.DISC.2021.31.

41 Seth Pettie and Hsin-Hao Su. Distributed coloring algorithms for triangle-free graphs. Inf.
Comput., 243:263–280, 2015. doi:10.1016/j.ic.2014.12.018.

42 Bruce A. Reed. ω, ∆, and χ. J. Graph Theory, 27(4):177–212, 1998. doi:10.1002/(SICI)
1097-0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K.

43 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network de-
composition and distributed derandomization. In STOC, pages 350–363. ACM, 2020.
doi:10.1145/3357713.3384298.

44 Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In PODC, pages 257–266. ACM, 2010. doi:10.1145/1835698.1835760.

A Missing Details in Synchronized Color Trial

In this section, we expand on the proof sketch of Lemma 21 in the main text and fill in some
of the missing details of how we implement Synchronized Color Trial in the distance-2 setting.
Similarly to how we used random groups to compute prefix sums in Lemma 20, permuting
the nodes (Lemma 28) and learning the colors used in the almost-clique (Lemma 29) are
performed by assigning nodes randomly to groups which each perform a chunk of the workload.
Assembling together the work done in each group is done using our algorithm for computing
prefix sums (Lemma 20), which was the most novel part of the implementation. Algorithmic
ideas behind Lemmas 28 and 29 are very similar to the ones of [15], and we discuss them
more briefly.

▶ Lemma 28 (Permute). There is an algorithm that samples a uniform permutation π of
[|IK |] in O(1) rounds with high probability. The i-th node in IK (with respect to any ordering
where v knows its index) learns π(i).

Proof. Each node v ∈ IK picks an integer t(i) ∈ [Θ(|K|/ log n)] at random. Let Ti = {v ∈
S : t(v) = i}. By Chernoff bound, w.h.p., |Ti| = O(log n) and 2-hop connects K (Fact 19).
In particular, each Ti has hop-diameter at most 4. Let wi be the node of minimum ID in
Ti. Each Ti computes a spanning tree rooted at its wi. This is performed in parallel for
all groups, by having nodes forward the minimum ID they received from a group Ti to
other members of Ti. Note that an edge only needs to send information concerning the two
groups of its endpoints. Each Ti then relabels itself using small O(log log n)-bit identifiers
in the range [|Ti|]. wi samples a permutation ρi of |Ti| and broadcasts it to Ti. Since the
permutation of a group needs O(log n) × O(log log n) bits, after O(log log n) rounds each
v ∈ Ti knows ρi(v). Then, using Lemma 20, each v learns

∑
j<i |Tj |. Finally, node v sets its

position to π(v) =
∑

j<i |Tj |+ ρi(v). ◀

DISC 2023

https://doi.org/10.1023/A:1012311216333
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0215074
https://doi.org/10.48550/arXiv.2302.06878
https://doi.org/10.1145/3583668.3594579
https://doi.org/10.1007/s00446-022-00424-y
https://doi.org/10.4230/LIPIcs.DISC.2021.31
https://doi.org/10.1016/j.ic.2014.12.018
https://doi.org/10.1002/(SICI)1097-0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/1835698.1835760

19:20 Fast Coloring Despite Congested Relays

▶ Lemma 29 (Free Color). Suppose each node in v ∈ K holds an integer iv ∈ [∆2 + 1]. There
is O(1)-round algorithm at the end of which each v knows the iv-th color of Ψ(K) (with
respect to any globally known total order of Ψ(K)). Furthermore, all nodes can learn |Ψ(K)|
in the process.

Proof. Each node v ∈ K picks an integer t(v) ∈ [Θ(∆2/ log n)]. Let Ti = {v ∈ K : t(v) = i}.
Again, w.h.p., |Ti| = O(log n) and Ti 2-hop connects K. Each node broadcasts its color (if it
adopted one) and its group number t(v). Let Ri = {i ·Θ(log n), . . . , (i + 1) ·Θ(log n)− 1}.
Let Su,i = Ri ∩ C(N(u) ∩K) be the colors from range Ri used by neighbors of u. For each
i ∈ [k], node u can describe Su,i to each neighbor in Ti using a O(log n)-bitmap. Since each
Ti has diameter 4 and 2-hop connects K, after O(1) rounds of aggregation on bitmaps using
a bitwise OR, each node in Ti knows Ri ∩ C(K), i.e., all colors from range Ri used in K.
Note that this also allows them to compute Ri \ C(K) = Ri ∩Ψ(K), i.e., the colors of Ri

that are not used by a node of K. By Lemma 20, nodes of Ti learn
∑

j<i |Rj ∩ Ψ(K)| in
O(1) rounds. Finally each v broadcasts iv and each u ∈ Ti broadcasts i,

∑
j<i |Rj ∩Ψ(K)|

and Ri \ C(K). Since each set Ti 2-hop connects K, if the iv-th color of Ψ(K) belongs to
range Ri (i.e.,

∑
j<i |Rj ∩Ψ(K)| ≤ iv <

∑
j≤i |Rj ∩Ψ(K)|), then there exists a u ∈ Ti and

w ∈ N(u)∩N(v) which knows both iv and the color it corresponds to. Then w can transmit
that information to v.

To learn |Ψ(K)|, nodes aggregate the sum of all |Ri ∩Ψ(K)|. This can easily done with a
BFS (and electing a leader in each group to avoid double counting). ◀

B Missing Details in the Proof of Lemma 23

▶ Lemma 23 (The Clique Palette Preserves Slack). After GenerateSlack and Matching, for
all inlier v ∈ IK with K ∈ Kmod, we have |Ψ(v) ∩ Ψ(K)| ≥ d◦(v) + Ω(ẽv + eK + aK). In
particular, for any such v ∈ IK with K ∈ Kmod, we have |Ψ(v) ∩Ψ(K)| ≥ Ω(|Ψ(K)|).

In this section, we give the details of a case analysis which we skipped in the proof of
Lemma 23 in the main text. In Section 4.3, we show Equation (7):

2|Ψ(v) ∩Ψ(K)| ≥ 2d◦(v) + s + |M | − 2ãv + 2θext
v + 2(∆2 − d̃(v)) .

To complete the proof, we show that Equation (7) implies that

|Ψ(v) ∩Ψ(K)| ≥ d◦(v) + Ω(ẽv + eK + aK) .

Henceforth, slack implicitly refers to the slack in the clique palette, i.e., node v has slack x if
|Ψ(v) ∩Ψ(K)| ≥ d◦(v) + x. When both quantities are too small, the following fact implies
that nodes must have slack from a low degree.

▶ Fact 30. If aK , ẽv ≤ eK/4, then ∆2 − d̃(v) > eK/2.

Proof. For all v ∈ K, we have |K| = |N2(v) ∩K| + av and ∆2 = (∆2 − d̃(v)) + |N2(v) ∩
K|+ θv + ev, Equation (8) holds:

∆2 − |K| = (∆2 − d̃(v)) + θv + ev − av = (∆2 − d̃(v)) + ẽv − ãv . (8)

Since this holds for all nodes, it also holds on average:

∆2 − |K| ≥ θK + eK − aK . (9)

M. Flin, M. M. Halldórsson, and A. Nolin 19:21

We conclude by replacing Equation (9) in Equation (8):

∆2 − d̃(v) ≥ (∆2 − |K|)− ẽv (by Equation (8))
≥ eK − aK − ẽv (by Equation (9))
≥ eK/2 . (because aK , ẽv ≤ eK/4)

◀

When one or both of the quantities are larger, we do a case analysis with four cases.
Large anti-degree implies that the colorful matching provides slack w.h.p. Large external
degree implies that GenerateSlack created slack at the beginning of the algorithm, w.h.p. A
careful analysis allows to claim that sufficient slack is guaranteed to exist w.h.p.

Case 1 (high anti-degree, low external degree). If aK > C log n and eK < 4C log n. We
compute a colorful matching of size |M | ≥ 402aK . Thus, all nodes have slack |M |−2ãv ≥ 2aK ,
because ãv ≤ 200aK for all inliers (Lemma 14). If ev ≥ aK > C log n, then v receives slack
Ω(ev) from slack generation; hence it has Ω(aK + eK + ẽv) slack by Equation (7). Otherwise,
if aK > ev, it gets enough slack from the colorful matching.

Case 2 (high anti-degree and external degree). If aK > C log n and eK ≥ 4C log n.
Similarly to case 1, nodes have slack aK . If aK > eK/4 or θext

v ≥ eK/8, then it has enough
slack. Finally, if ev > eK/8 > Ω(log n), then v received Ω(ev) slack from GenerateSlack;
hence has slack Ω(aK + eK + ẽv). The only remaining possibility is that aK , ẽv ≤ eK/4.
Then, Fact 30 shows that ∆2 − d̃(v) ≥ eK/2 ≥ Ω(aK + eK + ẽv) and we are done.

Case 3 (low anti-degree, high external degree). If aK < C log n and eK > 4C log n. If
ev > eK/8 ≥ Ω(log n), then v has slack θext

v +Ω(ev) ≥ Ω(aK +eK + ẽv) from slack generation,
so we are done. If θext

K > eK/8, then again we are done. Otherwise, aK , ẽv ≤ eK/4 and by
Fact 30 we conclude that all nodes have enough degree slack.

Case 4 (low anti-degree and external degree). If aK < C log n and eK < 4C log n. Since
K ∈ Kmod, it must be that θext

K > 4C log n. If ẽv is greater than θext
K /8, then v has slack

Ω(ẽv) ≥ Ω(ẽv + θext
K) ≥ Ω(aK + eK + ẽv) and we are done. So we can assume aK , ẽv < θext

K /4.
We argue that the degree slack must be large. Similarly to Fact 30, we have

∆2 − d̃(v) ≥ (∆2 − |K|)− ẽv (by Equation (8))
≥ θext

K − aK − ẽv (by Equation (9))
≥ θext

K /2 ≥ Ω(aK + eK + ẽv) . (by assumption)

C Random Broadcast in Almost-Cliques

In this section, we explain how nodes in an almost-clique can all learn Θ(log2 n) messages
each originating from a different node in O(1) rounds, as used in the proof of Lemma 27.
We use the following broadcast primitive: Each node forwards along each outgoing edge a
(independently) random message received.

▶ Lemma 31 (Distance-2 Many-to-All Broadcast). Let K be an almost-clique in G2 and
S ⊆ K be a subset of k vertices such that each x ∈ S has a message mx. Suppose ∆ ≥ k log n

and ∆2 ≥ k3 log n. After four rounds of the broadcast primitive, every node in K received all
messages {mx}x∈S, w.h.p.

DISC 2023

19:22 Fast Coloring Despite Congested Relays

Proof. Let u ∈ S and v ∈ K. Recall that u and v both have at least (1− ε)∆2 d2-neighbors
in K. Since |K| ≤ (1 + ε)∆2, there are at least (1− 3ε)∆2 common d2-neighbors of u and v

in K. Let W
def= N2(u) ∩N2(v) be this set.

We attribute a unique “relay” to each node w ∈W , connecting it to v. For each w ∈W ,
let rw be the common d1-neighbor of w and v of lowest ID. For each d1-neighbor r of v, let
Wr ⊆W be the nodes of W for which r is the chosen relay to v. Assume ε < 1/12. Using
that |Wr| ≤ ∆, and by a simple Markov-type argument, there are at least (1− 6ε)∆ ≥ ∆/2
d1-neighbors r of v for which |Wr| ≥ ∆/2. Let R be the set of those “heavy” relays.

After the first round, each d1-neighbor of u receives mu. Consider some heavy relay
r ∈ R. Each node w ∈Wr receives the message mu from a d1-neighbor it shares with u with
probability at least 1/k, independently from other nodes. Thus, with probability at least
1− exp(−∆/(24k)) = 1− 1/ poly(n), ∆/(4k) or more nodes in Wr receive mu.

Assume at least ∆/(4k) nodes in Wr received mu. Then, in the third round of the
broadcast primitive, r fails to receive mu with probability at most:(

1− 1
k

)∆/(4k)
≤ e−∆/(4k2) .

When ∆/(4k2) ≥ 1/2, this probability is bounded by e−1/2 ≤ 2/3. In that case, ∆/6 or more
nodes in R should receive mu in expectation, and so at least ∆/12 heavy relays receive mu w.p.
1− exp(−∆/72). The probability that those relays all fail in sending mu to v in the fourth
round of the broadcast primitive is at most (1− 1/k)∆/72 ≤ exp(−∆/(72k)) = 1/ poly(n).

If ∆/(4k2) ≤ 1/2, then e−∆/(4k2) ≤ 1−∆/(8k2). In expectation, at least ∆2/(16k2) heavy
relays receive mu, and ∆2/(32k2) of them receive mu w.h.p. All those relays fail to send mu

to v with probability at most (1− 1/k)∆2/(32k2) ≤ exp
(
−∆2/(32k3)

)
= 1/ poly(n). ◀

In particular, this allows us to learn all colors remaining in the clique palette, because at
this step of the algorithm, only poly log n colors should remain available in Ψ(K). If not, we
learn nonetheless a set of poly log n colors from Ψ(K) which will act as a replacement.

▶ Lemma 32. Assume ∆ ≥ Ω(log3.5 n). There is an O(1)-round algorithm (with O(log n)
bandwidth) such that, in each almost-clique K, either
1. all nodes v ∈ K learn all colors in Ψ(K), or
2. all nodes learn a set D ⊆ Ψ(K) of Θ(log2 n) colors.

Proof. If |Ψ(K)| ≤ O(log2 n), then let D
def= Ψ(K). Otherwise, if |Ψ(K)| ≥ Ω(log2 n), let D

be the Θ(log2 n) first colors of Ψ(K). Recall that all nodes can learn |Ψ(K)| in O(1) rounds
(Lemma 20); hence, nodes know in which of the two case they are.

Assign indices of [|Ψ(K)|] to arbitrary nodes u1, . . . , u|D| of K (with a BFS for instance).
This is feasible because |K| ≥ ∆2/2 > Θ(log2 n) = |D|. Then, each ui learns the i-th color of
D in O(1) rounds (Lemma 29). Each ui then crafts a message mi containing that color and
distributes it to all nodes of K by Many-to-All broadcast. By assumption, there are only
|D| = O(log2 n) messages, and since |K| ≥ ∆2/2 ≥ Θ(log7 n) = |D|3 × Θ(log n), we meet
the requirements of Lemma 31. Thus, in O(1) rounds, all the nodes in K know all colors
of D. ◀

This immediately leads to a good approximation L(v) = D ∩Ψ(v) = D \ C(N2(v) \K)
for v ∈ K ∈ Kvery after synchronized color trial. Suppose that we are in the second case
of Lemma 32, i.e., nodes learn a set D ⊆ Ψ(K) of Θ(log2 n) colors. Since K ∈ Kvery, the

M. Flin, M. M. Halldórsson, and A. Nolin 19:23

average node has few external connections, eK + θext
K = O(log n) (Definition 22). Moreover,

because uncolored nodes are all inliers, ev = O(eK + θext
K) (Equation (6)). Finally, node v

loses at most one color in D per external neighbor, hence

|D ∩Ψ(v)| ≥ |D| − ev ≥ Θ(log2 n)−O(eK + θext
K) ≥ Θ(log2 n) ≥ d◦(v) + 1 .

The last inequality holds because, at this point of the algorithm, nodes have d◦(v) = O(log n).

D Proof of Theorem 1

In this section, we put together all results from other sections to prove our main theorem.
Only missing are the technicalities of reducing the bandwidth from O(log2 n) to O(log n),
which we tackle in the full version [17, Section 7].

Proof. Let C > 0 be some large universal constant. By Lemma 7, computing the almost-
clique decomposition Vsparse, K1, . . . , Kk of G2 takes O(1) rounds of CONGEST (Step 1).
Generating slack and coloring Vsparse takes O(log∗ n) rounds (Propositions 5 and 11). Putting
together all results from Section 4, we prove the proposition stated earlier, which implies
Theorem 1.

▶ Proposition 13 (Coloring Dense Nodes). After GenerateSlack and coloring sparse nodes,
there is a O(log6 log n)-round randomized algorithm for completing a ∆2 + 1-coloring of the
dense nodes, w.h.p.

Steps 4, 5 & 6. By Proposition 17, we compute a colorful matching of size 402aK in O(1)
rounds, in all almost-cliques with aK > C log n. By Lemma 14, we can compute sets OK

and IK = K \OK in all almost cliques, such that all v ∈ IK verify Equation (6) and |IK | >
(1−5/100)|K|. Let H1 be the subgraph of G2 induced by

⋃
K OK . Note that each v ∈ OK , for

some almost-clique K, has at least (1−5/100)|K|−ε∆2 > (1−5/100)(1−ε)∆2−ε∆2 ≥ ∆2/2
neighbors in IK , for ε small enough. Hence, each outlier has ∆2/2 slack in H1 and can thus
be colored in O(log∗ n) rounds by Proposition 11.

Step 7 & 8. Order nodes of IK with a BFS. By Lemma 28, w.h.p., the i-th node of IK

can learn π(i), where π is a uniformly random permutation of [|IK |]. By Lemma 29, each
node can learn, thus try, the i-th color of Ψ(K) (if it exists). With high probability, by
Lemma 18, each almost-clique K has O(aK + eK + log n) uncolored nodes. This implies,
the uncolored degree of a dense node v ∈ K is O(ev + aK + eK + log n). In particular, if
v ∈ K ∈ Kvery (Definition 22), it has uncolored degree d◦(v) ≤ O(log n). Since Step 8 intend
to reduce the uncolored degree to O(log n), we can focus on moderately dense almost-cliques.
Let H2 =

⋃
K∈Kmod

K. The following fact shows conditions of Lemma 12 are verified by the
sampler of Lemma 24.

▶ Fact 33. There exists a universal constant α > 0 such that s(v) ≥ α · b(v) for all
v ∈ H2, where b(v) = ẽv + |K◦| and s(v) ≥ Ω(aK + eK + ẽv) from Lemma 24 such that
Pr(Cv = c) ≤ 1

d◦(v)+s(v) .

Proof of Fact 33. Let K be the almost-clique of v. The quantity b(v) only requires O(1)
rounds to compute: To compute its pseudo-external degree ẽv, a node only needs to receive
from each of its direct neighbors u ∈ NG(v) the value |(NG(u) ∪ {u}) \ K|; for |K◦|, the
number of uncolored nodes in K, a simple BFS within K suffices to count |K◦| and broadcast
it to the whole almost-clique.

DISC 2023

19:24 Fast Coloring Despite Congested Relays

We now show b(v) satisfies the hypotheses. After SCT, by Lemma 18, at most O(eK +aK +
log n) nodes are left uncolored in K, so b(v) ∈ O(ẽv + eK + aK + log n). By Lemma 24, there
exist s(v) ∈ Ω(aK + eK + ẽv) s.t. Equation (5) holds. If b(v) ≤ C log n, then d◦(v) < C log n,
hence the uncolored degree is already O(log n). Otherwise, when b(v) ≥ C log n, it must be
that b(v) ∈ Θ(ẽv +eK +aK), and so, there exists a universal constant α s.t. s(v) ≥ α·b(v). ◀

Hence, we can use the sampling algorithm of Lemma 24 to run SliceColor (Lemma 12) in
H2. Therefore, in O(log log n) rounds, we produce a coloring and a partition L1, . . . , Lℓ of
uncolored nodes in H2 such that the maximum uncolored degree of each G[Li] for i ∈ [ℓ] is
O(log n). We also define L0 =

⋃
K∈Kvery

K which has maximum uncolored degree O(log n)
after the synchronized color trial.

Steps 10 & 11. We go through layers L0, L1, . . . , Lℓ sequentially. In L0, nodes learn lists
of deg +1 colors from their palette by Lemma 27. In each Li for i ∈ [ℓ], nodes are moderately
dense, hence learn their palette from sampling by Lemma 26. Solve each of these deg +1-
list-coloring instance of Proposition 13 with the small degree algorithm of Proposition 2.
Since learning palettes takes O(log log n) and each deg +1-list-coloring instance is solved in
O(log5 log n), the total round complexity of this step is O(log6 log n), which dominates the
complexity of the algorithm. ◀

Distributed Certification for Classes of Dense
Graphs
Pierre Fraigniaud #

IRIF, Université Paris Cité, CNRS, France

Frédéric Mazoit #

LaBRI, Université de Bordeaux, France

Pedro Montealegre #

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

Ivan Rapaport #

DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

Ioan Todinca #

LIFO, Université d’Orléans and INSA Centre-Val de Loire, France

Abstract
A proof-labeling scheme (PLS) for a boolean predicate Π on labeled graphs is a mechanism used
for certifying the legality with respect to Π of global network states in a distributed manner. In a
PLS, a certificate is assigned to each processing node of the network, and the nodes are in charge of
checking that the collection of certificates forms a global proof that the system is in a correct state,
by exchanging the certificates once, between neighbors only. The main measure of complexity is the
size of the certificates. Many PLSs have been designed for certifying specific predicates, including
cycle-freeness, minimum-weight spanning tree, planarity, etc.

In 2021, a breakthrough has been obtained, as a “meta-theorem” stating that a large set of
properties have compact PLSs in a large class of networks. Namely, for every MSO2 property Π
on labeled graphs, there exists a PLS for Π with O(log n)-bit certificates for all graphs of bounded
tree-depth. This result has been extended to the larger class of graphs with bounded tree-width,
using certificates on O(log2 n) bits.

We extend this result even further, to the larger class of graphs with bounded clique-width,
which, as opposed to the other two aforementioned classes, includes dense graphs. We show that, for
every MSO1 property Π on labeled graphs, there exists a PLS for Π with O(log2 n)-bit certificates
for all graphs of bounded clique-width. As a consequence, certifying families of graphs such as
distance-hereditary graphs and (induced) P4-free graphs (a.k.a., cographs) can be done using a PLS
with O(log2 n)-bit certificates, merely because each of these two classes can be specified in MSO1.
In fact, we show that certifying P4-free graphs can be done with certificates on O(log n) bits only.
This is in contrast to the class of C4-free graphs (which does not have bounded clique-width) which
requires Ω̃(

√
n)-bit certificates.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases CONGEST, Proof Labelling Schemes, clique-width, MSO

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.20

Related Version Full Version: https://arxiv.org/abs/2307.14292 [35]

Funding Pierre Fraigniaud: Additional support for ANR projects QuData and DUCAT.
Pedro Montealegre: This work was supported by Centro de Modelamiento Matemático (CMM),
FB210005, BASAL funds for centers of excellence from ANID-Chile, and ANID-FONDECYT 1230599
Ivan Rapaport: This work was supported by Centro de Modelamiento Matemático (CMM), FB210005,
BASAL funds for centers of excellence from ANID-Chile, and ANID-FONDECYT 1220142.

© Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
mailto:frederic.mazoit@labri.fr
mailto:p.montealegre@uai.cl
mailto:rapaport@dim.uchile.cl
mailto:ioan.todinca@univ-orleans.fr
https://doi.org/10.4230/LIPIcs.DISC.2023.20
https://arxiv.org/abs/2307.14292
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Distributed Certification for Classes of Dense Graphs

1 Introduction

Checking whether a distributed system is in a legal global state with respect to some boolean
predicate occurs in several domains of distributed computing, including the following.

Fault-tolerance: the occurrence of faults may turn the system into an illegal state that
needs to be detected for allowing the system to return to a legal state.
The use of subroutines as black boxes: some of these subroutines may contain bugs, and
produce incorrect outputs that need to be checked before use in the protocol calling the
subroutines.
Algorithm design for specific classes of systems: an algorithm dedicated to some specific
class of networks (e.g., algorithms for trees, or for planar networks) may cause deadlocks
or live-locks whenever running on a network outside the class. The membership to the
class needs to be checked before running the algorithm.

In all three cases above, the checking procedure may be impossible to implement without
significant communication overhead. A typical example is bipartiteness, whether it be applied
to the network itself, or to an overlay network produced by some subroutine.

1.1 Proof-Labeling Schemes
Proof-labeling scheme (PLS) [46] is a popular mechanisms enabling to certify correctness
w.r.t. predicates involving some global property, like bipartiteness. A PLS involves a prover
and a verifier. The prover has access to the global state of the network (including its
structure), and has unlimited computational power. It assigns certificates to the nodes.
The verifier is a distributed algorithm running at each node, performing in a single round,
which consists for each node to send its certificate to its neighbors. Upon reception of the
certificates of its neighbors, every node performs some local computation and outputs accept
or reject. To be correct, a PLS for a predicate Π must satisfy:

the global state of the network satisfies Π
⇕

the prover can assign certificates such that the verifier accepts at all nodes.

For instance, for bipartiteness, the prover assigns a color 0 or 1 to the nodes, and each node
verifies that its color is 0 or 1, and is different from the color of each of its neighbors. If
the network is bipartite then the prover can properly 2-color the nodes such that they all
accept, and if the network is not bipartite then, for every 2-coloring of the nodes, some of
them reject as this coloring cannot be proper.

The PLS certification mechanism has several desirable features. First, if the certificates
are small then the verification is performed efficiently, in a single round consisting merely of
an exchange of a small message between every pair of adjacent nodes. As a consequence,
verification can be performed regularly and frequently without causing significant communic-
ation overhead. Second, if the network state does not satisfy the predicate, then at least one
node rejects. Such a node can raise an alarm or launch a recovery procedure for allowing
the system to return to a correct state, or can stop a program running in an environment
for which it was not designed. Third, the prover is an abstraction, for the certificates can
be computed offline, either by the nodes themselves in a distributed manner, or by the
system provider in a centralized manner. For instance, a protocol constructing an overlay
network that is supposed to be bipartite, may properly 2-color the overlay for certifying its
bipartiteness. It follows from their features that PLSs are versatile certification mechanisms
that are also quite efficient whenever the certificates for legal instances are small.

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:3

Many PLSs have been designed for certifying specific predicates on labeled graphs,
including cycle-freeness [46], minimum-weight spanning tree (MST) [45], planarity [31],
bounded genus [25], H-minor-freeness for small H [6], etc. In 2021, a breakthrough has been
obtained, as a “meta-theorem” stating that a large set of properties have compact PLSs in a
large class of networks (see [27]). Namely, for every MSO2 property1 Π, there exists a PLS
for Π with O(log n)-bit certificates for all graphs of bounded tree-depth, where the tree-depth
of a graph intuitively measures how far it is from being a star. This result has been extended
to the larger class of graphs with bounded tree-width (see [36]), using certificates on O(log2 n)
bits, where the tree-width of a graph intuitively measures how far it is from being a tree.
Although the class of all graphs with bounded tree-width includes many common graph
families such as trees, series-parallel graphs, outerplanar graphs, etc., it does not contain
families of dense graphs. In this paper, we focus on the families of graphs with bounded
clique-width, which include families of dense graphs.

1.2 Clique-Width
Intuitively, the definition of clique-width is based on a “programming language” for con-
structing graphs, using only the following four instructions (see [16] for more details):

Creation of a new vertex v with some color i, denoted by color(v, i);
Disjoint union of two colored graphs G and H, denoted by G ∥ H;
Joining by an edge every vertex colored i to every vertex colored j ≠ i, denoted by i ⋊⋉ j;
Recolor i into color j, denoted by recolor(i, j).

For instance, the n-node clique can be constructed by creating a first node with color
blue, and then repeating n − 1 times the following: (1) the creation of a new node, with
color red, (2) joining red and blue, and (3) recoloring red into blue. Therefore, cliques can
be constructed by using two colors only. Similarly, trees can be constructed with three colors
only. This can be proved by induction. The induction statement is that, for every tree T ,
every vertex r of T , and every two colors c1, c2 ∈ {blue, red, green}, T can be constructed
with colors blue, red, and green such that r is eventually colored c1, and every other vertex is
colored c2. The statement is trivial for the single-node tree. Let T be a tree with at least two
nodes, let r be one of its vertices, and let c1, c2 be two colors. Given an arbitrary neighbor s

of r, removing the edge {r, s} results in two trees Tr and Ts. By induction, construct Tr and
Ts separately so that r (resp., s) is eventually colored c1 (resp., c2) and all the other nodes
of Tr and Ts are colored c3 /∈ {c1, c2}. Then form the graph Tr ∥ Ts, and, in this graph, join
colors c1 and c2, and recolor c3 into c2.

The clique-width of a graph G, denoted by cw(G), is the smallest k ≥ 0 such that G

can be constructed by using k colors. For instance, cw(Kn) ≤ 2 for every n ≥ 1, and, for
every tree T , cw(T) ≤ 3. A family of graphs has bounded clique-width if there exists k ≥ 0
such that, for every graph G in the family, cw(G) ≤ k. Any graph family with bounded
tree-depth or bounded tree-width has bounded clique-width [12, 48]. However, there are
important graph families with unbounded tree-width (and therefore unbounded tree-depth)
that have bounded clique-width. Typical examples (see [17]) are cliques (i.e., complete

1 Monadic second-order logic (MSO) is the fragment of second-order logic where the second-order
quantification is limited to quantification over sets. MSO1 refers to MSO on graphs with quantification
over sets of vertices, whereas MSO2 refers to MSO on graphs with quantification over sets of vertices
and sets of edges.

DISC 2023

20:4 Distributed Certification for Classes of Dense Graphs

graphs), P4-free graphs (i.e., graphs excluding a path on four vertices as an induced subgraph,
a.k.a., cographs), and distance hereditary graphs (the distances in any connected induced
subgraph are the same as they are in the original graph).

Many NP-hard optimization problems can be solved efficiently by dynamic programming
in the family of graphs with bounded clique-width. In fact, every MSO1 property on graphs
has a linear-time algorithm for graphs of bounded clique-width [16]. In this paper we show
a similar form of “meta-theorem”, regarding the size of certificates of PLS for monadic
second-order properties of graphs with bounded clique-width.

1.3 Our Results
Our main result is the following. Recall that a labeled graph is a pair (G, ℓ), where G is a
graph, and ℓ : V (G) → {0, 1}⋆ is a function assigning a label to every node in G.

▶ Theorem 1. Let k be a non-negative integer, and let Π be an MSO1 property on node-
labeled graphs with constant-size labels. There exists a PLS certifying Π for labeled graphs
with clique-width at most k, using O(log2 n)-bit certificates on n-node graphs.

The same way several NP-hard problems become solvable in polynomial time in graphs
of bounded clique-width, Theorem 1 implies that several predicates for which every PLS
has certificates of polynomial size in arbitrary graphs have a PLS with certificates of
polylogarithmic size on graphs with bounded clique-width. This is for instance the case of
non-3-colorability (which is a MSO1 predicate), for which every PLS has certificates of size
Ω̃(n2) bits in arbitrary graphs [42]. Theorem 1 implies that non-3-colorability has a PLS with
certificates on O(log2 n) bits in graphs with bounded clique-width, and therefore in graphs of
bounded tree-width, cographs, distance-hereditary graphs, etc. This of course is extended to
non-k-colorability, as well as other problems definable in MSO1 such as detecting whether the
input graph does not contain a fixed subgraph H as a subgraph, induced subgraph, minor,
etc.

In fact, Theorem 1 can be extended to properties including certifying solutions to
maximization or minimization problems whose admissible solutions are defined by MSO1
properties. For instance maximum independent set, minimum vertex cover, minimum
dominating set, etc.

In the proof of Theorem 1, we provide a PLS that constructs a particular decomposition
using at most k · 2k−1 colors (the clique-width of the decomposition). It is through that
decomposition that the PLS certifies that the input graph satisfies Π.

An application of Theorem 1 is the certification of certain families of graphs. That is,
given a graph family F , designing a PLS for certifying the membership to F . Interestingly,
there are some graph classes F that are expressible in MSO1 and, at the same time, have
clique-width at most k. Theorem 1 provides a PLS for certifying the membership to F in
such cases. Indeed, the PLS first tries to build a decomposition of clique-width at most
k · 2k−1. If there is no such decomposition, then the input graph does not belong to F .
Otherwise, the PLS uses the decomposition to check the MSO1 property that defines F .

▶ Corollary 2. Let k be a non-negative integer, and let F be graph family expressible in
MSO1 such that all graphs of the family have clique-width at most k. Membership to F can
be certified with a PLS using O(log2 n)-bit certificates in n-node graphs.

For instance, for every k ≥ 0, the class of graphs with tree-width at most k can be certified
with a PLS using O(log2 n)-bit certificates. Indeed, “tree-width at most k” is expressible in
MSO1, and the class of graphs with tree-width at most k forms a family with clique-width at

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:5

most 3 · 2k−1 + 1 [12]. Another interesting application is the certification of P4-free graphs.
Indeed, “excluding P4 as induced subgraph” is expressible in MSO1, and P4-free graphs form
a family with clique-width at most 2 [17]. It follows that P4-free graphs can be certified with
a PLS using O(log2 n)-bit certificates. This is in contrast to the class of C4-free graphs (i.e.
graphs not containing a cycle on four vertices, whether it be as induced subgraph or merely
subgraph), which requires certificates on Ω̃(

√
n) bits [20]. In fact, in the case of cographs,

the techniques in the proof of Theorem 1 can be adapted so that to save one log-factor, as
stated below.

▶ Theorem 3. The class of (induced) P4-free graphs can be certified with a PLS using
O(log n)-bit certificates in n-node graphs.

Note that there is a good reason for the huge gap in terms of certificate-size between
P4-free graphs and C4-free graphs. The point is that, for any graph pattern H, the class of
H-free graphs has bounded clique-width if and only if H is an induced subgraph of P4 [19].
Therefore, C4-free graphs (as well as triangle-free graphs) do not have bounded clique-width,
as opposed to P4-free graphs (and P3-free graphs, which are merely cliques).

1.4 Related Work
Proof-Labeling Schemes (PLSs) have been introduced and thoroughly studied in [46]. Variants
have been been considered in [42] and [34], which slightly differ from PLSs: the former allows
each node to transfer no only its certificates, but also its state, and the latter restricts the
power of the oracle, which is bounded to produce certificates independent of the IDs assigned
to the nodes. All these forms of distributed certifications have been extended in various
directions, including tradeoffs between the size of the certificates and the number of rounds of
the verification protocol [30], PLSs with computationally restricted provers [24], randomized
PLSs [38], quantum PLSs [33], PLSs rejecting at more nodes whenever the global state is
“far” from being correct [28], PLSs using global certificates in addition to the local ones [32],
and several hierarchies of certification mechanisms, including games between a prover and
a disprover [1, 29], interactive protocols [18, 44, 47], and even recently zero-knowledge
distributed certification [3], and distributed quantum interactive protocols [41].

All the aforementioned distributed certification mechanisms have been used for certifying
a wide variety of global system states, including MST [45], routing tables [2], and a plethora
of (approximated) solutions to optimization problems [11, 23]. A vast literature has also
been dedicated to certifying membership to graph classes, including cycle-freeness [46],
planarity [31], bounded genus [25], absence of symmetry [42], H-minor-freeness for small H [6],
etc. In 2021, a breakthrough has been obtained, as a “meta-theorem” stating that, for every
MSO2 property Π, there exists a PLS for Π with O(log n)-bit certificates for all graphs of
bounded tree-depth [27]. This result has been extended to the larger class of graphs with
bounded tree-width, using certificates on O(log2 n) bits [36]. To our knowledge, this is the
largest class of graphs, and the largest class of boolean predicates on graphs for which it is
known that PLSs with polylogarithmic certificates exist.

The class of H-free graphs (i.e., the absence of H as a subgraph), for a given fixed
graph H, has attracted lot of attention in the distributed setting, mostly in the CONGEST
model. Two main approaches have been considered. One, called distributed property testing,
aims at deciding between the case where the input graph is H-free, and the case where the
input graph is “far” from being H-free (see, e.g., [7, 9, 26, 39]). In this setting, the objective
is to design (randomized) algorithms performing in a constant number of rounds. Such
algorithms have been designed for small graphs H, but it is not known whether there is a

DISC 2023

20:6 Distributed Certification for Classes of Dense Graphs

distributed algorithm for testing K5-freeness in a constant number of rounds. The other
approach aims at designing algorithms deciding H-freeness performing in a small number of
rounds. For instance, it is known that deciding C4-freeness can be done in Õ(

√
n) rounds,

and this is optimal [20]. The Ω̃(
√

n)-round lower bounds for C4-freeness also holds for
deciding C2k-freeness, for every k ≥ 4. Nevertheless, the best known algorithm performs
in essentially Õ(n1−Θ(1/k2)) rounds [22], even if faster algorithms exists for k = 2, 3, 4, 5,
running in Õ(n1−Θ(1/k)) rounds [10, 21]. Deciding Pk-freeness (as subgraph) can be done
efficiently for all k ≥ 0 [37]. However, this is not the case of deciding the absence of an
induced Pk, and no efficient algorithms are known apart for the trivial cases k = 1, 2, 3. The
first non-trivial case is deciding cographs, i.e., P4-freeness (as induced subgraph).

The terminology meta-theorem is used in logic to refer to a statement about a formal
system proven in a language used to describe another language. In the study of graph
algorithms, Courcelle’s theorem [13] is often referred to as a meta-theorem. It says that every
graph property definable in the monadic second-order logic MSO2 of graphs can be decided
in linear time on graphs of bounded treewidth. This theorem was extended to clique-width,
but for a smaller set of graph properties. Specifically, every graph property definable in
the monadic second-order logic MSO1 of graphs can be decided in linear-time on graphs of
bounded clique-width [16]. Note that the classes of languages in MSO1 and MSO2 include
languages that are NP-hard to decide (e.g., 3-colorability and Hamiltonicity, respectively).
We remind that MSO2 is as an extension of MSO1 which also allows quantification on sets of
edges – see Footnote 1 for a short description, or [14] for full details. Some graph properties,
e.g., Hamiltonicity, are expressible in MSO2 but not in MSO1, nevertheless MSO1 captures
a large set of properties, including many classical NP-hard problems as explained above.
Eventually, we emphasize again that, when comparing the two most famous meta-theorems,
(1) MSO2 properties are decidable in linear time on bounded treewidth graphs vs. (2) MSO1
properties are decidable in linear time on bounded clique-width graphs, the former concerns a
larger class of properties, but the latter concerns larger classes of graphs.

2 Models

In this section, we recall the main concepts used in this paper, including proof-labeling
scheme, and cographs.

2.1 Proof-Labeling Schemes for MSO Properties
For a fixed integral parameter λ ≥ 0, we consider vertex-labeled graphs (G, ℓ), where
G = (V, E) is a connected simple n-node graph, and ℓ : V → {0, . . . , λ − 1}. The label may
indicate a solution to an optimization problem, e.g., a minimum dominating set (ℓ(v) = 0
or 1 depending on whether v is in the set or not), a λ-coloring, an independent set, etc. A
labeling may also encode global overlay structures such as spanning trees or spanners, in
bounded-degree graphs or in graphs provided by a distance-2 k-coloring, for k = O(1). In
the context of distributed computing in networks, nodes are assumed to be assigned distinct
identifiers (ID) in [1, nc] for some c ≥ 1, so that IDs can be stored on O(log n) bits. The
identifier of a node v is denoted by id(v). We denote by NG(v) the set of neighbors of node v

in a graph G, and we let NG[v] = NG(v) ∪ {v} be the closed neighborhood of v.
Given a boolean predicate Π on vertex-labeled graphs, a proof-labeling scheme (PLS)

for Π is a prover-verifier pair. The prover is a non-trustable computationally unbounded
oracle. Given a vertex-labeled graph (G, ℓ) with ID-assignment id, the prover assigns a
certificate c(v) to every node v of G. The verifier is a distributed algorithm running at every

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:7

node v of G. It performs a single round of communication consisting of sending c(v) to all
neighboring nodes w ∈ NG(v), and receiving the certificates of all neighbors. Given id(v),
ℓ(v), and {c(w) : w ∈ NG[v]}, every node v outputs accept or reject. A PLS is correct if the
following two conditions are satisfied:

Completeness: If (G, ℓ) satisfies Π then the prover can assign certificates to the nodes
such that the verifier accepts at all nodes;
Soundness: If (G, ℓ) does not satisfy Π then, for every certificate assignment to the nodes
by the prover, the verifier rejects in at least one node.

The main parameter measuring the quality of a PLS is the size (i.e., number of bits) of
the certificates assigned by the prover to each node of vertex-labeled graphs satisfying the
predicate, and leading all nodes to accept.

MSO Predicates. We focus on predicates expressible in MSO1. Recall that MSO1 is
the fragment of monadic second-order (MSO) logic on (vertex-labeled) graphs that allows
quantification on vertices and on sets of (labeled) vertices, and uses the adjacency predicate
(adj). For instance non 3-colorability is in MSO1. Indeed, for every graph G = (V, E), it can
be expressed as: for all A, B, C ⊆ V , if A ∪ B ∪ C = V and A ∩ B = A ∩ C = B ∩ C = ∅
then

∃(u, v) ∈ (A × A) ∪ (B × B) ∪ (C × C) : (u ̸= v) ∧ adj(u, v).

We shall show that, although some MSO1 predicates, like non-3-colorability, require certific-
ates on Ω̃(n2) bits in n-node graphs (see [42]), PLSs with certificates of polylogarithmic size
can be designed for all MSO1 predicates in a rich class of graphs, namely all graphs with
bounded clique-width.

2.2 Cographs and Cotrees
We conclude this section by introducing a graph class that plays an important role in this
paper. Recall that a graph is a cograph (see, e.g., [8]) if it can be constructed by a sequence
of parallel operations (disjoint union of two vertex-disjoint graphs) and join operations
(connecting two vertex-disjoint graphs G and H by a complete bipartite graphs between
V (G) and V (H)). Therefore, by definition, cographs have clique-width 2. In particular,
cliques are cographs.

It is known [8] that cographs capture precisely the class of induced P4-free graphs. We
shall show that, as opposed to C4-free graphs, which require Ω̃(

√
n)-bit certificates to be

certified by a PLS [20]2, O(log n)-bit certificates are sufficient for certifying P4-free graphs.
This result is of interest on its own, but proving this result will also play the role of a warmup
before establishing our general result about graphs with bounded clique-width. Note that
the class of P4-free graphs (i.e., cographs) can be specified by an MSO1 formula. Roughly,
the formula states that if there exists four vertices v1, v2, v3, v4 such that adj(vi, vi+1) for
i = 1, 2, 3, then adj(v1, v3) ∨ adj(v1, v4) ∨ adj(v2, v4). C4-freeness could be expressed in MSO1
as well. However, P4-free graphs have clique-width 2 whereas C4-free graphs have unbounded
clique-width – this is because there are 2Ω(n

√
n) different C4-free graphs of size n, but only

2O(n log n) n-vertex graphs of bounded clique-width.

2 The lower bound in [20] is expressed for the CONGEST and Broadcast Congested Clique models, but it
extends directly to PLSs since Set-Disjointness has non-deterministic communication complexity Ω(N)
on N -bit inputs.

DISC 2023

20:8 Distributed Certification for Classes of Dense Graphs

Given a cograph G, there is actually a canonic way of constructing G by a sequence of
parallel and join operations [8]. As explained before, this construction can be described as a
tree T whose leaves are the vertices of G, and whose internal nodes are labeled ∥ or ⋊⋉. This
tree is called a cotree, and will be used for our PLS.

3 Overview of our Techniques

The objective of this section is to provide the reader with a general idea of our proof-labeling
scheme. For a comprehensive description we refer to the full version of this article [35]. Our
construction bears some similarities with the approach used in [36] for the certification of
MSO2 properties on graphs of bounded tree-width, with certificates of size O(log2 n) bits.
However, extending this approach to a proof-labeling scheme for graphs with bounded clique-
width requires to overcome several significant obstacles. We therefore start by summarizing
the main tools used for the certification of MSO2 properties on graphs of bounded tree-width
(see Section 3.1), and then proceed with the description of the new tools required for extending
the result to graphs of bounded clique-width, to the cost of reducing the class of certified
properties from MSO2 to MSO1 (see Sections 3.2-3.6).

3.1 Certifying MSO2 Properties in Graphs of Bounded Tree-Width
Recall that a tree-decomposition of a graph G is a tree T where each node x of T , also
called bag, is a subset of V (G), satisfying the following three conditions: (1) for every vertex
v ∈ V (G) there is a bag x ∈ V (T) that contains v, (2) for every edge {u, v} ∈ E(G), there
is a bag x containing both its endpoints, and (3) for each vertex v ∈ V (G), the set of bags
that contains v forms a (connected) subtree of T . Let Π be an MSO2 property, and let T

be a tree-decomposition of the graph G. The proof-labeling scheme aims at providing each
vertex with sufficient information for certifying the correctness of T , as well as the fact that
G satisfies Π. To do so, the certificate of each vertex is divided into two parts, one called
main messages, and the other called auxiliary messages.

Main messages. The main message of a node v is a sequence seqv representing a path
of bags in T that connects a leaf with the root, such that v is contained in at least one
bag of seqv. For each bag x ∈ seqv, the main message includes, roughly: the set of vertices
contained in x, the identifier of a vertex ℓx in x, called the leader of x, and a data structure
cx used to verify the MSO2 property Π on G. The leader ℓx of x is chosen arbitrarily among
the vertices of x that are adjacent to a vertex u belonging to the parent bag p(x) of x in T .
The vertex u is said to be responsible for x in p(x). Let us assume the following consistency
condition: for every bag x of T , every vertex in x received the same information about all the
bags from x to the root of T . Under the promise that the consistency condition holds, it is
possible to show that the vertices can collectively verify that T is indeed a tree-decomposition
of G, and that G satisfies Π.

Auxiliary messages. The role of the auxiliary messages is precisely to check the above
consistency condition. For each bag x, let τx be a Steiner tree (i.e. a minimal tree connecting
a set of vertices denoted terminals) in G rooted at the leader ℓx, with all the nodes of x

as terminals. Every vertex in τx receives an auxiliary message containing the certification
of τx (each vertex of τx receives the identifier of a root, of its parent and the distance to
the root), and a copy of the information about x given to the nodes in the bag x, through
their main messages. By using the auxiliary messages, the leader ℓx can verify whether the

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:9

subgraph G[x] of G induced by the union of the bags in T [x] satisfies Π, where T [x] the
subtree of T containing x and all its descendants. Specifically, this verification is performed
by simulating the dynamic programming algorithm in Courcelle’s Theorem [13] as in the
version of Boire, Parker and Tovey [5]. This uses a constant-size data structure cx stored in
the auxiliary messages that “encodes” the predicate Π(G[x]). Its correctness can be verified
by a composition of the values cy for each child y of x in T . The tree τx is actually used to
transfer the information about cy from the node ℓy in x responsible for y, to the leader ℓx.

Certificate size. If T is of depth d, then the main messages are of size O(d log n) bits.
Crucially, for every graph G, there is a tree-decomposition T satisfying that, for every bag x,
there is a Steiner tree τx completely contained in G[x]. Such a decomposition is called coherent
in [36] (Lemma 3). It follows that every node participates in a Steiner tree with at most d

bags, which implies that the auxiliary messages can be encoded in O(d log n) bits. Thanks
to a construction by Bodlaender [4], it is possible to choose a coherent tree-decomposition
with depth d = O(log n), up to increasing the sizes of the bags by a constant factor only. It
follows that the certificates are of size O(log2 n) bits.

Our construction also follows the general structure described above. However, each
element of this construction has to be adapted in a highly non-trivial way. Indeed, the
grammar of clique-with, and the related structure of NLC decomposition, differ in several
significant ways from the grammar of tree-width. The rest of the section is dedicated to
providing the reader with a rough idea of how this can be done.

3.2 Clique-Width and NLC-Width

First, instead of working with clique-width, it is actually more convenient to work with the
NLC-width, where NLC stands for node-label controlled. Every graph of clique-width at
most k has NLC-width at most k, and every graph of NLC-width at most k has clique-width
at most 2k [43]. As clique-width, NLC-width can be viewed as the following grammar for
constructing graphs, bearing similarities with the grammar for clique-width:

Creation of a new vertex v with color i ∈ N, denoted by newVertexi;
Given a set S of ordered pairs of colors, and an ordered pair (G, H) of vertex-disjoint
colored graphs, create a new graph as the union of G and H, then join by an edge every
vertex colored i of G to every vertex colored j of H, for all (i, j) ∈ S; this operation is
denoted by G ⋊⋉S H;
Recolor the graph, denoted by recolorR where R : N → N is any function.

If k ≥ 1 colors are used, a recoloring function R is a function R : [k] → [k]. When R is
used, for every i ∈ [k], vertices with color i are recolored R(i) ∈ [k] (all colors are treated
simultaneously, in parallel). Note that the recoloring operation in the definition of clique-
width is limited to functions R that preserve all colors but one. Note also that, for S = ∅,
the operation G ⋊⋉S H is merely the same as G ∥ H for clique-width. We therefore use
G ⋊⋉∅ H or G ∥ H indistinctly. The NLC-width of a graph G is the smallest number of
colors such that G can be constructed using the operations above. It is denoted by nlcw(G).
For instance, the n-node clique can be constructed by creating a first node v1 with color 1,
and then repeating, for all i = 1, . . . , n − 1, (1) the creation of a new node vi+1, with color 1
as well, and (2) applying vi+1 ⋊⋉{(1,1)} Ki to get the clique Ki+1 on i + 1 vertices. Therefore,
cliques can be constructed by using one color only, i.e., nlcw(Kn) = 1 for every n ≥ 1.

DISC 2023

20:10 Distributed Certification for Classes of Dense Graphs

NLC-decomposition. For every k ≥ 1, the construction of a graph G with nlcw(G) ≤ k

can be described by a binary tree T , whose leaves are the (colored) vertices of G. In T ,
every internal node x has an identified left child x′ and an identified right child x′′, and is
labeled by ∥ or ⋊⋉S for some non-empty set S ⊆ [k] × [k]. This label indicates the operation
performed on the (left) graph G′ with vertex-set equal to the leaves of the subtree Tx′ of T

rooted at x′, and the (right) graph G′′ with vertex-set equal to the leaves of the subtree Tx′′

of T rooted at x′′. That is, node x corresponds to the operation Gx′ ∥ Gx′′ or Gx′ ⋊⋉S Gx′′ ,
depending on the label of x. In addition to its label (∥ or ⋊⋉S for some S ̸= ∅), a node may
possibly also include a recoloring function R : [k] → [k], which indicates a recoloring to be
performed after the join operation, see Figure 1 for an example.

Figure 1 An NLC decomposition tree T . Next to each node x of the tree is displayed the colored
graph G[x] corresponding to subtree T [x] of T rooted at x.

3.3 From Tree-Width to NLC-Width: The Main Messages
Let Π be an MSO1 property, and let T be an NLC-decomposition tree of a graph G with
cw(G) ≤ k. That is, we can choose the tree T as one using at most k colors. In the following,
to avoid confusion, we call vertices the elements of the vertex set of G, and nodes the elements
of the vertex-set of the decomposition tree T . The structure of our certificates differ from
the one in [36], and now we decompose the certificate assigned to each node v into three
parts: main messages, auxiliary messages, and service messages. This subsection focuses on
the main messages.

Our main messages have, to some extent, a structure similar to the main messages used
in [36] for the tree-width. In particular, vertex v receives a sequence path(v), listing all the
nodes, i.e., the whole set of operations, in the path from the root of T to the leaf of T where v

was created. For each node x in path(v), the main message also includes the vertex identifier
of a leader for x, called exit vertex of x, and denoted by exit(x). The main message also
includes a data structure h(x) that encodes the truth value of the MSO1 property on G[x].

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:11

However, unlike the case of tree-width, where the nodes of the tree-decomposition are sets of
vertices (i.e., bags) of bounded size, the contents of a non-leaf node in an NLC-decomposition
tree T does not necessarily include information about the vertices created in T [x]. For that
reason, our proof-labeling scheme includes additional information in the main message of
v in order to verify the correctness of the given decomposition. It may actually be worth
providing a concrete example to explain the need for additional information.

For a node x different from the root, let us denote by p(x) the parent of x in T . The
main message of v includes a sequence links(v) that specifies, for each node x in path(v)
different from the root, whether x is the left or right child of p(x). For instance, in the
example of Figure 1, we have links(c) = (1, 0), indicating that, to reach the leaf creating
vertex c from the root, one must follow the right child (1), and then the left child (0). S
imilarly, links(d) = (1, 1, 0). The sequences links are also used to determine the longest
common prefixes of the main messages, when the same operations are repeated between
two children of a same node (consider for instance the case where the same operation is
performed at all the nodes of the decomposition tree). Back to our example above, let us
suppose that the sequences links(u) and links(v) specify that xt3+1(u) is the left neighbor
of xt3 , and xt3+1(v) is the right neighbor of xt3 . Using this information, u and v can infer
that it is an operation ⋊⋉S , with (c(u), c(v)) ∈ S that is specified in the description of xt3 .
With the given information, each vertex can thus check that all its incident edges are indeed
created at some node of the decomposition tree T .

It remains to check that the decomposition does not define non-existent edges. To do so,
the main message of every vertex v also includes, for each node x in path(v), and for each
i ∈ [k], the integers colori(x) representing the number of vertices of G[x] that are colored
i in the root of T [x]. (Recall that the subgraph G[x] is the subgraph of G induced by the
vertices created in the subtree T [x] of T). Returning to our example, vertex v checks that it
has exactly colorc(u)(xt3+1(u)) neighbors with the same longest common prefix as u colored
c(u) in the left children of xt3 . Also, vertex v checks, for each i ∈ [k], that the number of
vertices colored i in node xt3 corresponds to the sum of the number of vertices colored j in
xt3+1(u) and xt3+1(v), for each color j that is recolored i by the recoloring operation defined
in xt3 . So, let us assume that the following consistency condition (analogous to the one for
the certification of tree-decompositions) holds:

C1: For every pair of vertices u, v ∈ V (G), and for every node x in both path(u) and path(v),
u and v receive the same information about all nodes in the path from x to the root of T

in their main messages, and
C2: If x is the root of T , then the data structure h(x) describes an accepting instance (i.e.,

G satisfies Π).

Assuming that the consistency condition is satisfied, it is not difficult to show that
the vertices can collectively check that the given certificates indeed represent an NLC-
decomposition tree, and that G satisfies Π. The difficulty is however in checking that the
consistency condition holds. This is the role of the auxiliary and service messages, described
next.

3.4 Checking Consistency: Auxiliary, and Service Messages
We use auxiliary and service messages for allowing our proof-labeling scheme to check the
first condition C1 of the consistency condition defined at the end of the previous subsection.

Auxiliary messages can easily be defined for every node x of T satisfying that G[x] is
connected. In that case, the auxiliary messages of all the vertices v in T [x] contain the
certificates for certifying a spanning tree τx of G[x] rooted at the exit vertex of x. Each

DISC 2023

20:12 Distributed Certification for Classes of Dense Graphs

vertex v can verify that the longest common prefix common to v and its parent in τx contains
all the nodes from the root up to x, and that the information given in the main messages
coincide for all such nodes. Observe that every vertex v may potentially contain one auxiliary
message for each node in path(v).

The case where G[x] is not connected is fairly more complicated, and we need to introduce
another type of decomposition.

NLC+ decompositions trees. Observe that G itself is connected. Therefore, there must
exist an ancestor z of x for which G[z] is connected. We could provide the vertices in G[z]
with a spanning tree of G[z] for checking the consistency in T [x]. However, the vertices in
G[z] do not necessarily contain x in the prefixes of their node sequences, so we would have to
put a copy of the main message associated to x on every node participating in the spanning
tree. Since an NLC-decomposition tree does not allow to provide a bound on the distance
between z and x in the tree, we have no control on how many copies of main messages a
vertex should handle.

Therefore, to cope with the case where G[x] is disconnected, we define a specific type of
NLC decompositions trees, called NLC+ decompositions trees. The NLC+ decomposition
trees are similar to NLC-decomposition trees, up to two important differences.

First, we allow the nodes corresponding to a ∥ operation to have arbitrary large arity, and
thus NLC+ decomposition trees are not binary trees, as opposed to NLC-decomposition
trees.
Second, if a node x induces a disconnected subgraph G[x], then its parent node p(x)
must satisfy that G[p(x)] is connected. Observe that p(x) must then correspond to a ⋊⋉
operation, and thus p(x) has only two children: x and another child, denoted by y.

Service trees. A service tree Sx for a node x such that G[x] is disconnected is a Steiner
tree in G[p(x)] rooted at the exit vertex of x, and with all the vertices of G[x] as terminals.
Each vertex of Sx (i.e., all vertices in G[x], plus some vertices in G[y] is given a service
message, which contains the certificate for the tree Sx, as well as a copy of the information
about x given in the main messages of the vertices in G[x]. Each vertex in Sx can then check
that it shares the same information about x than its parent. The properties of the NLC+
decomposition guarantee that a vertex v participates to at most two service trees, for each
node x in the sequence path(v). Indeed, vertex v necessarily participates in Sx when x is of
type ∥, and may also participate in Sy whenever the sibling y of x is of type ∥. There are
significantly more subtle details concerning service trees, but they are described in the full
version [35].

It remains to check the second condition C2 of the consistency condition defined at the
end of the previous subsection, which consists in verifying the correctness of h(x), for every
node x of T . This is explained next.

3.5 Dealing with MSO1 Predicates
In their seminal work, Courcelle, Makowsky and Rotics [16] proved that every MSO1 predicate
Π on vertex-labeled graphs can be decided in linear time on graphs of bounded clique-width,
and hence on graphs of bounded NLC-width, whenever a decomposition tree is part of the
input. The running time of the algorithm is O(n), i.e., linear in the number n of vertices of
the input graph, with constants hidden in the big-O notation that depend on the clique-width
bound, on the number of labels, and on the MSO1 formula encoding the predicate Π. Note

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:13

that this result does not hold for MSO2 predicates, which is why our proof-labeling scheme
applies to MSO1 predicates only. We discuss the possible extension to MSO2 properties in
the conclusion (see Section 4).

For our purpose it is convenient to see the linear-time decision algorithm as a dynamic
programming algorithm over the NLC-decomposition tree of the input graph. We formalize
this dynamic programming approach following the vocabulary and notations used by Borie,
Parker and Tovey [5]. Note that the latter provided an alternative proof of Courcelle’s
theorem, but for graphs of bounded tree-width, i.e., specific to a graph grammar defining
tree-width. To design our proof-labeling scheme, we adapt their approach to a graph grammar
defining NLC-width.

Homomorphism Classes. For a fixed property Π and a fixed parameter k, there is a finite
set C of homomorphism classes (whose size depends only on Π and k) such that we can
associate to each graph G of clique-width at most k its class h(G) ∈ C (for more details
see the full version [35]). Whenever G is obtained from two graphs G1 and G2 by a ⋊⋉S

operation potentially followed by a recoloring operation R, the class h(G) only depends on
h(G1), h(G2), S ⊆ [k] × [k], and R : [k] → [k]. This property also holds whenever ⋊⋉S is
replaced by ∥. Moreover, we also extend the notion to arbitrary arity so that it holds for
the NLC+ decomposition trees. Importantly, Courcelle’s theorem [16] provides a “compiler”
allowing to compute h(G) whenever G is formed by a single vertex of color j ∈ [k], and to
compute h(G) from h(G1), h(G2), S and R whenever G = R(G1 ⋊⋉S G2).

Checking Condition C2. In our proof-labeling scheme, for each node x of the NLC+
decomposition tree, we specify h(x) as the class h(G[x]). Following the same principles as
before, the consistency of these classes can be checked by simulating a bottom-up parsing of
the decomposition tree, in a way very similar to what we described before for checking the
consistency of color(x), but replacing the mere additions by updates of the homomorphism
classes as described above.

This completes the rough description of our proof-labeling scheme.

3.6 Certificate Size
For each vertex v, the main, auxiliary, and service messages of v can be encoded using
O(log n) bits for each node x in path(v), for the following reasons.

The main message associated to a node x contains the following information. First, the
list of operations described in the node, which can be encoded in O(k2) bits. Second, the
corresponding index of links, which is just one bit representing whether x is the left or
right children of its parent. Third, the homomorphism class h(x) that can be encoded
in f(k) bits for some function f depending on the MSO1 property under consideration –
see the remark further in the text for a discussion about f . Finally, it includes the node
identifier of the exit vertex of x, and the integers colori for each i ∈ [k]. All these latter
items can be encoded on O(log n) bits.
The auxiliary message associated to node x (whenever G[x] is connected) corresponds
to the certification of a spanning tree of G[x], which can be encoded in O(log n) bits
(see [46]).
For the service messages, note that vertex v participates in at most two service trees
associated to x: the one of x (whenever G[x] is disconnected), plus the one of the sibling
y of x (when G[y] is disconnected). Again, each of these trees can be certified using
O(log n) bits.

DISC 2023

20:14 Distributed Certification for Classes of Dense Graphs

Therefore, the total size of the certificates is O(d · log n) bits, where d is the depth of the
NLC+ decomposition tree T . Our final certificate size depends then on how much we can
bound the depth d of T . Courcelle and Kanté [15] show that there always exists an NLC
decomposition tree of logarithmic depth, but it comes with a price: the width of the small
depth decomposition can be exponentially larger than the width of the original decomposition.
Specifically, Courcelle and Kanté have shown that every n-node graph of NLC-width k admits
an NLC-decomposition of width k · 2k+1 such that the corresponding decomposition tree T

has depth O(log n). Fortunately, our construction of NLC+ decomposition trees does not
increase the depth of a given NLC-decomposition tree. In other words, we can use the result
of Courcelle and Kanté to also show that NLC+ decomposition trees have logarithmic depth.
Overall, we conclude that the certificate size is O(log2 n) bits.

Remark. Our asymptotic bound on the size of the certificates hides a large dependency
on the clique-width k of the input graph. For certifying the NLC+ decomposition only, the
constant hidden in the big-O notation is single-exponential in k, given that the width of the
NLC+ decomposition tree with logarithmic depth grows to k · 2k+1. However, for certifying
an MSO1 property, the dependency on k can be much larger, as it depends on the number of
homomorphism classes. It is known that, for MSO1 properties, the number of homomorphism
classes is at most a tower of exponentials in k, where the height of the tower depends on
the number of quantifiers in the MSO1 formula. Moreover, this non-elementary dependency
on k can not be improved significantly [40]. This exponential or even super-exponential
dependency on the clique-width k is however inherent to the theory of algorithms for graphs
of bounded clique-width. The same type of phenomenon occurs when dealing with graphs of
bounded tree-width (see [40]), and the proof-labeling scheme in [36] is actually subject to
the same type of dependencies in the bound k. On the other hand, the certificate size of our
proof-labeling scheme grows only polylogarithmically with the size of the graphs.

4 Conclusion

In this paper, we have shown that, for every MSO1 property Π on labeled graphs, there
exists a PLS for Π with O(log2 n)-bit certificates for all n-node graphs of bounded clique-
width. This extends previous results for smaller classes of graphs, namely graphs of bounded
tree-depth [27], and graphs of bounded tree-width [36]. Our result also enables to establish a
separation, in term of certificate size, between certifying C4-free graphs and certifying P4-free
graphs.

A natural question is whether the certificate size resulting from our generic PLS construc-
tion is optimal. Note that one log-factor is related to the storage of IDs, and of similar types
of information related to other nodes in the graph. It seems hard to avoid such a log-factor.
The other log-factor is however directly related to the depth of the NLC-decomposition,
and our PLS actually uses certificates of size O(d · log n) bits for graphs supporting an
NLC-decomposition of depth d. Nevertheless, the best generic upper bound for the depth d of
an NLC-decomposition preserving bounded width is O(log n). This log-factor seems therefore
hard to avoid too. Establishing the existence of a PLS for MSO1 properties in graphs of
bounded clique-width using o(log2 n)-bit certificates, or proving an Ω(log2 n) lower bound on
the certificate size for such PLSs appears to be challenging.

Another interesting research direction is whether our result can be extended to MSO2
properties. It is known that the meta-theorem from [16] does not extend to MSO2. Never-
theless, this does not necessarily prevent the existence of compact PLSs for MSO2 properties

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:15

on graphs of bounded clique-width. For instance, Hamiltonicity is an MSO2 property that
can be easily certified in all graphs, using certificates on just O(log n) bits. Is there an
MSO2 property requiring certificates of Ω(nϵ) bits, for some ϵ > 0, on graphs of bounded
clique-width? Finally, it might be interesting to study the existence of compact distributed
interactive proofs [44] for certifying MSO1 or even MSO2 properties on graphs of bounded
clique-width. Note that the generic compiler from [47] efficiently applies to sparse graphs
only whereas the family of graphs with bounded clique-width includes dense graphs.

References

1 Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. What can be
verified locally? J. Comput. Syst. Sci., 97:106–120, 2018.

2 Alkida Balliu and Pierre Fraigniaud. Certification of compact low-stretch routing schemes.
Comput. J., 62(5):730–746, 2019.

3 Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks.
In 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2426–2458, 2022.

4 Hans L Bodlaender. Nc-algorithms for graphs with small treewidth. In Graph-Theoretic
Concepts in Computer Science: International Workshop WG’88 Amsterdam, The Netherlands,
June 15–17, 1988 Proceedings 14, pages 1–10. Springer, 1989.

5 Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7(5&6):555–581, 1992. doi:10.1007/BF01758777.

6 Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. Local certification of graph decompos-
itions and applications to minor-free classes. In 25th International Conference on Principles
of Distributed Systems (OPODIS), volume 217 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

7 Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques. Distributed
Comput., 24(2):79–89, 2011.

8 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey. Society
for Industrial and Applied Mathematics, 1999.

9 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed
algorithms for testing graph properties. Distributed Comput., 32(1):41–57, 2019.

10 Keren Censor-Hillel, Orr Fischer, Tzlil Gonen, François Le Gall, Dean Leitersdorf, and Rotem
Oshman. Fast Distributed Algorithms for Girth, Cycles and Small Subgraphs. In 34th
International Symposium on Distributed Computing (DISC), volume 179 of LIPIcs, pages
33:1–33:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

11 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. In
24th International Colloquium on Structural Information and Communication Complexity
(SIROCCO), LNCS 10641, pages 71–89. Springer, 2017.

12 Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth.
SIAM Journal on Computing, 34(4):825–847, 2005.

13 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

14 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic. A
language-theoretic approach. Encyclopedia of Mathematics and its applications, Vol. 138. Cam-
bridge University Press, June 2012. Collection Encyclopedia of Mathematics and Applications,
Vol. 138. URL: https://hal.science/hal-00646514.

15 Bruno Courcelle and Mamadou Moustapha Kanté. Graph operations characterizing rank-width
and balanced graph expressions. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 66–75. Springer, 2007.

DISC 2023

https://doi.org/10.1007/BF01758777
https://doi.org/10.1016/0890-5401(90)90043-H
https://hal.science/hal-00646514

20:16 Distributed Certification for Classes of Dense Graphs

16 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

17 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discret.
Appl. Math., 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

18 Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in distributed interactive
proofs. In 33rd International Symposium on Distributed Computing (DISC), volume 146 of
LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

19 Konrad K. Dabrowski and Daniël Paulusma. Clique-width of graph classes defined by two
forbidden induced subgraphs. The Computer Journal, 59(5):650–666, 2016.

20 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In 33rd ACM Symposium on Principles of Distributed Computing (PODC), pages
367–376, 2014.

21 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 367–376, 2014.

22 Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. Sublinear-time
distributed algorithms for detecting small cliques and even cycles. Distributed Computing,
35(3):207–234, 2022.

23 Yuval Emek and Yuval Gil. Twenty-two new approximate proof labeling schemes. In 34th
International Symposium on Distributed Computing (DISC), volume 179 of LIPIcs, pages
20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

24 Yuval Emek, Yuval Gil, and Shay Kutten. Locally restricted proof labeling schemes. In 36th
International Symposium on Distributed Computing (DISC), volume 246 of LIPIcs, pages
20:1–20:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

25 Louis Esperet and Benjamin Lévêque. Local certification of graphs on surfaces. Theor. Comput.
Sci., 909:68–75, 2022.

26 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three notes
on distributed property testing. In 31st International Symposium on Distributed Computing
(DISC), volume 91 of LIPIcs, pages 15:1–15:30. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

27 Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. What can be certified compactly?
compact local certification of MSO properties in tree-like graphs. In 41st ACM Symposium on
Principles of Distributed Computing (PODC), pages 131–140, 2022.

28 Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. J. Parallel
Distributed Comput., 166:149–165, 2022.

29 Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of local decision. Theor.
Comput. Sci., 856:51–67, 2021.

30 Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redundancy
in distributed proofs. Distributed Comput., 34(2):113–132, 2021.

31 Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and Ioan
Todinca. Compact distributed certification of planar graphs. Algorithmica, 83(7):2215–2244,
2021.

32 Laurent Feuilloley and Juho Hirvonen. Local verification of global proofs. In 32nd International
Symposium on Distributed Computing, volume 121 of LIPIcs, pages 25:1–25:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018.

33 Pierre Fraigniaud, François Le Gall, Harumichi Nishimura, and Ami Paz. Distributed quantum
proofs for replicated data. In 12th Innovations in Theoretical Computer Science Conference
(ITCS), volume 185 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5

P. Fraigniaud, F. Mazoit, P. Montealegre, I. Rapaport, and I. Todinca 20:17

34 Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35:1–35:26, 2013.

35 Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca.
Distributed certification for classes of dense graphs, 2023. arXiv:2307.14292.

36 Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-theorem
for distributed certification. In 29th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), volume 13298 of LNCS, pages 116–134. Springer,
2022.

37 Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. ACM Trans. Parallel
Comput., 6(3):12:1–12:20, 2019.

38 Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling schemes.
Distributed Comput., 32(3):217–234, 2019.

39 Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of excluded
subgraphs. In 30th International Symposium on Distributed Computing (DISC), volume 9888
of LNCS, pages 342–356. Springer, 2016.

40 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Log., 130(1-3):3–31, 2004. doi:10.1016/j.apal.2004.01.007.

41 François Le Gall, Masayuki Miyamoto, and Harumichi Nishimura. Brief announcement:
Distributed quantum interactive proofs. In 36th International Symposium on Distributed
Computing (DISC), volume 246 of LIPIcs, pages 48:1–48:3. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

42 Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
Comput., 12(1):1–33, 2016.

43 Ö. Johansson. Clique-decomposition, nlc-decomposition, and modular decomposition - rela-
tionships and results for random graphs. Congressus Numerantium, 132:39–60, 1998.

44 Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed proofs. In
37th ACM Symposium on Principles of Distributed Computing (PODC), pages 255–264. ACM,
2018.

45 Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. Distrib-
uted Comput., 20(4):253–266, 2007.

46 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):215–233, 2010.

47 Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–115.
SIAM, 2020.

48 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

DISC 2023

https://arxiv.org/abs/2307.14292
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

The Synchronization Power (Consensus Number)
of Access-Control Objects:
the Case of AllowList and DenyList
Davide Frey #

Inria, IRISA, CNRS, Université de Rennes, France

Mathieu Gestin #

Inria, IRISA, CNRS, Université de Rennes, France

Michel Raynal #

IRISA, Inria, CNRS, Université de Rennes, France

Abstract
This article studies the synchronization power of AllowList and DenyList objects under the lens
provided by Herlihy’s consensus hierarchy. It specifies AllowList and DenyList as distributed objects
and shows that, while they can both be seen as specializations of a more general object type,
they inherently have different synchronization power. While the AllowList object does not require
synchronization between participating processes, a DenyList object requires processes to reach
consensus on a specific set of processes. These results are then applied to a more global analysis of
anonymity-preserving systems that use AllowList and DenyList objects. First, a blind-signature-
based e-voting is presented. Second, DenyList and AllowList objects are used to determine the
consensus number of a specific decentralized key management system. Third, an anonymous money
transfer algorithm using the association of AllowList and DenyList objects is presented. Finally, this
analysis is used to study the properties of these application, and to highlight efficiency gains that
they can achieve in message passing environment.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Security
and privacy → Access control; Security and privacy → Pseudonymity, anonymity and untraceability

Keywords and phrases Access control, AllowList/DenyList, Blockchain, Consensus number, Dis-
tributed objects, Modularity, Privacy, Synchronization power

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.21

Related Version Full Version: https://doi.org/10.48550/arXiv.2302.06344v2 [19]

Funding This work was partially funded by the PriCLeSS project and by the SOTERIA H2020
project. PriCLeSS was granted by the Labex CominLabs excellence laboratory of the French ANR
(ANR-10-LABX-07-01). SOTERIA received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No101018342. This content reflects only
the author’s view. The European Agency is not responsible for any use that may be made of the
information it contains.

Acknowledgements We wish to thank the anonymous reviewers for their insightful comments and
remarks that led to significant improvements to our paper.

1 Introduction

The advent of blockchain technologies increased the interest of the public and industry in
distributed applications, giving birth to projects that have applied blockchains in a plethora
of use cases. These include e-vote systems [16], naming services [1, 27], Identity Management
Systems [18, 31], supply-chain management [30], or Vehicular Ad hoc Network [21]. However,

© Davide Frey, Mathieu Gestin, and Michel Raynal;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.frey@inria.fr
mailto:mathieu.gestin@inria.fr
mailto:michel.raynal@irisa.fr
https://doi.org/10.4230/LIPIcs.DISC.2023.21
https://doi.org/10.48550/arXiv.2302.06344v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Synchronization Power of Access Control Objects

this use of the blockchain as a swiss-army knife that can solve numerous distributed problems
highlights a lack of understanding of the actual requirements of those problems. Because of
these poor specifications, implementations of these applications are often sub-optimal.

This paper thoroughly studies a class of problems widely used in distributed applications
and provides a guideline to implement them with reasonable but sufficient tools.

Differently from the previous approaches, it aims to understand the amount of synchro-
nization required between processes of a system to implement specific distributed objects.
To achieve this goal it studies such objects under the lens of Herlihy’s consensus number [24].
This parameter is inherently associated to shared memory distributed objects, and has no
direct correspondence in the message passing environment. However, in some specific cases,
this information is enough to provide a better understanding of the objects analyzed, and thus,
to gain efficiency in the message passing implementations. For example, recent papers [22, 5]
have shown that cryptocurrencies can be implemented without consensus and therefore
without a blockchain. In particular, Guerraoui et al. [22] show that k-asset transfer has a
consensus number k where k is the number of processes that can withdraw currency from
the same account [23]. Similarly, Alpos et al. [3] have studied the synchronization properties
of ERC20 token smart contracts and shown that their consensus number varies over time as
a result of changes in the set of processes that are approved to send tokens from the same
account. These two results consider two forms of asset transfer: the classical one and the one
implemented by the ERC20 token, which allows processes to dynamically authorize other
processes. The consensus number of those objects depends on specific and well identified
processes. From this study, it is possible to conclude that the consensus algorithms only need
to be performed between those processes. Therefore, in these specific cases, the knowledge of
the consensus number of an object can be directly used to implement more efficient message
passing applications. Furthermore, even if this study uses a shared memory model, with
crash prone processes, its results can be used to implement more efficient Byzantine resilient
algorithm, in a message passing environment. This paper proposes to extend this knowledge
to a broader class of applications.

Indeed, the transfer of assets, be them cryptocurrencies or non-fungible tokens, does not
constitute the only application in the Blockchain ecosystem. In particular, as previously
indicated, a number of applications like e-voting [16], naming [1, 27], or Identity Manage-
ment [18, 31] use Blockchain as a tool to implement some form of access control. This is
often achieved by implementing two general-purpose objects: AllowLists and DenyLists. An
AllowList provides an opt-in mechanism. A set of managers can maintain a list of authorized
parties, namely the AllowList. To access a resource, a party (user) must prove the presence
of an element associated with its identity in the AllowList. A DenyList provides instead
an opt-out mechanism. In this case, the managers maintain a list of revoked elements, the
DenyList. To access a resource, a party (user) must prove that no corresponding element has
been added to the DenyList. In other words, AllowList and DenyList support, respectively,
set-membership and set-non-membership proofs on a list of elements.

The proofs carried out by AllowList and DenyList objects often need to offer privacy
guarantees. For example, the Sovrin privacy preserving Decentralized Identity-Management
System (DIMS) [18] associates an AllowList1 with each verifiable credential that contains
the identifiers of the devices that can use this verifiable credential. When a device uses a
credential with a verifier, it needs to prove that the identifier associated with it belongs to
the AllowList. This proof must be done in zero knowledge, otherwise the verifier would learn

1 In reality this is a variant that mixes AllowList and DenyList which we discuss in Appendix A.

D. Frey, M. Gestin, and M. Raynal 21:3

the identity of the device, which in turn could serve as a pseudo-identifier for the user. For
this reason, AllowList and DenyList objects support respectively a zero-knowledge proof of
set membership or a zero-knowledge proof of set non-membership.

Albeit similar, the AllowList and DenyList objects differ significantly in the way they
handle the proving mechanism. In the case of an AllowList, no security risk appears if access
to a resource is prohibited to a process, even if a manager did grant this right. As a result, a
transient period in which a user is first allowed, then denied, and then allowed again to access
a resource poses no problem. On the contrary, with a DenyList, being allowed access to a
resource after being denied it poses serious security problems. Hence, the DenyList object is
defined with an additional anti-flickering property prohibiting such transient periods. This
property is the main difference between an AllowList and a DenyList object and is the reason
for their distinct consensus numbers.

Existing systems [16, 1, 27, 18, 31] that employ AllowList and DenyList objects implement
them on top of a heavy blockchain infrastructure, thereby requiring network-level consensus
to modify their content. As already said, this paper studies this difference under the lens of
the consensus number [23]. It shows that (i) the consensus number of an AllowList object
is 1, which means that an AllowList can be implemented without consensus; and that (ii)
the consensus number of a DenyList is instead equal to the number of processes that can
conduct prove operations on the DenyList, and that only these processes need to synchronize.
Both data structures can therefore be implemented without relying on the network-level
consensus provided by a blockchain, which opens the door to more efficient implementations
of applications based on these data structures.

To summarize, this paper presents the following three contributions. We note CN(X)
the consensus number of the object X.
1. It formally defines and studies AllowList and DenyList as distributed objects (Section 3).
2. It analyses the consensus number of these objects: it shows that the AllowList does not

require synchronization between processes, i.e. CN(AllowList) = 1 (Section 5), while
the DenyList requires the synchronization of all the k verifiers of its set-non-membership
proofs, i.e CN(DenyList) = k (Section 6).

3. It uses these theoretical results to give intuitions on their optimal implementations.
Namely the implementation of a DIMS, as well as of an e-vote system and an Anonymous
Asset-Transfer (AAT) algorithm (Appendix B and in the full version of this paper [19]).
More precisely, the consensus number of an AAT algorithm depends on the required
anonymity level, i.e. CN(AAT) = CN(DenyList) = k = CN(k-shared Asset Transfer
object). The consensus number of an e-vote system depends on the number k of vote-
casting servers, i.e CN(e-vote) = k. Finally, the consensus number of a the revocation
mechanism in a DIMS is 2 in most cases.

Allow/Deny List Object
(Section 3)

E-Voting
(Section 7.3/Appendix D)

Asset Transfer
(Section 7.2/Appendix C)

DIMS
(Section 7.1)

To the best of our knowledge, this paper is the first to study the AllowList and DenyList
from a distributed algorithms point of view. So we believe our results can provide a powerful
tool to identify the consensus number of recent distributed objects that make use of them
and to provide more efficient implementations of such objects.

DISC 2023

21:4 The Synchronization Power of Access Control Objects

2 Preliminaries

2.1 Computation Model
Model

Let Π be a set of N asynchronous sequential crash-prone processes p1, · · · , pN . Sequential
means that each process invokes one operation of its own algorithm at a time. We assume the
local processing time to be instantaneous, but the system is asynchronous. This means that
non-local operations can take a finite but arbitrarily long time and that the relative speeds
between the clocks of the different processes are unknown. Finally, processes are crash-prone:
any number of processes can prematurely and definitely halt their executions. A process that
crashes is called faulty. Otherwise, it is called correct. The system is eponymous: a unique
positive integer identifies each process, and this identifier is known to all other processes.

Communication

Processes communicate via shared objects of type T . Each operation on a shared object is
associated with two events: an invocation and a response. An object type T is defined by a
tuple (Q, Q0, O, R, ∆), where Q is a set of states, Q0 ⊆ Q is the set of initial states, O is the
set of operations a process can use to access this object, R is the set of responses to these
operations, and ∆ ⊆ Π × Q × O × R × Q is the transition function defining how a process
can access and modify an object.

Histories and Linearizability

A history [24] is a sequence of invocations and responses in the execution of an algorithm.
An invocation with no matching response in a history, H, is called a pending invocation. A
sequential history is one where the first event is an invocation, and each invocation – except
possibly the last one – is immediately followed by the associated response. A sub-history
is a sub-sequence of events in a history. A process sub-history H|pi of a history H is a
sub-sequence of all the events in H whose associated process is pi. Given an object x, we
can similarly define the object sub-history H|x. Two histories H and H ′ are equivalent if
H|pi = H ′|pi, ∀i ∈ {1, · · · , N}.

In this paper, we define the specification of a shared object, x, as the set of all the allowed
sub-histories, H|x. We talk about a sequential specification if all the histories in this set
are sequential. A legal history is a history H in which, for all objects xi of this history,
H|xi belongs to the specification of xi. The completion H̄ of a history H is obtained by
extending all the pending invocations in H with the associated matching responses. A history
H induces an irreflexive partial order <H on operations, i.e. op0 <H op1 if the response
to the operation op0 precedes the invocation of operation op1. A history is sequential if
<H is a total order. The algorithm executed by a correct process is wait-free if it always
terminates after a finite number of steps. A history H is linearizable if a completion H̄ of H

is equivalent to some legal sequential history S and <H⊆<S .

Consensus number

The consensus number of an object of type T (noted cons(T)) is the largest n such that it
is possible to wait-free implement a consensus object from atomic read/write registers and
objects of type T in a system of n processes. If an object of type T makes it possible to
wait-free implement a consensus object in a system of any number of processes, we say the
consensus number of this object is ∞. Herlihy [23] proved the following well-known theorem.

D. Frey, M. Gestin, and M. Raynal 21:5

▶ Theorem 1. Let X and Y be two atomic objects type such that cons(X) = m and
cons(Y) = n, and m < n. There is no wait-free implementation of an object of type Y from
objects of type X and read/write registers in a system of more than m processes.

We will determine the consensus number of the DenyList and the AllowList objects using
Atomic Snapshot objects and consensus objects in a set of k processes. A Single Writer Multi
Reader (SWMR) [2] Atomic Snapshot object is an array of fixed size, which supports two
operations: Snapshot and Update. The Snapshot() operation allows a process pi to read the
whole array in one atomic operation. The Update(v, i) operation allows a process pi to write
the value v in the i-th position of the array. Afek et al. showed that a SWMR Snapshot
object can be wait-free implemented from read/write registers [2], i.e., this object type has
consensus number 1. This paper assumes that all Atomic Snapshot objects used are SWMR.
A consensus object provides processes with a single one-shot operation propose(). When a
process pi invokes propose(v) it proposes v. This invocation returns a decided value such
that the following three properties are satisfied.

Validity: If a correct process decides value v, then v was proposed by some process;
Agreement: No two correct processes decide differently; and
Termination: Every correct process eventually decides.

A k-consensus object is a consensus object accessed by at most k processes.

2.2 Number theory preliminaries

Cryptographic Commitments

A cryptographic commitment is a cryptographic scheme that allows a Prover to commit to a
value v while hiding it. The commitment scheme is a two phases protocol. First, the prover
computes a binding value known as commitment, C, using a function Commit. Commit takes
as inputs the value v and a random number r. The prover sends this hiding and binding
value C to a verifier. In the second phase, the prover reveals the committed value v and the
randomness r to the verifier. The verifier can then verify that the commitment C previously
received refers to the transmitted values v and r. This commitment protocol is the heart of
Zero Knowledge Proof (ZKP) protocols.

Zero Knowledge Proof of set operations

A Zero Knowledge Proof (ZKP) system is a cryptographic algorithm that allows a prover to
prove some Boolean statement about a value x to a verifier without leaking any information
about x. A ZKP system is initialized for a specific language L of the complexity class N P .
The proving mechanism takes as input L and outputs a proof π. Knowing L and π, any
verifier can verify that the prover knows a value x ∈ L2. However, the verifier cannot learn
the value x used to produce the proof. In the following, it is assumed there exists efficient
non interactive ZKP systems of set-(non)-membership (e.g., constructions from [8]).

2 The notation x ∈ L denotes the fact that x is a solution to the instance of the problem expressed by the
language L

DISC 2023

21:6 The Synchronization Power of Access Control Objects

3 The AllowList and DenyList objects: Definition

Distributed AllowList and DenyList object types are the type of objects that allow a set
of managers to control access to a resource. The term ”resource” is used here to describe
the goal a user wants to achieve and which is protected by an access control policy. A user
is granted access to the resource if it succeeds in proving that it is authorized to access it.
First, we describe the AllowList object type. Then we consider the DenyList object type.

The AllowList object type is one of the two most common access control mechanisms.
To access a resource, a process p ∈ ΠV needs to prove it knows some element v previously
authorized by a process pM ∈ ΠM , where ΠM ⊆ Π is the set of managers, and ΠV ⊆ Π is
the set of processes authorized to conduct proofs. We call verifiers the processes in ΠV . The
sets ΠV and ΠM are predefined and static. They are parameters of the object. Depending
on the usage, these subset can either be small, or they can contain all the processes in Π.

A process p ∈ ΠV proves that v was previously authorized by invoking a PROVE(v)
operation. This operation is said to be valid if some manager in ΠM previously invoked
an APPEND(v) operation. Intuitively, we can see the invocation of APPEND(v) as the
action of authorizing some process to access the resource. On the other hand, the PROVE(v)
operation, invoked by a prover process, p ∈ ΠV , proves to the other processes in ΠV that
they are authorized. However, this proof is not enough in itself. The verifiers of a proof
must be able to verify that a valid PROVE has been invoked. To this end, the AllowList
object type is also equipped with a READ() operation. This operation can be invoked by any
process in Π and returns a random permutation of all the valid PROVE invoked, along with
the identity of the processes that invoked them. All processes in Π can invoke the READ
operation.3

An optional anonymity property can be added to the AllowList object to enable privacy-
preserving implementations. This property ensures that other processes cannot learn the
value v proven by a PROVE(v) operation.

The AllowList object type is formally defined as a sequential object, where each invocation
is immediately followed by a response. Hence, the sequence of operations defines a total
order, and each operation can be identified by its place in the sequence.

▶ Definition 2. The AllowList object type supports three operations: APPEND, PROVE,
and READ. These operations appear as if executed in a sequence Seq such that:

Termination. A PROVE, an APPEND, or a READ operation invoked by a correct process
always returns.
APPEND Validity. The invocation of APPEND(x) by a process p is valid if p ∈ ΠM ⊆ Π
and x ∈ S, where S is a predefined set. Otherwise, the operation is invalid.
PROVE Validity. If the invocation of op =PROVE(x) by a process p is valid, then
p ∈ ΠV ⊆ Π and a valid APPEND(x) appears before op in Seq. Otherwise, the invocation
is invalid.
Progress. If a valid APPEND(x) is invoked, then there exists a point in Seq such that
any PROVE(x) invoked after this point by any process p ∈ ΠV will be valid.
READ Validity. The invocation of op =READ() by a process p ∈ ΠV returns the list of
valid invocations of PROVE that appears before op in Seq along with the names of the
processes that invoked each operation.

3 Usually, AllowList objects are implemented in a message-passing setting. In these cases, the READ
operation is implicit. Each process knows a local state of the distributed object, and can inspect it any
time. In the shared-memory setting, we need to make this READ operation explicit.

D. Frey, M. Gestin, and M. Raynal 21:7

Optional - Anonymity. Let us assume the process p invokes a PROVE(v) operation. If
the process p′ invokes a READ() operation, then p′ cannot learn the value v unless p

leaks additional information.4

The AllowList object is defined in an append-only manner. This definition makes it
possible to use it to build all use cases explored in this paper. However, some use cases
could need an DenyList with an additional REMOVE operation. This variation is studied in
Appendix A.

The DenyList object type can be informally presented as an access policy where, contrary
to the AllowList object type, all users are authorized to access the resource in the first place.
The managers are here to revoke this authorization. A manager revokes a user by invoking
the APPEND(v) operation. A user uses the PROVE(v) operation to prove that it was not
revoked. A PROVE(v) invocation is invalid only if a manager previously revoked the value v.

All the processes in Π can verify the validity of a PROVE operation by invoking a READ()
operation. This operation is similar to the AllowList’s READ operation. It returns the list
of valid PROVE invocations along with the name of the processes that invoked it.

There is one significant difference between the DenyList and the AllowList object types.
With an AllowList, if a user cannot access a resource immediately after its authorization, no
malicious behavior can harm the system – the system’s state is equivalent to its previous
state. However, with a DenyList, a revocation not taken into account can let a malicious
user access the resource and harm the system. In other words, access to the resource in the
DenyList case must take into account the ”most up to date” available revocation list.

To this end, the DenyList object type is defined with an additional property. The anti-
flickering property ensures that if an APPEND operation is taken into account by one PROVE
operation, it will be taken into account by every subsequent PROVE operation. Along with
the progress property, the anti-flickering property ensures that the revocation mechanism is as
immediate as possible. The DenyList object is formally defined as a sequential object, where
each invocation is immediately followed by a response. Hence, the sequence of operations
define a total order, and each operation can be identified by its place in the sequence.

▶ Definition 3. The DenyList object type supports three operations: APPEND, PROVE,
and READ. These operations appear as if executed in a sequence Seq such that:

Termination. A PROVE, an APPEND, or a READ operation invoked by a correct process
always returns.
APPEND Validity. The invocation of APPEND(x) by a process p is valid if p ∈ ΠM ⊆ Π
and x ∈ S, where S is a predefined set. Otherwise, the operation is invalid.
PROVE Validity. If the invocation of a op =PROVE(x) by a correct process p is not
valid, then p /∈ ΠV ⊆ Π or a valid APPEND(x) appears before opP in Seq. Otherwise,
the operation is valid.
PROVE Anti-Flickering. If the invocation of a operation op =PROVE(x) by a correct
process p ∈ ΠV is invalid, then any PROVE(x) that appears after op in Seq is invalid.5

4 The Anonymity property only protects the value v. The system considered is eponymous. Hence, the
identity of the processes is already known. However, the anonymity of v makes it possible to hide other
information. For example, the identity of a client that issues a request to a process of the system. These
example are discussed in Section 7.

5 The only difference between the AllowList and the DenyList object types is this anti-flickering property.
As it is shown in Section 5 and in Section 6, the AllowList object has consensus number 1, and the
DenyList object has consensus number k = |ΠV |. Hence, this difference in term of consensus number is
due solely to the anti-flickering property. It is an open question whether a variation of this property
could transform any consensus number 1 object into a consensus number k object.

DISC 2023

21:8 The Synchronization Power of Access Control Objects

Table 1 Transition function ∆ for the PROOF-LIST object.

Process Operation Initial state Res- Final state Conditions
ponse

pi ∈ ΠM APPEND(y) (listed-values = {x ∈ S}, True (listed-values ∪ {y}, y ∈ S
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)})) proofs)

pi APPEND(y) (listed-values = {x ∈ S}, False (listed-values, proofs) pi /∈ ΠM ∨ y /∈ S
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)}))

pi ∈ ΠV PROVE(y) (listed-values = {x ∈ S}, (A, P) (listed-values, ∀y ∈ LA ∧ A ⊆ listed-values
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)})) proofs ∪ {(pi, A, P)}) ∧∀P ∈ PLA ∧ C(y, Ŝ) = 1

pi PROVE(y) (listed-values = {x ∈ S}, False (listed-values, proofs) ∀y /∈ LA ∨ A ̸⊆ listed-values
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)})) ∨ ∀P /∈ PLA ∨ ∀pi /∈ ΠV

∨ C(y, Ŝ) = 0
pi ∈ Π READ() (listed-values = {x ∈ S}, proofs (listed-values, proofs)

proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL
Ŝ

)}))

READ Validity. The invocation of op =READ() by a process p ∈ ΠV returns the list of
valid invocations of PROVE that appears before op in Seq along with the names of the
processes that invoked each operation.
Optional - Anonymity. Let us assume the process p invokes a PROVE(v) operation. If
the process p′ invokes a READ() operation, then p′ cannot learn the value v unless p

leaks additional information.

4 PROOF-LIST object specification

Section 5 and Section 6 propose an analysis of the synchronization power of the AllowList
and the DenyList object types using the notion of consensus number. Both objects share
many similarities. Indeed, the only difference is the type of proof performed by the user and
the non-flickering properties. Therefore, this section defines the formal specification of the
PROOF-LIST object type, a new generic object that can be instantiated to describe the
AllowList or the DenyList object type.

The PROOF-LIST object type is a distributed object type whose state is a pair of arrays
(listed-values, proofs). The first array, listed-values, represents the list of authorized/revoked
elements. It is an array of objects in a set S, where S is the universe of potential elements.
The second array, proofs, is a list of assertions about the listed-values array. Given a set of
managers ΠM ⊆ Π and a set of verifiers ΠV ⊆ Π, the PROOF-LIST object supports three
operations. First, the APPEND(v) operation appends a value v ∈ S to the listed-values
array. Any process in the manager’s set can invoke this operation. Second, the PROVE(v)
operation appends a valid proof about the element v ∈ S relative to the listed-values array to
the proofs array. This operation can be invoked by any process p ∈ ΠV . Third, the READ()
operation returns the proofs array.

The sets ΠV and ΠM are static, predefined subsets of Π. There is no restriction on their
compositions. The choice of these sets only depends on the usage of the AllowList or the
DenyList. Depending on the usage, they can either contain a small subset of processes in Π
or they can contain the whole set of processes of the system.

To express the proofs produced by a process p, we use an abstract language LA of the
complexity class N P, which depends on a set A. This language will be specified for the
AllowList and the DenyList objects in Section 5 and Section 6. The idea is that p produces
a proof π about a value v ∈ S. A PROVE invocation by a process p is valid only if the proof
π added to the proofs array is valid. The proof π is valid if v ∈ LA – i.e., v is a solution to
the instance of the problem expressed by LA, where LA is a language of the complexity class

D. Frey, M. Gestin, and M. Raynal 21:9

N P 6 which depends on a subset A of the listed-values array (A ⊆ S). We note PLA the set
of valid proofs relative to the language LA. PLA can either represent Zero Knowledge Proofs
or explicit proofs.

If a proof π is valid, then the PROVE operation returns (A, Acc.P rove(v, A)), where
Acc.P rove(v, A) is the proof generated by the operation, and where A is a subset of values
in listed-values on which the proof was applied. Otherwise, the PROVE operation returns
“False”. Furthermore, the proofs array also stores the name of the processes that invoked
PROVE operations.

Formally, the PROOF-LIST object type is defined by the tuple (Q, Q0, O, R, ∆), where:
The set of valid state is Q = (listed-values = {x ∈ S}, proofs = {(p ∈ Π, Ŝ ⊆ S, P ∈
PL

Ŝ
)}), where listed-values is a subset of S and proofs is a set of tuples. Each tuple in

proofs consists of a proof associated with the set it applies to and to the identifier of the
process that issued the proof;
The set of valid initial states is Q0 = (∅, ∅), the state where the listed-values and the
proofs arrays are empty;
The set of possible operation is O = {APPEND(x), PROVE(y), READ()}, with x, y ∈ S;

The set of possible responses is R =
{

True, False, (Ŝ ⊆ S, P ∈ PL
Ŝ
), {(p ∈ Π, Ŝ ′ ⊆

S, P′ ∈ PL
Ŝ

)}
}

, where True is the response to a successful APPEND operation, (Ŝ, P) is

the response to a successful PROVE operation, {(p, Ŝ ′, P′)} is the response to a READ
operation, and False is the response to a failed operation; and
The transition function is ∆. The PROOF-LIST object type supports 5 possible transitions.
We define the 5 possible transitions of ∆ in Table 1.

The first transition of the ∆ function models a valid APPEND invocation, a value y ∈ S is
added to the listed-values array by a process in the managers’ set ΠM . The second transition
of the ∆ function represents a failed APPEND invocation. Either the process pi that invokes
this function is not authorized to modify the listed-values array, i.e., pi /∈ ΠM , or the value it
tries to append is invalid, i.e., y /∈ S. The third transition of the ∆ function captures a valid
PROVE operation, where a valid proof is added to the proofs array. The function C will be
used to express the anti-flickering property of the DenyList implementation. It is a boolean
function that outputs either 0 or 1. The fourth transition of the ∆ function represents an
invalid PROVE invocation. Either the proof is invalid, or the set on which the proof is issued
is not a subset of the listed-values array. Finally, the fifth transition represents a READ
operation. It returns the proofs array and does not modify the object’s state.

The language LA does not directly depend on the listed-values array. Hence, the validity
of a PROVE operation will depend on the choice of the set A.

5 The consensus number of the AllowList object

This section provides an AllowList object specification based on the PROOF-LIST object.
The specification is then used to analyze the consensus number of the object type.

We provide a specification of the AllowList object defined as a PROOF-LIST object,
where C(y, Ŝ) = 1 and ∀ y ∈ S, y ∈ LA ⇔ (A ⊆ S ∧ y ∈ A).

6 In this article, LA can be one of the following languages: a value v belongs to A (AllowList), or a value
v does not belongs to A (DenyList).

DISC 2023

21:10 The Synchronization Power of Access Control Objects

In other words, y belongs to a set A. Using the third transition of the ∆ function, we
can see that A should also be a subset of the listed-values array. Hence, this specification
supports proofs of set-membership in listed-values. A PROOF-LIST object defined for such
language follows the specification of the AllowList. To support this statement, we provide an
implementation of the object.

To implement the AllowList object, Algorithm 1 uses two Atomic Snapshot objects. The
first one represents the listed-values array, and the second represents the proofs array. These
objects are arrays of N entries. Furthermore, we use a function ”Proof” that on input of a
set S and an element y outputs a proof that y ∈ listed-values. This function is used as a
black box, and can either output an explicit proof – an explicit proof can be the tuple (y, A),
where A ⊆ listed-values – or a Zero Knowledge Proof.

Algorithm 1 Implementation of an AllowList object using Atomic-Snapshot objects.

Shared variables
AS-LV ← N-dimensions Atomic-Snapshot object, initially {∅}N ;

AS-PROOF ← N-dimensions Atomic-Snapshot object, initially {∅}N ;
Operation APPEND(v) is
1: If (v ∈ S) ∧ (p ∈ ΠM) then
2: local-values ← AS-LV.Snapshot()[p];
3: AS-LV.Update(local-values ∪ v, p);
4: Return true;
5: Else return false;

Operation READ() is
6: Return AS-PROOF.Snapshot();

Operation PROVE(v) is
7: If p /∈ ΠV then
8: Return false;
9: A ← AS-LV.Snapshot();

10: If v ∈ A then
11: πset−memb ← Proof(v ∈ A);
12: proofs ← AS-PROOF.Snapshot()[p];
13: AS-PROOF.Update(proofs ∪ (p,A, πset−memb), p);
14: Return (A, πset−memb);
15: Else return false.

▶ Theorem 4. Algorithm 1 wait-free implements an AllowList object.

Proof. The complete proof of this theorem is given in the full version of this paper [19]. ◀

▶ Corollary 5. The consensus number of the AllowList object type is 1.

6 The consensus number of the DenyList object

In the following, we propose two wait-free implementations establishing the consensus number
of the DenyList object type. In this section and in the following, we refer to a DenyList with
|ΠV | = k as a k-DenyList object. This analysis of this parameter k is the core of the study
conducted here. Because it is a statically defined parameter, the knowledge of this parameter
can improve efficiency of DenyList implementation by reducing the number of processes that
need to synchronize in order to conduct a proof.

6.1 Lower bound
Algorithm 2 presents an implementation of a k-consensus object using a k-DenyList object
with ΠM = ΠV = Π, and |Π| = k. It uses an Atomic Snapshot object, AS-LIST, to allow
processes to propose values. AS-LIST serves as a helping mechanism [12]. In addition, the
algorithm uses the progress and the anti-flickering properties of the PROVE operation of
the k-DenyList to enforce the k-consensus agreement property. The PROPOSE operation
operates as follows. First, a process p tries to prove that the element 0 is not revoked by
invoking PROVE(0). Then, if the previous operation succeeds, p revokes the element 0 by
invoking APPEND(0). Then, p waits for the APPEND to be effective. This verification is
done by invoking multiple PROVE operations until one is invalid. This behavior is ensured

D. Frey, M. Gestin, and M. Raynal 21:11

by the progress property of the k-DenyList object. Once the progress has occurred, p is
sure that no other process will be able to invoke a valid PROVE(0) operation. Hence, p is
sure that the set returned by the READ operation can no longer grow. Indeed, the READ
operation returns the set of valid PROVE operation that occurred prior to its invocation. If
no valid PROVE(0) operation can be invoked, the set returned by the READ operation is
fixed (with regard to the element 0). Furthermore, all the processes in Π share the same
view of this set.

Finally, p invokes READ() to obtain the set of processes that invoked a valid PROVE(0)
operation. The response to the READ operation will include all the processes that invoked a
valid PROVE operation, and this set will be the same for all the processes in Π that invoke
the PROPOSE operation. Therefore, up to line 7, the algorithm solved the set-consensus
problem. To solve consensus, we use an additional deterministic function fi : Πi → Π, which
takes as input any set of size i and outputs a single value from this set.

To simplify the representation of the algorithm, we also use the separator() function,
which, on input of a set of proofs ({(p ∈ Π, {Ŝ ⊆ S, P ∈ PLS)}), outputs processes, the set of
processes which conducted the proofs, i.e. the first component of each tuple.

Algorithm 2 k-consensus implementation using one k-DenyList object and one Atomic Snapshot.

Shared variables
k-dlist ← k-DenyList object;

AS-LIST ← Atomic Snapshot object, initially {∅}k

Operation PROPOSE(v) is
1: AS-LIST.update(v, p);
2: k-dlist.PROVE(0);

3: k-dlist.APPEND(0);
4: Do
5: ret ← k-dlist.PROVE(0);
6: Until (ret ̸= false);
7: processes ← separator(k-dlist.READ());
8: Return AS-LIST.Snapshot()[f|processes|(processes)].

▶ Theorem 6. Algorithm 2 wait-free implements a k-consensus object.

Proof. Let us fix an execution E of the algorithm presented in Algorithm 2. The progress
property of the k-DenyList object ensures that the while loop in line 4 consists of a finite
number of iterations – an APPEND(0) is invoked prior to the loop, hence, the PROVE(0)
operation will eventually be invalid. Each invocation of the PROPOSE operation is a sequence
of a finite number of local operations, Atomic Snapshot object accesses and k-DenyList
object accesses which are assumed atomic. Therefore, each process terminates the PROPOSE
operation in a finite number of its own steps. Let H be the history of E. We define H̄

the completed history of H, where an invocation of PROPOSE which did not reach line 8
is completed with a line “return false”. Line 8 is the linearization point of the algorithm.
For convenience, any PROPOSE invocation that returns false is called an failed invocation.
Otherwise, it is called a successful invocation.

We now prove that all operations in H̄ follow the k-consensus specification:
The process p that invoked a failed PROPOSE operation in H̄ is faulty – by definition,
the process prematurely stopped before line 8. Therefore, the fact that p cannot decide
does not impact the termination nor the agreement properties of the k-consensus object.
A successful PROPOSE operation returns AS-LIST.Snapshot()[f|processes|(processes)].
Furthermore, a process proposed this value in line 1. All the processes that invoke
PROPOSE conduct an APPEND(0) operation, and wait for this operation to be effective
using the while loop at line 4 to 6. Thanks to the anti-flickering property of the k-
DenyList object, when the APPEND operation is effective for one process – i.e. the
Progress happens, in other words,a PROVE(0) operation is invalid – , then it is effective
for any other process that would invoke the PROVE(0) operation. Hence, thanks to the

DISC 2023

21:12 The Synchronization Power of Access Control Objects

anti-flickering property, when a process obtains an invalid response from the PROPOSE(0)
operation at line 5, it knows that no other process can invoke a valid PROVE(0) operation.
This implies that the READ operation conducted at line 7 will return a fix set of processes,
and all the processes that reach this line will see the same set. Furthermore, because
each process invokes a PROPOSE(0) before the APPEND(0) at line 3, at least one valid
PROPOSE(0) operation was invoked. Therefore, the processes set is not empty. Because
each process ends up with the same set processes, and thanks to the determinism of the
function fi, all correct processes output the same value v (Agreement property and non-
trivial value). The value v comes from the Atomic Snapshot object, composed of values
proposed by authorized processes (Validity property). Hence a successful PROPOSE
operation follows the k-consensus object specification.

All operations in H̄ follow the k-consensus specification. To conclude, the algorithm presented
in Algorithm 2 is a wait-free implementation of the k-consensus object type. ◀

▶ Corollary 7. The consensus number of the k-DenyList object type is at least k.

6.2 Upper bound
This section provides a DenyList object specification based on the PROOF-LIST object. The
specification is then used to analyze the upper bound on the consensus number of the object
type.

We provide an instantiation of the DenyList object defined as a PROOF-LIST object,
where ∀y ∈ S, y ∈ LA ⇔ (A ⊆ S ∧ y /∈ A) and where:

C(y, Ŝ) =
{

1, if ∀A′ ∈ Ŝ, y /∈ A′

0, otherwise.

In other words, the first equation ensures that y does not belong to a set A, while the second
equation ensures that the object fulfills the anti-flickering property. Hence, this instantiation
supports proofs of set-non-membership in listed-values. A PROOF-LIST object defined
for such language follows the specification of the DenyList. To support this statement, we
provide an implementation of the object.

To build a k-DenyList object which can fulfill the anonymity property, it is required to
build an efficient helping mechanism that preserves anonymity. It is impossible to disclose
directly the value proven without disclosing the user’s identity. Therefore, we assume that a
process p that invokes the PROVE(v) operation can deterministically build a cryptographic
commitment to the value v. Let Cv be the commitment to the value v. Then, any process
p′ ≠ p that invokes PROVE(v) can infer that Cv was built using the value v. However, a
process that does not invoke PROVE(v) cannot discover to which value Cv is linked. If the
targeted application does not require the user’s anonymity, it is possible to use the plaintext
v as the helping value.

Algorithm 3 presents an implementation of a k-DenyList object using k-consensus objects
and Atomic Snapshots. The APPEND and the READ operations are analogous to those of
Algorithm 1.

On the other hand, the PROVE operation must implement the anti-flickering property.
To this end, a set of k-consensus objects and a helping mechanism based on commitments
are used.

When a process invokes the PROVE(v) operation, it publishes Cv, the cryptographic
commitment to v, using an atomic snapshot object. This commitment is published along
with a timestamp [28] defined as follow. A local timestamp (p, c) is constituted of a process

D. Frey, M. Gestin, and M. Raynal 21:13

identifier p and a local counter value c. The counter c is always incremented before being
reused. Therefore, each timestamp is unique. Furthermore, we build the strict total order
relation R such that (p, c)R(p′, c′) ⇔ (c < c′) ∨ ((c = c′) ∧ (p < p′)). The timestamp is used
in coordination with the helping value Cv to ensure termination. A process p that invokes
the PROVE(v) operation must parse all the values proposed by the other processes. If a
PROVE(v′) operation was invoked by a process p′ earlier than the one invoked by p – under
the relation R – , then p must affect a set ”val” for the PROVE operation of p′ via the
consensus object. The set ”val” is obtained by reading the AS-LV object. The AS-LV object
is append-only – no operation removes elements from the object. Furthermore, the sets ”val”
are attributed via the consensus object. Therefore, this mechanism ensures that the sets on
which the PROVE operations are applied always grow.

Furthermore, processes sequentially parse the CONS-ARR using the counterp variable.
This behavior, in collaboration with the properties of the consensus, ensures that all the
process see the same tuples (winner, val) in the same order.

Finally, if a process p observes that a PROVE operation conducted by a process p′ ̸= p is
associated to a commitment Cv equivalent to the one proposed by p, then p produces the
proof of set-non-membership relative to v and the set ”val” affected to p′ in its name. We
consider that a valid PROVE operation is linearized when this proof of set-non-membership
is added to AS-PROOF in line 19. Hence, when p produces its own proof – or if another
process produces the proof in its name – it is sure that all the PROVE operations that are
relative to v and that have a lower index in CONS-ARR compared to its own are already
published in the AS-PROOF Atomic Snapshot object. Therefore, the anti-flickering property
is ensured. Indeed, because the affected sets ”val” are always growing and because of the
total order induced by the CONS-ARR array, if p reaches line 25, it previously added a proof
to AS-PROOF in the name of each process p′ ̸= p that invoked a PROVE(v) operation and
that was attributed a set at a lower index than p in CONS-ARR. Hence, the operation of p′

was linearized prior to the operation of p.
A PROVE operation can always be identified by its published timestamp. Furthermore,

when a proof is added to the AS-PROOF object, it is always added to the index counterpw
.

Therefore, if multiple processes execute line 19 for the PROVE operation labeled counterpw ,
the AS-PROOF object will only register a unique value.

Furthermore, we use a function ”Proof” that on input of a set S and an element x outputs
a proof that x /∈ S. This function is used as a black box, and can either output an explicit
proof – an explicit proof can be the tuple (x, S) – , or a Zero Knowledge Proof.

▶ Theorem 8. Algorithm 3 wait-free implements a k-DenyList object.

Proof. The proof of this theorem is given in the full version of this paper [19]. ◀

The following corollary follows from Theorem 6 and Theorem 8.

▶ Corollary 9. The k-DenyList object type has consensus number k.

7 Discussion

This section presents several applications where the AllowList and the k-DenyList can be
used to determine the consensus numbers of more elaborate objects. More importantly, the
analysis of the consensus number of these use cases makes it possible to determine if actual
implementations achieve optimal efficiency in terms of synchronization. If not, we use the
knowledge of the consensus number of the AllowList and DenyList objects to give intuitions

DISC 2023

21:14 The Synchronization Power of Access Control Objects

Algorithm 3 k-DenyList implementation using k-consensus objects and Atomic Snapshot objects.
Shared variables

AS-LV ← N-dimensions Atomic-Snapshot object, initially {∅}N ;

AS-Queue ← N-dimensions Atomic-Snapshot object, initially {∅}N ;
CONS-ARRp ← an array of k-consensus objects of size l > 0;

AS-PROOF ← l-dimensions Atomic-Snapshot object, initially {∅}l;
Local variables

For each p ∈ ΠV :

evaluatedp ← an array of size l > 0, initially {∅}l;
counterp ← a positive integer, initially 0;

Operation APPEND(v) is
1: If (v ∈ S) ∧ (p ∈ ΠM) then
2: local-values ← AS-LV.Snapshot()[p];
3: AS-LV.UPDATE(local-values ∪ v, p);
4: Return true;
5: Else return false;

Operation PROVE(v) is
6: If p /∈ ΠV then
7: Return false;
8: Cv ← Commitment(v);

9: cnt ← counterp;
10: AS-Queue.UPDATE(((cnt, p), Cv), p);
11: queue ← AS-Queue.Snapshot() \ evaluatedp;
12: While (cnt, p) ∈ queue do
13: oldest ← the smallest clock value in queue under R;
14: prop ← (oldest, AS-LV.snapshot());
15: (winner, val) ← CONS-ARR[counterp].propose(prop);
16: ((counterpw , pw), C∗)← winner;
17: If C∗ = Cv ∧ v /∈ val then
18: πSNM ← Proof(v /∈ val);
19: AS-PROOF.Update((pw, val, πSNM , winner), counterpw);
20: evaluatedp ← evaluatedp ∪ winner;
21: queue ← queue \ winner;
22: counterp ← counterp + 1;

23: If v /∈ val then
24: Return (val, πSNM);
25: Else return false;
Operation READ() is
26: Return AS-PROOF.Snapshot();

on how to build more practical implementations. More precisely, the fact that the consensus
numbers of AllowList and DenyList objects are (in most cases) smaller than n implies that
most implementations can reduce the number of processes that need to synchronize in order
to implement such distributed objects. The liveness of many consensus algorithms is only
ensured when the network reaches a synchronous period. Therefore, reducing the number of
processes that need to synchronize can increase the system’s probability of reaching such
synchronous periods. Thus, it can increase the effectiveness of such algorithms.

7.1 Revocation of a verifiable credential
We begin by analyzing Sovrin’s Verifiable-Credential revocation method using the DenyList
object [18]. Sovrin is a privacy-preserving Distributed Identity Management System (DIMS).
In this system, users own credentials issued by entities called issuers. A user can employ one
such credential to prove to a verifier they have certain characteristics. An issuer may want
to revoke a user’s credential prematurely. To do so, the issuer maintains an append-only list
of revoked credentials. When a user wants to prove that their credential is valid, they must
provide to the verifier a valid ZKP of set-non-membership proving that their credential is
not revoked, i.e. not in the DenyList. In this application, the set of managers ΠM consists
solely of the credential’s issuer. Hence, the proof concerns solely the verifier and the user.
The way Sovrin implements this verification interaction is by creating an ad-hoc peer-to-peer
consensus instance between the user and the verifier for each interaction. Even if the resulting
DenyList has consensus number 2, Sovrin implements the APPEND operation using an
SWMR stored on a blockchain-backed ledger (which requires synchronizing the N processes
of the system). Our results suggest instead that Sovrin’s revocation mechanism could be
implemented without a blockchain by only using pairwise consensus.

7.2 The Anonymous Asset Transfer object
The anonymous asset transfer object is another application of the DenyList and the AllowList
objects. As described in Appendix B, it is possible to use these objects to implement the
asset transfer object described in [22]. Our work generalizes the result by Guerroui et al. [22].
Guerraoui et al. show that a joint account has consensus number k where k is the number of
agents that can withdraw from the account. We can easily prove this result by observing
that withdrawing from a joint account requires a denylist to record the already spent coins.

D. Frey, M. Gestin, and M. Raynal 21:15

Nevertheless, our ZKP capable construction makes it possible to show that an asset transfer
object where the user is anonymous, and its transactions are unlinkable also has consensus
number k, where k is the number of processes among which the user is anonymous. The two
main implementations of Anonymous Asset Transfer, ZeroCash and Monero [35, 7], use a
blockchain as their main double spending prevention mechanism. While the former provides
anonymity on the whole network, the second only provides anonymity among a subset of
the processes involved in the system. Hence, this second implementation could reduce its
synchronization requirements accordingly.

7.3 Distributed e-vote systems
Finally, another direct application of the DenyList object is the blind-signature-based e-vote
system with consensus number k, k being the number of voting servers, which we present in
the full version of this paper [19]. Most distributed implementations of such systems also use
blockchains, whereas only a subset of the processes involved actually require synchronization.

8 Related Works

Bitcoin and blockchain. Even though distributed consensus algorithms were already largely
studied [10, 29, 11, 4, 9], the rise of Ethereum – and the possibilities offered by its versatile
smart contracts – led to new ideas to decentralized already known applications. Among
those, e-vote and DIMS [18] are two examples.

Blockchains increased the interest in distributed versions of already existing algorithms.
However, these systems are usually developed with little concern for the underlying theoretical
basis they rely on. A great example lies in trustless money transfer algorithms or crypto
money. The underlying distributed asset-transfer object was never studied until recently.
A theoretical study proved that a secure asset-transfer algorithm does not need synchrony
between network nodes [22]. Prior to this work, all proposed schemes used a consensus
algorithm, which cannot be deterministically implemented in an asynchronous network [17].
The result is that many existing algorithms could be replaced by more efficient, Reliable
Broadcast [9] based algorithms. This work leads to more efficient implementation proposal for
money transfer algorithm [5]. Alpos et al. then extended this study to the Ethereum ERC20
smart contracts [3]. This last paper focuses on the asset-transfer capability of smart contracts.
Furthermore, the object described has a dynamic consensus number, which depends on the
processes authorized to transfer money from a given account. Furthermore, this work and
the one from Guerraoui et al. [22] both analyze a specific object that is not meant to be
used to find the consensus number of other applications. In contrast, our work aims to be
used as a generic tool to find the consensus number of numerous systems.

E-vote. An excellent example of the usage of DenyList is to implement blind signatures-
based e-vote systems [13]. A blind signature is a digital signature where the issuer can sign a
message without knowing its content. Some issuer signs a cryptographic commitment – a
cryptographic scheme where Alice hides a value while being bound to it [33] – to a message
produced by a user. Hence, the issuer does not know the actual message signed. The user
can then un-commit the message and present the signature on the plain-text message to
a verifier. The verifier then adds this message to a DenyList. A signature present in the
DenyList is no longer valid. Such signatures are used in some e-vote systems [20, 32]. In
this case, the blind signature enables anonymity during the voting operation. This is the

DISC 2023

21:16 The Synchronization Power of Access Control Objects

e-vote mechanism that we study in this article. They can be implemented using a DenyList
to restrain a user from voting multiple times. This method is explored in the full version of
this paper [19].

There exists two other way to provide anonymity to the user of an e-vote system. The
first one is to use a MixNet [26, 25, 14]. MixNet is used here to break the correlation between
a voter and his vote. Finally, anonymity can be granted by using homomorphic encryption
techniques [6, 15].

Each technique has its own advantages and disadvantages, depending on the properties
of the specific the e-vote system. We choose to analyze the blind signature-based e-vote
system because it is a direct application of the distributed DenyList object we formalize in
this paper.

Anonymous Money Transfer. Blockchains were first implemented to enable trustless money
transfer algorithms. One of the significant drawbacks of this type of algorithm is that it
only provides pseudonymity to the user. As a result, transfer and account balances can be
inspected by anyone, thus revealing sensitive information about the user. Later developments
proposed hiding the user’s identity while preventing fraud. The principal guarantees are
double-spending prevention – i.e., a coin cannot be transferred twice by the same user – and
ex nihilo creation prevention – i.e., a user cannot create money. Zcash [7] and Monero [35]
are the best representative of anonymous money transfer algorithms. The first one uses an
AllowList to avoid asset creation and a DenyList to forbid double spending, while the second
one uses ring signatures. We show in Appendix B that the DenyList and AllowList objects
can implement an Anonymous Money Transfer object, and thus, define the synchronization
requirements of the processes of the system.

9 Conclusion

This paper presented the first formal definition of distributed AllowList and DenyList object
types. These definitions made it possible to analyze their consensus number. This analysis
concludes that no consensus is required to implement an AllowList object. On the other
hand, with a DenyList object, all the processes that can propose a set-non-membership proof
must synchronize, which makes the implementation of a DenyList more resource intensive.

The definition of AllowList and DenyList as distributed objects made it possible to
thoroughly study other distributed objects that can use AllowList and DenyList as building
blocks. For example, we discussed authorization lists and revocation lists in the context of the
Sovrin DIMS. We also provided several additional examples in the Appendix. In particular,
we show in Appendix B that an association of DenyList and AllowList objects can implement
an anonymous asset transfer algorithm and that this implementation is optimal in terms of
synchronization power. This result can also be generalized to any asset transfer algorithm,
where the processes act as proxies for the wallet owners. In this case, synchronization is
only required between the processes that can potentially transfer money on behalf of a given
wallet owner.

D. Frey, M. Gestin, and M. Raynal 21:17

References
1 Ethereum name service documentation. online - https://docs.ens.domains/ - accessed

23/11/2022.
2 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. JACM, 40(4):873–890, September 1993. doi:10.1145/153724.
153741.

3 Orestis Alpos, Christian Cachin, Giorgia Azzurra Marson, and Luca Zanolini. On the
synchronization power of token smart contracts. In 41st IEEE ICDCS, pages 640–651, 2021.
doi:10.1109/ICDCS51616.2021.00067.

4 Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. Rbft: Redundant byzantine
fault tolerance. In IEEE 33rd International Conference on Distributed Computing Systems,
pages 297–306, 2013. doi:10.1109/ICDCS.2013.53.

5 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Money Transfer Made
Simple: a Specification, a Generic Algorithm, and its Proof. Bulletin European Association
for Theoretical Computer Science, 132, October 2020.

6 Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guillaume
Poupard. Practical multi-candidate election system. In PODC, pages 274–283, 2001. doi:
10.1145/383962.384044.

7 Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474, May 2014. doi:10.1109/SP.2014.36.

8 Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-
knowledge proofs for set membership: Efficient, succinct, modular. In Financial Cryptography
and Data Security. Springer Berlin Heidelberg, 2021.

9 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

10 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI ’99, pages
173–186, 1999.

11 Miguel Castro and Barbara Liskov. Proactive recovery in a Byzantine-Fault-Tolerant sys-
tem. In OSDI 2000, October 2000. URL: https://www.usenix.org/conference/osdi-2000/
proactive-recovery-byzantine-fault-tolerant-system.

12 Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In PODC ’15, pages 241–250,
2015. doi:10.1145/2767386.2767415.

13 David Chaum. Blind signatures for untraceable payments. In Advances in Cryptology, pages
199–203, 1983.

14 Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a secure voting
system. IEEE SSP, pages 354–368, 2008.

15 Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In EUROCRYPT ’97, pages 103–118, 1997.

16 Gaby G. Dagher, Praneeth Babu Marella, Matea Milojkovic, and Jordan Mohler. Broncovote:
Secure voting system using ethereum’s blockchain. In ICISSP, 2018.

17 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

18 Sovrin Foundation. Sovrin: A protocol and token for self-sovereign identity and decentralized
trust. Technical report, Sovrin Foundation, 2018.

19 Davide Frey, Mathieu Gestin, and Michel Raynal. The synchronization power (consensus
number) of access-control objects: The case of allowlist and denylist, 2023. doi:10.48550/
arXiv.2302.06344.

20 Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for
large scale elections. In AUSCRYPT ’92, pages 244–251, 1993.

DISC 2023

https://docs.ens.domains/
https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1109/ICDCS51616.2021.00067
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1145/383962.384044
https://doi.org/10.1145/383962.384044
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1016/0890-5401(87)90054-X
https://www.usenix.org/conference/osdi-2000/proactive-recovery-byzantine-fault-tolerant-system
https://www.usenix.org/conference/osdi-2000/proactive-recovery-byzantine-fault-tolerant-system
https://doi.org/10.1145/2767386.2767415
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.48550/arXiv.2302.06344
https://doi.org/10.48550/arXiv.2302.06344

21:18 The Synchronization Power of Access Control Objects

21 Jyoti Grover. Security of vehicular ad hoc networks using blockchain: A comprehensive review.
Vehicular Communications, 34:100458, 2022. doi:10.1016/j.vehcom.2022.100458.

22 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-Adrian Seredin-
schi. The consensus number of a cryptocurrency. In PODC ’19, pages 307–316, 2019.
doi:10.1145/3293611.3331589.

23 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
January 1991. doi:10.1145/114005.102808.

24 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

25 Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for elec-
tronic voting by randomized partial checking. In 11th USENIX Security Symposium, Au-
gust 2002. URL: https://www.usenix.org/conference/11th-usenix-security-symposium/
making-mix-nets-robust-electronic-voting-randomized.

26 Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In
WPES, pages 61–70, 2005. doi:10.1145/1102199.1102213.

27 Harry A. Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind Narayanan.
An empirical study of namecoin and lessons for decentralized namespace design. In Workshop
on the Economics of Information Security, 2015.

28 Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Communi-
cations of the ACM 21, (7), 558-565, July 1978. URL: https://www.microsoft.com/en-us/
research/publication/time-clocks-ordering-events-distributed-system/.

29 Leslie Lamport. The part-time parliament. In ACM TOCS, pages 133–169, 1998. doi:
10.1145/279227.279229.

30 Ming K. Lim, Yan Li, Chao Wang, and Ming-Lang Tseng. A literature review of blockchain
technology applications in supply chains: A comprehensive analysis of themes, methodologies
and industries. Computers and Industrial Engineering, 154:107133, 2021. doi:10.1016/j.cie.
2021.107133.

31 Nitin Naik and Paul Jenkins. uport open-source identity management system: An assessment of
self-sovereign identity and user-centric data platform built on blockchain. In IEEE International
Symposium on Systems Engineering (ISSE), pages 1–7, 2020. doi:10.1109/ISSE49799.2020.
9272223.

32 Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and Tatsuaki Okamoto. An
improvement on a practical secret voting scheme. In Information Security, pages 225–234,
1999.

33 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology — CRYPTO ’91, pages 129–140, 1992.

34 Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, undetectability, unobservabil-
ity, pseudonymity, and identity management–a consolidated proposal for terminology. Version
v0, 31, January 2007.

35 Nicolas van Saberhagen. Cryptonote v 2.0, October 2013.

A Variations on the listed-values array

In the previous sections, we assumed the listed-values array was append-only. Some use cases
might need to use a different configuration for this array. In this section, we explore use
cases where the listed-values array is no longer append-only.

Let us start by considering the simplest case in which processes can only remove the
values they wrote themselves. This results in no conflicts between APPEND and REMOVE
operations. The listed-values array can be seen as an array of |ΠV | values. A process pi can
write the i-th index of the listed-values array. As only pi can modify this value, there are no

https://doi.org/10.1016/j.vehcom.2022.100458
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1145/114005.102808
https://www.usenix.org/conference/11th-usenix-security-symposium/making-mix-nets-robust-electronic-voting-randomized
https://www.usenix.org/conference/11th-usenix-security-symposium/making-mix-nets-robust-electronic-voting-randomized
https://doi.org/10.1145/1102199.1102213
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1016/j.cie.2021.107133
https://doi.org/10.1016/j.cie.2021.107133
https://doi.org/10.1109/ISSE49799.2020.9272223
https://doi.org/10.1109/ISSE49799.2020.9272223

D. Frey, M. Gestin, and M. Raynal 21:19

conflicts upon writing (append/remove). This allows us to easily add a REMOVE operation
to an AllowList or DenyList object. In the case of the AllowList, this is particularly interesting
because it effectively allows the AllowList to act as a DenyList. Let us assume the managers
add all the elements of the universe of the possible identifiers to the AllowList in the first place.
Then, this AllowList can implement a DenyList object, where the REMOVE operation of the
AllowList is equivalent to the APPEND operation of the DenyList. The resulting AllowList
with REMOVE needs an anti-flickering property to prevent concurrent PROVE operations
from yielding conflicting results. This makes the AllowList with REMOVE equivalent to a
DenyList object: its consensus number is k, where k is the number of processes in ΠV .

A more complex case arises when multiple processes can remove a written value. We
associate each process pi with a predefined authorization set Ai ⊆ ΠM , defining which
processes can APPEND or REMOVE on pi’s register. We always have pi ∈ Ai. If pj ∈ Ai,
then pj is allowed to ”overwrite” (remove) anything pi wrote. In this case, APPEND
and REMOVE operation can conflict with each other and authorized processes need to
synchronize when modifying the listed-values array. Specifically, let kARi = |A⟩| be the
number of processes that can modify the ith array position and let kAR = maxi(kARi

) be
the largest value of kARi

over all the array positions. Then the consensus number of the
APPEND and REMOVE operation is kARi .

B Anonymous Asset-Transfer object type

Existing work by Guerraoui et al [22] and Auvolat [5] provides good insight into the problem
of asset transfer, but it only studies pseudonymous systems, where all transactions can be
linked to a single pseudonym. We now show how our formalization of AllowList and DenyList
allows us to reason about anonymous and unlinkable asset transfer solutions [7, 35].

B.1 Problem formalization
The Asset-Transfer object type allows a set of processes to exchange assets via a distributed
network. We reformulate the definition proposed by Guerraoui et al. [22]:

▶ Definition 10. The (pseudonymous) Asset-Transfer object type proposes two operations,
TRANSFER and BALANCE. The object type is defined for a set Π of processes and a
set W of accounts. An account is defined by the amount of assets it contains at time t.
Each account is initially attributed an amount of assets equal to v0 ∈ Z+∗. We define a
map µ : W → {0, 1}|Π| which associates each account to the processes that can invoke
TRANSFER operations for these wallets. The Asset Transfer object type supports two
operations, TRANSFER and BALANCE. When considering a TRANSFER(i, j, v) operation,
i ∈ W is called the initiator, j ∈ W is called the recipient, and v ∈ N is called the amount
transferred. Let T (i, j)t be the sum of all valid TRANSFER operations initiated by process
i and received by process j before time t. These operations respect three properties:

(Termination) TRANSFER and BALANCE operations always return if they are invoked
by a correct process.
(TRANSFER Validity) The validity of an operation TRANSFER(x, y, v) invoked at time
t by a process p is defined in a recursive way. If no TRANSFER(x, i, v), ∀i ∈ W was
invoked before time t, then the operation is valid if v ≤ v0 and if p ∈ µ(x). Otherwise,
the operation is valid if v ≤ v0 +

∑
i∈W T (i, x)t −

∑
j∈W T (x, j)t and if p ∈ µ(x).

(BALANCE Validity) A BALANCE operation invoked at time t is valid if it returns
v0 +

∑
i∈W T (i, x)t −

∑
j∈W T (x, j)t for each account x.

DISC 2023

21:20 The Synchronization Power of Access Control Objects

The Asset transfer object is believed to necessitate a double-spending-prevention property.
This property is captured by the TRANSFER Validity property of Definition 10. Indeed,
the double-spending-prevention property is defined to avoid ex-nihilo money creation. In a
wait-free implementation, a valid transfer operation is atomic. Therefore, double spending is
already prevented. A TRANSFER operation takes into account all previous transfers from
the same account.

The paper by Guerraoui et al. [22] informs us that the consensus number of such an object
depends on the map µ. If

∑
i∈{0,··· ,|Π|} µ(w)[i] ≤ 1, ∀ w ∈ W , then the consensus number of

the object type is 1. Otherwise, the consensus number is maxw∈W(
∑

i∈{0,··· ,|Π|} µ(w)[i]). In
other words, the consensus number of such object type is the maximum number of different
processes that can invoke a TRANSFER operation on behalf of a given wallet.

From continuous balances to token-based Asset-Transfer

The definition proposed by Guerraoui et al. uses a continuous representation of the balance
of each account. Implementing anonymous money transfer with such a representation would
require a mechanism to hide the transaction amounts [7]. As such a mechanism would
not affect the synchronization properties of the AAT object, we simplify the problem by
considering a token-based representation. A transfer in the tokenized version for a value
of kV consists of k TRANSFER operations, each transferring a token of value V . The full
version of the paper [19] provised a bijection that makes it possible to move to and from the
continous and token-based representations.

Anonymity set

Let S be a set of actors. We define “anonymity” as the fact that, from the point of view of
an observer, o /∈ S, the action, v, of an actor, a ∈ S, cannot be distinguished from the action
of any other actor, a′ ∈ S. We call S the anonymity set of a for the action v [34].

Implementing Anonymous Asset Transfer requires hiding the association between a token
and the account or process that owns it. If a “token owner” transfers tokens from the same
account twice, these two transactions can be linked together and are no longer anonymous.
Therefore, we assume that the ”token owner” possesses offline proofs of ownership of tokens.
These proofs are associated with shared online elements, allowing other processes to verify
the validity of transactions. We call wallet the set of offline proofs owned by a specific user.
We call the individual who owns this wallet the wallet owner. A wallet owner can own
multiple wallets, while a wallet is owned by only one owner. Furthermore, we assume each
process can invoke TRANSFER operations on behalf of multiple wallet owners. Otherwise,
a single process, which is in most cases identified by its ip-address or its public key, would
be associated with a single wallet and the system could not be anonymous. With the
same reasoning, we can assume that a wallet owner can request many processes to invoke a
TRANSFER operation on his or her behalf. Otherwise, the setup would not provide “network
anonymity”, but only “federated anonymity”, where the wallet is anonymous among all other
wallets connected to this same process. In our model, processes act as proxies.

The Anonymous Asset-Transfer object type

The first difference between a Pseudonymous Asset Transfer object type and an anonymous
one is the absence of a BALANCE operation. The wallet owner can compute the balance
of its own wallet using a LOCALBALANCE function that is not part of the distributed
object. The TRANSFER operation is also slightly modified. Let us consider a sender that

D. Frey, M. Gestin, and M. Raynal 21:21

wants to transfer a token TO to a recipient. The recipient creates a new token TR with the
associated cryptographic offline proofs (in practice, TR can be created by the sender using
the public key of the recipient). Specifically, it associates it with a private key. This private
key is known only to the recipient: its knowledge represents, in fact, the possession of the
token. Prior to the transfer operation, the recipient sends token TR to the sender. The
sender destroys token TO and activates token TR. The destruction prevents double spending,
and the creation makes it possible to transfer the token to a new owner while hiding the
recipient’s identity. Furthermore, this process of destruction and creation makes it possible
to unlink the usages of what is ultimately a unique token.

Each agent maintains a local wallet that contains the tokens (with the associated offline
proofs) owned by the agent. The owner of a wallet w can invoke TRANSFER operations
using any of the processes in µ(w). A transfer carried out from a process p for wallet w is
associated with an anonymity set ASw

p of size equal to the number of wallets associated
with process p: |ASw

p | =
∑

i∈W µ(i)[p]. The setup with the maximal anonymity set for
each transaction is an Anonymous Asset Transfer object where each wallet can perform
a TRANSFER operation from any process: i.e., µ(i) = {1}|Π|, ∀i ∈ W. The token-based
Anonymous Asset Transfer object type is defined as follows:

▶ Definition 11. The Anonymous Asset Transfer object type supports only one operation:
the TRANSFER operation. It is defined for a set Π of processes and a set W of wallets. An
account is defined by the amount of tokens it controls at time t. Each account is initially
attributed an amount v0 of tokens. We define a map µ : W → {0, 1}|Π| which associates
each wallet to the processes that can invoke TRANSFER on behalf of these wallets. When
considering a TRANSFER(TO, TR) operation, T0 is the cryptographic material of the initiator
that proves the existence of a token T , and TR is the cryptographic material produced by the
recipient used to create a new token. The TRANSFER operation respects three properties:

(Termination) The TRANSFER operation always returns if it is invoked by a correct
process.
(TRANSFER Validity) A TRANSFER(TO, TR) operation invoked at time t is valid if:

(Existence) The token TO already existed before the transaction, i.e., either it is one of
the tokens initially created, or it has been created during a valid TRANSFER(T ′O, TO)
operation invoked at time t′ < t.
(Double spending prevention) No TRANSFER(TO, T ′R) has been invoked at time
t′′ < t.

(Anonymity) A TRANSFER(TO, TR) invoked by process p does not reveal information
about the owner w and w′ of TO and TR, except from the fact that w belongs to the
anonymity set ASw

p .

The TRANSFER validity property implies that the wallet owner can provide existence
and non-double-spending proofs to the network. It implies that any other owner in the
same anonymity set and with the same cryptographic material (randomness and associated
element) can require the transfer of the same token. We know the material required to
produce a TRANSFER proof is stored in the wallet. Furthermore, we can assume that all the
randomness used by a given wallet owner is produced by a randomness Oracle that derives a
seed to obtain random numbers. Each seed is unique to each wallet. We assume the numbers
output by an oracle seem random to an external observer, but two processes that share the
same seed will obtain the same set of random numbers in the same order.

A transaction must be advertised to other processes and wallet owners via the TRANSFER
operation. Therefore, proofs of transfer are public. We know these proofs are deterministically
computed thanks to our deterministic random oracle model. Furthermore, only one sender

DISC 2023

21:22 The Synchronization Power of Access Control Objects

and recipient are associated with each transfer operation. Therefore, the public proof
cryptographically binds (without revealing them) the sender to the transaction. Hence, the
public proof is a cryptographic commitment, which can be opened by the sender or any other
actor who knows the same information as the sender.

In order to study the consensus number of this object, we consider that wallet owners can
share their cryptographic material with the entire network, thereby giving up their anonymity.
This would not make any sense in an anonymous system, but it represents a valuable tool to
reason about the consensus number of the object. This sharing process can be implemented
by an atomic register (and therefore has no impact on the consensus number).

Processes can derive the sender’s identity from the shared information using a local
“uncommit” function. The ”uncommit” function takes as input an oracle, a random seed,
token elements, and an “on-ledger” proof of transfer of a token and outputs a wallet owner
ID if the elements are valid. Otherwise, it outputs ∅.

B.2 Consensus number of the Anonymous Asset-Transfer object type
Lower bound

Algorithm 4 presents an algorithm that implements a k-consensus object, using only k-
Anonymous Asset Transfer objects and SWMR registers. The k in k-Anonymous Asset
Transfer object refers here to the size of the biggest µ(w), ∀ w ∈ W .

Algorithm 4 Implementation of a k-consensus object using k-Anon-AT objects.
Shared variables:

AT ← k-Anonymous-AT object, initialized with k + 1 wallets,
each one of the k first wallets possesses the elements
necessary to transfer one shared token, the k + 1-th
wallet is the recipient of the transfers, it is not controlled
by any process;

RM-LEDGER ← Atomic Snapshot object, initially {∅}k;

V-LED ← Atomic Snapshot object, initially {∅}k;
O ← A random oracle;
TokenMat ← secret associated with a unique token;

Local variables:
seed ← random number;

Operation PROPOSE(v) is:
1: RM-LEDGER[p].update(seed, p);
2: V-LED[p].update(v, p);
3: res ← AT.transfer(TokenMat, O, seed, k + 1);
4: RML ← RM-LEDGER.snapshot();
5: VL ← V-LED.snapshot();
6: For i in {1, · · · , k} do:
7: If uncommit(O, RML[i], TokenMat, res) ̸= ∅ then:
8: Return VL[i];
9: Return False;

▶ Theorem 12. Algorithm 4 wait-free implements k-consensus.

Proof. The proof of Theorem 12 is given in the full version of this paper [19]. ◀

Upper Bound

We give an implementation of the Anon-AT object using only Atomic Snapshot objects,
DenyList objects, and AllowList objects. Each wallet owner can request a TRANSFER
operation to k different processes. The proposed implementation uses disposable tokens that
are either created at the initialization of the system or during the transfer of a token. When
a token is destroyed, a new token can be created, and the new owner of the token is the only
one to know the cryptographic material associated with this new token. In the following,
we use the zero-knowledge version of the DenyList and AllowList object types, where all
set-(non-)membership proofs use a zero-knowledge setup. In addition, we use an AllowList
object to ensure that a token exists (no ex-nihilo creation), and we use a DenyList object to
ensure that the token is not already spent (double-spending protection).

D. Frey, M. Gestin, and M. Raynal 21:23

The underlying cryptographic objects used are out of the scope of this paper. However,
we assume our implementation uses the ZeroCash [7] cryptographic implementation, which
is a sound anonymous asset transfer algorithm. More precisely, we will use a high-level
definition of their off-chain functions. It is important to point out that using the ZeroCash
implementation, it is possible to transfer value from a pseudonymous asset transfer object to
an anonymous one using a special transaction called “Mint”. To simplify our construction,
we assume that each wallet is created with an initial amount of tokens v0 and that our object
does not allow cross-chain transfers. We, therefore, have no “Mint” operation.

ZeroCash uses a TRANSFER operation called pour that performs a transfer operation
destroying and creating the associated cryptographic material. Here, we use a modified
version of pour which does not perform the transfer or any non-local operation. It is a black-
box local function that creates the cryptographic material required prove the destruction
of the source token (TO) and the creation of the destination one (TR). Our modified pour
function takes as input the source token, the private key of the sender (sks), and the public
key of the recipient (pkr): pour(TO, pkr, sks)→ tx, tx being the cryptographic material that
makes it possible to destroy TO and create TR.

There might be multiple processes transferring tokens concurrently. Therefore, we define
a deterministic local function ChooseLeader(A, tx), which takes as input any set A and a
transaction tx, and outputs a single participant p which invoked BL.PROVE(tx).7

Algorithm 5 Anon-AT object implementation using SWMR registers, AllowList objects, and
DenyList objects.

Shared variables:
DL ← k-DenyList object, initially (∅, ∅);

AL ← AllowList object, initially ({(token(i,j))t
i=1}

k
j=1, ∅)

Operation TRANSFER(TO, pkr, sks) is:
1: tx← Pour(TO, pkr, sks)
2: If verify(tx) and tx ∈ AL and tx /∈ DL then:
3: AL.PROVE(tx);
4: DL.PROVE(tx);

5: DL.APPEND(tx);
6: Do:
7: ret ← DL.PROVE(tx);
8: While ret ̸= false;
9: If ChooseLeader(DL.READ(), tx.TR)=p then:

10: AL.append(tx.TR);
11: Return tx.TR;
12: Return False;

▶ Theorem 13. Algorithm 5 wait-free implements an Anon-AT object.

Proof. The proof of Theorem 13 is given in the full version of this paper [19]. ◀

▶ Corollary 14. The consensus number upper bound of a k-anon-AT object is k. Using this
corollary and Theorem 12, we further deduct that k-anon-AT object has consensus number k.

7 In reality, the signature of chooseLeader would be more complicated as the function needs TO, pkr, sks

in addition to tx. These additional elements make it possible to uncommit tx, thereby matching the
values of the PROVE operation with tx.TR. Note that this does not pose an anonymity threat as this
is a local function invoked by the owner of sks. We omit these details to simplify the presentation.

DISC 2023

List Defective Colorings: Distributed Algorithms
and Applications
Marc Fuchs #

University of Freiburg, Germany

Fabian Kuhn #

University of Freiburg, Germany

Abstract
The distributed coloring problem is at the core of the area of distributed graph algorithms and it
is a problem that has seen tremendous progress over the last few years. Much of the remarkable
recent progress on deterministic distributed coloring algorithms is based on two main tools: a)
defective colorings in which every node of a given color can have a limited number of neighbors
of the same color and b) list coloring, a natural generalization of the standard coloring problem
that naturally appears when colorings are computed in different stages and one has to extend a
previously computed partial coloring to a full coloring.

In this paper, we introduce list defective colorings, which can be seen as a generalization of these
two coloring variants. Essentially, in a list defective coloring instance, each node v is given a list of
colors xv,1, . . . , xv,p together with a list of defects dv,1, . . . , dv,p such that if v is colored with color
xv,i, it is allowed to have at most dv,i neighbors with color xv,i.

We highlight the important role of list defective colorings by showing that faster list defective
coloring algorithms would directly lead to faster deterministic (∆ + 1)-coloring algorithms in the
LOCAL model. Further, we extend a recent distributed list coloring algorithm by Maus and Tonoyan
[DISC ’20]. Slightly simplified, we show that if for each node v it holds that

∑p

i=1

(
dv,i + 1)2 >

deg2
G(v)·poly log ∆ then this list defective coloring instance can be solved in a communication-efficient

way in only O(log ∆) communication rounds. This leads to the first deterministic (∆ + 1)-coloring
algorithm in the standard CONGEST model with a time complexity of O(

√
∆ · poly log ∆ + log∗ n),

matching the best time complexity in the LOCAL model up to a poly log ∆ factor.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Graph coloring

Keywords and phrases distributed coloring, list coloring, defective coloring

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.22

Related Version Full Version: https://arxiv.org/abs/2304.09666 [15]

Funding This work was partially supported by the German Research Foundation (DFG) under the
project number 491819048.

1 Introduction and Related Work

Distributed graph coloring is one of the core problems in the area of distributed graph
algorithms. One typically assumes that the graph G = (V, E) to be colored represents a
communication network of n nodes with maximum degree ∆ and that the nodes (or edges)
of G must be colored in a distributed way by exchanging messages over the edges of G. The
nodes typically interact with each other in synchronous rounds. If the size of messages is not
restricted, this is known as the LOCAL model and if in every round, every node can send
an O(log n)-bit message to every neighbor, it is known as the CONGEST model [33]. The
problem was first studied by Linial in a paper that pioneered the whole area of distributed
graph algorithms [26]. Linial in particular showed that coloring a ring network with O(1)

© Marc Fuchs and Fabian Kuhn;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marc.fuchs@cs.uni-freiburg.de
mailto:kuhn@cs.uni-freiburg.de
https://doi.org/10.4230/LIPIcs.DISC.2023.22
https://arxiv.org/abs/2304.09666
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 List Defective Colorings: Distributed Algorithms and Applications

colors (and thus coloring a graph with f(∆) colors) requires Ω(log∗ n) rounds and that in
O(log∗ n) rounds, one can color any graph with O(∆2) colors. Subsequently, there has been
a plethora of work on distributed coloring algorithms, e.g., [19, 1, 31, 36, 32, 25, 11, 7, 12,
5, 14, 22, 13, 24, 30, 29, 18, 20, 21]. The most standard variant of the distributed coloring
problem asks for a proper coloring of the nodes V of G with ∆ + 1 colors. Note that this is
what can be achieved by a simple sequential greedy algorithm.

Over the last approximately 15 years, we have seen remarkable progress on randomized
and on deterministic distributed coloring algorithms. Much of the progress on deterministic
algorithms (which are the focus of the present paper) has been achieved by studying and
using two generalizations of the standard coloring problem, defective colorings and list
colorings. In the following, we briefly discuss the history and significance of defective
colorings and of list colorings in the context of deterministic distributed coloring algorithms.
For lack of space, we do not discuss, the very early work on deterministic distributed
coloring [26, 19, 36, 25], the deterministic algorithms that directly result from computing
network decomposition [1, 32, 34, 17, 16], or the vast literature on randomized distributed
coloring algorithms, e.g., [28, 35, 12, 22, 13, 20, 21].

Defective Coloring. Given integers d ≥ 0 and c > 0, a d-defective c-coloring of a graph
G = (V, E) is an assignment of colors {1, . . . , c} to the nodes in V such that the subgraph
induced by each color class has a maximum degree of at most d [27]. Defective colorings
were introduced to distributed algorithms independently by Barenboim and Elkin [6] and
by Kuhn [23] in 2009. Both papers give distributed algorithms to compute d-defective
colorings with O(∆2/d2) colors. The algorithm of [23] extends the classic O(∆2)-coloring
algorithm by Linial to achieving this in O(log∗ n) time. Both papers use defective colorings to
compute proper colorings in a divide-and-conquer fashion, leading to algorithms to compute
a (∆ + 1)-coloring in O(∆ + log∗ n) rounds.1 This idea was pushed further by Barenboim
and Elkin in [7] and [8]. In [7], they introduce the notion of arbdefective colorings: Instead of
decomposing a graph into color classes of bounded degree, the aim is to decompose a graph
into color classes of bounded arboricity. More specifically, the output of an arbdefective
c-coloring algorithm with arbdefect d is a coloring of nodes with colors {1, . . . , c} together
with an orientation of the edges such that every node has at most d outneighbors of the
same color. For this more relaxed version of defective coloring, they show that for a given
oriented graph with maximum outdegree β, one can efficiently compute a d-arbdefective
coloring with O(β/d)-colors (in time O(β2/d2 · log n)). Applying this recursively, for example
allows us to obtain a ∆1+o(1)-coloring in time poly log ∆ · log n. In [8], it is shown that for a
family of graphs that includes line graphs, one can efficiently compute a standard d-defective
coloring with only O(∆/d) colors in time O(∆2/d2 +log∗ n). This in particular implies that a
∆1+o(1)-edge coloring can be computed in time poly log ∆ + O(log∗ n). All the algorithms of
[6, 23, 7, 8] use defective coloring in the following basic way. If a computed defective coloring
has p colors, the space of available colors is divided into p parts that can then be assigned to
the p color classes and handled in parallel on the respective lower degree/arboricity graphs.
When doing this, one inherently has to use more than ∆ + 1 colors because in each defective
coloring step, the maximum degree (or outdegree) goes down at a factor that is somewhat
smaller than the number of colors of the defective coloring. In [6, 23], this is compensated
by reducing the number of colors at the end of each recursion level. However, this leads to
algorithms with time complexity at least linear in ∆.

1 Earlier algorithms were based on simple round-by-round color reduction schemes and required O(∆2 +
log∗ n) [26, 19] and O(∆ log ∆ + log∗ n) rounds [36, 25], respectively.

M. Fuchs and F. Kuhn 22:3

List Coloring. The key to obtaining (∆+1)-coloring algorithms with a better time complexity
is to explicitly consider the more general (degree + 1)-list coloring problem. In this problem,
every node v receives a list Lv of at least deg(v) + 1 colors as input and an algorithm has
to properly color the graph in such a way that each node v is colored with a color from its
list Lv. Note that this problem can still be solved by a simple sequential greedy algorithm.
Note also that the problem appears naturally when solving the standard (∆ + 1)-coloring
problem in different phases. If a subset S ⊆ V is already colored, then each node v ∈ V \ S

needs to be colored with a color that is not already taken by some neighbor in S. If v has
degree ∆ and all already colored neighbors of v have chosen different colors, the list of the
remaining available colors for v is exactly of length deg(v) + 1. The first paper that explicitly
considered list coloring in the context of deterministic distributed coloring is by Barenboim [5].
In combination with the improved arbdefective coloring algorithm of [10], the algorithm
of the paper obtains a (1 + ε)∆-coloring in O(

√
∆ + log∗ n) rounds by first computing a

O(
√

∆)-arbdefective O(
√

∆)-coloring and by afterwards iterating over the O(
√

∆) color
classes of this arbdefective coloring and solving the corresponding list coloring problem
in O(1) time. With the same technique, the paper also gets an O(∆3/4 + log∗ n)-round
algorithm for (∆ + 1)-coloring. This algorithm also works in the CONGEST model, i.e., by
exchanging messages of at most O(log n) bits. For algorithms with a round complexity of
the form f(∆) + O(log∗ n), this still is the fastest known (∆ + 1)-coloring algorithm in the
CONGEST model. The algorithm was improved by Fraigniaud, Kosowski, and Heinrich [14].
In combination with the subsequent results of [10, 30], the algorithm of [14] leads to an
O(

√
∆ log ∆ + log∗ n)-round distributed algorithm for (degree + 1)-list coloring and thus also

for (∆ + 1)-coloring. As one of the main results of this paper, we give a CONGEST algorithm
that almost matches this and that has a time complexity of O(

√
∆ poly log ∆ + log∗ n). List

colorings and defective colorings have also been explicitly used in all later deterministic
distributed coloring algorithms [24, 4, 18, 3]. We next discuss an idea that was introduced in
[24] and that is particularly important in the context of the present paper.

Distributed Color Space Reduction. The objective of [24] was to extend the coloring
algorithms of [7, 8] to list colorings. The algorithms of [7, 8] are based on computing
arbdefective or defective colorings to recursively divide the graph into low (out)degree parts
that use disjoint sets of colors. This leads to fast coloring algorithms, however, the number of
required colors grows exponentially with the number of recursion levels. While it is not clear
how to efficiently turn a standard distributed coloring algorithm that uses significantly more
than ∆ + 1 colors into a (∆ + 1)-coloring algorithm, by using the techniques introduced in
[5, 14], we can do this if we have a list coloring algorithm. Essentially, if we have a list coloring
algorithm that uses lists of size O(α(∆ + 1)), it can be turned into a (degree + 1)-list coloring
algorithm in only Õ(α2) rounds (and in some cases even in O(α) rounds). However, if the
nodes have different lists, a defective coloring does not easily split the graph into independent
coloring problems. As a generalization of defective colorings, [24] introduces a tool called
color space reduction. Assuming that all lists consist of colors of some color space C. For a
given partition of C into disjoint parts C1, . . . , Cp, a color space reduction algorithm partitions
the nodes V into p parts V1, . . . , Vp such that for every node v, with v ∈ Vi and v has degi(v)
neighbors in Vi, the algorithm tries to keep the ratio |Lv ∩ Ci|/ degi(v) as close as possible
to the initial list-degree ratio |Lv|/ deg(v). In [24], it is shown that the arbdefective and
defective coloring algorithms of [7, 8] can be generalized to compute a color space reduction.
If the size of the color space is polynomial in ∆, this lead to (degree + 1)-coloring algorithms
with time complexities of 2O(

√
log ∆) log n in general graphs and of 2O(

√
log n) + O(log∗ n) in

DISC 2023

22:4 List Defective Colorings: Distributed Algorithms and Applications

graphs of bounded neighborhood independence, a family of graphs that includes line graphs
of bounded rank hypergraphs. The complexity of the (degree + 1)-edge coloring problem was
later improved to (log ∆)O(log log ∆) + O(log∗ n) in [4] and to poly log ∆ + O(log∗ n) in [3]. In
both cases, this was achieved by designing better distributed color space reduction algorithms
for line graphs. The (∆ + 1)-coloring algorithm of [24] for general graphs was later subsumed
by a deterministic O(log2 ∆ · log n)-round algorithm for the (∆ + 1)-coloring problem in [18].

List Defective Colorings. Color space reductions can be seen as a special case of the
following list variant of defective colorings. Each node v has a list of possible colors that it
can choose (e.g., which color subspace Ci to use). Depending on what color v chooses, it can
tolerate different defects (e.g., depending on the size |Lv,i ∩ Ci| of the remaining color list
when choosing color subspace Ci). In the following, we formally define list defective colorings.
One of the objectives of this paper is to understand the relation of list defective colorings
to each other and to other coloring problems, and we will see in particular that better list
defective coloring algorithms can directly lead to better algorithms for standard coloring
problems.

In a list defective coloring problem, as input, each node v obtains a color list Lv ⊆ C,
where C is the space of possible colors. Each node v further has a defect function dv : Lv → N0
that assigns a non-negative integral defect value to each color in v’s list Lv. Given vertex
lists Lv, a list vertex coloring is an assignment φ : V → C that assigns each node v ∈ V a
color φ(v) ∈ Lv. In the following, we formally define three variants of list defective coloring.

▶ Definition 1 (List Defective Coloring). Let G = (V, E) be a graph, let C be a color space, and
assume that each node v ∈ V is given a color list Lv ⊆ C and a defect function dv : Lv → N0.
Further, assume that we are given a list vertex coloring φ : V → C.

The coloring φ is a list defective coloring iff every v ∈ V has at most dv(φ(v)) neighbors
of color φ(v) ∈ Lv.
If G is a directed graph, φ is called an oriented list defective coloring iff every v ∈ V has
at most dv(φ(v)) out-neighbors of color φ(v) ∈ Lv.
In combination with an edge orientation σ, φ is called a list arbdefective coloring iff
it is an oriented list defective coloring w.r.t. the directed graph induced by the edge
orientation σ.

An (oriented) list (arb)defective coloring is called an (oriented) p-list (arb)defective coloring
for some integer p > 0 if for all v ∈ V , |Lv| ≤ p.

Note that the difference between an oriented list defective coloring and a list arbdefective
coloring is that in an oriented list defective coloring, the edge orientation of G is given as
part of the input and in a list arbdefective coloring, the edge orientation is a part of the
output. By a result of Lovász [27], it is well-known that a d-defective c-coloring of a graph
G with maximum degree ∆ always exists if c(d + 1) > ∆. Note that this condition is also
necessary if G = K∆+1. By computing a balanced orientation of the edges of each color
class of such a coloring, one can also deduce that a d-arbdefective c-coloring always exists
if c(2d + 1) > ∆. Again, this condition is necessary if G = K∆+1. By generalizing the
potential function argument of [27], in the full version of this paper [15], we prove that the
natural generalization of both existential statements also holds for the respective list defective
coloring variants. Specifically, we show that for given color lists Lv and defect functions dv,
a list defective coloring always exists if

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)
> ∆ (1)

M. Fuchs and F. Kuhn 22:5

and a list arbdefective coloring always exists if

∀v ∈ V :
∑

x∈Lv

(
2dv(x) + 1

)
> ∆. (2)

Both conditions are necessary if the graph is a (∆ + 1)-clique and if all nodes have the
same color list and the same defect function. For arbdefective colorings, it has further been
shown in [2] that Condition (1) is necessary and sufficient to compute such colorings in time
f(∆) + O(log∗ n). Whenever (1) does not hold, there is an Ω(log∆ n)-round lower bound for
deterministic distributed list arbdefective coloring algorithms.

1.1 Our Contributions
In the following, whenever we consider a graph G = (V, E), we assume that n denotes the
number of nodes of G, ∆ denotes the maximum degree of G, and deg(v) denotes the degree
of a node v. Also, if G is a directed graph, βv refers to the outdegree of node v and β

denotes the maximum outdegree. Further, if we discuss any list defective coloring problem,
unless stated otherwise, we assume that the colors come from space C, Lv ⊆ C denotes
the list of node v, and dv denotes the defect function of nodes v. We further assume that
Λ := maxv∈V |Lv| denotes the maximum list size. As it is common in the distributed setting,
we do not analyze the complexity of internal computations at nodes. We briefly discuss the
complexity of internal computations for our algorithms in the full version [15].

Oriented List Defective Coloring. As our main technical contribution, we give an efficient
deterministic distributed algorithm for computing oriented list defective colorings. This
algorithm is an adaptation of the techniques developed by Maus and Tonoyan [30] to obtain a
2-round algorithm for proper vertex colorings in directed graphs of small maximum outdegree.

▶ Theorem 2. Let G = (V, E) be a properly m-colored directed graph and assume that we are
given an oriented list defective coloring instance on G. Assume that for every node v ∈ V ,
for a sufficiently large constant α > 0, it holds that∑

x∈Lv

(
dv(x) + 1

)2 ≥ α · β2
v · κ(β, C, m), (3)

where κ(β, C, m) = (log β + log log |C| + log log m) · (log log β + log log m) · log2 log β.
Then, there is a deterministic distributed algorithm that solves this oriented list defect-

ive coloring instance in O(log β) rounds using O
(

min {|C|, Λ · log |C|} + log β + log m
)
-bit

messages.

Recursive Color Space Reduction. We have already discussed that we can use list defective
colorings to recursively divide the color space. We next elaborate on power of doing recursive
color space reduction directly for list defective coloring problems. The following theorem
shows that in this way, at the cost of solving a somewhat weaker problem, we can sometimes
significantly improve the time complexity or the required message size. In the following, we
assume that we have an oriented list defective coloring algorithm A, where the complexity
is in particular a function of the maximum list size Λ. More specifically, the following
theorem specifies the properties of A by an arbitrary parameter ν ≥ 0 and by arbitrary
non-decreasing functions κ(Λ), T (Λ), and M(Λ). Note that the functions κ(Λ), T (Λ), and
M(Λ) can in principle also depend on other global properties such as the maximum degree ∆,
the maximum outdegree β, or the number of nodes n. When applying A to obtain algorithm
A′, we then however treat those other parameters as fixed quantities.

DISC 2023

22:6 List Defective Colorings: Distributed Algorithms and Applications

▶ Theorem 3. Let ν ≥ 0 be a parameter and let κ(Λ), T (Λ), and M(Λ) be non-decreasing
functions of the maximum list size Λ. Assume that we are given a deterministic distributed
algorithm A that solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(Λ).

Assume further that the round complexity of A is T (Λ) and that A requires messages of
M(Λ) bits.

Then, for any integer p ∈ (1, |C|], there exists a deterministic distributed algorithm A′

that solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(p)⌈logp |C|⌉

in time O(T (p) · logp |C|) and with M(p)-bit messages.

When replacing βv by deg(v), the same theorem also holds for list defective colorings (in
undirected graphs). One can easily see this as a list defective coloring can be turned into an
equivalent oriented list defective problem, by replacing every edge {u, v} of an undirected
graph by the two directed edges (u, v) and (v, u).

Note that the number of colors of a standard defective coloring corresponds to the
maximum list size Λ of a list defective coloring, i.e., a standard defective coloring with c

colors is a special case of list defective coloring with lists of size c. Many of the existing
defective and arbdefective coloring algorithms have a round complexity that is of the form
poly(c) + O(log∗ n) [8, 11, 10]. For a concrete application of Theorem 3, we therefore assume
that the time complexity of algorithm A is of the form T (Λ) = poly(Λ) + O(log∗ n). For
simplicity, we further assume that the size of the color space C is at most polynomial in β.
By setting p = 2O(

√
log β·log κ(Λ)), we then get an algorithm that solves oriented list defective

coloring problems with ∀v ∈ V :
∑

x∈Lv
(dv(x) + 1)1+ν ≥ β1+ν

v · 2O(
√

log β·log κ(Λ)) in time
2O(

√
log β·log κ(Λ)) + O(log∗ n) rounds. For details, we refer to Corollary 13 in Section 4.

As a second application of Theorem 3, consider the oriented list defective coloring
algorithm given by Theorem 2. The round complexity of this algorithm is O(log β) and
we cannot hope to get a time improvement by recursively subdividing the color space. We
can however improve the necessary message size. The message size of the algorithm is
essentially linear in the maximum list size Λ. If we choose p ≪ Λ, the message size becomes
essentially linear in p. Assume for example that Λ and the color space are both polynomial
in β. We then only need a constant number of recursion levels to reduce the message size to
O(βε + log m) for any constant ε > 0 (see Corollary 14). We will apply this idea to obtain
our new CONGEST algorithm for the (∆ + 1)-coloring problem.

Degree + 1 and List Arbdefective Colorings. The remaining contributions deal with
applying (oriented) list defective coloring algorithms to solve the standard (degree+1)-coloring
problem and more general other coloring problems. The following theorem shows that in
combination with (oriented) list defective coloring algorithms, the general technique of [5, 14]
cannot only be used to solve standard (degree + 1)-coloring instances, but more generally also
to solve list arbdefective coloring instances for which for all nodes v,

∑
x∈Lv

(dv(x) + 1) ≥
deg(v) + 1. Further, if we assume (oriented) list defective coloring algorithms of a certain
quality (which is better than what we currently know), we directly obtain algorithms
that potentially significantly improve the state of the art for the standard (degree + 1)-
coloring problem. For the following theorem, we assume that for two parameters ν > 0 and

M. Fuchs and F. Kuhn 22:7

κ > 0, we have an oriented list defective coloring algorithm AO
ν,κ or a list defective coloring

algorithm AD
ν,κ to solve instances for which for all v,

∑
x∈Lv

(dv(x) + 1)1+ν ≥ β1+ν
v · κ or∑

x∈Lv
(dv(x) + 1)1+ν ≥ deg(v)1+ν · κ. We use T O

ν,κ and T D
ν,κ to denote the time complexities

of the two algorithms. Note that the parameter κ can depend (monotonically) on global
properties such as the maximum list size Λ, the maximum degree ∆, or the maximum
outdegree β. We then however treat those global parameters as fixed quantities when
applying the algorithms AO

ν,κ and AD
ν,κ recursively.

▶ Theorem 4. Let ν ≥ 0 and κ > 0 be two parameters, let G = (V, E) be an undirected
graph with maximum degree ∆, and assume that we are given a list arbdefective coloring
instance of G for which ∀v ∈ V :

∑
x∈Lv

(dv(x) + 1) > deg(v). Using the oriented list
defective coloring algorithm AO

ν,κ, the given list arbdefective coloring problem can be solved in
O

(
Λ

ν
1+ν · κ

1
1+ν · log(∆) · T O

ν,κ + log∗ n
)

rounds. Using the list defective coloring algorithm AD
ν,κ,

the given list arbdefective coloring problem can be solved in O
(
Λν · κ2 · log(∆) · T D

ν,κ + log∗ n
)

rounds. If ν ≥ ν0 for some constant ν0 > 0, in both time bounds, the log(∆) term can be
substituted by log(∆/Λ). If AD

ν,κ (or AO
ν,κ) uses messages of at most B bits, then the resulting

list arbdefective coloring algorithm uses messages of O(B + log n) bits.

Note that the algorithm of Theorem 2 satisfies the requirements of algorithm AO
ν,κ for

ν = 1. If we assume that we first compute an O(∆2)-coloring of G in time O(log∗ n) by using
a standard algorithm of [26] and if we assume the size of the color space is at most exponential
in ∆, then κ = O(log ∆ · log3 log ∆) and T O

ν,κ = O(log ∆). When using the algorithm of
Theorem 2 as algorithm AO

ν,κ in Theorem 4, Theorem 4 therefore implies that the given
arbdefective coloring instance can be solved in O

(√
Λ · log3/2 ∆ · log3/2 log ∆ + log∗ n

)
rounds.

Hence, the theorem in particular entails that a d-arbdefective ⌊ ∆
d+1 + 1⌋-coloring can be

computed in O(
√

∆/(d + 1) · log3/2 ∆ · log3/2 log ∆+log∗ n) rounds. Even when using O(∆/d)
colors, the best previous algorithm for this problem required O(∆/d + log∗ n) rounds [10].
Theorem 4 further shows that if we could get a fast oriented list defective coloring algorithm for
a condition of the form

∑
x∈Lv

(dv(x)+1)2−ε ≥ β2−ε
v poly log ∆, we would already significantly

improve the existing O(
√

∆ log ∆ + log∗ n)-round algorithm of [14, 10, 30] to compute a
(∆ + 1)-coloring. The same would be true in case we could get a fast list defective coloring
algorithm for a condition of the form

∑
x∈Lv

(dv(x) + 1)3/2−ε ≥ deg(v)3/2−ε · poly log ∆. This
indicates that the current obstacle for significantly improving the O(

√
∆ log ∆+log∗ n)-round

algorithm (in case this is possible) is to improve our understanding of the complexity of
computing defective colorings and possible list defective colorings.

Faster Coloring in the CONGEST Model. Finally, we show that by combining Theorems 2–
4, we obtain a faster (degree + 1)-list coloring for the CONGEST model.

▶ Theorem 5. Let G = (V, E) be an n-node graph and assume that we are given a (degree+1)-
list coloring instance on G. If the color space C of the problem is of size |C| ≤ poly(∆),
there exists a deterministic CONGEST algorithm for solving the (degree + 1)-list coloring
instance in time

√
∆ · poly log ∆ + O(log∗ n). If the color space is of size |C| = O(∆) (such

as, e.g., for the standard (∆ + 1)-coloring problem), the time complexity of the algorithm is
O(

√
∆ · log2 ∆ · log6 log ∆ + log∗ n).

Note that there is a O(log2 ∆ · log n)-round CONGEST algorithm for solving (degree + 1)-
list coloring instances [18]. Further, by [14, 10, 30] there is an O(

√
∆ log ∆+log∗ n) algorithm

for the problem that uses messages of size Õ(∆). Thus, (∆ + 1)-coloring algorithms running
in

√
∆ · poly log ∆ + O(log∗ n) rounds in the CONGEST model are already known as long

DISC 2023

22:8 List Defective Colorings: Distributed Algorithms and Applications

as ∆ = O(log n) or ∆ = Ω(log2 n). Our results fill this gap and give such an algorithm for
∆ ∈ [ω(log n), o(log2 n)]. A rough explanation of why the previous deterministic CONGEST
algorithms fail to compute (∆ + 1)-colorings efficiently when ∆ ∈ [ω(log n), o(log2 n)] is the
following. In the algorithm of [14, 10, 30], every node has to learn the color lists of its
neighbors, which requires that Ω(∆ · log ∆) bits have to be sent over every edge (which only
works in CONGEST if ∆ = O(log n)). For other algorithms (such as for the algorithm of
[18]), the round complexity of the algorithms is at least Ω(log n), which only leads to efficient
time complexities in Õ(

√
∆) if ∆ = Ω(log2 n).

1.2 Organization of the paper
The remainder of the paper is organized as follows. In Section 2, we formally define
the communication model and we introduce the necessary mathematical notations and
definitions. Section 3 is the main technical section. It discusses our oriented list defective
coloring algorithms, leading to the proof of Theorem 2. Subsequently, Section 4 discusses how
to improve existing list (defective) coloring algorithms by recursively reducing the color space.
Section 5 then shows how (oriented) list defective coloring algorithms can be applied to
efficiently solve the standard (degree + 1)-coloring problem and even list arbdefective coloring
problems. The section also shows how this, in combination with the results in Section 3 and
Section 4, leads to our new (degree + 1)-coloring algorithm for the CONGEST model. Due to
lack of space, all formal proofs are deferred to the full version of the paper [15].

2 Model and Preliminaries

Communication Model. In the LOCAL model and the CONGEST model [33], the network
is abstracted as an n-node graph G = (V, E) in which each node is equipped with a unique
O(log n)-bit identifier. Communication happens in synchronous rounds. In every round,
every node of G can send a potentially different message to each of its neighbors, receive the
messages from the neighbors and perform some arbitrary internal computation. Even if G is
a directed graph, we assume that communication can happen in both directions. All nodes
start an algorithm at time 0 and the time or round complexity of an algorithm is defined
as the total number of rounds needed until all nodes terminate (i.e., output their color in a
coloring problem). In the LOCAL model, nodes are allowed to exchange arbitrary messages,
whereas in the CONGEST model, messages must consist of at most O(log n) bits.

Mathematical Notation. Let G = (V, E) be a graph. Throughout the paper, we use
degG(v) to denote the degree of a node v ∈ V in G and ∆(G) to denote the maximum degree
of G. If G is a directed graph, we further use βv,G to denote the outdegree of a node v ∈ V .
More specifically, for convenience, we define βv,G as the maximum of 1 and the outdegree
of v, i.e., we also set βv,G = 1 if the outdegree of v is 0. The maximum outdegree βG of G

is defined as βG := maxv∈V βv,G. We further use NG(v) to denote the set of neighbors of
a node v and if G is a directed graph, we use Nout

G (v) to denote the set of outneighbors of
v. In all cases, if G is clear from the context, we omit the subscript G. When discussing
one of the list defective coloring problems on a graph G = (V, E), we will typically assume
that C denotes the space of possible colors, and we use Lv and dv for v ∈ V to denote the
color list and defect function of node v. Throughout the paper, we will w.l.o.g. assume that
C ⊆ N is a subset of the natural numbers. When clear from the context, we do not explicitly
introduce this notation each time. Further, for convenience, for an integer k ≥ 1, we use
[k] := {1, . . . , k} to denote the set of integers from 1 to k. Further, for a finite set A and an
integer k ≥ 0, we use 2A to denote the power set of A and

(
A
k

)
to denote the set of subsets of

size k of A. Finally, we use log(x) := log2(x) and ln(x) := loge(x).

M. Fuchs and F. Kuhn 22:9

3 Distributed Oriented List Defective Coloring Algorithms

3.1 Fundamentals
Our algorithm in based on the list coloring approach of Maus and Tonoyan [30] that we sketch
next. As input, each node of G = (V, E) obtains a color list Lv ⊆ C of size |Lv| ≥ αβ2τ for a
sufficiently large constant α > 0 and some integer parameter τ > 0. In addition, the nodes
are equipped with an initial proper m-coloring of G. The “highlevel” idea is based on the
classic one-round O(β2 log m)-coloring algorithm of Linial [26]. As an intermediate step of
the algorithm of [30], every node v chooses a subset Cv ⊆ Lv of size |Cv| = βτ of its list such
that for every outneighbor u of v, it holds that |Cu ∩ Cv| < τ . To obtain a proper coloring of
G, node v can then choose a color x ∈ Cv that does not appear in any of the sets Cu of one
of the ≤ β outneighbors u of v. If all nodes have to pick a color from

{
1, . . . , αβ2τ

}
and if

τ = O(log β + log m) is chosen sufficiently large, Linial shows that such sets Cv for all nodes
v can be computed in 0 rounds without communication. However, this is not true for the list
coloring variant of the problem considered in [30].

Before we show how the authors of [30] overcome the problems of list, we introduce
some terminology. Let P0 be the original list coloring problem that we need to solve and let
P1 be the intermediate problem of choosing a set Cv from

(
Lv

β·τ
)

s.t. |Cv ∩ Cu| < τ for all
outneighbors u of v. As discussed, after solving P1, P0 can be solved in a single round, each
node v just needs to learn the sets Cu of all its outneighbors u. To solve P1, the authors
of [30] introduce a new problem P2, that can be seen as a “higher-dimensional” variant of
Linial’s algorithm. P2 is defined in such a way that it can be solved without communication
in 0 rounds and such that after solving P2, P1 can be solved in a single round. In problem
P2, every node v computes a set of possible candidates for the set Cv. For a more detailed
description we need to define the following conflict relation.

▶ Definition 6 (Conflict relation Ψ(τ ′, τ)). Let τ ′, τ > 0 be two parameters. The relation
Ψ(τ ′, τ) ⊆ 22C × 22C is defined as follows. For any K1, K2 ∈ 22C , we have

(K1, K2) ∈ Ψ(τ ′, τ) ⇔ ∃ distinct C1, . . . , Cτ ′ ∈ K1 s.t.
∀i ∈ {1, . . . , τ ′} ∃ C ∈ K2 for which |Ci ∩ C| ≥ τ.

In a solution to problem P2, every node v outputs a set Kv ⊆ 2(Lv
βτ) such that |Kv| = βτ ′

(for some integer parameter τ ′ > 0) and such that for every outneighbor u of v, (Kv, Ku) ̸∈
Ψ(τ ′, τ). Note that this implies that for every outneighbor u, Kv contains at most τ ′ − 1
sets C for which there is a set C ′ ∈ Ku for which |C ∩ C ′| ≥ τ . Because Kv has size
βτ ′, there exists some Cv ∈ Kv such that for every C ′ ∈ Ku for every outneighbor u, we
have |Cv ∩ C ′| < τ . A solution of P2 can be transformed into a solution of P1 in a single
round (each node v has to communicate it’s set Kv to all its outneighbors u). Maus and
Tonoyan [30] showed that for appropriate choices of the parameters τ and τ ′, P2 can be
solved in 0 rounds. To see this, consider the following technical lemma, which follows almost
directly from Lemmas 3.3 and 3.4 in [30].

▶ Lemma 7 (adapted from [30]). Let γ, τ, τ ′ ≥ 1 be three integer parameters such that
τ ≥ 8 log γ + 2 log log |C| + 2 log log m + 16 and τ ′ = 2τ−⌈log(2eγ2)⌉. For every color list
L ∈

(C
ℓ

)
of size ℓ for some ℓ ≥ 2eγ2τ , we further define S(L) :=

((L
γτ)
γτ ′

)
. Then, there

exists S̄(L) ⊆ S(L) such that |S̄(L)| ≥ |S(L)|/2 and such that for every K ∈ S̄(L) and
every L′ ∈

(C
ℓ

)
, there are at most d2 < 1

4m|C|ℓ · |S(L)| different K ′ ∈ S(L′) such that
(K, K ′) ∈ Ψ(τ ′, τ) or (K ′, K) ∈ Ψ(τ ′, τ). Further, for every K ∈ S(L) and every L′ ∈

(C
ℓ

)
,

there are at most d2 different K ′ ∈ S(L′) for which (K, K ′) ∈ Ψ(τ ′, τ).

DISC 2023

22:10 List Defective Colorings: Distributed Algorithms and Applications

Let us sketch how Lemma 7 implies that for appropriate choices of the parameters, P2
can be solved without communication. In the following, we set the parameters of Lemma 7
as γ := β and τ and τ ′ as given by the lemma statement. Assume that initially, every node v

has a list Lv of size ℓ, where ℓ ≥ 2eβ2τ . We define the type Tv of a node as the tuple (c, Lv),
where c is the color of v in the initial proper m-coloring of G and Lv ∈

(C
ℓ

)
is the color list of

v. Let T1, . . . , Tt be a fixed ordering of the t = m
(|C|

ℓ

)
≤ m|C|ℓ types and let Li be the color

list of nodes of type Ti. If we assign a set Ki ∈ S(L) to each type Ti so that for any two
sets Ki and Kj , (Ki, Kj) ̸∈ Ψ(τ ′, τ) and (Kj , Ki) ̸∈ Ψ(τ ′, τ), then if each node v of type Ti

(for i ∈ {1, . . . , t}) outputs Ki, this assignment solves problem P2. We assign the sets Ki

greedily, where for every type Ti, we choose some Ki ∈ S̄(Li) such that S̄(Li) is the subset
of S(Li) that is guaranteed to exist by Lemma 7. Assume for any i ≥ 1 each type Tj for
j ∈ {1, . . . , i − 1} already picked Kj . Then type Ti will pick some list Ki ∈ S̄(L) that does
not conflict with choices of the i − 1 previous types. By the lemma, for any type Tj , j ̸= i,
there are at most d2 < 1

4m|C|ℓ · |S(Li)| ≤ 1
2t · |S̄(Li)| sets in S̄(Li) that conflict. Because

there are only t types, we can always choose an appropriate Ki that does not conflict with
already assigned sets Kj for j < i. Consequently, P2 can be solved in 0 rounds, and thus the
original list coloring problem can be solved in 2 rounds.

3.2 Basic Oriented List Defective Coloring Algorithm

In the following, we first give a basic algorithm that solves a slightly generalized version of
the OLDC problem. Concretely, the algorithm assigns a color xv ∈ Lv with defect dv(xv) to
each node v s.t. at most dv(xv) outneighbors w of v choose a color xw with |xv − xw| ≤ g,
where g ≥ 0 is some given parameter. Recall that we assume that all colors are integers and
therefore, the value |xv − xw| is defined. Note that for g = 0, this is the OLDC problem as
defined in Definition 1. We give a basic algorithm for this more general problem because we
will need it as a subroutine in the algorithm for proving our main technical result, Theorem 2.
The steps for solving the generalized OLDC problem are similar to the approach described in
Section 3.1. We however in particular have to adapt the algorithm to handle the case where
each node comes with an individual list size.

A single defect per node. At the core of our basic (generalized) OLDC algorithm is
an algorithm that solves the following weaker variant of the problem. Instead of having
color-specific defects, every node v has a fixed defect value dv ≥ 0, i.e., we have dv(x) = dv

for all x ∈ Lv. Based on an algorithm for this single-defect case, one can solve the general
OLDC problem by using a reduction explained in the proof of Lemma 12. For that reason,
assume during the following section that each node v has three given inputs, a color list Lv, a
defect value dv ≥ 0 and the number of outneighbors βv. For each node v, the algorithm then
requires lists of size |Lv| ≥ α(βv/(dv + 1))2 · τ for some constant α > 0 and some parameter
τ > 0. Note that the required list size only depends on the ratio between βv and dv + 1 and
not on their actual values. In the following section we therefore do not work with the defect
value dv or the outdegree βv of some node, but with a value γv that is essentially equal to
the ratio βv/(dv + 1) such that the list size of v is proportional to γ2

v . More formally, we
partition the nodes into so-called γ-classes such that nodes in the same class have the same
value γv and hence a similar βv/(dv + 1) ratio. The details appear in the subsequent section.

M. Fuchs and F. Kuhn 22:11

3.2.1 γ-Classes and Parameters

Each node v comes with some parameter γv = 2i for some i ∈ [h], where h is a parameter.
We call i the γ-class of v. Since these γ-classes have a natural order, we call a node u to be
in a lower (respectively higher) γ-class than v if iu < iv (respectively iu > iv). We define
the following two parameters, which both depend on the maximum γ-class index h, the color
space C, and the initial (proper) m-coloring of G.

τ(h, C, m) := ⌈8h + 2 log log |C| + 2 log log m + 16⌉, (4)

τ ′(h, C, m) := 2τ(h,C,m)−⌈2h+log(2e)⌉. (5)

Note that these choices are consistent with the parameter setting in Lemma 7. If clear
from the context, we omit the parameters h, C and m for simplicity and denote τ(h, C, m)
by τ and τ ′(h, C, m) by τ ′. A node v of γ-class iv is equipped with a color list Lv of
size |Lv| = ℓiv

:= α · 4iv τ(2g + 1) = αγ2
vτ(2g + 1) for some sufficiently large α > 0 and

g > 0. Because we solve a generalized version of the OLDC problem, we have to use a more
general form for our conflict relation Ψ. Let x ∈ C be a color and C ⊆ C a set of colors,
we denote the number of conflicts of x with colors in C regarding some given g ≥ 0 by
µg(x, C) := |{c ∈ C | |x − c| ≤ g }|.

▶ Definition 8 (τ&g-conflict). Two lists C, C ′ ⊆ C do τ&g-conflict if
∑

x∈C µg(x, C ′) ≥ τ .

Note that
∑

x∈C µg(x, C ′) =
∑

x∈C′ µg(x, C) is always true. The Ψ conflict relation from
Definition 6 is adapted accordingly.

▶ Definition 9 (Conflict relation Ψg(τ ′, τ)). Let τ ′, τ > 0 be two parameters. The relation
Ψg(τ ′, τ) ⊆ 22C × 22C is defined as follows. For any K1, K2 ∈ 22C , we have

(K1, K2) ∈ Ψg(τ ′, τ) ⇔ ∃ distinct C1, . . . , Cτ ′ ∈ K1 s.t.
∀i ∈ {1, . . . , τ ′} ∃ C ∈ K2 for which Ci and C do τ&g-conflict.

We adapt the definitions of problem P1 and P2 to what we need for the generalized OLDC
problem. We define ki := 2i · τ and k′ := 2h · τ ′. Subsequently, we denote the γ-class of a
node v by iv.

▶ Definition 10 (Problems P1 and P2).
P1: Every node v has to output Cv ⊆ Lv of size |Cv| = kiv

s.t. there are at most dv/2
outneighbors u of v s.t. u is in γ-class iu ≤ iv, Cu and Cv do τ&g-conflict.

P2: Every node v has to output a list Kv ∈ 2(Lv
kiv

) of size |Kv| = k′ s.t. for each outneighbor
u in γ-class iu ≤ iv, (Kv, Ku) ̸∈ Ψg(τ ′, τ).

The next lemma states that P2 can be solved in zero rounds. The high-level idea is to
first adapt Lemma 7 such that we can apply it even if the size of the initial color lists differs.
We start by using a simple trick to make sure that the color list Lv of each node v does not
contain colors that are close to each other i.e., there are no distinct colors x1, x2 ∈ Lv s.t.
|x1 −x2| ≤ g. After doing this, the conflict relation Ψg behaves almost the same as Ψ behaves
in the fundamental problem. For details, we refer to the full version of the paper [15].

▶ Lemma 11. P2 can be solved without communication given an initial m-coloring.

DISC 2023

22:12 List Defective Colorings: Distributed Algorithms and Applications

3.2.2 Algorithm
Assume each node is equipped with a color list of size |Lv| ≥ α (βv/(dv + 1))2

τ(2g + 1) and
some defect value dv > 0. The γ-class of a node v is defined as the smallest iv s.t. 2iv ≥ 2βv

dv+1 .
Based on the individual γ-class, each node solves P2 (Lemma 11) and forwards the solution
to the neighbors. The knowledge gained by that is used to solve P1 without additional
communication. In more detail, node v comes with list Kv s.t. (Kv, Ku) ̸∈ Ψg(τ ′, τ) for any
outneighbor u with iu ≤ iv. This implies that at most τ ′ − 1 lists C ∈ Kv do τ&g-conflict
with some list in Ku. Hence, there are at most βv(τ ′ − 1) many C ∈ Kv that τ&g-conflict.
By the pigeonhole principle there is some Cv ∈ Kv with at most2 βv(τ ′ − 1)/k′ < (dv + 1)/2
many such conflicts within all the Cu of outneighbors u of smaller γ-classes. Hence, Cv is a
valid solution for P1 that is then forwarded to the neighbors.

To solve the list coloring problem itself we iterate through the γ-classes in descending
order. Each node v has to decide on a color x ∈ Cv s.t. in the end at most dv outneighbors
are colored with the same color x. Let us fix a node v. By design, in the iteration v decides
on a color, all outneighbors of higher γ-classes already decided on a color and v knows the
P1 solution lists Cu of the outneighbors u with iu ≤ iv. Let fv(x) be the frequency of color
x within the outneighbors u of v i.e., the sum over all occurrences of x in Cu’s of neighbors
with the same or smaller γ-class plus the number of outneighbors of higher γ-classes that are
already colored with x. The color x with the lowest frequency in Cv will be the final color of
v for the following reason: There are at most dv/2 outneighbors that have an unbounded
number of τ&g-conflicts, while Cv shares at most τ − 1 colors with the remaining Cu’s (note
that with outneighbors of higher γ-class at most one color in Cv is in conflict, hence, for
worst-case observation we can ignore that case). By the pigeonhole principle there exist a
color x ∈ Cv with

fv(x) ≤
∑

c∈Cv
fv(c)

|Cv|
≤ dv/2 · |Cv| + βv(τ − 1)

|Cv|
< dv + 1.

The round complexity of the whole algorithm is O(h), since we iterate through all the
γ-classes to assign colors. This completes the algorithm to handle single defects. We will
now extend this result to solve the OLDC problem.

3.2.3 Multiple Defects
In the general case, each node can have lists that are composed of colors of different defects.
In order to reduce the general case to the case, where each node only has a single defect, every
node v first rounds all its defects to the next smaller power of 2. Every node v then can have
h = O(log β) different defect values. The node v only keeps the colors in its list for one of
those defect values. This value is chosen such that the sum

∑
x∈L′

v
(dv(x) + 1)2 is maximized,

where L′
v is the reduced list of v. Note that when doing this, the sum

∑
x∈Lv

(dv(x) + 1)2 for
the original list Lv is at most by an O(h) = O(log β) factor larger.

▶ Lemma 12. Given a graph with an initial m-coloring. There is an O(h)-round LOCAL
algorithm that assigns each node v a color xv ∈ Lv such that every node v ∈ V has at most
dv(xv) outneighbors w with a color xw for which |xw − xv| ≤ g if for each node v ∈ V∑

x∈Lv

(dv(x) + 1)2 ≥ αβ2
v · τ(h, C, m) · h · (2g + 1)

for some sufficiently large constant α, some integer h ≥ maxv⌈log(βv

minx∈Lv dv(x)+1)⌉ and
color space C. Messages are of size at most O(min{Λ · log |C|, |C|} + log log β + log m)-bits.

2 By definition of the γ-class, we have (dv + 1)/2 ≥ βv/2h

M. Fuchs and F. Kuhn 22:13

To apply this lemma one can use that h = O(log β) and for some color space of size poly ∆
and initial O(∆2)-coloring (e.g., by [26]) we have τ(h, C, m) = O(log ∆). Hence, Lemma 12
solves the OLDC problem (where g = 0) in O(log ∆) communication rounds if the initial
color list Lv for each node v fulfills the condition

∑
x∈Lv

(dv(x) + 1)2 ≥ αβ2
v · log2 ∆ for some

sufficient large constant α. Note that the OLDC algorithm mentioned in Theorem 2 requires
a stronger condition on the color lists Lv than Lemma 12. However, to reach this better
result, we apply Lemma 12 as subroutine. The details of this more involved analysis are
stated in Appendix A.

4 Recursive Color Space Reduction

Distributed list defective coloring algorithms first implicitly appeared in [24] as a tool to
recursively reduce the color space of a distributed coloring problem. In this section, we show
that the idea of using list defective colorings to recursively reduce the color space can also
directly be applied to the (oriented) list defective coloring problem. In this way, at the cost of
requiring slightly larger lists, we can turn a given distributed (oriented) list defective coloring
algorithm into another distributed (oriented) list defective coloring algorithm that is faster
and/or needs smaller messages. The high-level idea is the following. Assume that we are
given an (oriented) list defective coloring problem with colors from a color space C. We can
arbitrarily partition C = C1 ∪ · · · ∪ Cp into p approximately equal parts. Instead of directly
choosing a color, each node v now first just selects the color subspace Ci from which v chooses
its color. If v starts with color list Lv, then after choosing the color subspace Ci, v’s color
list reduces to Lv,i = Lv ∩ Ci (with the original defects on those colors). However, v now
only has to compete with neighbors that also pick the same color subspace Ci. The choices
of color subspaces by the nodes can itself be phrased as an (oriented) list defective coloring
instance for a color space of size p and thus also with lists of size at most p. Theorem 3 in
Section 1.1 formalizes this idea.

It has been well-known since Linial’s seminal work in [26] that in directed graphs of
outdegree at most β, one can compute a proper O(β2)-coloring in O(log∗ n) rounds (or in
O(log∗ m) rounds if an initial proper m-coloring is provided). In [23], it was shown that
in the same way, one can also compute an oriented d-defective coloring with O((β/d)2)
colors. In [30], the coloring result of [26] was extended to the list coloring problem and in
Section 3 of this paper (and to a limited extent also in [30]), the defective coloring result
of [23] is extended to the oriented list defective coloring problem. While there has been
progress on solving the natural list and defective coloring variants of O(β2) coloring, it is still
unknown if a coloring with O(β2−ε) colors (for some constant ε > 0) can be computed in
time f(β) + O(log∗ n).3 Even if a moderately fast distributed algorithm for better oriented
list defective colorings exists, we directly also get much faster algorithms for computing
proper colorings with o(β2) colors. In the following, we assume that there exists an oriented
defective coloring algorithm with a round complexity that is polynomial in the number of
colors per node plus O(log∗ n). Such algorithm for example exist for (list) defective colorings
in graphs of neighborhood independence at most ∆ε [9, 24].

3 Note that oriented graphs with maximum outdegree β have colorings with O(β) colors. However, the
best distributed algorithm to compute an O(β)-coloring requires time O(log3 β · log n) [18]. It is not
known if colorings with O(β2−ε) colors can be computed with an n-dependency o(log n).

DISC 2023

22:14 List Defective Colorings: Distributed Algorithms and Applications

▶ Corollary 13. Let ν ≥ 0 be a parameter and let κ(Λ) be a non-decreasing functions of the
maximum list size Λ. Assume that we are given a deterministic distributed algorithm A that
solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(Λ).

Assume further that if an initial proper m-coloring is given, A has a round complexity of
poly(Λ)+O(log∗ m). Then, there exists a

(
2O(

√
log β log κ(Λ))+O(log∗ m)

)
-round deterministic

distributed list coloring algorithm A′ to solve list coloring instances with colors from a color
space of size poly(β) for which

∀v ∈ V :
∑

x∈Lv

(dv(x) + 1)1+ν ≥ β1+ν
v · 2O(

√
log β·log κ(Λ)).

Note that the 2O(
√

log ∆) + O(log∗ n)-round algorithm for computing a (∆ + 1)-coloring
in graphs of bounded neighborhood independence and thus in particular in line graphs of
bounded rank hypergraphs is based on the same idea as Corollary 13. The corollary shows
how in some cases, recursive color space reduction can be used to significantly speed up a
given (oriented) list defective coloring problem. The following corollary shows that recursive
color space reduction can sometimes also be used to significantly reduce the required message
size of an (oriented) list defective coloring algorithm. In the oriented list defective coloring
algorithm of Section 3, all nodes need to learn the lists and defect vectors of their neighbors
and this dominates the required communication. A list Lv of length |Lv| ≤ Λ consisting
of colors from a color space of size |C| can be represented by min {|C|, Λ log |C|} bits and a
corresponding defect vector can be represented by Λ log β bits, or even by Λ log log β bits if
we assume that all defects are integer powers of 2 (which can usually be assumed at the cost
of a factor 2 in the required list size). In the following, we assume that we have an algorithm
that requires O(|C| · B + log n) bits for some parameter B ≥ 1 (the log n is included to cover
things like exchanging initial colors, unique IDs, etc.).

▶ Corollary 14. Let ν ≥ 0 be a parameter and let κ(Λ) be a non-decreasing functions of the
maximum list size Λ. Assume that we are given a deterministic distributed algorithm A that
solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(Λ).

Assume further that A has a round complexity of T (Λ) and requires messages of O(|C| · B +
log n) bits, where C the color space and B ≥ 1 is some parameter. Then, for every integer
r ≥ 1, there exists an O(T (Λ) · r)-round deterministic distributed list coloring algorithm A′

to solve list coloring instances with colors from the same color space and for which

∀v ∈ V :
∑

x∈Lv

(dv(x) + 1)1+ν = β1+ν
v · κ(Λ)r.

The algorithm A′ requires messages of size O(|C|1/r · B + log n).

As for Theorem 3, when replacing βv by deg(v), Corollary 13 and Corollary 14 both also
hold for the list defective coloring problem in undirected graphs.

M. Fuchs and F. Kuhn 22:15

5 Applying List Defective Colorings

In [5] and [14], Barenboim, and Fraigniaud, Heinrich, and Kosowski developed a technique to
transform fast, but relaxed (oriented) list coloring into efficient algorithms for the (degree +1)-
list coloring problem. The same technique has later also been used by the algorithms in
[24, 4, 3]. The high-level idea of this transformation is as follows. Assume that for some
α > 1, we have a T -round algorithm A that solves list coloring instances with lists of size
> α∆ in graphs of maximum degree ∆. We can then first use a defective k-coloring to
decompose the graph into k subgraphs of maximum degree ≤ ∆/(2α). One then iterates
over those color classes and extends a given partial (degree + 1)-list coloring. When working
on the nodes of some color class, all nodes that still have at least ∆/2 uncolored neighbors
also still have a list of size > ∆/2. This is more than α times the maximum degree ∆/(2α)
in the current color class, and we can therefore color such nodes by using algorithm A. In
k · T rounds, we can therefore reduce the maximum degree of our (degree + 1)-list coloring
problem from ∆ to ∆/2 and by repeating O(log ∆) times, we can solve the (degree + 1)-list
coloring problem. If the algorithm A works on directed graphs of maximum outdegree β and
requires lists of size > αβ, the same idea also works if we decompose the graph by using an
arbdefective coloring instead of a defective coloring.

The contribution of this section is two-fold. Firstly, we show that if we assume the
existence of (oriented) list coloring algorithms that are significantly better than the current
state of the art, we would directly obtain significantly faster algorithms for the standard
(∆ + 1)-coloring problem. Moreover, we show that by replacing the algorithm A in the
description above by an (oriented) list defective coloring algorithm, the technique cannot only
be used for the (degree +1)-list coloring problem, but it also works for computing arbdefective
colorings and more generally list arbdefective colorings. In fact, it works for list arbdefective
colorings with lists Lv and defects dv such that for all v ∈ V ,

∑
v∈V (dv(x) + 1) > deg(v). In

the following, we refer to such instances as (degree+1)-list arbdefective coloring instances. We
subsequently assume that AD

ν,κ is a deterministic distributed list defective coloring algorithm
that operates on undirected graphs and AO

ν,κ is a deterministic distributed oriented list
defective coloring algorithm that operates on directed graphs. For real values ν ≥ 0 and
κ > 0 we assume that AD

ν,κ and AO
ν,κ solve all (oriented) list defective coloring problems for

which for all v ∈ V ,∑
x∈Lv

(
dv(x) + 1

)1+ν ≥ deg(v)1+ν · κ and (6)

∑
x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ, (7)

respectively. We assume that the round complexity of algorithm AD
ν,κ is T D

ν,κ and that the
round complexity of algorithm AO

ν,κ is T O
ν,κ. Theorem 4 in Section 1.1 shows that by using

AO
ν,κ, one can solve (degree + 1)-list arbdefective coloring instances in time O

(
Λ

ν
1+ν · κ

1
1+ν ·

log(∆) · T O
ν,κ + log∗ n

)
and by using AD

ν,κ one can solve such list arbdefective colorings in
time O

(
Λν · κ2 · log(∆) · T O

ν,κ + log∗ n
)
.

Implications of Theorem 4

We first discuss two immediate implications of Theorem 4, and we afterwards show how the
theorem can be used to improve the best current deterministic complexity of the (∆ + 1)-
coloring problem in the CONGEST model.

DISC 2023

22:16 List Defective Colorings: Distributed Algorithms and Applications

Complexity of Computing (List) Arbdefective Colorings. For a first immediate implication
of Theorem 4, we can use the algorithm of Theorem 2 as the oriented list defective coloring
algorithm AO

ν,κ. If we assume that the color space that we have is of size |C| = poly(β),
in this case, ν = 1 and κ = O(log β · log3 log β). This results in an arbdefective coloring
algorithm that solves instances with lists Lv for which ∀v ∈ V :

∑
x∈Lv

(dv(x) + 1) >

deg(v) in time O
(√

Λ · log5/2 ∆ · log3/2 log ∆ + log∗ n
)
. In particular, this implies that

for any d ≥ 0 and any q > ∆
d+1 , a d-arbdefective q-coloring can be computed in time

O
(√

∆
d+1 · log5/2 ∆ · log3/2 log ∆ + log∗ n

)
, which significantly improves the previously best

algorithms that achieves the same arbdefective coloring in time O(∆ + log∗ n) [2] or a more
relaxed d-arbdefective O

(∆
d+1

)
-coloring in time O

(∆
d+1 +log∗ n

)
. Note also that the condition

∀v ∈ V :
∑

x∈Lv
(dv(x) + 1) > deg(v) is necessary in order to compute a (list) arbdefective

coloring in time f(∆)+O(log∗ n). If the condition does not hold, any deterministic algorithm
for the problem requires at least Ω(log∆ n) rounds [2].

Better List Defective Coloring Implies Better (∆+1)-Coloring. The theorem in particular
also implies that certain progress on (oriented) list defective coloring algorithms would
directly lead to faster algorithms for the standard (∆ + 1)-coloring problem. Assume that
for an initial m-coloring of the graph, we have an oriented list defective coloring algorithm
with a round complexity that is poly(Λ) + O(log∗ m) and that satisfies equation (6) for
any constant ν < 1. In combination with Corollary 13, Theorem 4 then implies that we
then obtain a (degree + 1)-list coloring (and thus (∆ + 1)-coloring) algorithm with a time
complexity of O

(
∆

ν
1+ν +o(1) + log∗ n

)
, which would be polynomial improvement over the

O(
√

∆ log ∆ + log∗ n)-round algorithm of [14, 10, 30]. The same would be true if we had a
list defective coloring algorithm with a round complexity of poly(Λ) + O(log∗ m) and that
satisfies equation (7) for any constant ν < 1/2. We believe that if it is possible to significantly
improve the current best O(

√
∆ log ∆ + log∗ n)-round of (∆ + 1)-coloring, the key will be to

better understand the distributed complexity of (oriented) defective colorings and probably
also of the more general (oriented) list defective colorings.

Complexity of (∆ + 1)-Coloring in the CONGEST Model. Apart from the standard
(∆ + 1)-coloring problem, in the following, we also consider the general (degree + 1)-list
coloring problem. In order to keep the results simple and because this is the most interesting
case, we will assume that we have (degree +1)-list coloring instances with a color space of size
at most poly(∆). Note that in the case of the standard (∆ + 1)-coloring problem, the color
space is of size ∆ + 1. For small ∆, the best (∆ + 1)-coloring algorithm in the LOCAL model
has a round complexity of O(

√
∆ log ∆ + log∗ n) [14, 10, 30] and Theorem 5 in Section 1.1

states that this round complexity can almost be matched in the CONGEST model.

References
1 Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Network

decomposition and locality in distributed computation. In Proc. 30th Symp. on Foundations
of Computer Science (FOCS), pages 364–369, 1989. doi:10.1109/SFCS.1989.63504.

2 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed ∆-coloring
plays hide-and-seek. arXiv preprint arXiv:2110.00643, 2021.

3 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring
in time polylogarithmic in ∆. In Proc. 41st ACM Symp. on Principles of Distributed Computing
(PODC), pages 15–25, 2022.

https://doi.org/10.1109/SFCS.1989.63504

M. Fuchs and F. Kuhn 22:17

4 Alkida Balliu, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring in time quasi-
polylogarithmic in delta. In Proc. 39th ACM Symp. on Principles of Distributed Computing
(PODC), pages 289–298, 2020.

5 Leonid Barenboim. Deterministic (δ+1)-coloring in sublinear (in δ) time in static, dynamic,
and faulty networks. Journal of ACM, 63(5):1–22, 2016. doi:10.1145/2979675.

6 Leonid Barenboim and Michael Elkin. Distributed (delta+1)-coloring in linear (in delta) time.
In Proc. 41st Annual ACM Symp. on Theory of Computing (STOC), pages 111–120, 2009.

7 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distributed Comput., 22:363–379, 2010. doi:
10.1007/s00446-009-0088-2.

8 Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in polylogar-
ithmic time. Journal of ACM, 58:23:1–23:25, 2011. doi:10.1145/2027216.2027221.

9 Leonid Barenboim and Michael Elkin. Distributed deterministic edge coloring using bounded
neighborhood independence. In Proc. 30th ACM Symp. on Principles of Distributed Computing
(PODC), pages 129–138, 2011.

10 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆ + 1)-
coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to
restricted-bandwidth models. In Proc. 37th ACM Symp. on Principles of Distributed Computing
(PODC), pages 437–446, 2018.

11 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆+1)-Coloring in Linear
(in ∆) Time. SIAM Journal on Computing, 43(1):72–95, 2014. doi:10.1137/12088848X.

12 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. Journal of the ACM, 63(3):1–45, 2016. doi:10.1145/2903137.

13 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆+1)-coloring
algorithm? In Proc. 50th ACM Symp. on Theory of Computing, (STOC), pages 445–456,
2018. doi:10.1145/3188745.3188964.

14 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Proc. 57th
IEEE Symp. on Foundations of Computer Science (FOCS), pages 625–634, 2016.

15 Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications.
CoRR, abs/2304.09666, 2023. doi:10.48550/arXiv.2304.09666.

16 Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhon.
Improved distributed network decomposition, hitting sets, and spanners, via derandomization.
In Proc. 34th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2023.

17 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic network
decomposition. In Proc. 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2904–2923, 2021. doi:10.1137/1.9781611976465.173.

18 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In Proc. 62nd IEEE Symp. on Foundations of Computing
(FOCS), 2021.

19 A.V. Goldberg, S.A. Plotkin, and G.E. Shannon. Parallel symmetry-breaking in sparse graphs.
SIAM Journal on Discrete Mathematics, 1(4):434–446, 1988.

20 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized
distributed coloring in CONGEST. In Proc. 53rd ACM Symp. on Theory of Computing (STOC),
pages 1180–1193, 2021.

21 Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. CoRR, abs/2112.00604, 2021.

22 David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ +1)-coloring in
sublogarithmic rounds. J. ACM, 65(4):19:1–19:21, 2018.

23 Fabian Kuhn. Local weak coloring algorithms and implications on deterministic symmetry
breaking. In Proc. 21st ACM Symp. on Parallelism in Algorithms and Architectures (SPAA),
2009.

DISC 2023

https://doi.org/10.1145/2979675
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1145/2027216.2027221
https://doi.org/10.1137/12088848X
https://doi.org/10.1145/2903137
https://doi.org/10.1145/3188745.3188964
https://doi.org/10.48550/arXiv.2304.09666
https://doi.org/10.1137/1.9781611976465.173

22:18 List Defective Colorings: Distributed Algorithms and Applications

24 Fabian Kuhn. Faster deterministic distributed coloring through recursive list coloring. In Proc.
32st ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1244–1259, 2020.

25 Fabian Kuhn and Roger Wattenhofer. On the complexity of distributed graph coloring. In
Proc. 25th ACM Symp. on Principles of Distributed Computing (PODC), pages 7–15, 2006.

26 Nathan Linial. Distributive graph algorithms – Global solutions from local data. In Proc.
28th Symp. on Foundations of Computer Science (FOCS), pages 331–335. IEEE, 1987. doi:
10.1109/SFCS.1987.20.

27 L. Lovász. On decompositions of graphs. Studia Sci. Math. Hungar., 1:237–238, 1966.
28 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM

Journal on Computing, 15(4):1036–1053, 1986. doi:10.1137/0215074.
29 Yannic Maus. Distributed graph coloring made easy. In Proc. 33rd ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), 2021.
30 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In Proc.

34th Symp. on Distributed Computing (DISC), volume 179 of LIPIcs, pages 16:1–16:18, 2020.
31 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM

Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:10.1137/0404036.
32 Alessandro Panconesi and Aravind Srinivasan. On the complexity of distributed network

decomposition. Journal of Algorithms, 20(2):356–374, 1996.
33 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial

and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.
34 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-

tion and distributed derandomization. In Proc. 52nd ACM Symp. on Theory of Computing
(STOC), pages 350–363, 2020.

35 Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In Proc. 29th ACM Symp. on Principles of Distributed Computing (PODC), pages
257–266, 2010. doi:10.1145/1835698.1835760.

36 Mario Szegedy and Sundar Vishwanathan. Locality based graph coloring. In Proc. 25th ACM
Symp. on Theory of Computing (STOC), pages 201–207, 1993.

A Main Oriented List Defective Coloring Algorithm

If we have an OLDC instance in which some nodes have colors with constant defect require-
ments, the number of h of γ-classes can be Θ(β). Because also the value of τ(h, |C|, m) is
linear in h, this means that even if g = 0 and even if |C| and m are both polynomial in β,
the condition in Lemma 12 is of the form

∑
x∈Lv

(dv(x) + 1)2 ≥ αβ2
v log2 β. One of the log β

factors comes from the fact that at the very beginning of the algorithm, every node v reduces
its color list to a list in which all colors have approximately the same defect value. In the
following, we show that at the cost of a more complicated algorithm, we can improve this
log β factor to a factor of the form poly log log β. In the following discussion, we assume that
g = 0, but we note that along the way, we will have to use Lemma 12 with positive g as a
subroutine.

In order to obtain the improvement, we first want an algorithm where for computing
the 0-round problem P2, a node v of some γ-class only needs to compete with outneighbors
of the same γ-class. For this, we use an iterative approach to solve P2 and P1. For each
i ∈ [h], let Vi ⊆ V be the set of nodes in γ-class i. For each node v ∈ Vi that is colored
with some color x, we will make sure that v has at most dv(x)/4 outneighbors of color x

in γ-classes j for j < i, at most dv(x)/4 outneighbors of color x in the same γ-class and
that v has at most dv/2 outneighbors in γ-classes j for j > i. Thus, we assume that each
node v ∈ V only uses the part Lv,i of its Lv consisting of colors with a defect dv such that
γv = 2i ≥ 4βv/(dv + 1). We then iterate over the γ classes i ∈ [h] in increasing order. In

https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0404036
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/1835698.1835760

M. Fuchs and F. Kuhn 22:19

iteration i, we solve problems P2 and P1 for the nodes in Vi. When dealing with nodes in
Vi, we can therefore assume that for all outneighbors in u ∈ Vj for j < i, the list Cu (i.e.,
the output of problem P1) is already computed. We then remove each color x from the
list Lv,i for which there are more than dv(x)/4 outneighbors u ∈ V1 ∪ · · · ∪ Vi−1 for which
x ∈ Cu. In this way, we guarantee that v cannot choose a color with defect more than dv/4
to outneighbors in lower γ-classes even before solving P2 for node v. We can then solve P2
and P1 by only considering outneighbors in Vi. Of course, we have to make sure that even
after removing colors from Lv,i, the list of v is still sufficiently large to solve problem P2.
The advantage of only having to consider neighbors in Vi when solving P2 and P1 is that in
the condition on

∑
x∈Lv,i

(dv(x) + 1)2, we can replace the outdegree βv of v by the number of
outneighbors βv,i that v has in Vi. This gives us more flexibility in the choice of v’s γ-class
i. If

∑
x∈Lv,i

(dv(x) + 1)2 is large, v can choose γ-class i and tolerate many outneighbors in
the same γ-class and if

∑
x∈Lv,i

(dv(x) + 1)2 is small, v can only choose γ-class i if a small
number of outneighbors choose γ-class i. We will see that the problem of choosing a good
γ-class can be phrased as an OLDC problem that can be solved by using Lemma 12 with
appropriate parameters. The following technical Lemma 15 assumes that the γ-classes are
already assigned and it formally proves under which conditions the above algorithmic idea
allows to solve a given OLDC instance.

▶ Lemma 15. Let G = (V, E) be a directed graph that is equipped with an initial proper
m-coloring. Let h ≥ 1 be an integer parameter and assume that every node v ∈ V is in some
γ-class iv ∈ [h]. For every i ∈ [h], let Vi be the nodes in γ-class i and let βv,i be the number
of outneighbors of v in Vi. Each node v has a color list Lv ⊆ C and one fixed defect value dv,
i.e., dv(x) = dv for all x ∈ Lv. We further define τ := τ(h, C, m) and some integer parameter
q ∈ [τ]. We assume that for all v ∈ V

∀v ∈ V :
4 · max

{
βv,iv

, βv

q

}
dv + 1 ≤ 2iv and |Lv| ≥

α · 4iv + 4
dv + 1 ·

iv−1∑
j=iv−⌊log q⌋

βv,j · 2j

·τ

for a sufficiently large constant α > 0. Then there is an O(h)-round algorithm that assigns
each node v a color x ∈ Lv such that every node v ∈ V has at most dv outneighbors of color
x. The algorithm requires messages consisting of O(min{Λ log |C|, |C|} + log log β + log m)
bits.

We are now ready to prove Theorem 2, our main contribution. In the following β̂v is the
outdegree of v rounded up to the next integer power of 2. Further β̂ := maxv∈V β̂v. Note that
for all v, we have β̂v ≤ 2βv. The following lemma is a rephrasing of the theorem. By adjusting
the constant α, Theorem 2 follows from Lemma 16 because for h = ⌈log β̂⌉ and h′ = ⌈log 4h⌉,
τ(h, C, m) = O(log β + log log |C| + log log m) and τ(h′, [h], m) = O(log log β + log log m).

▶ Lemma 16. Let G = (V, E) be a properly m-colored directed graph and let h := ⌈log β̂⌉
and h′ := 4⌈log4 log 8h⌉. Assume that we are given an OLDC instance on G for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)2 ≥ α2 · β̂2
v · τ · τ̄ · h′2, (8)

where τ = 4⌈log4 τ(h,C,m)⌉ and τ̄ = 4⌈log4 τ(h′,[h],m)⌉. Then, there is a deterministic distributed
algorithm that solves this OLDC instance in O(log β) rounds using O

(
min {|C|, Λ · log |C|} +

log β + log m
)
-bit messages.

DISC 2023

22:20 List Defective Colorings: Distributed Algorithms and Applications

Proof. First note that w.l.o.g., we can assume that for all v and all x ∈ Lv, (dv(x) + 1)2

and α are both integer powers of 4. We can just round up α and round down dv(x) to
the next value for which this is true. We then just need to choose the constant α slightly
larger. With those assumptions, the right-hand side of (8) is then a integer power of 4. For
each node v, we define Rv := α · β̂2

v · τ̄ · h′2. For every v ∈ V and every x ∈ Lv, we then
have Rv

(dv(x)+1)2 = 4µ for some µ ∈ [h]. We can therefore partition each list Lv in to lists
Lv = Lv,1 ∪ · · · ∪ Lv,h such that for all µ ∈ [h], Lv,µ consists of the colors x ∈ Lv for which

Rv

(dv(x)+1)2 = 4µ. The algorithm to solve the given OLDC instance consists of two phases. In
the first phase, every node v ∈ V chooses its γ-class, which is an integer iv ∈ [h]. In the
second phase, we then use Lemma 15 to solve the OLDC instance.

We first discuss the objective of the first phase and we consider some node v. For every
µ ∈ [h], we define Dv,µ :=

∑
x∈Lv,µ

(dv(x) + 1)2 and Dv :=
∑h

µ=1 Dv,µ =
∑

x∈Lv
(dv(x) + 1)2.

For each µ ∈ [h], we further define λv,µ ∈ (0, 1] as follows

λv,µ :=
{

0 if Dv,µ/Dv < 1/(2h)
4⌊log4(Dv,µ/Dv)⌋ otherwise.

In the next part, we make a case distinction and first assume that λv,µ < 1/4 for all µ. The
case when there is some µ with λv,µ ≥ 1/4 is a simple case that we discuss later.

Case I: ∀µ ∈ [h] : λv,µ < 1/4. Note that the definition of λv,µ implies that for all µ

where λv,µ ̸= 0, λv,µ > 1/(8h) and λv,µ = 4−rv,µ for some integer rv,µ ∈ {0, . . . , ⌈log4 4h⌉}.
Note also that the values of Dv,µ for which λv,µ = 0 sum up to at most Dv/2 and therefore

h∑
µ=1

λv,µ ≥ 1
8 .

For every v ∈ V , we next define a function fv : [h] → [h] ∪ {⊥} such that for all µ ∈ [h],
fv(µ) = µ − rv,µ + 2 if λv,µ > 0 and fv(µ) = ⊥ otherwise. Note that 0 < λv,µ < 1/4 implies
that fv(µ) ≤ h. For every µ ∈ [h], we next also define a second function iv : [h] → [h] ∪ {⊥}
as follows. For every µ, we set iv(µ) = fv(µ) if fv(µ) = ⊥ or if fv(µ) ≥ 1 and there is
no µ′ < µ for which fv(µ′) = fv(µ). Otherwise, we set iv(µ) = ⊥. Note that for any two
µ, µ′ ∈ [h] with µ ≠ µ′, we either have iv(µ) = iv(µ′) = ⊥ or we have iv(µ) ̸= iv(µ′). We
next show that∑

µ∈[h]:iv(µ)̸=⊥

λv,µ ≥ 2
3 ·

∑
µ∈[h]:fv(µ)̸=⊥∧fv(µ)≥1

λv,µ ≥ 2
3 ·

(
1
8 − 1

48

)
≥ 1

20 . (9)

To see this, consider some µ for which λv,µ > 0. Note that for fv(µ) < 1, we need rv,µ ≥ µ+2
and therefore λv,µ ≤ 4−µ−2. Thus, the sum over those λv,µ is at most 4

3 · 4−1−2 = 1/48. It
therefore remains to show that the sum over the λv,µ for which fv(µ) ≥ 1, but iv(µ) = ⊥
is at most a third the sum over the λv,µ for which fv(µ) ≥ 1. We have iv(µ) = ⊥ and
fv(µ) ≥ 1 iff there is a µ′ < µ for which fv(µ′) = fv(µ). For fv(µ′) = fv(µ), we need to
have λv,µ = λv,µ′ · 4µ′−µ. Consider some value z ≥ 1 for which there is a value µz with
fv(µz) = z and assume that µz is the smallest such value. The sum over all λµ for µ > µz

and fv(µ) = fv(µz) is at most
∑∞

µ=µz+1 λµz
· 4µz−µ = λµz

/3. This concludes the proof of
Inequality (9).

M. Fuchs and F. Kuhn 22:21

In order to assign a γ-class iv to every node v ∈ V , we define another (generalized) OLDC
instance. For this instance, the “color” list of node v is Lv = {iv(µ) : iv(µ) ̸= ⊥}. For every
i ∈ Lv, we define the inverse function µv(i) to be the value µ for which iv(µ) = i. For each
color i ∈ Lv, we then define a defect δv,i as

δv,i :=
⌊√

λv,µv(i) · Rv

⌋
.

We further define q := h and g := ⌊log h⌋. We then want to find an assignment of values
iv ∈ Lv to each node such that for every v ∈ V , the number of outneighbors u for which
iu ∈ [iv −g, iv] is at most δv,iv

. We next show that such an assignment of γ-classes iv satisfies
the requirement needed by Lemma 15 and we can therefore use it to efficiently solve the
original OLDC instance. We afterwards show that the generalized OLDC instance to find
the values iv satisfies the requirement of Lemma 12.

Let us therefore assume that we have an assignment of γ-class iv to the nodes that solve
the above generalized OLDC problem. For each i ∈ [h], we again use Vi to denote the set of
nodes v with iv = i and we assume βv,i is the number of outneighbors of v in Vi. The fact
that v has at most δv,iv

outneighbors u with iu ∈ [iv − g, iv] implies that δv,iv
≥ βv,j for all

j ∈ [iv − g, iv]. For all v ∈ V , we have

δv,iv =
⌊√

λv,µv(i) · Rv

⌋ (λv,µv(i)≥1/(8h))
≥

⌊√
Rv

8h

⌋
=

√
α · β̂2

v · τ̄ · h′2

8h

 ≥ β̂v

h
.

The last inequality follows because h, τ, τ̄ , h′ ≥ 1 and if we choose α ≥ 8. For the following
calculations, we define µv := µv(iv) = iv + rv,µ − 2. Note that if v chooses γ-class iv, it uses
the colors in Lv,µv

. All those colors have a defect dv such that (dv + 1)2 = Rv/4µv . Using
q = h, we therefore have

4 · max
{

βv,iv
, βv

q

}
dv + 1 ≤ 4 · δv,iv

dv + 1

≤

√
16λv,µv · Rv

(dv + 1)2

=
√

16λv,µv
· 4µv

=
√

42 · 4−rv,µv · 4iv+rv,µv −2 = 2iv .

The first part of the requirement of Lemma 15 is therefore satisfied. For the second part, recall
that v uses the colors in Lv,µv and that Dv,µv =

∑
x∈Lv,µv

(dv(x) + 1)2 = |Lv,µv | · (dv + 1)2,
where dv is defined as before. We have

|Lv,µv | ≥ λv,µv
Dv

(dv + 1)2 ≥ λv,µv
· ατ · Rv

(dv + 1)2 = 4−rv,µv · ατ · 4µv = α

16 · 4iv · τ. (10)

Before we continue, we switch to Case II.

Case II: ∃µ ∈ [h] : λv,µ ≥ 1/4. Before looking of the problem of assigning the γ-
classes, we have a look at the requirements for Lemma 15 in Case II, i.e., if there is a
µ ∈ [h] for which λv,µ ≥ 1/4. Let µv be one such value µ. In this case, we set iv = µv,

Lv = {iv}, and δv,iv := ⌊
√

Rv/4⌋. We then have δv,iv =
⌊√

αβ̂2
v τ̄h′2/16

⌋
≥ βv. The last

inequality holds if α ≥ 16 because τ̄ and h′ are positive integers. We therefore clearly have
δv,iv ≥ max {βv,iv , βv/q} and therefore

4 · max
{

βv,iv
, βv

q

}
dv + 1 ≤ 4δv,iv

dv + 1 ≤

√
16Rv

16(dv + 1)2 = 2µv = 2iv .

DISC 2023

22:22 List Defective Colorings: Distributed Algorithms and Applications

Hence, the first part of the requirement of Lemma 15 also holds in Case II. Similarly to Case
I, we can lower bound the size of the color list Lv,µv

that is used by v:

|Lv,µv
| ≥ λv,µv

Dv

(dv + 1)2 ≥ ατ · Rv

4(dv + 1)2 = α

4 · 4iv · τ. (11)

The bound given by (10) therefore also holds in Case II.
We now continue considering both cases together. It remains to show (to apply Lemma 15)

that

|Lv,µv | ≥ α′ · 4iv · τ + 4
dv + 1 ·

iv−1∑
j=iv−⌊log q⌋

βv,j · 2j · τ (12)

for some constant α′ that can be chosen as large as needed by choosing the constant α

sufficiently large. Note that we have g = ⌊log q⌋ and thus for j ∈ [iv − ⌊log q⌋, iv], βv,j ≤ δv,iv
.

We therefore have

4
dv + 1 ·

iv−1∑
j=iv−⌊log q⌋

βv,j · 2j · τ ≤ 4δv,iv
τ

dv + 1 ·
g∑

ℓ=1
2iv−ℓ <

4δv,iv

dv + 1 · 2iv · τ.

We have already seen that 4δv,iv
/(dv + 1) ≤ 2iv and the bound in the above inequality can

therefore be upper bounded by 4iv τ . For every constant α′ > 0, we can therefore choose a
constant α > 0 such that the bound in (12) is upper bounded by the bound in (10). This
shows that if v is in Case I, node v satisfies the requirements to apply Lemma 15.

We next also show that the assignment of γ-classes iv can be done by using the algorithm
of Lemma 12. Recall that every node v needs to pick an iv ∈ Lv such that the total number
of outneighbors u that pick iu ∈ [iv − g, iv] is at most δv,iv . To apply Lemma 12, we have to
lower bound

∑
i∈Lv

(δv,i + 1)2. We have

∑
i∈Lv

(δv,i + 1)2 ≥ min
{

1
16 ,

∑
i∈Lv

λv,µv(i)

}
· Rv

(9)
≥ 1

20 · Rv

= 1
20 · α · β̂2

v · τ̄ · h′2.

Note that we have g = ⌊log h⌋ and h′ ≥ log(8h). We therefore have 2h′ ≥ 2g +1. By choosing
a sufficiently large constant α, the above inequality therefore implies that the requirements of
Lemma 12 are satisfied as long as the value of τ̄ is sufficiently large. We have τ̄ = τ(h′, [h], m).
Note that the color space of the OLDC problem that we use to assign the values iv is [h].
Recall that for all v and µ, λv,µ = 0 or λv,µ ≥ 1/(8h). For each node v ∈ V , we therefore
have

min
i∈Lv

δv,i ≥ min
{√

Rv

4 ,
√

λv,µv(i)Rv

}
≥ min

{
1
4 ,

1√
8h

}
·
√

Rv ≥
√

Rv

8h
≥ βv

8h
.

We therefore have

max
v∈V

βv

mini∈Lv
δv,i + 1 ≤ 8h.

Because we have h′ ≥ log(8h), the choice τ̄ = τ(h′, [h], m) satisfies the requirements of
Lemma 12 and we can therefore compute the γ-classes iv for all nodes v by using the
algorithm of Lemma 12.

M. Fuchs and F. Kuhn 22:23

We will now analyze the required message size and round complexity of the algorithm.
In the first phase the OLDC problem on color lists Lv and defects δv,iv

has to be solved.
As |Lv| ≤ h and transmitting such a single defect does not need more than log h bits, by
Lemma 12, solving this OLDC instance the maximum message size is O(h + log h + log m) =
O(h + log m) bits. The number of rounds needed for this first phase are O(h′). In the second
phase we have messages of size O(min{|C| + Λ log |C|} + log log β) (the initial color is already
known in the second phase) due to Lemma 12. The round complexity of the second phase is
O(h) due to Lemma 15. Combining both phases and using that h′ = O(h) = O(log β), the
maximum message size and the runtime are as stated. ◀

DISC 2023

Conditionally Optimal Parallel Coloring of Forests
Christoph Grunau #

ETH Zürich, Switzerland

Rustam Latypov #

Aalto University, Finland

Yannic Maus #

TU Graz, Austria

Shreyas Pai #

Aalto University, Finland

Jara Uitto #

Aalto University, Finland

Abstract
We show the first conditionally optimal deterministic algorithm for 3-coloring forests in the low-space
massively parallel computation (MPC) model. Our algorithm runs in O(log log n) rounds and uses
optimal global space. The best previous algorithm requires 4 colors [Ghaffari, Grunau, Jin, DISC’20]
and is randomized, while our algorithm are inherently deterministic.

Our main technical contribution is an O(log log n)-round algorithm to compute a partition of
the forest into O(log n) ordered layers such that every node has at most two neighbors in the same
or higher layers. Similar decompositions are often used in the area and we believe that this result
is of independent interest. Our results also immediately yield conditionally optimal deterministic
algorithms for maximal independent set and maximal matching for forests, matching the state of
the art [Giliberti, Fischer, Grunau, SPAA’23]. In contrast to their solution, our algorithms are not
based on derandomization, and are arguably simpler.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms

Keywords and phrases massively parallel computation, coloring, forests, optimal

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.23

Related Version Full Version: https://arxiv.org/abs/2308.00355

Funding Rustam Latypov: Academy of Finland, Grant 334238.
Yannic Maus: Austrian Science Fund (FWF), Grant P36280-N.
Shreyas Pai: Academy of Finland, Grant 334238.

1 Introduction

A recent sequence of papers investigates fundamental symmetry-breaking problems such as
coloring, maximal independent set and maximal matching on trees [9, 7, 32, 22, 26]. We
conclude, simplify and unify this line of work by giving a conceptually simple algorithm for
3-coloring, maximal independent set and maximal matching. We solve the three problems in
a unified way by computing a so-called H-decomposition (we discuss these in more detail
in Section 1.2). Even though such decompositions are the natural tool for solving the
aforementioned problems on trees, computing them efficiently in the MPC model remained
outside the reach of previous techniques.

▶ Theorem 1. There are deterministic O(log log n)-round low-space MPC algorithms for 3-
coloring, maximal matching and maximal independent set (MIS) on forests. These algorithms
use O(n) global space.

© Christoph Grunau, Rustam Latypov, Yannic Maus, Shreyas Pai, and Jara Uitto;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cgrunau@inf.ethz.ch
https://orcid.org/0000-0002-1057-9429
mailto:rustam.latypov@aalto.fi
https://orcid.org/0000-0001-7124-3067
mailto:yannic.maus@ist.tugraz.at
https://orcid.org/0000-0003-4062-6991
mailto:shreyas.pai@aalto.fi
https://orcid.org/0000-0003-2409-7807
mailto:jara.uitto@aalto.fi
https://orcid.org/0000-0002-5179-5056
https://doi.org/10.4230/LIPIcs.DISC.2023.23
https://arxiv.org/abs/2308.00355
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Conditionally Optimal Parallel Coloring of Forests

The runtimes of our algorithms are conditionally optimal, conditioned on the 1 vs 2 cycle
conjecture, at least if one restricts to so-called component stable algorithms [23, 15, 35, 41]
(see Section 1.4 for a brief discussion about component-stability).

We note that algorithms for maximal matching and maximal independent set matching
our guarantees are known from a very recent work [26]. However, their algorithms are quite
complicated and technical, and use sophisticated derandomization techniques. Moreover,
their techniques inherently cannot be used to color a tree with a small number of colors.
Indeed, the 3-coloring problem is considered to be the hardest of the three problems, e.g.,
once such a coloring is known one can compute an MIS in O(1) rounds. Additionally, a
crucial property used in previous MPC algorithms for MIS and maximal matching is that
any partial solution can be extended to a solution of the whole graph; a property that does
not hold for 3-coloring. The best previous algorithm for coloring trees uses 4 colors and
is randomized [22]. If one allows for randomization the single additional color makes the
problem significantly easier by the following divide and conquer approach: if one partitions
the tree into two parts by letting each node join one of the parts uniformly at random, the
connected components induced by each part have logarithmic diameter. Once the diameter
is small, one can use O(log log n) MPC rounds to color each component independently with
two colors in a brute force manner. In the next section we zoom out and present the bigger
picture of our work.

1.1 MPC Model and Exponential Speed-Up Over LOCAL Algorithms

The Massively Parallel Computation (MPC) model [30] is a mathematical abstraction of
modern frameworks of parallel computing such as Hadoop [43], Spark [44], MapReduce [18],
and Dryad [29]. In the MPC model, we have M machines that communicate in all-to-all
fashion, in synchronous rounds. In each round, every machine receives the messages sent
in the previous round, performs (arbitrary) local computations, and is allowed to send
messages to any other machine. Initially, an input graph of n nodes and m edges is arbitrarily
distributed among the machines. At the end of the computation, each machine needs to
know the output of each node it holds, e.g., their color in the vertex-coloring problem.

The MPC model is typically divided into 3 regimes according to the local space S. The
superlinear and the linear regimes allow for S = n1+Ω(1) and S = Õ(n) words1 of space
(memory) per machine. A word is O(log n) bits and is enough to store a node or a machine
identifier from a polynomial (in n) domain. The local space restricts the amount of data
a machine initially holds and is allowed to send and receive per round. Both linear and
superlinear regimes allow for very efficient algorithms because machines can get a “global
view” of the graph in the sense that it can store information for each node of the graph
[31, 20, 24]. However, the growing size of most real-world graphs makes it impossible to get
such a global view on a single machine and hence research in recent years has focused on
the most challenging low-space (or sublinear) regime with S = nδ, for some constant δ < 1,
where we cannot even store the whole neighborhood of a single node in a single machine. As
each machine can only get a local view there are close connections to the LOCAL model of
distributed computing that we further elaborate on below.

Furthermore, we focus on the most restricted case of linear global space, i.e., S ·M =
Θ(n + m). Notice that Ω(n + m) words are required to store the input graph.

1 The Õ notation hides polylogarithmic factors.

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:3

The LOCAL Model and Graph Exponentiation. The LOCAL model is a classic model of
distributed message passing. Each node of an input graph hosts a processor and the nodes
communicate along the edges of the graph in synchronous rounds. The local computation,
local space, and message sizes are unbounded in this model. Most research in the LOCAL
model has focused on symmetry breaking problems like graph colorings, MIS, and maximal
matchings. For most of these classic problems O(log n)-round randomized algorithms are
known [36, 1, 38] which can directly be translated to the MPC model. A major focus on recent
and current research is to develop sublogarithmic MPC algorithms that beat the logarithmic
baseline.

In fact, the strong connection between the models also shows up in faster algorithms, as
almost all recent MPC algorithms for such problems are MPC-optimized implementations
of algorithms that were originally developed for the LOCAL model. The main technique to
obtain this speedup is the graph exponentiation technique [33]. It allows to gather the T -hop
radius neighborhood of a node in O(log T) MPC rounds. So, as long as these neighborhoods
fit the space constraints, after gathering them one can simulate T -round LOCAL algorithms
locally to compute the output for each node. Furthermore, for component-stable algorithms,
the connection also goes the other way around, that is, an Ω(T) lower bound on the round
complexity in the LOCAL model implies an exponentially lower Ω(log T) conditional lower
bound in the MPC model. Thus, the holy grail is to obtain this exponential speedup over
the LOCAL model. A central open problem in the area is to find an O(log log n) round MPC
algorithm for the classic MIS problem on general graphs, which enjoys a matching conditional
Ω(log log n)-round lower bound.

Unfortunately, we are very far from answering this question. The current state of the
art is an Õ(

√
log ∆ + log log log n)-round randomized MPC algorithm [25]. We note that we

take into account the new results on network decomposition, which reduce the dependency
on n [42, 21]. This result is obtained by combining the graph exponentiation technique with
sparsification methods [33, 25]. The exponentiation technique is used to simulate Ghaffari’s
O(log ∆ + poly log log n)-round MIS algorithm for the LOCAL model [19].

From a high-level perspective they break the LOCAL algorithm into O(
√

log ∆) phases
each of length T = O(

√
log ∆). In the beginning of each phase, the graph is subsampled

so that the maximum degree of any node is at most 2
√

log ∆. Then, we can gather the
T -hop neighborhood of each node in O(log log ∆) MPC rounds and simulate T rounds of
the LOCAL algorithm in a single MPC round. The main benefit of simulating (shorter)
phases and subsampling to smaller degree graphs is to reduce the memory resources needed
during the exponentiation technique. Unfortunately, this phase-based approach seems to
hit a fundamental barrier at

√
log ∆ rounds, and it is unclear how to reduce memory usage

without it. Due to little progress in improving on this result, recent research has focused on
special graph classes such as trees and bounded arboricity graphs.

Symmetry Breaking on Trees and Bounded Arboricity Graphs. Studying low-space MPC
algorithms for MIS on trees and forests has been fruitful. This line of work started with a
randomized O(log3 log n) round low-space MPC algorithm for MIS and maximal matching
on trees [9]. Later, the round complexity was first improved to O(log2 log n) [7] and finally
to O(log log n) [22], where both algorithms extend to low-arboricity graphs. The O(log log n)
algorithm is conditionally optimal, at least if one restricts oneself to component-stable
algorithms. Finally, a recent work derandomized the O(log log n) round algorithm using
MPC specific derandomization techniques and thus obtained a deterministic O(log log n)
round MIS and Maximal Matching algorithm for trees and more generally low-arboricity
graphs [26].

DISC 2023

23:4 Conditionally Optimal Parallel Coloring of Forests

While especially the O(log log n) round algorithms are quite technical and involved, all
of the aforementioned previous algorithms rely on the same fundamental idea. Namely, to
interleave graph exponentiation with the computation of partial solutions to rapidly decrease
the maximum degree of the remaining graph. Unfortunately, it seems unlikely that such a
rapid degree reduction is possible in general graphs; thus it seems that new approaches are
necessary in order to get an O(log log n) round algorithm for general graphs.

Also, their approach does not work for coloring a forest with a constant number of colors.
The main reason is that they critically rely on the fact that any partial solution can be
extended to a full solution, which is not the case for coloring a forest with a fixed number of
colors.

1.2 Our Technical Contribution
We present a unified solution for 3-coloring, MIS, maximal matching that takes O(log log n)
rounds. The core technical contribution that unifies these is an efficient algorithm to compute
H-decompositions.

▶ Theorem 2. There is a deterministic O(log log n)-rounds low-space MPC algorithm that
computes a strict H-decomposition with O(log n) layers on forests in O(n) global space.

H-decompositions were introduced to the area of distributed computing by Barenboim
and Elkin [5]. An H-decomposition (of a forest) partitions the vertices of the graph into layers
such that every node has at most two neighbors2 in higher or equal layers. For forests an
H-partition with O(log n) layers always exist. In the LOCAL model, such an H-decomposition
immediately implies an algorithm for 3-coloring in O(log n) rounds. Essentially, one can
iterate through the layers in a reverse order and color all nodes in a layer while avoiding
conflicts with the already colored neighbors in higher layers.

The novelty of our approach is not that we use such decompositions to compute a 3-
coloring of a forest, in fact, this straightforward approach has made it into the classrooms
of many graduate programs of universities, but in the way how we compute it. We detail
on our solution in more detail in the nutshell, but the main take-away is as follows. We
steer every machine to learn some parts of the graph (to large extent in an uncoordinated
fashion) such that every machine can compute a partial H-decomposition locally, which we
can later unify to a global decomposition. We are not aware of any other MPC algorithm for
H-decompositions with a similar approach.

Balanced Exponentiation. In order to achieve exponential speedup, our algorithms rely on
graph exponentiation. However, there are no known sparsification techniques that can cope
with the memory resources that are needed for the classic graph exponentiation technique.
Instead, we provide a self-contained exponentiation procedure whose memory overhead is
very mild on forests. To explain our procedure, we first need to define a subtree. A subtree is
a subgraph of a tree, such that if it is removed, the rest of the tree stays connected. A node
is important if it is contained in a subtree of size nδ/8. We present the following result (the
formal statement appears in the full version).

2 There are generalizations to higher number of neighbors that are important when dealing with bounded
arboricity graphs [37, 6].

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:5

Let 0 < k ≤ nδ/8 be a parameter. There is a deterministic low-space MPC algorithm that,
given an n-node forest F , uses O(log k) rounds in which every important node v ∈ F discovers
its k-hop neighborhood in every direction of the graph, except for at most one.

Given a node v ∈ F , we refer to each of its neighbors x ∈ N(v) as a direction with regard
to v. Informally, what node v can discover in direction x is simply the subgraph of F that is
connected to v via x, which is uniquely defined, since F is a forest.

This result above may be of independent interest and may be useful to design algorithms
for other graph problems. We obtain it by extending the exponentiation technique of a recent
work by [3]. Their work designs an exponentiation technique which (almost) equals ours in
the special case when k equals the maximum diameter of a component of the forest. In their
work it is used in an O(log diam)-round algorithm to compute the connected components
of a forest. Later it has also been used to solve certain dynamic programming tasks on
tree-structured data [28], also in time that is logarithmic in the diameter. In the full version
we present a more detailed discussion on the similarities and the difference between the
exponentiation result in this work and the one in their work, and why our result requires
a different analysis. The main benefit of our result is that a flexible choice of k allows the
runtime and space to be small, if the required “view” for the nodes is small, which we heavily
utilize in our algorithm to compute H-decompositions.

1.3 Our Method in a Nutshell
As mentioned in the previous section, our key technical contribution is to compute a so-called
H-decomposition of the input forest F . In particular, the goal is to compute a partition
V (F) = V1 ⊔ V2 ⊔ . . . ⊔ VL of the vertices into L = O(log n) layers such that each node in
Vi has at most two neighbors in

⋃
j≥i Vj . There exists a simple peeling algorithm which

computes such a partition; iteratively peel off all nodes of degree at most 2 and define Vi as
the set of nodes that got peeled off in the i-th iteration. A simple calculation shows that
at least half of all the remaining nodes get peeled off in each iteration, and hence we get a
decomposition into O(log n) layers. Moreover, one can determine the iteration in which a
node gets peeled off by only looking at its O(log n)-hop neighborhood. Thus, if we could
compute for a given node its entire O(log n)-neighborhood and store it in a single machine,
then we could locally determine the layer of that node with no further communication.

One way to compute the O(log n)-neighborhood of each node in the MPC model is
the well-known graph exponentiation technique. Generally speaking, graph exponentiation
allows to learn the 2i-hop neighborhood of each node in O(i) MPC rounds. Thus, we could
in principle hope to learn the O(log n)-hop neighborhood of each node in just O(log log n)
rounds. However, one obviously necessary precondition of the graph exponentiation technique
is that the O(log n)-hop neighborhood of each node has size nδ, as otherwise we cannot
possibly store the neighborhood in one machine. This is quite a limiting condition. If the
input is for example a star, even the two-hop neighborhood of each node contains Ω(n)
vertices. Moreover, even if each local neighborhood would fit into one machine, the global
space required to store all the neighborhoods might still be prohibitively large, especially if
one aims for near-linear global space.

Thus, we cannot use the vanilla graph exponentiation technique. Instead, we use the
balanced graph exponentiation technique for forests mentioned in the previous section. The
output guarantee of the balanced exponentiation algorithm, running in O(log log n) rounds,
weakens the guarantee that each node sees its O(log n)-hop in two ways. First, it only gives a
guarantee for nodes that are contained in a sufficiently small subtree, namely of size at most
nδ. Second, for each node v in a small subtree, it computes all nodes of distance O(log n),
except for nodes in one direction.

DISC 2023

23:6 Conditionally Optimal Parallel Coloring of Forests

We start by briefly discussing how one can deal with the first shortcoming. If one
iteratively removes all nodes that are contained in a subtree of size at most x from F and all
nodes of degree at most 2, then all nodes are removed within O(logx(n)) iterations. This
fact was used in similar forms in previous results and for completeness we give a standalone
proof (see Lemma 7). Thus, if we repeatedly assign nodes in subtrees of size at most nδ and
nodes of degree at most 2 to one of O(log n) layers, then after O(1/δ) iterations, we assigned
each node to one of O((1/δ) log n) layers. Thus, it intuitively suffices to focus on nodes in
subtrees of size at most nδ. Section 4 gives a formal treatment of this argument.

The more severe difficulty stems from the fact that there might not be a single node in the
forest for which we have stored its entire O(log n)-neighborhood in one machine. This makes
it impossible to locally determine the layer of each node, or even a single one, assigned by
the simple peeling process described in the beginning. Instead, each node v locally simulates
a conservative variant of the peeling algorithm described above; in each iteration not all the
nodes of degree at most 2 are removed, but only those that v has stored in its machine. Note
that if v has strictly more than 2 neighbors not stored in its machine, then the conservative
peeling algorithm would never peel off v. Moreover, even if v would eventually be peeled
off, then there is no guarantee that it happens within the first O(log n) iterations. However,
the fact that v has stored all the nodes in its O(log n)-hop neighborhood except for nodes in
one direction in its machine suffices to show that v gets peeled off within the first O(log n)
iterations (see Lemma 21). Thus, each node v locally computes a layering V v = V v

1 ⊔ . . . V v
L

for some L = O(log n) such that v ∈ V v and each node in V v
i has at most two neighbors

contained in
(⋃

j≥i V v
j

)
∪ (V (F) \ V v). As some nodes might not be assigned to any layer,

we refer to such a decomposition as a partial H-decomposition. Note that a node might get
assigned to different layers from different nodes. Fortunately, this is not a problem because
of the following nice structural property about (partial) H-decompositions: if we are given
multiple (partial) H-decompositions, then we can get another (partial) H-decomposition
by assigning each node to the smallest layer assigned by any of the H-decompositions.
This structural observation allows us to combine the different locally computed (partial)
H-decompositions into a single partial H-decomposition where each node in a small subtree
is assigned to one of the O(log n) layers.

Rooted vs. Unrooted Forests. Our results are for unrooted forests, which are indeed more
difficult than rooted forests. In fact, the fastest known MPC algorithm to root a forest takes
O(log diam) rounds (and at least on general forests this runtime is conditionally tight) [3];
so rooting the forest does not fit our time budget of O(log log n) rounds. Many steps of our
algorithm would simplify (or maybe even allow for alternative solutions) if the forest was
rooted. For example, in a directed forests, we would not need our balanced exponentiation
procedure. One can show that nodes can just exponentiate towards their children until the
local memory is full without breaking any global memory bounds. However we would still
need our combinatorial algorithm for creating a (global) H-partition. Observe that [3] also
contains a O(log diam)-round 2-coloring algorithm for rooted constant-degree forests, which
can be generalized to rooted unbounded-degree forests.

1.4 Further Related Work

Component Stability. Roughly speaking, an MPC algorithm is component-stable, if the
outputs of nodes in different components are independent of each other. Low-space component-
stable MPC algorithms are closely connected to algorithms in the LOCAL model and this
connection was used to lift (unconditional) lower bounds from the LOCAL model into

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:7

conditional lower bounds in the MPC model [23]. Under the 1 vs 2 cycle conjecture, this
technique turns an Ω(T)-round lower bound in LOCAL into an Ω(log T) lower bound in low-
space MPC. This approach was used to establish, among others, Ω(log log n) randomized lower
bounds for MIS and maximal matching. Later, the technique was extended to deterministic
component-stable algorithms as well [15]. While the assumption of component-stability
might seem very natural to MPC algorithms, it is known that component-instability can
help. For example, any component-stable algorithm for finding an independent set of size
Ω(n/∆) requires Ω(log log∗ n) rounds, while there is an O(1)-round algorithm that is not
component-stable [15].

log(diam) Algorithms on Forests. There are surprisingly few works with a strict log(diam)
runtime for any graph families in any MPC regimes, where diam refers to the diameter. To
our knowledge, the only existing ones are low-space algorithms for forests [3, 28]. The authors
of [3] show that connectivity, rooting, and all LCL (locally checkable labeling) problems can
be solved on forests in O(log diam) using optimal global space O(n). The authors of [28] build
on top of the works of [3] by introducing a framework to solve dynamic programming tasks
and optimization problems, all in time log(diam) and global space O(n). We note that given
a double-logarithmic dependency on n, the connectivity problem can be solved on general
graphs (even deterministically) in O(log diam + log log n) time using linear total space [8, 13].
Also, the 1 vs 2 cycle conjecture directly rules out an o(log diam) for connectivity.

Symmetry-Breaking on General Graphs. In general graphs, (∆ + 1)-vertex coloring is
an intensively studied symmetry breaking problem, where ∆ is the maximum degree of
the graph. A series of works [39, 4, 40, 11] for Congested Clique model which is similar
to the MPC model with linear local memory has culminated in a deterministic O(1)-round
algorithm [17].

In the low-space MPC model, the first algorithm for the problem was randomized and used
O(log log log n) rounds with almost linear Õ(m) global space [11]3. By derandomizing the
classic logarithmic-time algorithms, one can obtain an O(log ∆ + log log n)-round algorithm
for (∆ + 1)-coloring, MIS, and maximal matching [14, 17]. For coloring, this was improved
to O(log log log n) through derandomizing a tailor-made algorithm [16]. The deterministic
algorithms require n1+Ω(1) global space.

1.5 Outline

We define strict H-decompositions in Section 3, and then we show how to compute them in
O(log log n) low-space MPC rounds using O(n ·poly(log n)) global space in Section 4. The key
subroutine for the algorithm in Section 4 is discussed in Appendix A. In Section 5 we show
how to use these decompositions to compute a coloring, MIS, and matching. In Appendix B
we show how to reduce the global memory usage of our algorithms from O(n · poly(log n))
to O(n). Due to space constraints, the balanced exponentiation procedure and the missing
proofs of Section 4 appear in the full version. Many of the proofs are omitted due to the
page limit and deferred to the full version.

3 The O(
√

log log n) runtime stated in the paper is automatically improved to O(log log log n) through
developments in network decomposition [42].

DISC 2023

23:8 Conditionally Optimal Parallel Coloring of Forests

2 Preliminaries and Notation

The input graph is an undirected, finite, simple forest F = (V, E) with n = |V | nodes and
m = |E| edges such that E ⊆ [V]2 and V ∩ E = ∅. For a subset S ⊆ V , we use G[S] to
denote the subgraph of G induced by nodes in S.

Let degF (v) denote the degree of a node v in F and let ∆ denote the maximum degree
of F . For node set S ⊆ V (F) and a node v ∈ S we write degS(v) for the degree of v in F [S].
The distance dF (v, u) between two vertices v, u in F is the number of edges in the shortest
v − u path in F ; if no such path exists, we set dF (v, u) :=∞. Sometimes we simply write
deg(v) and d(v, u) if it is clear from context that we refer to the degree and distance in graph
F . The greatest distance between any two vertices in F is the diameter of F , denoted by
diam(F).

For each node v and for every k ∈ N, we denote the k-hop (or k-radius) neighborhood of
v as Nk(v) = {u ∈ V : d(v, u) ≤ k}. Set N1(v) is simply the set of neighbors of v, to which
often refer to as N(v). We often consider sets of nodes S from which we need to remove a
single node u. Hence, we use the notation S \ u as a shorthand for S \ {u}.

3 Strict H-decompositions

We begin with the formal definition of an H-decomposition, that is, a partition of the graph
into layers such that every node has at most two neighbors in higher or equal layers. We
also extend the definition to the setting where some nodes remain without a layer.

▶ Definition 3 ((Partial) H-Decomposition). Let F be a forest and layer : V (F) 7→ N ∪ {∞}.
For i ∈ N ∪ {∞} define Vi = {v ∈ V (F) | layer(v) = i}, V≥i =

⋃
j≥i Vj.

We say that layer is a partial H-decomposition if degV≥i
(v) ≤ 2 holds for every v with

layer(v) = i. We speak of an H-decomposition if V∞ = ∅, and L = max{layer(v) | v ∈
V (F), layer(v) ̸=∞} is the length of the decomposition.

We also refer to the Vi’s as the layers of the (partial) H-decomposition.

Why 3-coloring and strict H-decompositions? H-decompositions were introduced to the
area of distributed computing by Barenboim and Elkin [5]. Nowadays, they are a frequent
tool in the area and by increasing the degree bound 2 to (2 + ε)a the concept also extends
to graphs with arboricity at most a (this is the original setting considered in [5]). More
generally, it can be shown that H-decompositions with O(log n) layers exist. In the LOCAL
model, an H-decomposition of a tree with O(log n) layers can be computed by iteratively
removing nodes of degree 1 (rake) and nodes of degree 2 (compress).

In the LOCAL model, one can 3-color any graph with a given H-decomposition as in
Definition 3 with L layers in O(L+log∗ n) rounds. Each layer induces a graph with maximum
degree 2. First, use Linial’s algorithm to color each layer in parallel with C = O(1) colors.
This coloring may contain lots of monochromatic edges between different layers and is only
used as a schedule to compute the final 3-coloring. In order to compute that final coloring,
iterate through the layers in a decreasing order, and in each layer iterate through the C

colors. When processing one of the C color classes, every node picks one color in {1, 2, 3}
not used by any of its already colored neighbors (at most two).

Optimally, we would like to use the above LOCAL model algorithm as the base for our
exponentially faster MPC algorithm. However, even if we were given an H-decomposition
for free it is non-trivial to actually use it for 3-coloring a graph if the runtime is restricted

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:9

to O(log log n) rounds and you only allow for a polylogarithmic memory overhead. Going
through the layers in some sequential manner would be way too slow as it would require
logarithmically rounds. Still, as the LOCAL algorithm has locality T = Θ(log n) the output
of a node may depend on the topology in logarithmic distance. In order to achieve a fast
MPC algorithm, we want the nodes to use the graph exponentiation technique to learn
the part Gv of their T -hop neighborhood that is relevant to determine their output in
O(log T) = O(log log n) rounds. We refer to Gv as the predecessor graph of node v. The
challenge with the standard H-decomposition as given by Definition 3 is that, even though
Gv ⊆ V≥layer(v), it may be of size Θ(n). Hence, even if every node could learn its predecessor
graph and store it in its local memory Sv (formally, the memory of every node is stored on
some machine), the global space bound can only be upper bounded by

∑
v∈V |Gv| = O(n2),

drastically, violating the desired near-linear bound. In order to circumvent this issue we
introduce the concept of a strict H-decomposition which is optimized for its usage in the
MPC model. The bottom line of this decomposition is that besides the properties of a classic
H-decomposition, we also have a set V pivot. The set V pivot induces a graph with maximum
degree 2 and hence can be colored with 3 colors in O(log∗ n) rounds with Linial’s algorithm
[35]. The main gain compared to the classic H-decomposition is, that once we have colored
the nodes in V pivot, we can show that the predecessor graph of every node v ∈ V \ V pivot is
of logarithmic size (when considering the same LOCAL model algorithm that colors these
nodes layer by layer). Hence, each node can learn its predecessor graph in O(log log n)
rounds without violating global space constraints. We next present the definition of a strict
H-decomposition.

▶ Definition 4 ((Partial) Strict H-Decomposition). Let F be a forest and layer : V (F) 7→
N ∪ {∞} be a function. We define V<∞ = {v ∈ V (F) | layer(v) <∞} and

V pivot := {v ∈ V<∞ | layer(v) ≥ layer(w) for every w ∈ NF (v)}.

We refer to a (partial) H-decomposition layer as strict if for every v ∈ V<∞ \ V pivot, it
holds that

|{w ∈ NF (v) \ V pivot | layer(w) = layer(v)} ∪ {w ∈ NF (v) | layer(w) > layer(v)}| ≤ 1. (1)

That is, the total number of non-pivot neighbors with the same layer and of neighbors
with a strictly higher layer is at most 1.

There is some similarity between the definition of a strict H-decomposition and the H-
decompositions used in the theory of so called locally checkable labelings [12, 10, 2]. These
decompositions iteratively layer degree 1 nodes and paths of length at least ℓ. Our strict
H-decomposition is similar to the case when we remove paths of length at least ℓ = 3 (see
Lemma 10). The following lemma is one of the most crucial structural properties of partial
H-decompositions that we exploit in the core of our algorithm (see Appendix A).

▶ Lemma 5 (Partial Strict H-Decomposition, Closure under taking minimums). Let F be
a forest and layer1, layer2 : V (F) → N ∪ {∞} be two partial strict H-decompositions. Let
layer : V (F)→ N ∪ {∞} with

layer(v) = min(layer1(v), layer2(v))

for every v ∈ V (F). Then, layer is also a partial strict H-decomposition.

DISC 2023

23:10 Conditionally Optimal Parallel Coloring of Forests

From a high level point of view, Lemma 5 says that we can independently compute
two partial strict H-decompositions, and even though they might contain conflicting layer
assignments for certain nodes, we can obtain a unified decomposition, by assigning each
node to the smaller layer of the two choices. In fact, this insight also generalizes to more
than two (possibly conflicting) decompositions. At the core of our procedure in Appendix A,
many nodes (independently) learn large parts of the graph. Then, every node computes a
partial decomposition on the parts that it has learned, and in a second step all these partial
decompositions are combined, where each node takes the minimum layer that it got assigned
in any of the decompositions. Taking the minimum is a very efficient procedure in the MPC
model and only requires constant time. The remaining difficulty in Appendix A is to show
that nodes learn large enough parts in the graph in order to make very fast global progress,
that is, we show that the unified decomposition assigns a layer to a large fraction of the
nodes.

4 Strict H-decomposition in MPC

In this section, we present our O(log log n)-round MPC algorithm for computing a strict
H-decomposition. However, the hardest part of that algorithm, that is, assigning each node
that is contained in a small subtree (see definition below) to a layer is deferred to Appendix A.
The algorithm in this section uses n · poly log n global space. In Appendix B we explain how
to extend the algorithm to optimal space.

High Level Overview. For the sake of this high level overview let us first assume that we
compute an H-decomposition with O(log n) layers that may not be strict. Similar to the
classic rake & compress algorithm, our algorithm iteratively assigns nodes to layers. After
assigning a node to some layer we remove it from the graph and continue on the remaining
graph, which may actually become disconnected and turn into a forest. In order to present
the details of the high level intuition we require the definition of a subtree which is central
to our whole approach.

▶ Definition 6 (Subtree). Let T be a tree. A subtree T ′ ⊆ T is a connected induced subgraph
of T such that T \ T ′ contains at most one component.

A subtree T ′ ⊆ F of a forest F is a connected induced subgraph of F such that the number
of components of F \ T ′ is not larger than the number of connected components of F .

The definition of a subtree is best understood in a rooted tree, where the subtree rooted at a
node v is formed by all its descendants.

In order to assign a layer to all nodes of the graph, we iterate the following two steps
until all nodes have received a layer:
1. Assigns a layer to each node contained in a small subtree of size ≤ nδ/10 (SubTreeRC(F)),
2. Assign a layer to each node of degree ≤ 2 in the remaining graph.

This process can be seen as a generalization of the classic rake and compress procedure,
in which one iteratively removes leaves, i.e., subtrees of size 1, and nodes of degree 2. The
rake and compress procedure requires O(log n) iterations to remove all nodes of the graph.
Our generalized process requires O(1/δ) = O(1) in order to assign a layer to every node
of the graph (see Lemma 7 for x = nδ/10). Note that the lemma statement considers a
slightly different process than the one presented in this overview; the difference lies in the
fact that we actually want to compute a strict H-decomposition. However, a similar lemma
holds for the process of this overview. The main contribution and the main difficulty of

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:11

our work lies in the procedure SubTreeRC(F) as nodes do not know whether they are
contained in a small subtree, but still these subtrees can have diameter up to nδ/10, so
conditioned on the 1 vs 2 cycle conjecture it is impossible that a single node can learn the
whole subtree in O(log log n) rounds (we don’t prove this formally, but it’s very unlikely that
such a result holds without breaking the conjecture). We explain the details of the procedure
SubTreeRC(F) in Appendix A.

We continue with our generalized rake and compress statement that shows that a constant
number of iterations of the aforementioned process suffice. As we want to compute a strict
H-decomposition (see Definition 4), we need to slightly modify Step 2 of the above outline,
for which we require further definitions; the details of why SubTreeRC(F) returns layers
that induce a strict H-decomposition are presented in Appendix A.

A path in a graph is a degree-2 path if all of its nodes, including its endpoints have
degree 2. The length of a path is the number of nodes in the path, e.g., a single node is a
path of length 1.

The following lemma is easiest to be understood when setting x = ℓ = 1 where the process
(almost) equals the classic rake & compress process – in fact it consists of a rake step, a
compress step, and another rake step – and the theorem shows that it removes 1/3 of the
nodes (2/3 of the nodes remain in the graph).

▶ Lemma 7 (Generalized rake and compress). Let x, ℓ ∈ Z. Consider a process on a tree T

that consists of the following steps:
1. Remove (at least) all subtrees of size ≤ x from T , resulting in T1,
2. Remove (at least) all nodes contained in a degree-2 path of length at least ℓ from T1,

resulting in T2,
3. Remove (at least) all nodes with degree ≤ 1 from T2.

The number of nodes remaining is at most a 1/(1 + (x + 1)/2ℓ) = O(ℓ/x) fraction of the
nodes from T . The degrees of nodes in Step 2) and 3) of the process are with respect to the
graph induced by remaining nodes at the respective step.

We now state a lemma for a key subroutine that we will use as black box in this section
and dedicate Appendix A to designing an algorithm that proves the lemma.

▶ Lemma 8 (SubTreeRC). Let F be a forest on n vertices. There exists a deterministic
MPC algorithm SubTreeRC with O(nδ) local space, 0 < δ < 1, and Õ(n) global space
which takes F as input and computes in O(log log n) rounds a partial strict H-decomposition
layer : V (F) 7→ [⌈log(|V (F)|+ 1)⌉] ∪ {∞} such that layer(v) <∞ for every node v ∈ V (F)
contained in a subtree of size nδ/10.

Our MPC algorithm for computing strict H-decomposition appears in Algorithm 1. We
will now prove the correctness and progress guarantees of our algorithm.

▶ Lemma 9. At the end of each iteration i, we have that layer is a partial strict H-
decomposition with at most (i + 1) · offset layers.

▶ Lemma 10. In iteration i, Algorithm 1 correspond to a generalized rake and compress step
with x = nδ/10 and ℓ = 3.

▶ Corollary 11. In iteration i, Algorithm 1 correspond to a generalized rake and compress
step with x = 1 and ℓ = 3.

DISC 2023

23:12 Conditionally Optimal Parallel Coloring of Forests

Algorithm 1 Strict H-decomposition.

1: Throughout V∞ = {v ∈ F | layer(v) =∞} denotes the set of nodes whose layer equals
∞.

2: function StrictHDecomp(Forest F)
3: Initialize: layer(v) =∞ for all v ∈ V (F); offset← ⌈log(|V (F)|+ 1)⌉+ 1
4: for i = 1, 2, . . . , ⌈10/δ⌉ do
5: Fi ← F [V∞]
6: layer← i · offset + SubTreeRC(Fi, x = nδ/10)
7: Let V pivot

i ← {v ∈ V∞ | dV∞(v) ≤ 2, dV∞(w) ≤ 2 for all w ∈ N(v)}
8: layer(v)← (i + 1) · offset for every node v ∈ V pivot

i

9: layer(v)← (i + 1) · offset for every node v ∈ V∞ with ≤ 1 in V∞

10: return layer

▶ Theorem 12. Algorithm StrictHDecomp(F) (Algorithm 1) applied to some forest F

computes a strict H-decomposition of F with O(log n) layers, uses O(log log n) low-space
MPC rounds and Õ(n) global space.

Proof. By Lemmas 7 and 10, in each iteration, the number of nodes in the forest shrinks by
a factor of O(nδ/10). Therefore, after O(1/δ) iterations of the for loop, the number of nodes
with layer ∞ will be zero.

By Lemma 9, in an iteration i, we produce a partial strict H-decomposition with at
most (i + 1) · offset layers and in the next iterations j > i, we compute a partial strict
H-decomposition of the nodes that received layer ∞ (V∞) in iteration i. The offset value
ensures that the nodes in V∞ get a higher layer than the nodes in V \ V∞. After i = O(1/δ)
iterations, each node has a layer at most O(log n) since (i + 1) · offset = O(log n), and hence
we produce a valid strict H-decomposition.

Lemma 8 ensures that implementing each iteration takes O(log log n) low-space MPC
rounds and Õ(n) global space. The theorem follows because there are just O(1/δ) iterations.

◀

5 Coloring, MIS, and Matching

The following theorem is proven at the end of the section.

▶ Theorem 13. There is a deterministic O(log log n) round algorithm for 3-coloring trees in
the low-space MPC model using Õ(n) words of global space.

For an input tree F , consider having a strict H-decomposition layer : V (F)→ N described
in Definition 4, which we get from Algorithm 1 in O(log log n) rounds and Õ(n) words of
global space. We first color the subgraph induced by the nodes in V pivot. Recall that V pivot

is the set of nodes that have no neighbor with a higher layer.

Coloring the Pivot Nodes. The subgraph F [V pivot] has maximum degree 2 each node
v ∈ V pivot has at most two neighbors in V pivot with the same layer, and no neighbors with
higher layer. In order to color F [V pivot], we first run Linial’s O(∆2)-coloring algorithm [34],
which requires O(log∗ n) rounds. Since ∆(F [V pivot]) ≤ 2, Linial’s algorithm results in an
O(1)-coloring which we can convert to a 3-coloring by performing the following: In each round,
all nodes with the highest color among their neighbors in V pivot recolor themselves with

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:13

the smallest color such that a proper coloring is preserved. Clearly, one color is eliminated
in each round and since each node v has at most 2 neighbors in F [V pivot], we achieve a
3-coloring of F [V pivot] in a constant number of rounds.

Coloring the Remaining Nodes. We will now compute a 3-coloring of the nodes in V \V pivot.
We first orient all edges e = {u, v} with u, v ∈ V \ V pivot from u to v if layer(u) < layer(v)
and arbitrarily if layer(u) = layer(v). The following lemma will help us to ensure that we do
not create conflicts with the 3-coloring computed on V pivot.

▶ Lemma 14. Each node in v ∈ V \ V pivot has at most two forbidden colors. If v has an
outgoing edge, then it can have at most one forbidden color.

Proof. Each node in v ∈ V \ V pivot has at most two neighbors in V pivot. This is because
nodes in V pivot do not have neighbors in higher layer, so v can only have neighbors in V pivot

at the same or higher layer. By Definition 4, v can have at most two such neighbors.
Nodes v with one outgoing edge can have at most one neighbor in V pivot, as otherwise v

has three neighbors with same or higher layer, and Definition 4 is violated. So if v has an
outgoing edge, it can have at most one forbidden color. ◀

In what follows, each node v ∈ V \ V pivot will remember its at most two forbidden colors
due to neighbors in V pivot. Definition 4 also guarantees that all nodes in V \ V pivot will
have at most one outgoing edge. So the nodes w ∈ V \ V pivot with no outgoing edge pick an
arbitrary color that is not forbidden as their final color.

In order to properly color the nodes with exactly one outgoing edge, consider the following
centralized procedure: Color the nodes one by one in a greedy manner starting from the
highest layer and with an arbitrary order within one layer. Here, greedy means, that a node
picks the smallest color that is not forbidden and not used by any of its already colored
neighbors. This process computes a proper 3-coloring as each node will have one color used
by the neighbor along its outgoing edge, and at most one forbidden color. The output of
a node v ∈ V \ V pivot in this centralized procedure only depends on the directed path of v

obtained by following outgoing edges starting at v. In the following lemma we show that
this directed path cannot be too long.

▶ Lemma 15. The directed path of a node v ∈ V \ V pivot obtained by following outgoing
edges starting at v has length at most O(log n).

Proof. Consider a directed edge (u, w) in the directed path of v. If layer(u) = layer(w), then
w cannot have an outgoing edge as it will have two neighbors in V \ V pivot with same or
higher layer, violating Definition 4. In other words, if layer(u) = layer(w), then the directed
path of v ends at w.

Therefore, if we go along the directed path, the layer of the nodes either strictly increases
or the path does not continue. Since there are O(log n) layers in the H-decomposition, the
length of a directed path is at most O(log n). ◀

In our MPC algorithm, the idea is for each node to learn its O(log n) length directed path
by performing graph exponentiation only along the directed edges. Since all nodes with no
outgoing edges are already colored with their final color, consider performing the following
MPC algorithm only for nodes with one outgoing edge: Each node computes its final color
after gathering its directed path by performing O(log log n) graph exponentiation steps along
directed edges.

DISC 2023

23:14 Conditionally Optimal Parallel Coloring of Forests

Proof of Theorem 13. Correctness follows from the fact that each node can recolor itself
with its final color when seeing its whole directed path. The runtime follows from the fact
that we only perform O(log log n) graph exponentiation steps and color the directed paths.

Let us analyze the space usage of our algorithm. Since the length of a directed path
stored by each node during the algorithm is at most O(log n), we do not violate global space.
Note that the sequential coloring of frozen layers does not require additional space. Notice
that even though each node v is the source of at most one request, multiple nodes may send
a request to v. Hence, during graph exponentiation, node v may have to communicate with
a large number of nodes in lower layers. To mitigate this issue, we perform a load balancing
process by sorting all the at most n requests by the ID of their destination. This can be done
deterministically in O(1) rounds. Now, all the requests with destination v lie in consecutive
machines, and therefore, we can broadcast the response of v to all these machines in O(1)
rounds by creating a constant depth broadcast tree on these machines. Therefore, each step
of graph exponentiation can be done in O(1) rounds, which leads to an overall running time
of O(log log n) rounds. ◀

MIS and Maximal Matching

The maximal independent set and maximal matching algorithms follow from Theorem 13.

▶ Theorem 16. There is a deterministic O(log log n) round MIS algorithm for trees in the
low-space MPC model using Õ(n) words of global space.

Proof. By Theorem 13, we can color the tree with 3 colors. For all colors i, perform the
following. Nodes colored i add themselves to the independent set, and all nodes adjacent
to nodes colored i remove themselves from the graph. Clearly this results in a maximal
independent set in O(1) rounds and the space requirements are satisfied. ◀

▶ Theorem 17. There is a deterministic O(log log n) round maximal matching algorithm
for trees in the low-space MPC model using Õ(n) words of global space.

Proof. By Theorem 13, we can color the tree with 3 colors using a H-decomposition. Recall
that in the decomposition, each node v with layer(v) = i has at most two neighbors with
layer at least i. Let us define the parent nodes of v. We orient an edge {u, v} from v to u if
(i) u belongs to a strictly higher layer than v or (ii) u belongs to the same layer and has a
higher ID. For all colors i, perform the following. Node v colored i proposes to its highest ID
outgoing neighbor u, and u accepts the proposal of the highest ID proposer. If u accepts
v’s proposal in which case the edge {u, v} joins the matching. If u rejects v’s proposal, it
means that u is matched with some other node and then we repeat the same procedure with
v’s other possible out-neighbor. Note that when a node joins the matching, it prevents all
other incident edges from joining the matching. As a result, all nodes colored i have either
joined the matching or they have no out-going edges. After iterating through all color classes,
all nodes have either joined the matching or they have no incident edges, implying that all
their original neighbors belong to the matching. This results in a maximal matching in O(1)
rounds and the space requirements are satisfied. ◀

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:15

References
1 Noga Alon, Lásló Babai, and Alon Itai. A Fast and Simple Randomized Parallel Algorithm

for the Maximal Independent Set Problem. Journal of Algorithms, 7(4):567–583, 1986.
doi:10.1016/0196-6774(86)90019-2.

2 Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally
Checkable Labelings with Small Messages. In the Proceedings of the International Symposium
on Distributed Computing (DISC), pages 8:1–8:18, 2021. doi:10.4230/LIPIcs.DISC.2021.8.

3 Alkida Balliu, Rustam Latypov, Yannic Maus, Dennis Olivetti, and Jara Uitto. Optimal
Deterministic Massively Parallel Connectivity on Forests. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2589–2631, 2023. doi:10.
1137/1.9781611977554.ch99.

4 Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient Deterministic Distributed
Coloring with Small Bandwidth. In PODC ’20: ACM Symposium on Principles of Distributed
Computing (PODC), pages 243–252, 2020. doi:10.1145/3382734.3404504.

5 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using nash-williams decomposition. Distributed Comput., 22(5-6):363–379, 2010. doi:
10.1007/s00446-009-0088-2.

6 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. Journal of the ACM, 63(3):20:1–20:45, 2016.

7 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel computation of matching and
mis in sparse graphs. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, pages 481–490, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293611.3331609.

8 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Łącki, and Vahab Mirrokni.
Near-Optimal Massively Parallel Graph Connectivity. In FOCS, 2019. doi:10.1109/FOCS.
2019.00095.

9 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the Linear-memory Barrier in
MPC: Fast MIS on Trees with Strongly Sublinear Memory. Theoretical Computer Science,
849:22–34, 2021. doi:10.1016/j.tcs.2020.10.007.

10 Yi-Jun Chang. The Complexity Landscape of Distributed Locally Checkable Problems on
Trees. In DISC, pages 18:1–18:17, 2020. doi:10.4230/LIPIcs.DISC.2020.18.

11 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (∆ + 1)-Coloring in Congested Clique, Massively Parallel Computation, and
Centralized Local Computation. In PODC, 2019. doi:10.1145/3293611.3331607.

12 Yi-Jun Chang and Seth Pettie. A Time Hierarchy Theorem for the LOCAL Model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

13 Sam Coy and Artur Czumaj. Deterministic Massively Parallel Connectivity. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), 2022. doi:10.1145/3519935.3520055.

14 Artur Czumaj, Peter Davies, and Merav Parter. Graph Sparsification for Derandomizing
Massively Parallel Computation with Low Space. In the Proceedings of the Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 175–185, 2020. doi:10.1145/
3350755.3400282.

15 Artur Czumaj, Peter Davies, and Merav Parter. Component Stability in Low-Space Massively
Parallel Computation. In PODC, 2021. doi:10.1145/3465084.3467903.

16 Artur Czumaj, Peter Davies, and Merav Parter. Improved Deterministic (∆ + 1)-Coloring in
Low-Space MPC. In PODC, pages 469–479, 2021. doi:10.1145/3465084.3467937.

17 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round
coloring in congested clique and MPC. SIAM Journal on Computing, 50(5):1603–1626, 2021.
doi:10.1137/20M1366502.

18 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, pages 107–113, 2008. doi:10.1145/1327452.1327492.

DISC 2023

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.1137/1.9781611977554.ch99
https://doi.org/10.1137/1.9781611977554.ch99
https://doi.org/10.1145/3382734.3404504
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1145/3293611.3331609
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1016/j.tcs.2020.10.007
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1137/17M1157957
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3465084.3467903
https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1137/20M1366502
https://doi.org/10.1145/1327452.1327492

23:16 Conditionally Optimal Parallel Coloring of Forests

19 Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 270–277, 2016.

20 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt Rubin-
feld. Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex
Cover. In PODC, pages 129–138, 2018. doi:10.1145/3212734.3212743.

21 Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhoň. Im-
proved Distributed Network Decomposition, Hitting Sets, and Spanners, via Derandomization.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2532–2566, 2023. doi:10.1137/1.9781611977554.ch97.

22 Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC Algorithms for MIS, Matching,
and Coloring on Trees and Beyond. In DISC, 2020. doi:10.4230/LIPIcs.DISC.2020.34.

23 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional Hardness Results for Massively
Parallel Computation from Distributed Lower Bounds. In FOCS, pages 1650–1663, 2019.
doi:10.1109/FOCS.2019.00097.

24 Mohsen Ghaffari and Ali Sayyadi. Distributed Arboricity-Dependent Graph Coloring via
All-to-All Communication. In ICALP, pages 142:1–142:14, 2019. doi:10.4230/LIPIcs.ICALP.
2019.142.

25 Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifications
in Massively Parallel Computation and Centralized Local Computation. In SODA, 2019.
doi:10.1137/1.9781611975482.99.

26 Jeff Giliberti, Manuela Fischer, and Christoph Grunau. Deterministic massively parallel
symmetry breaking for sparse graphs. CoRR, abs/2301.11205, 2023. doi:10.48550/arXiv.
2301.11205.

27 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Takao Asano, Shin-ichi Nakano, Yoshio Okamoto, and Osamu
Watanabe, editors, Algorithms and Computation, pages 374–383, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

28 Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka
Suomela, Jara Uitto, and Hossein Vahidi. Fast dynamic programming in trees in the mpc
model, 2023. arXiv:2305.03693.

29 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. ACM SIGOPS Operating Systems
Review, pages 59–72, 2007. doi:10.1145/1272996.1273005.

30 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In SODA, 2010. doi:10.1137/1.9781611973075.76.

31 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: A
Method for Solving Graph Problems in MapReduce. In SPAA, pages 85–94, 2011. doi:
10.1145/1989493.1989505.

32 Rustam Latypov and Jara Uitto. Deterministic 3-coloring of trees in the sublinear MPC model.
CoRR, abs/2105.13980, 2021. arXiv:2105.13980.

33 Christoph Lenzen and Roger Wattenhofer. Brief Announcement: Exponential Speed-Up of
Local Algorithms Using Non-Local Communication. In PODC, 2010. doi:10.1145/1835698.
1835772.

34 Nathan Linial. Distributive Graph Algorithms – Global Solutions from Local Data. In FOCS,
1987. doi:10.1109/SFCS.1987.20.

35 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

36 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
Journal on Computing, 15:1036–1053, 1986. doi:10.1137/0215074.

37 Crispin Nash-Williams. Decomposition of Finite Graphs Into Forests. Journal of the London
Mathematical Society, s1-39:12, 1964. doi:10.1112/jlms/s1-39.1.12.

https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1137/1.9781611977554.ch97
https://doi.org/10.4230/LIPIcs.DISC.2020.34
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.4230/LIPIcs.ICALP.2019.142
https://doi.org/10.4230/LIPIcs.ICALP.2019.142
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.48550/arXiv.2301.11205
https://doi.org/10.48550/arXiv.2301.11205
https://arxiv.org/abs/2305.03693
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1989493.1989505
https://arxiv.org/abs/2105.13980
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0215074
https://doi.org/10.1112/jlms/s1-39.1.12

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:17

38 Öjvind Johansson. Simple Distributed ∆ + 1-coloring of Graphs. Information Processing
Letters, pages 229–232, 1999. doi:10.1016/S0020-0190(99)00064-2.

39 Merav Parter. (δ + 1) coloring in the congested clique model. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, International Colloquium
on Automata, Languages, and Programming, (ICALP), volume 107, pages 160:1–160:14, 2018.
doi:10.4230/LIPIcs.ICALP.2018.160.

40 Merav Parter and Hsin-Hao Su. Randomized (δ + 1)-coloring in o(log∗ δ) congested clique
rounds. In 32nd International Symposium on Distributed Computing (DISC), volume 121,
pages 39:1–39:18, 2018. doi:10.4230/LIPIcs.DISC.2018.39.

41 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits (On Lower
Bounds for Modern Parallel Computation). Journal of the ACM, 2018. doi:10.1145/3232536.

42 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network de-
composition and distributed derandomization. In STOC, pages 350–363, 2020. doi:
10.1145/3357713.3384298.

43 Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
44 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster Computing with Working Sets. In the Proceedings of the SENIX Conference
on Hot Topics in Cloud Computing (HotCloud), 2010. doi:10.5555/1863103.1863113.

A Massively Parallel Subtree Rake and Compress

This section is dedicated to designing an algorithm that proves Lemma 8, which states that
we can compute in O(log log n) rounds a partial strict H-decomposition that assigns each
node contained in a subtree of size O(nδ/10) to one of O(log n) layers. We restate the lemma.

▶ Lemma 8 (SubTreeRC). Let F be a forest on n vertices. There exists a deterministic
MPC algorithm SubTreeRC with O(nδ) local space, 0 < δ < 1, and Õ(n) global space
which takes F as input and computes in O(log log n) rounds a partial strict H-decomposition
layer : V (F) 7→ [⌈log(|V (F)|+ 1)⌉] ∪ {∞} such that layer(v) <∞ for every node v ∈ V (F)
contained in a subtree of size nδ/10.

Our algorithm critically relies on the balanced graph exponentiation technique mentioned
in Section 1.2 and explained in detail in the full version. In the following definition, you
should think about U as being the set of nodes that v has stored in its local memory after
the balanced graph exponentiation. We refer to U as good if it contains all nodes within
distance O(log n) of v, except for potentially one direction, for which no node is contained
in U .

▶ Definition 18 (U is a good subset for v). Let F be a forest, U ⊆ V (F) and v ∈ V (F). We
say that U is a good subset for v if
1. v ∈ U ,
2. |NF (v) \ U | ≤ 1, i.e., v has at most one neighbor in F not in U ,
3. NF (w) ⊆ U for every w ∈ U \ {v} with dF (v, w) ≤ 3L where L := ⌈log(|U |+ 1)⌉.

In Appendix A.1, we give a peeling algorithm that takes as input a set U and computes
a partial strict H-decomposition with O(log n) layers by repeatedly peeling off low-degree
vertices contained in U . Moreover, if U is good for v, then v gets assigned to one of
the O(log n) layers. This peeling algorithm will later be simulated without any further
communication on the machine that has stored the set U in its memory.

DISC 2023

https://doi.org/10.1016/S0020-0190(99)00064-2
https://doi.org/10.4230/LIPIcs.ICALP.2018.160
https://doi.org/10.4230/LIPIcs.DISC.2018.39
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.5555/1863103.1863113

23:18 Conditionally Optimal Parallel Coloring of Forests

Using the balanced graph exponentiation technique, we can compute a collection of sets
U1, U2, . . . , Uk such that for each node v contained in a subtree of size at most nδ/10 there
exists some subset Uj that is good for v. In particular, in the full version, we prove the
following statement.

▶ Lemma 19 (Lemma from Balanced Exponentiation). Let F be a forest on n vertices. There
exists a deterministic low-space MPC algorithm with O(nδ) local space, 0 < δ < 1, and
O(n · poly(log n)) global space which takes F as input and computes in O(log log n) rounds a
collection of non-empty sets U1, U2, . . . , Uk ⊆ V (F) such that
1. (Local Space) |Uj | = O(nδ) for every j ∈ [k],
2. (Global Space)

∑k
j=1 |Uj | = O(n · poly(log n)) and

3. for every v ∈ V (F) which is contained in a subtree of size at most nδ/10, there exists a
j ∈ [k] such that Uj is a good subset for v (see Definition 18).

Moreover, the algorithm also computes for each Uj the forest F [Uj] induced by vertices in
Uj and stores it on a single machine.

Our final MPC algorithm for proving Lemma 8 first computes a collection of sets
U1, U2, . . . , Uk using Lemma 19. Then, the machine storing Uj locally simulates the peel-
ing algorithm of Appendix A.1 with input Uj . As a result, we obtain one partial strict
H-decomposition for each set Uj . These partial strict H-decompositions are then combined
into one partial strict H-decomposition by assigning each node to the smallest layer assigned
by any of the partial strict H-decompositions. More details can be found in Appendix A.2.

A.1 The Conservative Peeling Algorithm
Algorithm 2 computes a partial strict H-decomposition by repeatedly removing low-degree
vertices contained in U .

Algorithm 2 Conservative Peeling Algorithm.

1: function ConservativePeeling(Forest F , Subset U ⊆ V (F))
2: V≥1 ← V (F), layer : V (F) 7→ N ∪ {∞}, L← ⌈log(|U |+ 1)⌉
3: for i = 1, 2, . . . , L do
4: We define N≥i(v) := NF [V≥i](v) for every v ∈ V≥i.
5: V pivot

i ← {v ∈ V≥i ∩ U | N≥i(v) ⊆ U and ∀ w ∈ N≥i(v) ∪ {v}: |N≥i(w)| ≤ 2}.
6: Vi ← V pivot

i ∪ {v ∈ V≥i ∩ U | |N≥i(v) \ V pivot
i | ≤ 1}

7: V≥i+1 ← V≥i \ Vi

8: layer(v)← i for every v ∈ Vi

9: layer(v)←∞ for every v ∈ V≥L+1
10: return layer

If we would just be interested in computing a partial H-decomposition instead of a strict
one, then we could replace Algorithm 2 with the single line Vi ← {v ∈ V≥i∩U | |N≥i(v)| ≤ 2}.

We first show that Algorithm 2 indeed computes a partial strict H-decomposition.

▶ Lemma 20. Let F be a forest and U ⊆ V (F). Let layer : V (F) 7→ N∪{∞} be the mapping
computed by Algorithm 2 when given F and U as input. Then, layer is a partial strict
H-decomposition as defined in Definition 4.

Next, we show that if U is a good subset for v, as defined in Definition 18, then v gets
assigned to one of the O(log n) layers.

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:19

▶ Lemma 21. Let F be a forest, U ⊆ V (F) and v ∈ V (F). Let layer : V (F) 7→ N ∪ {∞} be
the mapping computed by Algorithm 2 when given Fand U as input. If U is a good subset
for v (see Definition 18), then layer(v) ≤ L := ⌈log(|U |+ 1)⌉.

Finally, we show that we can locally simulate Algorithm 2 by only knowing the forest
induced by vertices in U and the degree of each node U in the original forest.

▶ Lemma 22 (Local Sequential Simulation). Let F be an arbitrary forest and U ⊆ V (F) be
a non-empty subset. Let layer : V (F) 7→ N ∪ {∞} be the mapping computed by Algorithm 2
when given F and U as input. There exists a sequential algorithm running in O(|U |) space
with the following guarantee: The input of the algorithm is the forest F [U] and the degree
degF (u) of each node u ∈ U in the forest F . The algorithm outputs for each node v ∈ U its
layer layer(v).

A.2 Subtree Rake and Compress
Algorithm 3 computes a partial strict H-decomposition with O(log n) layers where each node
in a subtree of size at most x is assigned to one of the layers. We later set x = nδ/10. The
correctness follows from the key structural property that partial strict H-decompositions are
closed under taking minimums (Lemma 5).

Algorithm 3 SubTreeRC Algorithm.

1: function SubTreeRC(forest F , x ∈ N)
2: Let U1, U2, U3, . . . , Uk ⊆ V (F) such that for every node v ∈ V (F) contained in a

subtree of size at most x in F , there exists some j ∈ [k] such that Uj is a good subset for
v (see Definition 18)

3: layerj ← ConservativePeeling(F, Uj) for every j ∈ [k] ▷ layerj : V (F) 7→ N ∪ {∞}
4: layer(v) = minj∈[k] layerj(v) ▷ layer : V (F) 7→ N ∪ {∞}
5: return layer

▶ Lemma 23. The algorithm above computes a partial H decomposition layer : V (F) 7→
[⌈log(|V (F)|+ 1)⌉] ∪ {∞} such that layer(v) <∞ for every node v ∈ V (F) contained in a
subtree of size at most x.

Proof. Lemma 20 states that layerj is a strict partial H-decomposition for every j ∈ [k].
Hence, Lemma 5 implies that layer is also a strict H-decomposition. Moreover, for every
node v ∈ V (F) contained in a subtree of size at most x in F , there exists some j ∈ [k] such
that Uj is a good subset for v. Thus, Lemma 21 gives that layerj(v) < ∞ and therefore
layer(v) <∞. ◀

We are now ready to prove Lemma 8.

Proof of Lemma 8. We first run the balanced exponentiation algorithm of Lemma 19 which
runs in O(log log n) rounds and needs Õ(n) global space. As a result, we obtain a collection of
non-empty subsets U1, U2, . . . , Uk ⊆ V (F) satisfying the three properties stated in Lemma 19.
In particular, for each j ∈ [k], there exists one machine which has stored F [Uj]. As
|Uj | = O(nδ) and F is a forest, F [Uj] indeed fits into one machine. Moreover, one can
compute in O(1) rounds for each node v ∈ V (F) its degree degF (v) and store degF (v) for
every node v ∈ Uj in the same machine as we store F [Uj] using standard MPC primitives
[27]. Let layerj ← ConservativePeeling(F, Uj). Lemma 22 implies that we can compute

DISC 2023

23:20 Conditionally Optimal Parallel Coloring of Forests

layerj(u) for every node u ∈ Uj locally on the machine that stores F [Uj] without any further
communication. Then, in O(1) rounds we can compute layer(v) = minj∈[k] layerj(v) for
every v ∈ V using the fact that we can sort N items in O(1) rounds in the low-space MPC
model with Õ(N) global space [27]. In more detail, we create one tuple (v, layerj(v)) for
every j ∈ [k] and u ∈ Uj and one tuple (v,∞) for every node v ∈ V (F). Then, we sort the
tuples according to the lexicographic order. Given the sorted tuples, it is straightforward
to determine layer(v) for every v ∈ V . As

∑k
j=1 |Uj | = Õ(n), it follows that the algorithm

needs Õ(n) global space. It thus remains to argue about the correctness, which directly
follows from the third property of Lemma 19 and Lemma 23. ◀

B Coloring, MIS, Matching, and H-decomposition with Optimal
Space

In this section we show how to obtain optimal global space by equipping the algorithm from
Theorems 13, 16, and 17 with suitable pre- and processing steps that free additional space.

▶ Theorem 1. There are deterministic O(log log n)-round low-space MPC algorithms for 3-
coloring, maximal matching and maximal independent set (MIS) on forests. These algorithms
use O(n) global space.

Proof. We perform the standard procedure of iteratively putting in layer i nodes of degree
at most 2 for i = 1 to O(log log n). This removes O(poly log n) fraction of the nodes since
each iteration layers a constant fraction of the nodes. Therefore, the new number of nodes
is n′ = n/ poly log n, and an MPC algorithm using Õ(n′) global space uses O(n) words of
global space.

So we freeze these initial O(log log n) layers obtain G′ remaining graph with n′ =
n/ poly log n nodes. Then we apply Theorem 13 to compute a 3-coloring in G′ in O(log log n)
rounds and O(n) global space. Finally we complete the solution on the nodes in the frozen
layers one layer at a time taking an additional O(log log n) rounds.

The claim for MIS and maximal matching follows by the proofs of Theorem 16 and
Theorem 17 respectively after computing the H-decomposition and the 3-coloring. ◀

Using a similar preprocessing step, we can also show that a strict H-decomposition of
Theorem 12 can be computed with optimal global space.

▶ Theorem 2. There is a deterministic O(log log n)-rounds low-space MPC algorithm that
computes a strict H-decomposition with O(log n) layers on forests in O(n) global space.

Proof. Same as above, iteratively putting in layer i the pivot nodes and nodes of degree 1 as
in Algorithm 1 of Algorithm 1 for i = 1 to O(log log n). By Corollary 11 and using Lemma 7
with x = 1 and ℓ = 3, we get that each iteration layers a constant fraction of nodes, which
implies that O(poly log n) fraction of the nodes are removed after O(log log n) iterations.

Now we have a partial strict H-decomposition if we assign layer ∞ to the remaining
nodes. These nodes form a graph G′ with n′ = n/ poly log n nodes, and so we can compute
a strict H-decomposition on G′ using Algorithm 1 in O(log log n) rounds and Õ(n′) = O(n)
global space. Therefore, we have computed a strict H-decomposition of G in O(log log n)
rounds and in O(n) global space. ◀

On the Inherent Anonymity of Gossiping
Rachid Guerraoui #

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Anne-Marie Kermarrec #

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Anastasiia Kucherenko #

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Rafael Pinot #

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Sasha Voitovych1 #

University of Toronto, Canada

Abstract
Detecting the source of a gossip is a critical issue, related to identifying patient zero in an epidemic,
or the origin of a rumor in a social network. Although it is widely acknowledged that random and
local gossip communications make source identification difficult, there exists no general quantification
of the level of anonymity provided to the source. This paper presents a principled method based on
ε-differential privacy to analyze the inherent source anonymity of gossiping for a large class of graphs.
First, we quantify the fundamental limit of source anonymity any gossip protocol can guarantee
in an arbitrary communication graph. In particular, our result indicates that when the graph has
poor connectivity, no gossip protocol can guarantee any meaningful level of differential privacy. This
prompted us to further analyze graphs with controlled connectivity. We prove on these graphs that
a large class of gossip protocols, namely cobra walks, offers tangible differential privacy guarantees
to the source. In doing so, we introduce an original proof technique based on the reduction of a
gossip protocol to what we call a random walk with probabilistic die out. This proof technique is of
independent interest to the gossip community and readily extends to other protocols inherited from
the security community, such as the Dandelion protocol. Interestingly, our tight analysis precisely
captures the trade-off between dissemination time of a gossip protocol and its source anonymity.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols

Keywords and phrases Gossip protocol, Source anonymity, Differential privacy

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.24

Related Version Full Version: https://arxiv.org/abs/2308.02477 [28]

Acknowledgements The authors are thankful to Nirupam Gupta and Pierre-Louis Roman for fruitful
discussions on the early version of the paper, and to the anonymous reviewers of DISC 2023 for their
constructive comments.

1 Introduction

A gossip protocol (a.k.a., an epidemic protocol) is a distributed algorithm that disseminates
information in a peer-to-peer system [47, 1, 34, 38, 19, 24]. Gossip protocols have been long
used to model the propagation of infectious diseases [30, 37, 3], as well as rumors in social
networks where users randomly exchange messages [17, 26]. It is commonly accepted that
random and local communications between the users make source identification hard, and thus

1 Part of the work was done when Sasha Voitovych was an intern at EPFL as part of the EPFL Excellence
Research Internship Program.

© Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko, Rafael Pinot, and
Sasha Voitovych;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rachid.guerraoui@epfl.ch
https://orcid.org/0000-0002-4794-8902
mailto:anne-marie.kermarrec@epfl.ch
https://orcid.org/0000-0001-8187-724X
mailto:anastasiia.kucherenko@epfl.ch
mailto:rafael.pinot@epfl.ch
https://orcid.org/0000-0001-5372-8300
mailto:sasha.voitovych@mail.utoronto.ca
https://orcid.org/0000-0003-1840-476X
https://doi.org/10.4230/LIPIcs.DISC.2023.24
https://arxiv.org/abs/2308.02477
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 On the Inherent Anonymity of Gossiping

provide inherent anonymity to the source of the gossip, i.e., anonymity that comes solely from
the spreading dynamic without relying on any additional cryptographic primitives (as in [42]).
Source anonymity in gossip protocols constitutes an active area of research. On the one hand,
many works aim to establish privacy guarantees for the source of the gossip by concealing it
against an adversary, e.g., hiding the whistleblower on social media [27, 25, 23, 26, 7, 22].
On the other hand, a large effort is put towards identifying privacy limits for the source of a
gossip by designing adversarial strategies that accurately recover the source, e.g., “patient
zero” identification in epidemics [33, 54, 46, 49, 9, 41].

Although a significant amount of research is dedicated to the investigation of source
anonymity, existing approaches (as summarized in [33]) mainly focus on specific settings,
such as locating the source of a gossip for a particular protocol, hiding it against a chosen
adversarial strategy or examining the problem on a narrow family of graphs (trees, complete
graphs, etc.). This prevents the results from being generalized, and it remains unclear how
hard it is to recover the source of a gossip in general, naturally raising the following question.

What are the fundamental limits and guarantees on the inherent
source anonymity of gossiping in a general setting?

We take an important step towards addressing this question by adapting the celebrated
mathematical framework of ε-differential privacy (ε-DP) to our context [20, 21]. Although
the concept is a gold standard to measure privacy leakage from queries on tabular databases,
it can be also adapted to different privacy semantics and threat models [15]. In our context,
we use ε-DP to measure the inherent source anonymity of gossiping in general graphs. We
adopt a widely used threat model where the adversary aims to guess the source by monitoring
the communications of a set of curious nodes in the graph [33, 46, 48, 54, 16, 23]. Using
differential privacy enables us to overcome the limitations of previous work, as DP guarantees
hold regardless of the exact strategy of the attacking adversary. Additionally, DP guarantees
can be combined with any prior knowledge the adversary has on the location of the source,
making our results generalizable. Our contributions can be summarized as follows.

1.1 Main results
We propose a mathematical framework that adapts the concept of differential privacy to
quantify source anonymity in any graph (Section 3). In doing so, we highlight the importance
of considering two types of adversaries: the worst-case and the average-case. For the worst-
case adversary, we focus on privacy guarantees that hold regardless of the location of the
curious nodes in the graph. In other words, these guarantees hold even if the adversary
knows the communication graph in advance and chooses curious nodes strategically. For
the average-case adversary, we focus on privacy guarantees that hold with high probability
when curious nodes are chosen uniformly at random. Here, the adversary does not know
the structure of the underlying communication graph in advance. Within our mathematical
framework, we establish the following results for both adversarial cases.

Privacy limits. We first quantify a fundamental limit on the level of ε-DP any gossip protocol
can provide on any graph topology (Section 4). This result indicates that no gossip protocol
can ensure any level of differential privacy on poorly connected graphs. This motivates us to
consider graphs with controlled connectivity, namely expander graphs. Expanders are an
important family of strongly connected graphs that are commonly considered in the gossip
protocols literature [8, 29, 11]. On this class, we get the following results.

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:3

Privacy guarantees. We prove that a large class of gossip protocols provides tangible
differential privacy guarantees to the source (Section 5). We first consider the parameterized
family of gossip protocols known as (1 + ρ)-cobra walks [18, 11, 45, 6], which constitutes
a natural generalization of a simple random walk. A cobra walk can be seen as an SIS
(Susceptible-Infected-Susceptible) epidemic, a well-established model for analyzing the spread
of epidemics and viruses in computer networks [30, 37]. In particular, a (1 + ρ)-cobra walk
is an instance of an SIS epidemic scheme where active nodes constitute the infectious set,
the duration of the infectious phase is equal to one and every infected node can only infect
one or two of its neighbors at a time. In order to establish differential privacy guarantees on
this class of gossip protocols, we rely on the critical observation that the cobra walk has a
quantifiable probability of mixing before hitting a curious node (see Section 1.2 for more
details on this observation). This characteristic is not unique to cobra walks, as it is shared
by several other types of gossip protocols. Accordingly, we also show how to generalize
our privacy guarantees to the ρ-Dandelion protocol [7], first introduced as an anonymous
communication scheme for Blockchains.

Dissemination time vs. privacy trade-off. As an important by-product of our analysis, we
precisely capture the trade-off between dissemination time and privacy of a large class of gossip
protocols operating on sufficiently dense graphs we call near-Ramanujan graphs (Section 7).
The privacy-latency tension has been suggested several times in the literature [7, 5, 32].
However, our work presents the first formal proof of this long-standing empirical observation.
Specifically, we show that our privacy guarantees are tight for both (1 + ρ)-cobra walks [11]
and ρ-Dandelion protocol [7]. Additionally, we give a tight analysis of the dissemination time
as a function of parameter ρ. This analysis leads us to conclude that increasing parameter ρ

results in a faster dissemination, but decreases privacy guarantees of the protocol, formally
establishing the existence of a trade-off between privacy and dissemination time. As cobra
walks are strongly related to SIS-epidemics, and Dandelion to anonymous protocols in
peer-to-peer networks, our results are relevant for both epidemic and source anonymity
communities.

1.2 Technical challenges & proof techniques

A major technical contribution of our paper is the privacy guarantee of (1 + ρ)-cobra walks
in non-complete graphs. The derivation of this result has been challenging to achieve for
two reasons. Firstly, our objective is to establish differential privacy guarantees in general
graphs, which is a more complex scenario than that of complete graphs (as seen in [5]),
where any communication between pairs of nodes is equiprobable, and symmetry arguments
can be utilized. Yet, this technique is no longer applicable to our work. The fact that no
symmetry assumptions about graph structure can be made calls for new more sophisticated
proof techniques. Second, cobra walks are challenging to analyze directly. State-of-the-art
approaches analyzing the dissemination time of cobra walks circumvent this issue by analyzing
a dual process instead, called BIPS [11, 12, 6]. There, the main idea is to leverage the duality
of BIPS and cobra walks with respect to hitting times [11]. While hitting times provide
sufficient information for analyzing the dissemination time of a cobra walk, they cannot be
used to evaluate differential privacy, as they do not provide sufficient information about the
probability distribution of the dissemination process. We overcome this difficulty through a
two-step proof technique, described below.

DISC 2023

24:4 On the Inherent Anonymity of Gossiping

Step I: Reduction to a random walk with probabilistic die out. To establish ε-differential
privacy, we essentially show that two executions of the same (1 + ρ)-cobra walk that started
from different sources are statistically indistinguishable to an adversary monitoring a set of
curious nodes. In doing so, we design a novel proof technique that involves reducing the
analysis of gossip dissemination in the presence of curious nodes, to a random walk with
probabilistic die out. Such a protocol behaves as a simple random walk on the communication
graph G, but it is killed at each step (i) if it hits a curious node, or otherwise (ii) with
probability ρ. We show that disclosing the death site of such a random walk to the adversary
results in a bigger privacy loss than all the observations reported by the curious nodes during
the gossip dissemination. Then, we can reduce the privacy analysis of cobra walks to the
study of such a random walk with probabilistic die out.

Step II: Analysis of a random walk with probabilistic die out. To study a random walk with
probabilistic die out, we characterize the spectral properties of the (scaled) adjacency matrix
Q corresponding to the subgraph of G induced by the non-curious nodes. In particular, we
show that if curious nodes occupy a small part of every neighborhood in G, then the subgraph
induced by non-curious nodes (i) is also an expander graph and (ii) has an almost-uniform
first eigenvector. While (i) is a direct consequence of the Cauchy Interlacing Theorem, (ii) is
more challenging to obtain. We need to bound Q from above and below by carefully designed
matrices with an explicit first eigenvector. Combining (i) and (ii) allows us to precisely
estimate the behavior of the random walk with probabilistic die out, which yields the desired
differential privacy guarantees.

Generality of the proof. The reduction to a random walk with probabilistic die out is
the most critical step of our proof. It is general and allows us to analyze several other
protocols without having to modify the most technical part of the proof (Step II above). We
demonstrate the generality of this technique by applying this reduction to the Dandelion
protocol and obtain similar privacy guarantees to cobra walks.

1.3 Related work
Inherent anonymity of gossiping. To the best of our knowledge, only two previous works
have attempted to quantify the inherent source anonymity of gossiping through differential
privacy [5, 32]. The former work [5] is the first to analyze source anonymity using differential
privacy. It measures the guarantees of a class of gossip protocols with a muting parameter
(which we call “muting push” protocols) and contrasts these guarantees with the dissemination
time of these protocols on a complete graph. Both the threat model and the nature of the
technical results in [5] heavily depend on the completeness of the graph. In such a context, the
analysis is considerably simplified for two reasons. Firstly, the presence of symmetry allows
for the curious node locations to be ignored, rendering the average-case and the worst-case
adversaries equivalent. Secondly, in contrast to what would happen in non-complete graphs,
since any node can communicate with any other node in each round, a single round of
communication is sufficient to hide the identity of the source. However, when considering
the spread of epidemics or the propagation of information in social networks, communication
graphs are seldom complete [43]. Our work highlights that non-completeness of the graph
potentially challenges the differential privacy guarantees that gossip protocols can achieve
and also makes it important to distinguish between average and worst-case threat models.
Therefore, our results constitute a step toward a finer-grained analysis of the anonymity of
gossiping in general graphs. Note that our work can be seen as a strict generalization of the

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:5

results of [5], since, in addition to cobra walks and Dandelion, we also show that our proof
techniques described in Section 1.2 apply to “muting push” protocols (see Appendix E of the
full version of the paper [28]).

The second approach [32] addresses a problem that appears to be similar to ours at
first glance, as it aims to quantify source anonymity in non-complete graphs. However, the
authors consider a different threat model, where an adversary can witness any communication
with some probability instead of only those passing through the curious nodes. Furthermore,
the paper only gives negative results and does not provide any differential privacy guarantees,
which is the most technically challenging part of our paper.

Dissemination time vs. privacy trade-off. Several previous works [53, 4, 14, 51] have
suggested the existence of a tension between source anonymity (i.e., privacy) and latency
of message propagation. Under the threat model we consider in this work (with curious
nodes), [7] conjectured that the Dandelion protocol would exhibit a trade-off between (their
definition of) source anonymity and dissemination time. Later, works [5] and [32] provided
more tangible evidence for the existence of a dissemination time vs. privacy trade-off when
analyzing source anonymity through differential privacy. However, these works do not provide
a tight analysis of the tension between dissemination time and privacy, hence making their
observation incomplete. To the best of our knowledge, our work is the first to rigorously
demonstrate the existence of a trade-off between the dissemination time of a gossip protocol
and the privacy of its source thanks to the tightness of our analysis.

2 Preliminaries

For a vector x ∈ Rm, we denote by xi its ith coordinate, i.e., x = (x1, x2, . . . , xm)⊤.
Similarly, for a matrix M ∈ Rm×m′ , we denote by Mij its entry for the ith row and jth
column. Furthermore, for any symmetric matrix M ∈ Rm×m, we denote by λ1(M) ≥
λ2(M) ≥ . . . ≥ λm(M) its eigenvalues. We use 1m ∈ Rm to denote an all-one vector,
Im ∈ Rm×m to denote the identity matrix, Jm ∈ Rm×m to denote an all-one square matrix,
and Om×m′ ∈ Rm×m′ to denote an all-zero matrix. Finally, for any x ∈ Rm, we denote by
||x||p ≜ (

∑m
i=1 |xi|p)1/p the ℓp norm of x for p ∈ [1, ∞) and by ||x||∞ ≜ maxi∈m |xi| the ℓ∞

norm of x.
Throughout the paper, we use the maximum divergence to measure similarities between

probability distributions. We consider below a common measurable space (Ω, Σ) on which
the probability measures are defined. Let µ, ν be two probability measures over Σ. The max
divergence between µ and ν is defined as2

D∞ (µ ∥ ν) ≜ sup
σ∈Σ, µ(σ)>0

ln µ(σ)
ν(σ) .

Furthermore, for two random variables X, Y with laws µ and ν respectively, we use the
notation D∞ (X ∥ Y) to denote D∞ (µ ∥ ν).

2 Note that we allow ν(σ) = 0 in the definition. If ν(σ) = 0 but µ(σ) > 0 for some σ ∈ Σ, the max
divergence is set to ∞ by convention.

DISC 2023

24:6 On the Inherent Anonymity of Gossiping

2.1 Graph theoretical terminology
Consider an undirected connected graph G = (V, E), where V is the set of nodes and E

is the set of edges. G cannot have self-loops or multiple edges. For any v ∈ V , we denote
by N(v) the set containing the neighbours of v in G and by deg(v) the number of edges
incident to v. Furthermore, G is said to be a regular graph, if there exists d(G) such that
deg(v) = d(G) for every v ∈ V ; d(G) is called the degree of the graph. Additionally, for a set
U ⊆ V and v ∈ V , we denote by degU (v) the number of neighbours of v contained in U , i.e.,
degU (v) = |N(v) ∩ U |. Below, we introduce some additional graph terminology.

▶ Definition 1 (Vertex cut & connectivity). A vertex cut of G is a subset of vertices K ⊆ V

whose removal disconnects G or leaves just one vertex. A minimum vertex cut of G is a
vertex cut of the smallest size. The size of a minimum vertex cut for G, denoted κ(G), is
called the vertex connectivity of G.

Consider an undirected connected graph G = (V, E) of size n where V is an ordered set of
nodes. We denote by A the adjacency matrix of G, i.e., Avu = 1 if {v, u} ∈ E and Avu = 0
otherwise. We also denote by Â = D−1/2AD−1/2 the normalized adjacency matrix of G,
where D is the diagonal degree matrix, i.e., Dvu = deg(v) if v = u and 0 otherwise. Since Â

is a symmetric and normalized matrix, the eigenvalues of Â are real valued and λ1(Â) = 1.
Using this terminology, the spectral expansion of G is defined as

λ(G) ≜ max{|λ2(Â)|, |λn(Â)|}. (1)

▶ Definition 2 (Expander graph). Consider an undirected regular graph G. If d(G) = d and
λ(G) ≤ λ, then G is said to be a (d, λ)-expander graph.

2.2 Gossip protocols
Consider an undirected connected communication graph G = (V, E) where two nodes u, v ∈ V

can directly communicate if and only if {u, v} ∈ E. One node s ∈ V , called the source, holds
a unique gossip g to be propagated throughout the graph. In this context, a gossip protocol
is a predefined set of rules that orchestrates the behavior of the nodes with regard to the
propagation of g. Essentially, the goal of a protocol is that with probability 1 every node in
G eventually receives g. We assume discrete time steps and synchronous communication, i.e.,
the executions proceed in rounds of one time step.3 While every node in G has access to the
global clock, we assume that the execution of the protocol starts at a time t⋆ ∈ Z, which is
only known to the source s.

Execution of a gossip protocol. At any point of the execution of the protocol, a node
u ∈ V can either be active or non-active. Only active nodes are allowed to send messages
during the round. A gossip protocol always starts with the source s being the only active
node, and at every given round t + 1 active nodes are the nodes that received the gossip
at round t. We will use Xt ⊆ V to denote the set of active nodes at the beginning of
round t ≥ t⋆ and set Xt⋆ = {s} by convention. Denoting by (u → v) a communication
between nodes u and v, we define C to be the set of all possible communications in G,
i.e., C = {(u → v) : {u, v} ∈ E} ∪ {(u → u) : u ∈ V }. Note that we allow an active node

3 Although, for clarity, we focus on a synchronous communication, our analysis of privacy guarantees in
Section 5 readily extends to an asynchronous setting.

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:7

u to send a fictitious message to itself to stay active in the next communication round.
Then, the tth round of an execution for a given protocol P can be described by a pair
(Xt, Ct), where Xt ⊆ V is a set of active nodes, and Ct is the (multi)set of communications
of C which happened at round t. We denote by S the random variable characterizing the
execution of the protocol. Naturally, an execution is described by a sequence of rounds, i.e.,
S = {(Xt, Ct)}t≥t⋆ . We define expected dissemination time of the protocol as the expected
number of rounds for all nodes to receive the gossip during an execution. Finally, we denote
E the set of all possible executions.

Cobra and random walk. Coalescing-branching random walk protocol (a.k.a., cobra
walk) [18, 11, 45, 6] is a natural generalization of a simple random walk that is notably useful
to model and understand Susceptible-Infected-Susceptible (SIS) epidemic scheme [30, 37].
We consider a (1 + ρ)-cobra walk as studied in [11] with ρ ∈ [0, 1]4. This is a gossip protocol
where at every round t ≥ t⋆, each node u ∈ Xt samples a token from a Bernoulli distribution
with parameter ρ. If the token equals zero, u samples uniformly at random a node v from its
neighbors N(u) and communicates the gossip to it, i.e., (u → v) is added to Ct. If the token
equals one, the protocol branches. Specifically, u independently samples two nodes v1 and
v2 at random (with replacement) from its neighbors and communicates the gossip to both
of them, i.e., (u → v1), and (u → v2) are added to Ct. At the end of the round, each node
u ∈ Xt deactivates. Note that, when ρ = 0, this protocol degenerates into a simple random
walk on the graph; hence it has a natural connection with this random process.

Dandelion protocol. Dandelion is a gossip protocol designed to enhance source anonymity
in the Bitcoin peer-to-peer network. Since it was introduced in [7], it has received a lot of
attention from the cryptocurrency community. Dandelion consists of two phases: (i) the
anonymity phase, and (ii) the spreading phase. The protocol is parameterized by ρ ∈ [0, 1),
the probability of transitioning from the anonymity phase to the spreading phase. Specifically,
the phase of the protocol is characterized by a token anonPhase ∈ {0, 1} held by a global
oracle and initially equal to 0. At the beginning of each round of the Dandelion execution,
if anonPhase = 1 the global oracle sets anonPhase = 0 with probability ρ and keeps
anonPhase = 1 with probability 1 − ρ. Once anonPhase = 0, the global oracle stops
updating the token. Based on this global token, at each round, active nodes behave as follows.
If the anonPhase = 1, the execution is in the anonymity phase and an active node u samples
a node v uniformly at random from its neighborhood N(u) and communicates the gossip
to it, i.e., (u → v) is added to Ct. Afterwards, node u deactivates, i.e., in the anonymity
phase only one node is active in each round. If the anonPhase = 0, the execution is in the
spreading phase. Then the gossip is broadcast, i.e., each node u ∈ Xt communicates the
gossip to all of its neighbors and for ∀v ∈ N(u), (u → v) is added to Ct.

4 Some prior works also study k-cobra walks with branching parameter k ≥ 3 [18]. We do not consider
this class, since our negative result for a 2-cobra walk (Theorem 34 in the full version of the paper [28])
implies that a k-cobra walk for any k ≥ 3 does not satisfy a reasonable level of differential privacy.

DISC 2023

24:8 On the Inherent Anonymity of Gossiping

3 Mathematical framework for source anonymity in general graphs

Given a source and a gossip protocol, we fix the probability space (E , Σ,P), where Σ is
the standard cylindrical σ-algebra on E (as defined in Appendix A.1 of [55]) and P is a
probability measure characterizing the executions of the protocol. In the remaining, to avoid
measurability issues, we only refer to subsets of E from Σ.

3.1 Measuring source anonymity with differential privacy
We now describe the mathematical framework we use to quantify source anonymity of
gossiping. We consider a threat model where an external adversary has access to a subset
F ⊂ V of size f < n − 1 of curious nodes. Curious nodes in F execute the protocol correctly,
but report their communications to the adversary. The adversary aims to identify the
source of the gossip using this information. We distinguish two types of adversaries, namely
worst-case and average-case, depending on the auxiliary information they have on the graph.

Threat models: worst-case and average-case adversaries. On the one hand, a worst-case
adversary is aware of the structure of the graph G and may choose the set of curious nodes
to its benefit. On the other hand, the average-case adversary is not aware of the topology of
G before the start of the dissemination, hence the set of curious nodes is chosen uniformly
at random among all subsets of V of size f . We assume that the messages shared in the
network are unsigned and are passed unencrypted. Also, the contents of transmitted messages
(containing the gossip) do not help to identify the source of the gossip. In other words,
adversaries can only use the information they have on the dissemination of the gossip through
the graph to locate the source. We also assume that the adversary does not know the exact
starting time t⋆ ∈ Z of the dissemination. To formalize the observation received by the
external adversary given a set of curious nodes F , we introduce a function Ψ(F) that takes
as input communications C from a single round and outputs only the communications of C

visible to the adversary. Note that a communication (v → u) is visible to the adversary if
and only if either v or u belongs to F . Consider an execution S = {(Xt, Ct)}t≥t⋆

of a gossip
protocol, and denote by tadv the first round in which one of the curious nodes received the
gossip. Then we denote by Sadv = {Ψ(F)(Ct)}t≥tadv the random variable characterizing the
observation of the adversary for the whole execution. Note that the adversary does not know
t⋆, hence it cannot estimate how much time passed between t⋆ and tadv.
▶ Remark 3. For Dandelion, the adversary actually also has access to the value of anonPhase

in round t, i.e., we have Sadv = {Ψ(F)(Ct), anonPhaset}t≥tadv . We omit this detail from the
main part of the paper for simplicity of presentation, but it does not challenge our results on
privacy guarantees. See Appendix C.4 in the full version of the paper [28] for more details.

Measuring source anonymity. We formalize source anonymity below by adapting the
well-established definition of differential privacy. In the remaining of the paper, for a random
variable A, we will write A(s) to denote this random variable conditioned on the node s ∈ V \F

being the source. In our setting, we say that a gossip protocol satisfies differential privacy
if for any u, v ∈ V the random sequences S

(v)
adv and S

(u)
adv are statistically indistinguishable.

More formally, we define differential privacy as follows.

▶ Definition 4 (Differential privacy). Consider an undirected graph G = (V, E) and a set of
curious nodes F ⊂ V . Then, a gossip protocol satisfies ε-differential privacy (ε-DP) for the
set F if, for any two nodes v, u ∈ V \ F , the following holds true

D∞

(
S

(v)
adv ∥ S

(u)
adv

)
≤ ε.

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:9

When establishing differential privacy guarantees against a worst-case adversary, we aim
to find a value ε which only depends on the number of curious nodes f , and is independent
of the identity of the nodes in F . Accordingly, we say that a gossip protocol satisfies ε-DP
against a worst-case adversary if it satisfies ε-DP for any set F ⊂ V such that |F | = f .

When establishing differential privacy against an average-case adversary, we aim to find
a value of ε for which the protocol satisfies ε-DP with high probability5 when choosing the f

curious nodes uniformly at random from V . Formally, let Uf (V) be the uniform distribution
over all subsets of V of size f , a gossip protocol satisfies ε-DP against an average-case
adversary if

PF ∼Uf (V)

[
max

v,u∈V \F
D∞

(
S

(v)
adv ∥ S

(u)
adv

)
≤ ε

]
≥ 1 − 1

n
. (2)

3.2 Semantic of source anonymity
Differential privacy is considered the gold standard definition of privacy, since ε-DP guarantees
hold regardless of the strategy of the adversary and any prior knowledge it may have on the
location of the source. Yet, the values of ε are notoriously hard to interpret [39, 31]. To
better understand the semantic of our definition of differential privacy, we consider below two
simple examples of adversarial strategies: maximum a posteriori and maximum likelihood
estimations. For these strategies, we derive bounds on the probability of an adversary
successfully guessing the source in an effort to give a reader an intuition on the meaning of
the parameter ε. The proofs are given in Appendix F of the full version of the paper [28].

Maximum a posteriori strategy. Maximum a posteriori (MAP) strategy can be described
as follows. Suppose an adversary has an a priori distribution p that assigns to every node in
V \F a probability of being the source of the gossip. Intuitively, p corresponds to the set
of beliefs the adversary has on the origin of the gossip before observing the dissemination.
This prior might reflect information acquired from any auxiliary authority or some expert
knowledge on the nature of the protocol. Suppose the adversary observes an event σ. Then,
a MAP-based adversary “guesses” which node is the most likely to be the source, assuming
event σ occurred and assuming the source has been sampled from the prior distribution p.
Such guess is given by

ŝMAP = argmax
v∈V \F

Ps∼p

[
v = s | S

(s)
adv ∈ σ

]
= argmax

v∈V \F

P
[
S

(v)
adv ∈ σ

]
p(v). (3)

Using ε-DP, we can upper bound the success probability of such a guess. Suppose the protocol
satisfies ε-DP, then the probability of correctly identifying a source s ∼ p conditioned on σ

happening is upper bounded as follows

Ps∼p

[
ŝMAP = s | S

(s)
adv ∈ σ

]
≤ exp(ε)p (ŝMAP) . (4)

Such an upper bound has a simple interpretation. Note that p(ŝMAP) characterizes the
maximum probability of a successfully guessing ŝMAP based solely on adversary’s prior
knowledge. Then, the upper bound above states that the probability of a successful guess
after observing the dissemination is amplified by a factor of at most exp(ε) compared to
success probability of a guess based on a priori knowledge only.

5 An event is said to hold with high probability on graph G of size n, if it holds with probability ≥ 1−1/n.

DISC 2023

24:10 On the Inherent Anonymity of Gossiping

Maximum likelihood strategy. Maximum likelihood estimation (MLE) occupies a prominent
place [23, 49, 50, 46] in the literature, both for designing source location attacks, and for
defending against adversaries that follow an MLE strategy. This method is a special instance
of MAP estimator in (3) with a uniform prior distribution p = U (V \ F) on the source. We
can show that, if the protocol satisfies ε-DP, such guess has a bounded success probability.

Ps∼U(V \F)

[
ŝMLE = s | S

(s)
adv ∈ σ

]
≤ exp(ε)

n − f
. (5)

4 Fundamental limits of source anonymity: lower bound on ε

We start by studying the fundamental limits of differential privacy in general graphs. Specifi-
cally, we aim to show that vertex connectivity constitutes a hard threshold on the level of
source anonymity gossiping can provide. First, we present a warm-up example indicating
that in a poorly connected graph, no gossip protocol can achieve any meaningful level
of differential privacy against a worst-case adversary. We then validate this intuition by
devising a universal lower bound on ε that applies for any gossip protocol and any undirected
connected graph. Complete proofs related to this section can be found in Appendix B of the
full version of the paper [28].

4.1 Warm-up
Consider a non-complete graph G = (V, E) and K ⊂ V , a vertex cut of G. Then, by
definition, deleting K from G partitions the graph into two disconnected subgraphs. When
f ≥ |K|, a worst-case adversary can take F such that K ⊆ F . Then, the curious nodes
can witness all the communications that pass from one subgraph to the other. Intuitively,
this means that any two nodes that are not in the same subgraph are easily distinguishable
by the adversary. Hence, differential privacy cannot be satisfied. This indicates that the
level of differential privacy any gossip protocol can provide in a general graph fundamentally
depends on the connectivity of this graph. To validate this first observation and determine
the fundamental limits of gossiping in terms of source anonymity, we now determine a lower
bound on ε.

4.2 Universal lower bound on ε

We present, in Theorem 5, a universal lower bound on ε which holds for any gossip protocol,
on any connected graph and for both the worst-case and the average-case adversaries.

▶ Theorem 5. Consider an undirected connected graph G = (V, E) of size n, a number of
curious nodes f > 1, and an arbitrary gossip protocol P. If P satisfies ε-DP against an
average-case or a worst-case adversary, then

ε ≥ ln(f − 1).

Moreover, if κ(G) ≤ f , then P cannot satisfy ε-DP with ε < ∞ against a worst-case
adversary.

Proof sketch. To establish the above lower bound, we assume that the adversary simply
predicts that the first non-curious node to contact the curious set is the source of the gossip.
As the definition of differential privacy does not assume a priori knowledge of the adversarial
strategy, computing the probability of success for this attack provides a lower bound on ε.

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:11

We first demonstrate the result for the average-case adversary. Assume that F is sampled
uniformly at random from V . We can show that there exists v ∈ V such that the attack
implemented by the adversary succeeds with large enough probability when v is the source
of the gossip. This fact essentially means that this v is easily distinguishable from any other
node in the graph, which yields the lower bound ε ≥ ln(f − 1) in the average case. We now
consider the worst-case adversary. Assume that F can be chosen by the adversary. As the
lower bound ε ≥ ln(f − 1) holds with positive probability when F is chosen at random, there
exists at least one set F for which it holds. Choosing this set of curious nodes establishes
the claim for the worst-case adversary. Furthermore, when κ(G) ≤ f , we follow the intuition
from Section 4.1 to build a set F that disconnects the graph. Using this set, we prove that ε

cannot be finite. ◀

Theorem 5 shows that the connectivity of the graph is an essential bottleneck for
differential privacy in a non-complete graph. This stipulates us to study graphs with
controlled connectivity, namely (d, λ)-expander graphs. Note that in a (d, λ)-expander, the
vertex connectivity does not exceed d. Hence, Theorem 5 implies that no gossip protocol
can satisfy any meaningful level of differential privacy against a worst-case adversary on
a (d, λ)-expander if f ≥ d. Considering this constraint, while studying a gossip against a
worst-case adversary, we only focus on cases where the communication graph G has a large
enough degree d.

5 Privacy guarantees: upper bound on ε

We now present a general upper bound on ε that both holds for (1 + ρ)-cobra walks and
ρ-Dandelion on d-regular graphs with fixed expansion, i.e., (d, λ)-expander graphs. Complete
proofs related to this section can be found in Appendix C of the full version of the paper [28].
Our privacy guarantees are quite technical, which is justified by the intricacies of the non-
completeness of the graph. Recall that, in the case of complete topologies analyzed in [5],
after one round of dissemination all information on the source is lost unless a curious node
has been contacted. However, in a general expander graph, this property does not hold
anymore. Indeed, even after multiple rounds of propagation, the active set of the protocol
can include nodes that are close to the location of the source s. Thus, differential privacy
may be compromised.

5.1 Adversarial density
The attainable level of source anonymity for a given protocol is largely influenced by the
location of curious nodes. However, accounting for all possible placements of curious nodes
is a very challenging and intricate task. To overcome this issue and state our main result,
we first introduce the notion of adversarial density that measures the maximal fraction of
curious nodes that any non-curious node may have in its neighborhood. Upper bounding
the adversarial density of a graph is a key element to quantifying the differential privacy
guarantees of a gossip protocol. Formally, this notion is defined as follows.

▶ Definition 6. Consider an undirected connected d-regular graph G = (V, E), and an
arbitrary set of curious nodes F ⊆ V . The adversarial density of F in G, denoted αF , is
the maximal fraction of curious nodes that any node v ∈ V \ F has in its neighborhood.
Specifically,

αF ≜ max
v∈V \F

degF (v)
d

.

DISC 2023

24:12 On the Inherent Anonymity of Gossiping

For any set of curious nodes F , we have αF ≤ f/d. Hence, even when F is chosen by a
worst-case adversary, the adversarial density is always upper bounded by f/d. However, for
the average-case adversary we can obtain a much tighter bound, stated in Lemma 7 below.

▶ Lemma 7. Consider an undirected connected d-regular graph G = (V, E) of size n and
a set of curious nodes F ∼ Uf (V), with adversarial density αF . We denote β = f/n and
γ = ln(n)/(ed), where e is Euler’s constant. Then, with probability at least 1 − 1/n, αF ≤ α

with

α ≤ 4e
max{γ, β}

1 + max{ln(γ) − ln(β), 0}
.

Furthermore, if there exist δ > 0, c > 0 such that f/n > c and d > ln(n)/(c2δ2) then a
similar statement holds with α ≤ (1 + δ)β.

We deliberately state this first lemma in a very general form. This allows us to precisely
quantify how the upper bound on the adversarial density improves as f decreases. To make this
dependency clearer, we provide special cases in which the bound on αF is easily interpreted.
First, assume that d ∈ ωn(log(n)) and f/n ∈ Ωn(1). Then, αF is highly concentrated around
f/n, up to a negligible multiplicative constant, when n is large enough. On the other hand,
when the ratio f/n becomes subconstant, the concentration becomes looser. In particular,
if d ∈ ωn(log(n)) and f/n ∈ on(1), then αF ∈ on(1) with high probability. Finally, if f/n

drops even lower (e.g., when f/n ∈ n−Ωn(1)), we get αF ∈ On(1/d) or αF ∈ n−Ωn(1) with
high probability for any d.

5.2 General upper bound on ε

Thanks to Lemma 7 bounding adversarial density, we can now state our main theorem
providing a general upper bound on ε for (1 + ρ)-cobra walks and ρ-Dandelion.

▶ Theorem 8. Consider an undirected connected (d, λ)-expander graph G = (V, E) of size
n, let f be the number of curious nodes, and let P be a (1 + ρ)-cobra walk with ρ < 1.
Set α = f/d (resp. set α as in Lemma 7). If λ < 1 − α, then P satisfies ε-DP against a
worst-case adversary (resp. an average-case adversary) with

ε = ln(ρ(n − f) + f) − 2T̃ ln(1 − α) − T̃ ln(1 − ρ) − ln(1 − λ) + ln(24),

and T̃ =
⌈
log λ

1−α

(
1−α

4(n−f)

)⌉ (
log λ

1−α
(1 − α) + 2

)
+ 2.

The above statement also holds if P is a ρ-Dandelion protocol with ρ < 1.

Note that the upper bound on ε in Theorem 8 improves as the number of curious nodes f

decreases (since α decreases with f) or when the expansion improves (as λ decreases, T̃ also
decreases). Yet, there is a complex interplay between the parameters n, f, d, and λ above.
Additionally, we point out that for a worst-case adversary the privacy guarantees can be
established only if f/d < 1. For the average-case, this assumption can be dropped, and we
are able to establish positive results for f as high as Θn(n).

6 Proof sketch for Theorem 8

Although results for worst-case and average-case adversaries have their own technical speci-
ficity, they both share the same general idea. Specifically, we introduce a random process that
helps bounding from above the value of ε. This random process resembles a random walk

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:13

that at each step reveals its position to the adversary with some probability that depends
on ρ and on the state of the process. We call this process a random walk with probabilistic
die out. Then, we show that such random walk mixes sufficiently well before its position is
revealed, which provides indistinguishability between any two possible sources.

The first half of our proof (step I) relies on the reduction of a gossip protocol to a random
walk with probabilistic die out. This part is slightly different for different protocols, but for
simplicity we only present step I for the cobra walk. In the second half (step II), we only
analyze a random walk with probabilistic die out. It is hence universal and applies to both
cobra walks and Dandelion protocols. Complete proofs for both protocols can be found in
Appendix C of the full version of the paper [28].

6.1 Step I: reduction to a random walk with probabilistic die out

F
s

(a) Dissemination of a cobra walk.

F
s

(b) Dissemination of a random walk with die out.

Figure 1 Illustration of the reduction from a cobra walk (Fig. 1a) to a random walk with
probabilistic die out (Fig. 1b). In Fig. 1a, the dissemination continues after the walk branches and
hits the curious set F in several places. In the random walk with die out, instead of letting the
dissemination branch, we stop the dissemination as soon as the cobra walk branches and report the
position of the branching node.

Consider a (1+ρ)-cobra walk started at s and denote W (s) the random variable indicating
the last position of the cobra walk before it either branches or hits a curious node. More
formally, if the round at which the cobra walk branches or contacts a curious node for the first
time is τ , then the active set at this round would be X

(s)
τ = {W (s)}, with W (s) ∈ V \ F . We

first show that disclosing W (s) to the adversary reveals more information about the source
than S

(s)
adv. Intuitively, this follows from the Markov property of the active set

{
X

(s)
t

}
t≥t⋆

of the cobra walk. In fact, by definition of τ , we have τ ≤ tadv. Hence, the sequence
of adversarial observations S

(v)
adv can be obtained from X

(s)
τ =

{
W (s)} via a randomized

mapping independent of the initial source s. Then, using the data processing inequality
Theorem 14 of [40]) we show that for any two possible sources u, v ∈ V \F , we have

D∞

(
S

(v)
adv ∥ S

(u)
adv

)
≤ D∞

(
W (v) ∥ W (u)

)
. (6)

This means that it suffices to obtain an upper bound on D∞
(
W (v) ∥ W (u)) for any u, v ∈ V \F

to obtain an appropriate value for ε. Then, we note that W (s) can be described as the death
site of a process we refer to as random walk with probabilistic die out, which was started at s.
Such a process constitutes a random walk which is killed at each step either (i) if it hits a
curious node, or otherwise (ii) with probability ρ. We illustrate this process in Figure 1 and
how it relates to the cobra walk.

DISC 2023

24:14 On the Inherent Anonymity of Gossiping

6.2 Step II: upper bounding the max divergence between death sites
The rest of the proof is dedicated to analyzing the probability distribution of the death
site of such a process. Let Q = Â[V \ F] be the principled submatrix of Â induced by the
rows and columns of V \ F and let R be a diagonal matrix of size (n − f) × (n − f) such
that Rww = degF (w) /d for every w ∈ V \ F . Then, W (s) can be described as an absorbing
Markov chain. More precisely, let nodes from V \ F be transient states, and equip every
node w ∈ V \ F with an absorbing state sink(w) which corresponds to the event of dying at
w. The transition matrix of our absorbing Markov chain can be written in a block form as

P =
[

(1 − ρ)Q O(n−f)×(n−f)
ρIn−f + (1 − ρ)R In−f

]
. (7)

In the above, Pxy denotes the transition probability from a state y to a state x. The first n−f

columns correspond to transition probabilities from transient states w ∈ V \ F and the last
n − f ones correspond to transition probabilities from absorbing states sink(w) for w ∈ V \ F .
The probability of transitioning between two transient states v, u ∈ V \ F (top-left block of
P) is defined similarly to a simple random walk on G, multiplied by the probability of not
branching (1 − ρ). The transition probability between w and sink(w) (bottom-left block of
P) is naturally defined as the probability of branching plus the probability of contacting a
curious node at the current step without branching.

According to the above, being absorbed in sink(w) corresponds to the event W (s) = w.
Hence, using Q and R to compute a closed form expression for absorbing probabilities of
the above Markov chain, we can rewrite D∞

(
W (v) ∥ W (u)) as follows

D∞

(
W (v) ∥ W (u)

)
= max

w∈V \F
ln (In−f − (1 − ρ)Q)−1

vw

(In−f − (1 − ρ)Q)−1
uw

. (8)

To conclude the proof, we now need to upper bound the right-hand side (8). To do so, we
first note that, as per Theorem 3.2.1 in [35], we can use the following series decomposition,

(In−f − (1 − ρ)Q)−1 =
∞∑

t=0
(1 − ρ)tQt. (9)

This means that we can reduce the computation of D∞
(
W (v) ∥ W (u)) to analyzing the

powers of the matrix Qt. Furthermore, for large values of t, we can approximate Qt by a
one-rank matrix using the first eigenvalue and the first eigenvector of Q. This motivates
us to study the spectral properties of Q. We begin by showing that Q is dominated by its
first eigenvalue. To further estimate the coordinates of the first eigenvector of Q, we need
to introduce subsidiary matrices Q and Q. We carefully design these matrices to have an
explicit first eigenvector and so that their entries bound from above and below respectively
those of Q. Using these two properties, we obtain a measure of how far the first eigenvector
of Q is from the uniform vector 1n−f /

√
n − f . By controlling spectral properties of Q, we

establish efficient one-rank approximations of high powers of Q. Applying this to (8), we
obtain an upper bound on the max divergence between W (v) and W (u), for any u, v ∈ V \ F .
Specifically, assuming that the adversarial density αF < 1 − λ, we get

D∞

(
W (v) ∥ W (u)

)
≤ ln(ρ(n − f) + f) − 2T̃ ln(1 − αF) − T̃ ln(1 − ρ) − ln(1 − λ) + ln(24),

where T̃ =
⌈
log λ

1−αF

(
1−αF

4(n−f)

)⌉ (
log λ

1−αF

(1 − αF) + 2
)

+ 2. Finally, substituting (6) in the
above, and upper bounding αF as per Section 5.1 we get the expected result.

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:15

7 Trade-off: Dissemination time vs. privacy

Note that when the gossip protocol parameter ρ decreases, the privacy guarantees in Theo-
rem 8 improve. Yet, this worsens the dissemination time, which suggests the existence of a
trade-off between the dissemination time and the source anonymity of the protocol. In this
section, we formalize this observation by showing the tightness of Theorem 8 on a family
of strong expanders called near-Ramanujan graphs. Intuitively, for dense enough graph
topologies, most terms in Theorem 8 vanish, hence considerably simplifying the analysis of
the result. Near-Ramanujan graphs can be defined as follows.

▶ Definition 9 (Near-Ramanujan family of graphs). Let G be an infinite family of regular graphs.
G is called near-Ramanujan if there exists a constant c > 0 such that λ(G) ≤ cd(G)−1/2 for
any graph G ∈ G of large enough size.

This choice of graph family is motivated by the fact that near-Ramanujan graphs naturally
arise in the study of dense random regular graphs. In fact, for any large enough n and
any 3 ≤ d ≤ n/2 (with dn even) a random d-regular graph on n nodes is near-Ramanujan
with high probability as shown in [10, 52]. That means that almost every d-regular graph is
near-Ramanujan. Besides using near-Ramanujan graphs, we assume the topologies to be
dense enough, i.e., d ∈ nΩn(1). Refining the statement of Theorem 8 to this family of graphs,
we obtain the following corollary.

▶ Corollary 10. Let P be a (1 + ρ)-cobra walk and let G be a family of d-regular near-
Ramanujan graphs with n nodes and d ∈ nΩn(1). Suppose f/d ∈ 1 − Ωn(1) (resp. f/n ∈
1 − Ωn(1)). Then, for any G ∈ G of large enough size n and any ρ ∈ 1 − Ωn(1), P satisfies
ε-DP against a worst-case adversary (resp. an average-case adversary) for some

ε ∈ ln (ρ(n − f) + f) + On(1).

The above statement also holds if P is a ρ-Dandelion protocol with ρ < 1.

From Corollary 10, when ρ = 0, we obtain a level of differential privacy that matches,
up to an additive constant, the universal lower bound ε ≥ ln(f − 1). Accordingly, ρ = 0
leads to an optimal differential privacy guarantee. However, in this case, both the cobra walk
and the Dandelion protocol degenerate into simple random walks with dissemination time
in Ωn(n log(n)) [2]. Increasing ρ parameter makes the dissemination faster, but potentially
worsens the privacy guarantees.

Studying Dandelion and cobra walks, we show that the result in Corollary 10 is tight up
to an additive constant. Then, we formally validate our intuition that decreasing ρ increases
the dissemination time by providing corresponding tight guarantees on dissemination time.
Finally, to put our results in perspective, we compare them to a random walk (optimal
privacy but high dissemination time), and to a 2-cobra walk (optimal dissemination time
with bad, completely vacuous, privacy guarantees). We summarize our findings for both
worst-case and average-case adversaries in Table 1 and the detailed analysis can be found in
Appendix D of the full version of the paper [28].

8 Summary & future directions

This paper presents an important step towards quantifying the inherent level of source
anonymity that gossip protocols provide on general graphs. We formulate our results through
the lens of differential privacy. First, we present a universal lower bound on the level of

DISC 2023

24:16 On the Inherent Anonymity of Gossiping

Table 1 Summary of the tension between differential privacy of a (1+ρ)-cobra walk and Dandelion
gossip and their dissemination time on dense near-Ramanujan graphs. Graphs have diameter D

and consist of n nodes, f of which are curious. Note that the upper bounds on ε hold under
assumptions in Corollary 10. Lower bounds on ε hold assuming f/n ∈ 1 − Ωn(1), and for cobra
walk we also assume f ∈ nΩn(1). Dissemination time bounds for cobra walk and Dandelion hold for
ρ ∈ ωn

(√
log(n)/n

)
and ρ ∈ Ωn(1/n) respectively.

Protocol Privacy (ε) Dissemination time References

Random walk ln(f) + Θn (1) Θn (n log (n)) Corollary 10,
Theorem 5, [2]

ρ-Dandelion ln (ρ(n − f) + f) + Θn (1) Θn

(
1
ρ

+ D
) Corollary 10,

Theorem 45 [28],
Theorem 49 [28]

(1 + ρ)-Cobra walk ln (ρ(n − f) + f) + Θn (1) On

(log (n)
ρ3

)
, Ωn

(log (n)
ρ

) Corollary 10,
Theorem 32 [28],
Theorem 44 [28]

2-Cobra walk ln(n) + Ωn (1) Θn (log (n)) Theorem 32 [28],
Theorem 44 [28]

differential privacy an arbitrary gossip protocol can satisfy. Then, we devise an in-depth
analysis of the privacy guarantees of (1 + ρ)-cobra walk and ρ-Dandelion protocols on
expander graphs. When ρ = 0, the protocols spread the gossip via a random walk, which
achieves optimal privacy, but has poor dissemination time. On the other hand, we show that
increasing ρ improves the dissemination time while the privacy deteriorates. In short, our
tight analysis allows to formally establish the trade-off between dissemination time and the
level of source anonymity these protocols provide. An interesting open research question
would be to establish whether this “privacy vs dissemination time” trade-off is fundamental
or if there exists a class of gossip protocols that could circumvent this trade-off.

We consider differential privacy, because, unlike other weaker notions of privacy (e.g.,
MLE-based bounds), it can be applied against an arbitrary strategy of the adversary, factoring
in any prior beliefs an adversary may have about the location of the source and the nature of
the gossip protocol. This makes differential privacy strong and resilient. However, differential
privacy is often criticized for being too stringent in some settings. Consequently, a number
of possible interesting relaxations have been proposed in the literature such as Pufferfish [36]
and Renyi differential privacy [44]. Adapting our analysis to these definitions constitutes an
interesting open direction as it would enable consideration of less stringent graphs structures
and probability metrics.

Finally, we believe that our results could be applied to solve privacy related problems in
other settings. For example, it was recently observed in [13] that sharing sensitive information
via a randomized gossip can amplify the privacy guarantees of some learning algorithms, in
the context of privacy-preserving decentralized machine learning. However, this work only
considers the cases when the communication topology is a clique or a ring. We believe that
the techniques we develop in this paper can be useful to amplify privacy of decentralized
machine learning on general topologies. This constitutes an interesting open problem.

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:17

References
1 Huseyin Acan, Andrea Collevecchio, Abbas Mehrabian, and Nick Wormald. On the push&pull

protocol for rumor spreading. SIAM Journal on Discrete Mathematics, 31(2):647–668, 2017.
doi:10.1145/2767386.2767416.

2 David J. Aldous. Lower bounds for covering times for reversible markov chains and random
walks on graphs. Journal of Theoretical Probability, 2:91–100, 1989.

3 Yeganeh Alimohammadi, Christian Borgs, and Amin Saberi. Algorithms using local graph
features to predict epidemics. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2022), 2022. doi:10.1137/1.9781611977073.136.

4 Amos Beimel and Shlomi Dolev. Buses for anonymous message delivery. Journal of Cryptology,
16(1), 2003. doi:10.1007/s00145-002-0128-6.

5 Aurélien Bellet, Rachid Guerraoui, and Hadrien Hendrikx. Who started this rumor? Quan-
tifying the natural differential privacy of gossip protocols. In International Symposium on
Distributed Computing (DISC 2020), 2020. doi:10.4230/LIPIcs.DISC.2020.8.

6 Petra Berenbrin, George Giakkoupis, and Peter Kling. Tight bounds for coalescing-branching
random walks on regular graphs. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2018), 2018.

7 Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath. Dandelion: Redesign-
ing the bitcoin network for anonymity. In Proceedings of the ACM on Measurement and
Analysis of Computing Systems (SIGMETRICS 2017), 2017. doi:10.1145/3078505.3078528.

8 Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory, 52(6):2508–2530, 2006. doi:10.1109/
TIT.2006.874516.

9 Yun Chai, Youguo Wang, and Liang Zhu. Information sources estimation in time-varying
networks. IEEE Transactions on Information Forensics and Security, 16:2621–2636, 2021.
doi:10.1109/TIFS.2021.3050604.

10 Nicholas A. Cook, Larry Goldstein, and Tobias Johnson. Size biased couplings and the
spectral gap for random regular graphs. Annals of Probability, 46:72–125, 2018. doi:10.1214/
17-AOP1180.

11 Colin Cooper, Tomasz Radzik, and Nicolas Rivera. The coalescing-branching random walk on
expanders and the dual epidemic process. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing (PODC 2016), 2016. doi:10.1145/2933057.2933119.

12 Colin Cooper, Tomasz Radzik, and Nicolás Rivera. Improved cover time bounds for the
coalescing-branching random walk on graphs. In Proceedings of the 29th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA 2017), 2017. doi:10.1145/3087556.
3087564.

13 Edwige Cyffers and Aurélien Bellet. Privacy amplification by decentralization. In International
Conference on Artificial Intelligence and Statistics (AIStat 2020), 2020.

14 Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. Anonymity
trilemma: Strong anonymity, low bandwidth overhead, low latency-choose two. In IEEE
Symposium on Security and Privacy (SP), pages 108–126, 2018. doi:10.1109/SP.2018.00011.

15 Damien Desfontaines and Balazs Pejo. Sok: Differential privacies. In Proceedings on Privacy
Enhancing Technologies Symposium (PETS 2020), 2020.

16 Claudia Díaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring anonymity.
In Privacy Enhancing Technologies, pages 54–68, 2003.

17 Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Social networks spread rumors in
sublogarithmic time. In Proceedings of the forty-third annual ACM symposium on Theory of
computing (STOC 2011), 2011.

18 Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, and Scott Roche. Coalescing-
branching random walks on graphs. In Proceedings of the Twenty-Fifth Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA 2013), 2013. doi:10.1145/2817830.

DISC 2023

https://doi.org/10.1145/2767386.2767416
https://doi.org/10.1137/1.9781611977073.136
https://doi.org/10.1007/s00145-002-0128-6
https://doi.org/10.4230/LIPIcs.DISC.2020.8
https://doi.org/10.1145/3078505.3078528
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/TIFS.2021.3050604
https://doi.org/10.1214/17-AOP1180
https://doi.org/10.1214/17-AOP1180
https://doi.org/10.1145/2933057.2933119
https://doi.org/10.1145/3087556.3087564
https://doi.org/10.1145/3087556.3087564
https://doi.org/10.1109/SP.2018.00011
https://doi.org/10.1145/2817830

24:18 On the Inherent Anonymity of Gossiping

19 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988. doi:10.1145/42282.42283.

20 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284,
2006.

21 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2013. doi:
10.1561/0400000042.

22 Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and Pramod Viswanath.
Rumor source obfuscation on irregular trees. In International Conference on Measurement and
Modeling of Computer Systems, (SIGMETRICS 2016), 2016. doi:10.1145/2896377.2901471.

23 Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and Pramod Viswanath.
Hiding the rumor source. IEEE Transactions on Information Theory, 63(10):6679–6713, 2017.
doi:10.1109/TIT.2017.2696960.

24 Chryssis Georgiou, Seth Gilbert, Rachid Guerraoui, and Dariusz R Kowalski. Asynchronous
gossip. Journal of the ACM, 60(2):1–42, 2013. doi:10.1145/2450142.2450147.

25 Chryssis Georgiou, Seth Gilbert, and Dariusz R. Kowalski. Confidential gossip. In International
Conference on Distributed Computing Systems (DISC 2011), 2011. doi:10.1109/ICDCS.2011.
71.

26 George Giakkoupis, Rachid Guerraoui, Arnaud Jégou, Anne-Marie Kermarrec, and Nupur
Mittal. Privacy-conscious information diffusion in social networks. In International Symposium
on Distributed Computing (DISC 2015), 2015.

27 Karol Gotfryd, Marek Klonowski, and Dominik Pająk. On location hiding in distributed
systems. In Structural Information and Communication Complexity, pages 174–192, 2017.

28 Rachid Guerraoui, Anne-Marie Kermarrec, Anastasiia Kucherenko, Rafael Pinot, and Sasha
Voitovych. On the Inherent Anonymity of Gossiping (Full Version), 2023. arXiv:2308.02477.

29 Zeyu Guo and He Sun. Gossip vs. markov chains, and randomness-efficient rumor spreading.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2014), 2014.

30 Herbert W Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599–653,
2000. doi:10.1137/S0036144500371907.

31 Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Arjun Narayan, Benjamin C
Pierce, and Aaron Roth. Differential privacy: An economic method for choosing epsilon. In
IEEE 27th Computer Security Foundations Symposium, pages 398–410, 2014.

32 Yufan Huang, Richeng Jin, and Huaiyu Dai. Differential privacy and prediction uncertainty of
gossip protocols in general networks. In IEEE Global Communications Conference (GLOBE-
COM 2020), 2020. doi:10.1109/GLOBECOM42002.2020.9322558.

33 Jiaojiao Jiang, Sheng Wen, Shui Yu, Yang Xiang, and Wanlei Zhou. Identifying propagation
sources in networks: State-of-the-art and comparative studies. IEEE Communications Surveys
& Tutorials, 19(1):465–481, 2017. doi:10.1109/COMST.2016.2615098.

34 Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vocking. Randomized
rumor spreading. In 41st Annual Symposium on Foundations of Computer Science (FOCS
2000), 2000. doi:10.1109/SFCS.2000.892324.

35 John G Kemeny and J Laurie Snell. Finite markov chains. Springer New York, NY, 1960.
36 Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A framework for mathematical privacy

definitions. ACM Transactions on Database Systems (TODS), 39(1):1–36, 2014. doi:10.1145/
2514689.

37 István Z Kiss, Joel C Miller, Péter L Simon, et al. Mathematics of epidemics on networks.
Cham: Springer, 598:31, 2017.

https://doi.org/10.1145/42282.42283
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/2896377.2901471
https://doi.org/10.1109/TIT.2017.2696960
https://doi.org/10.1145/2450142.2450147
https://doi.org/10.1109/ICDCS.2011.71
https://doi.org/10.1109/ICDCS.2011.71
https://arxiv.org/abs/2308.02477
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1109/GLOBECOM42002.2020.9322558
https://doi.org/10.1109/COMST.2016.2615098
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1145/2514689
https://doi.org/10.1145/2514689

R. Guerraoui, A.-M. Kermarrec, A. Kucherenko, R. Pinot, and S. Voitovych 24:19

38 Dariusz R Kowalski and Christopher Thraves Caro. Estimating time complexity of rumor
spreading in ad-hoc networks. In International Conference on Ad-Hoc Networks and Wireless
(ADHOC-NOW 2013), 2013.

39 Jaewoo Lee and Chris Clifton. How much is enough? Choosing ε for differential privacy. In
Information Security: 14th International Conference, pages 325–340, 2011.

40 Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information
theory. IEEE Transactions on Information Theory, 52(10):4394–4412, 2006. doi:10.1109/
TIT.2006.881731.

41 Xuecheng Liu, Luoyi Fu, Bo Jiang, Xiaojun Lin, and Xinbing Wang. Information source
detection with limited time knowledge. In Proceedings of the Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2019), pages 389–390,
2019. doi:10.1145/3323679.3326626.

42 Yang Liu, Junfeng Wu, Ian R. Manchester, and Guodong Shi. Gossip algorithms that preserve
privacy for distributed computation part I: The algorithms and convergence conditions. In IEEE
Conference on Decision and Control (CDC 2018), 2018. doi:10.1109/CDC.2018.8619783.

43 Guy Melancon. Just how dense are dense graphs in the real world? A methodological note. In
Proceedings of the AVI Workshop on BEyond Time and Errors: Novel Evaluation Methods for
Information Visualization (BELIV 2006), 2006. doi:10.1145/1168149.1168167.

44 Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations
symposium (CSF), pages 263–275. IEEE, 2017. doi:10.1109/CSF.2017.11.

45 Michael Mitzenmacher, Rajmohan Rajaraman, and Scott Roche. Better bounds for coalescing-
branching random walks. ACM Transactions on Parallel Computing, 5(1):1–23, 2018. doi:
10.1145/3209688.

46 Pedro C. Pinto, Patrick Thiran, and Martin Vetterli. Locating the source of diffusion in large-
scale networks. Physical Review Letters, 109(6), 2012. doi:10.1103/PhysRevLett.109.068702.

47 Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47(1):213–223,
1987. doi:10.1137/0147013.

48 Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions. ACM
transactions on information and system security (TISSEC), 1(1):66–92, 1998. doi:10.1145/
290163.290168.

49 D. Shah and T. Zaman. Rumors in a network: Who’s the culprit? IEEE Transactions on
Information Theory, 57(8):5163–5181, 2011. doi:10.1109/TIT.2011.2158885.

50 Devavrat Shah and Tauhid Zaman. Detecting sources of computer viruses in networks: Theory
and experiment. In Proceedings of ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2010), 2010.

51 Robin Snader and Nikita Borisov. A tune-up for tor: Improving security and performance in
the tor network. In Network and Distributed System Security Symposium (NDSS 2008), 2008.

52 Konstantin E. Tikhomirov and Pierre Youssef. The spectral gap of dense random regular
graphs. The Annals of Probability, 2019.

53 Parv Venkitasubramaniam and Venkat Anantharam. Anonymity under light traffic conditions
using a network of mixes. In 46th Annual Allerton Conference on Communication, Control,
and Computing (ALLERTON 2008), 2008. doi:10.1109/ALLERTON.2008.4797721.

54 Matthew K. Wright, Micah Adler, Brian Neil Levine, and Clay Shields. An analysis of the
degradation of anonymous protocols. In Network and Distributed System Security Symposium
(NDSS 2002), 2002.

55 Yi Yu, Tengyao Wang, and Richard J. Samworth. A useful variant of the Davis–Kahan
theorem for statisticians. Biometrika, 102:315–323, 2014.

DISC 2023

https://doi.org/10.1109/TIT.2006.881731
https://doi.org/10.1109/TIT.2006.881731
https://doi.org/10.1145/3323679.3326626
https://doi.org/10.1109/CDC.2018.8619783
https://doi.org/10.1145/1168149.1168167
https://doi.org/10.1109/CSF.2017.11
https://doi.org/10.1145/3209688
https://doi.org/10.1145/3209688
https://doi.org/10.1103/PhysRevLett.109.068702
https://doi.org/10.1137/0147013
https://doi.org/10.1145/290163.290168
https://doi.org/10.1145/290163.290168
https://doi.org/10.1109/TIT.2011.2158885
https://doi.org/10.1109/ALLERTON.2008.4797721

Durable Algorithms for Writable LL/SC and CAS
with Dynamic Joining
Prasad Jayanti #

Dartmouth College, Hanover, NH, USA

Siddhartha Jayanti #

Google Research, Atlanta, GA, USA

Sucharita Jayanti #

Brown University, Providence, RI, USA

Abstract
We present durable implementations for two well known universal primitives – CAS (compare-and-
swap), and its ABA-free counter-part LLSC (load-linked, store-conditional). Our implementations
satisfy method-based recoverable linearizability (MRL) and method-based detectability (M-detectability)
– novel correctness conditions that require only a simple usage pattern to guarantee resilience to
individual process crashes (and system-wide crashes), including in implementations with nesting.
Additionally, our implementations are: writable, meaning they support a Write() operation; have
constant time complexity per operation; allow for dynamic joining, meaning newly created processes
(a.k.a. threads) of arbitrary names can join a protocol and access our implementations; and have
adaptive space complexity, meaning the space use scales in the number of processes n that actually use
the objects, as opposed to previous protocols whose space complexity depends on N , the maximum
number of processes that the protocol is designed for. Our durable Writable-CAS implementation,
DuraCAS, requires O(m + n) space to support m objects that get accessed by n processes, improving
on the state-of-the-art O(m + N2). By definition, LLSC objects must store “contexts” in addition
to object values. Our Writable-LLSC implementation, DuraLL, requires O(m + n + C) space, where
C is the number of “contexts” stored across all the objects. While LLSC has an advantage over
CAS due to being ABA-free, the object definition seems to require additional space usage. To
address this trade-off, we define an External Context (EC) variant of LLSC. Our EC Writable-LLSC
implementation is ABA-free and has a space complexity of just O(m + n).

To our knowledge, our algorithms are the first durable CAS algorithms that allow for dynamic
joining, and are the first to exhibit adaptive space complexity. To our knowledge, we are the first to
implement any type of durable LLSC objects.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks; Theory of computation→ Concurrency; Theory of computation→ Concurrent
algorithms; Theory of computation→ Parallel algorithms; Theory of computation→ Data structures
design and analysis; Theory of computation → Distributed algorithms

Keywords and phrases durable, recoverable, detectable, persistent memory, dynamic joining, LL/SC,
CAS

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.25

Related Version Full Version: https://arxiv.org/abs/2302.00135 [30, 34]

Funding Prasad Jayanti was supported in part by the James Frank Family Professorship. Siddhartha
Jayanti was supported in part by an NDSEG Graduate Research Fellowship.

© Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 25; pp. 25:1–25:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prasad.jayanti@dartmouth.edu
https://orcid.org/0000-0002-8930-3467
mailto:sjayanti@google.com
https://orcid.org/0000-0002-2681-1632
mailto:sucharita_jayanti@brown.edu
https://orcid.org/0009-0003-1941-1176
https://doi.org/10.4230/LIPIcs.DISC.2023.25
https://arxiv.org/abs/2302.00135
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

1 Introduction

The advent of Non-Volatile Memory (NVM) [27] spurred the development of durable algo-
rithms for the crash-restart model. In this model, when a process π crashes, the contents
of memory persist (i.e., remain unchanged), but π’s CPU registers, including its program
counter, lose their contents. To understand the difficulty that arises from losing register
contents, suppose that π crashes at the point of executing a hardware CAS instruction,
r ← Cas(X, old, new), on a memory word X and receiving the response into its CPU register
r. When π subsequently restarts, π cannot tell whether the crash occurred before or after
the CAS executed, and if the crash occurred after the CAS, π cannot tell whether the CAS
was successful or not. Researchers identified this issue and proposed software-implemented
durable objects [28, 5], which allow a restarted process to recover from its crash and detect
the result of its last operation. The rapid commercial viability of byte-addressable, dense,
fast, and cheap NVM chips has made efficient durable object design important.

Writable and non-Writable CAS. The Compare-and-Swap (CAS) instruction is ubiquitous
in multiprocessor computation, both in concurrent and parallel algorithms. Recently, there
has been a lot of research on implementing durable CAS objects because they are widely
employed in practice and are universal: any durable object can be implemented from durable
CAS objects [7, 25, 28]. Formally, the state of a CAS object X is simply its value, and the
operation semantics are as follows:

X.Cas(old, new): if X = old, sets X to new and returns true; otherwise, returns false.
X.Read(): returns the value of X.
X.Write(new): sets X to new and returns true.

If the object supports all three operations, it is a Writable-CAS (W-CAS); and if it does
not support Write(), it is a non-Writable-CAS (nW-CAS) object.

CAS’s ABA problem and LLSC. Although CAS objects are powerful tools in concurrent
computing, they also have a significant drawback called the ABA-problem [16]. Namely, if
a process π reads a value A in X and executes X.Cas(A, C) at a later time, this CAS will
succeed even if the value of X changed between π’s operations, from A to B and then back
to A. So while any object can be implemented from CAS, the actual process of designing an
algorithm to do so becomes difficult. In the non-durable setting, the ABA-problem is often
overcome by using the hardware’s double-width CAS primitive – in fact, “CAS2 [double-width
CAS] operation is the most commonly cited approach for ABA prevention in the literature”
[16]. However, all known durable CAS objects, including ours, are only one-word wide – even
as they use hardware double-width CAS [5, 7, 6]. Against this backdrop, the durable LLSC
objects presented in this paper serve as an invaluable alternate tool for ABA prevention.

LLSC objects are alternatives to CAS objects that have been invaluable in practice,
since they are universal and ABA-free [38]. The state of an LLSC object Y is a pair
(Y.val, Y.context), where Y.val is the value and Y.context is a set of processes (initially
empty). Process π’s operations on the object have the following semantics:

Y.LL(): adds π to Y.context and returns Y.val.
Y.VL(): returns whether π ∈ Y.context.
Y.SC(new): if π ∈ Y.context, sets Y ’s value to new, resets Y.context to the empty set
and returns true; otherwise, returns false.
Y.Write(new) changes Y ’s value to new and resets Y.context to the empty set.

P. Jayanti, S. Jayanti, and S. Jayanti 25:3

The object is Writable (W-LLSC) or non-Writable (nW-LLSC) depending on whether
the Write() operation is supported.

To our knowledge, there are no earlier durable implementations of ABA-free CAS-like
objects, including LLSC.

Wider impact of durable primitives. Durable primitives such as W-CAS and W-LLSC are
particular important since they facilitate a plethora of other durable data structures. In
particular, let A be an algorithm for implementing a data structure DS using either the
read, write, CAS, or the read, write, LL/SC/VL instructions. Then, using durable W-CAS
and durable W-LLSC, we can design an algorithm A′ that implements a durable version of
DS from hardware read, write, and CAS, without affecting the asymptotic time or space
complexity [5, 7].

Previous work and the state-of-the-art. CAS and LLSC objects share close ties, but they
also pose different implementational challenges. In the non-durable context, it is well known
that non-writable LLSC (nW-LLSC) objects can be implemented from nW-CAS objects
and visa versa in constant time and space. The simple implementation of nW-LLSC from
nW-CAS however, requires packing a value-context pair into a single nW-CAS object [3].
Solutions that implement a full-word nW-LLSC from a full-word nW-CAS require a blow-up
in time complexity, space complexity, or both [37, 18, 40, 38, 11]. Writability complicates
the relationship further. Even in the non-durable context, reductions between W-CAS and
W-LLSC have resulted in a blow-up in space complexity and fixing the number of processes
a priori [29]. Writability can sometimes be added to an object that is non-writable, but this
leads to an increase in space complexity [1].

There are no previous works on Durable LLSC. Three previous works have implemented
durable CAS objects, all from the hardware CAS instruction: Attiya, Ben-Baruch, and
Hendler [5], Ben-Baruch, Hendler, and Rusanovsky [6], and Ben-David, Blelloch, Friedman,
and Wei [7]. All three papers provide implementations for a fixed set of N processes with pids
1, . . . , N , and achieve constant time complexity per operation. Attiya et al. pioneered this line
of research with a durable nW-CAS implementation, which achieves constant time complexity
and requires O(N2) space per object. Ben-Baruch et al. present an nW-CAS implementation
with optimal bit complexity. Their algorithm however, requires packing N bits and the
object’s value into a single hardware variable. Thus, if the value takes 64 bits, then only 64
pre-declared processes can access this object. (Current commodity multiprocessors range
up to 224 cores [24], and can support orders-of-magnitude more threads.) Ben-David et al.
designed an algorithm for nW-CAS, and then leveraged Aghazadeh, Golab, and Woelfel’s
writability transformation [1] to enhance that algorithm to include a Write operation, thereby
presenting the only previous Writable-CAS implementation. Their nW-CAS algorithm uses
a pre-allocated help-array of length O(N), and their W-CAS algorithm uses an additional
hazard-pointer array of length O(N2). Both arrays can be shared across objects, thus the
implementation space complexities for m objects are O(m + N) and O(m + N2), respectively.

Our contributions. We present four wait-free, durable implementations: DuraCAS for
Writable-CAS, DuraLL for Writable-LLSC, DurEC for External Context (EC) nW-LLSC,
and DurECW for EC W-LLSC (we will specify External Context LL/SC soon). Our
implementations achieve the following properties:

DISC 2023

25:4 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

1. Constant time complexity: All operations including recovery and detection run in O(1)
steps.

2. Dynamic Joining: Dynamically created processes of arbitrary names can use our objects.
3. Full-word size: Our implementations support full-word (i.e., 64-bit) values.
4. Adaptive Space Complexity: We quantify space complexity by the number of memory

words needed to support m objects for a total of n processes. The DuraCAS, DurEC,
and DurECW implementations require just constant memory per process and per object,
and thus each have a space complexity of O(m + n). Since DuraLL must remember
contexts, its space complexity is O(m + n + C), where C is the number of contexts that
must be remembered.1

We believe that our definitions and implementations of the External Context LLSC objects
– which are ABA-free, space-efficient alternatives to CAS and LLSC – are of independent
interest in the design of both durable and non-durable concurrent algorithms.

To our knowledge, our algorithms are the first durable CAS algorithms that allow for
dynamic joining, and are the first to exhibit adaptive space complexity. To our knowledge,
we are the first to consider any type of durable LLSC objects.

Our approach. We implement universal primitives that allow dynamic joining of new
processes, have an adaptive space complexity that is constant per object and per process,
and give an ABA-free option, while simultaneously achieving constant time complexity. Just
like our predecessors, all our implementations rely on just the hardware double-width CAS
instruction for synchronization.

A keystone of our approach is the observation that durable nW-LLSC – due to its ABA-
freedom – serves as a better stepping stone than even durable nW-CAS on the path from
hardware CAS to durable W-CAS. Perhaps less surprisingly, durable nW-LLSC is a great
stepping stone towards durable W-LLSC also. However, by definition LLSC objects require
more space to remember context for each process – an inherent burden that CAS objects do
not have. Thus, using nW-LLSC objects in the construction of our W-CAS would lead to
a bloated space complexity. To avoid this drawback, we define an External Context (EC)
variant of LLSC. An EC LLSC object is like an LLSC object, except that its context is
returned to the process instead of being maintained by the object. Thus, our EC nW-LLSC
implementation, DurEC, is the building block of all our other implementations.

The state of an EC LLSC object Y is a pair (Y.val, Y.seq), where the latter is a sequence
number context. Process π’s operations on the object have the following semantics:

Y.ECLL(): returns (Y.val, Y.seq).
Y.ECVL(s): returns whether Y.seq = s.
Y.ECSC(s, new): if Y.seq = s, sets Y ’s value to new, increases Y.seq, and returns true;
otherwise, returns false.
Y.Write(new): changes Y ’s value to new and increases Y.seq.

The object is Writable (EC W-LLSC) or non-Writable (EC nW-LLSC) depending on
whether the Write() operation is supported.

We design durable implementations of External Context W-LLSC and W-CAS, called
DurECW and DuraCAS, respectively; each implementation uses two DurEC base objects.
We implement our durable W-LLSC algorithm, DuraLL, by simply internalizing the external

1 C is the number of process-object pairs (π,O), where π has performed an LL() operation on O, and its
last operation on O is not an SC() or Write(). A trivial upper bound is C ≤ nm.

P. Jayanti, S. Jayanti, and S. Jayanti 25:5

contexts of a DurECW. All our implementations overcome the need for hazard-pointers
and pre-allocated arrays for helping in order to allow dynamic joining and achieve adaptive
space complexity. Key to eliminating these arrays are pointer based identity structures called
handles, which we describe in Section 4. Figure 1 illustrates the differences between our
approach and Ben-David et al.’s.

Figure 1 A comparison of Ben-David et al.’s approach (top) and our approach (bottom): each box
represents an implementation – the type of the implementation is in bold and its space complexity
appears below the box. The names of our implementations appear in the box in SmallCaps. An
arrow from A to B means that B is implemented using A.

2 Related Work

We have already detailed the three previous works on durable CAS objects [5, 6, 7] in the
introduction. In addition to these durable (single-word) CAS objects, there are implementa-
tions of durable multi-word CAS objects2 by Wang, Levandoski, and Larson [42], and by
Guerraoui, Kogan, Marathe, and Zablotchi [22]. Furthermore, LLSC can be implemented
using multi-word CAS. However, these software implementations of multi-word CAS are
lock-free but not wait-free, and they do not support the Write operation. Thus, using these
algorithms, one can implement non-writable lock-free LL/SC, but not the writable and
wait-free LL/SC primitive that our algorithm implements. Additionally, they require complex
memory management which also leads to an increase in space complexity. We discuss other
related work below.

Byte-addressable non-volatile memory laid the foundation for durable objects [27]. Re-
search on durable objects has spanned locks [21, 41, 35, 36, 33, 31, 20, 12, 14, 17, 15, 32],
and non-blocking objects – including queues [19], counters [5], registers [5, 6], CAS objects
[5, 6, 7], and general transformations and universal constructions [28, 7, 4].

Several models of persistent memory systems have been proposed in the literature. In
the individual-crash model [2, 5, 7, 10], processes can crash independently, while in the
system-crash model, all processes crash together [28, 9, 19]. Izraelevitz et al. assume that
crashed processes do not restart and the system spawns new processes with process ids that
were never used before [28], but most other works assume processes restart with the same
ids as before. Some works, such as [28, 19], model volatile caches: when a process performs

2 A k-word CAS, Cas((X1, . . . , Xk), (old1, . . . , oldk), (new1, . . . , newk)), has the semantics: if all of X1 =
old1, . . . , Xk = oldk then set X1 ← new1, . . . , Xk ← newk and return true; otherwise, simply return
false.

DISC 2023

25:6 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

a hardware operation on a shared variable, only the cached copy of the variable is updated,
and the update transfers to the NVM only when the cache is explicitly flushed. Others work
in the model that each step directly updates the variable’s state in the NVM [5, 7, 21].

Several correctness criteria have been proposed for implementations: recoverable lineariz-
ability by Berryhill, Golab, and Tripunitara [9], durable and buffered durable linearizability by
Israelevitz, Mendes, and Scott [28], nested recoverable linearizability by Attiya, Ben-Baruch,
and Hendler [5], persistent atomicity by Guerraoui and Levy [23], and strict linearizability by
Aguilera and Frølund [2]. These consistency criteria are surveyed by Ben-David, Friedman,
and Wei [8].

Friedman, Herlihy, Marathe, and Petrank [19] identify that it is not enough for imple-
mentations to satisfy a linearizability condition, but they must also support detection, i.e.,
make possible for a process to find out whether its crashed operation took effect and, if it
did, what the response was. Li and Golab [39] present a formulation of detectability.

3 Model

Our model is akin to those used in previous works on durable CAS [5, 7]. The system consists
of asynchronous processes that communicate by applying atomic operations (Read or CAS)
directly to shared variables stored in Non-Volatile Memory (NVM). We use the individual
crash model where any process may crash at any time and restart at any later time, and
the same process may crash and restart any number of times. When a process crashes, its
registers, including its program counter, lose their contents (i.e., they are set to arbitrary
values), but the contents of the NVM are unaffected. After a crash, a process eventually
restarts (with the same process id as before).

To ensure that our objects are recoverable and detectable, we introduce two new correctness
conditions for objects, called Method-based Recoverable Linearizability (MRL) and Method-
based Detectability (M-Detectability). MRL adapts and combines ideas from the well known
notions of Recoverable Linearizability [9] and Nested-safe Recoverable Linearizability [5],
and M-Detectability captures the corresponding notion of detectability [19].

MRL is “method-based” in the sense that it facilitates recoverability by requiring that an
objectO provide a methodO.Recover() in addition to providing a method for each operation
supported by O. When there are no crashes, MRL reduces to standard linearizability [26]. In
particular, if a process π invokes a method for an operation and completes the method without
crashing, the operation is required to take effect atomically at some instant between the
method’s invocation and completion. On the other hand, if crashes occur, MRL guarantees the
object remains consistent if the following usage pattern if followed. If π crashes after invoking
some operation O.op and before that operation completes, when π subsequently restarts, the
usage pattern requires that π execute O.Recover() before invoking any other operation on
object O (if π crashes while executing O.Recover(), it must execute O.Recover() again
after restarting before invoking any other operation on O); when π completes O.Recover(),
we deem O.op completed. If the usage pattern is observed, MRL guarantees that the
crashed operation O.op either never takes effect or takes effect at some point between O.op’s
invocation and completion. Notice that the usage pattern allows π to perform any number
of other operations on objects other than O upon restart and even allows for π to never
perform any subsequent operation on O; the only requirement is that π calls O.Recover()
before calling any other method on O.

MRL’s relationship to Recoverable Linearizability (RL) and Nested-safe Recoverable
Linearizability (NRL) can be understood as follows. Just like MRL, RL requires that a
crashed operation by process π on object O either does not take effect at all or takes effect

P. Jayanti, S. Jayanti, and S. Jayanti 25:7

before π’s next invocation of an operation on O. However, RL does not specify a mechanism
by which π’s operation can complete after its crash and before its subsequent operation
starts. MRL is similar, but uses the mechanism of the recover method to complete (or ensure
non-completion of) crashed operations. The NRL paper uses recover methods. However, in
the NRL model each method has its own recover method, recover methods take arguments,
and it is assumed that upon a crash, a recover method is called with the same arguments
as the corresponding method that failed and the recover method has access to a process
specific persistent register which stores the program counter value right before the crash. In
contrast to NRL, MRL has only a single recover method, and most importantly, makes no
assumptions about method arguments or program counter values being supplied to restarted
processes; it simply guarantees that objects remain consistent if the usage pattern is followed
(however an implementation may follow it).

Friedman et al. [19] first made the observation that in addition to proper recovery, it is
necessary for a process to be able to detect whether its crashed operation took effect, and if
so, what its return value was. We ensure detectability of our operations in a method-based
manner, by requiring that an object O provide an additional Detect() method, which
returns this information. We note that some operations, such as read or a failed CAS,
can safely be repeated, regardless of whether they took effect [5, 7], whereas, a write or
a successful CAS that changed the value of the object cannot be repeated safely. Our
implementations provide a Detect() method which guarantees that all unsafe-to-repeat
operations are detected along with their responses, and that any operation that is not
detected is safe to repeat. In particular, Detect() returns a pair that satisfies the following
property:

Method-based Detectability: If a process calls Detect() twice – just before executing an
operation and just after completing that (possibly crashed3) operation – and these successive
calls to Detect() return (d1, r1) and (d2, r2) respectively, then the following two conditions
are satisfied:
1. If d2 > d1, then the operation took effect and its response is r2.
2. Otherwise, d1 = d2 and the operation is safe to repeat.
A durable object is one that satisfies method-based recoverable linearizability and method-
based detectability.

4 Handles for dynamic joining and space adaptivity

When a process calls a method to execute an operation op, the call is of the form op(p, args),
where args is a list of op’s arguments and p identifies the calling process. The methods
use p to facilitate helping between processes. In many algorithms, the processes are given
pids from 1 to N , and p is the pid of the caller [5, 7]. In particular, p is used to index a
pre-allocated helping array – in Ben-David et al.’s algorithm this helping array is of length
N , one location per process being helped; in Attiya et al.’s algorithm this helping array is
of length N2, one location per helper-helpee pair. Helping plays a central role in detection,
thus each process needs to have some area in memory where it can be helped; in fact, using
the bit-complexity model, Ben-Baruch et al. proved that the space needed to support a
detectable CAS object monotonically increases in the number of processes that access the
object [6]. One of our goals in this paper however, is to design objects that can be accessed by
a dynamically increasing set of processes, which precludes the use of pre-allocated fixed-size
arrays that are indexed by process IDs.

3 Recall that a crashed operation by π completes when π finishes Recover() following the crash.

DISC 2023

25:8 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

To eliminate the use of arrays for helping, we introduce pointer based structures called
handles. We use handles to enable dynamic joining and achieve space adaptivity. A handle
is a pointer to a constant sized record. The implementation provides a CreateHandle()
method, which allocates memory for a new record and returns a pointer h to it called a
handle. This allocation can be via a persistent memory allocator [13] or any other means that
ensures that handles are created in constant time and remembered across crashes without
any memory leaks. When a process first wishes to access any of the implemented objects of a
given type, it creates for itself a new handle by calling CreateHandle(). From that point
on, whenever the process calls any method on any of the implemented objects of that type,
it passes its handle h instead of its pid, and other processes help it via the handle. This
mechanism of handles helps us realize dynamic joining because any number of new processes
can join at any time by creating handles for themselves; since the memory per handle is
constant, and only the subset of processes that wish to access the implementation need to
create handles, the mechanism facilitates space adaptivity.

At first glance, replacing pids with handles to achieve dynamic joining may seem like a
simple level of indirection; however, this step actually poses a significant algorithmic challenge.
As will become more clear in the next section, the challenge arises from the fact that known
algorithms for durable primitives (including ours) must, in principle, store three pieces of
information consistently using hardware that only supports double-width CAS. The three
pieces to store are the implemented object’s value, its sequence number, and the pid/handle
of the process that last changed the object. (Intuitively, the sequence number helps styme
ABA problems, while the handle facilitates helping.) Previous durable CAS algorithms either
require the strong assumption that processes never attempt to CAS in the same value twice
to avoid sequence numbers [5]; or assume that a pid and a sequence number can be packed
into a single pointer-sized word [7]. Since handles are pointers, and the object’s value can also
be pointer-sized, we cannot pack all three pieces of information into a single double-width
word. Our DurEC algorithm overcomes this challenge by storing the sequence number with
the handle in one variable, and the same sequence number with the value in another variable,
and cleverly coordinating between these two variables to create the illusion that all three
pieces of information are stored and manipulated atomically together.

5 The DurEC Building Block

In this section, we implement the DurEC algorithm for durable external context non-
writable LLSC using hardware CAS. This building block will be central to all of the writable
implementations in the remainder of the paper.

Intuitive description of Algorithm DurEC. Each DurEC handle h is a reference to a record
of two fields, Val and DetVal, and each DurEC object O is implemented from two hardware
atomic CAS objects X and Y , where X is a pair consisting of a handle and a sequence
number, and Y is a pair consisting of a sequence number and a value. The algorithm
maintains the DurEC object O’s state in Y , i.e., O.seq = Y.seq and O.val = Y.val at all
times. This representation makes the implementation of ECLL and ECVL operations obvious:
ECLL(h) simply returns Y and ECVL(h, s) returns whether Y.seq = s (although ECLL
and ECVL do not use the handle parameter h, for uniformity we let the handle be the first
parameter of all object operations). The complexity lies in the ECSC(h, s, v) operation,
which is implemented by the following sequence of steps:

P. Jayanti, S. Jayanti, and S. Jayanti 25:9

1. If Y.seq ̸= s, it means O.seq ̸= s, so the ECSC operation simply returns false. Otherwise,
it embarks on the following steps, in an attempt to switch O.val to v and O.seq to a
greater number.

2. Make v available for all by writing it in the Val field of the ECSC operation’s handle h.

3. Pick a number ŝ that is bigger than both X.seq and h.DetVal. (The latter facilitates
detection.)

4. Publish the operation’s handle along with a greater sequence number by installing (h, ŝ)
in X. If several ECSC operations attempt to install concurrently, only one will succeed.
The successful one is the installer and the others are hitchhikers.

5. The installer and the hitchhikers work together to accomplish two missions, the first of
which is to increase the installer’s DetVal field to the number in X.seq. This increase in
the DetVal field of its handle enables the installer to detect that it installed, even if the
installer happens to crash immediately after installing.

6. The second mission is to forward the installer’s operation to Y . Since Y is where the
DurEC object’s state is held, the installer’s operation takes effect only when it is reflected
in Y ’s state. Towards this end, everyone reads the installer’s value v, made available in
the Val field of the installer’s handle back at Step (2), and attempts to switch Y.val to v,
simultaneously increasing Y.seq so that it catches up with X.seq. Since all operations
attempt this update of Y , someone (not necessarily the installer) will succeed. At this
point, X.seq = Y.seq and Y.val = v, which means that the installer’s value v has made
its way to O.val. So, the point where Y is updated becomes the linearization point for
the installer’s successful ECSC operation. The hitchhikers are linearized immediately
after the installer, which causes their ECSC operations to “fail” – return false, without
changing O’s state – thereby eliminating the burden of detecting these operations.

7. If the installer crashes after installing, upon restart, in the Recover method, it does the
forwarding so that the two missions explained above are fulfilled.

8. With the above scheme, all ECSC, ECLL, and ECVL operations, except those ECSC
operations that install, are safe to repeat and hence, don’t need detection. Furthermore,
for each installing ECSC operation, the above scheme ensures that the DetVal field of
the installer’s handle is increased, thereby making the operation detectable.

The formal algorithm is presented in Figure 1. The correspondence between the lines
of the algorithm and the steps above is as follows. Lines 6 and 7 implement Steps 1 and 2,
respectively. Steps 3 and 4, where the operation attempts to become the installer, are
implemented by Lines 8 to 10. The operation becomes the installer if and only if the CAS at
Line 10 succeeds, which is reflected in the boolean return value r. The Forward method is
called at Line 11 to accomplish the two missions described above. The first three lines of
Forward (Lines 13 to 15) implement the first mission of increasing the DetVal field of the
installer’s handle to X.seq (Step 5). Line 13, together with Lines 16 to 19, implement the
second mission of forwarding the operation to Y (Step 6). The if-condition and the CAS’
arguments at Line 18 ensure that Y is changed only if Y.seq lags behind X.seq and, if it lags
behind, it catches up and Y.val takes on the installer’s value. The Recover method simply
forwards at Line 20, as explained in Step 7. The detect method returns at Line 22 the value
in the handle’s DetVal field, as explained in Step 8, along with true (since only successful
ECSC operations are detected).

The theorem below summarizes the result:

DISC 2023

25:10 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

▶ Theorem 1. Algorithm DurEC satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of External Context LLSC).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DurEC objects or accessing existing
DurEC objects.

4. The space requirement is O(m + n), where m is the actual number of DurEC objects
created in the run, and n is the actual number of processes that have joined in in a run.

▶ Remark. It is interesting to note that while DurEC is recoverably linearizable, it is not
strictly lineariable, i.e., operations may linearize after a process crashes (but before its next
successful completion of Recover()). In particular, if a process crashes after successfully
CASing into X and before changing Y , then this operation has not taken effect before the
crash, but is guaranteed to take effect in the future (i.e., after the crash).

6 DurECW and DuraLL: durable Writable LLSC implementations

Using DurEC, we design the writable external context LLSC implementation DurECW
in this section. With DurECW in hand, we obtain our standard durable writable-LLSC
implementation DuraLL easily, by simply rolling the context into the object.

6.1 Intuitive description of Algorithm DurECW
A DurECW object O supports the write operation, besides ECSC, for changing the object’s
state. Unlike a ECSC(h, s, v) operation, which returns without changing O’s state when
O.context ≠ s, a Write(h, v) must get v into O.val unconditionally. In the DurECW
algorithm, ECSC() operations help Write() operations and prevent writes from being
blocked by a continuous stream of successful ECSC() operations.

Each DurECW object O is implemented from two DurEC objects,W and Z, each of which
holds a pair, where the first component is a sequence number seq, and the second component
is a pair consisting of a value val and a bit bit. Thus, W = (W.seq, (W.val,W.bit)) and
Z = (Z.seq, (Z.val,Z.bit)).

The DurECW handle h consists of two DurEC handles, h.Critical and h.Casual. The
use of two DurEC handles allows us to implement detectability. In particular, if Detect(h)
is called on a DurECW object, only the detect value (DetVal) of h.Critical is returned. So
intuitively, when a DurECW operation α calls methods on W or Z, it uses h.Critical only if
a successful call will make its own ECSC() or Write() operation visible. In all other cases
α uses h.Casual.

The algorithm maintains the DurECW object O’s state in Z, i.e., O.seq = Z.seq and
O.val = Z.val at all times. This representation makes the implementation of O.ECLL() and
O.ECVL() operations obvious: O.ECLL(h) simply returns (Z.seq,Z.val) and ECVL(h, s)
returns whether Z.seq = s. The complexity lies in the implementation of O.Write(h, v)
and O.ECSC(h, s, v) operations, which coordinate their actions using W.bit and Z.bit. A
write operation flips the W.bit to announce to the ECSC operations that their help is needed
to push the write into Z; once the write is helped, the Z.bit is flipped to announce that help
is no longer needed. We maintain the invariant that W.bit ̸= Z.bit if and only if a write
needs help.

P. Jayanti, S. Jayanti, and S. Jayanti 25:11

Algorithm 1 : The DurEC class for Durable, External Context nW-LLSC objects.

class DurEC:

instance variable (handle*, int) X ▷ X is a pair (X.hndl, X.seq) stored in NVM
instance variable (int, int) Y ▷ Y is a pair (Y.seq, Y.val) stored in NVM

struct handle {
int DetVal
int Val

}

static procedure CreateHandle()
1: return new handle{DetVal = 0} ▷ DetVal and Val in NVM; Val arbitrarily initialized

constructor DurEC(int initval)
2: X ← (null, 0)
3: Y ← (0, initval)

procedure ECLL(handle* h)
4: return Y

procedure ECVL(handle* h, int s)
5: return Y.seq = s

procedure ECSC(handle* h, int s, int v)
6: if Y.seq ̸= s then return false
7: h.Val ← v
8: ĥ ← X.hndl
9: ŝ ← max(h.DetVal, s) + 1

10: r ← Cas(X, (ĥ , s), (h, ŝ))
11: forward(h)
12: return r

procedure forward(handle* h)
13: x ← X
14: ŝ ← x.hndl.DetVal
15: if ŝ < x.seq then Cas(x.hndl.DetVal, ŝ , x.seq)
16: v̂ ← x.hndl.Val
17: y ← Y
18: if y.seq < x.seq then Cas(Y, y, (x.seq, v̂))
19: return

procedure Recover(handle* h)
20: forward(h)
21: return

static procedure Detect(handle* h)
22: return (h.DetVal, true)

A Write(h, v) operation α consists of the following steps.
(W1) The operation α reads W and Z to determine if some write operation is already

waiting for help. If not, then α installs its write into W by setting W.val to v and
flipping W.bit. If several write operations attempt to install concurrently, only one
will succeed. The successful one is the installer and the others are hitchhikers.

(W2) Once a write operation is installed, all processes – installer, hitchhiker, and the ECSC
operations – work in concert to forward the installer’s operation to Z. Since Z is
where the DurECW object’s state is held, the installer’s operation takes effect only
when it is reflected in Z’s state. Towards this end, everyone attempts to transfer the
installer’s value from W to Z. However, a stale ECSC operation, which was poised
to execute its ECSC operation on Z, might update Z, causing the transfer to fail
in moving the installer’s value from W to Z. So, a transfer is attempted the second
time. The earlier success by the poised ECSC operation causes any future attempts by

DISC 2023

25:12 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

Algorithm 2 The DurECW class for Durable External Context W-LLSC objects.

class DurECW:

instance variable DurEC W ▷ W holds a pair (W.seq, (W.val,W.bit))
instance variable DurEC Z ▷ Z holds a pair (Z.seq, (Z.val,Z.bit))

struct handle {
DurEC.handle Critical
DurEC.handle Casual

}

static procedure CreateHandle()
1: return new handle{Critical ← DurEC.CreateHandle(), Casual ← DurEC.CreateHandle()}

procedure DurECW(initval)
2: W ← DurEC((0, 0))
3: Z ← DurEC((initval, 0))

procedure ECLL(handle* h)
4: z ← Z.ECLL(h.Casual)
5: return (z.seq, z.val)

procedure ECVL(handle* h, int s)
6: return Z.ECVL(h.Casual, s)

procedure ECSC(handle* h, int s, int v)
7: z ← Z.ECLL(h.Casual)
8: if s ̸= z.seq return false
9: transfer-write(h)

10: r ← Z.ECSC(h.Critical, s, (v, z.bit))
11: return r

procedure Write(handle* h, int v)
12: w ←W.ECLL(h.Casual)
13: z ← Z.ECLL(h.Casual)
14: if z.bit = w.bit then W.ECSC(h.Critical, w.seq, (v, 1− w.bit))
15: transfer-write(h)
16: transfer-write(h)
17: return true

procedure transfer-write(handle* h)
18: ẑ ← Z.ECLL(h.Casual)
19: ŵ ←W.ECLL(h.Casual)
20: if ẑ .bit ̸= ŵ .bit then Z.ECSC(h.Casual, ẑ .seq, (ŵ .val, ŵ .bit))

procedure Recover(handle* h)
21: W.Recover(h.Critical)
22: Z.Recover(h.Critical)
23: W.Recover(h.Casual)
24: Z.Recover(h.Casual)
25: transfer-write(h)
26: transfer-write(h)

static procedure Detect(handle* h)
27: return DurEC.Detect(h.Critical)

similarly poised operations to fail. Consequently, the installer’s write value gets moved
to Z by the time the second transfer attempt completes. The point where the move
to Z occurs becomes the linearization point for the installer’s write operation. We
linearize the writes by the hitchhikers immediately before the installer, which makes
their write operations to be overwritten immediately by the installer’s write, without
anyone ever witnessing their writes. Hence, there is no need to detect these writes: if
a hitchhiker crashes during its write, the operation can be safely repeated.

(W3) If the installer crashes after installing, upon restart, in the Recover method, it does
the forwarding so that its install moves to Z and its write operation gets linearized.

P. Jayanti, S. Jayanti, and S. Jayanti 25:13

An ECSC(h, s, v) operation α consists of the following steps.
(S1) α performs an ECLL() to determine whether the context in O matches s. If not, it

can fail early and return false.
(S2) If a Write() is already in W and waiting for help to be transferred to Z, α is obligated

to help that write before attempting its SC (to prevent the write from being blocked by
a chain of successful ECSC() operations). So it attempts a transfer from W to Z.

(S3) Finally α executes an ECSC() on Z in an attempt to make its own operation O take
effect.

The algorithm is formally presented in Algorithm 2. In the algorithm, Lines 12-14
implement step W1 and Lines 15, 16 implement step W2. Step S1 is implemented by Lines
7, 8, step S2 by 9 and S3 by 10 and 11. Note that the ECSC() on line 10 takes care to not
change Z.bit. This ensures that the helping mechanism for writes implemented via W.bit

and Z.bit is not disturbed. The ECSC() operation at Line 14 uses the handle h.Critical
because its success implies that the operation is an installer and hence will be a visible write
when it linearizes. Similarly the ECSC() on Z at Line 10 uses h.Critical because its success
makes the ECSC() on O visible.

If a Write() or a ECSC() method crashes while executing an operation on W or Z,
upon restart, Lines 21 to 24 of Recover() ensure that W.Recover() or Z.Recover() is
executed before any other operation is executed on W or Z (the relative order of lines 21-24
is unimportant). Consequently, the durable objects W and Z behave like atomic EC objects.

The theorem below summarizes the result:

▶ Theorem 2. Algorithm DurECW satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of External Context Writable-LLSC).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DurECW objects or accessing existing
DurECW objects.

4. The space requirement is O(m + n), where m is the actual number of DurECW objects
created in the run, and n is the actual number of processes that have joined in in a run.

6.2 The DuraLL Algorithm
Given the durable EC W-LLSC object DurECW, rolling the context into the implementation
to produce a durable standard W-LLSC object is simple. Each of our implemented DuraLL
objects simply maintains a single DurECW object X. The handle of the DuraLL object
simply maintains a single DurECW handle to operate on X, and a hashmap, cntxts, that
maps objects to contexts.

We present the DuraLL code as Algorithm 4 in the Appendix A. The LL() operation
on a DuraLL object by handle h simply performs an ECLL() on X and stores the returned
context in h.cntxts under the key self (which is the reference of the current object). Corre-
spondingly, VL() retrieves the context from h.cntxts, and uses it to perform an ECVL()
on X. The SC() operation also retrieves the context and performs an ECSC() on the
internal object, but then cleverly removes the key corresponding to the current object from
h.cntxts, since, regardless of whether the SC() succeeds, the stored context is bound to be
out-of-date. The Write() operation does not need a context, so it simply writes to X, but
also cleverly removes the current object’s key from h.cntxts to save some space. In order to

DISC 2023

25:14 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

be space-efficient, Recover() also removes the current object from h.cntxts if the context
stored for the object is out-of-date. Since DuraLL is just a wrapper around DurECW, its
Detect() operation simply returns the result of detecting DurECW.

▶ Theorem 3. Algorithm DuraLL satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of Writable LLSC).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DuraLL objects or accessing existing
DuraLL objects.

4. The space requirement is O(m+n+C), where m is the actual number of DuraLL objects
created in the run, n is the actual number of processes that have joined in in a run, and
C is the number of “contexts” stored across all objects.

7 DuraCAS: a durable implementation of Writable CAS

We present in Figure 3 Algorithm DuraCAS, which implements a durable writable CAS
object O from two DurEC objects, W and Z. The algorithm bears a lot of similarity to
Algorithm DurECW of the previous section. In fact, DuraCAS has only three extra lines.
For readability, we starred their line numbers (Lines 6*, 10*, and 13*) and kept the line
numbers the same for the common lines.

The ideas underlying this algorithm are similar to DurECW, so we explain here only
the three differences: (1) Lines 7 to 10 are executed only once in Algorithm DurECW, but
are repeated twice in the current algorithm; (2) Line 8 differs in the two algorithms; and (3)
Line 13* is introduced in the current algorithm.

The change in Line 8 accounts for the fact that the success of a Cas() operation depends
on the value in O rather than the context. If the value in O (and therefore Z) is different
from old at Line 7, the CAS returns false (and linearizes at Line 7). If O.val = old and the
CAS does not plan to change the value (i.e., old = new) it returns true without changing Z.

To understand why Lines 7 to 10 are repeated in the current algorithm, consider the
following scenario. A handle h executes O.CAS(h, old, new), where old ̸= new. When h

executes Line 7, Z’s value is old, so z.val gets set to old at Line 7. Handle h progresses
to Line 10, but before it executes Line 10, some handle h′ invokes O.Write(h′, old) and
executes it to completion, causing Z.seq to take on a value greater than z.seq. Handle h now
executes the ECSC at Line 10 and fails since Z.seq ̸= z.seq. If h acts as it did in Algorithm
DurECW, h would complete its O.CAS(h, old, new) operation, returning false. However,
false is an incorrect response by the specification of CAS because O.val = old for the full
duration of the operation O.CAS(h, old, new). To overcome this race condition, h repeats
Lines 7 to 10.

If the same race condition repeats each time h repeats Lines 7 to 10, the method O.CAS

would not be wait-free. Line 13* is introduced precisely to prevent this adverse possibility.
When a handle h′ executes Lines 12 to 14 of O.Write(h′, v) in the previous DurECW
algorithm, h′ would always try to install its value v in W (at Line 14) and later move it to
Z, thereby increasing Z.seq and causing concurrent O.ECSC() operations to fail. This was
precisely what we wanted because the specification of an SC operation requires that if any
O.Write() takes effect, regardless of what value it writes in O, it must change O.context

and thus cause concurrent O.ECSC() operations to fail. The situation however, is different

P. Jayanti, S. Jayanti, and S. Jayanti 25:15

Algorithm 3 The DuraCAS class for Durable, Writable-CAS objects.

class DuraCAS:

instance variable DurEC W ▷ W holds a pair (W.seq, (W.val,W.bit))
instance variable DurEC Z ▷ Z holds a pair (Z.seq, (Z.val,Z.bit))

struct handle {
DurEC.handle* Critical
DurEC.handle* Casual

}

static procedure CreateHandle()
1: return new handle{Critical ← DurEC.CreateHandle(), Casual ← DurEC.CreateHandle()}

procedure DuraCAS(int initval)
2: W ← DurEC((0, 0))
3: Z ← DurEC((initval, 0))

procedure Read(handle* h)
4: z ← Z.ECLL(h.Casual)
5: return z.val

6:

procedure CAS(handle* h, int old, int new)
6*: for i← 1 to 2
7: z ← Z.ECLL(h.Casual)
8: if z.val ̸= old then return false else if old = new then return true
9: transfer-write(h)

10: if Z.ECSC(h.Critical, z.seq, (new, z.bit)) then
10*: return true
11: return false

procedure Write(handle* h, int v)
12: w ←W.ECLL(h.Casual)
13: z ← Z.ECLL(h.Casual)
13*: if z.val = v then return ack
14: if z.bit = w.bit then W.ECSC(h.Critical, w.seq, (v, 1− w.bit))
15: transfer-write(h)
16: transfer-write(h)
17: return ack

procedure transfer-write(handle* h)
18: ẑ ← Z.ECLL(h.Casual)
19: ŵ ←W.ECLL(h.Casual)
20: if ẑ .bit ̸= ŵ .bit then Z.ECSC(h.Casual, ẑ .seq, (ŵ .val, ŵ .bit))

procedure Recover(handle* h)
21: W.Recover(h.Critical)
22: Z.Recover(h.Critical)
23: W.Recover(h.Casual)
24: Z.Recover(h.Casual)
25: transfer-write(h)
26: transfer-write(h)

static procedure Detect(handle* h)
27: return DurEC.Detect(h.Critical)

when implementing O.CAS, where a O.Write() that does not change the value in O should
not cause a concurrent O.CAS to fail. Hence, if a O.Write(h′, v) operation is writing the
same value as O’s current value, then it should simply return (since O.val already has v)
and, importantly, not change Z.seq (because changing Z.seq would cause any concurrent
CAS operation to fail). Line 13* implements precisely this insight by ensuring that two
Write(−, v) operations both change Z only if there is some Cas(−, v, v′) or Write(−, v′)
operation that changes Z in between (for some v′ ̸= v).

DISC 2023

25:16 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

The theorem below summarizes the result:

▶ Theorem 4. Algorithm DuraCAS satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of Writable CAS).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DuraCAS objects or accessing existing
DuraCAS objects.

4. The space requirement is O(m + n), where m is the actual number of DuraCAS objects
created in the run, and n is the actual number of processes that have joined in in a run.

8 Discussion and Remarks

In this paper, we have designed constant time implementations for durable CAS and LLSC
objects. To our knowledge, DuraCAS is the first CAS implementation to allow for dynamic
joining. DuraCAS also has state-of-the-art space complexity – allowing adaptivity and
requiring only constant space per object and per process that actually accesses the protocol
– and is writable. To our knowledge, ours are the first implementations of durable LLSC
objects. LLSC objects are universal and ABA-free, thus we believe that the dynamically
joinable LLSC implementations in this paper will be useful in the construction of several
more complex durable objects. The external context variant of LLSC is particularly space
efficient, making it a powerful building block for concurrent algorithms; we witnessed this
property even in the constructions of this paper, where the EC nW-LLSC object DurEC
served as the primary building block for all our other implementations, including our EC
W-LLSC implementation DurECW and its direct descendent DuraLL (for W-LLSC). All
the implementations in this paper were enabled by handles – a pointer-based mechanism
we introduced to enable threads created on-the-fly to access our implementations. We
believe that along with the specific implementations of this paper, the use of handles as an
algorithmic tool can play an important role in the design of future durable algorithms.

We end with two open problems. Handles enable dynamic joining, but once a handle h

is used, any other process can have a stale pointer to h that may be dereferenced at any
point in the future. A mechanism for enabling space adaptivity for both dynamic joining
and dynamic leaving, which would enable a process to reclaim its entire memory footprint
once it is done using a durable implementation is our first open problem. Our second open
problem is to prove (or disprove) an Ω(m + n) space lower bound for supporting m objects
for n processes for any durable CAS or durable LLSC type.

References
1 Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. Making objects writable. In

Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC
’14, pages 385–395, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2611462.2611483.

2 Marcos K. Aguilera and Svend Frølund. Strict linearizability and the power of aborting. In
techreport, 2003.

3 James H. Anderson and Mark Moir. Universal constructions for multi-object operations. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’95, pages 184–193, New York, NY, USA, 1995. Association for Computing Machinery.
doi:10.1145/224964.224985.

https://doi.org/10.1145/2611462.2611483
https://doi.org/10.1145/2611462.2611483
https://doi.org/10.1145/224964.224985

P. Jayanti, S. Jayanti, and S. Jayanti 25:17

4 Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler, and Eleftherios Kosmas.
Detectable recovery of lock-free data structures. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, pages 262–277,
New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3503221.
3508444.

5 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable linearizability:
Modular constructions for non-volatile memory. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC ’18, pages 7–16, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3212734.3212753.

6 Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and lower bounds on the
space complexity of detectable objects. In Proceedings of the 39th Symposium on Principles of
Distributed Computing, PODC ’20, pages 11–20, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3382734.3405725.

7 Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free concur-
rency on faulty persistent memory. In The 31st ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’19, pages 253–264, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3323165.3323187.

8 Naama Ben-David, Michal Friedman, and Yuanhao Wei. Brief announcement: Survey of
persistent memory correctness conditions. In Christian Scheideler, editor, 36th International
Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia,
USA, volume 246 of LIPIcs, pages 41:1–41:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.DISC.2022.41.

9 Ryan Berryhill, Wojciech M. Golab, and Mahesh Tripunitara. Robust shared objects for
non-volatile main memory. In Emmanuelle Anceaume, Christian Cachin, and Maria Gradinariu
Potop-Butucaru, editors, 19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, volume 46 of LIPIcs, pages 20:1–20:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.OPODIS.2015.
20.

10 Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. The
parallel persistent memory model. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, SPAA ’18, pages 247–258, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3210377.3210381.

11 Guy E. Blelloch and Yuanhao Wei. LL/SC and atomic copy: Constant time, space efficient
implementations using only pointer-width CAS. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference,
volume 179 of LIPIcs, pages 5:1–5:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.DISC.2020.5.

12 Philip Bohannon, Daniel Lieuwen, Avi Silberschatz, S. Sudarshan, and Jacques Gava. Re-
coverable User-Level Mutual Exclusion. In In Proc. 7th IEEE Symposium on Parallel and
Distributed Processing, 1995.

13 Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati, and
Michael L. Scott. Understanding and optimizing persistent memory allocation. In Proceedings
of the 2020 ACM SIGPLAN International Symposium on Memory Management, ISMM
2020, pages 60–73, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3381898.3397212.

14 David Yu Cheng Chan and Philipp Woelfel. Recoverable mutual exclusion with constant
amortized RMR complexity from standard primitives. In ACM Symposium on Principles of
Distributed Computing (PODC). ACM, 2020. doi:10.1145/3382734.3405736.

15 David Yu Cheng Chan and Philipp Woelfel. Tight lower bound for the RMR complexity of
recoverable mutual exclusion. In ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 2021. doi:10.1145/3465084.3467938.

DISC 2023

https://doi.org/10.1145/3503221.3508444
https://doi.org/10.1145/3503221.3508444
https://doi.org/10.1145/3212734.3212753
https://doi.org/10.1145/3382734.3405725
https://doi.org/10.1145/3323165.3323187
https://doi.org/10.4230/LIPIcs.DISC.2022.41
https://doi.org/10.4230/LIPIcs.OPODIS.2015.20
https://doi.org/10.4230/LIPIcs.OPODIS.2015.20
https://doi.org/10.1145/3210377.3210381
https://doi.org/10.4230/LIPIcs.DISC.2020.5
https://doi.org/10.1145/3381898.3397212
https://doi.org/10.1145/3381898.3397212
https://doi.org/10.1145/3382734.3405736
https://doi.org/10.1145/3465084.3467938

25:18 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

16 D. Dechev, P. Pirkelbauer, and B. Stroustrup. Understanding and effectively preventing the
aba problem in descriptor-based lock-free designs. In 2010 13th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing, pages 185–192,
2010. doi:10.1109/ISORC.2010.10.

17 Sahil Dhoked and Neeraj Mittal. An adaptive approach to recoverable mutual exclusion. In
PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy,
August 3-7, 2020. ACM, 2020. doi:10.1145/3382734.3405739.

18 Simon Doherty, Maurice Herlihy, Victor Luchangco, and Mark Moir. Bringing practical
lock-free synchronization to 64-bit applications. In Soma Chaudhuri and Shay Kutten,
editors, Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages 31–39.
ACM, 2004. doi:10.1145/1011767.1011773.

19 Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Petrank. A persistent
lock-free queue for non-volatile memory. In Andreas Krall and Thomas R. Gross, editors,
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2018, Vienna, Austria, February 24-28, 2018, pages 28–40. ACM, 2018.
doi:10.1145/3178487.3178490.

20 Wojciech M. Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.
In Elad Michael Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July
25-27, 2017, pages 211–220. ACM, 2017. doi:10.1145/3087801.3087819.

21 Wojciech M. Golab and Aditya Ramaraju. Recoverable mutual exclusion: [extended abstract].
In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 65–74. ACM,
2016. doi:10.1145/2933057.2933087.

22 Rachid Guerraoui, Alex Kogan, Virendra J. Marathe, and Igor Zablotchi. Efficient multi-word
compare and swap. In Hagit Attiya, editor, 34th International Symposium on Distributed
Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages
4:1–4:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
DISC.2020.4.

23 Rachid Guerraoui and Ron R. Levy. Robust emulations of shared memory in a crash-recovery
model. In Proceedings of the 24th International Conference on Distributed Computing Systems
(ICDCS’04), ICDCS ’04, pages 400–407, USA, 2004. IEEE Computer Society.

24 happyware.com. Supermicro 8-socket intel xeon 7u rack server. https://happyware.com/
uk-en/supermicro/sys-7089p-tr4t. Accessed: August 1, 2022.

25 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991. doi:10.1145/114005.102808.

26 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990. doi:
10.1145/78969.78972.

27 Intel. Intel optane technology, 2020. URL: https://software.intel.com/content/www/us/
en/develop/articles/intel-sdm.html.

28 Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Cyril Gavoille and David Ilcinkas,
editors, Distributed Computing - 30th International Symposium, DISC 2016, Paris, France,
September 27-29, 2016. Proceedings, volume 9888 of Lecture Notes in Computer Science, pages
313–327. Springer, 2016. doi:10.1007/978-3-662-53426-7_23.

29 Prasad Jayanti. A complete and constant time wait-free implementation of cas from ll/sc and
vice versa. In Proceedings of the 12th International Symposium on Distributed Computing,
DISC ’98, pages 216–230, Berlin, Heidelberg, 1998. Springer-Verlag.

30 Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. Durable algorithms for writable
ll/sc and cas with dynamic joining, 2023. arXiv:2302.00135.

https://doi.org/10.1109/ISORC.2010.10
https://doi.org/10.1145/3382734.3405739
https://doi.org/10.1145/1011767.1011773
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3087801.3087819
https://doi.org/10.1145/2933057.2933087
https://doi.org/10.4230/LIPIcs.DISC.2020.4
https://doi.org/10.4230/LIPIcs.DISC.2020.4
https://happyware.com/uk-en/supermicro/sys-7089p-tr4t
https://happyware.com/uk-en/supermicro/sys-7089p-tr4t
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://doi.org/10.1007/978-3-662-53426-7_23
https://arxiv.org/abs/2302.00135

P. Jayanti, S. Jayanti, and S. Jayanti 25:19

31 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. A recoverable mutex algorithm with
sub-logarithmic rmr on both cc and dsm. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC ’19, pages 177–186, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3293611.3331634.

32 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. Constant rmr system-wide failure
resilient durable locks with dynamic joining. In Proceedings of the 35th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’23, pages 227–237, New York, NY, USA,
2023. Association for Computing Machinery. doi:10.1145/3558481.3591100.

33 Prasad Jayanti, Siddhartha V. Jayanti, and Anup Joshi. Optimal recoverable mutual exclusion
using only FASAS. In Andreas Podelski and François Taïani, editors, Networked Systems -
6th International Conference, NETYS 2018, Essaouira, Morocco, May 9-11, 2018, Revised
Selected Papers, volume 11028 of Lecture Notes in Computer Science, pages 191–206. Springer,
2018. doi:10.1007/978-3-030-05529-5_13.

34 Prasad Jayanti, Siddhartha Visveswara Jayanti, and Sucharita Jayanti. Brief announcement:
Efficient recoverable writable-cas. In Proceedings of the 2023 ACM Symposium on Principles
of Distributed Computing, PODC ’23, pages 366–369, New York, NY, USA, 2023. Association
for Computing Machinery. doi:10.1145/3583668.3594592.

35 Prasad Jayanti and Anup Joshi. Recoverable FCFS mutual exclusion with wait-free recovery.
In Andréa W. Richa, editor, 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 30:1–30:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.DISC.2017.30.

36 Prasad Jayanti and Anup Joshi. Recoverable mutual exclusion with abortability. In Mo-
hamed Faouzi Atig and Alexander A. Schwarzmann, editors, Networked Systems - 7th Inter-
national Conference, NETYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised Selected
Papers, volume 11704 of Lecture Notes in Computer Science, pages 217–232. Springer, 2019.
doi:10.1007/978-3-030-31277-0_14.

37 Prasad Jayanti and Srdjan Petrovic. Efficient and practical constructions of ll/sc variables. In
Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing,
PODC ’03, pages 285–294, New York, NY, USA, 2003. Association for Computing Machinery.
doi:10.1145/872035.872078.

38 Prasad Jayanti and Srdjan Petrovic. Efficiently implementing LL/SC objects shared by an
unknown number of processes. In Ajit Pal, Ajay D. Kshemkalyani, Rajeev Kumar, and
Arobinda Gupta, editors, Distributed Computing - IWDC 2005, 7th International Workshop,
Kharagpur, India, December 27-30, 2005, Proceedings, volume 3741 of Lecture Notes in
Computer Science, pages 45–56. Springer, 2005. doi:10.1007/11603771_5.

39 Nan Li and Wojciech M. Golab. Detectable sequential specifications for recoverable shared
objects. In Seth Gilbert, editor, 35th International Symposium on Distributed Computing,
DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of
LIPIcs, pages 29:1–29:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.DISC.2021.29.

40 Maged M. Michael. Practical lock-free and wait-free LL/SC/VL implementations using
64-bit CAS. In Rachid Guerraoui, editor, Distributed Computing, 18th International Con-
ference, DISC 2004, Amsterdam, The Netherlands, October 4-7, 2004, Proceedings, vol-
ume 3274 of Lecture Notes in Computer Science, pages 144–158. Springer, 2004. doi:
10.1007/978-3-540-30186-8_11.

41 Aditya Ramaraju. RGLock: Recoverable mutual exclusion for non-volatile main memory
systems. Master’s thesis, University of Waterloo, 2015. URL: https://uwspace.uwaterloo.
ca/handle/10012/9473.

42 Tianzheng Wang, Justin J. Levandoski, and Per-Åke Larson. Easy lock-free indexing in
non-volatile memory. In 34th IEEE International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-19, 2018, pages 461–472. IEEE Computer Society, 2018. doi:
10.1109/ICDE.2018.00049.

DISC 2023

https://doi.org/10.1145/3293611.3331634
https://doi.org/10.1145/3558481.3591100
https://doi.org/10.1007/978-3-030-05529-5_13
https://doi.org/10.1145/3583668.3594592
https://doi.org/10.4230/LIPIcs.DISC.2017.30
https://doi.org/10.1007/978-3-030-31277-0_14
https://doi.org/10.1145/872035.872078
https://doi.org/10.1007/11603771_5
https://doi.org/10.4230/LIPIcs.DISC.2021.29
https://doi.org/10.4230/LIPIcs.DISC.2021.29
https://doi.org/10.1007/978-3-540-30186-8_11
https://doi.org/10.1007/978-3-540-30186-8_11
https://uwspace.uwaterloo.ca/handle/10012/9473
https://uwspace.uwaterloo.ca/handle/10012/9473
https://doi.org/10.1109/ICDE.2018.00049
https://doi.org/10.1109/ICDE.2018.00049

25:20 Durable Algorithms for Writable LL/SC and CAS with Dynamic Joining

A DuraLL Implementation

Algorithm 4 The DuraLL class for Durable Writable-LLSC objects.

class DuraLL:

instance variable DurECW X ▷ X holds the central EC W-LLSC object.

struct handle {
DurECW.handle ECWH
HashMap (DuraLL→ int) cntxts

}

static procedure CreateHandle()
1: return new handle{ECWH ← DurECW.CreateHandle(), cntxts← HashMap(DuraLL→ int)}

procedure DuraLL(initval)
2: X ← DurECW(initval, 0)

procedure LL(handle* h)
3: x ← X.ECLL(h.ECWH)
4: h.cntxts(self)← x.seq
5: return x.val

procedure VL(handle* h)
6: if self ̸∈ h.cntxts.keys then return false
7: return X.ECVL(h.ECWH , h.cntxts(self))

procedure SC(handle* h, int val)
8: if self ̸∈ h.cntxts.keys then return false
9: r ← X.ECSC(h.ECWH , h.cntxts(self), val)

10: h.cntxts.Remove(self)
11: return r

procedure Write(handle* h, int val)
12: X.Write(h.ECWH , val)
13: h.cntxts.Remove(self)
14: return true

procedure Recover(handle* h)
15: X.Recover(h.ECWH)
16: if self ∈ h.cntxts.keys then

if ¬X.ECVL(h.ECWH , h.cntxts(self)) then h.context.Remove(self)

static procedure Detect(handle* h)
17: return DurECW.Detect(h.ECWH)

Cordial Miners: Fast and Efficient Consensus for
Every Eventuality
Idit Keidar
Technion, Haifa, Israel

Oded Naor
Technion, Haifa, Israel
StarkWare Industries Ltd., Netanya, Israel

Ouri Poupko
Ben-Gurion University, Beer Sheva, Israel

Ehud Shapiro Ñ

Weizmann Institute of Science, Rehovot, Israel

Abstract
Cordial Miners are a family of efficient Byzantine Atomic Broadcast protocols, with instances
for asynchrony and eventual synchrony. They improve the latency of state-of-the-art DAG-based
protocols by almost 2× and achieve optimal good-case complexity of O(n) by forgoing Reliable
Broadcast as a building block. Rather, Cordial Miners use the blocklace – a partially-ordered
counterpart of the totally-ordered blockchain data structure – to implement the three algorithmic
components of consensus: Dissemination, equivocation-exclusion, and ordering.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Byzantine Fault Tolerance, State Machine Replication, DAG, Consensus,
Blockchain, Blocklace, Cordial Dissemination

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.26

Related Version Full Version: https://arxiv.org/abs/2205.09174

Funding Oded Naor : Oded Naor is grateful to the Azrieli Foundation for the award of an Azrieli
Fellowship, and to the Technion Hiroshi Fujiwara Cyber-Security Research Center for providing a
research grant.

Acknowledgements Ehud Shapiro is the Incumbent of The Harry Weinrebe Professorial Chair of
Computer Science and Biology at the Weizmann Institute.

1 Introduction

The problem of ordering transactions in a permissioned Byzantine distributed system, also
known as Byzantine Atomic Broadcast (BAB), has been investigated for four decades [30], and
in the last decade, has attracted renewed attention due to the emergence of cryptocurrencies.

Recently, a line of works [4, 14, 20, 33, 21, 27] suggests ordering transactions using a
distributed Directed Acyclic Graph (DAG) structure, in which each vertex contains a block
of transactions as well as references to previously sent vertices. The DAG is distributively
constructed from messages of miners running the consensus protocol. While building the
DAG structure, each miner also totally orders the vertices in its DAG locally. That is,
as the DAG is being constructed, a consensus on its ordering emerges without additional
communication among the miners.

© Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 26; pp. 26:1–26:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.weizmann.ac.il/math/shapiro/home
https://doi.org/10.4230/LIPIcs.DISC.2023.26
https://arxiv.org/abs/2205.09174
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Cordial Miners

Table 1 Performance summary. Bullshark is for the ES model, and DAG-Rider is for the
asynchronous model. Both protocols employ RB, which requires at least two rounds of communication
of simple messages for optimal latency [2] and O(n2) amortized message complexity, or four rounds
with erasure coding when using Das et al. [15] and O(n) amortized message complexity.

Protocol
Reliable

Broadcast
Used

Latency Amortized
Message

Complexity
Eventual Synch. Async.
Good Expected Good Expected

Cordial Miners (this work) None 3 4.5 5 7.5
good-case: O(n)

worst-case: O(n2)

Bullshark (for ES) Optimal latency [2] 4 9 8 12 good- & worst-case: O(n2)
DAG-Rider (for asynch.) Das et al. [15] 8 18 16 24 good- & worst-case: O(n)

The two state-of-the-art protocols in this context are DAG-Rider [21] and Bullshark [33].
DAG-Rider works in the asynchronous setting, in which the adversary controls the finite delay
on message delivery between miners, and Bullshark works in the Eventual Synchrony (ES)
model, in which eventually all messages between correct miners are delivered within a known
time-bound.

Both protocols use Reliable Broadcast (RB) [7] as a building block to disseminate vertices in
the DAG. RB ensures that Byzantine miners cannot equivocate, i.e., they cannot successfully
send two conflicting vertices to the correct miners. By using RB to exclude equivocation, the
DAGs of all correct miners eventually contain the same vertices.

But using RB has costs in terms of message complexity and latency. The well-known
Bracha RB [7] protocol entails O(n2) message complexity for each broadcast message, where
n is the number of miners, and has a latency of 3 rounds of communication. The lower bound
for RB is 2 rounds [2], and the message complexity lower bound is O(n2) [19]. Recent RB
protocols [15, 16] improve the message complexity to O(n) in some cases by using erasure
codes [5], but require between 4 to 5 rounds of communication.

DAG-Rider and Bullshark need to invoke a sequence of RB instances several times to
reach a single instance of consensus. E.g., DAG-Rider requires 6 sequential instances of
RB in the expected case, making its latency between 12 to 24 rounds of communication,
depending on the RB protocol it uses. Bullshark requires between 9 to 18 rounds in the
expected case in the ES model.

It is within this context that we introduce Cordial Miners – a family of simple, efficient,
self-contained Byzantine Atomic Broadcast [9] protocols that forgo RB, and present two of
its instances for the models ES and asynchrony.

The ES Cordial Miners protocol reduces the expected latency from 9 rounds in today’s
state-of-the-art to 4.5, and the good case latency from 4 to 3. The asynchronous version
of Cordial Miners improves the expected latency from 12 rounds to 7.5, and the good case
latency from 8 to 5. This is while maintaining the same amortized quadratic message
complexity in the worst case. Cordial Miners also demonstrates better performance with
O(n) complexity in the good case when the actual number of Byzantine miners is O(1) and
the network is synchronous. Protocols that use RB do not differ in their performance between
the good and worst cases. Tab. 1 summarizes Cordial Miners’ performance compared to
DAG-Rider (for asynchrony) and Bullshark (for ES).

The crux of the Cordial Miners protocols is that instead of using RB to eliminate
equivocation (and absorbing its rather high latency), miners cooperatively create a data
structure that accommodates equivocations, termed blocklace, which is a partially-ordered
counterpart of the blockchain data structure [29]. When a miner wishes to disseminate a
block, it simply sends it to all other miners, taking a single round of communication, instead
of at least two when using reliable broadcast.

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:3

Although the blocklace may contain equivocating blocks created by Byzantine miners,
they are excluded by the ordering protocol, which is locally computed by each miner without
inducing any extra communication or latency. This is realized by the function τ that converts
the partially-ordered blocklace to a totally-ordered sequence of blocks while excluding
equivocations along the way. Thus, by “complicating” the local ordering task to exclude
equivocations, we forgo the extra communication rounds and latency associated with RB.

Roadmap. The rest of the paper is structured as follows: §2 describes the models and
defines the problem; §3 provides intuition and overview of the different components; §4
introduces the blocklace data structure; §5 explains the τ function that locally turns the
blocklace into a totally-ordered sequence of blocks; §6 describes the entire Cordial Miners
protocols for the two network models; §7 presents the performance analysis; §8 is related
work; and lastly, §9 concludes the paper. To accommodate the space limitations some details
are deferred to the appendices. App. A describes a formal mathematical model for cordial
miners, and some explanatory figures are deferred to App. B. Two additional appendices:
one that details the full proofs and another that describes further future directions and
optimizations appear in the full version of this paper [22].

2 Model and Problem Definition

We assume a set Π of n ≥ 3 miners (aka agents, processes), of which at most f < n/3 may
be faulty (act under the control of the adversary, be “Byzantine”), and the rest are correct
(also honest or non-faulty). Each miner is equipped with a single and unique cryptographic
key-pair, with the public key known to others. Miners can create, sign, and send messages to
each other, where any message sent from one correct miner to another is eventually received.
In addition, each miner can sequentially output (aka “deliver”) messages (e.g., to a local
output device or storage device). Thus, each miner outputs a sequence of messages.

Let Λ denote the empty sequence; for a set X, X∗ is the set of all sequences over X; for
sequences x and y, x ⪯ y denotes that x is a prefix of y; x · y denotes the concatenation of x

and y; and x, y are consistent if x ⪯ y or y ⪯ x.
The problem we aim to solve in this paper is to devise an ordering consensus protocol

that is safe and live:

▶ Definition 1 (Safety and Liveness of an Ordering Consensus Protocol). An ordering consensus
protocol is:
Safe if output sequences of correct miners are consistent.
Live if every message sent by a correct miner is eventually output by every correct miner

with probability 1.

Here, we aim to devise safe and live ordering consensus protocols for models of distributed
computing with two types of adaptive adversaries that can corrupt up to f miners throughout
the run: First, Asynchrony, in which the adversary controls the finite delay of every message.
Second, Eventual Synchrony (ES), in which there is a point in time, known as the Global
Stabilization Time (GST). After GST, the adversary controls the delivery time of messages
sent between correct miners, but they must be delivered within a known bound ∆. We further
assume the adversary is computationally bounded and, therefore, cannot break cryptographic
signatures.

DISC 2023

26:4 Cordial Miners

Figure 1 The blocklace data structure, equivocations, approval, and ratification. Four
miners (red, green, blue, yellow). Each circle represents a block and each line a hash pointer to the left
block. (A) A single wave consisting of five consecutive rounds. The green block in round r with the halo
is the leader block. Each of the highlighted blocks in yellow in rounds r + 1 and r + 4 have a path to the
leader block, making it a final leader block. The blocks with a gray halo are ordered by τ when the leader
block becomes final. (B) The red equivocates, with the top red block approved by the green block of the
next round, the bottom red block approved by the yellow block of the next round, and the blue block of
the next round, observing both equivocating red blocks, approves neither, and hence neither of the red
blocks has the three approvals (including the red block itself) needed for ratification. (C) Here the blue
block of the next round observes only the bottom red block and hence approves it, which together with
the yellow block and the red block itself form a supermajority, and hence the bottom red block is ratified,
but not the top one. (D) Here the blue miner equivocates in the next round, with the top blue block of
the next round approving the top red block, which together with the green and red form a supermajority
that ratifies it. Similarly, the bottom blue block, the yellow block, and the red (which is not illustrated)
ratify the bottom red block. Indeed, with two equivocators (red and blue) out of four, an equivocation
can be ratified.

We note that safety and liveness, combined with message uniqueness (e.g., a block in a
blocklace, see next), imply the standard Byzantine Atomic Broadcast guarantees: Agreement,
Integrity, Validity, and Total Order [9, 21]. Hence, protocols that address the problem defined
here are in fact protocols for Byzantine Atomic Broadcast.

Next, we provide an overview of the Cordial Miners protocol, including the blocklace, the
dissemination of blocks, and the local ordering of the blocks to a final sequence.

3 Cordial Miners Overview

In the Cordial Miners protocols, the miners jointly built the blocklace data structure, a
partially-ordered counterpart of the totally-ordered blockchain. A blocklace created by four
miners, each of a different color, is is illustrated in Fig. 1. The depth of a block in a blocklace
is the length of the maximal path emanating from it, and a round of a blocklace consists
of blocks of the same depth. A set of blocks by more than 1

2 (n + f) miners is termed a
supermajority; note that if f = 0 then a supermajority is a simple majority. Correct miners
are cordial in that they wait for round r to attain a supermajority before contributing a
block to round r + 1.

Fig. 1.A presents a blocklace constructed by four miners s.t. each column is a single
round representing blocks from different miners, and each row in the same color consists of
blocks from the same miner. Thus, each correct miner creates a single block in each round.
Note that different miners can have different partial views of the blocklace, and the goal is
to “converge” the order of the blocks to a consistent order for all the miners.

Each block holds a set of transactions as well as hash pointers (the edges in the DAG) to
blocks of previous rounds. When a miner observes that round r has attained a supermajority
(is cordial) it creates a new block b of round r + 1 with pointers to the tips of its blocklace

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:5

up to round r, which are the blocks in the blocklace with no incoming edges from blocks
of depth up to r. The tips must include a supermajority of blocks of round r, but possibly
also blocks of earlier rounds not already observed by the blocks received in round r. (One
block observes another if there is a path of pointers from one to the other.) E.g., if the figure
represents the local blocklace of the red miner, then since round r + 4 is cordial, the red
miner can create a new block b in round r + 5 with pointers to all the blocks in round r + 4.
The miner then sends b to all other miners. The blocklace data structure is defined in §4.

Next, we explain how Cordial Miners use the blocklace for the three algorithmic compo-
nents of consensus: Dissemination, equivocation-exclusion, and ordering.

Dissemination. In the good case, dissemination is realized simply by each miner sending
each new block to all other miners. However, faulty miners may fail to do so, possibly
intentionally, and send new blocks only to some of the miners.

The principle of cordial dissemination [29] is: Send to others blocks you know and think
they need. Its blocklace-based Byzantine-resilient implementation uses each block in the
blocklace as an ack/nak message: A new block created by a correct miner p points, directly
or indirectly, to the blocks in p’s local blocklace. It thus discloses the blocks known by p at
the time of its creation and, by omission, also of the blocks not yet known to p. This way, a
miner q that receives p’s block can send back to p any block known to q and not known to p

according to the disclosure made by p’s block. E.g., the green block in round r + 4 serves as
an ack message for all the blocks that it observes, including the red, green, and blue blocks
in round r + 3. It also serves as a nak message for the yellow block of round r + 3. As an
example of cordial dissemination, when the red miner sends the block it creates to the green
miner in round r + 5, it will also send to the green miner the yellow block in round r + 3.
The dissemination protocol is formally defined in §6.

Equivocation exclusion. Two blocks b1, b2 of the same miner are equivocating if neither
observes the other, i.e., there is no path of pointers from b1 to b2 or from b2 to b1. Since
Cordial Miners do not use RB to disseminate blocks, the blocklace created by Cordial Miners
may include equivocations created by Byzantine miners, which are later excluded when each
miner locally orders the blocks in its blocklace to a sequence of final blocks. The Cordial
Miners protocol uses supermajority approval to exclude equivocations s.t. for each set of
equivocating blocks, at most, one is included in the final output. In addition, after detecting
an equivocation, correct miners ignore the Byzantine miner by not including direct pointers
to their blocks. Thus, a Byzantine miner that equivocates is eventually detected, which
results in it eventually being ignored by all correct miners. Equivocation exclusion is part of
the τ ordering function which is detailed in §5.

Ordering. Ordering the partially-ordered blocklace can be achieved by topological sort of
the DAG. The challenge is to ensure that all correct miners exclude equivocations and order
the blocks identically so that they all produce the same total order. To this end, the blocklace
is divided into waves, each consisting of several rounds, the number of which is different
for ES and asynchrony (3 and 5 rounds per wave, respectively). E.g., Fig. 1.A depicts the
asynchronous version which has 5 rounds in each wave.

For each wave, one of the miners is elected as the leader, and if the first round of the
wave has a block produced by the leader, then it is the leader block. The figure depicts the
green block in round r in the green halo as the leader block of that wave. When a wave
ends, i.e., when the last round of the wave is cordial, the leader block becomes final if it has

DISC 2023

26:6 Cordial Miners

sufficient blocks that approve it, namely, it is not equivocating and there is a supermajority
where each block observes a supermajority that observes the leader block. The figure shows
two supermajorities, highlighted in yellow, where each block in the supermajority of round
r + 4 observes the supermajority of round r + 1. The supermajority in round r + 1 observes
the leader block, and the leader block is not equivocating, making it final.

A final leader block b serves as the “anchor” of the ordering function τ , which topologically
sorts (while excluding equivocations) all the blocks observed by b that have not been ordered
yet. Thus, each time a wave ends with a final leader block, a portion of its preceding blocklace
is ordered. In the figure, the blocks in round r − 1 with a grey halo are ordered when the
leader block in round r is final since it observes them. In case a wave ends with no final
leader block, unordered blocks will be ordered when some subsequent wave ends with a final
leader block. The full details of τ are in §5.

4 The Blocklace

A blocklace [28] is a partially-ordered counterpart of the totally-ordered blockchain data
structure: In a blocklace, each block may contain a finite set of cryptographic hash pointers
to previous blocks, in contrast to one pointer (or zero for the initial/genesis block) in a
blockchain. Thus, a blocklace induces a DAG in which vertices represent its blocks and edges
represent the pointers among its blocks. Next, we present the basic definitions of a blocklace,
which appear as pseudocode in Alg. 1. A formal mathematical description of these definitions
appears in App. A.

4.1 Blocklace Basics
In addition to the set of miners Π, we assume a given set of block payloads A, typically
sets of transactions, and a cryptographic hash function hash. A block consists of a payload
a ∈ A and a set of hash pointers to previously created blocks, signed by its creator p, in
which case it is also referred to as a p-block (Def. 14). A block acknowledges another
block if it contains a hash pointer to it, and is initial if the set of hash pointers is empty.
A blocklace is a set of blocks (Def. 15). Note that hash being cryptographic implies that
a blocklace that includes a cycle cannot be effectively computed, and thus a blocklace B

induces a DAG, with blocks as vertices in B and an edge among two vertices if the first
includes a hash pointer to the second.

We say that a block b observes another block b′, denoted b ⪰ b′, if there is a path from
block b to b′. If b is a p-block in a blocklace B, we say that miner p observes b′ in B (Def.
16). We note that “observe” is the transitive closure of “acknowledge”. Each miner maintains
a local blocklace of blocks it created and received. With a correct miner p, any newly created
p-block observes all the blocks in p’s local blocklace.

The main violation a Byzantine miner q can perform is an equivocation, by creating a pair
of q-blocks that do not observe each other (See Fig. 1.B). Such a miner q is an equivocator
(Def. 17). If the payloads of the two blocks are financial transactions, the equivocation may
represent an attempt at double-spending. As any p-block is cryptographically signed by p,
an equivocation by p is a volitional fault of p, to which p can be held accountable.

When a block b observes another block b′, and does not observe any equivocating block
(a block b′′ that together with b′ forms an equivocation), we say that b approves b′ (Def.
18). Note that a block b by a correct miner can observe two equivocating blocks b′, b′′, which
means that b approves neither b′ nor b′′ (See Fig. 1.B). Block approval is not transitive. If
b+ approves b and b approves b′, yet b+ also observes b′′ (which together with b′ forms an
equivocation), then b+ does not approve b′.

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:7

Algorithm 1 Cordial Miners: Blocklace Utilities. Code for miner p.
Local variables:

struct block b: ▷ The structure of a block b in a blocklace, Def. 14
b.creator – the miner that created b

b.payload – a set of transactions
b.pointers – a possibly-empty set of hash pointers to other blocks

blocklace ← {} ▷ The local blocklace of miner p

1: procedure create_block(d): ▷ Add to blocklace a new block b pointing to its tips of depth ≤ d

2: new b ▷ Allocate a new block structure
3: b.payload← payload() ▷ e.g., dequeue a payload from a queue of proposals (aka mempool)
4: b.creator← p

5: b.pointers ← hash(tips), where tips are the tips of blocklace_prefix(d), at most two tips per miner
▷ Def. 19; two-tips limitation to prevent a Byzantine miner from flooding the blocklace before being
excommunicated

6: return b

7: procedure hash(b): return hash value of b ▷ Def. 14
8: procedure b ⪰ b′: ▷ Def. 16, also refereed as b observes b′

9: return ∃b1, b2, . . . , bk ∈ blocklace, k ≥ 1, s.t. b1 = b, bk = b′ and ∀i ∈ [k − 1] : hash(bi+1) ∈ bi.pointers
10: procedure closure(B): return {b′ ∈ blocklace : b ∈ B ∧ b ⪰ b′} ▷ Def. 19. Also referred to as [B]. If

B = {b} is a singleton we use [b] instead of [{b}].
11: procedure equivocation(b1, b2): ▷ Def. 17, Fig. 1.B
12: return b1.creator = b2.creator ∧ b1 ̸⪰ b2 ∧ b2 ̸⪰ b1

13: procedure equivocator(q, B): ▷ Def. 17, Fig. 1; more faults can be added
14: return (∃b1, b2 ∈ B : b1.creator = b2.creator = q ∧ equivocation(b1, b2))
15: procedure correct_block(b): ▷ See Def. 25; other conditions can be added
16: return {b′.creator : hash(b′) ∈ b.pointers} is a supermajority ∧¬equivocator(b.creator, [b])
17: procedure approves(b, b1): return b1 ∈ [b] ∧ ∀b2 ∈ [b] : ¬equivocation(b1, b2) ▷ Def. 18, Fig. 1.C
18: procedure ratifies(B1, b2): ▷ Def. 22, Fig. 1.C
19: return {b.creator : b ∈ [B1] ∧ approves(b, b2)} is a supermajority
20: procedure super_ratifies(B1, b2): ▷ Def. 22, Fig. 1.A
21: return {b.creator : b ∈ [B1] ∧ ratifies([b], b2)} is a supermajority
22: procedure depth(b):
23: return max {k : ∃b′ ∈ blocklace with a path from b to b′ of length k}. ▷ Def. 20
24: procedure blocklace_prefix(d): return {b ∈ blocklace : depth(b) ≤ d} ▷ Def. 20
25: procedure cordial_round(r):
26: return {b.creator : b ∈ blocklace ∧ depth(b) = r} is a supermajority ▷ Def. 25
27: procedure completed_round():
28: return max {r : cordial_round(r)}
29: procedure last_block(p): ▷ The p-block with the highest round
30: return b ∈ blocklace s.t. b.creator = p ∧ (∀b′ ∈ blocklace : b′.creator = p =⇒ b′ ̸≻ b)

A miner p approves b′ in a blocklace B, if p has a p-block b in B that approves b′

(Def. 18). This holds even if p has a later p-block b+ in B that observes an equivocation b′

and b′′. Namely, if miner p approves b′ in B it also approves b′ in any B′ ⊃ B.
A miner p can approve both equivocating blocks b′ and b′′ in a blocklace B, but only if p

is an equivocator. An example will be if B includes a p-block b that observes b′ but not b′′,
and another block b+ that observes b′′ but not b′, which can happen only if b and b+ do not
observe each other, namely form an equivocation.

The closure of a block b, denoted [b], is the set of all blocks observed by b. The closure
of a set of blocks B, denoted [B], is the union of the closures of the blocks in B. A blocklace
is closed if it does not contain “dangling pointers’ (a pointer to a block that is not in the
blocklace). In other words, B is closed if B = [B]. A block b is a tip of a blocklace B if
there are no other blocks b′ ∈ B that observe b (Def. 19). The depth (or round) of a block
b is the length of the longest path emanating from b. The depth-d prefix of B, denoted
B(d), is the set of all blocks with depth less than or equal to d. The depth-d suffix of B,
is the set of all blocks with depth greater than d (Def. 20).

DISC 2023

26:8 Cordial Miners

4.2 Blocklace Safety

Note that as equivocation is a fault, at most f miners may equivocate. Ensuring that the
majority of correct miners approve a given block, requires approval from a supermajority
of all miners, that is more than n+f

2 of the miners. A set of blocks is a supermajority if it
includes blocks from a supermajority of miners (Def. 21). We show that there cannot be a
supermajority approval of an equivocation.

A block b ratifies a block b′ if the closure of b includes a supermajority of blocks that
approve b′. A set of blocks B super-ratifies a block b′, if it includes a supermajority of
blocks that ratify b′ (Def. 22 and Fig. 1).

The rounds in the blocklace are divided into waves, such that each wave has a fixed
length of w ≥ 1, defined as the wavelength (Def. 23), and the wave consists of all the blocks
in those rounds. E.g., if the wavelength is 2, then the blocks in rounds 0 and 1 are in the
first wave, and the blocks in rounds 3 and 4 are included in the second wave. We assume
the existence of a leader selection function that chooses randomly for each wave w a single
miner who will be the leader of that wave. A p-block b is a leader block of wave w if p

is chosen as the leader of w and the blocklace contains b in the first round of w. E.g., if
miner p is chosen as the leader of the first wave, and p has a block b in round 0, then b is the
leader block of the first wave. We use leader blocks as part of the ordering function τ which
is detailed in §5 and is used to totally order the blocklace.

Note that an equivocating leader can have several leader blocks in the same round. A
leader block is final (Def. 24) if it is super-ratified within its wave, i.e., we say that the
leader block b of round r is final if the blocklace prefix B(r + w − 1) super-ratifies b.

The following notion of blocklace safety is the basis for the monotonicity of the blocklace
ordering function τ , and hence for the safety of a protocol that uses τ for blocklace ordering.

▶ Definition 2 (Blocklace Leader Safety). A blocklace B is leader-safe if every final leader
block in B is ratified by every subsequent leader block in B.

A sufficient condition for blocklace leader safety is for every block in the blocklace to
acknowledge blocks by at least a supermajority of miners (see Fig. 2). Such a block is a
cordial block and a blocklace with only cordial blocks is a cordial blocklace (Def. 25).
A correct block b is a p-block s.t. b is a cordial block and p does not equivocate in [b]
(Def 26).

▶ Proposition 3. A cordial blocklace is leader-safe.

4.3 Blocklace Liveness

Next, we discuss conditions that ensure blocklace leader liveness.

▶ Definition 4 (Blocklace Leader Liveness). A blocklace B is leader-live if for every block
b ∈ B by a miner not equivocating in B there is a final leader block in B that observes b.

Given a blocklace, a set of miners P is (mutually) disseminating if every block by a
miner in P is eventually observed by every miner in P (Def. 27). We show that dissemination
is unbounded, meaning that if a set of miners P is disseminating in B then B is infinite, and
in particular any suffix of B has blocks from any member of P . It follows that a cordial
blocklace with a non-equivocating and disseminating supermajority of miners is leader-live
(Fig. 3).

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:9

Algorithm 2 Cordial Miners: Ordering of a Blocklace with τ . Pseudocode for miner
p ∈ Π, including Algorithms 1 & 4.

Local Variable:
outputBlocks← {}

31: procedure τ(): ▷ Called from Algorithm 3
32: τ ′(last_final_leader())
33: procedure τ ′(b1):
34: if b1 ∈ outputBlocks ∨ b1 = ∅ then return
35: b2 ← previous_ratified_leader(b1)
36: τ ′(b2) ▷ Recursive call to τ ′

37: output xsort(b1, [b1] \ [b2]) ▷ Output a new equivocation-free suffix
38: outputBlocks← outputBlocks ∪ xsort(b1, [b1] \ [b2])
39: procedure xsort(b, B): ▷ Exclude equivocations and sort
40: return topological sort wrt ≻ of the set {b′ ∈ B : approves(b, b′)}
41: procedure previous_ratified_leader(b1):
42: return argb∈R max depth(b)
43: where R = {b ∈ [b1] \ {b1} : b.creator = leader(depth(b)) ∧ ratifies([b1], b)}
44: procedure last_final_leader(): ▷ Fig. 2
45: return argu∈U max depth(u) where
46: U = {b ∈ blocklace : b.creator = leader(depth(b)) ∧ final_leader(b)}
47: procedure final_leader(b): ▷ Def. 24
48: return super-ratifies((blocklace_prefix(depth(b) + w − 1), b)

procedure leader() (Def. 23) and wavelength w are defined in Alg. 4.

▶ Proposition 5 (Blocklace Leader Liveness Condition). If B ⊂ B is a cordial blocklace with a
non-equivocating and disseminating supermajority of miners, such that for every r > 0 there
is a final leader block of round r′ > r, then B is leader-live.

5 Blocklace Ordering with τ

Here we present a deterministic function τ that, given a blocklace B, employs final leaders
to topologically sort B into a sequence of its blocks, respecting ≻. The intention is that in a
blocklace-based ordering consensus protocol, each miner would use τ to locally convert their
partially-ordered blocklace into the totally-ordered output sequence of blocks.

The section concludes with Theorem 8, which provides sufficient conditions for the safety
and liveness of any blocklace-based ordering consensus protocol that employs τ . The proof
method is novel, in that it does not argue operationally, about events and their order in time,
but rather about the properties of an infinite data structure – the blocklace. In the following
section, we prove that the Cordial Miners protocols, which employ Alg. 2 that realizes τ ,
satisfy these conditions, and thus establish their safety and liveness. The operation of τ is
depicted in Fig. 4.

We show that τ is monotonic, in that if it is repeatedly called with an ever-increasing
blocklace then its output is an ever-increasing sequence of blocks. This monotonicity ensures
finality, as it implies that any output will not be undone by a subsequent output. With τ ,
final leaders are the anchors of finality in the growing chain, each “writes history” backward
till the preceding final leader.

The following recursive ordering function τ maps a blocklace into a sequence of blocks,
excluding equivocations along the way. Formally, the entire sequence is computed backward
from the last super-ratified leader, afresh by each application of τ . Practically, a sequence up
to a super-ratified leader is final (Prop. 9) and hence can be cached, allowing the next call to
τ with a new super-ratified leader to be computed backward only till the previously-cached

DISC 2023

26:10 Cordial Miners

super-ratified leader, while producing as output all the blocks approved by the new super-
ratified leader (the approval ensures that the new fragment does not introduce equivocations)
that are not observed by the previously-cached final leader.

▶ Definition 6 (τ). We assume a fixed topological sort function xsort(b, B) (exclude and
sort) that takes a block b and a blocklace B, and returns a sequence consistent with ≻ of all
the blocks in B that are approved by b. The function τ : 2B −→ B∗ is defined for a blocklace
B ⊂ B backward, from the last output element to the first, as follows: If B has no final
leaders then τ(B) := Λ (empty sequence). Else, let b be the last final leader in B. Then
τ(B) := τ ′′(b), where τ ′ is defined recursively:

τ ′(b) :=

xsort(b, [b]) if [b] has no leader ratified by b, else
τ ′(b′) · xsort(b, [b] \ [b′]) if b′ is the last leader

ratified by b in [b]

Note that when τ ′ is called with a leader b, it makes a recursive call with a leader ratified by
b, which is not necessarily super-ratified.

A pseudo-code implementation of τ is presented as Alg. 2. The algorithm is a literal
implementation of the mathematics described above: It maintains outputBlocks that includes
the prefix of the output τ that has already been computed. Upon adding a new block to its
blocklace (Line 31), it computes the most recent final leader b1 according to Definition 24,
and applies τ to it, realizing the mathematical definition of τ (Def. 6), with the optimization,
discussed above, that a recursive call with a block that was already output is returned. Hence
the following proposition:

▶ Proposition 7 (Correct implementation of τ). The procedure τ in Alg. 2 correctly implements
the function τ in Definition 6.

The following theorem provides a sufficient condition for the safety and liveness (Def. 1)
of any blocklace ordering consensus protocol that employs τ , and thus offers conditions for
solving the problem defined in §2:

▶ Theorem 8 (Sufficient Condition for the Safety and Liveness of a Blocklace-Based Ordering
Consensus Protocol). Assume a given blocklace-based consensus protocol that employs τ for
ordering. If in every run of the protocol all correct miners have in the limit the same blocklace
B that is leader-safe and leader-live, then the protocol is safe and live.

Next, we provide a proof outline of Theorem 8.

τ Safety. A safe blocklace ensures a final leader is ratified by any subsequent leader, final
or not. Hence the following:

▶ Proposition 9 (Monotonicity of τ). Let B be a cordial blocklace with a supermajority of
correct miners. Then τ is monotonic wrt the superset relation among closed subsets of B,
namely for any two closed blocklaces B2 ⊆ B1 ⊆ B, τ(B2) ⪯ τ(B1).

The following proposition ensures that if there is a supermajority of correct miners, which
jointly create a cordial blocklace, then the output sequences computed by any two miners
based on their local blocklaces would be consistent. This establishes the safety of τ under
these conditions.

▶ Proposition 10 (τ Safety). Let B be a blocklace with a supermajority of correct miners.
Then for every B1, B2 ⊆ B, τ(B1) and τ(B2) are consistent.

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:11

Algorithm 3 Cordial Miners: Blocklace-Based Dissemination
Code for miner p, including Algorithms 1, 2 & 4.

Local variables:
r ← 0 ▷ The current round of p, see Def. 20

49: upon receipt of b : b.pointers ⊆ hash(blocklace) ∧ correct_block(b) do ▷ Received “out of order” blocks
are buffered; incorrect blocks are ignored

50: blocklace← blocklace ∪ {b}
51: τ() ▷ Defined in Algorithm 2
52: if completed_round() ≥ r then ▷ Defined in Algorithm 1, line 27
53: es_advance_round() ▷ Advance round conditions for ES, no-op for asynchrony. Defined in

Algorithm 4
54: b← create_block(completed_round())
55: r ← depth(b) ▷ Advance round
56: for q ∈ Π do ▷ Cordial Dissemination
57: send {b} ∪ blocklace_prefix(r − 2) \ [last_block(q)] to q

Table 2 Cordial Miners’ differences between Eventual Synchrony and Asynchrony.

Property Asynchrony Eventual Synchrony

Wavelength w: 5 (Line 58) 3 (Line 66)

Leader Selection: Retrospective via coin toss
(Line 61)

Prospective by a known order
(Line 76)

Condition for ad-
vancing round: None (Line 59) timeout or finality conditions

(Line 67)

τ Liveness. While τ does not output all the blocks in its input, as blocks not observed
by the last final leader in its input are not in its output, the following observation and
proposition set the conditions for τ liveness:

▶ Observation 11 (τ output). If a p-block b ∈ B by a miner p not equivocating in B is
observed by a final leader in B, then b ∈ τ(B).

▶ Proposition 12 (τ Liveness). Let B1 ⊂ B2 ⊂ . . . be a sequence of finite blocklaces for which
B =

⋃
i≥1 Bi is a cordial leader-live blocklace. Then for every block b ∈ B by a correct miner

in B there is an i ≥ 1 such that b ∈ τ(Bi).

Thus, we conclude that the safety and liveness properties of τ carry over to Alg. 2.
Next, we prove that the two Cordial Miners consensus protocols – for eventual synchrony

and asynchrony – satisfy the conditions of Theorem 8, and hence are safe and live.

6 The Cordial Miners Protocols

So far, we presented the blocklace and how a blocklace can be totally ordered using τ . Next,
we show how miners disseminate their blocks to form a blocklace.

The shared components of the Cordial Miners protocols are specified via pseudocode in
Algs. 1 (blocklace utilities), 2 (the ordering function τ), and 3 (dissemination). Alg. 4 details
the differences between the Cordial Miners protocols for ES and asynchrony. We begin by
explaining the dissemination protocol.

DISC 2023

26:12 Cordial Miners

Algorithm 4 Cordial Miners: Specific Utilities. Code for miner p.

4.1 Procedures for Asynchrony

58: w ← 5
59: procedure es_advance_round(): ▷ No-op
60: return
61: procedure leader(d):
62: if d mod w = 0 then
63: return q ∈ Π via a shared coin tossed at round d + w − 1
64: else
65: return ⊥

4.2 Procedures for Eventual Synchrony

66: w ← 3
67: procedure es_advance_round():
68: return max r : cordial_round(r) ∧ ▷ Last cordial round, Algorithm 1
69: ((r mod w = 0 =⇒ ▷ First round of the wave, leader is included in the round.
70: ∃b ∈ blocklace : (leader(r) = b.creator) ∧
71: ((r mod w = 1 =⇒ ▷ Second round of the wave, round r − 1 leader is ratified by round r blocks
72: ∃b ∈ blocklace : (leader(r − 1) = b.creator ∧ ratifies(blocklace_prefix(r), b))) ∧
73: ((r mod w = 2 =⇒ ▷ Third round, round r − 2 leader is super-ratified by r blocks
74: ∃b ∈ blocklace : (leader(r − 2) = b.creator ∧ super-ratifies(blocklace_prefix(r), b)))
75: ∨ timeout) ▷ Or timeout occurred. timeout is measured from when round r is cordial. This is p’s

estimation of ∆.
76: procedure leader(d):
77: if d mod w = 0 then
78: return q ∈ Π selected deterministically
79: else
80: return ⊥

6.1 Dissemination (Alg. 3)

A correct block is buffered until it has no dangling pointers, and then it is received (Line 49).
We prove that an equivocating miner eventually can only produce incorrect blocks (Def. 26)
and therefore is eventually excommunicated by all correct miners. After including a received
block in its local blocklace, a miner calls τ (Line 51), which outputs new blocks if the received
block results in the blocklace having a new final leader block.

If there is a new completed round in the blocklace (Line 52), the miner creates a new
block b (Line 54), computes the new round (Line 55), and sends b to its fellow miners. The
package sent to miner q contains any blocks up to the previous round that p knows that q

might not know, based on the last block received from q (Line 57). Note that as the network
is reliable, send is defined to be idempotent, namely to send each block to each miner at
most once.

We note that there is a tradeoff between latency and message complexity, and there is a
range of possible optimizations and heuristics. These are discussed in [22]. Here, we present
a version of Cordial Miners protocols in which every block is communicated among every
pair of correct miners in the worst case.

6.2 Specific utilities (Alg. 4)

Overview. There are several differences between the Cordial Miners protocols for ES and
asynchrony, which are specified in Alg. 4 and summarized in Tab. 2.

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:13

First, in asynchrony, each wave consists of 5 rounds, and the leader block in the first
round is chosen randomly using a shared coin tossed in the last round of the wave, i.e., the
leader election is retrospective. We expand on the coin below. In ES, each wave has 3 rounds,
and the leader block is elected in advance using any deterministic prospective method, e.g.,
round robin.

The reason a wave in asynchrony is longer is to counter the adversary: If the adversary
knows in advance the leader block in the first round of the wave, it can manipulate block
arrival times s.t. a wave with a final leader block will never happen. We prove that by using
such coin at the last round of the wave, the adversary cannot affect the probability the the
leader block is final. In ES, a wave consists of three rounds. We prove that this is sufficient
to allow super-ratification of the leader block, making it final in case the leader is an honest
miner.

Another difference is if an honest miner waits before proceeding to the next round when
the current round becomes cordial. In asynchrony, the miner proceeds immediately to the
next round when it is cordial (Line 59). In ES, a miner advances to the next round after a
round either if timeout passes, or conditions for leader block finality occur (Line 67). The
conditions are: if this is the first round of a wave, then the round contains the leader block
(Line 69). If this is the second round, then the miner advances immediately if the round has a
supermajority of blocks that ratifies the leader block (Line 71), and lastly, if the third round
of a wave has a supermajority of blocks that super-ratifies the leader block (Line 73). These
conditions are to prevent the adversary from ordering the messages after GST, in particular,
the leader block and the blocks that super-ratify it, as the leader is known in advance.

Algorithm walkthrough. The leader (Lines 61, 76) procedure, which is called as part of τ ,
is an implementation of Def. 23.

The Cordial Miners asynchrony protocol, for which w = 5 (Line 58), elects leaders
retrospectively using a shared random coin. To elect the leader of round r, when r mod 5 = 0,
all correct miners toss the coin in round r + 3 and know in round r + 4 the elected leader
of round r, as follows. We assume two shared random coin functions: toss_coin and
combine_tosses. The function toss_coin(ps, d) takes the secret key ps of miner p ∈ Π and
a round number d ≥ 0 as input, and produces p’s share of the coin of round d, sp,d, as
output. If the protocol needs to compute the shared random coin for round d, then sp,d is
incorporated in the payload of the d-depth p-block of every correct miner p. The function
combine_tosses(S, d) takes a set S of shares sp,d, d ≥ 0, for which |{p : sp,d ∈ S}| > f + 1,
and returns a miner q ∈ Π. The properties of a similar function were presented in [21], which
details how to implement such a coin as part of a distributed blocklace-like structure.

We formally define the shared coin in definition 28. Examples of such a coin implementa-
tion using threshold signatures [6, 23, 31] are in [10, 21]. The ES protocol elects leaders in a
prospective manner via a fixed deterministic function, e.g., round-robin between the miners.

6.3 Correctness Proof Outline
The main theorem we prove is the following:

▶ Theorem 13 (Cordial Miners Protocols Safety and Liveness). The protocols for eventual
synchrony and asynchrony specified in Algs. 1, 2, 3, & 4 are safe and live (Def. 1).

We argue that in the limit the blocklaces of correct miners that participate in a run of a
Cordial Miners protocol are identical, are leader-safe, and leader-live.

DISC 2023

26:14 Cordial Miners

A formal description of blocklace-based protocols in terms of asynchronous multiagent
transition systems with faults has been carried out in reference [28]. Here, we employ
pseudocode, presented in Algorithms 1, 2, 3 & 4 to describe the correct behaviors of a miner
in a protocol, and discuss only informally the implied multiagent transition system and its
computations. A run of the protocol by the miners Π results in a sequence of configurations
ρ = c0, c1, . . ., each encoding the local state of each miner. A miner is correct in a run ρ if it
behaves according to the pseudocode during ρ, faulty otherwise. As stated above, we assume
that there are at most f < n/3 faulty miners in any run. We use Bp(c) to denote the local
blocklace of miner p ∈ Π in configuration c, Bp(ρ) to denote the blocklace of miner p in the
limit, Bp(ρ) :=

⋃
c∈ρ Bp(c), and B(ρ) to denote the unions of the blocklaces of all correct

miners in the limit, B(ρ) :=
⋃

p∈P Bp(ρ), where P ⊆ Π is the set of correct miners in run ρ.
We start by showing miner asynchrony (not to be confused with the model of asynchrony),

that is, if a miner can create a block, then it can still create it regardless of additional
blocks it receives from other miners. Miner asynchrony combined with the standard notion
of fairness, that a transition that is enabled infinitely often in a run is eventually taken
in the run, implies that once a Cordial Miners block creation transition is enabled then it
will eventually be taken. We conclude that every miner p correct in a run produces the
blocklace of the run, namely Bp(ρ) = B(ρ). We can now argue the safety of the Cordial
Miners protocols.

We now proceed to argue the liveness of the Cordial Miners protocols. We show that the
Cordial Miners eventual synchrony protocol is leader-live with probability 1. We note that,
following GST, the probability of a leader block being final is at least |P |n , where P ⊆ Π is
the set of correct miners, and given that w = 3, if |P |n > 2

3 , then the expected latency is at
most 3/(2/3) = 4.5 rounds.

The next proposition ensures that all correct miners eventually repel all equivocators
and stop observing their blocks. We define an equivocator-repelling block recursively
(Def. 29), through the set of blocks B that it acknowledges, terminating in an initial block,
where B = ∅. Note that a block (or blocklace) that is equivocator-repelling may include
equivocations, for example, two equivocating blocks each observed by a different block in B.
However, once an equivocation by miner q is observed by a block b, q would be repelled: Any
block that observes b would not acknowledge any q-block, preventing any further q-blocks
from joining the blocklace. Also note that equivocators are eventually excommunicated since
they eventually cannot produce correct blocks.

We argue in a lemma the existence of a blocklace common core, which is the blocklace-
variant of the notion of a common core that appears in [3, 17]. Its proof is an adaptation to
the cordial blocklace setting of the common core proof in [17], which in turn is derived from
the proof of get-core in [3]. Fig. 5 illustrates its proof as well as the proof of the following
Corollary about the existence of a super-ratified common core.

The lemma and corollary require an equivocators-free section of the blocklace, which may
be the entire equivocation-free suffix of the blocklace as in the proof. But the proof also holds
if there is a long enough stretch of rounds without equivocation, in which case a common
core also exists. We conclude that if a Cordial Miners protocol relies on the common core for
liveness dissemination, and cordiality are sufficient to ensure it. Finally, we complete the
proof of liveness of the Cordial Miners protocols.

This concludes the proof outline that Cordial Miners is live and safe and thus completes
the proof of Theorem 13.

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:15

7 Performance Analysis

We analyze the performance of Cordial Miners assuming the maximum number of Byzantine
miners, i.e., n = 3f + 1. For the good case bit complexity, we assume f ∈ O(1) and the
network is synchronous.

Latency (See Table 1). Latency is defined as the number of blocklace rounds between every
two consecutive final leaders, i.e., the number of blocklace rounds between two instances
where τ outputs new blocks. This is also equivalent to the number of communication rounds
since we do not use RB to disseminate blocks. The good case latency for both models is
simply the wavelength.

For the expected case, in the asynchronous instance of the protocol, each wave w consists
of 5 rounds. The probability that the leader block is final in the first round r of w, namely
that a supermajority of the blocks in r + 4 each super-ratify the leader block at r is 2

3 .
Therefore, in the expected case a leader block is final every 1.5 waves, and therefore the
expected latency is 1.5w = 7.5 rounds of communication.

The adversary can equivocate or not be cordial up to f times, but after each Byzantine
process p equivocates, all correct processes eventually detect the equivocation and do not
consider p’s blocks as part of their cordial rounds when building the blocklace. Thus, in an
infinite run, equivocations do not affect the overall expected latency.

In the ES version, each wave w consists of 3 rounds. The probability that the leader
block is final is if the leader block is created by a correct miner, i.e., the probability is 2

3 , i.e.,
same as asynchrony. Thus, in the expected case, the latency is 1.5w = 4.5 rounds.

Bit complexity. An equivocator is eventually excommunicated, and therefore eventually the
number of equivocating blocks that are disseminated is limited. Each block in the blocklace
is linear in size since it has a linear number of hash pointers to previous blocks. A Byzantine
miner can cause the block it creates to be sent to all miners by all the other correct miners,
causing the block’s bit complexity to be O(n3) per such block. Thus, in the worst case,
where f ∈ Θ(n), the asymptotic bit complexity is O(n3) per block. But, since the block
size is O(n), we can batch O(n) transactions in it without increasing its asymptotic size.
Therefore, we can amortize the bit complexity by a linear factor for each transaction, causing
the amortized bit complexity per transaction to be O(n2) in the worst case.

For the good case in the ES version, where f ∈ O(1) and the network is synchronous
after GST, every block created by a correct miner is sent once from its creator to the other
miners. Miners wait for timeout time after a round r is cordial before they move to the next
round, which ensures that all blocks sent by correct miners in round r arrive to all other
correct miners before they move to round r + 1. Therefore, blocks by correct miners in round
r + 1 observe all blocks by correct miners in round r. Thus, the Byzantine miners can cause
only a constant number of blocks per round to be sent by every correct miner to every other
correct miner. Therefore, the bit complexity of sending each block in the good case is O(n2),
and by batching O(n) transaction per block, we get an amortized bit complexity of O(n) per
transaction.

8 Related Work

The use of a DAG-like structure to solve consensus has been introduced in previous works,
especially in asynchronous networks. Hashgraph [4] builds an unstructured DAG, with each
block containing two references to previous blocks, and on top of the DAG, the miners run

DISC 2023

26:16 Cordial Miners

an inefficient binary agreement protocol. This leads to expected exponential time complexity.
Aleph [20] builds a structured round-based DAG, where miners proceed to the next round
once they receive 2f + 1 DAG vertices from other miners in the same round. On top of the
DAG construction protocol, a binary agreement protocol decides on the order of vertices to
commit. Blockmania [13] uses a variant of PBFT [11] in the ES model and also uses reliable
broadcast to disseminate blocks. Both protocols have higher latency than Cordial Miners
since they use RB. GHOST [32], IOTA [25], and Avalanche [26] are DAG protocols for the
permissionless model.

As mentioned in the introduction, the two state-of-the-art DAG-based protocols are
DAG-Rider [21] and Bullshark [33]. DAG-Rider is a BAB protocol for the asynchronous
model in which the miners jointly build a DAG of blocks, with blocks as vertices and pointers
to previously created blocks as edges, divided into strong and weak edges. Strong edges are
used for the commit rule, and weak edges are used to ensure fairness. Narwhal [14] is an
implementation based on DAG-Rider for a relaxed networking model and works well assuming
messages arrival is not bounded, but also not controlled by the adversary. Tusk [14] is a
similar consensus protocol to DAG-Rider built on top of Narwhal. Bullshark [33] is a variation
of DAG-Rider designed for the ES model with about half the latency of DAG-Rider. Cordial
Miners outperform these protocols in terms of latency (for the same message complexity).
Other DAG-based protocols include [12, 18], which are for a non-Byzantine failure model.

Another category of Byzantine consensus protocols is Leader-based. Examples include
PBFT [11], Tendermint [8], HotStuff [34, 24], and VABA [1]. In these protocols, a designated
leader proposes a block, sends them to the miners, and collects votes on its proposal, and a
Byzantine leader can result in wasted time in which no blocks are output. Another difference
is that these protocols are unbalanced in terms of the network as the leader is in charge of
disseminating its block, collecting votes, and disseminating them, while the other miners only
need to vote. On the other hand, DAG-based protocols like Cordial Miners are symmetric in
that all miners perform exactly the same tasks.

9 Conclusion

We presented Cordial Miners, a family of low-latency, high-efficiency consensus protocols
with instances for eventual synchrony and asynchrony. Cordial Miners achieve that by
forgoing Reliable Broadcast and using the blocklace for the three major tasks of consensus –
dissemination, equivocation exclusion, and ordering.

References
1 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated

asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

2 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of Byzantine
broadcast: A complete categorization. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, pages 331–341, 2021.

3 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

4 Leemon Baird. The swirlds Hashgraph consensus algorithm: Fair, fast, Byzantine fault
tolerance. Report, Swirlds, 2016.

5 Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 52–61,
1993.

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:17

6 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
International conference on the theory and application of cryptology and information security,
pages 514–532. Springer, 2001.

7 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

8 Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
University of Guelph, 2016.

9 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524–541. Springer, 2001.

10 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

11 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation, pages 173–186, New
Orleans, Louisiana, USA, 1999. USENIX Association.

12 Gregory V Chockler, Nabil Huleihel, and Danny Dolev. An adaptive totally ordered multicast
protocol that tolerates partitions. In Proceedings of the seventeenth annual ACM symposium
on Principles of distributed computing, pages 237–246, 1998.

13 George Danezis and David Hrycyszyn. Blockmania: from block DAGs to consensus. arXiv
preprint arXiv:1809.01620, 2018.

14 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 34–50, 2022.

15 Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applica-
tions. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2705–2721, 2021.

16 Sourav Das, Zhuolun Xiang, and Ling Ren. Near-optimal balanced reliable broadcast and
asynchronous verifiable information dispersal. Cryptology ePrint Archive, 2022.

17 Danny Dolev and Eli Gafni. Some garbage in-some garbage out: Asynchronous t-byzantine
as asynchronous benign t-resilient system with fixed t-trojan-horse inputs. arXiv preprint
arXiv:1607.01210, 2016.

18 Danny Dolev, Shlomo Kramer, and Dalia Malki. Early delivery totally ordered multicast in
asynchronous environments. In FTCS-23 The Twenty-Third International Symposium on
Fault-Tolerant Computing, pages 544–553. IEEE, 1993.

19 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM), 32(1):191–204, 1985.

20 Adam Gągol and Michał Świętek. Aleph: A leaderless, asynchronous, byzantine fault tolerant
consensus protocol. arXiv preprint arXiv:1810.05256, 2018.

21 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is dag. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 165–175, 2021.

22 Idit Keidar, Oded Naor, and Ehud Shapiro. Cordial miners: A family of simple, efficient and
self-contained consensus protocols for every eventuality. arXiv preprint arXiv:2205.09174,
2022.

23 Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully distributed
non-interactive adaptively-secure threshold signatures with short shares. Theoretical Computer
Science, 645:1–24, 2016.

24 Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal two-phase responsive bft. Cryptology
ePrint Archive, 2023.

25 Serguei Popov. The tangle. https://assets.ctfassets.net/r1dr6vzfxhev/
2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf, 2018.

DISC 2023

https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf

26:18 Cordial Miners

26 Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer.
Scalable and probabilistic leaderless bft consensus through metastability. arXiv preprint
arXiv:1906.08936, 2019.

27 Maria A Schett and George Danezis. Embedding a deterministic BFT protocol in a block
DAG. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 177–186, 2021.

28 Ehud Shapiro. Multiagent transition systems: Protocol-stack mathematics for distributed
computing. arXiv preprint arXiv:2112.13650, 2021.

29 Ehud Shapiro. Grassroots distributed systems: Concept, examples, implementation and
applications. arXiv preprint arXiv:2301.04391, 2023.

30 Robert Shostak, Marshall Pease, and Leslie Lamport. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

31 Victor Shoup. Practical threshold signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 207–220. Springer, 2000.

32 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in Bitcoin.
In International Conference on Financial Cryptography and Data Security, pages 507–527.
Springer, 2015.

33 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: Dag bft protocols made practical. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2705–2718, 2022.

34 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347–356, 2019.

A Formal Model

The following is a mathematical formal definition of the cordial miners consensus protocols.

▶ Definition 14 (Block, Acknowledge). A block b is a triple b = (p, a, H) signed by p, referred
to as a p-block, s.t. p ∈ Π is the miner that creates b, a ∈ A is the payload of b, and H is
a finite set of hash pointers to blocks. Namely, for each h ∈ H, h = hash(b′) for some block
b′. In which case we also say that b acknowledges b′. If H = ∅ then b is initial.

▶ Definition 15 (Blocklace). Let B be the maximal set of blocks over Π, A, and hash for
which the induced directed graph (B, E) is acyclic. A blocklace over A is a set of blocks
B ⊆ B.

▶ Definition 16 (≻, Observe). Given two blocks b, b′, the strict partial order ≻ is defined
by b′ ≻ b if there is a nonempty path from b′ to b. A block b′ observes b if b′ ⪰ b. Given a
blocklace B, Miner p observes b in B if there is a p-block b′ ∈ B that observes b. A group
of miners Q ⊆ Π observes b in B if every miner p ∈ Q observes b.

▶ Definition 17 (Equivocation, Equivocator). A pair of p-blocks b ̸= b′ ∈ B, p ∈ Π, form an
equivocation by p if they are not consistent wrt ≻, namely b′ ̸≻ b and b ̸≻ b′. A miner p is
an equivocator in B, equivocator(p, B), if B has an equivocation by p.

▶ Definition 18 (Approval). Given blocks b, b′ ∈ B, the block b approves b′ if b observes
b′ and does not observe any block b′′ that together with b′ forms an equivocation. A miner
p ∈ Π approves b′ in B if there is a p-block b ∈ B that approves b′. A set of miners Q ⊆ Π
approve b′ in B if every miner p ∈ Q approves b′ in B.

▶ Definition 19 (Closure, Closed, Tip). The closure of b ∈ B wrt ≻ is the set [b] := {b′ ∈
B : b ⪰ b′}. The closure of B ⊂ B wrt ≻ is the set [B] :=

⋃
b∈B [b]. A blocklace B ⊆ B is

closed if B = [B]. A block b ∈ B is a tip of B if b /∈ [B \ {b}].

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:19

▶ Definition 20 (Block Depth/Round, Blocklace Prefix & Suffix). The depth (or round) of a
block b ∈ B, depth(b), is the maximal length of any path of pointers emanating from b. For a
blocklace B ⊆ B and d ≥ 0, the depth-d prefix of B is B(d) := {b ∈ B : depth(b) ≤ d}, and
the depth-d suffix of B is B̄(d) := B \ B(d).

▶ Definition 21 (Supermajority). A set of miners P ⊂ Π is a supermajority if |P | > n+f
2 .

A set of blocks B is a supermajority if the set of miners P = {p ∈ Π : ∃b ∈ B is a p-block}
is a supermajority.

▶ Definition 22 (Ratified and Super-Ratified Block). A block b ∈ B is (i) ratified by a set
of blocks B ⊆ B, if [B] includes a supermajority of blocks that approve b; (ii) ratified by a
block b if it is ratified by the set of blocks [b]; and (iii) super-ratified by blocklace B ⊂ B if
[B] includes a supermajority of blocks, each of which ratifies b

▶ Definition 23 (Wavelength, Leader Selection Function, Leader Block). Given a wavelength
w ≥ 1, a leader selection function is a partial function l : N 7→ Π satisfying (i) coverage:
∀r ∈ N : l(r) ∈ Π if r mod w = 0 else l(r) = ⊥ and (ii) fairness: with probability 1
∀r ∈ N, p ∈ Π ∃r′ > r : l(r′) = p. A p-block b is a leader block if l(depth(b)) = p.

▶ Definition 24 (Final Leader Block). Let B ⊆ B be a blocklace. A leader block b ∈ B of
round r is final in B if it is super-ratified in B(r + w − 1).

▶ Definition 25 (Cordial Block, Blocklace). A block b ∈ B of round r is cordial if r = 1 or
it acknowledges blocks by a supermajority of miners of round r − 1. A blocklace B ⊂ B is
cordial if all its blocks are cordial.

▶ Definition 26. A p-block b ∈ B in correct, if it is cordial and p does doe equivocate in [b].

▶ Definition 27 (Disseminating). Given a blocklace B ⊆ B, a set of miners P ⊆ Π is
mutually disseminating in B, or disseminating for short, if for any p, q ∈ P and any
p-block b ∈ B there is a q-block b′ ∈ B such that b′ ≻ b. The blocklace B is disseminating
if it has a disseminating supermajority.

▶ Definition 28 (Shared Random Coin). Assume some d > 0 and let S = {toss_coin(ps, d) :
p ∈ P} for a set of miners P ⊆ Π, |P | > f + 1. For the shared random coin, the function
combine_tosses has the following properties:
Agreement If both S′, S′′ ⊆ S and both |S′|, |S′′| > f + 1, then

combine_tosses(S′, d) = combine_tosses(S′′, d)
Termination combine_tosses(S, d) ∈ Π.
Fairness The coin is fair, i.e., for every set S computed as above and any p ∈ Π, the

probability that p = combine_tosses(S, d) is 1
n .

Unpredictability If S′ ⊂ S, |S′| < f + 1, then the probability that the adversary can use S′

to guess the value of combine_tosses(S, d) is less than 1
n + ϵ.

▶ Definition 29 (Equivocator-Repelling). Let b ∈ B be a p-block, p ∈ Π, that acknowledges a
set of blocks B ⊂ B. Then b is equivocator-repelling if p does not equivocate in [b] and all
blocks in B are equivocator-repelling. A blocklace B is equivocator-repelling if every block
b ∈ B is equivocator-repelling.

DISC 2023

26:20 Cordial Miners

B Figures

Figure 2 Finality of a Super-Ratified Leader (Definition 24): Assume that a leader block (blue
dot) is super-ratified. A ratifying supermajority is represented by a thick red line, each member of
which observes a possibly different approving supermajority represented by a green thick line. We
show that the blue leader is ratified by any subsequent cordial leader. (A) The successive cordial
leader (purple dot) is one round following the ratifying supermajority. Being cordial, it observes
a supermajority (thick purple line) that must have an intersection (black dot) with the ratifying
supermajority, hence it observes an approving supermajority and thus ratifies the blue leader. (B)
A successive leader is more than one round following the ratifying supermajority. Being cordial,
it observes a supermajority (thick purple line). There must be a correct miner common to the
purple and red supermajority, with blocks in both (black dots); being a correct miner, its later block
observes the earlier block (black line). Hence the purple leader observes the approving supermajority
(via black lines) and hence ratifies the blue leader.

Figure 3 Liveness Condition, Proposition 5.

I. Keidar, O. Naor, O. Poupko, and E. Shapiro 26:21

Figure 4 The Operation of τ , Safety and Liveness: (A) The Input of τ : A blocklace
with final leaders (large dots) and leaders ratified by their successors (small dots). Each leader
observes the portion of the blocklace below it (including the lines emanating from it). (B) The
Output of τ : A sequence of blocks consisting of fragments. The sequence of fragments is computed
recursively backward, starting from the last final leader, and back from each leader to the previous
leader it ratifies. The input to computing the fragment consists of the portion of the blocklace
observed by the current leader but not observed by the previous ratified leader. The output from
each fragment is a sequence of blocks computed forward by topological sort of the input blocklace
fragment, respecting ≻ and using the leader of the fragment to resolve and exclude equivocations.
Final leaders are final, hence the backward computation starting from the last purple final leader
need not proceed beyond the recursive call to the previous red final leader, as the output sequence
up to the previous final leader has already been computed by the previous invocation of τ . Safety
Requirement: A final leader (large dot) is ratified by any subsequent leader (large or small dot).
Liveness Requirement: Any leader will eventually have a subsequent final leader (large dot) with
probability 1. (C) Leader-Based Equivocation Exclusion: The green fragment created by the green
leader includes the V -marked red block, since the green leader does not observe the red equivocation.
However, the red X-marked red block is excluded from the purple fragment created by the purple
leader, since the purple leader observes the equivocation among the two red blocks.

DISC 2023

26:22 Cordial Miners

Figure 5 Common Core, Ratified Common Core, Safety and Liveness of Decision
Rule for Asynchrony: (A) Rounds r to r + 3 relate to the proof of the existence of a common
core at round r is established. Round r + 4 relates to establishing that all cordial blocks at round
r + 4 ratify all members of the common core of round r via a supermajority at round r + 3. (B)
The common-core table T used in the proof to relate rounds r + 1 and r + 2. (C) The decision rule
for asynchrony: Protocol wavelength is 5. Liveness: Common-core ensures that the blue leader at
round r is super-ratified by a red supermajority at round r + 4 with probability 2f+1

3f+1 , thus ensuring
liveness and expected latency of 6 rounds. Safety: A blue leader is approved by every cordial block
at round r + 3 (green) and hence is ratified by every cordial block at round r + 4 (red) and beyond.

Fast Reconfiguration for Programmable Matter
Irina Kostitsyna #

TU Eindhoven, The Netherlands

Tom Peters #

TU Eindhoven, The Netherlands

Bettina Speckmann #

TU Eindhoven, The Netherlands

Abstract
The concept of programmable matter envisions a very large number of tiny and simple robot particles
forming a smart material. Even though the particles are restricted to local communication, local
movement, and simple computation, their actions can nevertheless result in the global change of the
material’s physical properties and geometry.

A fundamental algorithmic task for programmable matter is to achieve global shape reconfig-
uration by specifying local behavior of the particles. In this paper we describe a new approach
for shape reconfiguration in the amoebot model. The amoebot model is a distributed model which
significantly restricts memory, computing, and communication capacity of the individual particles.
Thus the challenge lies in coordinating the actions of particles to produce the desired behavior of
the global system.

Our reconfiguration algorithm is the first algorithm that does not use a canonical intermediate
configuration when transforming between arbitrary shapes. We introduce new geometric primitives
for amoebots and show how to reconfigure particle systems, using these primitives, in a linear
number of activation rounds in the worst case. In practice, our method exploits the geometry of
the symmetric difference between input and output shape: it minimizes unnecessary disassembly
and reassembly of the particle system when the symmetric difference between the initial and the
target shapes is small. Furthermore, our reconfiguration algorithm moves the particles over as many
parallel shortest paths as the problem instance allows.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Self-organization

Keywords and phrases Programmable matter, amoebot model, shape reconfiguration

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.27

Related Version Full Version: https://arxiv.org/abs/2202.11663 [22]

1 Introduction

Programmable matter is a smart material composed of a large quantity of robot particles
capable of communicating locally, performing simple computation, and, based on the outcome
of this computation, changing their physical properties. Particles can move through a
programmable matter system by changing their geometry and attaching to (and detaching
from) neighboring particles. By instructing the particles to change their local adjacencies,
we can program a particle system to reconfigure its global shape. Shape assembly and
reconfiguration of particle systems have attracted a lot of interest in the past decade and a
variety of specific models have been proposed [5, 20, 25, 28, 18, 12, 24, 26]. We focus on the
amoebot model [13], which we briefly introduce below. Here, the particles are modeled as
independent agents collaboratively working towards a common goal in a distributed fashion.
The model significantly restricts computing and communication capacity of the individual
particles, and thus the challenge of programming a system lies in coordinating local actions
of particles to produce a desired behavior of the global system.

© Irina Kostitsyna, Tom Peters, and Bettina Speckmann;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 27; pp. 27:1–27:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.kostitsyna@tue.nl
mailto:t.peters1@tue.nl
mailto:b.speckmann@tue.nl
https://doi.org/10.4230/LIPIcs.DISC.2023.27
https://arxiv.org/abs/2202.11663
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Fast Reconfiguration for Programmable Matter

01
2
3 4

5 0
12

3
4
5

9
8

76

Figure 1 Left: particles with ports labeled, in contracted and expanded state. Right: handover
operation between two particles.

A fundamental problem for programmable matter is shape reconfiguration. To solve
it we need to design an algorithm for each particle to execute, such that, as a result, the
programmable matter system as a whole reconfigures into the desired target shape. Existing
solutions first build an intermediate canonical configuration (usually, a line or a triangle)
and then build the target shape from that intermediate configuration [14, 16]. However, in
many scenarios, such as shape repair, completely deconstructing a structure only to build a
very similar one, is clearly not the most efficient strategy.

We propose the first approach for shape reconfiguration that does not use a canonical
intermediate configuration when transforming between two arbitrary shapes. Our algorithm
exploits the geometry of the symmetric difference between the input shape I and the target
shape T . Specifically, we move the particles from I \ T to T \ I along shortest paths through
the overlap I ∩ T over as many parallel shortest paths as the problem instance allows. In
the worst case our algorithm works as well as existing solutions. However, in practice, our
approach is significantly more efficient when the symmetric difference between the initial
and the target shape is small.

Amoebot model. Particles in the amoebot model occupy nodes of a plane triangular
grid G. A particle can occupy either a single node or a pair of adjacent nodes: the particle is
contracted and expanded, respectively. The particles have constant memory space, and thus
have limited computational power. They are disoriented (no common notion of orientation)
and there is no consensus on chirality (clockwise or counter-clockwise). The particles have
no ids and execute the same algorithm, i.e. they are identical. They can reference their
neighbors using six (for contracted) or ten (for expanded particles) port identifiers that are
ordered clockwise or counter-clockwise modulo six or ten (see Figure 1 (left)). Particles can
communicate with direct neighbors by sending messages over the ports. Refer to Daymude
et al. [10] for additional details.

Particles can move in two different ways: a contracted particle can expand into an adjacent
empty node of the grid, and an expanded particle can contract into one of the nodes it
currently occupies. Each node of G can be occupied by at most one particle, and we require
that the particle system stays connected at all times. To preserve connectivity more easily,
we allow a handover variant of both move types, a simultaneous expansion and contraction
of two neighboring particles using the same node (Figure 1 (right)). A handover can be
initiated by any of the two particles; if it is initiated by the expanded particle, we say it pulls
its contracted neighbor, otherwise we say that it pushes its expanded neighbor.

Particles operate in activation cycles: when activated, they can read from the memory of
their immediate neighbors, compute, send constant size messages to their neighbors, and
perform a move operation. Particles are activated by an asynchronous adversarial but fair
scheduler (at any moment in time t, any particle must be activated at some time in the
future t′ > t). If two particles are attempting conflicting actions (e.g., expanding into the

I. Kostitsyna, T. Peters, and B. Speckmann 27:3

same node), the conflict is resolved by the scheduler arbitrarily, and exactly one of these
actions succeeds. We perform running time analysis in terms of the number of rounds: time
intervals in which all particles have been activated at least once.

We say that a particle configuration P is the set of all particles and their internal states.
Let GP be the subgraph of the triangular grid G induced by the nodes occupied by particles
in P. Let a hole in P be any interior face of GP with more than three vertices. We say a
particle configuration P is connected if there exists a path in GP between any two particles.
A particle configuration P is simply connected if it is connected and has no holes.

Related work. The amoebot model, which is both natural and versatile, was introduced
by Derakhshandeh et al. [13] in 2014 and has recently gained popularity in the algorithmic
community. A number of algorithmic primitives, such as leader election [15, 16, 17], spanning
forests [15], and distributed counters [8, 27], were developed to support algorithm design.

Derakhshandeh et al. [14] designed a reconfiguration algorithm for an amoebot system
which starts from particles forming a large triangle and targets a shape consisting of a
constant number of unit triangles (such that their description fits into the memory of a single
particle). In their approach the initial large triangle is partitioned into the unit triangles,
which move in a coordinated manner to their corresponding position within the target shape.
Derakhshandeh et al. make some assumptions on the model, including a sequential activation
scheduler (at every moment in time only one particle can be active), access of particles to
randomization, and common particle chirality. Due to these assumptions, and the fact that
the initial shape is compact, the reconfiguration process takes O(

√
n) number of rounds for

a system with n particles.
Di Luna et al. [16] were the first to reconfigure an input particle system into a line (a

canonical intermediate shape). They then simulate a Turing machine on this line, and use
the output of the computation to direct the construction of the target structure in O(n log n)
rounds. Their main goal was to lift some of the simplifying assumptions on the model of [14]:
their algorithm works under a synchronous scheduler, is deterministic, does not rely on
the particles having common chirality, and requires only the initial structure to be simply
connected. However, just as the work by Derakhshandeh et al. [14], their method only works
for structures of constant description size.

Cannon et al. [4] consider a stochastic variation of the amoebot model. Viewed as an
evolving Markov chain, the particles make probabilistic decisions based on the structure of
their local neighborhoods. In this variant, there exist solutions for compressing a system
into a dense structure [4], simulating ant behavior to build a shortcut bridge between two
locations [1], and separating a system into multiple components by the color of particles [3].

Problem description. An instance of the reconfiguration problem consists of a pair of simply
connected shapes (I, T) embedded in the grid G (see Figure 2). The goal is to transform
the initial shape I into the target shape T . Initially, all particles in I are contracted. The
problem is solved when there is a contracted particle occupying every node of T .

We make a few assumptions on the input and on the model. Most of our assumptions
fall into at least one of the following categories: they are natural for the problem statement,
they can be lifted with extra care, or they are not more restrictive than existing work.

Assumptions on I and T . We assume that the input shape I and the target shape T have
the same number n of nodes. We call I ∩ T the core of the system, the particles in I \ T the
supply, and the particles in T \ I the demand. In our algorithm, the core nodes are always
occupied by particles, and the supply particles move through the core to the demand.

DISC 2023

27:4 Fast Reconfiguration for Programmable Matter

ℓ

Figure 2 The particles form the initial shape I. The target shape T is shaded in gray. Supply
particles are blue, supply roots dark blue. Demand roots (red) store spanning trees of their demand
components. The graph GL on the coarse grid is shown in green and leader ℓ is marked. Particles
on GL that are green are grid nodes, other particles on GL are edge nodes.

We assume that
A1 the core I ∩ T is a non-empty simply connected component. This is a natural assumption

in the shape repair scenario when the symmetric difference between the initial and the
target shape is small.

A2 each demand component D of T \ I has a constant description complexity.

In Section 6 we discuss a possible strategy for lifting A1. Below A6 we explain why A2 is not
more restrictive than the input assumptions in the state-of-the art.

Assumptions on initial particle state. A standard assumption is that initially all particles
have the same state. In this paper we assume that a preprocessing step has encoded T into
the particle system and thus the states of some particles have been modified from the initial
state. The reasons for this assumption are twofold: first, to limit the scope of this paper
we chose to focus on the reconfiguration process; and second, the encoding preprocessing
step, whose specification we omit, can be derived in a straightforward manner from existing
primitives and algorithms. Below we describe more precisely what our assumptions are on
the outcome of the preprocessing step.

To facilitate the navigation of particles through the core I ∩ T , and in particular, to
simplify the crossings of different flows of particles, we use a coarsened (by a factor of three)
version of the triangular grid. Let GL be the intersection of the coarse grid with I ∩ T (the
green nodes Figure 2). We assume that after the preprocessing step
A3 a coarsened grid GL has been computed, by definition every node in the core is either in

GL or is adjacent to a node in GL. For simplicity of presentation we assume that the
shape of the core is such that GL is connected;

A4 particles know whether they belong to the supply I \ T , the demand I ∩ T , or to the
core I ∩ T ;

A5 every connected component C of the supply has a representative particle in the core
I ∩ T adjacent to C, the supply root of C; correspondingly, every connected component
D of the demand has one designated particle from the core adjacent to D, the demand
root of D;

A6 each demand root d stores a complete spanning tree rooted at d of the corresponding
demand component D in its memory explicitly or implicitly, by encoding construction
rules for D.

I. Kostitsyna, T. Peters, and B. Speckmann 27:5

If the core does not naturally induce a connected GL, we can restore connectivity by locally
deviating from the grid lines of the coarse grid and adapting the construction and use of
GL accordingly. Assumptions A2 and A4–A6 allow us to focus our presentation on the
reconfiguration algorithm itself. Encoding a general target shape into the initial structure
remains a challenging open problem. However, compared to prior work, our assumptions are
not very strong: all other existing algorithms support only fixed, simple target shapes which
can be easily encoded in the initial shape. For example, Derakhshandeh et al. [14] assume
that the initial shape I is a large triangle and that the target shape T consists of only a
constant number of unit triangles. Here a leader particle can easily compute the information
necessary for the pre-processing step and broadcast it through the system.

Contribution and organization. We present the first reconfiguration algorithm for pro-
grammable matter that does not use a canonical intermediate configuration. Instead, our
algorithm introduces new geometric primitives for amoebots which allow us to route particles
in parallel from supply to demand via the core of the particle system. A fundamental building
block of our approach are feather trees [21] which are a special type of shortest path trees
(SP-trees). SP-trees arrange particles in a tree structure such that the paths from leaves to
the root are shortest paths through the particle structure. The unique structure of feather
trees allows us to use multiple overlapping trees in the particle system to enable particle
navigation along shortest paths between multiple sources of supply and demand. In Section 2
we give all necessary definitions and show how to efficiently construct SP-trees and feather
trees using a grid variant of shortest path maps [23].

In Section 3 we then show how to use feather trees to construct a supply graph, which
directs the movement of particles from supply to demand. In Section 4 we describe in detail
how to navigate the supply graph and also discuss the coarse grid GL which we use to ensure
the proper crossing of different flows of particles travelling in the supply graph. Finally, in
Section 5 we summarize and analyze our complete algorithm for the reconfiguration problem.
We show that using a sequential scheduler we can solve the particle reconfiguration problem
in O(n) activation rounds. When using an asynchronous scheduler our algorithm takes O(n)
rounds in expectation, and O(n log n) rounds with high probability. All omitted proofs and
missing details can be found in the full version of our paper [22].

In the worst case our algorithm is as fast as existing algorithms, but in practice our
method exploits the geometry of the symmetric difference between input and output shape:
it minimizes unnecessary disassembly and reassembly of the particle system. Furthermore,
if the configuration of the particle system is such that the feather trees are balanced with
respect to the amount of supply particles in each sub-tree, then our algorithm finishes in a
number of rounds close to the diameter of the system (instead of the number of particles).
Our reconfiguration algorithm also moves the particles over as many parallel shortest paths
as the problem instance allows. In Section 6 we discuss these features in more detail and
also sketch future work.

2 Shortest path trees

To solve the particle reconfiguration problem, we need to coordinate the movement of the
particles from I \ T to T \ I. Among the previously proposed primitives for amoebot
coordination is the spanning forest primitive [15] which organizes the particles into trees to
facilitate movement while preserving connectivity. The root of a tree initiates the movement,
and the remaining particles follow via handovers between parents and children. However, the

DISC 2023

27:6 Fast Reconfiguration for Programmable Matter

r

p

u

w

r

ri

q
w

q′

w′

p
Ri

Figure 3 Shortest path map of node r. Any shortest path between r and p must pass through
the roots of the respective SPM regions (u, w, and ri). The region R0 (in purple) consists of the
particles P-visible to r. The red and the blue particles are the roots of the corresponding SPM
regions. Right: any path not going through the root of a visibility region can be shortened.

spanning forest primitive does not impose any additional structure on the resulting spanning
trees. We propose to use a special kind of shortest path trees (SP-trees), called feather trees,
which were briefly introduced in [21].

To ensure that all paths in the tree are shortest, we need to control the growth of the
tree. One way to do so, is to use breadth-first search together with a token passing scheme,
which ensures synchronization between growing layers of the tree, this is also known as a
β-synchronizer [2]. See the full version of our paper for details [22].

▶ Lemma 1. Given a connected particle configuration P with n particles, we can create an
SP-tree using at most O(n2) rounds.

2.1 Efficient SP-trees
To create SP-trees more efficiently for simply connected particle systems, we describe a
version of the shortest path map (SPM) data structure [23] on the grid (see Figure 3 (left)).
We say that a particle q ∈ P is P-visible from a particle p ∈ P if there exists a shortest path
from p to q in G that is contained in GP . This definition of visibility is closely related to
staircase visibility in rectilinear polygons [6, 19]. Let P be simply connected, and let R0 ⊆ P
be the subconfiguration of all particles P-visible from some particle r. By analogy with the
geometric SPM, we refer to R0 as a region. If R0 = P then SPM(r) is simply R0. Otherwise,
consider the connected components {R1, R2, . . . } of P \ R0. The window of Ri is a maximal
straight-line chain of particles in R0, each of which is adjacent to a particle in Ri (e.g., in
Figure 3 (right), chain (ri, w) is a window). Denote by ri the closest particle to r of the
window Wi of Ri. Then SPM(r) is recursively defined as the union of R0 and SPM(ri) in
Ri ∪ Wi for all i. Let Ri ⊆ Ri ∪ Wi be the set of particles P-visible from ri. We call Ri the
visibility region of ri, and ri the root of Ri. Note that by our definition the particles of a
window between two adjacent regions of a shortest path map belong to both regions.

▶ Lemma 2. Let ri be the root of a visibility region Ri in a particle configuration P. For
any particle p in Ri, the shortest path from r to p in P passes through ri.

▶ Corollary 3. Any shortest path π between r and any other particle p in P must pass through
the roots of the SPM regions that π crosses.

If a particle p is P-visible from r then there is a 60◦-angle monotone path [11] from r to p in
GP . That is, there exists a 60◦-cone in a fixed orientation, such that for each particle q on
the path from q to p lies completely inside this cone translated to q (see Figure 4 (left)).

I. Kostitsyna, T. Peters, and B. Speckmann 27:7

r

q

p

Figure 4 Left: An angle monotone path from r to p. For every particle q, the remainder of the
path lies in a 60◦-cone. Middle: Growing an SP-tree using cones of directions. The particle on the
left just extended its cone to 180◦. Right: A couple activations later.

We use a version of such cones to grow an SP-tree efficiently. Each node that is already
included in the tree carries a cone of valid growth directions (see Figure 4 (middle)). When
a leaf of the tree is activated it includes any neighbors into the tree which are not part of the
tree yet and lie within the cone. A cone is defined as an interval of ports. The cone of the
root r contains all six ports. When a new particle q is included in the tree, then its parent
p assigns a particular cone of directions to q. Assume parent p has cone c and that q is
connected to p via port i of p. By definition i ∈ c, since otherwise p would not include q into
the tree. We intersect c with the 120◦-cone [i − 1, i + 1] and pass the resulting cone c′ on to
q. (Recall that the arithmetic operations on the ports are performed modulo 6.) When doing
so we translate c′ into the local coordinate system of q such that the cone always includes
the same global directions. This simple rule for cone assignments grows an SP-tree in the
visibility region of the root r and it does so in a linear number of rounds.

▶ Lemma 4. Given a particle configuration P with diameter d which is P-visible from a
particle r ∈ P, we can grow an SP-tree in P from r using O(d) rounds.

We now extend this solution to arbitrary simply-connected particle systems using the
shortest-path map SPM(r). The SP-tree constructed by the algorithm above contains exactly
the particles of the visibility region R0 of SPM(r). As any shortest path from a window
particle to r passes through the root of that window, any window incident to R0 forms a
single branch of the SP-tree. To continue the growth of the tree in the remainder of P,
we extend the cone of valid directions for the root particles of the regions of SPM(r) by
120◦. A particle p can detect whether it is a root of an SPM(r)-region by checking its local
neighborhood. Specifically, let the parent of p lie in the direction of the port i + 3. If (1) the
cone assigned to p by its parent is [i − 1, i] (or [i, i + 1]), (2) the neighboring node of p in the
direction i + 2 (or i − 2) is empty, and (3) the node in the direction i + 1 (or i − 1) is not
empty, then p is the root of an SPM(r)-region, and thus p extends its cone to [i − 1, i + 2]
(or [i − 2, i + 1]) (see Figure 4 (middle)). Note that an extended cone becomes a 180◦-cone.

▶ Lemma 5. Let SPM(r) be the shortest-path map of a particle r in a simply-connected
particle system P. A particle u ∈ P extends its cone during the construction of an SP-tree if
and only if it is the root of a region in SPM(r).

Lemmas 4 and 5 together imply Theorem 6.

▶ Theorem 6. Given a simply-connected particle configuration P with diameter d and a
particle r ∈ P we can grow an SP-tree in P from r using O(d) rounds.

DISC 2023

27:8 Fast Reconfiguration for Programmable Matter

Figure 5 Two feather trees growing from the dark blue root. Shafts are red and branches are blue.
Left: every particle is reachable by the initial feathers; Right: additional feathers are necessary.

2.2 Feather trees
These SP-trees, although efficient in construction, are not unique: the exact shape of the
tree depends on the activation sequence of its particles. Our approach to the reconfiguration
problem is to construct multiple overlapping trees which the particles use to navigate across
the structure. As the memory capacity of the particles is restricted, they cannot distinguish
between multiple SP-trees by using ids. Thus we need SP-trees that are unique and have
a more restricted shape, so that the particles can distinguish between them by using their
geometric properties. In this section we hence introduce feather trees which are a special
case of SP-trees that use narrower cones during the growth process. As a result, feather trees
bifurcate less and have straighter branches.

Feather trees follow the same construction rules as efficient SP-trees, but with a slightly
different specification of cones. We distinguish between particles on shafts (emanating from
the root or other specific nodes) and branches (see Figure 5 (left)). The root r chooses a
maximal independent set of neighbors Nind ; it contains at most three particles and there
are at most two ways to choose. The particles in Nind receive a standard cone with three
directions (a 3-cone), and form the bases of shafts emanating from r. All other neighbors of
r receive a cone with a single direction (a 1-cone), and form the bases of branches emanating
from r. For a neighbor p across the port i, p receives the cone [i − 1, i + 1], translated to
the coordinate system of p, if p is in Nind , and the cone [i] otherwise. The shaft particles
propagate the 3-cone straight, and 1-cones into the other two directions, thus starting new
branches. Hence all particles (except for, possibly, the root) have either a 3-cone or a 1-cone.
The particles with 3-cones lie on shafts and the particles with 1-cones lie on branches.

We extend the construction of the tree around reflex vertices on the boundary of P in a
similar manner as before. If a branch particle p receives a 1-cone from some direction i + 3,
and the direction i + 2 (or i − 2) does not contain a particle while the direction i + 1 (or i − 1)
does, then p initiates a growth of a new shaft in the direction i + 1 (or i − 1) by sending
there a corresponding 3-cone (see Figure 5 (right)).

Feather trees are a more restricted version of SP-trees (Theorem 6). For every feather
tree, there exists an activation order of the particles such that the SP-tree algorithm would
create this specific feather tree. This leads us to the following lemma.

▶ Lemma 7. Given a simply connected particle configuration P with diameter d and a
particle r ∈ P, we can grow a feather tree from r in O(d) rounds.

Every particle is reached by a feather tree exactly once, from one particular direction.
Hence a feather tree is independent of the activation sequence of the particles. In the following
we describe how to navigate a set of overlapping feather trees. To do so, we first identify a
useful property of shortest paths in feather trees.

I. Kostitsyna, T. Peters, and B. Speckmann 27:9

We say that a vertex v of GP is an inner vertex, if v and its six neighbors lie in the core
I ∩ T . All other vertices of the core are boundary vertices. A bend in a path is formed by
three consecutive vertices that form a 120◦ angle. We say that a bend is an boundary bend if
all three of its vertices are boundary vertices; otherwise the bend is an inner bend.

▶ Definition 8 (Feather Path). A path in GP is a feather path if it does not contain two
consecutive inner bends.

We argue that every path π from the root to a leaf in a feather tree is a feather path.
This follows from the fact that inner bends can occur only on shafts, and π must alternate
visiting shafts and branches.

▶ Lemma 9. A path between a particle s and a particle t is a feather path if and only if it
lies on a feather tree rooted at s.

Navigating feather trees. Consider a directed graph composed of multiple overlapping
feather trees with edges pointing from roots to leaves. Due to its limited memory, a particle
cannot store the identity of the tree it is currently traversing. Despite that, particles can
navigate down the graph towards the leaf of some feather tree and remain on the correct
feather tree simply by counting the number of inner bends and making sure that the particle
stays on a feather path (Lemma 9). The number of inner bends can either be zero or one,
and thus storing this information does not violate the assumption of constant memory per
particle. Thus, when starting at the root of a feather tree, a particle p always reaches a leaf
of that same tree. In particular, it is always a valid choice for p to continue straight ahead
(if feasible). A left or right 120◦ turn is a valid choice if it is a boundary bend, or if the last
bend p made was boundary.

When moving against the direction of the edges, up the graph towards the root of some
tree, we cannot control which root of which feather tree a particle p reaches, but it still does
so along a shortest path. In particular, if p’s last turn was on an inner bend, then its only
valid choice is to continue straight ahead. Otherwise, all three options (straight ahead or a
120◦ left or right turn) are valid.

3 Supply and demand

Each supply root organizes its supply component into an SP-tree; the supply particles will
navigate through the supply roots into the core I ∩ T and towards the demand components
along a supply graph. The supply graph, constructed in I ∩ T , serves as a navigation network
for the particles moving from the supply to the demand along shortest paths. Let GI∩T be
the subgraph of G induced on the nodes of I ∩ T . We say a supply graph S is a subgraph of
GI∩T connecting every supply root s to every demand root d such that the following three
supply graph properties hold:
1. for every pair (d, s) a shortest path from d to s in S is also a shortest path in GI∩T ,
2. for every pair (d, s) there exists a shortest path from d to s in S that is a feather path,
3. every particle p in S lies on a shortest path for some pair (d, s).

We orient the edges of S from demand to supply, possibly creating parallel edges oriented
in opposite directions. For a directed edge from u to v in S, we say that u is the predecessor
of v, and v is the successor of u.

To create the supply graph satisfying the above properties, we use feather trees rooted at
demand roots. Every demand root initiates the growth of its feather tree. When a feather
tree reaches a supply root, a supply found token is sent back to the root of the tree. Note

DISC 2023

27:10 Fast Reconfiguration for Programmable Matter

that if several feather trees overlap, a particle p in charge of forwarding the token up the
tree cannot always determine which specific direction the corresponding root of the tree is.
It thus sends a copy of the token to all valid parents (predecessors of p on every possible
feather path of the token), and so the token eventually reaches all demand roots reachable
by a feather path from the node it was created in. To detect if a token has already made an
inner bend, the supply found token carries a flag β that is set once the token makes an inner
bend. Specifically, a particle p that receives a supply found token t does the following:
1. p marks itself as part of the supply graph S, and adds the direction i that t came from

as a valid successor in S,
2. from the set of all its predecessors (for all incoming edges), p computes the set U of valid

predecessors. When p is not a reflex vertex, U = [i + 3] if β = 1, and U = [i + 2, i + 4] if
β = 0. For reflex vertices, β is reset to 0 and more directions might be valid. Particle p

then adds U to the set of its valid predecessors in S,
3. p sends copies of t (with an updated value of β) to the particles in U , and
4. p stores t in its own memory.
Each particle p, from each direction i, stores at most one token with flag β set to 1 and one
with β set to 0. Hence p can store the corresponding information in its memory. If a particle
p already belongs to the supply graph S when it is reached by a feather tree F , then p checks
if its predecessor q in F is a valid parent for any token t stored in p, and, if so, adds q to the
set of its valid predecessors in S (as in step (2)). For each of these tokens, but for at most
one for each values of β, p sends a copy of t to q (as in step (3)).

▶ Lemma 10. Given a simply-connected particle configuration P with diameter d, a set of
particles marked as supply roots, and a set of particles marked as demand roots, a supply
graph can be constructed in O(d) rounds.

Bubbles. Particles move from supply to demand. However, for ease of presentation and
analysis, we introduce the abstract concept of demand bubbles that move from demand
to supply, in the direction of edges of S, see Figure 6. Let us assume for now that the
supply graph S has been constructed (in fact, its construction can occur in parallel with
the reconfiguration process described below). Starting with a corresponding demand root d,
each demand component D is constructed by particles flowing from the core I ∩ T , according
to the spanning tree of D stored in d. Every time a leaf particle expands in D, it creates
a bubble of demand that needs to travel through d down S to the supply, where it can be

Figure 6 A reconfiguration process with five expanded particles holding bubbles (outlined in
white). Supply particles are blue, supply roots dark blue. Demand roots (red) store spanning trees
of their demand components. The supply graph is not shown.

I. Kostitsyna, T. Peters, and B. Speckmann 27:11

resolved. Bubbles move via a series of handovers along shortest paths in S. An expanded
particle p holding a bubble b stores two values associated with it. The first value β is the
number of inner bends b took since the last boundary bend (β ∈ {0, 1}), and is used to route
the bubbles in S. The second value δ stores the general direction of b’s movement; δ = s if b

is moving forward to supply, and δ = d if b is moving backwards to demand.
If a particle p holding a bubble b wants to move b to a neighboring particle q, p can only

do so if q is contracted. Then, p initiates a pull operation, and thereby transfers b and its
corresponding values to q. Thus the particles are pulled in the direction of a demand root,
but the bubbles travel along S from a demand root towards the supply.

A supply component may become empty before all bubbles moving towards it are resolved.
In this case, the particles of S have to move the bubbles back up the graph. Particles do not
have sufficient memory to store which specific demand root bubbles came from. However,
because of the first supply graph property, every demand root has a connection to the
remaining supply. While a bubble is moved back up along S, as soon as there is a different
path towards some other supply root, it is moved into that path. Then, the edges connecting
to the now empty supply are deleted from S. Moreover, other edges that now point to
empty supply or to deleted edges are themselves deleted from S. As the initial and target
shapes have the same size, the total number of bubbles equals the number of supply particles.
Therefore, once all bubbles are resolved, the reconfiguration problem is solved.

In the remainder of the paper we may say “a bubble activates” or “a bubble moves”. By
this we imply that “a particle holding a bubble activates” or “a particle holding a bubble
moves the bubble to a neighboring particle by activating a pull handover”.

4 Navigating the supply graph

When the demand and supply roots are connected with the supply graph S, as described in
Section 3, the reconfiguration process begins. Once a demand root d has received a supply
found token from at least one successor (d is added to S), it begins to construct its demand
component D along the spanning tree TD that d stores, and starts sending demand bubbles
into S. The leafs of the partially built spanning tree TD carry the information about their
respective sub-trees yet to be built, and pull the chains of particles from d to fill in those
sub-trees, thus generating bubbles that travel through d into S.

With each node v of S, for every combination of the direction i to a predecessor of v

and a value of β, we associate a value λ(i, β) ∈ {true, false}, which encodes the liveliness
of feather paths with the corresponding value of β from the direction i through v to some
supply. If λ(i, β) = false then, for a given value of β, there are no feather paths through v

to non-empty supply in S. Note that here we specifically consider nodes of S, and not the
particles occupying them. When particles travel through S, they maintain the values of λ

associated with the corresponding nodes. Initially, when S is being constructed, λ = true for
all nodes, all directions, and all β. When a bubble b travels down S to a supply component
that turns out to be empty, b reverses its direction. Then, for all the nodes that b visits while
reversing, the corresponding value λ is set to false, thus marking the path as dead.

For an expanded particle p occupying two adjacent nodes of S, denote the predecessor
node as va, and the successor node as vb. By our convention, we say the bubble in p occupies
vb. When particle p with a bubble b activates, it performs one of the following operations. It
checks them in order and performs the first action available.

DISC 2023

27:12 Fast Reconfiguration for Programmable Matter

1. If δ = s (b is moving to supply) and vb is inside a supply component, then p pulls on any
contracted child in the spanning tree of the supply; if vb is a leaf, then p simply contracts
into va, thus resolving the bubble.

2. If δ = s and vb ∈ S, p checks which of the successors of vb in S lie on a feather path for b

and are alive (i.e., their corresponding λ = true). If there is such a successor q that is
contracted, p pulls q and sends it the corresponding values of β and δ (while updating β

if needed), i.e., p transfers b to q. Thus the bubble moves down S to supply.
3. If δ = s, vb ∈ S, and vb does not have alive successors in S that lie on a feather path

for b, then p reverses the direction of b to δ = d, and sets the value λ(i, β) of vb to false,
where i is the direction from vb to va. The bubble does not move.

4. If δ = d (b is moving to demand) and there exists an alive successor node of either vb

or va that lies on a feather path for b and is occupied by a contracted particle q, then p

switches the direction of b to δ = s, pulls on q, and transfers to q the bubble b with its
corresponding values (while updating β if needed). The bubble changes direction and
moves onto a feather path which is alive.

5. If δ = d and none of the successors of vb or va in S are alive for b, then p sets the
corresponding values λ of vb and va to false, and checks which predecessors of va lie on a
feather path for b (note, this set is non-empty). If there is such a predecessor q that is
contracted, then p pulls q and transfers it the bubble b. Thus the bubble moves up in S.

Coarse grid. Particles can only make progress if they have a contracted successor. To
ensure that flows of particles along different feather paths can cross without interference, we
introduce a coarsened grid, and devise a special crossing procedure.

Rather than constructing supply graph S on the triangular grid G, we now do so using a
grid GL that is coarsened by a factor of three and is laid over the core I ∩ T (see Figure 2).
Then, among the nodes of G we distinguish between those that are also grid nodes of GL,
edge nodes of GL, and those that are neither. By our assumptions on the input, the graph
GL is connected. Note, that then, every node of the particle system is either a part of GL

(is a grid or an edge node), or is adjacent to a node of GL. To ensure that all particles agree
on the location of GL, we assume that we are given a leader particle ℓ in the core I ∩ T , that
initiates the construction of GL.

In between two grid nodes of GL, there are exactly two edge nodes of GL. While bubbles
are in the core I ∩ T , we let them occupy only edge nodes of GL. To resolve crossing paths
in S, every time a bubble wants to cross a grid node of GL occupied by a particle p, the
bubble sends a request to p. Then if p receives multiple of these requests, it decides which
of the bubbles can cross. To avoid potential head-on collisions of bubbles on a single edge
of GL corresponding to a bidirectional edge of S, our algorithm temporarily disallows the
movement of bubbles in one of the two directions. Only after the chosen direction is marked
as dead, the other direction becomes available for bubble traversal. That is, at any moment
in time, the supply graph, does not contain bidirectional edges. See Appendix B for details.

5 Algorithm

To summarize, our approach consists of three phases. In the first phase, the leader particle
initiates the construction of the coarse grid GL over the core I ∩ T . In the second phase, the
particles grow feather trees, starting from the demand roots. If a feather tree reaches supply,
that information is sent back up the tree and the particles form the supply graph S. In the
last phase, particles move from supply to demand along S. Note that, for the particle system

I. Kostitsyna, T. Peters, and B. Speckmann 27:13

as a whole, these phases may overlap in time. For example, the reconfiguration process may
begin before the supply graph is fully constructed. Each individual particle can move on to
executing the next phase of the algorithm once the previous phase for it is finished.

For the purposes of analysis, we view the reconfiguration as bubbles of demand traveling
along S from demand to supply. Bubbles turn around on dead paths where all supply has
been consumed. To ensure proper crossing of different bubble flows, we let the grid nodes of
S to act as traffic conductors, letting some bubbles cross while others wait for their turn.

Correctness. For simplicity of presentation, we first show correctness of the algorithm
under a sequential scheduler. We then extend the algorithm and its analysis to the case of
an asynchronous scheduler. To show correctness, we need to show two properties, safety
and liveness. The algorithm is safe if P never enters an invalid state, and is live if in any
valid state there exists a particle that, when activated, can make progress towards the goal.
Lemma 10 proves the correctness of the phase of the construction of the supply graph. As
the particles start executing the reconfiguration phase only after the construction of the
supply graph is finished for them locally, for the purposes of proving the correctness of the
reconfiguration phase, we may assume that the supply graph has been constructed in the
particle system as a whole. A state of P is valid when it satisfies the following properties:

Particle configuration P is connected.
It holds that #b + #d = #s, where #b, #d, and #s are the number of bubbles, demand
spots, and supply particles respectively. That is, the size of supply matches exactly the
size of demand. This assumes that initial and target shapes have the same size.
There are no bidirectional edges in S allowed for traversal.
For every pair of demand root d and supply root s with a non-empty supply, there exists
a feather path from d to s in S; furthermore, all such feather paths are alive (i.e., the
corresponding values of λ are set to true).
Any expanded particle has both nodes on a single feather path of S.
Any expanded particle on an alive feather path moves to supply (δ = s).
Any node of S with λ(i, β) = true, for some combination of direction i and value β, is
connected by an alive feather path to some demand root d.

For the property of liveness, we need to show that progress can always be made. We say
the particle system makes progress whenever (1) a bubble moves on its path (this includes
resolving the bubble with supply, or when a demand root creates a new bubble), and (2) a
bubble changes its value for direction δ. In the full version of our paper [22], we show by
induction that during the execution of our algorithm, the configuration stays valid at any
point in time, and that at any point in time, there is a bubble that can make progress.

▶ Lemma 11. A particle configuration P stays valid and live at all times.

Running time analysis. We begin by arguing that the total distance traveled by each bubble
is linear in the number of particles in the system. We first limit the length of the path each
bubble takes.

▶ Lemma 12. The total path of a bubble b in a particle configuration P with n particles has
size O(n).

Next, we give a lower bound on the number of rounds it takes each bubble to traverse its
path. We analyze the progress made by the particle system by creating a specific series of
O(n) configurations that represent a lower bound on the overall progress; we show that any

DISC 2023

27:14 Fast Reconfiguration for Programmable Matter

activation sequence chosen by an adversarial scheduler results in at least as much progress.
This approach has been previously used for analyzing the running time of a moving line of
particles [14], and for a tree moving from the root [7]. Together with the proof of correctness,
we conclude with the following theorem:

▶ Theorem 13. The particle reconfiguration problem for particle configuration P with n

particles can be solved using O(n) rounds of activation under a sequential scheduler.

Extending the analysis to an asynchronous scheduler. Unlike in the case of a sequential
scheduler, when at each moment only one particle can be active, under an asynchronous
scheduler multiple particles may be active at the same time. This may lead to concurrency
issues. Specifically, when actions of two or more particles conflict with each other, not all of
them can be finished successfully. To extend our algorithm to the case of an asynchronous
scheduler, we explore what kind of conflicts may arise, and ensure that our algorithm can
deal with them. There can be three types of conflicts:
1. Two particles try to expand into the same empty node.
2. Two contracted particles try to push the same expanded particle.
3. Two expanded particles try to pull on the same contracted particle.

The first two kinds of conflicts never arise in our algorithm, as (1) every empty node
(demand spot) can be moved into from only a single direction, according to the spanning tree
stored by the corresponding demand root, and (2) no particle ever performs a push operation.
The third conflict could potentially arise in our approach when two bubbles traveling on
crossing paths pass the junction node. However, as crossing of a junction is controlled by the
junction particle, only one particle at a time is given permission to pull on the junction node.
Thus, under an asynchronous scheduler, all actions initiated by the particles always succeed.

We are left to analyze whether the asynchronous setting can lead to deadlocks in our
algorithm, where concurrency issues result in some particle not being able to make progress.
As mentioned above, crossings of junctions are controlled by the junction particles, and thus
cannot lead to deadlocks. Furthermore, the algorithm forbids the simultaneous existence of
bidirectional edges in S, thus there cannot be deadlocked bubbles moving in the opposite
directions over the same edge. The only remaining case of a potential deadlock is when
the algorithm temporarily blocks one of the two directions of a bidirectional edge. In a
sequential schedule, this choice is made by one of the two edge nodes of GL corresponding to
the bidirectional edge of S. However, in an asynchronous schedule, both edge nodes may
become active simultaneously, and choose the opposite directions of S. To resolve this case,
and to break the symmetry of two nodes activating simultaneously and choosing the opposite
directions, we need to utilize the power of randomness. We assume that the particles have
access to a constant number of random bits. Daymude et al. [9] show that, in that case, a
mechanism exists that allows the particles to lock their local neighborhood, and to perform
their actions as if the neighboring particles were inactive. Such a locking mechanism increases
the running time only by a constant factor in expectation, and by a logarithmic factor if the
particle needs to succeed with high probability. Thus, with a locking mechanism, we can
ensure that our algorithm can select one of the two directions of a bidirectional edge in S.

▶ Theorem 14. The particle reconfiguration problem for particle configuration P with n

particles can be solved in O(n) rounds of activation in expectation (or in O(n log n) rounds
of activation with high probability) under an asynchronous scheduler, if each particle has
access to a constant number of random bits.

I. Kostitsyna, T. Peters, and B. Speckmann 27:15

Figure 7 Shortest paths lead through a bottleneck, slowing down the algorithm in practice.

The running time of our algorithm is worst-case optimal: any algorithm to solve the
particle reconfiguration problem needs at least a linear number of rounds.

▶ Theorem 15. Any algorithm that successfully solves the particle reconfiguration problem
needs Ω(n) rounds.

6 Discussion

We presented the first reconfiguration algorithm for programmable matter that does not use
a canonical intermediate configuration. In the worst-case, our algorithm requires a linear
number of activation rounds and hence is as fast as existing algorithms. However, in practice,
our algorithm can exploit the geometry of the symmetric difference between input and output
and can create as many parallel shortest paths as the problem instance allows.

We implemented our algorithm in the Amoebot Simulator1. In the following screenshots
and the accompanying videos of complete reconfiguration sequences2 supply particles are
colored green, demand roots red, and supply roots cyan. The dark blue particles are part of
the supply graph and therefore lie on a feather path from a demand root to a supply root.

Figure 8 illustrates that our algorithm does indeed create a supply graph which is based
on the shortest paths between supply and demand and hence facilitates parallel movement
paths if the geometry allows. Activation sequences are randomized, so it is challenging to
prove statements that capture which supply feeds which demand, but generally we observe
that close supply and demand nodes will connect first. An interesting open question in this
context is illustrated in Figure 7: here we see two supplies and two demands, but the shortest
paths have a common bottleneck, which slows down the reconfiguration in practice. Is there
an effective way to include near-shortest paths in our supply graph to maximize parallelism?
One could also consider temporarily adding particles to the symmetric difference. Note,
though, that additional parallelism leads only to constant factor improvements in the running
time; this is of course still meaningful in practice.

As we already hinted in the introduction, the running time of our algorithm is linked
to the balance of supply in the feather trees. Recall that the trees are rooted at demand
and grow towards supply; bubbles move from demand to supply. Because bubbles decide
randomly at each junction which path to follow, each sub-tree will in expectation receive a
similar amount of bubbles. If all sub-trees of a junction contain an equal amount of supply
particles, then we say this junction is balanced. If all junctions are balanced, then we say a
feather tree is balanced; similarly we speak about a balanced supply graph.

1 https://github.com/SOPSLab/AmoebotSim
2 https://github.com/PetersTom/AmoebotVideos

DISC 2023

https://github.com/SOPSLab/AmoebotSim
https://github.com/PetersTom/AmoebotVideos

27:16 Fast Reconfiguration for Programmable Matter

The worst case running time of O(n) rounds is triggered by unbalanced supply graphs.
See, for example, Figure 9 (right), where at each junction the sub-tree rooted in the center
carries all remaining supply, except for two particles. Such situations arise when there are
many small patches of supply and only a few locations with demand. In the realistic scenario
of shape repair we have exactly the opposite situation with many small damages (demand)
and one large reservoir of supply stored for repairs. Here the supply graph will naturally be
balanced and the running time is proportional to the diameter of the core I ∪ T . Figure 9
(left) shows an example with only one supply and demand; here the running time of our
algorithm is even proportional to the distance between supply and demand within I ∪ T .

Feather trees are created to facilitate particles traveling on (crossing) shortest paths
between supply and demand; they do not take the balance of the supply graph into account.
A challenging open question in this context is whether it is possible to create supply graphs
which retain the navigation properties afforded by feather tress but are at the same time
balanced with respect to the supply.

As a final example, Figure 10 gives an impression of the natural appearance of the
reconfiguration sequences produced by our algorithm. In the remainder of this section we
discuss ways to lift A1: the core I ∩ T is non-empty and simply connected. If the core
consist of more than one component, then we can choose one component as the core for the
reconstruction. The other components can then be interpreted by the algorithm as both
supply and demand. Consequently they will first be deconstructed and then reassembled.
Clearly this is not an ideal solution, but it does not affect the asymptotic running time and
does not require any major changes to our algorithm. If the core is not simply connected,
that is, it contains holes, then our procedure for creating feather trees may no longer create
shortest path trees or it might not even terminate. The slow O(n2) algorithm will however
terminate and produce shortest path. A very interesting direction for future work are hence
efficient algorithms for shortest path trees for shapes with holes.

References

1 Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W.
Richa. A stochastic approach to shortcut bridging in programmable matter. Natural Computing,
17(4):723–741, 2018. doi:10.1007/s11047-018-9714-x.

2 Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM),
32(4):804–823, 1985.

3 Sarah Cannon, Joshua J. Daymude, Cem Gökmen, Dana Randall, and Andréa W. Richa.
A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Sys-
tems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 54:1–54:22, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.54.

4 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov Chain
Algorithm for Compression in Self-Organizing Particle Systems. In Proc. ACM Symposium on
Principles of Distributed Computing (PODC), pages 279–288, 2016. doi:10.1145/2933057.
2933107.

5 Kenneth C. Cheung, Erik D. Demaine, Jonathan R. Bachrach, and Saul Griffith. Programmable
Assembly With Universally Foldable Strings (Moteins). IEEE Transactions on Robotics,
27(4):718–729, 2011. doi:10.1109/TRO.2011.2132951.

6 Joseph C. Culberson and Robert A. Reckhow. Dent Diagrams: A Unified Approach to Polygon
Covering Problems. Technical report, University of Alberta, 1987. TR 87–14.

https://doi.org/10.1007/s11047-018-9714-x
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54
https://doi.org/10.1145/2933057.2933107
https://doi.org/10.1145/2933057.2933107
https://doi.org/10.1109/TRO.2011.2132951

I. Kostitsyna, T. Peters, and B. Speckmann 27:17

7 Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W. Richa,
Christian Scheideler, and Thim Strothmann. On the Runtime of Universal Coating for Pro-
grammable Matter. Natural Computing, 17(1):81–96, 2016. doi:10.1007/s11047-017-9658-6.

8 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Scheideler,
and Andréa W. Richa. Convex Hull Formation for Programmable Matter. In Proc. 21st
International Conference on Distributed Computing and Networking, pages 1–10, 2020. doi:
10.1145/3369740.3372916.

9 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. Local Mutual Exclusion for
Dynamic, Anonymous, Bounded Memory Message Passing Systems, November 2021. URL:
http://arxiv.org/abs/2111.09449.

10 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot
Model: Algorithms and Concurrency Control. In 35th International Symposium on Distributed
Computing (DISC), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 20:1–20:19, 2021. doi:10.4230/LIPIcs.DISC.2021.20.

11 Hooman R. Dehkordi, Fabrizio Frati, and Joachim Gudmundsson. Increasing-Chord Graphs
On Point Sets. In Proc. International Symposium on Graph Drawing (GD), LNCS 8871, pages
464–475, 2014. doi:10.1007/978-3-662-45803-7_39.

12 Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, Nicolas
Schabanel, Shinnosuke Seki, and Hadley Thomas. Know When to Fold ’Em: Self-assembly
of Shapes by Folding in Oritatami. In DNA Computing and Molecular Programming, pages
19–36, 2018. doi:10.1007/978-3-030-00030-1_2.

13 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: Amoebot—A New Model for Programmable
Matter. In Proc. 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 220–222, 2014. doi:10.1145/2612669.2612712.

14 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal Shape Formation for Programmable Matter. In Proc. 28th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 289–299,
2016. doi:10.1145/2935764.2935784.

15 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader Election and Shape Formation with Self-organizing Programmable
Matter. In Proc. International Workshop on DNA-Based Computing (DNA), LNCS 9211,
pages 117–132, 2015. doi:10.1007/978-3-319-21999-8_8.

16 Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, 33:69–101,
2020. doi:10.1007/s00446-019-00350-6.

17 Fabien Dufoulon, Shay Kutten, and William K. Moses Jr. Efficient Deterministic Leader
Election for Programmable Matter. In Proc. 2021 ACM Symposium on Principles of Distributed
Computing, pages 103–113, 2021. doi:10.1145/3465084.3467900.

18 Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science, 345(6198):799–804, 2014. doi:
10.1126/science.1253920.

19 Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.
doi:10.1017/CBO9780511543340.

20 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian
Scheideler, and Thim Strothmann. Forming Tile Shapes with Simple Robots. In Proc.
International Conference on DNA Computing and Molecular Programming (DNA), pages
122–138, 2018. doi:10.1007/978-3-030-00030-1_8.

21 Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Brief announcement: An effective
geometric communication structure for programmable matter. In 36th International Symposium
on Distributed Computing (DISC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2022.

DISC 2023

https://doi.org/10.1007/s11047-017-9658-6
https://doi.org/10.1145/3369740.3372916
https://doi.org/10.1145/3369740.3372916
http://arxiv.org/abs/2111.09449
https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://doi.org/10.1007/978-3-662-45803-7_39
https://doi.org/10.1007/978-3-030-00030-1_2
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2935764.2935784
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/s00446-019-00350-6
https://doi.org/10.1145/3465084.3467900
https://doi.org/10.1126/science.1253920
https://doi.org/10.1126/science.1253920
https://doi.org/10.1017/CBO9780511543340
https://doi.org/10.1007/978-3-030-00030-1_8

27:18 Fast Reconfiguration for Programmable Matter

22 Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Fast reconfiguration for programmable
matter. arxiv, August 2023. URL: https://arxiv.org/abs/2202.11663.

23 Joseph S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane. Annals
of Mathematics and Artificial Intelligence, 3(1):83–105, 1991. doi:10.1007/BF01530888.

24 Andre Naz, Benoit Piranda, Julien Bourgeois, and Seth Copen Goldstein. A distributed
self-reconfiguration algorithm for cylindrical lattice-based modular robots. In Proc. 2016 IEEE
15th International Symposium on Network Computing and Applications (NCA), pages 254–263,
2016. doi:10.1109/NCA.2016.7778628.

25 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13(2):195–224, 2014. doi:10.1007/s11047-013-9379-4.

26 Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge modular
robot to create programmable matter. Autonomous Robots, 42(8):1619–1633, 2018. doi:
10.1007/s10514-018-9710-0.

27 Alexandra Porter and Andrea Richa. Collaborative Computation in Self-organizing Particle
Systems. In Proc. International Conference on Unconventional Computation and Natural
Computation (UCNC), LNCS 10867, pages 188–203, 2018. doi:10.1007/978-3-319-92435-9_
14.

28 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proc. 4th
Conference on Innovations in Theoretical Computer Science (ITCS), pages 353–354, 2013.
doi:10.1145/2422436.2422476.

A Simulation figures

Figure 8 One supply and five demands vs. five supplies and five demands.

Figure 9 Left: Particles move directly between supply and demand. Right: Worst case configura-
tion for back-tracking.

https://arxiv.org/abs/2202.11663
https://doi.org/10.1007/BF01530888
https://doi.org/10.1109/NCA.2016.7778628
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1007/978-3-319-92435-9_14
https://doi.org/10.1007/978-3-319-92435-9_14
https://doi.org/10.1145/2422436.2422476

I. Kostitsyna, T. Peters, and B. Speckmann 27:19

Figure 10 Dove to fish, full video at https://github.com/PetersTom/AmoebotVideos.

B Coarse grid

Particles can only make progress if they have a contracted successor. If there are crossing
paths in S, these paths might interfere. To ensure that flows of particles along different feather
paths can cross, we introduce a coarsened grid, and devise a special crossing procedure.

Rather than constructing supply graph S on the triangular grid G, we now do so using
a grid GL that is coarsened by a factor of three and is overlaid over the core I ∩ T (see
Figure 2). Then, among the nodes of G we distinguish between those that are also grid
nodes of GL, edge nodes of GL, and those that are neither. By our assumptions on the input,
the graph GL is connected. Note, that then, every node of the particle system is either a
part of GL (is a grid or an edge node), or is adjacent to a node of GL. To ensure that all
particles agree on the location of GL, we assume that we are given a leader particle ℓ in the
core I ∩ T , that initiates the construction of GL (see Figure 2 in Section 1).

Note that for two adjacent grid nodes v1 and v2 of GL, the edge (v1, v2) does not have to
be in GL, if one or both corresponding edge nodes are not part of the core I ∩ T . We say a
grid node v in GL is a boundary node if there exists a grid cell with corners v, v1, v2 where
at least one of its edges is missing. Grid node v is a direct boundary node if this missing edge
is incident to v, and an indirect boundary node if the missing edge is (v1, v2). All other grid
nodes in GL are inner nodes.

Now, feather trees only grow over the particles in GL. Demand roots initiate the
construction of their feather trees from a closest grid node in GL. The supply roots organize
their respective supply components in SP-trees as before (in the original grid), and connect
to all adjacent particles in the supply graph S (S ⊆ GL).

The growth of a feather tree in GL is very similar to that in G. On direct boundary
nodes, the cones propagate according to the same rules as before. On indirect boundary
nodes, the creation of new shafts and branches is outlined in Figure 11. The resulting feather
tree may now have angles of 60◦. To still be able to navigate the supply graph, bubbles are
allowed to make a 60◦ bend on indirect boundary nodes, resetting β = 0, only when both
the start and end vertex of that bend are also boundary nodes.

A useful property of GL that helps us ensure smooth crossings of the bubble flows is that
there are at least two edge nodes in between any two grid nodes. We can now restrict the
expanded particles carrying bubbles to mainly use the edge nodes of S, and only cross the
grid nodes if there is enough room for them to fully cross.

DISC 2023

https://github.com/PetersTom/AmoebotVideos

27:20 Fast Reconfiguration for Programmable Matter

qp

(a)

qp

(b)

qp

(c)

qp

(d)

Figure 11 Construction of feather trees at indirect boundary nodes. GL is shown in green, only
the particles on nodes of GL are shown. A branch ((a)–(b), in blue) and a shaft ((c)–(d), in red) of
a feather tree grows from q to p. (a) A new shaft is emanated from p; (b) a new shaft and a new
branch are emanated from p; (c) p behaves as an internal node; (d) a new shaft is emanated from p.

b
va vb

Figure 12 A bubble b on two edge nodes of GL. Only particles on GL are drawn. The blue
particle is on c(b), the nodes occupied by the two pairs of green particles together form N(b).

With p(x), we denote the particle occupying node x. For a directed edge from u to v

in S, we say that u is the predecessor of v, and v is the successor of u, and denote this by
u → v. Consider a bubble b moving forward in S (with δ = s), held by an expanded particle
p occupying two edge nodes va and vb, with va → vb (see Figure 12). Let c(b) be the grid
node of S adjacent to vb, such that vb → c(b); c(b) is the grid node that b needs to cross
next. Let D(b) denote the set of valid directions for b in S from the position of c(b). Let
N(b) = {(ri

1, ri
2) | i ∈ D(b)} be the set of pairs of edge nodes lying in these valid directions

for b. Specifically, for each i ∈ D(b), let c(b) → ri
1 in the direction i, and ri

1 → ri
2.

Crossings in GL. The grid nodes of GL that are part of the supply graph act as traffic
conductors. We thus use terms grid nodes and junctions interchangeably. For bubble b, its
particle p is only allowed to pull on the particle at c(b), and thus initiate the crossing of c(b),
if there is a pair of nodes (r1, r2) ∈ N(b) that are occupied by contracted particles. In this
case, after at most three activation rounds, b will completely cross c(b), the expanded particle
now carrying it will occupy the edge nodes r1 and r2, and the junction c(b) will be ready
to send another bubble through itself. Assume for now that S has all edges oriented in one
direction (there are no parallel edges in opposite directions). Below we discuss how to lift
this assumption. The procedure followed by the junctions is the following. If an expanded
particle p wants to pull on a particle at a junction, it first requests permission to do so by
sending a request token containing the direction it wants to go after c(b). Every junction
node stores a queue of these requests. A request token arriving from the port i is only added
to the queue if there are no requests from i in the queue yet. As every direction is stored
only once, this queue is at most of size six. When particle p(r1) occupying an edge node r1,
with some grid node c → r1, activates, it checks if itself and the particle p(r2) at r1 → r2 are
contracted. If so, p(r1) sends an availability token to p(c). Similarly, junction nodes need to
store at most six availability tokens at once.

I. Kostitsyna, T. Peters, and B. Speckmann 27:21

When the particle at a junction activates, and it is ready to transfer the next bubble, it
grants the first pull request with a matching availability token by sending the acknowledgment
token to the particle holding the corresponding bubble. The request and availability tokens
are then consumed. Only particles with granted pull requests are allowed to pull and move
their bubbles onto junctions. Junction queues are associated with the grid nodes of S, and
not particles. Thus, if an expanded particle p occupying a grid node c pulls another particle q

to c, the queues are transformed into the coordinate system of q and sent to q.
▶ Remark 16. Above, for simplicity of presentation, we assume that there are no bidirectional
edges in S. These edges, however, can be treated as follows. During the construction of
the supply graph one of the two opposite directions is chosen as a dominating one. For a
corresponding edge of GL, one of its two edge nodes that receives the supply found token
first, reserves the direction of the corresponding feather path for this edge. If the other edge
node eventually receives the supply found token from the opposite direction, it stores the
information about this edge as being inactive. While the branch of the dominating direction
is alive, the dominated branch is marked as unavailable. As soon as, and if, supply runs out
for the dominating branch, and it is marked dead, the dominated branch is activated, and
can now be used. This slows down the reconfiguration process by a number of rounds at
most linear in the size of the dominating branch.

DISC 2023

Quorum Subsumption for Heterogeneous Quorum
Systems
Xiao Li #

University of California, Riverside, CA, USA

Eric Chan #

University of California, Riverside, CA, USA

Mohsen Lesani #

University of California, Riverside, CA, USA

Abstract
Byzantine quorum systems provide higher throughput than proof-of-work and incur modest energy
consumption. Further, their modern incarnations incorporate personalized and heterogeneous trust.
Thus, they are emerging as an appealing candidate for global financial infrastructure. However, since
their quorums are not uniform across processes anymore, the properties that they should maintain to
support abstractions such as reliable broadcast and consensus are not well-understood. It has been
shown that the two properties quorum intersection and availability are necessary. In this paper, we
prove that they are not sufficient. We then define the notion of quorum subsumption, and show that
the three conditions together are sufficient: we present reliable broadcast and consensus protocols,
and prove their correctness for quorum systems that provide the three properties.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms; Computer
systems organization → Availability; Computer systems organization → Reliability

Keywords and phrases Distributed Systems, Impossibility Results, Byzantine fault tolerance

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.28

Acknowledgements We would like to thank DISC ’23 reviewers for detailed and constructive
reviewers. Further, we would like to specially thank Giuliano Losa for his insightful comments.

1 Introduction

Bitcoin [42] had the promise to democratize the global finance. Globally scattered servers
validate and process transactions, and maintain a consistent replication of a ledger. However,
the nature of the proof-of-work consensus exhibited disadvantages such as high energy
consumption, and low throughput. In contrast, Byzantine replication have always had
modest energy consumption. Further, since its advent as PBFT [18], many recent extensions
[47, 39, 48, 17, 6, 12, 13] have improved its throughput. However, its basic model of quorums
is closed and homogeneous: the set of processes are fixed, and the quorums are assumed to
be uniform across processes. Thus, projects such as Ripple [44] and Stellar [38, 33] emerged
to bring heterogeneity and openness to Byzantine quorum systems. They let every process
declare its own set of quorums, or the processes it trusts called slices, from which quorums
are calculated.

In this paper, we first consider a basic model of heterogeneous quorum systems where each
process has an individual set of quorums. Then, we consider fundamental questions about
their properties. Quorum systems are the foundation of common distributed computing
abstractions such as reliable broadcast and consensus. We specify the expected safety and
liveness properties for these abstractions. What are the necessary and sufficient properties
of heterogeneous quorum systems to support these abstractions? Previous work [34] noted

© Xiao Li, Eric Chan, and Mohsen Lesani;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xli289@ucr.edu
mailto:echan044@ucr.edu
mailto:lesani@ucr.edu
https://doi.org/10.4230/LIPIcs.DISC.2023.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Quorum Subsumption for Heterogeneous Quorum Systems

that quorum intersection and weak availability properties are necessary for the quorum
system to implement the consensus abstraction. Quorum intersection requires that every
pair of quorums overlap at a well-behaved process. The safety of consensus relies on the
quorum intersection property of the underlying quorum system: intuitively, if an operation
communicates with a quorum, and a later operation communicates with another quorum,
a single well-behaved process in their intersection can make the second quorum aware of
the first. A quorum system is weakly available for a process if it has a quorum for that
process whose members are all well-behaved. Intuitively, the quorum system is available to
that process through that quorum. Since a process needs to communicate with at least one
quorum to terminate, the liveness properties are dependent on the availability of the quorum
system.

The quorum intersection and availability properties are necessary. Are they sufficient as
well? In this paper, we prove that they are not sufficient conditions to implement reliable
broadcast and consensus. For each abstraction, we present execution scenarios, and apply
indistinguishability arguments to show that any protocol violates at least one of the safety or
liveness properties. What property should be added to make the properties sufficient? A less
known property is quorum sharing [34]. Roughly speaking, every quorum should include a
quorum for all its members. This is a property that trivially holds for homogeneous quorum
systems where every quorum is uniformly a quorum of all its members. However, in general,
it does not hold for heterogeneous quorum systems. Previous work showed that it also holds
for Stellar quorums if Byzantine processes do not lie about their slices.

Since Byzantine processes’ quorums is arbitrary, in practice, quorum sharing is too strong.
In order to require inclusion only for the quorums of a well-behaved subset of processes,
we consider a weaker notion, called quorum subsumption. As we will see, this property lets
processes in the included quorum make local decisions while preserving the properties of the
including quorum. We precisely capture this property, and show that together with the other
two properties, it is sufficient to implement reliable broadcast and consensus abstractions. We
present protocols for both reliable broadcast and consensus, and prove that if the underlying
quorum system has quorum intersection, availability, and subsumption for certain quorums,
then the protocols satisfy the required safety and liveness properties.

In summary, this paper makes the following contributions.
Properties of quorum-based protocols (Section 3) and specifications of reliable broadcast
and consensus on heterogeneous quorum systems (Section 4).
Proof of insufficiency of quorum intersection and availability to solve consensus (Subsec-
tion 5.1) and reliable broadcast (Subsection 5.2).
Sufficiency of quorum intersection, quorum availability and quorum subsumption to
solve consensus and reliable broadcast. We present protocols for reliable broadcast
(Subsection 6.1) and consensus (Subsection 6.2), and their proofs of correctness.

2 Heterogeneous Quorum Systems

A quorum is a subset of processes that are collectively trusted to perform an operation.
However, this trust may not be uniform: while a process may trust a part of a system,
another process may not trust that same part. In this section, we adopt a general model of
quorum systems [32, 34] and its properties. These basic definitions adapt common properties
of quorum systems to the heterogeneous setting, and serve as the foundation for theorems
and protocols in the later sections. Since we want the theorems to be as strong as possible,
we introduce the weak notion of quorum subsumption in this paper.

X. Li, E. Chan, and M. Lesani 28:3

2.1 Processes and Quorums
Processes and Failures. A quorum system is hosted on a set of processes P. For every
execution, we can partition the set P into Byzantine B and well-behaved W = P \B processes.
Well-behaved processes follow the given protocol, while Byzantine processes can deviate from
the protocol arbitrarily.

We assume that the network is partially synchronized, i.e., after an unknown global
stabilization time (GST), if both the sender and receiver are well-behaved, the message will
eventually be delivered with a known bounded delay [20].

Heterogeneous Quorum Systems (HQS). To represent subjective trust, we let each process
specify its own quorums. A quorum q of process p is a non-empty subset P of P that p

trusts to get information from if it obtains the same information from each member of P .
(In practice, a quorum of p can contain p itself, although the model does not require it.)
Each process p stores its own set of quorums that we call individual quorums of p. Any
superset of a quorum of p is also a quorum of p; thus, there are minimal quorums: a quorum
of p is a minimal quorum of p if none of its strict subsets is a quorum of p. Thus, to avoid
redundancy, p can ignore its quorums that are proper supersets of its minimal quorums.
Thus, each process stores only its individual minimal quorums.

▶ Definition 1 (Quorum System). A heterogeneous quorum system Q is a mapping from
processes to their non-empty set of individual minimal quorums.

Since the trust assumptions of Byzantine processes can be arbitrary, their quorums can
be left unspecified. Figure 1 presents an example quorum system. When obvious from the
context, we say quorums of p to refer to the individual minimal quorums of p, and use Q to
refer to the set of all individual minimal quorums of the system, i.e. the co-domain of Q.
Additionally, we say quorum systems to refer to heterogeneous quorum systems. A process p

is a follower of a process p′ iff there is a quorum q ∈ Q(p) that includes p′.
In dissemination quorum system (DQS) [37] (and the cardinality-based quorum systems

as a special case), quorums are uniform for all processes. Processes have the same set of
individual minimal quorums. For example, a quorum system that tolerates f Byzantine
failures out of 3f + 1 processes considers any set of 2f + 1 processes as a quorum for all
processes.

2.2 Properties
A quorum system is expected to maintain certain properties in order to provide distributed
abstractions such as Byzantine reliable broadcast and consensus. Quorum intersection and
quorum availability are well-established requirements for quorum systems. In the following
section, we will see their adaption to HQS. Further, we identify a new property we call
quorum subsumption that helps achieve the aforementioned abstractions on HQS. Finally,
we briefly present a few related quorum systems, and their properties.

Quorum Intersection. Processes store and retrieve information from the quorum system
by communicating with its quorums. To ensure that information is properly passed from a
quorum to another, the quorum system is expected to maintain a well-behaved process at
the intersection of every pair of quorums. For example, in the running example in Figure 1,
all the quorums of well-behaved processes intersect at at least one of well-behaved processes
in {1, 3, 4}.

DISC 2023

28:4 Quorum Subsumption for Heterogeneous Quorum Systems

P =W ∪B, W = {1, 3, 4, 5}, B = {2}
Q = {1 7→ {{1, 2, 3}, {1, 4}},

3 7→ {{3, 4}, {1, 3}}
4 7→ {{3, 4}}
5 7→ {{1, 2, 3, 5}}}

Figure 1 Quorum System Example.

▶ Definition 2 (Quorum Intersection). A quorum system Q has quorum intersection iff
every pair of quorums of well-behaved processes in Q intersect at a well-behaved process, i.e.,
∀p, p′ ∈ W . q ∈ Q(p). q′ ∈ Q(p′). q ∩ q′ ∩ W ̸= ∅

Quorum Availability. In order to support progress for a process, the quorum system is
expected to have at least one quorum for that process whose members are all well-behaved.
We say that the quorum system is weakly available for that process. (In the literature, this
notion of availability is often unqualified, but we explicitly contrast the weak notion to the
strong notion that we will define.) In classical quorum systems, any quorum is a quorum
for all processes. This guarantees that if the quorum system is available for a process, it is
available for all processes. However, this is obviously not true in a heterogeneous quorum
system where quorums are not uniform. In this setting, we weaken the availability property
so that it requires only a subset and not necessarily all well-behaved processes to have a
well-behaved quorum. In Figure 1, Q is available for the set {1, 3, 4}: the quorum {1, 4} of
process 1, and the quorum {3, 4} of processes 3 and 4 make them weakly available. Each
process in that subset can always communicate with a quorum independently of Byzantine
processes.

▶ Definition 3 (Weak Availability). A quorum system is weakly available for a set of processes
P iff every process in P has at least one quorum that is a subset of well-behaved processes
W. A quorum system is available iff it is available for a non-empty set of processes.

If a quorum system is weakly available, there is at least one well-behaved process that
can communicate with a quorum independently of Byzantine processes.

With quorum availability introduced, we can consider when a quorum system is unavailable.
A quorum system is unavailable for a process when that process has no quorum in W, i.e.,
the Byzantine processes B can block every one of its quorums. We generalize this idea in the
notion of blocking.

▶ Definition 4 (Blocking Set). A set of processes P is a blocking set for a process p (or is
p-blocking) if P intersects every quorum of p.

For example, consider cardinality-based quorum systems where the system contains 3f +1
processes. Any set of size f + 1 is a blocking set for all well-behaved processes, since a set
with f + 1 processes intersects with any quorum, a set with 2f + 1 processes. In Figure 1,
well-behaved process 5 is blocked by {2}, since its only quorum {1, 2, 3, 5} intersect with {2}

Notice also that the definition does not stipulate that the blocking set is Byzantine, but
rather it is more general. The concept of blocking will be useful for designing our protocols
in (Section 6). For now, we prove a lemma for blocking sets. In order to state the lemma, we
generalize the notion of availability. Given a set of processes P , we generalize availability for
P at the complete set of well-behaved processes W (Definition 3) to availability for P at a
subset P ′ of well-behaved processes. We say that a quorum system is weakly available for a
set of processes P at a subset of well-behaved processes P ′ iff every process in P has at least
one quorum that is a subset of P ′.

X. Li, E. Chan, and M. Lesani 28:5

Table 1 Non-termination for Bracha protocol with blocking sets.

sender 1 2 3 4
BCast(m1)

Echo(m1) Echo(m1) Echo(m1)
Ready(m2)

Ready(m1) Ready(m2) Ready(m2)
blocked forever Deliver(m2)

▶ Lemma 5. In every quorum system that is weakly available for a set of processes P at P ′,
every blocking set of every process in P intersects P ′.

Proof. Consider a quorum system that is weakly available for P at P ′, a process p in P ,
and a set of processes P ′′ that blocks p. By the definition of available, there is at least one
quorum q of p that is a subset of P ′. By the definition of blocking set (Definition 4), q

intersects with P ′′. Hence, P ′ intersects P ′′ as well. ◀

Quorum subsumption. We now introduce the notion of quorum subsumption.

▶ Definition 6 (Quorum Subsumption). A quorum system Q is quorum subsuming for a
quorum q iff every process in q has a quorum that is included in q, i.e., ∀p ∈ q. ∃q′ ∈
Q(p). q′ ⊆ q. We say that Q is quorum subsuming for a set of quorums if it is quorum
subsuming for each quorum in the set.

In Figure 1, Q is quorum subsuming for {3, 4}: both members in this quorum have the
quorum {3, 4} that is trivially a subset of itself. However, Q is not quorum subsuming for
process 1’s quorum {1, 4}: process 4’s only quorum {3, 4} is not a subset of {1, 4}.

Quorum subsumption is inspired by and weakens the notion of quorum sharing [34].
Quorum sharing requires the above subsumption property for all quorums. Thus, many
quorum systems including Ripple and Stellar do not satisfy it (unless Byzantine processes do
not lie about their slices [34].) They can maintain the subsumption property only for quorums
of a well-behaved subset of processes. In particular, no requirement can be made for quorums
of Byzantine processes. Therefore, we define the weaker notion of quorum subsumption for a
subset of quorums, and later show that it is sufficient to implement broadcast and consensus.

In order to make progress, protocols (such as Bracha’s Byzantine reliable broadcast [9])
require the members of a quorum to be able to communicate with at least one of their own
quorums, or communicate with a subset of processes that contains at least one well-behaved
process. Let us see intuitively how quorum subsumption can support liveness properties.
Consider a quorum system Q for processes P = {1, 2, 3, 4} where the Byzantine processes
are {2}, and Q(1) = {{1, 3, 4}}, Q(3) = {{1, 2, 3}}, and Q(4) = {{2, 3, 4}}. The quorum
system Q has quorum intersection, and is weakly available for the set {1} since there is a
well-behaved quorum {1, 3, 4} for the process 1. In the classic Bracha protocol, the sender
broadcasts Echo(m), a well-behaved broadcasts Echo(m) when it receives it from the sender,
it broadcasts Ready(m) after receiving 2f + 1 Echo(m) or f + 1 Ready(m) messages, and
finally, delivers m if it receives 2f + 1 Ready(m) messages. In Stellar [33] and follow-up works
[34, 24, 15], the check for receiving Ready(m) messages from f + 1 processes is replaced with
receiving Ready(m) messages from a blocking set of the current process. Let’s consider the
example execution presented in Table 1; it gives an intuition of why the quorum system needs
stronger conditions than weak availability. Consider a Byzantine sender who sends BCast(m1)
to process {1, 3, 4}. Well-behaved process {1, 3, 4} sends out Echo(m1) to each other. We

DISC 2023

28:6 Quorum Subsumption for Heterogeneous Quorum Systems

let process 1 deliver Echo(m1) messages from process 1, 3, and 4 first; it then sends out
Ready(m1) messages. We note that the two processes 3, and 4 cannot broadcast Ready(m1)
since they have not received Echo(m1) from a quorum of their own. Then the Byzantine
process 2 sends Ready(m2) messages to process {3, 4}. Since the set {2} is blocking for the
quorums of both processes 3 and 4, both send out Ready(m2) messages. These broadcast
protocols prevent a process that is ready for a value from getting ready for another value.
Therefore, although {3} and {4} are both blocking sets for the process 1, it cannot become
ready for m2. Process 1 never receives enough Thus, Ready messages for either m1 or m2
to deliver a message, and is blocked forever. If the quorum {1, 3, 4} for 1 had the quorum
subsumption property, then 3 and 4 could send out Ready(m1) messages, and eventually 1
would make progress.

Complete Quorum. We will later see that quorum availability and quorum subsumption
are important together for liveness. We succinctly combine the two properties into the notion
of complete quorums.

▶ Definition 7 (Complete Quorum). A quorum q in a quorum system Q is a complete quorum
if all its members are well-behaved, and Q is quorum subsuming for q.

In our previous running example Figure 1, quorum {3, 4} is a complete quorum: both of
its members are well-behaved and Q is quorum subsuming for {3, 4}.

▶ Definition 8 (Strong Availability). A quorum system Q has strong availability for a subset
of processes P iff every process in P has at least one complete quorum. We call P a strongly
available set for Q, and call a member of P a strongly available process. We say that Q is
strongly available if it is strongly available for a non-empty set.

Intuitively, operations stay available at a strongly available process since its complete
quorum can perform operations on his behalf in the face of Byzantine attacks. In Figure 1,
Q is strongly available for {3, 4}. In contrast, Q is only weakly available for process 1,
since its quorum {1, 2, 3} includes 2 that is not well-behaved, and its other quorum {1, 4} is
well-behaved but not a complete quorum.

By Lemma 5, every blocking set of every strongly available process contains at least one
well-behaved process.

3 Protocol Implementation

In the subsequent sections, we will see that it is impossible to construct a protocol for
Byzantine reliable broadcast and consensus in an HQS given only quorum intersection and
quorum availability. After that, we give a protocol for Byzantine reliable broadcast and
consensus for an HQS that has quorum intersection and strong availability. We first need
a model of quorum-based protocols, and then the exact specifications of the distributed
abstractions we aim to design protocols for. In this section, we consider the former.

We consider a modular design for protocols. A protocol is captured as a component that
accepts request events and issues response events. A component uses other components as
sub-components: it issues requests to them and accepts responses from them. A component
stores a state and defines handlers for incoming requests from the parent component, and
incoming responses from children components. Each handler gets the pre-state and the
incoming event as input, and outputs the post-state and outgoing events, either as responses
to the parent or requests to the children components. The outputs of a handler can be
deterministically a function of its inputs, or randomized.

X. Li, E. Chan, and M. Lesani 28:7

▶ Definition 9 (Determinism). A protocol is deterministic iff the outputs of its handlers are
a function of the inputs.

Quorum-based Protocols. A large class of protocols are implemented based on quorum
systems. In order to state impossibility results for these protocols, we capture the properties
of quorum-based protocols [34, 29] as a few axioms. Our impossibility results concern
protocols that adhere to the necessity, sufficiency, and locality axioms.

A process in a quorum-based protocol should process a request only if it can communicate
with at least one of its quorums.

▶ Axiom 1 (Necessity of Quorums [34]). If a well-behaved process p issues a response for a
request then there must be a quorum q of p such that p receives at least one message from
each member of q.

In a quorum-based protocol, a process only needs the participation of itself and members
of one of its quorums to deliver a message.

▶ Axiom 2 (Sufficiency of Quorums). For every execution where a well-behaved process p

issues a response, there exists an execution where only p and a quorum of p take steps, and p

eventually issues the same response.

We add a remark for Byzantine reliable broadcast (BRB) which has a designated sender
process. We will use a slight variant of the sufficiency axiom for BRB that states that there
exists an execution where only the sender, p and a quorum of p take steps.

A process’s local state is only affected by the information that it receives from the
members of it’s quorums.

▶ Axiom 3 (Locality). The state of a well-behaved process changes upon receiving a message
only if the sender is a member of one of its quorums.

For BRB, we will use a slight variant of the locality axiom that allows processes change
state upon receiving messages from the sender in addition to members of quorums.

4 Protocol Specification

We now define the specification of reliable broadcast and consensus for HQS. The liveness
properties are weaker than classical notions since in an HQS, availability might be maintained
only for a subset P of well-behaved processes.

Reliable Broadcast. We now define the specification of the reliable broadcast abstraction.
The abstraction accepts a single broadcast request from a designated sender (either in the
system or a process that is separate from the other processes in system), and issues delivery
responses.

▶ Definition 10 (Specification of Reliable Broadcast).
(Validity for a set of well-behaved processes P). If a well-behaved process p broadcasts a
message m, then every process in P eventually delivers m.
(Integrity). If a well-behaved process delivers a message m from a well-behaved sender p,
then m was previously broadcast by p.
(Totality for a set of well-behaved processes P). If a message is delivered by a well-behaved
process, then every process in P eventually delivers a message.
(Consistency). No two well-behaved processes deliver different messages.
(No duplication). Every well-behaved process delivers at most one message.

DISC 2023

28:8 Quorum Subsumption for Heterogeneous Quorum Systems

We also consider a variant of reliable broadcast called federated voting. Similar to reliable
broadcast, the abstraction accepts a broadcast request from processes, and issues delivery
responses. In contrast to reliable broadcast where there is a dedicated sender, in federated
voting, every process can broadcast a message. The specification of federated voting is similar
to that of reliable broadcast except for validity. The messages that well-behaved processes
broadcast may not be the same. Therefore, the validity property provides guarantees only
when the messages are the same or there is only one sender. The validity property for a
set of well-behaved processes P guarantees that if all well-behaved processes broadcast a
message m, or only one well-behaved process broadcasts a message m, then every process in
P eventually delivers m.

Consensus. We now consider the specification of the consensus abstraction. It accepts
propose requests from processes in the system, and issues decision responses.

▶ Definition 11 (Specification of Consensus).
(Validity). If all processes are well-behaved, and some process decides a value, then that
value was proposed by some process.
(Agreement). No two well-behaved processes decide differently.
(Termination for a set of well-behaved processes P). Every process in P eventually
decides.

5 Impossibility

We now present the impossibility results for consensus and Byzantine Reliable Broadcast
(BRB). It is known that quorum intersection and quorum availability are necessary condi-
tions [34] to implement consensus and BRB protocols. In this section, we show that while
these two conditions are necessary, they are not sufficient.

We consider the information-theoretic settings (Fault axiom [21]), where byzantine
processes have unlimited computational power, and can show arbitrary behavior. However,
processes communicate only over secure channels so that the recipient knows the identity of
the sender. A Byzantine process is unable to impersonate a well-behaved process. This is
similar to the classic unauthenticated Byzantine general problem [30], and is necessary for
open decentralized blockchains and HQS, where the trusted authorities including public key
infrastructures may not be available.

The two proofs will take a similar approach. First, we assume there does exist a protocol
for our distributed abstraction that satisfies all the desired specifications. We then present a
quorum system Q and consider its executions that have quorum intersection and availability
in the face of Byzantine attacks. We then show through a series of indistinguishable executions
that the protocol cannot satisfy all the desired specifications, leading to a contradiction. The
high-level idea is that in the information-theoretic setting, a well-behaved process is not able
to distinguish between an execution where the sender is Byzantine and sends misleading
messages, and an execution where the relaying process is Byzantine and forwards misleading
messages. For example, let p1, p2 and p3 be three processes in the system. When p3 receives
conflicting messages from p1 through p2, it does not know whether p1 or p2 is Byzantine.
This eventually leads to violation of the agreement or validity property of the abstraction.

We consider binary proposals for consensus, and binary values (from the sender) for
reliable broadcast. For the consensus abstraction, we succinctly present the values that
processes propose as as a vector of values that we call a configuration. If the initial value

X. Li, E. Chan, and M. Lesani 28:9

of a process is ⊥ in the configuration, that process is considered Byzantine. Otherwise, the
process is well-behaved. For example, a configuration C = ⟨0, 0, ⊥⟩ denotes the first and
second process proposing zero and the third process being Byzantine.

5.1 Consensus
We first consider consensus protocols in HQS.

▶ Theorem 12. Quorum intersection and weak availability are not sufficient for deterministic
quorum-based consensus protocols to provide validity, agreement and termination for weakly
available processes.

Proof. We suppose there is a quorum-based consensus protocol that guarantees validity,
agreement, and termination for every quorum system Q with quorum intersection and weak
availability, towards contradiction. Consider a quorum system Q for processes P = {a, b, c}
with the following quorums: Q(a) = {{a, c}}, Q(b) = {{a, b}}, Q(c) = {{b, c}}.

We make the following observations: (1) if all processes are well-behaved, then Q has
quorum intersection and weak availability for {a, b, c}, (2) if only process a is Byzantine,
then Q preserves quorum intersection, and weak availability for {c}, (3) if only process c

is Byzantine, then Q preserves quorum intersection, and weak availability for {b}. Going
forward, we implicitly assume termination for weakly available processes.

Now consider the following four configurations as shown in Figure 2: C0 = ⟨0, 0, 0⟩,
C1 = ⟨1, 1, 1⟩, C2 = ⟨0, 1, ⊥⟩, and C3 = ⟨⊥, 1, 1⟩. The goal is now to show a series of
executions over the configurations so that at least one property of the protocol is violated.

We begin with execution E0 (shown in red) with the initial configuration C0. All the
messages between a and c are delivered. By termination for weakly available processes
and validity, process a decides 0. Additionally, by quorum sufficiency, a can reach this
decision with only processes {a, c} taking steps.
Next, we have execution E1 (shown in blue) with initial configuration C1. All the messages
between b and c are delivered. Again, by termination for weakly available processes and
validity, process c decides 1. By quorum sufficiency, c can reach this decision with only
processes {b, c} taking steps.
Next, we have execution E2 as a sequence of E1 and E0, with initial configuration C2.
Suppose messages between well-behaved processes a and b are delayed. Byzantine process
c first replays E1 with process b, then replays E0 with process a. This cause process a to
decide 0. Now let Byzantine process c stay silent, and messages between processes a and
b be delivered. By termination for b, agreement and quorum sufficiency, process a makes
b decide 0 as well (shown in green).
Lastly, we have execution E3 with initial configuration C3. Suppose messages between b

to c are delivered in the beginning. We let processes {b, c} replay E1; thus, c decides 1.
Then, Byzantine process a sends messages to b as if it were at the end of E2. In turn, b

decides 0. Thus, agreement is violated as two well-behaved processes decided differently.
◀

Indistinguishably. We provide some intuition for the proof construction. Ultimately, the
problem lies in process b not being able to distinguish whether process a or process c is the
Byzantine process. More specifically, both E2 and E3 begin with execution E1. Since process
b cannot distinguish between the two executions, it does not know which value to decide.
If process b believes E2 is the actual execution, then b should decide 0 to agree with the

DISC 2023

28:10 Quorum Subsumption for Heterogeneous Quorum Systems

a b c

C0

C1

C2

C3

0 0 0

1 1 1

0 1 ⊥

⊥ 1 1

E0

E1

E2

E3

Figure 2 Indistinguishable Executions.

decision of well-behaved process a. However, if E3 is the actual execution, then agreement is
violated as process c decided 1. Conversely, if process b believes E3 is the actual execution,
then b should decide 1 to agree with the decision of well-behaved process c. Then, if E2 is
the actual execution, agreement is violated as the well-behaved process a decided 0.

We note that this proof could not be constructed if there was quorum subsumption. For
example, if the process b adds the quorum {a, b, c}, then Q will have quorum subsumption for
the quorum {a, b, c} of b. However, then by quorum subsumption, there will be no Byzantine
process, and the executions E2 and E3 cannot be constructed. If the process a adds the
quorum {a, b}, then it will have quorum subsumption. However, then the process a cannot
Byzantine process anymore, and the executions E3 cannot be constructed. Similarly, if the
process b adds the quorum {b, c}, the executions E2 cannot be constructed.

5.2 Byzantine Reliable Broadcast
Now, we prove the insufficiency of quorum intersection and quorum availability for Byzantine
reliable broadcast.

For the reliable broadcast abstraction, we represent the initial configuration as an array of
values received by the processes from the sender. The sender is a fixed and external process
in the executions, and is only used to assign input values for processes in the system, which
are captured as the initial configurations. The sender does not take steps in the executions,
and processes are not able to distinguish executions based on the sender.

▶ Theorem 13. Quorum intersection and weak availability are not sufficient for deterministic
quorum-based reliable broadcast protocols to provide validity and totality for weakly available
processes, and consistency.

Proof. The proof is similar to the proof for consensus. In fact, we will reuse the construction.
There are differences between reliable broadcast and consensus specifications in (1) their
validity properties, and (2) their totality and termination properties respectively. The proof
can be adjusted for these differences. For reliable broadcast, we need a sender process s

who broadcasts a message. In executions that we want a well-behaved process to deliver the
message m, we either (1) keep the sender s well-behaved and have it send m, and then apply
validity, or (2) have a process deliver m, then apply totality and consistency. The initial
configuration represents values received by each process from the sender.

Executions follow those in the previous proof. Message delivery and delays mirror
the previous executions. In execution E0 for configuration C0, the well-behaved sender s

broadcasts 0, and messages between processes a and c are delivered. By validity for weakly
available processes, process a delivers 0, and by quorum sufficiency, only processes {a, c} need
to take steps. In execution E1 for configuration C1, the well-behaved sender s broadcasts
1, and messages between processes b and c are delivered. By validity for weakly available

X. Li, E. Chan, and M. Lesani 28:11

Algorithm 1 Byzantine Reliable Broadcast (BRB).

1 Implements: ReliableBroadcast
2 request : broadcast(v)
3 response : deliver(v)
4 Vars:
5 Q ▷ Minimal quorums of self
6 F : Set[P] ▷ The followers of self
7 echoed, readied, delivered : Boolean← false
8 E, R : V 7→ Set[P]← ∅

▷ Set of echoed and readied processes
9 Uses:

10 ptp : PointToPointLink
11 upon request broadcast(v) from sender
12 ptp request send(p, BCast(v)) for each

p ∈ P
13 upon ptp response deliver(p′, BCast(v))
14 if ¬echoed then
15 echoed ← true
16 ptp request send(p, Echo(v)) for each

p ∈ F

17 upon ptp response deliver(p′, Echo(v))
18 E(v)← E(v) ∪ {p′}
19 if ¬readied ∧ ∃q ∈ Q. q ⊆ E(v) then
20 readied ← true
21 ptp request send(p, Ready(v)) for

each p ∈ F
22 upon ptp response deliver(p′, Ready(v))
23 R(v)← R(v) ∪ {p′}
24 if ¬readied ∧ R is a blocking set of self

then
25 readied ← true
26 ptp request send(p, Ready(v)) for

each p ∈ F
27 if ¬delivered ∧ ∃q ∈ Q. q ⊆ R(v) then
28 delivered ← true
29 response deliver(v)

processes, and quorum sufficiency, process c delivers 1, only with {b, c} taking steps. In
configurations C2 and C3, the sender s is Byzantine. The messages between processes a and
b are delayed in the beginning. In execution E2 for configuration C2, the Byzantine sender
s and Byzantine process c replay E1 with process b, then replay E0 with process a. Then
Byzantine process c stays silent, and messages between processes a and b are delivered. By
totality for weakly available processes, since process a delivers 0, then process b will also
deliver a value. By consistency, process b delivers 0 as well. In the last execution E3 for
configuration C3, we let the Byzantine process a stay silent in the beginning, and processes b

and c replay E1. Thus, process c delivers 1. Afterwards, messages between process b and c

are delayed, and the Byzantine process a replays E2. Again, process b cannot distinguish
between the two executions E2 and E3. Since process a sends the exact same messages to
process b as the end of E2, process b will deliver 0. Thus, consistency between c and b is
violated. ◀

6 Protocols

We just showed that quorum intersection and availability are not sufficient to implement
our desired distributed abstractions. Now, we show that quorum intersection and strong
availability, our newly introduced property are sufficient to implement both Byzantine reliable
broadcast and consensus.

6.1 Reliable Broadcast Protocol
In Algorithm 1, we adapt the Bracha protocol [9] to show that quorum intersection and
strong availability together are sufficient for Byzantine reliable broadcast. The parts that
are different from the classical protocol are highlighted in blue.

Each process stores the set of its individual minimal quorums Q, and its set of followers F .
It also stores the boolean flags echoed, readied, and delivered which record actions the process
has taken to avoid duplicate actions. It further uses point-to-point links ptp to each of its

DISC 2023

28:12 Quorum Subsumption for Heterogeneous Quorum Systems

followers. Upon receiving a request to broadcast a value v (at L. 11), the sender broadcasts
the value v to all processes (at L. 12). Upon receiving the message from the sender (at L. 13),
a well-behaved process echoes the message among its followers (at L. 16) only if it has not
already echoed. When a well-behaved process receives a quorum of consistent echo messages
(at L. 17), it sends ready messages to all its followers (at L. 21). A well-behaved process can
also send a ready message when it receives consistent ready messages from a blocking set (at
L. 24). When a well-behaved process receives a quorum of consistent ready messages for v

(at L. 27), it delivers v (at L. 29). The implementation of the federated voting abstraction is
similar. The only difference is that there can be multiple senders (at L. 11).

We prove that this protocol implements Byzantine reliable broadcast when the quorum
system satisfies quorum intersection, and strong availability. We remember that strong
availability requires both weak availability and quorum subsumption. More precisely, it
requires a well-behaved quorum q for a process p, and quorum subsumption for q.

▶ Theorem 14. Quorum intersection and strong availability are sufficient to implement
Byzantine reliable broadcast.

This theorem follows from five lemmas in the appendix [31] that prove the protocol
satisfies the specification of Byzantine reliable broadcast that we defined in Definition 10.
Consider a quorum system with quorum intersection, and strong availability for P . Here, we
state and prove only the validity property.

▶ Lemma 15. The BRB protocol guarantees validity for P .

Proof. Consider a well-behaved sender that broadcasts a message m. We show that every
process in P eventually delivers m. By availability, every process p ∈ P has a complete
quorum q. Consider a process p′ ∈ q. By quorum subsumption, p′ has a quorum q′ ⊆ q. By
availability, all members of q (including q′) are well-behaved. Thus, when they receive m

from the sender, they all echo it to their followers. The processes in q′ have p′ as a follower.
Thus, p′ receives consistent echo messages for m from one of its quorums q′. Thus, p′ sends
out ready messages for m to its followers. Thus, all processes in q send out ready messages
for m to their followers. The processes in q have p as a follower. Therefore, p receives a
quorum of consistent ready messages for m from one of its quorums q, and delivers m. ◀

6.2 Byzantine Consensus Protocol
In this section, we show that quorum intersection and strong availability are sufficient to
implement Byzantine consensus. We first present the consensus protocol for heterogeneous
quorum systems, and then prove its correctness.

At a high level, the protocol proceeds in rounds with assigned leaders for each. Ballots
that carry proposal values are totally ordered. A leader tries to commit its own candidate
ballot only after aborting any lower ballot in the system. Leaders use the federated voting
abstraction (that we saw in Section 4) to abort or commit ballots. There may be multiple
leaders or Byzantine leaders before GST, and they may broadcast contradicting abort and
commit messages for the same ballot. However, by the consistency property of federated
voting, processes agree on aborting or committing ballots.

A ballot b is a pair ⟨r, v⟩ of a round number r and a proposed value v. Ballots are totally
ordered by first their round numbers, and then their values: a ballot ⟨r, v⟩ is below another
⟨r′, v′⟩, written as ⟨r, v⟩ < ⟨r′, v′⟩, if r < r′ or r = r′ ∧ v < v′. Two ballots b = ⟨r, v⟩ and
b′ = ⟨r′, v′⟩ are compatible, b ∼ b′, if they have the same value, i.e., v = v′; otherwise, they
are incompatible, b ̸∼ b′. We say that a ballot is below and incompatible with another,

X. Li, E. Chan, and M. Lesani 28:13

Algorithm 2 Byzantine Consensus.

1 Implements: Consensus
2 request : propose(v)
3 response : decice(v)
4 Vars:
5 round : N+ ← 0 ▷ Current round number
6 candidate, prepared : ⟨N+, V ⟩ ← ⟨0,⊥⟩
7 leader : P ← p0 ▷ current leader
8 Uses:
9 fv : B 7→ ByzantineReliableBroadcast

10 le : EventualLeaderElection
11 upon request propose(v)
12 candidate ← ⟨1, v⟩
13 if self = leader then
14 fv(b′) request broadcast(A) for all

b′ � candidate
15 upon fv(b′) response deliver(p,A) for all

b′ � b where prepared < b

16 prepared ← b

17 if self = leader ∧ prepared = candidate
then

18 fv(candidate) request broadcast(C)

19 upon fv(b) response deliver(p,C) where
b = prepared ∧ p = leader

20 response decice(b.v)
21 upon timeout triggered
22 le request Complain(round)
23 upon le response new-leader(p)
24 leader ← p

25 round ← round + 1
26 if self = leader then
27 Delay for time ∆
28 start-timer(round)
29 if prepared = ⟨0,⊥⟩ then
30 candidate ← ⟨round, candidate.v⟩
31 else
32 candidate ← ⟨round, prepared.v⟩
33 if self = leader then
34 fv(b′) request broadcast(A) for all

b′ � candidate

b � b′, if b < b′ and b ̸∼ b′. For message passing communication, we assume batched network
semantics (BNS), where messages issued in an event are sent as a batch, and the receiving
process delivers and processes the batch of messages together. (In particular, as we will see
later in the correctness proofs, if prepare messages that are sent together are not processed
together the validity property can be violated.)

The protocol is similar to SCP [38, 25] in structure; the important difference is that this
protocol uses leaders [34] and guarantees termination. Our protocol guarantees termination
regardless of Byzantine processes. On the other hand, the SCP protocol guarantees a liveness
property called non-blocking which requires Byzantine processes to stop. (More precisely,
if a process p in the intact set [38, 24] has not yet decided in some execution, then for
every continuation of that execution in which all the Byzantine processes stop, the process p

eventually decides.)
Each process stores four local variables: round is the current round number, candidate is

the ballot that the process tries to commit, prepared is the ballot that the process is safe
to discard any ballots lower and incompatible with, and leader is the current leader. Each
process uses an instance of federated voting for each ballot, and an eventual leader election
module. The latter issues new-leader events, and eventually elects a well-behaved process as
the leader. (Previous work [34] presented a probabilistic leader election module.)

Upon receiving a proposal request (at L. 11), a well-behaved process initializes its
candidate ballot to the pair of the first round and its own proposal (at L. 12). If the current
process self is the leader, it tries to prepare its candidate by broadcasting abort A messages
for all ballots with candidate (at L. 14). When a well-behaved process delivers A messages
from the leader for all ballots below and incompatible with some ballot b, and its current
prepared ballot is below b (at L. 15), it sets prepared to b (at L. 16). If the current process
self is the leader, and the prepared ballot is equal to the candidate ballot, then it broadcasts

DISC 2023

28:14 Quorum Subsumption for Heterogeneous Quorum Systems

l1

l2

p3

p4

⟨1, 3⟩

⟨1, 4⟩

⟨1, 4⟩

⟨1, 5⟩

⟨1, 4⟩

⟨1, 5⟩

fv(b) BCast(C)

fv(b) Echo(C)

fv(b) BCast(A) fv
(b

) Ech
o(
A)

fv(
b)

Ech
o(A

) fv(b) Echo(A)

l1 l2 l1

Figure 3 Last Minute Attack. b = ⟨1, 4⟩. The candidate of well-behaved leader l2 is b′ = ⟨2, 3⟩.
The votes C and A are abbreviated as C and A. The new leader events are triggered at the black
dots at each process. Prepared ballots are shown below the time line for each process.

a commit C message for its candidate ballot (at L. 18). When a well-behaved process delivers
a C message for a ballot b from the leader, and it has already prepared the same ballot (at
L. 19), it decides the value of that ballot (at L. 20).

To ensure liveness, a well-behaved process triggers a timeout if no value is decided after a
predefined time elapses in each round. The process then complains to the leader election
module (at L. 22). When the leader election module issues a new leader (at L. 23), a
well-behaved process updates its leader variable, and increments the round number (at L. 25).
The leader itself then waits for a time ∆ (at L. 27) which we will further explain below. The
process also resets the timer with a doubled timeout for the next round (at L. 28). It then
updates the candidate ballot: if no value is prepared before, the candidate ballot is updated
to the new round number and the value of the current candidate (at L. 30); otherwise, it is
updated to the new round number and the value of the prepared ballot (at L. 32). Then, the
leader tries to prepare the candidate by aborting below and incompatible ballots similar to
the steps above (at L. 34).

Let us now explain why delay ∆ is needed for termination. Without this delay, a Byzantine
leader can perform a last minute attack that we illustrate in Figure 3. Consider that we have
four processes, one of them is Byzantine, and any set of three processes is a quorum. Let the
Byzantine process be the leader l1, and let the ballot b be prepared. The leader l1 sends a
commit for ballot b to one well-behaved process p3. Then, p3 echos commit for b. Then, the
timeout for l1 happens, and the next well-behaved leader l2 comes up. Without the delay,
l2 may have not prepared b yet (although other well-behaved processes p3 and p4 prepared
it). Therefore, the ballot b′ that l2 updates its candidate to (at L. 32) is not b, and may not
be compatible with b. In order to prepare b′, the leader l2 tries to abort b (at L. 34) but b

cannot be aborted: in order to abort b, a quorum of processes should echo it. However, the
well-behaved process p3 has already echoed commit, and if the Byzantine process l1 remains
silent, the remaining two well-behaved processes l2 and p4 are not a quorum, and cannot
abort b. Therefore, l2 cannot succeed, and the timeout is triggered. Further, if the next
leader is the Byzantine process l1 again, it can repeat the above scenario: it can abort b

to prepare a higher ballot b2, and make a well-behaved process echo commit for b2, before
passing the leadership. The attack can continue infinitely, and delay termination. If the
delay ∆ is larger than the bounded communication delay after GST, it makes the leader l2
observe the highest prepared ballot b, and adopt its value as the value of its candidate b′

2
(at L. 32). When it tries to commit b′

2, since it is compatible with b, it does not need abort
it. Therefore, it can prepare and commit b′

2, and decide. We also note that instead of the
delay ∆, the above attack can be avoided if the leader election can provide two successive
well-behaved leaders.

X. Li, E. Chan, and M. Lesani 28:15

▶ Theorem 16. Quorum intersection and strong availability are sufficient to implement
consensus.

This theorem follows from three lemmas in the appendix [31] that prove that the protocol
satisfies the specification of Byzantine consensus that we defined in Definition 11. An example
execution of the protocol is described in the appendix [31].

7 Related Works

Quorum Systems with Heterogeneous Trust. Ripple [44] and Cobalt [35] pioneered
decentralized trust. They let each node specify a list, called the unique node list (UNL), of
processes that it trusts. However, they do not consider quorum availability or subsumption.

Stellar [38, 33] presents federated Byzantine quorum systems (FBQS) [24, 25] where
quorums are iteratively calculated from quorums slices. Stellar also presents a federated
voting and consensus protocol. In comparison, the assumptions of the protocols presented
in this paper are weaker, and their guarantees are stronger. The stellar consensus protocol
(SCP) guarantees termination when Byzantine processes stop. In contrast, the consensus
protocol in this paper guarantees termination regardless of Byzantine processes. Further,
abstract SCP [24] provides agreement only for intact processes. The intact set for an FBQS is
a subset of processes that have strong availability. On the other hand, the consensus protocol
in this paper provides agreement for all well-behaved processes. In FBQS, the intersections
of quorums should have a process in the intact set; however, in HQS, they only need to have
a well-behaved process. The validity and totality properties for the reliable broadcast for
FBQS are restricted to the intact set. On the other hand, the reliable broadcast protocol in
this paper provides totality for all processes that have weak availability, and validity for all
processes that have strong availability.

Personal Byzantine quorum systems (PBQS) [34] capture the quorum systems that FBQSs
derive form slices, and propose a responsiveness consensus protocol [48, 1, 43, 3]. They
define a notion called quorum sharing which requires quorum subsumption for every quorum.
Stellar quorums have quorum sharing if and only if processes do not lie about their slices.
(The appendix [31] presents examples.) In this paper, we relax quorum sharing to quorum
subsumption, and capture quorums that FBQSs derive even when Byzantine quorums lie
about their slices, and show that even if a quorum system does not satisfy quorum sharing,
safety can be maintained for all processes, and liveness can be maintained for the set of
strongly available processes.

Asymmetric Byzantine quorum systems (ABQS) [15, 16, 4] allow each process to define a
subjective dissemination quorum system (DQS), in a globally known system. The followup
model [14] lets each process specify a subjective DQS for processes that it knows, transitively
relying on the assumptions of other processes. In contrast, HQS lets each process specify its
own set of quorums without knowing the quorums of other processes. Further, it does not
require the specification of a set of possible Byzantine sets. Further, there are systems where a
strongly available set (from HQS) exists but no guild set (from ABQS) exists. (The appendix
[31] presents examples.) Therefore, HQS can provide safety and liveness for those executions
but ABQS cannot. ABQS presents shared memory and broadcast protocols, and further,
rules to compose two ABQSs. On the other hand, this paper proves impossibility results,
and presents protocols for reliable broadcast and consensus abstractions. HQS provides
strictly stronger guarantees with weaker assumptions. In ABQS, the properties of reliable
broadcast are stated for wise processes and the guild. However, this paper states these four

DISC 2023

28:16 Quorum Subsumption for Heterogeneous Quorum Systems

properties for well-behaved processes and the strongly available set. Well-behaved processes
are a superset of wise processes, and as noted above, in certain executions, the strongly
available set is a superset of the guild.

Flexible BFT [36] allows different failure thresholds between learners. Heterogeneous
Paxos [45, 46] further generalizes the separation between learners and acceptors with different
trust assumptions; it specifies quorums as sets rather than number of processes. These two
projects introduce a consensus protocol that guarantees safety or liveness for learners with
correct trust assumptions. However, they require the knowledge of all processes in the system.
In contrast, HQS only requires partial knowledge of the system, and captures the properties of
quorum systems where reliable broadcast and consensus protocols are impossible or possible.
Multi-threshold reliable broadcast and consensus [27] and MT-BFT [40] elaborate Bracha [9]
to have different fault thresholds for different properties, and different synchrony assumptions.
However, they have cardinality-based or uniform quorums across processes. In contrast, HQS
supports heterogeneous quorums.

K-consistent reliable broadcast (K-CRB) [7] introduces a relaxed reliable broadcast
abstraction where the correct processes can define their own quorum systems. Given a
quorum system, it focuses on delivering the smallest number k of different values. In contrast,
we propose the weakest condition to solve classical reliable broadcast and consensus. Moreover,
K-CRB’s relaxed liveness guarantee (accountability) requires public key infrastructure. In
contrast, all the results in this paper are for information-theoretic setting.

Our consensus protocol uses eventual leader election. Several other works present view
synchronization and eventual leader election for Byzantine replicated systems [11, 10], and
dynamic networks [41, 28]. It is interesting to see if their leader election modules can be
generalized to the heterogeneous setting, and support responsiveness [48, 5] for our consensus
protocol.

Impossibility Results. There are two categories of assumptions about the computational
power of Byzantine processes. In the information-theoretic setting, Byzantine process have
unlimited computational resources. While in the computational setting, Byzantine processes
can not break a polynomial-time bound [23]. In this work, our impossibility results for
reliable broadcast and consensus fall in the information-theoretic category. Whether the
same results hold in the computational setting is an interesting open question.

FLP [22] proved that consensus is not solvable in asynchronous networks even with one
crash failure. Many following works [26, 19, 2, 21, 30, 8] considered solvability, and necessary
and sufficient conditions for consensus and reliable broadcast to tolerate f Byzantine failures
in partially synchronous networks. The number of processes should be more than 3f and the
connectivity of the communication graph should be more than 2f . However, these results
apply for cardinality-based quorums, which is a special instance of HQS. We generalize the
reliable broadcast and consensus abstractions to HQS which supports non-uniform quorums,
and prove impossibility results for them.

8 Conclusion

This paper presented a general model of heterogeneous quorum systems where each process
defines its own set of quorums, and captured their properties. Through indistinguishably
arguments, it proved that no deterministic quorum-based protocol can implement the con-
sensus and Byzantine reliable broadcast abstractions on a heterogeneous quorum system that
provides only quorum intersection and availability. It introduced the quorum subsumption

X. Li, E. Chan, and M. Lesani 28:17

property, and showed that the three conditions together are sufficient to implement the two
abstractions. It presented Byzantine broadcast and consensus protocols for heterogeneous
quorum systems, and proved their correctness when the underlying quorum system maintain
the three properties.

References
1 Ittai Abraham and Gilad Stern. Information theoretic hotstuff. arXiv preprint

arXiv:2009.12828, 2020.
2 Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.

Consensus with byzantine failures and little system synchrony. In International Conference on
Dependable Systems and Networks (DSN’06), pages 147–155. IEEE, 2006.

3 Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-
based proofs fail. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 986–996, 2019.

4 Orestis Alpos, Christian Cachin, and Luca Zanolini. How to trust strangers: Composition of
byzantine quorum systems. In 2021 40th International Symposium on Reliable Distributed
Systems (SRDS), pages 120–131. IEEE, 2021.

5 Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the time
to reach agreement in the presence of timing uncertainty. Journal of the ACM (JACM),
41(1):122–152, 1994.

6 Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, Francois Garillot, Zekun Li,
Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State machine replication
in the libra blockchain. The Libra Assn., Tech. Rep, 7, 2019.

7 João Paulo Bezerra, Petr Kuznetsov, and Alice Koroleva. Relaxed reliable broadcast for
decentralized trust. In Networked Systems: 10th International Conference, NETYS 2022,
Virtual Event, May 17–19, 2022, Proceedings, pages 104–118. Springer, 2022.

8 Malte Borcherding. Levels of authentication in distributed agreement. In International
Workshop on Distributed Algorithms, pages 40–55. Springer, 1996.

9 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of
the ACM (JACM), 32(4):824–840, 1985.

10 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Liveness and latency of byzantine
state-machine replication. In 36th International Symposium on Distributed Computing (DISC
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

11 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making byzantine consensus live.
Distributed Computing, 35(6):503–532, 2022.

12 Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
University of Guelph, 2016.

13 Ethan Buchman, Rachid Guerraoui, Jovan Komatovic, Zarko Milosevic, Dragos-Adrian Sered-
inschi, and Josef Widder. Revisiting tendermint: Design tradeoffs, accountability, and practical
use. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks-Supplemental Volume (DSN-S), pages 11–14. IEEE, 2022.

14 Christian Cachin, Giuliano Losa, and Luca Zanolini. Quorum systems in permissionless
network. arXiv preprint arXiv:2211.05630, 2022.

15 Christian Cachin and Björn Tackmann. Asymmetric distributed trust. In 23rd International
Conference on Principles of Distributed Systems (OPODIS 2019). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

16 Christian Cachin and Luca Zanolini. From symmetric to asymmetric asynchronous byzantine
consensus. arXiv preprint arXiv:2005.08795, 2020.

17 Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra Silva. Towards
formal verification of hotstuff-based byzantine fault tolerant consensus in agda. In NASA
Formal Methods: 14th International Symposium, NFM 2022, Pasadena, CA, USA, May 24–27,
2022, Proceedings, pages 616–635. Springer, 2022.

DISC 2023

28:18 Quorum Subsumption for Heterogeneous Quorum Systems

18 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

19 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamental
problems in distributed computing. In Proceedings of the twenty-third annual ACM symposium
on Principles of distributed computing, pages 338–346, 2004.

20 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

21 Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

22 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

23 Juan Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain era. In
Cryptographers’ track at the RSA conference, pages 284–318. Springer, 2020.

24 Álvaro García-Pérez and Alexey Gotsman. Federated byzantine quorum systems. In 22nd In-
ternational Conference on Principles of Distributed Systems (OPODIS 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

25 Álvaro García-Pérez and Maria A Schett. Deconstructing stellar consensus (extended version).
arXiv preprint arXiv:1911.05145, 2019.

26 Guy Goren, Yoram Moses, and Alexander Spiegelman. Probabilistic indistinguishability and
the quality of validity in byzantine agreement. arXiv preprint arXiv:2011.04719, 2020.

27 Martin Hirt, Ard Kastrati, and Chen-Da Liu-Zhang. Multi-threshold asynchronous reliable
broadcast and consensus. Cryptology ePrint Archive, 2020.

28 Rebecca Ingram, Patrick Shields, Jennifer E Walter, and Jennifer L Welch. An asynchronous
leader election algorithm for dynamic networks. In 2009 IEEE International Symposium on
Parallel & Distributed Processing, pages 1–12. IEEE, 2009.

29 Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Computing, 19:104–125,
2006.

30 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, pages 382–401, 1982.

31 Xiao Li, Eric Chan, and Mohsen Lesani. Quorum subsumption for heterogeneous quorum
systems. technical report. In International Symposium on Distributed Computing (DISC 2023),
2023.

32 Xiao Li and Mohsen Lesani. Open heterogeneous quorum systems, 2023. arXiv:2304.02156.
33 Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,

Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. Fast and secure global payments with
stellar. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages
80–96, 2019.

34 Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In 33rd
International Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

35 Ethan MacBrough. Cobalt: Bft governance in open networks. arXiv preprint arXiv:1802.07240,
2018.

36 Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In Proceedings
of the 2019 ACM SIGSAC conference on computer and communications security, pages 1041–
1053, 2019.

37 Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed computing,
11(4):203–213, 1998.

38 David Mazieres. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Development Foundation, 32:1–45, 2015.

https://arxiv.org/abs/2304.02156

X. Li, E. Chan, and M. Lesani 28:19

39 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 31–42, 2016.

40 Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security, pages 1686–1699,
2021.

41 Achour Mostefaoui, Michel Raynal, Corentin Travers, Stacy Patterson, Divyakant Agrawal,
and Amr EL Abbadi. From static distributed systems to dynamic systems. In 24th IEEE
Symposium on Reliable Distributed Systems (SRDS’05), pages 109–118. IEEE, 2005.

42 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White paper, 2008.
43 Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In

Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018
Proceedings, Part II 37, pages 3–33. Springer, 2018.

44 David Schwartz, Noah Youngs, and Arthur Britto. The ripple protocol consensus algorithm.
Ripple Labs Inc White Paper, 5(8):151, 2014.

45 Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C Myers. Heterogeneous paxos.
In OPODIS: International Conference on Principles of Distributed Systems, number 2020 in
OPODIS, 2021.

46 Isaac C Sheff, Robbert van Renesse, and Andrew C Myers. Distributed protocols and
heterogeneous trust: Technical report. arXiv preprint arXiv:1412.3136, 2014.

47 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo
Verissimo. Efficient byzantine fault-tolerance. IEEE Transactions on Computers, 62(1):16–30,
2011.

48 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347–356, 2019.

DISC 2023

Fast Deterministic Rendezvous in Labeled Lines
Avery Miller #

University of Manitoba, Winnipeg, Canada

Andrzej Pelc #

Université du Québec en Outaouais, Canada

Abstract
Two mobile agents, starting from different nodes of a network modeled as a graph, and woken up
at possibly different times, have to meet at the same node. This problem is known as rendezvous.
Agents move in synchronous rounds. In each round, an agent can either stay idle or move to an
adjacent node. We consider deterministic rendezvous in the infinite line, i.e., the infinite graph with
all nodes of degree 2. Each node has a distinct label which is a positive integer. An agent currently
located at a node can see its label and both ports 0 and 1 at the node. The time of rendezvous is
the number of rounds until meeting, counted from the starting round of the earlier agent.

We consider three scenarios. In the first scenario, each agent knows its position in the line, i.e.,
each of them knows its initial distance from the smallest-labeled node, on which side of this node
it is located, and the direction towards it. For this scenario, we design a rendezvous algorithm
working in time O(D), where D is the initial distance between the agents. This complexity is clearly
optimal. In the second scenario, each agent knows a priori only the label of its starting node and
the initial distance D between them. In this scenario, we design a rendezvous algorithm working
in time O(D log∗ ℓ), where ℓ is the larger label of the starting nodes. We also prove a matching
lower bound Ω(D log∗ ℓ). Finally, in the most general scenario, where each agent knows a priori
only the label of its starting node, we design a rendezvous algorithm working in time O(D2(log∗ ℓ)3),
which is thus at most cubic in the lower bound. All our results remain valid (with small changes)
for arbitrary finite lines and for cycles. Our algorithms are drastically better than approaches that
use graph exploration, which have running times that depend on the size or diameter of the graph.

Our main methodological tool, and the main novelty of the paper, is a two way reduction: from
fast colouring of the infinite labeled line using a constant number of colours in the LOCAL model
to fast rendezvous in this line, and vice-versa. In one direction we use fast node colouring to quickly
break symmetry between the identical agents. In the other direction, a lower bound on colouring
time implies a lower bound on the time of breaking symmetry between the agents, and hence a lower
bound on their meeting time.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases rendezvous, deterministic algorithm, mobile agent, labeled line, graph
colouring

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.29

Funding Avery Miller : Supported by NSERC Discovery Grant 2017-05936.
Andrzej Pelc: Partially supported by NSERC Discovery Grant 2018-03899 and by the Research
Chair in Distributed Computing at the Université du Québec en Outaouais.

1 Introduction

Background. Two mobile agents, starting from different nodes of a network modeled as
a graph, and woken up at possibly different times, have to meet at the same node. This
problem is known as rendezvous. The autonomous mobile entities (agents) may be natural,
such as people who want to meet in a city whose streets form a network. They may also
represent human-made objects, such as software agents in computer networks or mobile
robots navigating in a network of corridors in a mine or a building. Agents might want to
meet to share previously collected data or to coordinate future network maintenance tasks.

© Avery Miller and Andrzej Pelc;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 29; pp. 29:1–29:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:avery.miller@umanitoba.ca
https://orcid.org/0000-0002-8231-3697
mailto:andrzej.pelc@uqo.ca
https://orcid.org/0000-0003-0598-1218
https://doi.org/10.4230/LIPIcs.DISC.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Fast Deterministic Rendezvous in Labeled Lines

Model and problem description. We consider deterministic rendezvous in the infinite line,
i.e., the infinite graph with all nodes of degree 2. Each node has a distinct label which is
a positive integer. An agent currently located at a node can see its label and both ports
0 and 1 at the node. Technically, agents are anonymous, but each agent could adopt the
label of its starting node as its label. Agents have synchronized clocks ticking at the same
rate, measuring rounds. Agents are woken up by an adversary in possibly different rounds.
The clock of each agent starts in its wakeup round. In each round, an agent can either stay
idle or move to an adjacent node. After moving, an agent knows on which port number
it arrived at its current node. When agents cross, i.e., traverse an edge simultaneously in
different directions, they do not notice this fact. No limitation is imposed on the memory of
the agents. Computationally, they are modeled as Turing Machines. The time of rendezvous
is the number of rounds until meeting, counted from the starting round of the earlier agent.

In most of the literature concerning rendezvous, nodes are assumed to be anonymous.
The usual justification of this weak assumption is that in labeled graphs (i.e., graphs whose
nodes are assigned distinct positive integers) each agent can explore the entire graph and
then meet the other one at the node with the smallest label. Thus, the rendezvous problem
in labeled graphs can be reduced to exploration. While this simple strategy is correct for
finite graphs, it requires time at least equal to the size of the graph, and hence very inefficient
for large finite graphs, even if the agents start at a very small initial distance. In infinite
graphs, this strategy is incorrect: indeed, if label 1 is not used in some labeling, an agent
may never learn what is the smallest used label. For large environments that would be
impractical to exhaustively search, it is desirable and natural to relate rendezvous time to the
initial distance between the agents, rather than to the size of the graph or the value of the
largest node label. This motivates our choice to study the infinite labeled line: we must avoid
algorithms that depend on exhaustive search, and there cannot be an efficient algorithm that
is dependent on a global network property such as size, largest node label, etc. In particular,
the initial distance between the agents and the labels of encountered nodes should be the
only parameters available to measure the efficiency of algorithms. Results for the infinite
line can then be applied to understand what’s possible in large path-like environments.

We consider three scenarios, depending on the amount of knowledge available a priori to
the agents. In the first scenario, each agent knows its position in the line, i.e., each of them
knows its distance from the smallest-labeled node, on which side of this node it is located,
and the direction towards it. This scenario is equivalent to assuming that the labeling is
very particular, such that both above pieces of information can be deduced by the agent
by inspecting the label of its starting node and port numbers at it. One example of such
a labeling is ...8, 6, 4, 2, 1, 3, 5, 7, ... (recall that labels must be positive integers), with the
following port numbering. For nodes with odd labels, port 1 always points to the neighbour
with larger label and port 0 points to the neighbour with smaller label, while for nodes with
even label, port 1 always points to the neighbour with smaller label and port 0 points to
the neighbour with larger label. We will call the line with the above node labeling and
port numbering the canonical line, and use, for any node, the term “right of the node”
for the direction corresponding to port 1 and the term “left of the node” for the direction
corresponding to port 0. In the second scenario that we consider, the labeling and port
numbering are arbitrary and each agent knows a priori only the label of its starting node and
the initial distance D between the agents. Finally, in the third scenario, the labeling and port
numbering are arbitrary and each agent knows a priori only the label of its starting node.

A. Miller and A. Pelc 29:3

Our results. We start with the scenario of the canonical line. This scenario was previously
considered in [13], where the authors give a rendezvous algorithm with optimal complexity
O(D), where D is the (arbitrary) initial distance between the agents. However, they use
the strong assumption that both agents are woken up in the same round. In our first result
we get rid of this assumption: we design a rendezvous algorithm with complexity O(D),
regardless of the delay between the wakeup of the agents. This complexity is clearly optimal.

The remaining results are expressed in terms of the base-2 iterated logarithm function,
denoted by log∗. The value of log∗(n) is 0 if n ≤ 1, and otherwise its value is 1 + log∗(log2 n).
This function grows extremely slowly with respect to n, e.g., log∗(265536) = 5.

For the second scenario (arbitrary labeling with known initial distance D) we design a
rendezvous algorithm working in time O(D log∗ ℓ), where ℓ is the larger label of the two
starting nodes. We also prove a matching lower bound Ω(D log∗ ℓ), by constructing an
infinite labeled line in which this time is needed, even if D is known and if agents start
simultaneously. As a corollary, we get the following impossibility result: for any deterministic
algorithm and for any finite time T , there exists an infinite labeled line such that two agents
starting from some pair of adjacent nodes cannot meet in time T .

Finally, for the most general scenario, where each agent knows a priori only the label
of its starting node, we design a rendezvous algorithm working in time O(D2(log∗ ℓ)3), for
arbitrary unknown D. This complexity is thus at most cubic in the above lower bound that
holds even if D is known.

It should be stressed that the complexities of our algorithms in the second and third
scenarios depend on D and on the larger label of the two starting nodes. No algorithm whose
complexity depends on D and on the maximum label in even a small vicinity of the starting
nodes would be satisfactory, since neighbouring nodes can have labels differing in a dramatic
way, e.g., consider two agents that start at adjacent nodes, and these nodes are labeled with
small integers like 2 and 3, but other node labels in their neighbourhoods are extremely large.
Our approach demonstrates that this is an instance that can be solved very quickly, but an
approach whose running time depends on the labels of other nodes in the neighbourhood
can result in arbitrarily large running times (which are very far away from the lower bound).

An alternative way of looking at the above three scenarios is the following. In the first
scenario, the agent is given a priori the entire (ordered) labeling of the line. Of course, since
this is an infinite object, the labeling cannot be given to the agent as a whole, but the agent
can a priori get the answer to any question about it, in our case answers to two simple
questions: how far is the smallest-labeled node and in which direction. In the second and
third scenarios, the agent gets information about the label of a given node only when visiting
it. It is instructive to consider another, even weaker, scenario: the agent learns the label of
its initial node but the other labels are never revealed to it. This weak scenario is equivalent
to the scenario of labeled agents operating in an anonymous line: the labels of the agents are
guaranteed to be different integers (they are the labels of the starting nodes) but all other
nodes look the same. It follows from [16] that in this scenario the optimal time of rendezvous
is Θ(D log ℓ), where ℓ is, as usual, the larger label of the starting nodes.1 Hence, at least
for known D, we get strict separations between optimal rendezvous complexities, according
to three ways of getting knowledge about the labeling of the line: Θ(D), if all knowledge is
given at once, Θ(D log∗ ℓ) if knowledge about the labeling is given as the agents visit new
nodes, and Θ(D log ℓ), if no knowledge about the labeling is ever given to the agents, apart

1 In [16] cycles are considered instead of the infinite line, and the model and result are slightly different
but obtaining, as a corollary, this complexity in our model is straightforward.

DISC 2023

29:4 Fast Deterministic Rendezvous in Labeled Lines

from the label of the starting node. Of course, in the ultimately weak scenario where even the
label of the starting node is hidden from the agents, deterministic rendezvous would become
impossible: there is no deterministic algorithm guaranteeing rendezvous of anonymous agents
in an anonymous infinite line, even if they start simultaneously from adjacent nodes.

It should be mentioned that the O(D log ℓ)-time rendezvous algorithm from [16] is also
valid in our scenario of arbitrary labeled lines, with labels of nodes visible to the agents at
their visit and with unknown D: the labels of the visited nodes can be simply ignored by the
algorithm from [16]. This complexity is incomparable with our complexity O(D2(log∗ ℓ)3).
For bounded D our algorithm is much faster but for large D compared to ℓ it is less efficient.

As usual in models where agents cannot detect crossing on the same edge when moving in
opposite directions, we guarantee rendezvous by creating time intervals in which one agent is
idle at its starting node and the other searches a sufficiently large neighbourhood to include
this node. Since the adversary can choose the starting rounds of the agents, it is difficult to
organize these time intervals to satisfy the above requirement. Our main methodological tool,
and the main novelty of the paper is a two way reduction: from fast colouring of the infinite
labeled line using a constant number of colours in the LOCAL model to fast rendezvous
in this line, and vice-versa. In one direction we use fast node colouring to quickly break
symmetry between the identical agents. In the other direction, a lower bound on colouring
time implies a lower bound on the time of breaking symmetry between the agents, and hence
a lower bound on their meeting time.

As part of our approach to solve rendezvous using node colouring, we provide a result
(based on the idea of Cole and Vishkin [12]) that might be of independent interest: for the
LOCAL model, we give a deterministic distributed algorithm EarlyStopCV that properly
3-colours any infinite labeled line such that the execution of EarlyStopCV at any node x

with initial label IDx terminates in time O(log∗(IDx)), and the algorithm does not require
that the nodes have any initial knowledge about the network other than their own label.

All our results remain valid for finite lines and cycles: in the first scenario without any
change, and in the two other scenarios with small changes. As previously mentioned, it
is always possible to meet in a labeled line or cycle of size n in time O(n) by exploring
the entire graph and going to the smallest-labeled node. Thus, in the second scenario the
upper and lower bounds on complexity change to O(min(n, D log∗ ℓ)) and Ω(min(n, D log∗ ℓ)),
respectively, and in the third, most general scenario, the complexity of (a slightly modified
version of) our algorithm changes to O(min(n, D2(log∗ ℓ)3)).

Related work. Rendezvous has been studied both under randomized and deterministic
scenarios. A survey of randomized rendezvous under various models can be found in [3], cf.
also [1, 2, 4, 7]. Deterministic rendezvous in networks has been surveyed in [27, 28]. Many
authors considered geometric scenarios (rendezvous in the real line, e.g., [7, 8], or in the
plane, e.g., [5, 6, 11, 14]). Gathering more than two agents was studied, e.g., in [18, 24, 31].

In the deterministic setting, many authors studied the feasibility and time complexity
of synchronous rendezvous in networks. For example, deterministic rendezvous of agents
equipped with tokens used to mark nodes was considered, e.g., in [22]. In most of the papers
concerning rendezvous in networks, nodes of the network are assumed to be unlabeled and
agents are not allowed to mark the nodes in any way. In this case, the symmetry is usually
broken by assigning the agents distinct labels and assuming that each agent knows its own
label but not the label of the other agent. Deterministic rendezvous of labeled agents in
rings was investigated, e.g., in [16, 20] and in arbitrary graphs in [16, 20, 30]. In [16], the
authors present a rendezvous algorithm whose running time is polynomial in the size of the

A. Miller and A. Pelc 29:5

graph, in the length of the shorter label and in the delay between the starting times of the
agents. In [20, 30], rendezvous time is polynomial in the first two of these parameters and
independent of the delay. In [9, 10] rendezvous was considered, respectively, in unlabeled
infinite trees, and in arbitrary connected unlabeled infinite graphs, but the complexities
depended, among others, on the logarithm of the size of the label space. Gathering many
anonymous agents in unlabeled networks was investigated in [17]. In this weak scenario, not
all initial configurations of agents are possible to gather, and the authors of [17] characterized
all such configurations and provided universal gathering algorithms for them. On the other
hand, time of rendezvous in labeled networks was studied, e.g., in [26], in the context
of algorithms with advice. In [13], the authors studied rendezvous under a very strong
assumption that each agent has a map of the network and knows its position in it.

Memory required by the agents to achieve deterministic rendezvous was studied in [19]
for trees and in [15] for general graphs. Memory needed for randomized rendezvous in the
ring was discussed, e.g., in [21].

Roadmap. In Section 2, we state two results concerning fast colouring of labeled lines. In
Section 3, we present our optimal rendezvous algorithm for the canonical line. In Section 4,
we present our optimal rendezvous algorithm for arbitrary labeled lines with known initial
distance between the agents, we analyze the algorithm, and we sketch the proof of the
matching lower bound. In Section 5, we give our rendezvous algorithm for arbitrary labeled
lines with unknown initial distance between the agents. In Section 6, we conclude the paper
and present some open problems. In the appendix, we describe a fast colouring algorithm for
the infinite line, as announced in Section 2.

Due to lack of space, the analysis of the algorithms for the canonical line and for arbitrary
labeled lines with unknown initial distance between the agents, as well as detailed proofs of
all results concerning the lower bound from Section 4, are omitted and will appear in the
journal version of the paper.

2 Tools

We will use two results concerning distributed node-colouring of lines and cycles in the
LOCAL communication model [29]. In this model, communication proceeds in synchronous
rounds and all nodes start simultaneously. In each round, each node can exchange arbitrary
messages with all of its neighbours and perform arbitrary local computations. Recall that, in
the problem of k-colouring of a graph, we start with a graph whose nodes are labeled with
distinct labels, each node knows only its own label, and at the end each node has to adopt
one of k colours in such a way that adjacent nodes have different colours.

The first result is based on the 3-colouring algorithm of Cole and Vishkin [12], but
improves on their result in two ways. First, our algorithm does not require that the nodes
know the size of the network or the largest label in the network. Second, the running time
of our algorithm at any node x with initial label IDx is O(log∗(IDx)). The running-time
guarantee is vital for later results in this paper, and it is not provided by the original
O(log∗(n)) algorithm of Cole and Vishkin since the correctness of their algorithm depends on
the fact that all nodes execute the algorithm for the same number of rounds. Our algorithm
from Proposition 1, called EarlyStopCV, is described in the appendix.

▶ Proposition 1. There exists an integer constant κ > 1 and a deterministic distributed
algorithm EarlyStopCV such that, for any infinite line G with nodes labeled with distinct
integers greater than 1, EarlyStopCV 3-colours G and the execution at any node x with
initial label IDx terminates in time at most κ log∗(IDx).

DISC 2023

29:6 Fast Deterministic Rendezvous in Labeled Lines

The second result is a lower bound due to Linial [23, 25]. Note that Linial’s original
result was formulated for cycles labeled with integers in the range 1, . . . , n, but the simplified
proof in [23] can be adapted to hold in our formulation below.

▶ Proposition 2. Fix any positive integer n and any set I of n integers. For any deterministic
algorithm A that 3-colours any path on n nodes with distinct labels from I, there is such a
path and at least one node for which algorithm A’s execution takes time at least 1

2 log∗(n)− 1.

Finally, we highlight an important connection between the agent-based computational
model considered in this paper (where algorithm executions may start in different rounds)
and the node-based LOCAL model (where all algorithm executions start in the same round).
Consider a fixed network G in which the nodes are labeled with fixed distinct integers.
From the communication constraints imposed by the LOCAL model, for any deterministic
algorithm A, each node v’s behaviour in the first i rounds is completely determined by the
labeled (i− 1)-neighbourhood of v in G (i.e., the induced labeled subgraph of G consisting
of all nodes within distance i − 1 from v). By Proposition 1, we know that each node x

executing EarlyStopCV in G determines its final colour within κ log∗(IDx) rounds, so its
colour is completely determined by its labeled (κ log∗(IDx)− 1)-neighbourhood in G. So, in
the agent-based computational model, an agent operating in the same labeled network G

with knowledge of EarlyStopCV and the value of κ from Proposition 1 could, starting in
any round: visit all nodes within a distance κ log∗(IDx)− 1 from x, then simulate in its local
memory (in one round) the behaviour of x in the first κ log∗(IDx) rounds of EarlyStopCV
in the LOCAL model, and thus determine the colour that would be chosen by node x as if
all nodes in G had executed EarlyStopCV in the LOCAL model starting in round 1.

▶ Proposition 3. Consider a fixed infinite line G such that the nodes are labeled with distinct
integers greater than 1. Consider any two nodes labeled vα and vβ in G. Suppose that all
nodes in G execute algorithm EarlyStopCV in the LOCAL model starting in round 1, and
let cα and cβ be the colours that nodes vα and vβ, respectively, output at the end of their
executions. Next, consider two agents α and β that start their executions at nodes labeled vα

and vβ in G, respectively (and possibly in different rounds). Suppose that there is a round rα

in which agent α knows the (κ log∗(vα))-neighbourhood of node vα in G, and suppose that
there is a round rβ in which agent β knows the (κ log∗(vβ))-neighbourhood of node vβ in G

(and note that we may have rα ̸= rβ). Then, agent α can compute cα in round rα, and,
agent β can compute cβ in round rβ.

3 The canonical line

In this section, we describe an algorithm Arv-canon that solves rendezvous on the canonical
line in time O(D) when two agents start at arbitrary positions and the delay between the
rounds in which they start executing the algorithm is arbitrary. The agents do not know the
initial distance D between them, and do not know the delay between the starting rounds.

Denote by α and β the two agents. Denote by vα and vβ the starting nodes of α and
β, respectively. Denote by O the node on the canonical line with the smallest label. For
a ∈ {α, β}, we will write d(va,O) to denote the distance between va and O.

Algorithm Arv-canon proceeds in phases, numbered starting at 0. Each phase’s description
has two main components. The first component is a colouring of all nodes on the line.
At a high level, in each phase i ≥ 0, the line is partitioned into segments consisting of 2i

consecutive nodes each, and the set of segments is properly coloured, i.e., all nodes in the
same segment get the same colour, and two neighbouring nodes in different segments get

A. Miller and A. Pelc 29:7

different colours. The second component describes how an agent behaves when executing
the phase. At a high level, the phase consists of equal-sized blocks of rounds, and in each
block, an agent either stays idle at its starting node for all rounds in the block, or, it spends
the block performing a search of nearby nodes in an attempt to find the other agent (and if
not successful, returns back to its starting node). Whether an agent idles or searches in a
particular block of the phase depends on the colour of its starting node. The overall idea is:
there exists a phase in which the starting nodes of the agents will be coloured differently, and
this will result in one agent idling while the other searches, which will result in rendezvous.

The above intuition overlooks two main difficulties. The first difficulty is that the agents
do not know the initial distance between them, so they do not know how far they have to
search when trying to find the other agent. To deal with this issue, the agents will use larger
and larger “guesses” in each subsequent phase of the algorithm, and eventually the radius of
their search will be large enough. The second difficulty is that the agents do not necessarily
start the algorithm in the same round, so the agents’ executions of the algorithm (i.e., the
phases and blocks) can misalign in arbitrary ways. This makes it difficult to ensure that
there is a large enough set of contiguous rounds during which one agent remains idle while
the other agent searches. To deal with this issue, we carefully choose the sizes of blocks and
phases, as well as the type of behaviour (idle vs. search) carried out in each block.

We now give the full details of an arbitrary phase i ≥ 0 in the algorithm’s execution.

Colouring. When an agent starts executing phase i, it first determines the colour of its
starting node. From a global perspective, the idea is to assign colours to nodes on the infinite
line in the following way:
1. Partition the nodes into segments consisting of 2i nodes each, such that node O is the

leftmost node of its segment. Denote the segment containing O by S0, denote each
subsequent segment to its right using increasing indices (i.e., S1, S2, . . .) and denote each
subsequent segment to its left using decreasing indices (i.e., S−1, S−2, . . .).

2. For each segment with even index, colour all nodes in the segment with “red”. For
each segment with odd index, colour all nodes in the segment with “blue”. As a result,
neighbouring segments are always assigned different colours.

However, the agent executing phase i does not compute this colouring for the entire line, it
need only determine the colour of its starting node. To do so, it uses its knowledge about
the distance and direction from its starting node to node O. In particular,

if the agent’s starting node s is O or to the right of O, it computes the index of the
segment in which s is contained, i.e., index = ⌊d(s,O)/2i⌋. If index is even, then s has
colour red, and otherwise s has colour blue.
if the agent’s starting node s is to the left of O, it computes the index of the segment in
which s is contained, i.e., index = −⌈(d(s,O))/2i⌉. If index is even, then s has colour
red, and otherwise s has colour blue.

Behaviour. Phase i consists of 44 · 2i+1 rounds, partitioned into 11 equal-sized blocks of
4 · 2i+1 rounds each. The number 2i+1 has a special significance: it is the search radius used
by an agent during phase i whenever it is searching for the other agent. We use the notation
SR(i) to represent the value 2i+1 in the remainder of the algorithm’s description and analysis.
In each of the 11 blocks of the phase, the agent behaves in one of two ways: if a block is
designated as a waiting block, the agent stays at its starting node v for all 4 · SR(i) rounds of
the block; otherwise, a block is designated as a searching block, in which the agent moves
right SR(i) times, then left 2 · SR(i) times, then right SR(i) times. In other words, during a

DISC 2023

29:8 Fast Deterministic Rendezvous in Labeled Lines

searching block, the agent explores all nodes within its immediate SR(i)-neighbourhood, and
ends up back at its starting node. Whether a block is designated as “waiting” or “searching”
depends on the agent’s starting node colour in phase i. In particular, if its starting node is
red, then blocks 1,8,9 are searching blocks and all others are waiting blocks; otherwise, if
its starting node is blue, then blocks 1,10,11 are searching blocks and all others are waiting
blocks. This concludes the description of Arv-canon.

4 Arbitrary lines with known initial distance between agents

4.1 The algorithm
In this section, we describe an algorithm called Arv-D that solves rendezvous on lines with
arbitrary node labelings when two agents start at arbitrary positions and when the delay
between the rounds in which they start executing the algorithm is arbitrary. The algorithm
works in time O(D log∗ ℓ), where D is the initial distance between the agents, and ℓ is the
larger label of the two starting nodes. The agents know D, but they do not know the delay
between the starting rounds. Also, we note that the agents have no global sense of direction,
but each agent can locally choose port 0 from its starting node to represent “right” and port
1 from its starting node to represent “left”. Further, using knowledge of the port number of
the edge on which it arrived at a node, an agent is able to choose whether its next move
will continue in the same direction or if it will switch directions. Without loss of generality,
we may assume that all node labels are strictly greater than one, since the algorithm could
be re-written to add one to each label value in its own memory before carrying out any
computations involving the labels. This assumption ensures that, for any node label v, the
value of log∗(v) is strictly greater than 0.

Algorithm Arv-D proceeds in two stages. In the first stage, the agents assign colours to
their starting nodes according to a proper colouring of the nodes that are integer multiples
of D away. They each accomplish this by determining the node labels within a sufficiently
large neighbourhood and then executing the 3-colouring algorithm EarlyStopCV from
Proposition 1 on nodes that are multiples of D away from their starting node. The second
stage consists of repeated periods, with each period consisting of equal-sized blocks of rounds.
In each block, an agent either stays idle at its starting node, or, it spends the block performing
a search of nearby nodes in an attempt to find the other agent (and if not successful, returns
back to its starting node). Whether or not an agent idles or searches in a particular block of
the period depends on the colour it picked for its starting node. The overall idea behind
the algorithm’s correctness is: the agents are guaranteed to pick different colours for their
starting node in the first stage, and so, when both agents are executing the second stage,
one agent will search while the other idles, which will result in rendezvous.

Stage 1: Colouring. Let vx be the starting node of agent x. We identify the node with
its label. Let r = D · κ log∗(vx), where κ > 1 is the constant defined in the running time of
the algorithm EarlyStopCV from Proposition 1. Denote by Br the r-neighbourhood of
vx. First, agent x determines Br (including all node labels) by moving right r times, then
left 2r times, then right r times, ending back at its starting node vx. Let V be the subset of
nodes in Br whose distance from vx is an integer multiple of D. In its local memory, agent x

creates a path graph Gx consisting of the nodes in V , with two nodes connected by an edge
if and only if their distance in Br is exactly D. This forms a path graph centered at vx with
κ log∗(vx) nodes in each direction. Next, the agent simulates an execution of the algorithm
EarlyStopCV by the nodes of Gx to assign a colour cx ∈ {0, 1, 2} to its starting node vx.

A. Miller and A. Pelc 29:9

Stage 2: Search. The agent repeatedly executes periods consisting of 8D rounds each,
partitioned into two equal-sized blocks of 4D rounds each. In each of the two blocks, the
agent behaves in one of two ways: if a block is designated as a waiting block, then the
agent stays at its starting node for all 4D rounds; otherwise, a block is designated as a
searching block, in which the agent moves right D times, then left 2D times, then right D

times. Whether a block is designated as a “waiting” or “searching” block depends on the
agent’s starting node colour that was determined in the first stage. In particular, if cx = 0,
then both blocks are waiting blocks; if cx = 1, then block 1 is a searching block and block 2
is a waiting block; and, if cx = 2, then both blocks are searching blocks.

4.2 Analysis of the algorithm
In this section, we prove that Algorithm Arv-D solves rendezvous within O(D log∗ ℓ) rounds,
where ℓ is the larger of the labels of the two starting nodes of the agents.

Consider an arbitrary instance on some line L with an arbitrary labeling of the nodes
with positive integers. Suppose that two agents α and β execute the algorithm. For each
x ∈ {α, β}, we denote by vx the label of agent x’s starting node, and we denote by cx the
colour assigned to node vx at the end of Stage 1 in x’s execution of the algorithm. To help
with the wording of the analysis only, fix a global orientation for L so that vα appears to the
“left” of vβ (and recall that the agents have no access to this information).

First, we argue that after both agents have finished Stage 1 of their executions, they have
assigned different colours to their starting nodes.

▶ Lemma 4. In any execution of Arv-D by agents α and β, in every round after both agents
finish their execution of Stage 1, we have cα ̸= cβ.

Proof. Without loss of generality, assume that vα > vβ . Let y0 be the node in L to the left of
vα at distance exactly D ·κ log∗(vα). For each i ∈ {1, . . . , 2κ log∗(vα) + 1}, let yi be the node
in L at distance i ·D to the right of y0. Note that vα = yκ log∗(vα) and vβ = yκ log∗(vα)+1.

Create a path graph P consisting of 2κ log∗(vα) + 2 nodes. Label the leftmost node in P

with y0, and label the node at distance i from y0 in P using the label yi.
By the definition of P , note that yκ log∗(vα) and yκ log∗(vα)+1 are neighbours in P , which

implies that vα and vβ are neighbours in P . This is important because it implies that, if the
nodes of P run the algorithm EarlyStopCV from Proposition 1, the nodes labeled vα and
vβ will choose different colours from the set {0, 1, 2}.

The rest of the proof shows that, for x ∈ {α, β}, the graph Gx built in Stage 1 by
agent x is an induced subgraph of P . This is sufficient since it implies that having each
agent x simulate the algorithm EarlyStopCV on their local Gx results in the same colour
assignment to the node labeled vx as an execution of EarlyStopCV on the nodes of P , so
vα and vβ will be assigned different colours at the end of Stage 1 of Algorithm Arv-D. Since
the colour assignment is not changed in any round after Stage 1, the result follows.

First, consider vα. Let w0 be the label of the leftmost node of Gα. By the definition of Gα,
the node labeled w0 is at distance exactly κ log∗(vα) to the left of vα in Gα, so the node labeled
w0 is at distance exactly D · κ log∗(vα) to the left of vα in L. This proves that w0 = y0 ∈ P .
For each j ∈ {0, . . . , 2κ log∗(vα)}, define wj to be the label of the node at distance j to
the right of the node labeled w0 in Gα. By induction on j, we prove that wj = yj ∈ P for
all j ∈ {0, . . . , 2κ log∗(vα)}. The base case w0 = y0 ∈ P was proved above. As induction
hypothesis, assume that wj−1 = yj−1 ∈ P for some j ∈ {1, . . . , 2κ log∗(vα)}. Consider wj ,
which by definition of Gα is the neighbour to the right of wj−1 in Gα, and, moreover, is located
distance exactly D to the right of wj−1 in L. By the induction hypothesis, we know that

DISC 2023

29:10 Fast Deterministic Rendezvous in Labeled Lines

wj−1 = yj−1, so wj is located distance exactly D to the right of yj−1 in L, and so wj = yj by
the definition of yj . To confirm that yj ∈ P , we note that j ≤ 2κ log∗(vα) < 2κ log∗(vα) + 1,
and that the rightmost node in P is y2κ log∗(vα)+1. This concludes the inductive step, and
the proof that Gα is an induced subgraph of P .

Next, consider vβ . Let u0 be the label of the leftmost node of Gβ . By the definition of Gβ ,
the node labeled u0 in Gβ is at distance exactly κ log∗(vβ) to the left of vβ , so, in L, the node
labeled u0 is at distance exactly D · κ log∗(vβ) to the left of vβ . However, since vα is located
at distance exactly D to the left of vβ in L, and y0 is located at distance exactly D ·κ log∗(vα)
to the left of vα in L, it follows that y0 is located at distance exactly D · (1 + κ log∗(vα))
to the left of vβ in L. Since vα > vβ , we conclude that d(y0, vβ) = D · (1 + κ log∗(vα)) >

D · κ log∗(vβ) = d(u0, vβ) in L, so y0 must be to the left of u0 in L. Further, it means that
d(u0, y0) = D·(1+κ log∗(vα))−D·κ log∗(vβ) = D·[1+κ log∗(vα)−κ log∗(vβ)] in L. This proves
that u0 = y1+κ log∗(vα)−κ log∗(vβ). We confirm that y1+κ log∗(vα)−κ log∗(vβ) ∈ P by noticing
that the subscript 1 + κ log∗(vα) − κ log∗(vβ) lies in the set {1, . . . , 2κ log∗(vα) + 1} since
vα > vβ . Next, define h = 1 + κ log∗(vα)− κ log∗(vβ), and, for each j ∈ {0, . . . , 2κ log∗(vβ)},
define uj to be the label of the node at distance j to the right of the node labeled u0 in Gβ . By
induction on j, we prove that uj = yj+h ∈ P for all j ∈ {0, . . . , 2κ log∗(vβ)}. The base case
u0 = yh ∈ P was proved above. As induction hypothesis, assume that uj−1 = yj−1+h ∈ P

for some j ∈ {1, . . . , 2κ log∗(vβ)}. Consider uj , which by definition of Gβ is the neighbour
to the right of uj−1 in Gβ , and, moreover, is located distance exactly D to the right of
uj−1 in L. By the induction hypothesis, we know that uj−1 = yj−1+h, so uj is located
distance exactly D to the right of yj−1+h in L, and so uj = yj+h by the definition of yh. To
confirm that yj+h ∈ P , we note that j ≤ 2κ log∗(vβ) and h = 1 + κ log∗(vα) − κ log∗(vβ),
so j + h ≤ 1 + κ log∗(vα) + κ log∗(vβ) ≤ 2κ log∗(vα) + 1, where the last inequality is due to
vα > vβ . As the rightmost node of P is y2κ log∗(vα)+1, it follows that yj+h is at or to the left
of the rightmost node in P , so yj+h ∈ P . This concludes the inductive step, and the proof
that Gα is an induced subgraph of P . ◀

To prove that the algorithm correctly solves rendezvous within O(D log∗ ℓ) rounds for
arbitrary delay between starting rounds, there are two main cases to consider. If the delay
is large, then the late agent is idling for the early agent’s entire execution of Stage 1,
and rendezvous will occur while the early agent is exploring its (Dκ log∗ ℓ)-neighbourhood.
Otherwise, the delay is relatively small, so both agents reach Stage 2 quickly, and the block
structure of the repeated periods ensures that one agent will search while the other waits, so
rendezvous will occur. These arguments are formalized in the following result.

▶ Theorem 5. Algorithm Arv-D solves rendezvous in O(D log∗ ℓ) rounds on lines with
arbitrary node labelings when two agents start at arbitrary positions at known distance D, and
when the delay between the rounds in which they start executing the algorithm is arbitrary.

Proof. The agent that starts executing the algorithm first is called the early agent, and
the other agent is called the late agent. If both agents start executing the algorithm in the
same round, then arbitrarily call one of them early and the other one late. Without loss of
generality, we assume that α is the early agent. The number of rounds that elapse between
the two starting rounds is denoted by delay(α, β).

First, we address the case where the delay between the starting rounds of the agents is
large. This situation is relatively easy to analyze, since agent β remains idle during agent
α’s entire execution up until they meet.

▷ Claim 6. If delay(α, β) > 4Dκ log∗ vα, then rendezvous occurs within 4Dκ log∗ vα rounds
in agent α’s execution.

A. Miller and A. Pelc 29:11

To prove the claim, we note that the total number of rounds that elapse in agent α’s
execution of Stage 1 is 4Dκ log∗ vα. By the assumption about delay(α, β), agent β is idle
at its starting node for α’s entire execution of Stage 1. Finally, note that α explores its
entire (Dκ log∗ α)-neighbourhood during its execution of Stage 1, where Dκ log∗ α ≥ D, so it
follows that agent α will be located at agent β’s starting node at some round in its execution
of Stage 1, which completes the proof of the claim.

So, in the remainder of the proof, we assume that delay(α, β) ≤ 4Dκ log∗ α. We prove
that rendezvous occurs during Stage 2 by considering the round τ in which agent β starts
Stage 2 of its execution. By Lemma 4, we have cα ≠ cβ in every round from this time onward.
We separately consider cases based on the values of cα and cβ .

Case 1: cα = 0 or cβ = 0. Let x be the agent with cx = 0, and let y be the other
agent. Since cx ̸= cy, we know that cy is either 1 or 2. From the algorithm’s description,
agent y will start a searching block within 8D rounds after round τ . Moreover, agent
x remains idle for the entirety of Stage 2 of its execution. Since y explores its entire
D-neighbourhood during a searching block, it follows that y will be located at x’s starting
node within 12D rounds after τ .
Case 2: cα = 1 or cβ = 1. Let x be the agent with cx = 1, and let y be the other agent.
Since cx ̸= cy, we know that cy is either 0 or 2. As the case cy = 0 is covered by Case 1
above, we proceed with cy = 2. From the algorithm’s description, agent x has a waiting
block that begins within 8D rounds after τ . Suppose that this waiting block starts in
some round t of x’s execution, then we know that x stays idle at its starting node for the
4D rounds after t. But round t corresponds to the i’th round of some searching block
in agent y’s execution of Stage 2 (since y only performs searching blocks). In the first
4D− i rounds, agent y completes its searching block, and then performs the first i rounds
of the next searching block. Since the searching blocks are performed using the same
movements each time, it follows that y explores its entire D-neighbourhood in the 4D

rounds after t, so will meet x at x’s starting node within those rounds. Altogether, since
t occurs within 8D rounds after τ , and y’s searching block takes another 4D rounds, it
follows that rendezvous occurs within 12D rounds after τ .

In all cases, we proved that rendezvous occurs within 12D rounds after τ . But τ is the round
in which agent β starts Stage 2, so τ ≤ 4Dκ log∗ vβ in β’s execution. By our assumption on
the delay, β’s execution starts at most 4Dκ log∗ vα rounds after the beginning of α’s execution.
Altogether, this means that rendezvous occurs within 4Dκ log∗ vα +4Dκ log∗ vβ +12D rounds
from the start of α’s execution. Setting ℓ = max{vα, vβ}, we get that rendezvous occurs
within time 8Dκ log∗ ℓ + 12D ∈ O(D log∗ ℓ), as desired. ◀

4.3 Lower bound
In this section we prove a Ω(D log∗ ℓ) lower bound for rendezvous time on the infinite
line, where ℓ is the larger label of the two starting nodes, even assuming that agents start
simultaneously, they know the initial distance D between them, and they have a global sense
of direction. We summarize the argument here, and omit the detailed proofs of the results.
We start with some terminology about rendezvous executions.

▶ Definition 7. Consider any labeled infinite line L, and any two nodes labeled v, w on L

that are at fixed distance D. Consider any rendezvous algorithm A, and suppose that two
agents start executing A in the same round: one agent αv starting at node v, and the other
agent αw starting at node w. Denote by γ(A, L, v, w) the resulting execution until αv and

DISC 2023

29:12 Fast Deterministic Rendezvous in Labeled Lines

αw meet. When A and L are clear from the context, we will simply write γ(v, w) to denote
the execution. Denote by |γ(A, L, v, w)| the number of rounds that have elapsed before αv

and αw meet in the execution.

The following definition formalizes the notion of “behaviour sequence”: an integer sequence
that encodes the movements made by an agent in each round of an algorithm’s execution.

▶ Definition 8. Consider any execution γ(A, L, v, w) by an agent αv starting at node v and
an agent αw starting at node w, both agents starting simultaneously. Define the behaviour
sequence Bv(A, L, v, w) as follows: for each t ∈ {1, . . . , |γ(A, L, v, w)|}, set the t’th element
to 0 if αv moves left in round t of the execution, to 1 if αv stays at its current node in round
t of the execution, and to 2 if αv moves right in round t of the execution. Similarly, define
the sequence Bw(A, L, v, w) using the moves by agent αw. When A and L are clear from the
context, we will simply write Bv(v, w) and Bw(v, w) to denote the two behaviour sequences of
αv and αw, respectively.

As the agents are anonymous and we only consider deterministic algorithms, note that for any
fixed A, L, v, w, we have γ(v, w) = γ(w, v) and Bv(v, w) = Bv(w, v) and Bw(v, w) = Bw(w, v).
Moreover, for a fixed starting node v on a fixed line L, the behaviour of an agent running an
algorithm A does not depend on the starting node (or behaviour) of the other agent, until
the two agents meet. This implies the following result, i.e., if we look at two executions of A
where one agent αv starts at the same node v in both executions, then αv’s behaviour in
both executions is exactly the same up until rendezvous occurs in the shorter execution.

▶ Proposition 9. Consider any labeled infinite line L, and any fixed rendezvous algorithm
A. Consider any fixed node v in L, and let w1 and w2 be two nodes other than v. Let
p = min{|γ(v, w1)|, |γ(v, w2)|}. Then Bv(v, w1) and Bv(v, w2) have equal prefixes of length p.

The following proposition states that two agents running a rendezvous algorithm starting at
two different nodes cannot have the same behaviour sequence. This follows from the fact
that the distance between two agents cannot decrease if they perform the same action in
each round (i.e., both move left, both move right, or both don’t move).

▶ Proposition 10. Consider any labeled infinite line L, and any fixed rendezvous algorithm
A. For any two nodes x and y in L, in the execution γ(x, y) we have Bx(x, y) ̸= By(x, y).

The remainder of this section is dedicated to proving the Ω(D log∗ ℓ) lower bound for
rendezvous on the infinite line when the two agents start at a known distance D apart. We
proceed in two steps: first, we prove an Ω(log∗ ℓ) lower bound in the case where D = 1, and
then we prove the general Ω(D log∗ ℓ) lower bound using a reduction from the D = 1 case.
Throughout this section, we will refer to the constant κ that was defined in Proposition 1 in
order to state the running time bound of the algorithm EarlyStopCV.

4.3.1 The D = 1 case
We prove a Ω(log∗ ℓ) lower bound for rendezvous on the infinite line, where ℓ is the larger
label of the two starting nodes, in the special case where the two agents start at adjacent
nodes. This lower bound applies even to algorithms that start simultaneously and know that
the initial distance between the two agents is 1.

The overall idea is to assume that there exists a very fast rendezvous algorithm (i.e., an
algorithm that always terminates within 1

16κ log∗(ℓ) rounds) and prove that this implies the
existence of a distributed 3-colouring algorithm for the LOCAL model whose running time is
faster than the lower bound proven by Linial (see Proposition 2). This contradiction proves
that any rendezvous algorithm must have running time Ω(log∗(ℓ)).

A. Miller and A. Pelc 29:13

The first step is to reduce distributed colouring in the LOCAL model to rendezvous.
The following result describes how to use the rendezvous algorithm to create the distributed
colouring algorithm. The idea is to record the agent’s behaviour sequence in the execution
of the rendezvous algorithm, and convert the sequence to an integer colour. Proposition 10
guarantees that the assigned colours are different.

▶ Lemma 11. Consider any rendezvous algorithm Arv that always terminates within
1

16κ log∗(ℓ) rounds, where ℓ is the larger label of the two starting nodes. Then there ex-
ists a distributed colouring algorithm Acol such that, for any labeled infinite line L, and for
any finite subline P of L consisting of nodes whose labels are bounded above by some integer
Y , algorithm Acol uses ⌊ 1

16κ log∗(Y)⌋+ 1 rounds of communication and assigns to each node
in P an integer colour from the range 1, . . . , 42⌊ 1

16κ log∗(Y)⌋+1.

The second step is to take the algorithm Acol from Lemma 11 and turn it into a 3-colouring
algorithm A3col using very few additional rounds, by using the algorithm EarlyStopCV
from Proposition 1 to quickly reduce the number of colours down to 3. Combined with the
previous lemma, we get the following result that shows how to obtain a very fast distributed
3-colouring algorithm under the assumption that we have a very fast rendezvous algorithm.

▶ Lemma 12. Consider any rendezvous algorithm Arv that always terminates within
1

16κ log∗(ℓ) rounds, where ℓ is the larger label of the two starting nodes. Then there ex-
ists a distributed 3-colouring algorithm A3col such that, for any labeled infinite line L, and
for any finite subline P of L consisting of nodes whose labels are bounded above by some
integer Y , algorithm A3col uses at most

(1
4 + 1

16κ

)
log∗(Y) + 1 + 3κ rounds of communication

to 3-colour the nodes of P .

Finally, we demonstrate how to use the above result to prove the desired Ω(log∗ ℓ) lower
bound for rendezvous. The idea is to construct an infinite line that contains an infinite
sequence of finite sublines, each of which is a worst-case instance (according to Linial’s lower
bound), and obtaining the desired contradiction by observing that the upper bound on the
running time of A3col violates the lower bound guaranteed by Linial’s result.

▶ Lemma 13. Any algorithm that solves the rendezvous task on all labeled infinite lines,
where the two agents start at adjacent nodes, uses Ω(log∗ ℓ) rounds in the worst case, where
ℓ is the larger label of the two starting nodes.

4.3.2 The D > 1 case
We prove a Ω(D log∗ ℓ) lower bound for rendezvous on the infinite line, where ℓ is the larger
label of the two starting nodes, in the case where the two agents start at nodes that are
distance D > 1 apart. This lower bound applies even to algorithms that start simultaneously
and know that the initial distance between the two agents is D. Hence it shows that
the running time of Algorithm Arv-D has optimal order of magnitude among rendezvous
algorithms knowing the initial distance between the agents.

The overall idea is to assume that there exists a very fast rendezvous algorithm called Arv
(that always terminates within 1

224κ D log∗ ℓ rounds) and prove that this implies the existence
of a rendezvous algorithm Arv-adj for the D = 1 case that always terminates within 1

16κ log∗ ℓ

rounds, which we already proved is impossible in Section 4.3.1. This contradiction proves
that any rendezvous algorithm for the D > 1 case must have running time Ω(D log∗ ℓ).

DISC 2023

29:14 Fast Deterministic Rendezvous in Labeled Lines

The proof can be summarized as follows: take any instance where the agents start at
adjacent nodes, and “blow it up” by a factor of D, i.e., all node labels are multiplied by a
factor of D, and D − 1 “dummy nodes” are inserted between each pair of nodes. Each node
from the original instance, together with the D − 1 nodes to its right, are called a segment
in the blown-up instance. Then, the algorithm Arv is locally simulated on the blown-up
instance in stages consisting of D rounds each, and each simulated stage corresponds to 1
round of algorithm Arv-adj in the original instance. At the end of every simulated stage, the
simulated agent is in some segment that has leftmost node v, so the real agent situates itself
at node v for the corresponding round in the original instance. Roughly speaking, since Arv
guarantees rendezvous in the blown-up instance, the two simulated agents will end up in the
same segment (with the same leftmost node v), so the two real agents will end up at node v

in the original instance. Further, since each stage of D simulated rounds corresponds to one
round in the original instance, the number of rounds used by Arv-adj is a factor of D less
than the running time of the simulated algorithm Arv. This gives us a contradiction, as the
resulting running time for Arv-adj is smaller than the lower bound proven in Lemma 13.

However, the above summary overlooks some complications.
1. Assigning labels to the dummy nodes in the blown-up instance: the agent in the

original instance needs to assign labels to nearby dummy nodes in the blown-up instance
in a way that is consistent with the original instance. However, the agent initially only
knows the label at its own node, which is insufficient. To address this issue, before each
simulated stage of Arv, the agent uses 4 rounds to visit its neighbouring nodes in the
original instance so that it can learn about neighbouring labels, which it then uses to
accurately assign labels to nearby dummy nodes in the blown-up instance.

2. Guaranteeing rendezvous: two agents running Arv-adj are each independently sim-
ulating Arv locally in their own memory, so they cannot detect if the simulated agents
meet at a node in the blown up instance. So, although Arv guarantees rendezvous in the
blown up instance, it might be the case that there is never a stage of D simulated rounds
after which the two simulated agents end up in the same segment, since the simulated
agents might continue moving after the undetected rendezvous and end up in different
segments at the end of the simulated stage. To address this issue, we carefully choose the
segment length and stage length appropriately to guarantee that, at the end of the stage
containing the undetected rendezvous, the two simulated agents are either in the same
segment or in neighbouring segments in the blown up instance. After each simulated
stage is done, the real agents do a 3-round “dance” in the original instance in such a way
that rendezvous will occur after the undetected simulated rendezvous.

▶ Theorem 14. Any algorithm that solves the rendezvous task on all labeled infinite lines,
where the two agents start at known distance D > 1 apart, uses Ω(D log∗ ℓ) rounds in the
worst case, where ℓ is the larger label of the two starting nodes.

5 Arbitrary lines with unknown initial distance between agents

In this section, we describe an algorithm called Arv-noD that solves rendezvous on lines with
arbitrary node labelings in time O(D2(log∗ ℓ)3) (where D is the initial distance between the
agents and ℓ is the larger label of the two starting nodes) when two agents start at arbitrary
positions and when the delay between the rounds in which they start executing the algorithm
is arbitrary. The agents do not know the initial distance D between them, and they do not
know the delay between the starting rounds. Also, we note that the agents have no global
sense of direction, but each agent can locally choose port 0 from its starting node to represent

A. Miller and A. Pelc 29:15

“right” and port 1 from its starting node to represent “left”. Further, using knowledge of the
port number of the edge on which it arrived at a node, an agent is able to choose whether
its next move will continue in the same direction or if it will switch directions. Without
loss of generality, we may assume that all node labels are strictly greater than one, since
the algorithm could be re-written to add one to each label value in its own memory before
carrying out any computations involving the labels. This assumption ensures that, for any
node label v, the value of log∗(v) is strictly greater than 0.

As seen in Section 4.1, if the initial distance D between the agent is known, then we have
an algorithm Arv-D that will solve rendezvous in O(D log∗ ℓ) rounds. We wish to extend
that algorithm for the case of unknown distance by repeatedly running Arv-D with guessed
values for D. To get an optimal algorithm, i.e., with running time O(D log∗ ℓ), a natural
attempt would be to proceed by doubling the guess until it exceeds D, so that the searching
range of an agent includes the starting node of the other agent. However, this approach
will not work in our case, because our algorithm Arv-D requires the exact value of D to
guarantee rendezvous. More specifically, the colouring stage using guess g only guarantees
that nodes at distance exactly g are assigned different colours. So, instead, our algorithm
Arv-noD increments the guessed value by 1 so that the guess is guaranteed to eventually be
equal to D, which results in a running time quadratic in D instead of linear in D.

At a high level, our algorithm Arv-noD consists of phases, where each phase is an attempt
to solve rendezvous using a value g which is a guess for the value D. The first phase sets
g = 1. Each phase has three stages. In the first stage, the agent waits at its starting node
for a fixed number of rounds. In the second and third stages, the agent executes a modified
version of the algorithm Arv-D from Section 4.1 using the value g instead of D. At the end of
each phase, if rendezvous has not yet occurred, the agent increments its guess g and proceeds
to the next phase. A major complication is that an adversary can choose the wake-up times
of the agents so that the phases do not align well, e.g., the agents are using the same guess
g but are at different parts of the phase, or, they are in different phases and not using the
same guess g. This means we have to very carefully design the phases and algorithm analysis
to account for arbitrary delays between the wake-up times.

The detailed description of the algorithm is as follows. Consider an agent x whose
execution starts at a node labeled vx. We now describe an arbitrary phase in the algorithm’s
execution. Let g ≥ 1, let d = 1 + ⌊log2 g⌋, and recall that κ > 1 is an integer constant defined
in the running time of the algorithm EarlyStopCV from Proposition 1. The g-th phase
executed by agent x, denoted by Px

g , consists of executing the following three stages.

Stage 0: Wait. Stay at the node vx for 36 · 2d · κ log∗(vx) rounds.

Stage 1: Colouring. Let r = g · κ log∗(vx). Denote by Br the r-neighbourhood of vx, and
let Vg be the subset of nodes in Br whose distance from vx is an integer multiple of g. First,
agent x determines Br (including all node labels) by moving right r times, then left 2r times,
then right r times, ending back at its starting node vx. Then, in its local memory, agent
x creates a path graph Gx consisting of the nodes in Vg, with two nodes connected by an
edge if and only if their distance in Br is exactly g. This forms a path graph centered at vx

with κ log∗(vx) nodes in each direction. The agent simulates an execution of the algorithm
EarlyStopCV from Proposition 1 by the nodes of Gx to obtain a colour cx ∈ {0, 1, 2}. Let
CVx be the 2-bit binary representation of cx. Transform CVx into an 8-bit binary string
CV ′

x by replacing each 0 in CVx with 0011, and replacing each 1 in CVx with 1100. Finally,
create a 9-bit string S by appending a 1 to CV ′

x.

DISC 2023

29:16 Fast Deterministic Rendezvous in Labeled Lines

Stage 2: Search. This stage consists of performing κ log∗(vx) periods of |S| = 9 blocks
each. Block i of a period is designated as a waiting block if the i’th bit of S is 0, else it is
designated as a searching block. A waiting block consists of 4 · (2d) consecutive rounds during
which the agent stays at its starting node. A searching block consists of 4 · (2d) consecutive
rounds: the agent first moves right 2d times, then left 2 · 2d times, then right 2d times.

6 Conclusion

We presented rendezvous algorithms for three scenarios: the scenario of the canonical line,
the scenario of arbitrary labeling with known initial distance D, and the scenario where each
agent knows a priori only the label of its starting node. While for the first two scenarios the
complexity of our algorithms is optimal (respectively O(D) and O(D log∗ ℓ), where ℓ is the
larger label of the two starting nodes), for the most general scenario, where each agent knows
a priori only the label of its starting node, the complexity of our algorithm is O(D2(log∗ ℓ)3),
for arbitrary unknown D, while the best known lower bound, valid also in this scenario, is
Ω(D log∗ ℓ) .

The natural open problem is the optimal complexity of rendezvous in the most general
scenario (with arbitrary labeling and unknown D), both for the infinite labeled line and
for the finite labeled lines and cycles. This open problem can be generalized to the class of
arbitrary trees or even arbitrary graphs.

References
1 Steve Alpern. The rendezvous search problem. SIAM Journal on Control and Optimization,

33(3):673–683, 1995. doi:10.1137/S0363012993249195.
2 Steve Alpern. Rendezvous search on labeled networks. Naval Research Logistics (NRL),

49(3):256–274, 2002. doi:10.1002/nav.10011.
3 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55 of

International series in operations research and management science. Kluwer, 2003.
4 E. J. Anderson and R. R. Weber. The rendezvous problem on discrete locations. Journal of

Applied Probability, 27(4):839–851, 1990. URL: http://www.jstor.org/stable/3214827.
5 Edward J. Anderson and Sándor P. Fekete. Asymmetric rendezvous on the plane. In

Ravi Janardan, editor, Proceedings of the Fourteenth Annual Symposium on Computational
Geometry, Minneapolis, Minnesota, USA, June 7-10, 1998, pages 365–373. ACM, 1998.
doi:10.1145/276884.276925.

6 Edward J. Anderson and Sándor P. Fekete. Two dimensional rendezvous search. Oper. Res.,
49(1):107–118, 2001. doi:10.1287/opre.49.1.107.11191.

7 Vic Baston and Shmuel Gal. Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution. SIAM Journal on Control and Optimization,
36(6):1880–1889, 1998. doi:10.1137/S0363012996314130.

8 Vic Baston and Shmuel Gal. Rendezvous search when marks are left at the starting points.
Naval Research Logistics, 48(8):722–731, December 2001. doi:10.1002/nav.1044.

9 Subhash Bhagat and Andrzej Pelc. Deterministic rendezvous in infinite trees. CoRR,
abs/2203.05160, 2022. doi:10.48550/arXiv.2203.05160.

10 Subhash Bhagat and Andrzej Pelc. How to meet at a node of any connected graph. In
Christian Scheideler, editor, 36th International Symposium on Distributed Computing, DISC
2022, October 25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs, pages 11:1–11:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.DISC.2022.11.

https://doi.org/10.1137/S0363012993249195
https://doi.org/10.1002/nav.10011
http://www.jstor.org/stable/3214827
https://doi.org/10.1145/276884.276925
https://doi.org/10.1287/opre.49.1.107.11191
https://doi.org/10.1137/S0363012996314130
https://doi.org/10.1002/nav.1044
https://doi.org/10.48550/arXiv.2203.05160
https://doi.org/10.4230/LIPIcs.DISC.2022.11

A. Miller and A. Pelc 29:17

11 Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. Almost universal
anonymous rendezvous in the plane. In Christian Scheideler and Michael Spear, editors, SPAA
’20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event,
USA, July 15-17, 2020, pages 117–127. ACM, 2020. doi:10.1145/3350755.3400283.

12 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Inf. Control., 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

13 Andrew Collins, Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, and Russell A. Mar-
tin. Synchronous rendezvous for location-aware agents. In David Peleg, editor, Distributed
Computing - 25th International Symposium, DISC 2011, Rome, Italy, September 20-22, 2011.
Proceedings, volume 6950 of Lecture Notes in Computer Science, pages 447–459. Springer,
2011. doi:10.1007/978-3-642-24100-0_42.

14 Jurek Czyzowicz, Leszek Gasieniec, Ryan Killick, and Evangelos Kranakis. Symmetry breaking
in the plane: Rendezvous by robots with unknown attributes. In Peter Robinson and
Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 4–13. ACM,
2019. doi:10.1145/3293611.3331608.

15 Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distributed Comput., 25(2):165–178, 2012. doi:10.1007/
s00446-011-0141-9.

16 Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc. Deterministic
rendezvous in graphs. Algorithmica, 46(1):69–96, 2006. doi:10.1007/s00453-006-0074-2.

17 Yoann Dieudonné and Andrzej Pelc. Anonymous meeting in networks. Algorithmica, 74(2):908–
946, 2016. doi:10.1007/s00453-015-9982-0.

18 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of
asynchronous robots with limited visibility. Theor. Comput. Sci., 337(1-3):147–168, 2005.
doi:10.1016/j.tcs.2005.01.001.

19 Pierre Fraigniaud and Andrzej Pelc. Delays induce an exponential memory gap for rendezvous
in trees. ACM Trans. Algorithms, 9(2):17:1–17:24, 2013. doi:10.1145/2438645.2438649.

20 Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. Theor.
Comput. Sci., 399(1-2):141–156, 2008. doi:10.1016/j.tcs.2008.02.010.

21 Evangelos Kranakis, Danny Krizanc, and Pat Morin. Randomized rendezvous with limited
memory. ACM Trans. Algorithms, 7(3):34:1–34:12, 2011. doi:10.1145/1978782.1978789.

22 Evangelos Kranakis, Nicola Santoro, Cindy Sawchuk, and Danny Krizanc. Mobile agent
rendezvous in a ring. In 23rd International Conference on Distributed Computing Systems
(ICDCS 2003), 19-22 May 2003, Providence, RI, USA, pages 592–599. IEEE Computer Society,
2003. doi:10.1109/ICDCS.2003.1203510.

23 Juhana Laurinharju and Jukka Suomela. Linial’s lower bound made easy. CoRR, abs/1402.2552,
2014. URL: http://arxiv.org/abs/1402.2552, arXiv:1402.2552.

24 Wei Shi Lim and Steve Alpern. Minimax rendezvous on the line. SIAM Journal on Control
and Optimization, 34(5):1650–1665, 1996. doi:10.1137/S036301299427816X.

25 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

26 Avery Miller and Andrzej Pelc. Tradeoffs between cost and information for rendezvous and
treasure hunt. J. Parallel Distributed Comput., 83:159–167, 2015. doi:10.1016/j.jpdc.2015.
06.004.

27 Andrzej Pelc. Deterministic rendezvous in networks: A comprehensive survey. Networks,
59(3):331–347, 2012. doi:10.1002/net.21453.

28 Andrzej Pelc. Deterministic rendezvous algorithms. In Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in
Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 423–454.
Springer, 2019. doi:10.1007/978-3-030-11072-7_17.

DISC 2023

https://doi.org/10.1145/3350755.3400283
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1007/978-3-642-24100-0_42
https://doi.org/10.1145/3293611.3331608
https://doi.org/10.1007/s00446-011-0141-9
https://doi.org/10.1007/s00446-011-0141-9
https://doi.org/10.1007/s00453-006-0074-2
https://doi.org/10.1007/s00453-015-9982-0
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1145/2438645.2438649
https://doi.org/10.1016/j.tcs.2008.02.010
https://doi.org/10.1145/1978782.1978789
https://doi.org/10.1109/ICDCS.2003.1203510
http://arxiv.org/abs/1402.2552
https://arxiv.org/abs/1402.2552
https://doi.org/10.1137/S036301299427816X
https://doi.org/10.1137/0221015
https://doi.org/10.1016/j.jpdc.2015.06.004
https://doi.org/10.1016/j.jpdc.2015.06.004
https://doi.org/10.1002/net.21453
https://doi.org/10.1007/978-3-030-11072-7_17

29:18 Fast Deterministic Rendezvous in Labeled Lines

29 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

30 Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms, 10(3):12:1–12:15, 2014. doi:
10.1145/2601068.

31 L. C. Thomas. Finding your kids when they are lost. Journal of the Operational Research
Society, 43(6):637–639, 1992. doi:10.1057/jors.1992.89.

32 Roger Wattenhofer. Principles of distributed computing, 2023. Accessed on 2023-04-16. URL:
https://disco.ethz.ch/courses/fs23/podc/.

A The Line Colouring Algorithm

As announced in Proposition 1 in Section 2, we design a deterministic distributed algorithm
EarlyStopCV that, in the LOCAL model, properly 3-colours any infinite labeled line
such that the execution of this algorithm at any node x with initial label IDx terminates in
time O(log∗(IDx)). Our algorithm builds upon a solution to a problem posed in Homework
Exercises 1 from the Principles of Distributed Computing course at ETH Zürich [32].

At a very high level, we want to execute the Cole and Vishkin algorithm [12], but with
some modifications. We introduce four special colours, denoted by α, β, Pdone, Cdone, that
are defined in such a way that they are not equal to any colour that could be chosen using
the Cole and Vishkin strategy (e.g., they could be defined as negative integers). These
colours will be chosen by a node in certain situations where it needs to choose a colour
that is guaranteed to be different from its neighbour’s, but using the Cole and Vishkin
strategy might not work. Another significant modification is that each node will actually
choose two colours: its “final colour” that it will output upon terminating the algorithm,
but also an intermediate “Phase 1 colour”. These roughly correspond to the two parts of the
Cole and Vishkin strategy: in Phase 1, each node picks a colour that is guaranteed to be
different from each of its neighbours’ chosen colour (but selects it from a “large” range of
colours), and then in Phase 2, each node picks a final colour from the set {0, 1, 2}. However,
since we want to allow different nodes to execute different phases of the algorithm at the
same time (since we want to allow them to terminate at different times), each node must
maintain and advertise its “Phase 1” and “final” colours separately, so that another node
that is still performing Phase 1 is basing its decisions on its neighbours’ Phase 1 colours
(and not their final colours). Finally, we note that the original Cole and Vishkin strategy is
described for a directed tree, i.e., where each node has at most one parent and perhaps some
children, whereas our algorithm must work in an undirected infinite line, so we introduce a
pre-processing step (Phase 0) to set up parent/child relationships.

The first part of the algorithm partitions the undirected infinite line into directed sub-lines
that will perform the rest of the algorithm in parallel. In round 1, each node shares its unique
ID with both neighbours. In round 2 (also referred to as Phase 0), each node compares its
own ID with those that it received from its neighbours in round 1. If a node determines that
it is a local minimum (i.e., its ID is less than the ID’s of its neighbours), then it picks the
special colour α as its Phase 1 colour and proceeds directly to Phase 2 without performing
Phase 1. If a node determines that it is a local maximum (i.e., its ID is greater than the
ID’s of its neighbours), then it picks the special colour β as its Phase 1 colour and proceeds
directly to Phase 2 without performing Phase 1. All other nodes, i.e., those that are not a
local minimum or a local maximum, pick their own ID as their Phase 1 colour and continue to
perform Phase 1. Further, each such node also chooses one parent neighbour (the neighbour
with smaller ID) and one child neighbour (the neighbour with larger ID). In particular, the

https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/2601068
https://doi.org/10.1145/2601068
https://doi.org/10.1057/jors.1992.89
https://disco.ethz.ch/courses/fs23/podc/

A. Miller and A. Pelc 29:19

nodes that perform Phase 1 are each part of a directed sub-line that is bordered by local
maxima/minima, so the sub-lines can all perform Phase 1 in parallel without worrying that
the chosen colours will conflict with colours chosen in other sub-lines.

The second part of the algorithm, referred to as Phase 1, essentially implements the
Cole and Vishkin strategy within each directed sub-line. The idea is that each node follows
the Cole and Vishkin algorithm using its own Phase 1 colour and the Phase 1 colour of its
parent until it has selected a Phase 1 colour in the range {0, . . . , 51} that is different from its
parent’s Phase 1 colour, and then the node will proceed to Phase 2 where it will pick a final
colour in the range {0, 1, 2}. However, this idea must be modified to avoid three potential
pitfalls:
1. Suppose that, in a round t, a node v has a parent or child that stopped performing Phase

1 in an earlier round (and possibly has finished Phase 2 and has stopped executing the
algorithm). If node v still has a large colour in round t, i.e., not in the range {0, . . . , 51},
but continues to use the Cole and Vishkin strategy, then there is no guarantee that the
new colour it chooses will still be different than those of its neighbours. This is not an
issue for the original Cole and Vishkin algorithm, since it was designed in such a way
that all nodes execute the algorithm the exact same number of times (using a priori
knowledge of the network size). To deal with this scenario, node v first looks at the Phase
1 colours that were most recently advertised by its parent and child, and sees if either
of them is in the range {0, . . . , 51}. If node v sees that its parent’s Phase 1 colour is in
the range {0, . . . , 51}, then it knows that its parent is not performing Phase 1 in this
round, so instead of following the Cole and Vishkin strategy, it immediately adopts the
special colour Pdone as its Phase 1 colour and moves on to Phase 2 of the algorithm. On
the other hand, if node v sees that its child’s colour is in the range {0, . . . , 51}, then it
knows that its child is not performing Phase 1 in this round, so instead of following the
Cole and Vishkin strategy, it immediately adopts the special colour Cdone as its Phase 1
colour and moves on to Phase 2 of the algorithm. By adopting the special colours in this
way, node v’s Phase 1 colour is guaranteed to be different than any non-negative integer
colour that was previously adopted by its neighbours.

2. Suppose that a node v’s parent has a Phase 1 colour equal to a special colour (i.e., one of
α, β, Pdone, Cdone). The Cole and Vishkin strategy is not designed to work with such
special colours, so, a node v with such a parent will pretend that its parent has colour
0 instead. By doing this, it will choose some non-negative integer as dictated by the
Cole and Vishkin strategy, and this integer is guaranteed to be different from all special
colours, so v’s chosen Phase 1 colour will be different from its parent’s.

3. Suppose that a node v has a parent with an extremely large integer colour. The Cole
and Vishkin strategy will make sure that v chooses a new Phase 1 colour that is different
than the Phase 1 colour chosen by its parent, however, it is not guaranteed that this new
colour is significantly smaller than the colour v started with. In particular, we want to
guarantee that node v terminates Phase 1 within log∗(IDv) rounds, so we want node v’s
newly-chosen Phase 1 colour to be bounded above by a logarithmic function of its own
colour in every round (and never depend on its parent’s much larger colour). To ensure
this, we apply a suffix-free encoding to the binary representation of each node’s colour
before applying the Cole and Vishkin strategy. Doing this guarantees that the smallest
index where two binary representations of colours differ is bounded above by the length
of the binary representation of the smaller colour.

When a node is ready to proceed to Phase 2, it has chosen a Phase 1 colour from the set
{0, . . . , 51} ∪ {α, β} ∪ {Pdone, Cdone}, and its chosen Phase 1 colour is guaranteed to be
different from the Phase 1 colours of its two neighbours.

DISC 2023

29:20 Fast Deterministic Rendezvous in Labeled Lines

The third part of the algorithm, referred to as Phase 2, uses a round-robin strategy over
the 56 possible Phase 1 colours, which guarantees that any two neighbouring nodes pick their
final colour in different rounds. In particular, when executing each round of Phase 2, a node
calculates the current token value, which is defined as the current round number modulo
56. We assume that all nodes start the algorithm at the same time, so the current token
value is the same at all nodes in each round. In each round, each node that is performing
Phase 2 compares the token value to its own Phase 1 colour. If a node v’s Phase 1 colour is in
{0, . . . , 51} and is equal to the current token value, then it proceeds to choose its final colour
(as described below). Otherwise, if a node v’s Phase 1 colour is one of the special colours, it
waits until the current token value is equal to a value that is dedicated to that special colour
(i.e., 52 for α, 53 for β, 54 for Pdone, 55 for Cdone), then chooses its final colour in that
round. To choose its final colour, node v chooses the smallest colour from {0, 1, 2} that was
never previously advertised as a final colour by its neighbours. Then, v immediately sends
out a message to its neighbours to advertise the final colour that it chose, then v terminates.
Since two neighbouring nodes are guaranteed to have different Phase 1 colours, they will
choose their final colour in different rounds, so the later of the two nodes always avoids the
colour chosen by the earlier node, and there is always a colour from {0, 1, 2} available since
each node only has two neighbours.

Algorithm pseudocode
For any two binary strings S1, S2, denote by S1 · S2 the concatenation of string S1 followed
by string S2. For any positive integer i, the function BinaryRep(i) returns the binary string
consisting of the base-2 representation of i. Conversely, for any binary string S, the function
IntVal(S) returns the integer value when S is interpreted as a base-2 integer. For any
binary string S of length ℓ ≥ 1, the string is a concatenation of bits, i.e., S = sℓ−1 · · · s0, and
we will write S[i] to denote the bit si. The notation |S| denotes the length of S.

For any binary string S of length ℓ ≥ 1, we define a function EncodeSF(S) that returns
the binary string obtained by replacing each 0 in S with 01, replacing each 1 in S with 10,
then prepending 00 to the result. More formally, EncodeSF(S) returns a string S′ of length
2ℓ + 2 such that S′[2ℓ + 1] = S′[2ℓ] = 0, and, for each i ∈ {0, . . . , ℓ− 1}, S′[2i + 1] = S[i] and
S′[2i] = 1−S[i]. For example, EncodeSF(101) = 00100110. The function EncodeSF is an
encoding method with two important properties: an encoded string is uniquely decodable,
and, no encoded string is a suffix of another encoded string.

We define four special colours α, β, Pdone, Cdone that are not positive integers (i.e., they
cannot be confused with any node’s ID, and they cannot be confused with any non-negative
integer colour chosen by a node during the algorithm’s execution). Practically speaking, one
possible implementation is to use α = −4, β = −3, Pdone = −2, and Cdone = −1.

Algorithm 1 provides the pseudocode for the algorithm’s execution at a node. The node’s
two neighbours are referred to as A and B. Algorithms 2 and 3 are the subroutines that a
node uses to compute its new Phase 1 colour in each round.

A. Miller and A. Pelc 29:21

Algorithm 1 EarlyStopCV.

%% clockVal is assumed to contain the current local round number, starting at 1.
%% myID is assumed to contain the node’s initial identifier.
%% Initially, Acol.P1 = Bcol.P1 = Acol.final = Bcol.final = null

1: if clockVal == 1 then ▷ Round 1: get IDs of neighbours
2: Send myID to both neighbours
3: Receive IDA from A and receive IDB from B
4: else if clockVal == 2 then ▷ Phase 0: detect if local max or local min, otherwise assign parent and child
5: if myID < IDA and myID < IDB then ▷ I’m a local minimum
6: myPhase1Col← α
7: else if myID > IDA and myID > IDB then ▷ I’m a local maximum
8: myPhase1Col← β
9: else if IDA < myID and myID < IDB then ▷ neighbourhood IDs increase towards B

10: myPhase1Col← myID
11: parent← A
12: child← B
13: else ▷ neighbourhood IDs increase towards A
14: myPhase1Col← myID
15: parent← B
16: child← A
17: end if
18: Send myPhase1Col to both neighbours
19: Receive msgA from A and receive msgB from B
20: Acol.P1← msgA
21: Bcol.P1← msgB
22: doPhase1← (myPhase1Col ̸∈ {0, . . . , 51, α, β})
23: else if doPhase1 == true then ▷ Phase 1: detect if one of my neighbours is settled, otherwise perform CV
24: if parent == A then
25: myPhase1Col← ChooseNewPhase1Colour(myPhase1Col, Acol.P1, Bcol.P1)
26: else
27: myPhase1Col← ChooseNewPhase1Colour(myPhase1Col, Bcol.P1, Acol.P1)
28: end if
29: Send (“P1”, myPhase1Col) to both neighbours
30: if received a message of the form (key, val) from A then: Acol.key ← val
31: if received a message of the form (key, val) from B then: Bcol.key ← val
32: doPhase1← (myPhase1Col ̸∈ {0, . . . , 51, Pdone, Cdone})
33: else ▷ Phase 2: colour reduction down to {0, 1, 2}
34: token← clockVal mod 56
35: if (myPhase1Col == token) or

((myPhase1Col == α) ∧ (token == 52)) or
((myPhase1Col == β) ∧ (token == 53)) or
((myPhase1Col == Pdone) ∧ (token == 54)) or
((myPhase1Col == Cdone) ∧ (token == 55)) then

36: myFinalCol← smallest element in {0, 1, 2} \ {Acol.final, Bcol.final}
37: Send (“final”, myFinalCol) to both neighbours
38: terminate()
39: end if
40: if received a message of the form (key, val) from A then: Acol.key ← val
41: if received a message of the form (key, val) from B then: Bcol.key ← val
42: end if

DISC 2023

29:22 Fast Deterministic Rendezvous in Labeled Lines

Algorithm 2 ChooseNewPhase1Colour(myPhase1Col, ParentPhase1Col, ChildPhase1Col).

1: if ParentPhase1Col ∈ {0, . . . , 51} then
2: newColour← Pdone
3: else if ChildPhase1Col ∈ {0, . . . , 51} then
4: newColour← Cdone
5: else if ParentPhase1Col ∈ {Pdone, Cdone, α, β} then
6: newColour← CVChoice(myPhase1Col, 0)
7: else
8: newColour← CVChoice(myPhase1Col, ParentPhase1Col)
9: end if

10: return newColour

Algorithm 3 CVChoice(MyCol, OtherCol).

1: MyString← EncodeSF(BinaryRep(MyCol))
2: OtherString← EncodeSF(BinaryRep(OtherCol))
3: i← smallest x ≥ 0 such that MyString[x] ̸= OtherString[x]
4: newString← BinaryRep(i) · myString[i]
5: return IntVal(newString)

Null Messages, Information and Coordination
Raïssa Nataf #

Technion, Haifa, Israel

Guy Goren #

Protocol Labs, Haifa, Israel

Yoram Moses #

Technion, Haifa, Israel

Abstract
This paper investigates the role that null messages play in synchronous systems with and without
failures, and provides necessary and sufficient conditions on the structure of protocols for information
transfer and coordination there. We start by introducing a new and more refined definition of
null messages. A generalization of message chains that allow these null messages is provided, and
is shown to be necessary and sufficient for information transfer in reliable systems. Coping with
crash failures requires a much richer structure, since not receiving a message may be the result
of the sender’s failure. We introduce a class of communication patterns called resilient message
blocks, which impose a stricter condition on protocols than the silent choirs of Goren and Moses
(2020). Such blocks are shown to be necessary for information transfer in crash-prone systems.
Moreover, they are sufficient in several cases of interest, in which silent choirs are not. Finally, a
particular combination of resilient message blocks is shown to be necessary and sufficient for solving
the Ordered Response coordination problem.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Reasoning about belief and knowledge

Keywords and phrases null messages, fault tolerance, coordination, information flow, knowledge
analysis

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.30

Related Version Full Version: https://arxiv.org/abs/2208.10866 [17]

Funding Yoram Moses: Yoram Moses is the Israel Pollak academic chair at the Technion. Both his
work and that of Raïssa Nataf were supported in part by the Israel Science Foundation under grant
2061/19.

1 Introduction

Communication and coordination in distributed systems depend crucially on properties of
the model at hand. In synchronous systems in which processes have clocks and message
transmission times are bounded, sending explicit messages is not the only way to transmit
information. Suppose that a sender s needs to transmit its (binary) initial value vs to a
destination process d, in a system in which messages are delivered in 1 time step. If s
follows a protocol by which it sends d a message at time 0 in case vs = 0 and does not
send anything if vs = 1, then d can learn that vs = 1 at time 1 without receiving any
messages. Lamport called this “sending a message by not sending a message” in [13], and
he referred to not sending a message over a communication channel at a given time t as
sending a “null message.” In this paper we provide a new and more precise definition of null
messages, and investigate the general role that null messages play in information transfer
and in coordination in synchronous systems with and without failures.

© Raïssa Nataf, Guy Goren, and Yoram Moses;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 30; pp. 30:1–30:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raissa.nataf@campus.technion.ac.il
https://orcid.org/0009-0003-1127-754X
mailto:guy.goren@protocol.ai
https://orcid.org/0000-0003-2158-161X
mailto:moses@ee.technion.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2023.30
https://arxiv.org/abs/2208.10866
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Null Messages, Information and Coordination

In particular, our results extend and generalize those of Goren and Moses in [7], who
were the first to explicitly consider how silence can be used in systems with crash failures.

The possibility of failures makes information transfer a rather subtle issue. Denote by f

an a priori upper bound on the number of failures per execution. Consider the following
protocol, which we denote P1: In the first round process s sends a message to p reporting
whether its initial value vs is 1 or 0. In round 2, if process p has received a message stating
that vs = 1 it keeps silent, and it sends an actual message to d otherwise. A run r1 of P1
in which vs = 1 and no process fails is depicted in Figure 1. (In our figures, solid arrows
represent actual messages and dashed arrows represent null messages.) Note that if f = 0,
then process p receives the first round message from s in every run of P1. Consequently, if
vs = 1 then following the second round, d learns that vs = 1 since it did not hear from p.
Now assume that one process may crash (f = 1). In this case r1, where none fails, is a
legal execution of P1 but d is not informed that vs = 1 in r1. This is because d cannot
distinguish r1 from a run in which vs = 0 and p crashes before sending its message to d.

s
d

p

0 1 2
round 1 round 2

<d,2>

<s,0>

<p,1>

<latexit sha1_base64="WOtIXxO0L+e/KjzofNetSc5O7N4=">AAACb3icbVHbSsQwEM3W+3rXBwVBgougL0sr3h4FX3xTwd0Vt0XSdKrBJC1Jqiyhf+Gr/pef4R+Y7u6DexkInDlzhjmZiXPOtPH9n5o3Mzs3v7C4VF9eWV1b39jcauusUBRaNOOZeoyJBs4ktAwzHB5zBUTEHDrx23VV77yD0iyTD6aXQyTIi2Qpo8Q46ikUxLzGqQ3K542G3/T7gSdBMAQNNIy7583abZhktBAgDeVE627g5yayRBlGOZT1sNCQE/pGXqDroCQCdGT7lkt86JgEp5lyTxrcZ/93WCK07onYKSuLerxWkdNq3cKkl5FlMi8MSDoYlBYcmwxX/8cJU0AN7zlAqGLOK6avRBFq3JbqoYQPmglBZGJDBUnZDSJrw749W+W2EZRlOaqLuZs9ohww07UFjEkdMVC6EwTjC58E7ZNmcN48uz9tXO0Oj7GI9tABOkIBukBX6AbdoRaiSKJP9IW+a7/ejrfv4YHUqw17ttFIeMd/AHnA1Q==</latexit>

1

Figure 1 The run r1 of P1 in which d

is informed that vs = 1 when f = 0 but
not when f = 1.

s
d

p

0 1 2
round 1 round 2

<d,2>

<s,0>

<p,1>

<latexit sha1_base64="WOtIXxO0L+e/KjzofNetSc5O7N4=">AAACb3icbVHbSsQwEM3W+3rXBwVBgougL0sr3h4FX3xTwd0Vt0XSdKrBJC1Jqiyhf+Gr/pef4R+Y7u6DexkInDlzhjmZiXPOtPH9n5o3Mzs3v7C4VF9eWV1b39jcauusUBRaNOOZeoyJBs4ktAwzHB5zBUTEHDrx23VV77yD0iyTD6aXQyTIi2Qpo8Q46ikUxLzGqQ3K542G3/T7gSdBMAQNNIy7583abZhktBAgDeVE627g5yayRBlGOZT1sNCQE/pGXqDroCQCdGT7lkt86JgEp5lyTxrcZ/93WCK07onYKSuLerxWkdNq3cKkl5FlMi8MSDoYlBYcmwxX/8cJU0AN7zlAqGLOK6avRBFq3JbqoYQPmglBZGJDBUnZDSJrw749W+W2EZRlOaqLuZs9ohww07UFjEkdMVC6EwTjC58E7ZNmcN48uz9tXO0Oj7GI9tABOkIBukBX6AbdoRaiSKJP9IW+a7/ejrfv4YHUqw17ttFIeMd/AHnA1Q==</latexit>

1

Figure 2 The run r2 of P2 in which a silent
choir informs d that vs = 1 when f = 1.

Consider now a protocol P2 that differs from P1 only in that according to P2 process s
should send d a message at time 0 if and only if vs = 0. (Process s remains silent if vs = 1.)
Figure 2 depicts the run r2 of P2 where vs = 1 and no failures occur. Observe that in case
f = 1, process d is informed in r2 that vs = 1. As before, d cannot observe in r2 whether p
has crashed. However, since f = 1, at most one of the missing messages to d can be explained
by a process crash. The other missing message must be caused by the fact that vs = 1. Note
that exactly the same messages are sent in r1 and r2. Process d obtains different information
in the two cases because the protocols are different: In particular, s keeps silent toward d only
under certain conditions of interest according to P2 while it always keeps silent according to
P1. This is what provides d genuine information.

The above discussion motivates a new and more refined definition of null messages.
While [13] considers not receiving a message as the receipt of a null message, we define a null
message to be sent by a process i to its neighbor j at time t in a given execution if process i
does not send an actual message at time t, and there is at least one execution of the protocol
in which i does send j an actual message at time t. (A formal definition appears in Section 2.)
With such a definition, a null message is guaranteed to carry some nontrivial information.

Goren and Moses showed in [7] that information can be transmitted in silence even when
crashes may occur. Their Silent Choir Theorem states a necessary condition for d to learn
the initial value of s in a crash-prone system without a message chain from s. For failure-free

R. Nataf, G. Goren, and Y. Moses 30:3

executions, their necessary condition becomes the following: If d knows the value of vs at
time m > 0 without an actual message chain (i.e., a message chain exclusively composed of
actual messages) from s having reached it, there are at least f + 1 processes that receive an
actual message chain from s by time m− 1 and send no message to d at time m− 1. These
processes are called a silent choir. In r2, process d learns the value of s at time 2, and we
can see in Figure 2 that the set {s, p} constitutes a silent choir. However, as we shall see,
while being necessary for information transfer in crash-prone synchronous systems, the Silent
Choir Theorem’s conditions are not sufficient, even for failure-free executions.

Consider again the run r1 of Figure 1 and assume f = 1. The set {s, p} forms a silent
choir, i.e., the conditions of the Silent Choir Theorem hold. However, as we described above,
d does not learn that vs = 1 in r1. Process s, who belongs to the silent choir here, never
sends d a message under P1, and so its silence does not form a null message according to our
new definition. Naturally, strengthening the Silent Choir condition by requiring that the
processes of the silent choir actually send null messages at time m− 1, i.e., one time unit
before d gains the knowledge that vs = 1, could make it sufficient. However, the condition
would then not be necessary. For example, as depicted in Figure 2, s does not send d a null
message in the second round of r2 (which is at time m− 1 in the language of the Silent Choir
Theorem). Notice that, in addition, members of the silent choir do not necessarily send null
messages to d. Indeed, they do not even need to be neighbors of d.

Beyond the fundamental value of studying null messages to understand the differences
between synchronous and asynchronous models of distributed systems, judicious use of null
messages can lead to considerable savings. For a concrete example, consider a network
structured as depicted in Figure 3, in which there are different costs for sending over different
channels. This can arise, for example, from the three intermediate processes residing at the
same site or belonging to the same organization as s, while d is across the ocean, or just
connected via expensive channels. Assume, in addition, that d needs to know the value of vs,
where normally vs = 1 and only very rarely vs ̸= 1. Finally, we wish to be able to overcome
up to f = 2f = 2f = 2 process crashes. While sending an actual message chain from s to d would cost
$1001, null messages can be used to inform d that vs = 1 at a cost of $2 if vs = 1 and no
failures occur (see Figure 4). With such a solution, if vs = 0 then the cost may in the worst
case be as high as $3003. But if the latter is rare and the former is very common, such use of
null messages can provide a clear advantage. E.g., if for every 100 runs in which vs = 1 and
no failures occur we expect to see 2 runs where this is not the case, then using null messages
for the 102 runs will cost at most $6206, compared to $102102 spent by a protocol that uses
only actual messages in the network of Figure 3.

s
d$1

$1

$1

$1000

$1000

$1000

Figure 3 A network with different
communication costs. Sending an actual
message chain from s to d costs $1001.

s
d

Figure 4 The sender s can inform d that vs = 1
at a cost of $2 in a failure free run assuming a
bound of f = 2 failures.

This paper investigates the role of null messages for information flow and coordination in
synchronous systems with crash failures. Its main contributions are:

DISC 2023

30:4 Null Messages, Information and Coordination

1. We provide a new definition of null messages, whereby not sending a message is considered
to be a null message only if it conveys nontrivial information. Moreover, we formalize
an essential aspect of the synchronous model, by proving that enhanced message chains,
which can contain both actual and null messages, are necessary for information transfer
in synchronous systems.

2. We strengthen this result by proving that in order for there to be information transfer
from a process s to d, process d must know that an enhanced message chain from s has
reached it. This result plays an important role in the analysis of information transfer in
the presence of failures.

3. We identify communication patterns called resilient message blocks, which are necessary
for information transfer in crash-prone synchronous systems, proving a stronger and more
general theorem than the Silent Choir Theorem of [7]. Based on this theorem, we provide
necessary and sufficient conditions that characterize protocols for nice-run information
transfer, in which the transfer should succeed in failure-free executions, and for Robust
information transfer in which it should succeed more generally.

4. Finally, we provide an analysis of communication requirements from protocols solving
the Ordered Response coordination problem, based on resilient blocks.

This paper is structured as follows. In Section 2, we define the model and present
preliminary definitions and results regarding null messages, knowledge, and communication
graphs, which are used throughout the analysis. We show in Section 2.2 that it is impossible
to achieve information transfer from a process s to another process d in synchronous systems
without constructing an enhanced message chain from s to d. We then prove the stronger fact
(in Theorem 8) that in order for d to know the value of vs, it must know that an enhanced
message chain from s to d exists. This is followed in Section 3 by an analysis that identifies
the communication patterns that must be created by a protocol in runs where d learns the
value of vs Theorem 11. These structures, called resilient message blocks, can involve multiple
enhanced message chains that must be arranged in a particular manner. The analysis is
applied to characterize necessary and sufficient conditions on the communication patterns
solving Nice-run Information Transfer in Section 4. Based on Section 3 and the results of
application of Section 4, necessary and sufficient conditions for solving the Ordered Response
coordination problem are presented in Section 5. Finally, patterns solving Robust Information
Transfer are characterized in Section 6. A brief conclusion is presented in Section 7. Due to
space restrictions, the proofs for Sections 5 and 6 appear in the paper’s Arxiv version [17].

1.1 Related Work
Lamport’s seminal paper [12] focuses on the role of message chains in asynchronous message
passing systems. Indeed, Chandy and Misra showed in [4] that the only way in which
knowledge about the state of the system at remote sites can be gained in asynchronous
systems is via the construction of message chains. As mentioned above, in his later paper [13],
Lamport points out that in synchronous systems information can also be conveyed using
null messages. In a more recent paper [3], Ben Zvi and Moses analyzed knowledge gain and
coordination in a model in which processes are reliable (no process ever crashes) and share a
global clock, and there are upper bounds (possibly greater than 1) on message transmission
times along each of the channels in the network. They extend the notion of a message chain
to so-called syncausal message chains, which are sequences consisting of a combination of
time intervals that correspond to the upper bounds and actual messages. They show that
syncausal chains are necessary and sufficient for point-to-point information transfer when

R. Nataf, G. Goren, and Y. Moses 30:5

f = 0. Moreover, they define a coordination problem called Ordered Response (which we
revisit in Section 5) and show that a communication pattern they call a centipede, which
generalizes message chains for their model, is necessary and sufficient for solving this problem.
As mentioned in the Introduction and as will be defined in Section 2, not sending a message
does not always count as a null message, even if message delays are bounded. The notion of
an enhanced message chain thus refines that of a syncausal message chain: Every enhanced
message chain is a syncausal message chain, but the converse is not true.

Our paper extends the work [7]. Their Silent Choir Theorem, discussed in the previous
section, gives necessary conditions that are not sufficient even for failure-free executions. In
the current paper we take the further step of characterizing necessary and sufficient properties
of communication patterns that solve this problem, and investigate the role of silence in the
more general coordination problem of Ordered Response coordination problem. None of the
previous works (e.g., [13, 3, 7]) requires not sending a message to be informative in order to
count as a null message. Making this requirement plays a technically significant role in the
analyses performed in the current paper.

In Sections 4–6 we consider the design of protocols that are required to behave in a good
way in the common case, which in this case is when the initial values are appropriate and no
failures occur. Focusing on the design of protocols that are optimized for the common case
has a long tradition in distributed computing (see, e.g., [15, 11, 14]). In our synchronous
model Amdur, Weber, Hadzilacos and Halpern use them in order to design efficient protocols
for Byzantine agreement [1, 10]. Guerraoui and Wang and others use them for Atomic
Commitment [9, 7]. Solutions for Consensus in a synchronous Byzantine model optimized for
the common case appeared in [8], also making explicit use of null messages. However, how null
messages can be used for information transfer and coordination has not been characterized
in a formal way.

2 Model and Preliminary Results

We follow the modeling of [7]. We consider a standard synchronous message-passing model
with a set P of N > 2 processes and benign crash failures. For convenience, one of the
processes will be denoted by s and called the source, while another, d can be considered
as the destination. Processes are connected via a communication network defined by a
directed graph (P, ch) where an edge from process i to process j is called a channel, and
denoted by chi,j . We assume that the receiver of a message detects the channel over which it
was delivered, and thus knows the identity of the sender. The model is synchronous: All
processes share a discrete global clock that starts at time 0 and advances by increments
of one. Communication in the system proceeds in a sequence of rounds, with round m+ 1
taking place between time m and time m+ 1, for m ≥ 0. A message sent at time m (i.e., in
round m+ 1) from a process i to j will reach j at time m+ 1, i.e., at the end of round m+ 1.
In every round, each process performs local computations, sends a set of messages to other
processes, and finally receives messages sent to it by other processes during the same round.
At any given time m ≥ 0, a process is in a well-defined local state. We denote by ri(m) the
local state of process i at time m in the run r. For simplicity, we assume that the local state
of a process i consists of its initial value vi, the current time m, and the sequence of the
events that i has observed (including the messages it has sent and received) up to that time.
In particular, its local state at time 0 has the form (vi, 0, {}). We focus on deterministic
protocols, so a protocol Q describes what messages a process should send and what decisions
it should take, as a function of its local state.

DISC 2023

30:6 Null Messages, Information and Coordination

Processes in our model are prone to crash failures. A faulty process in a given execution
fails by crashing at a given time. A process that crashes at time t is completely inactive
from time t + 1 on, and so it performs no actions and in particular sends no messages in
round t+ 2 and in all later rounds. It behaves correctly up to and including round t. Finally,
in round t+ 1 (which takes place between time t and time t+ 1) this process sends a (possibly
strict) subset of the messages prescribed by the protocol. For ease of exposition we assume
that the process does not perform any additional local actions (e.g., decisions) in round t+ 1.

For ease of exposition, we say that a process that has not failed up to and including time t
is active at time t. We will consider the design of protocols that are required to tolerate up
to f crashes. We denote by γf the model described above in which no more than f processes
crash in any given run. We assume that a protocol has access to the values of N and f as
well as to the communication network (P, ch). A run is a description of a (possibly infinite)
execution of the system. We call a set of runs a system. We will be interested in systems
of the form RQ = R(Q, γf) consisting of all runs of a given protocol Q in which no more
than f processes fail. A failure pattern determines who fails in the run, and what messages
it succeeds in sending when it fails. Formally, we define:

▶ Definition 1 (Failure patterns). A failure pattern for a model γf is a set

FP ≜ {⟨q1, t1, Bl(q1)⟩, . . . ⟨qk, tk, Bl(qk)⟩}

of k ≤ f triples, where qi ∈ P, ti ≥ 0, and Bl(qi) ⊆ P for i = 1, . . . , k. We consider a run r

to be compatible with a failure pattern FP = {⟨q1, t1, Bl(q1)⟩, . . . ⟨qk, tk, Bl(qk)⟩} if
1. each process qi fails in r at time ti and only the processes q1, . . . , qk fail in r, while
2. for every process p to whom qi should send a message in round ti + 1 according to Q

(based on qi’s local state at time ti in r), a message from qi to p is sent at time ti in r iff
p /∈ Bl(qi).

If a process qi is specified as failing in a pattern FP , then for every p ∈ Bl(qi), we consider
the channel chqi,p to be blocked from round ti + 1 on.

For ease of exposition in this paper we will restrict our attention to the case in which the
source s has a binary initial value vs ∈ {0, 1}, while the initial values of all other processes
p ̸= s are fixed. Thus, there are only two distinct initial global states in a system RQ.
Moreover, the deterministic protocol Q, a given initial global state (in our case the value
of vs) and a failure pattern uniquely determine a run. Relaxing these assumptions would
not modify our results in a significant way; it would only make proofs quite a bit more
cumbersome.

2.1 Defining Knowledge
Our analysis makes use of a formal theory of knowledge in distributed systems. We sketch
the theory here; see [6] for more details and a general introduction to the topic. In general,
a process i can be in the same local state in different runs of the same protocol. We shall
say that two runs r and r′ are indistinguishable to process i at time m if ri(m) = r′

i(m).
The current time m is represented in the local state ri(m), and so, ri(m) = r′

i(m′) can hold
only if m = m′. Notice that since we assume that processes follow deterministic protocols, if
ri(m) = r′

i(m) then process i is guaranteed to perform the same actions at time m in both r
and r′ if it is active at time m.

▶ Definition 2 (Knowledge). Fix a system R, a run r ∈ R, a process i and a fact φ. We
say that Kiφ (which we read as “process i knows φ”) holds at time m in r iff φ is true at
time m at all runs r′ ∈ R such that ri(m) = r′

i(m).

R. Nataf, G. Goren, and Y. Moses 30:7

Definition 2 immediately implies the so-called Knowledge property: If Kiφ holds at time m
in r, then so does φ. The logical notation for “the fact φ holds at time m in the run r with
respect to the system R” is (R, r,m) ⊨ φ. Often, the system is clear from context and is not
stated explicitly. In this paper, the system will typically consist of all the runs of a given
protocol Q in the current model of computation, which we denote by RQ. Observe that
knowledge can change over time. Thus, for example, Kj(vi = 1) may be false at time m in a
run r and true at time m+ 1, based perhaps on messages that j does or does not receive in
round m+ 1.

An essential connection between knowledge and action in distributed protocols, called the
knowledge of preconditions principle (KoP), is provided in [16]. It states that whatever
must be true whenever a particular action is performed by a process i must be known by i
when the action is performed. More formally, we say that a fact φ is a necessary condition
for an action α in a system R if for all runs r ∈ R and times m, if α is performed at time m
in r then φ must be true at time m in r. In our model the KoP can be stated as follows:

▶ Theorem 3 (KoP [16]). Fix a protocol Q for γf and let α be an action of process i in RQ.
If φ is a necessary condition for α in RQ then Kiφ is a necessary condition for α in RQ.

As observed in [2], in synchronous systems the passage of time can provide a process
information about events at remote sites. (E.g., p can know that q performs an action at
some specific time, based purely on the protocol.) In order to focus on genuine flow of
information between processes, we make the following definition:

▶ Definition 4. Information transfer (IT) between s and d is achieved when Kd(vs = b)
holds, for some value b ∈ {0, 1}.

Since the initial value vs is independent of the protocol, for d to learn this value requires
genuine flow of information from s to d.

2.2 Null Messages and Enhanced Message Chains
As discussed in the Introduction, if no message is ever sent over a given channel at time t under
the protocol Q, then the absence of such a message in a given execution is not informative.
We now define not sending to be a null message only if it is informative:

▶ Definition 5. Let r be a run of some protocol Q. Process iii sends jjj a null message
at (r, t) if

chi,j is not blocked at (r, t),
i does not send an actual message over chi,j at (r, t), and
there is a run r′ of Q in which i sends an actual message over chi,j at (r′, t).

We can now generalize message chains to allow for null messages as well as actual ones:

▶ Notation 1. We denote by θ = ⟨p, t⟩ the process-time pair consisting of a process p and
time t. Such a pair is used to refer to the point at time t on p’s timeline.

▶ Definition 6. Let r be a run of a protocol Q. We say that there is an enhanced message
chain from θ = ⟨p, t⟩ to θ′ = ⟨q, t′⟩ in r, and write θ ⇝Q,r θ

′θ ⇝Q,r θ
′θ ⇝Q,r θ
′, if there exist processes

p = i1, i2 . . . , ik = q and times t ≤ t1 < t2 < · · · < tk = t′ such that for all 1 ≤ h < k

process ih sends either an actual message or a null message to ih+1 at (r, th). (We omit the
subscript and write simply θ ⇝ θ′θ ⇝ θ′θ ⇝ θ′ when Q and r are clear from the context.)

DISC 2023

30:8 Null Messages, Information and Coordination

Observe that Figure 4 contains three enhanced message chains between process s and d. Two
of them contain a single actual message each, and one does not contain any actual message.

We are now ready to show that information transfer in synchronous systems requires the
existence of an enhanced message chain.

▶ Theorem 7. Let f ≥ 0 and let Q be a protocol and r ∈ R(Q, γf). Then Kd(vs = 1) holds
at (r,m) only if ⟨s, 0⟩⇝ ⟨d,m⟩ in r.

Proof. Assume, by way of contradiction, that Kd(vs = 1) at (r,m), and that ⟨s, 0⟩ ̸⇝ ⟨d,m⟩
in r. By Definition 2 it suffices to show a run r′ ∈ R(Q, γf) in which vs ≠ 1 such that
rd(m) = r′

d(m). Denote

T ≜ {θ ∈ V : ⟨s, 0⟩ ̸⇝ θ in r}.

I.e., T is the set of nodes to which there is no enhanced message chain from ⟨s, 0⟩ in the
run r. Observe that, by assumption, ⟨d,m⟩ ∈ T . We construct a run r′ as follows: The
initial global state r′(0) differs from r(0) only in the value of the variable vs (thus, vs = 0
in r′), which appears in s’s local state. All other initial local states are the same in r′(0) and
in r(0). Finally, all processes have the same failure patterns in both runs. We now prove by
induction on time t that ri(t) = r′

i(t) holds for all nodes ⟨i, t⟩ ∈ T .

Base: t = 0. Assume that ⟨i, 0⟩ ∈ T . By definition of T , it follows that i ̸= s, and by
construction of r′ we immediately have that ri(0) = r′

i(0), as required.

Step. Let t > 0 and assume that the claim holds for all nodes ⟨j, t′⟩ with t′ < t. Fix a
node ⟨i, t⟩ ∈ T . Clearly, ⟨i, t− 1⟩ ∈ T , and so by the inductive hypothesis ri(t− 1) = r′

i(t− 1).
To establish our claim regarding ⟨i, t⟩, it suffices to show that i receives exactly the same
messages at time t in both runs. Recall that the synchrony of the model implies that the
only messages that i can receive at time t are ones sent at time t− 1. Hence, we reason by
cases, showing that every process z ≠ i sends i the same messages at time t− 1 in both runs.

Suppose that ⟨z, t− 1⟩ ∈ T . Then by the inductive assumption rz(t− 1) = r′
z(t− 1), i.e.,

process z has the same local state at time t− 1 in both runs. Since Q is deterministic
and since the runs r and r′ have identical failure patterns, z sends i a message in r at
time t − 1 in r′ iff it does so in r. Moreover, if it sends a message, it sends the same
message in both cases.
Suppose that ⟨z, t−1⟩ /∈ T , i.e., there is an enhanced message chain from ⟨s, 0⟩ to ⟨z, t−1⟩
in r. Since ⟨i, t⟩ ∈ T we have that z does not send a message to i at time t − 1 in r.
Assume by way of contradiction that i receives such a message in r′. In particular, this
implies that the channel chz,i is not blocked in r′, and since r and r′ have the same
failure pattern, chz,i is not blocked in r. Hence, by definition, there is a null message
from ⟨z, t− 1⟩ to ⟨i, t⟩ in r. This contradicts the fact that, by assumption, ⟨i, t⟩ ∈ T . It
follows that, in both r and r′, process i does not receive any message from z at time t.

Since ri(t − 1) = r′
i(t − 1) process i performs the same actions at time t − 1 in both runs.

Since, in addition, i receives exactly the same messages at (r′, t) as it does in (r, t) as we
have shown, it follows that ri(t) = r′

i(t).
The inductive argument above showed that, for all processes i and all times t ≤ m, if i is

has not failed by time t and ⟨i, t⟩ ∈ T , then ri(t) = r′
i(t). Since ⟨d,m⟩ ∈ T by assumption, it

follows that, in particular, rd(m) = r′
d(m). Since vs ̸= 1 in r′ we obtain that ¬Kd(vs = 1)

at time m in r by Definition 2. This contradicts the assumption that Kd(vs = 1) holds at
time m in r, completing the proof. ◀

R. Nataf, G. Goren, and Y. Moses 30:9

Theorem 7 establishes that enhanced message chains are necessary for information
transfer for all values of f ≥ 0. In fact, when f = 0, enhanced message chains are also
sufficient. (We omit a proof of this particular claim since it will follow from the more general
Theorem 16). This demonstrates that enhanced message chains play an analogous role in
reliable synchronous settings to the one that standard message chains play in asynchronous
systems (cf. [4]).

In reliable systems, null messages are detected as reliably as actual messages are. As
discussed in the Introduction, however, this is no longer true in the presence of failures. The
knowledge formalism allows us to crisply capture a stronger requirement than the one in
Theorem 7, which lies at the heart of the issue.

▶ Theorem 8. Let f ≥ 0, let r be a run of RQ = R(Q, γf) and denote θs = ⟨s, 0⟩ and
θd = ⟨d,m⟩. Then Kd(vs = 1) holds at (r,m) only if Kd(θs ⇝ θd) holds at (r,m).

Proof. Suppose that (RQ, r,m) ⊨ Kd(vs = 1). Definition 2 implies that (RQ, r
′,m) ⊨

Kd(vs = 1) holds for every run r′ such that r′
d(m) = rd(m). By Theorem 7 it follows

that (RQ, r
′,m) ⊨ (θs ⇝ θd) for every such r′, and so by Definition 2 we obtain that

(RQ, r,m) ⊨ Kd(θs ⇝ θd), as claimed. ◀

3 Dealing with Failures

The need to know that an enhanced chain has reached d, established in Theorem 8, is not
the same as the mere existence of such a chain. This difference matters when processes may
fail, because then silence can be ambiguous, and null messages can be confused with process
crashes. How, then, can d come to know that an enhanced chain has reached it, in a setting
where f > 0 processes can crash? One possibility would be to have the protocol construct
f + 1 enhanced chains from ⟨s, 0⟩ to ⟨d,m⟩ whose sets of participating processes are pairwise
disjoint.1 While such an assumption may be needed in a protocol that in a precise sense
guarantees information transfer (we revisit this point in Section 6), in many instances the
destination process can learn the sender’s value even if the protocol does not employ such a
scheme.

Our purpose is to investigate the communication patterns under which d can learn the
value of vs. For this purpose, we will find it convenient to associate a “communication graph”
with every run, which we define as follows. The nodes of the graph are process-time pairs.
Edges correspond to messages sent among processes, to null messages, and a local tick of the
clock at a process. More formally:

▶ Definition 9 (Communication Graphs). The communication graph of a run r of protocol Q
is CGQ(r) ≜ (V, E), with nodes V = P × N and edges E = El ∪ Ea(r) ∪ En(r), where

El = {(⟨i, t⟩, ⟨i, t+ 1⟩) : i ∈ P, t ∈ N},
Ea(r) = {(⟨i, t⟩, ⟨j, t+ 1⟩) : i sends an actual message to j at time t in r},
En(r) = {(⟨i, t⟩, ⟨j, t+ 1⟩) : i sends a null message to j at time t in r}

Notice that both the set of nodes V and the set El of local edges are the same in all
communication graphs. Observe that the communication graph directly represents enhanced
message chains: θ ⇝Q,r θ

′θ ⇝Q,r θ
′θ ⇝Q,r θ
′ holds if and only if CGQ(r) contains a path from θ to θ′.

1 A similar issue arises in the Byzantine Agreement literature (cf. [5]) where many process-disjoint chains
are used to overcome the possibility of failures.

DISC 2023

30:10 Null Messages, Information and Coordination

3.1 Resilient Message Blocks
The Silent Choir Theorem of [7] states that a necessary condition for Kd(vs = 1) to hold
at time m without an actual chain from s to d, is for there to be actual message chains
to f + 1 members of the silent choir, after which they are all silent to d at time m − 1.
As discussed in the Introduction, however, these members need not send d a null message
at m− 1. Indeed, members of the “choir” need not even be neighbors of d. In this section we
will present a strictly stronger condition on the communication pattern than the one in their
theorem, called a resilient message block. The new condition will also be more informative
as it is explicitly formulated in terms of null messages. Moreover, for the interesting case of
optimizing communication for failure-free executions, our resilient message blocks will be
both necessary and sufficient for information transfer.

Very roughly speaking, a process that knows about failures might detect the existence of
an enhanced chain more easily than one who is unaware of failures. E.g., if d has detected all f
faulty processes, then it can readily detect null messages sent by correct processes. Correctly
coping with such issues requires a somewhat subtle definition and theorem statement.

▶ Notation 2 (B null free paths). Fix a protocol Q, let r be a run of Q, and let B be a set
of processes. A path π in CGQ(r) that does not contain null messages sent by processes in
the set B is called B null free (we write that “π is B ̸n” for brevity).

A B ̸n path can contain null messages, but not ones “sent” by members of B. Roughly
speaking, if the members of B crash, this path can remain a legal enhanced message chain.
In light of Theorem 8, we are now ready to characterize the properties of communication
graphs of protocols that enable information transfer. Using B ̸n paths we can now define the
central communication patterns that will play a role in our analysis:

▶ Definition 10 ((f/failed)-resilient message block). Let r be a run of a protocol Q and denote
by Fr the set of processes that fail in r. Let θ, θ′ ∈ P×N be two nodes. An (f/failed)-resilient
message block from θ to θ′ in CGQ(r) is a set Γ of paths between θ and θ′ such that for every
set of processes B such that |B ∪ Fr| ≤ f , there is a B ̸n path in CGQ(r) from θ to θ′ in Γ.

Recall that an actual message chain contains no null messages, and is thus a B ̸n path
for every set B of processes. As a result, an actual message chain between two nodes is, in
particular, an f/failed-resilient message block, for all runs and all values of f ≥ 0.

Our next theorem states that in order for a process d to know in some run r at time m
that there is an enhanced message chain from some node to itself, there must be a resilient
message block between them. Roughly speaking, the claim is proved by way of contradiction.
We assume a set B of processes contradicting the assumption and construct a run r′ that
is indistinguishable to d from r in which nodes involving processes of B cut all paths from
θs = ⟨s, 0⟩ to θd = ⟨d,m⟩. I.e., there is no enhanced message chain from θs to θd in r′. More
precisely, given a set B of processes we will define the set TB to be the set of nodes to which
there is no B ̸n path from θs. We give an example of such a set in Figure 5. The highlighted
nodes are in TB while the others are not in TB.2 As detailed in the complete proof, when
constructing r′, we make the processes of B fail at times that make these failures unnoticeable
by processes appearing in TB (and hence by the contradiction assumption neither by d at

2 For the sake of clarity we do not draw all of the nodes and edges of the communication graph. Thus, for
example, we do not represent all the nodes along local time lines and the local edges in El that connect
them.

R. Nataf, G. Goren, and Y. Moses 30:11

time m). As a result, process d does not know at (r,m) that an enhanced message chain has
reached it. Since by Theorem 7, this is a necessary condition, we conclude that ¬Kd(vs = 1)
at (r,m), as claimed. We can now show:

<latexit sha1_base64="rcQz6ehTi35DaNvsDio6EQU/g+Y=">AAACenicbZFNSwMxEIbT9avWr1aPXkKLoChlV+rHUfDiTQVbhe5SstlpDSbZJckqJexv8ao/yf/iwXTbg60OBN688wwzzMQZZ9r4/lfFW1peWV2rrtc2Nre2d+qN3Z5Oc0WhS1OeqqeYaOBMQtcww+EpU0BEzOExfrme5B9fQWmWygczziASZCTZkFFinDWo74WcyBEHnJ0EOFSlHtRbftsvA/8VwUy00CzuBo3KbZikNBcgDeVE637gZyayRBlGORS1MNeQEfpCRtB3UhIBOrLl9AU+cE6Ch6lyTxpcur8rLBFaj0XsSEHMs17MTcz/cv3cDC8jy2SWG5B02miYc2xSPFkFTpgCavjYCUIVc7Ni+kwUocYtrBZKeKOpEEQmNlSQFP0gsjYsx7OTv20FRVHMczF3vefIqfM/m8MC6owp6U4QLC78r+idtoPz9tl9p3XVmR2jivZREx2iAF2gK3SD7lAXUTRG7+gDfVa+vaZ35B1PUa8yq9lDc+F1fgCFw8Q2</latexit>

hp, 1i

<latexit sha1_base64="N9YIFeCJIFYFmA8iO1CFGI/P9no=">AAACenicbZFNSwMxEIbT9bt+tfboJVgERSm7Uj+OghdvVrAqdJeSzU5rMMmuSVYpYX+LV/1J/hcPptsebHUg8OadZ5hhJs4408b3vyrewuLS8srqWnV9Y3Nru1bfuddprih0acpT9RgTDZxJ6BpmODxmCoiIOTzEz1fj/MMrKM1SeWdGGUSCDCUbMEqMs/q1RsiJHHLAL8cBDlWp+7Wm3/LLwH9FMBVNNI1Ov165CZOU5gKkoZxo3Qv8zESWKMMoh6Ia5hoyQp/JEHpOSiJAR7acvsD7zknwIFXuSYNL93eFJULrkYgdKYh50vO5sflfrpebwUVkmcxyA5JOGg1yjk2Kx6vACVNADR85QahiblZMn4gi1LiFVUMJbzQVgsjEhgqSohdE1obleHb8t82gKIpZLuau9ww5cf5nc5hDnTEh3QmC+YX/FfcnreCsdXrbbl62p8dYRbtoDx2gAJ2jS3SNOqiLKBqhd/SBPivf3p536B1NUK8yrWmgmfDaP4fPxDc=</latexit>

hq, 1i

<latexit sha1_base64="aUbg+uhSfa2jTfpUDlUm79bxCdM=">AAACenicbZFNSwMxEIbT9avWr1aPXkKLoChlV+rHUfDiTQVbhe5SstlpDSbZJckqJexv8ao/yf/iwXTbg60OBN688wwzzMQZZ9r4/lfFW1peWV2rrtc2Nre2d+qN3Z5Oc0WhS1OeqqeYaOBMQtcww+EpU0BEzOExfrme5B9fQWmWygczziASZCTZkFFinDWo74WcyBEHrE8CHKpSD+otv+2Xgf+KYCZaaBZ3g0blNkxSmguQhnKidT/wMxNZogyjHIpamGvICH0hI+g7KYkAHdly+gIfOCfBw1S5Jw0u3d8VlgitxyJ2pCDmWS/mJuZ/uX5uhpeRZTLLDUg6bTTMOTYpnqwCJ0wBNXzsBKGKuVkxfSaKUOMWVgslvNFUCCITGypIin4QWRuW49nJ37aCoijmuZi73nPk1PmfzWEBdcaUdCcIFhf+V/RO28F5++y+07rqzI5RRfuoiQ5RgC7QFbpBd6iLKBqjd/SBPivfXtM78o6nqFeZ1eyhufA6P4vnxDk=</latexit>

hs, 1i

<latexit sha1_base64="O4GISiaQStnTLxR8zK6gCnDjIg4=">AAACiHicbVHLTsMwEHTDq5RXgSMXQ4XggKoEAYUbggs3QKKA1ESV42yLhe0E2wFVVs58DVf4Fv4GN+2BFlayNJ6dfWg2zjjTxve/K97M7Nz8QnWxtrS8srpWX9+412muKLRpylP1GBMNnEloG2Y4PGYKiIg5PMTPl8P8wysozVJ5ZwYZRIL0JesxSoyjuvXtsOxhFSSFDTmRfQ74Ze/gEIeq/BTdesNv+mXgvyAYgwYax013vXIdJinNBUhDOdG6E/iZiSxRhlHXsBbmGjJCn0kfOg5KIkBHttyjwLuOSXAvVe5Jg0v2d4UlQuuBiJ1SEPOkp3ND8r9cJze908gymeUGJB0N6uUcmxQPjcEJU0ANHzhAqGJuV0yfiCLUOPtqoYQ3mgpBZGLDoVmdILL2t3mNoCiKSV3M3ewJ5Yj5X5vDlNQRI6U7QTBt+F9wf9gMTprHt0eN86PxMapoC+2gfRSgFjpHV+gGtRFF7+gDfaIvr+b5Xss7G0m9yrhmE02Ed/EDrLfJkg==</latexit>

hq0, 2i

<latexit sha1_base64="+tBwl7B0J9kMyIAq+w/L9TQdSLA=">AAACe3icbZFLSwMxEMfT9V1f9XHzElxEESm74usoePGmglWhu5RsdlpDk+ySZJUa9rt41W/khxFMtz3Y6kDgP//5DTNMkpwzbYLgq+bNzM7NLywu1ZdXVtfWGxubDzorFIUWzXimnhKigTMJLcMMh6dcAREJh8ekfzWsP76A0iyT92aQQyxIT7Iuo8Q4q9PYjjiRPQ443z86xpGqkk7DD5pBFfivCMfCR+O47WzUbqI0o4UAaSgnWrfDIDexJcowyqGsR4WGnNA+6UHbSUkE6NhW65d4zzkp7mbKPWlw5f7usERoPRCJIwUxz3q6NjT/q7UL072ILZN5YUDS0aBuwbHJ8PAWOGUKqOEDJwhVzO2K6TNRhBp3sXok4ZVmQhCZ2khBWrbD2NqoWs8Oc+uHZVlOcgl3syfIkfM/W8AU6owR6b4gnD74X/Fw3AzPmqd3J/7lyfgzFtEO2kUHKETn6BJdo1vUQhS9oXf0gT5r357vHXpHI9SrjXu20ER4pz8AtMRo</latexit>

hp0, 2i
<latexit sha1_base64="0V+DrHd67yx/aRntBsxxHHblH8s=">AAACiXicbVHLSgMxFE3Hd321unQTWkQXUmZ8FleCG3cqWBU6Q8lkbmswyQxJRilh9n6NW/0V/8Z02kVbvRA4OffcB+fGGWfa+P5PxVtYXFpeWV2rrm9sbm3X6juPOs0VhQ5NeaqeY6KBMwkdwwyH50wBETGHp/j1epR/egOlWSofzDCDSJCBZH1GiXFUr9YIyx5WQVLYkBM54ICzg4OjExyq8lf0ak2/5ZeB/4JgAppoEne9euU2TFKaC5CGcqJ1N/AzE1miDKOuYTXMNWSEvpIBdB2URICObLlIgfcdk+B+qtyTBpfsdIUlQuuhiJ1SEPOi53Mj8r9cNzf9dmSZzHIDko4H9XOOTYpHzuCEKaCGDx0gVDG3K6YvRBFqnH/VUMI7TYUgMrHhyK1uEFk77V4zKIpiVhdzN3tGOWb+1+YwJ3XEWOlOEMwb/hc8HreC89bZ/Wnz6nRyjFW0hxroEAXoAl2hG3SHOoiiD/SJvtC3t+4FXtu7HEu9yqRmF82Ed/0LKy7Jww==</latexit>

hp00, 3i

<latexit sha1_base64="pSjLkvDl3KTOQMkQrOnMKo/2bjQ=">AAACiXicbVHLSgMxFE3Hd31VXboJFtGFlBnfuCp0404Fq0JnKJnMbQ1NMmOSUUqYvV/jVn/FvzGddmGrFwIn55774Nw440wb3/+ueHPzC4tLyyvV1bX1jc3a1vaDTnNFoU1TnqqnmGjgTELbMMPhKVNARMzhMR60RvnHV1CapfLeDDOIBOlL1mOUGEd1a3th2cMqSAobciL7HPDLwcHRCQ5V+Su6tbrf8MvAf0EwAXU0idvuVuUmTFKaC5CGcqJ1J/AzE1miDKOuYTXMNWSEDkgfOg5KIkBHtlykwPuOSXAvVe5Jg0v2d4UlQuuhiJ1SEPOsZ3Mj8r9cJze9y8gymeUGJB0P6uUcmxSPnMEJU0ANHzpAqGJuV0yfiSLUOP+qoYQ3mgpBZGLDkVudILL2t3v1oCiKaV3M3ewp5Zj5X5vDjNQRY6U7QTBr+F/wcNwIzhtnd6f15unkGMtoF+2hQxSgC9RE1+gWtRFF7+gDfaIvb9ULvEvvaiz1KpOaHTQVXusHLT3JxA==</latexit>

hq00, 3i

<latexit sha1_base64="pc6MayV5YqGnQLCozhNnuyCFejs=">AAACfXicbVFNSwMxEE3X7/pVFbx4CRbBQym7Wq1HwYs3FawK3aVks9M2mGSXJKuUuH/Gq/4hf42m2x5sdSDw5s0bZvImzjjTxve/Kt7C4tLyyupadX1jc2u7trP7oNNcUejQlKfqKSYaOJPQMcxweMoUEBFzeIyfr8b1xxdQmqXy3owyiAQZSNZnlBhH9Wr7ISdywAGHwHnjFIeqTHu1ut/0y8B/QTAFdTSN295O5SZMUpoLkIZyonU38DMTWaIMoxyKaphryAh9JgPoOiiJAB3Z8gMFPnJMgvupck8aXLK/OywRWo9E7JSCmKGer43J/2rd3PQvIstklhuQdDKon3NsUjx2AydMATV85AChirldMR0SRahxnlVDCa80FYLIxIYKkqIbRNaG5Xp2nNt6UBTFrC7mbvaMcsL8r81hTuqIidKdIJg3/C94OGkG582zu1b9sjU9xio6QIfoGAWojS7RNbpFHUTRG3pHH+iz8u0deQ2vOZF6lWnPHpoJr/0DZfzFfw==</latexit>

h`, 3i

<latexit sha1_base64="KVixXQAAyyAWzEz/4Ms49/j6ivY=">AAACh3icbVHLSgMxFE3Hd31VXboJFsGF1Bmpj6Xixp0K1hY6Q8lkbttgkhmSjFLCbP0at/ov/o3ptAvbeuHC4dxzH5wbZ5xp4/s/FW9peWV1bX2jurm1vbNb29t/0WmuKLRoylPViYkGziS0DDMcOpkCImIO7fj1blxvv4HSLJXPZpRBJMhAsj6jxDiqV8NhOcMqSAobciIHHHBy2sShKnHRq9X9hl8GXgTBFNTRNB57e5WHMElpLkAayonW3cDPTGSJMoy6gdUw15AR+koG0HVQEgE6suUZBT52TIL7qXIpDS7Zvx2WCK1HInZKQcxQz9fG5H+1bm7615FlMssNSDpZ1M85Nike+4ITpoAaPnKAUMXcrZgOiSLUOPeqoYR3mgpBZGLDsVfdILL2r3f1oCiKWV3M3e4Z5YT5X5vDnNQRE6V7QTBv+CJ4OW8El42Lp2b9pjl9xjo6REfoBAXoCt2ge/SIWoiiD/SJvtC3t+GdeZfe9UTqVaY9B2gmvNtfF+HJVg==</latexit>

hd, 4i<latexit sha1_base64="P2Qm6JOmr/z9wurb5bZg+iRnpO4=">AAACenicbZFNSwMxEIbT9avWr1aPXkKLoChlV+rHUfDiTQVbhe5SstlpDSbZJckqJexv8ao/yf/iwXTbg60OBN688wwzzMQZZ9r4/lfFW1peWV2rrtc2Nre2d+qN3Z5Oc0WhS1OeqqeYaOBMQtcww+EpU0BEzOExfrme5B9fQWmWygczziASZCTZkFFinDWo74WcyBEHrE98HKpSD+otv+2Xgf+KYCZaaBZ3g0blNkxSmguQhnKidT/wMxNZogyjHIpamGvICH0hI+g7KYkAHdly+gIfOCfBw1S5Jw0u3d8VlgitxyJ2pCDmWS/mJuZ/uX5uhpeRZTLLDUg6bTTMOTYpnqwCJ0wBNXzsBKGKuVkxfSaKUOMWVgslvNFUCCITGypIin4QWRuW49nJ37aCoijmuZi73nPk1PmfzWEBdcaUdCcIFhf+V/RO28F5++y+07rqzI5RRfuoiQ5RgC7QFbpBd6iLKBqjd/SBPivfXtM78o6nqFeZ1eyhufA6P4ndxDg=</latexit>hs, 0i

Figure 5 A communication graph and its corresponding set TB (highlighted) for B = {q, p′, ℓ}.

▶ Theorem 11. Let r be a run of a given protocol Q and let Fr denote the set of faulty
processes in r. If Kd(vs = 1) holds at (r,m), there is an (f/failed)-resilient message block
from θs ≜ ⟨s, 0⟩ to θd ≜ ⟨d,m⟩ in CGQ(r).

The complete proof appears in the Appendix.3 We point out that Theorem 11 is stronger
than the Silent Choir Theorem of [7]. Namely, as we claim in Lemma 12 the existence of the
depicted resilient message block implies that a silent choir exists. However, the converse is
not true. Remember the example of Figure 1. The set of processes {s, p} is a silent choir for
f = 1 but clearly, there is no f -resilient message block – take for instance B = {p}, there is
no B ̸n path from ⟨s, 0⟩ to ⟨d, 2⟩.

As the following lemma establishes, Theorem 11 implies the Silent Choir Theorem:

▶ Lemma 12. If there is an f/failed-resilient message block from θ to θ′ in CGQ(r), then
there exists a silent choir from θ to θ′ in r.

We are now ready to characterize the communication structures needed to solve informa-
tion transfer and coordination in several interesting cases.

4 Application: Information Transfer in Nice Runs

Theorem 11 is at the heart of information transfer in fault-prone synchronous systems.
f -resilient message blocks constitute a necessary pattern for information transfer in our
model since without them, one cannot know that an enhanced message chain reaches it.
Clearly, in a system prone to crash failures, it is natural to require for information to
be conveyed in failure-free runs. Focusing on the design of protocols that are optimized
for the common case has a long tradition in distributed computing and can be useful in
applications including Consensus, Atomic Commitment, and blockchain protocols (see, e.g.,
[1, 10, 15, 11, 14, 8]).

Clearly, the information that a null message conveys depends crucially on the protocol.
More precisely, it depends on the conditions under which i would not send an actual message.
To account for this, we make the following definition:

3 Every claim is completely proved either in the main text,in the Appendix or in the full version of the
paper [17].

DISC 2023

30:12 Null Messages, Information and Coordination

▶ Definition 13. We say that process i sends a null message over chi,j at time t in case φφφ
in a given protocol QQQ if for every run r ∈ RQ in which chi,j is not blocked at (r, t), process i
sends a null message over chi,j at (r, t) iff (RQ, r, t) ⊨ φ.

Roughly speaking, a process p “sends a null message in case φ” at time t if whenever it is
active at time t and φ does not hold, then p sends an actual message. If φ does hold at
time t, then p keeps silent. By definition, a null message is sent in case φ only if φ is true.
Therefore, in a reliable system (i.e., when f = 0), sending a null message in case φ informs
the recipient that φ holds.

We focus on solving the IT problem in nice runs, which are formally defined as follows:

▶ Definition 14. Let Q be a protocol. The run of Q in which vs = 1 and no process fails is
called QQQ’s nice run. We denote Q’s nice run by r̂(Q)r̂(Q)r̂(Q) and the communication graph of r̂(Q)
by nG(Q)nG(Q)nG(Q). When Q is clear from the context, we simply write r̂̂r̂r.

Every protocol Q has a unique nice run. We show in this section that the conditions of
Theorem 11 are also sufficient for information transfer in nice runs. Clearly, in a failure-free
execution r, it holds that Fr = ∅. An f/failed-resilient message block with Fr = ∅ is a central
structure for information transfer in nice runs and will be used in Section 5. It can be defined
in slightly simpler terms as follows:

▶ Definition 15 (f -resilient message block). Let θ, θ′ ∈ P × N be two nodes. An f -resilient
message block from θ to θ′ in CGQ(r) is a set Γ of paths between θ and θ′ such that for every
set of processes B of size |B| ≤ f , there is a B ̸n path in CGQ(r) from θ to θ′ in Γ.

Observe that the presence of an f -resilient message block in the communication graph
of a run r suffices to ensure that in any run r′ that “looks the same” to d at (r′,m) i.e.,
rd(m) = r′

d(m), there is an enhanced message chain reaching d.

▶ Theorem 16 (Nice-run IT). f-resilient message blocks are necessary and sufficient for
solving IT in the nice run. Namely,

(Necessity) If Kd(vs = 1) at (r̂,m) then there is an f -resilient message block from θs to
θd in nG.
(Sufficiency) If a communication graph CG contains an f -resilient message block between
θs and θd, then there exists a protocol Q such that nG(Q) = CG that solves IT between θs

and θd.

Theorem 16 gives a tight characterization of the communication patterns needed to solve IT
in nice runs: Every solution must construct an f -resilient message block, and for every
f -resilient message block, there exists an IT protocol that uses only the paths in this block
in its nice run.

The necessity part of Theorem 16 results from Theorem 11 applied to r̂ where the set of
faulty processes is Fr = ∅. To show sufficiency, we need to describe a protocol Q as claimed.
Before sketching the proof, we discuss and define a class of protocols used in the proof.

In protocols solving IT in the nice run, messages only need to convey whether the sender
has detected that the run is not nice. To consider this more formally, for a given protocol Q
we denote by ψnice the fact “the current run is r̂ .” Typically, if f > 0, it is impossible for
a process to know that ψnice is true: Even if a process has observed no failures, or indeed,
even if no failures have occurred by a given time t, there may be run indistinguishable to the
process in which one or more processes fail after time t. Nevertheless, a process may readily
know that ¬ψnice, if it knows of a failure or detects that vs = 0. Of course, because of the
Knowledge property, in the nice run r̂ itself, no process will ever know ¬ψnice.

R. Nataf, G. Goren, and Y. Moses 30:13

▶ Definition 17 (Nice-based Message Protocols). A protocol Q is a Nice-based Message
protocol (NbM protocol) if (i) All actual messages sent are single bit messages and whenever
a process p sends an actual message, it sends a ‘0’ if Kp¬ψnice and sends a ‘1’ otherwise
(i.e., if ¬Kp¬ψnice) and (ii) for all processes p, each null message sent by p over any channel
is a null message in case ¬Kp¬ψnice.

We remark that a process p can efficiently check whether Kp(¬ψnice) by simply comparing
p’s local state at (r, t) to its local state at (r̂, t). If the two states are identical, then the
predicate Kp(¬ψnice) is false. Otherwise, it is true.

Proof sketch (of sufficiency in Theorem 16). Suppose that CG contains an f -resilient mes-
sage block between θs and θd. The desired protocol Q is defined to be a Nice-based Message
protocol such that nG(Q) = CG. I.e., for every edge e ≜ (⟨u, t⟩, ⟨v, t+ 1⟩) in CG: If e ∈ En,
then u keeps silent if ¬K(¬ψnice) and should send a ‘0’ to v otherwise. If e ∈ Ea, then
u should send ‘1’ to v if ¬Ku(¬ψnice) and ‘0’ otherwise. We show that the assumptions
guarantee that for every run r of Q there is (at least one) path in nG(Q) from θs to θd along
which no silent process fails in r. We show by induction on time that in every run r in which
vs = 0, for each node ⟨p, t⟩ along this path, p knows at time (r, t) that the run is not nice.
Hence, d also knows at (r,m) that the run is not nice. Since ψnice holds throughout r̂, so
does ¬Kd¬ψnice. It follows that Kd(vs = 1) at (r̂,m), as claimed. ◀

5 Application: Coordination

f -resilient message blocks and Nice-run IT are useful tools for solving more complex problems.
We now show how they can be used to characterize solutions to the Ordered Response (O-R)
coordination problem. This problem was originally defined in [3], and it requires a sequence
of actions to be performed in linear temporal order, in response to a triggering signal from
the environment.4 For simplicity, we identify the signal to be received iff vs = 1. We assume
that each process ih ∈ {i1, i2, . . . , ik} has a specific action ah to perform, and that the actions
should be performed in order, provided that initially vs = 1.

▶ Definition 18 (Ordered Response). We say that a protocol Q is consistent with the
instance OR = ⟨vs = 1, a1, . . . , ak⟩ of the Ordered Response (O-R) problem if it guarantees
that ah is performed in a run only if vs = 1 and a1, ..., ah−1 are performed. In particular, if
both ah−1 and ah are performed at times th−1 and th respectively, then th−1 ≤ th. Protocol Q
solves this instance OR if, in addition, all of the actions ah are performed in Q’s nice run.

Let us denote by ah the fact that the action ah has (already) been performed. Since,
by definition of O-R, both vs = 1 and ah−1 are necessary conditions for performing ah, the
Knowledge of Preconditions principle (Theorem 3) implies that these facts must be known
when ah is performed:

▶ Lemma 19. Suppose that Q solves the instance OR = ⟨vs = 1, a1, . . . , ak⟩ of O-R. For
every run r of Q and action ah performed (at time th) in r, we have
1. (RQ, r, th) ⊨ Kih

(vs = 1), and
2. (RQ, r, th) ⊨ Kih

(ah−1) if h > 1.

4 In [3] Ordered Response was studied in a reliable setting with no crashes, and upper bounds on message
delivery times; a very different set of assumptions than here.

DISC 2023

30:14 Null Messages, Information and Coordination

For a protocol Q solving an instance of Ordered Response, every action ah, is performed
at some specific time th in the nice run r̂ = r̂(Q). For ease of exposition we denote by
by θh ≜ ⟨ih, th⟩ the node of nG(Q) where the action is taken, and by θ+

h ≜ ⟨ih, th + 1⟩ the
node of ih one time step after the node θh.

We can use Lemma 19 to provide necessary conditions on the nice communication graph of
protocols that solve Ordered Response. Lemma 19(1) implies that Q must perform Nice-run
IT to θh, for all actions ah. Lemma 19(2), in turn, implies that ih needs to learn that ah−1
has been performed in order to perform its action. A straightforward way to do this is by
performing Nice-run IT directly between consecutive actions, i.e., by creating an f -resilient
block between θh−1 and θh. While this is a possible solution, it is not the only way that ih
can obtain this knowledge. Process ih can also learn about the previous action indirectly.
This requires ih to know that ih−1 couldn’t have failed (since otherwise ih would have an
indication that it failed) and that it received the information needed to perform ah−1. The
possibility of acting on indirect information is where solving the Ordered Response problem
goes beyond Nice-run IT. We can show the following:5

▶ Theorem 20 (O-R Necessity). Let Q be a protocol solving OR = ⟨vs = 1, a1, . . . , ak⟩ for
some sequence of times t1 ≤ t2 ≤ . . . ≤ tk. Then nG(Q) must contain the following blocks:
1. An f -resilient message block between θs and θx, for each x ≤ k; and
2. An (f−1)-resilient message block between θ+

x−1 and θx that does not contain null messages
sent by ix−1, for each 1 < x ≤ k.

Observe that Item 2 of Theorem 20 implies the existence of an (f − 1)-resilient message
block in which ih does not send null messages. This requirement is weaker than the existence
of an f -resilient message block. While the conditions for O-R stated in Theorem 20 are
necessary, they are not sufficient in general. Indeed, it is unclear what conditions on nG(Q)
might be sufficient to solve O-R for general protocols Q. In the Appendix, we present a
natural class of protocols for which conditions that are both necessary and sufficient can be
stated and proven (see Theorems 31 and 32).

6 Robust Information Transfer

We now turn to consider protocols that convey information in a “robust” way. Namely,
they ensure that in every run in which vs = 1 and the source process s does not fail, the
destination eventually knows that vs = 1.

▶ Definition 21 (Robust Information Transfer). A protocol Q is said to solve Robust Informa-
tion Transfer between processes s and d if, for every run r of Q in which vs = 1 and s does
not fail, there is a time m such that Kd(vs = 1) holds at (r,m).

Clearly, a protocol that solves the Robust Information Transfer problem also solves, in
particular, IT in its nice run. However, Robust Information Transfer is a strictly harder
problem and so, as shown in this section, its solutions require more communication than is
allowed by f -resilient message blocks.

▶ Theorem 22 (Robust IT Necessity). Let Q be a protocol that solves Robust IT between s

and d. Then, there exists m ≥ 0 such that
nG(Q) contains an actual message sent from s to d no later than at time m− 1, or
nG(Q) contains f + 1 paths from θs = ⟨s, 0⟩ to θd = ⟨d,m⟩ that are disjoint in message
senders (except for s and d) such that in at least one of these paths, s does not send null
messages.

5 Recall that all proofs for Sections 5 and 6 appear in [17].

R. Nataf, G. Goren, and Y. Moses 30:15

Proof sketch. The claim is proved by way of contradiction assuming there exists no m

as described in the Theorem. We then consider different cases according to the way the
Theorem’s assumptions are violated. For each case, we construct a run r ∈ RQ in which
vs = 1 and s does not fail as well as a corresponding run r′ in which there is no enhanced
message chain from θs to θd and that is indistinguishable by d. By Theorem 7, it results
that ¬Kd(vs = 1) at (r,m), completing the proof. ◀

An interesting difference between the necessary conditions for solving the Nice-run IT and
the ones for Robust IT is in that for the former, process disjointness is required only for
the processes sending null messages, while for the latter it is required for all processes.
This resembles the conditions of [5] where in order to solve Byzantine Agreement in the
synchronous byzantine model, the communication network must have a connectivity of at
least 2f + 1. Thus, the paths from the source process s must be process disjoint the stronger
sense.

We now show that the conditions of Theorem 22 are not only necessary, but also sufficient.

▶ Theorem 23 (Robust IT Sufficiency). Let CG be a communication graph satisfying the
conditions of Theorem 22. Then there is a protocol Q with nG(Q) = CG that solves the Robust
IT problem.

In analogy to how we defined Nice-based Message protocols in Section 4, we define in the
Appendix (Definition 29) what we call Robust-based Message protocols – protocols in which
whether messages are sent and the contents of the messages sent depend on whether a
process knows that (vs = 0 ∨ s failed). Taken together, Theorems 22 and 23 provide a tight
characterization of the communication patterns of protocols solving Robust Information
Transfer.

7 Conclusions

Every model of distributed computing provides particular means by which processes can
communicate, and these can have a profound impact on the problems that can be solved
in the model and on the form that protocols solving them will have. Synchronous systems
with global clocks, for example, allow nontrivial use of null messages, which are completely
meaningless in the asynchronous model, for example. Since a message not sent can be
informative only if there are alternative conditions under which it would be sent, null
messages are especially useful as a means of shifting communication costs to optimize for the
common case. As illustrated in Figures 3 and 4 an demonstrated in the Atomic Commitment
protocols of [7], shifting these costs in a careful way can result in significant savings.

By refining the definitions of null messages, we were able to investigate fundamental
aspects of information transfer and coordination in synchronous systems with crash failures.
In particular, we obtained characterizations of protocols that solve information transfer and
coordination problems in nice, failure-free executions. A central tool in our analysis is the
notion of an f -resilient message block, which is significantly more refined than the silent
choirs of [7]. Indeed, while constructing silent choirs is a necessary condition on protocols
solving information transfer in nice runs, constructing f -resilient blocks is both necessary
and sufficient. For the Ordered Response coordination problem, where liveness needs to
be guaranteed in nice runs, we obtain a condition based on resilient message blocks which,
again, is both necessary and sufficient. No similar analysis of Ordered Response has been
attempted in the literature.

DISC 2023

30:16 Null Messages, Information and Coordination

References
1 Eugene S. Amdur, Samuel M. Weber, and Vassos Hadzilacos. On the message complexity of

binary byzantine agreement under crash failures. Distributed Computing, 5(4):175–186, 1992.
2 Ido Ben-Zvi and Yoram Moses. On interactive knowledge with bounded communication. Journal

of Applied Non-Classical Logics, 21(3-4):323–354, 2011. URL: http://jancl.e-revues.com/
article.jsp?articleId=17078.

3 Ido Ben-Zvi and Yoram Moses. Beyond lamport’s happened-before: On time bounds and the
ordering of events in distributed systems. Journal of the ACM (JACM), 61(2):1–26, 2014.

4 K. M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40–52, 1986.
5 Danny Dolev. The byzantine generals strike again. Journal of algorithms, 3(1):14–30, 1982.
6 Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning About

Knowledge. MIT Press, 1995. doi:10.7551/mitpress/5803.001.0001.
7 Guy Goren and Yoram Moses. Silence. J. ACM, 67:3:1–3:26, 2020. doi:10.1145/3377883.
8 Guy Goren and Yoram Moses. Optimistically tuning synchronous byzantine consensus:

another win for null messages. Distributed Comput., 34(5):395–410, 2021. doi:10.1007/
s00446-021-00393-8.

9 Rachid Guerraoui and Jingjing Wang. How fast can a distributed transaction commit? In
Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017,
Chicago, IL, USA, May 14-19, 2017, pages 107–122. ACM, 2017. doi:10.1145/3034786.
3034799.

10 Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal protocols for byzantine agreement.
Mathematical Systems Theory, 26(1):41–102, 1993.

11 Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures. In
ACM SIGPLAN Notices, volume 47, pages 141–150. ACM, 2012.

12 L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558–565, 1978.

13 Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM
Trans. Program. Lang. Syst., 6:254–280, 1984. doi:10.1145/2993.2994.

14 Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Fairledger: A fair
blockchain protocol for financial institutions. In Pascal Felber, Roy Friedman, Seth Gilbert,
and Avery Miller, editors, 23rd International Conference on Principles of Distributed Systems,
OPODIS 2019, December 17-19, 2019, Neuchâtel, Switzerland, volume 153 of LIPIcs, pages
4:1–4:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
OPODIS.2019.4.

15 Barbara Liskov. Practical uses of synchronized clocks in distributed systems. Distributed
Computing, 6(4):211–219, 1993.

16 Yoram Moses. Relating knowledge and coordinated action: The knowledge of preconditions
principle. In Proceedings of TARK,, pages 231–245, 2015. doi:10.48550/arXiv.1606.07525.

17 Raïssa Nataf, Guy Goren, and Yoram Moses. Null messages, information and coordination,
2023. arXiv:2208.10866.

Appendix

Additional details regarding Failure Patterns defined in Section 2

Our technical analysis is facilitated by defining a strictness ordering among failure patterns,
and associating a minimal failure pattern with each run.

Notice that there may be several failure patterns that are compatible with a given run.
In particular, blocking a channel along which no message should be sent does not affect
processes’ local states.

http://jancl.e-revues.com/article.jsp?articleId=17078
http://jancl.e-revues.com/article.jsp?articleId=17078
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1145/3377883
https://doi.org/10.1007/s00446-021-00393-8
https://doi.org/10.1007/s00446-021-00393-8
https://doi.org/10.1145/3034786.3034799
https://doi.org/10.1145/3034786.3034799
https://doi.org/10.1145/2993.2994
https://doi.org/10.4230/LIPIcs.OPODIS.2019.4
https://doi.org/10.4230/LIPIcs.OPODIS.2019.4
https://doi.org/10.48550/arXiv.1606.07525
https://arxiv.org/abs/2208.10866

R. Nataf, G. Goren, and Y. Moses 30:17

▶ Definition 24 (Failure patterns comparison). Let FP = {⟨qi, ti, Bl(qi)⟩}i≤k and FP ′ =
{⟨q′

j , t
′
j , Bl

′(h′
j)⟩}j≤k′ be two failure patterns with k, k′ ≤ f , and denote by F and F ′ the sets

of processes that appear in these patterns, respectively. We say that FP ′ is harsher than FP

(denoted by FP ′ ≤ FP) if F ⊆ F ′ and for every qi ∈ F :
t′i < ti, or
ti = t′i and Bl(qi) ⊆ Bl′(qi)

Note that processes that don’t fail in r′ might fail in r. We now define what we call a minimal
failure pattern wrt. a run.

▶ Definition 25. Let r be a run and let FP be a failure pattern compatible with r. We say
that FP is minimal wrt. r if for every failure pattern FP ′ that is compatible with r and such
that FP is harsher than FP ′ (i.e., FP ≤ FP ′), it holds that FP ′ = FP .

Clearly, for a given run r there is only one minimal compatible failure pattern. We denote
it by FP (r). In the proofs appearing in this section, we will be interested in comparing
communication graphs of two runs of the same protocol. We compare the communication
graphs regardless of the edges category. Formally:

▶ Definition 26 (unlabeled-edge subgraph). Let CG = (V, E) and CG′ = (V, E′) be two
communication graphs. We say that CG is an “unlabeled-edge” subgraph of CG′, and write
CG ⊆u CG′ if for every edge e ∈ E it is the case that e ∈ E′. (Although e can be an actual
message edge in one graph and a null-message edge in the other.) In the rest of paper, we
often write “subgraph” to stand in for “unlabeled-edge subgraph”.

We can now show:

▶ Lemma 27. If FP (r′) ≤ FP (r) for two runs of a protocol Q, then CGQ(r′) ⊆u CGQ(r).

Proof. Both graphs have the same set of nodes. We now prove that for each e ∈ El ∪Ea(r′)∪
En(r′), it holds that e ∈ El ∪ Ea(r) ∪ En(r).

El(r) = El(r′).
Let e ≜ (⟨p, t⟩, ⟨p′, t+ 1⟩) ∈ Ea(r′), i.e., p sends p′ an actual message at (r′, t). If p sends
p′ an actual message at (r, t) then e ∈ Ea(r). Otherwise, since FP (r′) ≤ FP (r), it holds
that the channel chp,p′ is not blocked at (r, t). Hence, by the definitions of communication
graphs and of null messages, we have that e ∈ En(r). So e ∈ E.
Finally, let e ≜ (⟨p, t⟩, ⟨p′, t+ 1⟩) ∈ En(r′). In particular, the channel chp,p′ is not blocked
at (r′, t). Hence by null messages definition and the fact that FP (r) ≤ FP (r′) it holds
that e ∈ Ea(r) ∪ En(r). ◀

Proof of Theorem 11

In the proof of Theorem 11, we will construct a run r′ that is similar to r but in which
we make fail additional processes. In order to ensure that these additional failures are not
noticed by d (and hence to ensure that d does not distinguish r from r′), we make the
processes fail at a specific critical time that we define as follows:

▶ Definition 28 (Critical Time). Let r be a run of Q, let B be a set of processes and let p
be a process. For every pair θ and θ′ of nodes of CG(Q), the critical time tp = tp(θ, θ′) wrt.
(CGQ(r), B) is defined to be the minimal time mp such that CGQ(r) contains a B ̸n path from θ

to ⟨p,mp⟩ as well as a path from ⟨p,mp⟩ to θ′. If no such time mp exists, then tp = ∞.

DISC 2023

30:18 Null Messages, Information and Coordination

Informally, the critical time of a process p represents the first time at which p can learn about
an event local to s and may be able to inform d about this event. Making relevant processes
fail at their critical times ensures that d does not notice these failures and hence that d does
not distinguish the constructed run r′ from the nice run. We can now prove Theorem 11:

Proof. Assume by way of contradiction that no such block exists in CGQ(r). I.e., there
exists a set B such that |B ∪ Fr| ≤ f and every path from θs to θd in CGQ(r) contains a null
message from a process in B. Let B be a minimal set (by set inclusion) with this property.
Define the set TB to be:

TB ≜ {⟨p, t⟩ ∈ V : There is no B ̸n path from θs to ⟨p, t⟩ in CGQ(r)}

Notice that our assumption about θd implies that θd ∈ TB. Moreover, observe that if
⟨i, t⟩ ∈ TB , then ⟨i, t′⟩ ∈ TB for all earlier times 0 ≤ t′ < t.

We show that there exists a run r′ of Q such that r′
d(m) = rd(m) and there is no enhanced

message chain from θs to θd in r′. This will contradict the fact that Kd(θs ⇝ θd) holds
at time m in r. We construct r′ as follows: The initial global state is r′(0) = r(0). Each
process b ∈ B crashes in r′ at its critical time tb ≜ tb(θs, θd) wrt. (CGQ(r), B) without
sending any messages from time tb on. Moreover, every process in Fr\B crashes in precisely
the same manner in r′ as it does in r. By definition, the critical time of a process p ∈ Fr

is necessarily smaller or equal to the actual time at which p fails in r. We hence have
that FP (r′) ≤ FP (r). Clearly, there is no path from θs to θd in CGQ(r′). Notice that by
minimality of B, each process p ∈ B has a finite critical time tp = tp(θs, θd) wrt. (CGQ(r), B).
We now prove by induction on t that for all ⟨i, t⟩ ∈ TB , if i has not crashed by time t in r′,
then ri(t) = r′

i(t).

Base: t = 0. By assumption, r′(0) = r(0). Thus, r′
i(0) = ri(0) for every process i and in

particular for those satisfying ⟨i, 0⟩ ∈ TB .

Step. Let t > 0 and assume that the claim holds for all nodes ⟨l, t′⟩ with t′ < t. Fix a
node ⟨i, t⟩ ∈ TB . Clearly, ⟨i, t−1⟩ ∈ TB , and so by the inductive hypothesis ri(t−1) = r′

i(t−1).
To establish our claim regarding ⟨i, t⟩, it suffices to show that i receives exactly the same
messages at time t in both runs. Since messages are delivered in one time step in our model,
the only messages that i can receive at time t are ones sent at time t− 1. Hence, we reason
by cases, showing that every process z ̸= i sends i the same messages at time t− 1 in both
runs.

Suppose that ⟨z, t− 1⟩ ∈ TB .
If z ∈ Fr\B then it is active at time t − 1 in r′ iff it is active at this time in r. We
have by the inductive assumption that it has the same local state in r. Since Q is
deterministic, z sends i a message at time t− 1 in r′ iff it does so in r. Moreover, if it
sends a message, it sends the same message in both cases.
We show that if z ∈ B, then the channel chz,i is not blocked at time t−1 in r′. Assume
by way of contradiction that chz,i is blocked at time t − 1. This means that z has
failed in r′ by time t − 1. Since z ∈ B and z has failed in r′ by time t − 1, we have
that tz ≤ t− 1. By definition of z’s critical time tz, there is a B ̸n path π from θs to
⟨z, tz⟩ in CGQ(r). There also is a path in CGQ(r) from ⟨z, tz⟩ to ⟨z, t− 1⟩ consisting
of locality edges. Together, these two paths form a B ̸n path from θs to ⟨z, t − 1⟩ in
CGQ(r), contradicting the assumption that ⟨z, t− 1⟩ ∈ TB .

R. Nataf, G. Goren, and Y. Moses 30:19

Assume that z ∈ B and chz,i is not blocked at time t−1 in r′. Then, as in the previous
case, the inductive assumption and the fact that Q is deterministic imply that exactly
the same communication occurs between ⟨z, t− 1⟩ and ⟨i, t⟩ in both runs.
Finally, assume that z /∈ B ∪ Fr. Then z is active at time t− 1 in both r′ and r. We
have by the inductive assumption that it has the same local state in r. Since Q is
deterministic, z sends i a message at time t− 1 in r′ iff it does so in r. Moreover, if it
sends a message, it sends the same message in both cases.

Now suppose that ⟨z, t− 1⟩ /∈ TB , i.e., there is a B ̸n path from θs to ⟨z, t− 1⟩ in CGQ(r).
Since ⟨i, t⟩ ∈ TB we have that z does not send a message to i at time t− 1 in r. There is
no edge from ⟨z, t− 1⟩ to ⟨i, t⟩ in CGQ(r). Since FP (r′) ≤ FP (r), it holds by Lemma 27
that CGQ(r′) ⊆u CGQ(r) and hence, there is no edge from ⟨z, t− 1⟩ to ⟨i, t⟩ in CGQ(r′)
either. Meaning that i does not receive a message from z neither at (r, t) nor at (r′, t).

Since ri(t− 1) = r′
i(t− 1) process i performs the same actions at time t− 1 in both runs.

Since, in addition, i receives exactly the same messages at time t in r′ as it does in r̂ as we
have shown, it follows that ri(t) = r′

i(t).
The inductive argument above showed that, for all processes i and all times t ≤ m, if

i is active at time t and ⟨i, t⟩ ∈ TB, then ri(t) = r′
i(t). Since, θd ∈ TB by assumption, it

follows that, in particular, rd(m) = r′
d(m). Since there is no enhanced message chain from

θs to θd in r′, we obtain that ¬Kd(θs ⇝ θd) at time m in r by the Definition 2 of the
knowledge operator. This contradicts the assumption that Kd(θs ⇝ θd) holds at time m
in r, completing the proof. ◀

Proof of Lemma 12

Proof. Denote by Fr the set of faulty processes in r, and assume that the conditions of the
Silent Choir Theorem do not hold. I.e., neither a silent choir nor an actual message chain
from θ to θ′ exist in r. Let θ′ = ⟨q,m⟩. Let S be the set of processes such that for each
p ∈ S there is an actual message chain from θ to ⟨p,m− 1⟩. Since there is no silent choir,
the following holds: |S ∪ Fr| ≤ f .

Let B ≜ S ∪ Fr and let π be a path from θ to θ′ in CGQ(r). Since there is no actual
message chain from θ to θ′ in CGQ(r) we get that there is an edge from a process of B in π
that is in En, i.e., corresponds to a null message sent by a process in B. This holds for every
path from θ to θ′. Hence there exists a set of processes B such that |B ∪ Fr| ≤ f and such
that there is no B ̸n path from θ to θ′ in CGQ(r), i.e., the conditions of Theorem 11 do not
hold, completing the proof. ◀

Proof of Theorem 16

Proof. The assumptions guarantee that there will always be at least one path from θs to θd in
CG along which no “silent” process fails. Let Q′ be an NbM protocol such that nG(Q′) = CG.
We show by induction that in all runs in which vs = 0 each process along the path will detect
that the run is not nice. In particular, j will be able to distinguish the run from the nice one
by time m. It follows that Kd(vs = 1) holds in r̂ at time m.

Let r′ be a run in which vs = 0 and denote by B the set of processes that fail in this
run. Clearly, |B| ≤ f . Let π be a B ̸n path in nG(Q′), which is guaranteed to exist by the
assumption. Let r′ be a run in which vs = 0. We now prove by induction on time that for
each node ⟨p, t⟩ in π it holds that Kp(¬ψnice) holds at (r′, t). .

DISC 2023

30:20 Null Messages, Information and Coordination

Base: t = 0. In this case, p = s. Since vs appears in s’s local state and its value differs to
its value in the nice run, Ks(¬ψnice) holds at time 0.

Step: t > 0. We consider the nodes ⟨q, t − 1⟩ and ⟨p, t⟩ in π. By the induction hypo-
thesis Kq(¬ψnice) holds at t− 1 in r′. We now reason by cases according to the class of the
edge (⟨q, t− 1⟩, ⟨p, t⟩) in nG(Q′).

Case 1: (⟨q, t− 1⟩, ⟨p, t⟩) ∈ El then p = q and since the fact ¬ψnice is a stable property
we have by the induction hypothesis that Kp(¬ψnice) holds at (r′, t).
Case 2: (⟨q, t− 1⟩, ⟨p, t⟩) ∈ Ea(r̂):

Case 2a: in the run r′ process q does not send p a message, then p detects that the
run is not r̂ (in which, by assumption, it would receive a message from q).
Case 2b: q does send a message to p in r′ then, by the induction assumption and the
fact that q sends 0 if Kq(¬ψnice) it follows that p receives a different message in r′

and in r̂, and so Kp(¬ψnice) holds at time t.
Case 3: (⟨q, t− 1⟩, ⟨p, t⟩) ∈ En(r̂) we have by the choice of π that q does not fail in r′ and
by the induction assumption Kq(¬ψnice) holds at time t− 1. Recall that, by assumption,
in Q′ process q can send a null message only in case ¬(Kq¬ψnice). Since, by the inductive
assumption on time t− 1 this is not the case, q must send p a ‘0’-message. Since such
messages are never sent in r̂, we again conclude that Kp(¬ψnice) holds at time t in r′, as
desired.

We have shown that for all runs r′ in which vs ̸= 1 it is the case that r′
d(m) ̸= r̂d(m).

Consequently, vs = 1 for all runs r such that rd(m) = r̂d(m) and so, by Definition 2, we
obtain that Kd(vs = 1) holds at (r̂,m), as claimed. ◀

Definition of Robust-based Message protocols

▶ Definition 29 (Robust-based Message protocols). We say that Q is a Robust-based Message
(RbM) protocol if

All actual messages sent in Q are single-bit messages, and whenever a process p sends an
actual message, it sends a ‘0’ if Kp(vs ̸= 1 ∨ s is faulty) and sends a ‘1’ otherwise,
for all processes p, each null message sent by p over any channel is a null message in
case φ = ¬Kp[(vs ̸= 1) ∨ (s is faulty)] and
for every run r and process p it holds that if p sends q an actual message at (r̂, t), then if
the channel chp,q is not blocked at (r, t), process p also sends q an actual message at (r, t).

Ordered Response

▶ Definition 30 (Conservative O-R protocols). Let Q be a deterministic protocol that
solves OR = ⟨vs = 1, a1, . . . , ak⟩. We say that Q is conservative for OR if for every run r

of Q and all x ≤ k the following is true: Process ix performs ax at tx only if ¬Kix
(¬ψnice)

holds at (r, tx).

In a conservative protocol, if a process ix knows at θx = ⟨ix, tx⟩ that a failure has
occurred, then it is not allowed to perform its action. Concretely, suppose that process ix is
prevented from action at θx = ⟨ix, tx⟩ because it observes there that a process b has failed
at ρb = ⟨b,mb⟩. Since by Theorem 20, only (f − 1)-resilient message blocks are required
between two consecutive processes in the OR instance, the failure of f − 1 other processes
might disconnect θx from a node θh, for an index h > x in the instance of O-R being solved.

R. Nataf, G. Goren, and Y. Moses 30:21

ρb

=
⟨b,mb⟩

θhρq θx+1θx · · · · · ·
⟨b, l⟩

B

(f − 1)-resilient
msg block

ax does not occur

Figure 6 The problematic scenario that Theorem 31 solves. Squiggly arrows represent any kind
of message chain or sets of message chains. Red crosses represent process failures. As in previous
figures, dashed arrows represent null messages and full arrows represent real messages. If the depicted
scenario occurs, then b’s failure at ρb can cause ix not to perform ax. The protocol must therefore
provide an (f − 1)-resilient message block to θh from one of θx or ⟨b, mb + 1⟩.

Moreover, this might also disconnect ρb from θh. We would then obtain that ih does not
distinguish the current run from the nice run, resulting in ah being performed. This is clearly
a violation of O-R. We illustrate this scenario in Figure 6.

We can show that in order to prevent such a scenario there must be a B ̸n path from θx or
from b after its potential failing node ρb, to θh. This way, if b fails at ρb and prevents ix from
acting, then ih will distinguish the current run from the nice run at θh. Acting conservatively,
ih will also refrain from acting, and thus avoid causing a violation of the O-R specification.
Formally:6

▶ Theorem 31. Let Q be a conservative protocol solving OR = ⟨vs = 1, a1, . . . , ak⟩.
For all nodes ρb = ⟨b,mb⟩, indices x < h ≤ k and sets B ⊆ P, if

1. there is a path π from ρb to θx in nG(Q) that starts with an edge (ρb, ρq) ∈ Ea and
contains no edges corresponding to null message by b, and in addition

2. b ∈ B, |B| ≤ f and there is no B ̸n path from θx to θh in CG,
then there is a B ̸n path from ⟨b,mb + 1⟩ to θh in nG(Q).

In a precise sense, combining the conditions in this theorem with those of Theorem 20 we
obtain a set of conditions that is not only necessary for conservative protocols Q (as already
proved), but also sufficient. Indeed, as we now show, there exist protocols solving Ordered
Response that satisfy precisely these conditions.

▶ Theorem 32 (Sufficient conditions for O-R). The conditions stated in Theorem 20 and
Theorem 31 are sufficient for solving an instance OR = ⟨vs = 1, a1, a2, . . . , ak⟩ of the Ordered
Response problem. (For details, see [17].)

Taken together, Theorems 20, 31, and 32 provide a characterization of the communication
patterns that can solve Ordered Response using null messages. This characterization is tight
for communication patterns of conservative protocols that solve O-R.

6 The proofs of Theorems 31 and 32 appear in [17].

DISC 2023

Gorilla: Safe Permissionless Byzantine Consensus
Youer Pu
Cornell University, Ithaca, NY, USA

Ali Farahbakhsh
Cornell University, Ithaca, NY, USA

Lorenzo Alvisi
Cornell University, Ithaca, NY, USA

Ittay Eyal
Technion, Haifa, Israel

Abstract
Nakamoto’s consensus protocol works in a permissionless model and tolerates Byzantine failures,
but only offers probabilistic agreement. Recently, the Sandglass protocol has shown such weaker
guarantees are not a necessary consequence of a permissionless model; yet, Sandglass only tolerates
benign failures, and operates in an unconventional partially synchronous model. We present Gorilla
Sandglass, the first Byzantine tolerant consensus protocol to guarantee, in the same synchronous
model adopted by Nakamoto, deterministic agreement and termination with probability 1 in a
permissionless setting. We prove the correctness of Gorilla by mapping executions that would violate
agreement or termination in Gorilla to executions in Sandglass, where we know such violations
are impossible. Establishing termination proves particularly interesting, as the mapping requires
reasoning about infinite executions and their probabilities.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Consensus, Permissionless, Blockchains, Byzantine fault tolerance, Determin-
istic Safety

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.31

Related Version Full Version: https://arxiv.org/abs/2308.04080 [29]

Funding Youer Pu: Supported in part by an IC3 grant.
Lorenzo Alvisi: Supported in part by NSF Award 2106954.
Ittay Eyal: Supported in part by the Israel Science Foundation (grant No. 1641/18), an Avalanche
Foundation grant, and an IC3 grant.

Acknowledgements We thank Alexandra Silva and Dexter Kozen for useful discussions about proving
probabilistic termination.

1 Introduction

Nakamoto’s Bitcoin [23] demonstrated that a form of consensus can be reached even if
participation is permissionless. Nakamoto achieved this by introducing the cryptographic
primitive Proof of Work (PoW) [10, 13] into the common synchronous Byzantine model [9].
With PoW, a process can work for a short while and probabilistically succeed in solving
a puzzle. But Bitcoin only achieves a probabilistic notion of consensus: both safety and
liveness fail with negligible probability.

Lewis-Pye and Roughgarden showed that deterministic and permissionless consensus
cannot be achieved in a synchronous network in the presence of Byzantine failures [18].
Nonetheless, previous work (§2) has achieved deterministic safety and termination with

© Youer Pu, Ali Farahbakhsh, Lorenzo Alvisi, and Ittay Eyal;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.31
https://arxiv.org/abs/2308.04080
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Gorilla: Safe Permissionless Byzantine Consensus

probability 1 under different models. Sandglass [27] assumes a benign model with a non-
standard hybrid synchrony model. Momose et al. [22] guarantee termination only if the set
of processes stabilizes. Malkhi et al. [20], while leveraging either authenticated channels
or digital signatures, propose a solution whose correctness depends on Byzantine nodes
comprising fewer than a third of the nodes in the system.

The question is whether it is possible to achieve deterministic safety and termination
with probability 1 without limiting either Byzantine behavior or how nodes join and leave,
and without relying on authentication.

We answer this question in the affirmative for a synchronous model (§3) with Byzantine
failures. We present Gorilla Sandglass (or simply Gorilla) (§4), a consensus protocol that
guarantees deterministic safety and termination with probability 1 in this standard model,
which we dub GM (for Gorilla Model). Gorilla relies on a form of PoW: Verifiable Delay
Functions (VDFs) [6]. We consider an ideal VDF [21] that proves a process waited for
a certain amount of time and cannot be amortized. The key difference between a VDF
and Nakamoto’s PoW is that multiple processes can calculate multiple VDFs concurrently,
but cannot, by coordinating, reduce the time to calculate a single VDF. The crux of the
protocol is simple. The protocol proceeds in steps. In each step, all (correct) nodes collect
VDF solutions from their peers and build new VDFs based on those. Intuitively, correct
processes, which are the majority, accrue solutions faster than Byzantine nodes, and progress
through the asynchronous rounds of the protocol faster. Eventually, the round inhabited by
correct nodes is so far ahead of that occupied by Byzantine nodes that, no longer subject to
Byzantine influence, correct nodes can safely decide.

Gorilla Sandglass adopts the general approach of Sandglass [27], in the sense that puzzle
results are accrued, with each puzzle built on its predecessors. In Sandglass participants
are benign and they send, in each step, a message built on previously received messages.
In Gorilla, however, the Byzantine adversary is not limited to acting on step boundaries or
communicating at particular times. Surprisingly, Gorilla’s correctness can be reduced to the
correctness of a variation of Sandglass. We perform this reduction in two steps (§5).

We first show that, for every execution of Gorilla in GM, there is a matching execution
where the Byzantine processes adhere to step boundaries, in a model we call GM+. In the
mapped execution, Byzantine processes only start calculating their VDF at the beginning
of a step and only send messages at the end of a step. GM+ is a purely theoretical device,
as it allows operations that cannot be implemented by actual cryptographic primitives. In
particular, it allows Byzantine processes to start calculating a VDF in a step s building on
any VDF computed by other Byzantine nodes that will be completed by the end of s, rather
than by the start s, as allowed by GM (and actually feasible in reality). Nonetheless, GM+
serves as a crucial stepping stone towards proving Gorilla’s correctness.

Next, we show that, given an execution in GM+ that violates correctness, there exists a
corresponding execution of Sandglass in a model we call SM+. The SM+ model is similar
to that of Sandglass: in both, processes are benign and propagation time is bounded for
messages among correct processes and unbounded for messages to and from so-called defective
nodes. But unlike Sandglass, in SM+ a message from a defective node can reference another
message generated by another defective node during the same step (similar to how GM+
allows Byzantine nodes to calculate a VDF that builds on VDFs calculated by other Byzantine
nodes in the same step).

Together, this pair of reduction steps establishes that if an execution of Gorilla in GM
violates correctness with positive probability, then so does an execution of Sandglass in SM+.
To conclude Gorilla’s proof of correctness, all that is left to show is that Sandglass retains

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:3

deterministic safety and termination with probability 1 in the SM+ model: fortunately, the
correctness proof of Sandglass [27] works almost without change (§A of [29]) in SM+. Thus, a
violation of correctness in Gorilla results in a contradiction, and therefore, Gorilla is correct.

Gorilla demonstrates that it is possible to achieve deterministic safety and liveness with
probability 1 in a permissionless Byzantine model. Yet, possible does not mean practical:
Gorilla is not, since, like the Sandglass protocol that inspires it, it requires an exponential
number of rounds to terminate. By answering the fundamental question of possibility, Gorilla
ups the ante: is there a practical solution to deterministically safe permissionless consensus?

2 Related Work

Lewis-Pye et al. [18] have proven that deterministic consensus is impossible in the permis-
sionless setting. Therefore, for at least one of safety and liveness probabilistic guarantees are
inevitable. Gorilla concedes little: it manages to keep safety deterministic, and guarantees
liveness with probability 1.

Several protocols [3, 4, 7, 11, 12, 16, 24] have embraced Bitcoin’s permissionless partici-
pation and probabilistic safety. All rely for correctness on probabilistic mechanisms, which
leave open the possibility that Byzantine nodes may overturn safety or liveness guarantees
with positive probability. Gorilla avoids this peril by basing correctness on the process of
accruing a deterministic number of messages.

Few proposals achieve deterministic safety in a permissionless setting [20, 22, 27]. Momose
et al. [22] introduce the concept of eventually stable participation, akin to partial synchrony;
it requires that, after an unknown global stabilization time, for each T-wide time interval
[t, t + T], at least half of the nodes ever awake during the interval are correct and do not
leave. Gorilla guarantees progress without assuming stability in participation.

Pu et al. [27] propose Sandglass, which achieves deterministic safety but only in a benign
setting. Gorilla extends Sandglass to tolerate Byzantine failures.

Malkhi et al. [20] let nodes join and leave at any time, as in Gorilla. Unlike Gorilla,
however, they must rely on authenticated channels to tolerate fluctuations in the number of
adversaries. Further, Byzantine nodes must be fewer than a third of active nodes, while in
Gorilla they must be fewer than one half.

Several works have modeled permissionless participation [2, 17, 26].
Pass et al. [26] introduce the sleepy participation model, in which honest nodes are

either awake or asleep. Awake nodes participate in the protocol, while asleep nodes neither
participate nor relay messages. Byzantine nodes are always awake, but the scheduler can
adaptively turn an honest node Byzantine, as long as Byzantine nodes remain a minority
of awake nodes. Gorilla similarly assumes that correct and Byzantine nodes can join and
leave at any time, as long as a majority of active nodes are correct. Unlike the sleepy
model, however, Gorilla requires no public key infrastructure, and, unlike sleepy consensus,
guarantees deterministic safety.

Unlike Gorilla, Lewis-Pye et al. [17] do not offer a consensus protocol, but rather focus
on introducing resource pools, an abstraction that aims to capture resources used to establish
identity in permissionless systems, e.g., computational power through PoW and fiscal power
through Proof of Stake (PoS).

Aspnes et al. [2] explore consensus in an asynchronous benign model where an unbounded
number of nodes can join and leave, but where at least one node is required to live forever, or
until termination. Gorilla instead assumes a synchronous model, tolerates Byzantine failures,
and allows any node to join and leave, as long as a majority of active nodes is correct.

DISC 2023

31:4 Gorilla: Safe Permissionless Byzantine Consensus

Verifiable Delay Functions (VDFs) [6] have been leveraged as a resource against Byzantine
adversaries in various works [8, 15, 19, 30], specifically to defend PoS systems from attacks
where participants can go back in time and mine blocks. Gorilla leverages VDFs to rate-limit
the ability of Byzantine nodes to create valid messages.

3 Model

The system is comprised of an infinite set of nodes {p1, p2, . . . }. Time progresses in discrete
ticks 0, 1, 2, 3, . . . In each tick, a subset of the nodes is active; the rest are inactive. The upper
bound on active nodes in any tick, necessary to the safety of Nakamoto’s permissionless
consensus [25], is N , and there is at least one active node in every tick. Starting from tick 0,
every K ticks are grouped into a step: each step i consists of ticks iK, iK + 1, . . . , iK + K−1.

A Verifiable Delay Function (VDF) is a function whose calculation requires completing a
given number of sequential steps. Thus, evaluating a VDF requires the evaluator to spend a
certain amount of time in the process. Specifically, we require the evaluation of a single VDF
to take K ticks. We refer to the intermediate random values that this evaluation produces at
the end of each of the K ticks as the units of the VDF evaluation (or, more succinctly, the
units of the VDF). We denote the i-th unit of evaluating the VDF of some input γ by vdf i

γ ;
we denote the final result (i.e., vdf K

γ) by vdfγ , or, when there is no ambiguity, by vdf.
We model the calculation of VDFs with the help of an oracle Ω. Nodes use Ω both to

iteratively obtain the units of a VDF and to verify whether a given value is the vdf of a given
input. In particular, Ω provides the following API:

Get(γ, vdf i
γ): returns vdf (i+1)

γ . By convention, invoking Get(γ,⊥) returns vdf 1
γ . The oracle

remembers how it responded to a Get query – so that, even though the units of a VDF
are random values, identical queries produce identical responses. Ω accepts at most one
call to Get() in any tick from each node.

Verify(vdf, γ): returns True iff vdf = vdf K
γ . Ω accepts any number of calls to Verify() in any

tick from any node.

If Get(γ,⊥) is called at tick t and step s, we say the VDF calculation for γ starts at tick t

and step s. Similarly, the VDF calculation for γ finishes at tick t and step s if Get(γ, vdf K−1
γ)

is called at tick t and step s.
In each tick, an active node receives a non-negative number of messages, updates its

variables – potentially including calls to the oracle – and then communicates with others using
a synchronous broadcast network. The network allows each active node to broadcast and
receive unauthenticated messages. Node pi invokes Broadcasti(m) to broadcast a message m,
and receives broadcast messages from other nodes (and itself) by invoking Receivei. The
network neither generates nor duplicates messages and ensures that if a node receives a
message m in tick t, then m is broadcast in tick (t− 1). The network propagation time is
negligible compared to a tick, i.e., to the time necessary to calculate a unit of a VDF. By
executing the command Receivei, a newly joining node pi receives all messages broadcast by
correct nodes prior to its activation. Nodes whose network connections with other nodes
are asynchronous can be modeled as Byzantine, as Byzantine nodes can deliberately or
unintentionally delay messages sent from or to them. Therefore, Gorilla also tolerates
asynchrony, as long as the nodes that communicate asynchronously are a minority.

Correct nodes do not deviate from their specification and constitute a majority of active
nodes at each tick. Correct nodes always join at the beginning of a step and leave when
a step ends. Hence, a correct node is active from the first to the last tick of a step. The
remaining nodes are Byzantine and can suffer from arbitrary failures. Byzantine nodes can
join and leave at any tick.

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:5

All nodes are initialized with a value vi ∈ {0, 1} upon joining the system. An active
node pi decides by calling Decidei(v) for some value v. A protocol solves the consensus
problem if it guarantees the following properties [9]:

▶ Definition 1 (Agreement). If a correct node decides a value v, then no correct node decides
a value other than v.

▶ Definition 2 (Validity). If all nodes that ever join the system have initial value v and there
are no Byzantine nodes, then no correct node decides v′ ̸= v.

▶ Definition 3 (Termination). Every correct node that remains active eventually decides.

4 Gorilla

Gorilla borrows its general structure from Sandglass (see Algorithm 1) [27]. Executions
proceed in asynchronous rounds (even though, unlike Sandglass, Gorilla assumes a standard
synchronous model of communication between all nodes). Upon receiving a threshold of
valid messages for the current round, nodes progress to the next round; if all the messages
received by a correct node propose the same value v for sufficiently many consecutive rounds,
the node decides v. The number of active nodes is bounded by N but otherwise unknown.
Within this bound, it can fluctuate arbitrarily, but both safety and liveness depend on the
correctness of a majority of nodes.

The key aspects of the protocol can be summarized as follows:

Ticks, steps and VDF Each valid message must contain a vdf. A correct node takes a full
step, i.e., K consecutive ticks, to individually calculate a vdf, and at the end of the step
sends a valid message that contains the vdf. Byzantine nodes may instead share among
themselves the work required to finish the K units of a VDF calculation; even so, it still
takes K distinct ticks for Byzantine nodes to compute a vdf. Requiring valid messages
to carry a vdf limits Byzantine nodes to sending messages at the same rate as correct
nodes; this ensures that, on average across all steps, the correct majority sends at least
one more valid message than the minority of nodes that are Byzantine.

Choosing a threshold A node proceeds to round r if it receives at least T = ⌈N 2

2 ⌉ messages
for round r − 1. Even though setting such a threshold does not prevent Byzantine nodes
from advancing from round to round, it nonetheless gives the correct nodes an edge in
the pace of such progress, since they constitute a majority.

Exchanging messages In each step of the protocol, a node in any round r – based on the
messages it has received so far – searches for the largest round rmax ≥ r for which it
has accrued T messages. It then broadcasts a message for the next round. The message
includes the node’s current proposed value v, the vdf, and four other attributes discussed
below: the message’s coffer, a nonce, as well as v’s priority and unanimity counter.

Keeping history Nodes can join the system at any time. To help a joining node catch up,
every message broadcast by a node p in round r includes a message coffer that contains:
(i) messages from round r − 1 received by p to advance to round r; (ii) recursively,
messages included in those messages’ coffers; and (iii) messages received by p for round r.

Nonce By making it possible to distinguish between messages that are generated from the
same coffer, nonces allow correct nodes to broadcast multiple valid messages during a
round while, at the same time, preventing Byzantine nodes from reusing the same vdf to
send multiple valid messages based on a given message coffer.

DISC 2023

31:6 Gorilla: Safe Permissionless Byzantine Consensus

Priority and unanimity counter If a node p only receives the value v from a majority for
a sufficient number of consecutive rounds, it decides v. To guarantee the safety of this
decision, p assigns a priority to the value v that it proposes. This priority is incremented
once v is unanimously proposed for a long stretch of consecutive rounds. To record the
length of this stretch, each node computes it upon entering a round r, and includes it as
the unanimity counter in the messages it sends for round r. If a node collects more than
one value in a round r, it chooses the one with the highest priority, and proposes it for
round r + 1. In case of a tie, it uses vdf as a source of randomness to choose one of the
values randomly. Since vdf is a random number calculated based on the message coffer
and a nonce (lines 13-15), a Byzantine node is unable to deliberately pick an input to
VDF to deterministically get the desired value.

Message internal consistency and validity A message m is internally consistent if the at-
tributes carried by m can be generated by following Gorilla correctly based on the message
coffer carried in m. We denote the vdf in m by vdfm.
A message m is valid (and thus isValid(m) returns true), if (i) vdfm can be verified by
the message coffer and the nonce of m; (ii) m is internally consistent; and (iii) for any
message m′ in m’s coffer, m′ is also valid. Otherwise, m is invalid.

In addition to demonstrating variable initialization, Algorithm 1 presents the algorithm
each node pi runs at each step. Each node pi starts every step by adding all valid messages,
in addition to the messages in their coffers, to the set Reci (lines 4-6).

Iterating over Reci, node pi computes the largest round rmax for which it has received
at least T messages, and updates its current round to rmax + 1 (line 8) if the condition in
line 7 holds. Once in a new round, pi does the following: (i) resets its message coffer M and
adds to it the messages it has received from the previous round – alongside the messages in
their coffers (lines 9-11); (ii) picks a nonce and calculates a vdf based on its coffer and the
nonce (lines 13-15); (iii) chooses its proposal value (lines 16 -20); it chooses the proposal
with the highest priority among the previous round messages in its coffer; in case of a tie, it
chooses a random number utilizing the randomness in vdf ; (iv) determines the priority and
the unanimity counter for the messages it will broadcast in the current round (lines 21-25);
and finally (v) the node decides v if v’s priority is high enough (lines 26-27). If pi does
not enter a new round, it starts to create a message nonetheless: it adds to the message’s
coffer all messages received for the current round (line 29), and calculates a vdf with the
new message coffer and a different nonce as the input (lines 30-32), so that the message is
unique. Regardless of whether it enters a round or not, pi ends every step by broadcasting
the message it has created (line 33).

Comparing Sandglass and Gorilla
Gorilla retains the structure of Sandglass, adding the requirement that valid messages must
include a vdf and a nonce. The differences between the protocols are highlighted in orange
in Algorithm 1: (i) vdf is calculated for each message sent (lines 13-15,30-32), (ii) received
messages are checked to see if they are valid (line 5); (iii) vdf is used as the source of
randomness (line 20) where the protocol requires choosing a value randomly.

These additions are critical to handling Byzantine faults. Both Gorilla and Sandglass
rely on correct (respectively, good) nodes sending the majority of unique messages during an
execution. In Sandglass, where defective nodes are benign, this property simply follows from
requiring correct nodes to be a majority in each step; not so in Gorilla, where faulty nodes
can be Byzantine. Requiring valid message in Gorilla to carry a vdf preserves correctness by
effectively rate-limiting Byzantine nodes’ ability to create valid messages.

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:7

Algorithm 1 Gorilla: Code for node pi. The orange text highlights where Gorilla departs from
Sandglass.

1: procedure Init(inputi)
2: vi ← inputi; priorityi ← 0; uCounteri ← 0; ri = 1; Mi = ∅; Reci = ∅;
3: procedure step
4: for all m = (·, ·, ·, ·, ·, M) received by pi do
5: if isValid(m) then
6: Reci ← Reci ∪ {m} ∪M

7: if max|Reci(r)|≥T (r) ≥ ri then
8: ri = max|Reci(r)|≥T (r) + 1
9: Mi = ∅

10: for all m = (·, ri − 1, ·, ·, ·, M) ∈ Reci(ri − 1) do
11: Mi ←Mi ∪ {m} ∪M

12: Mi ←Mi ∪Reci(ri)
13: vdf← ⊥; nonce← a new arbitrary value
14: for j : 1..k do
15: vdf← Get((Mi, nonce), vdf)
16: Let C be the multi-set of messages in Mi(ri − 1) with the largest priority.
17: if all messages in C have the same value v then
18: vi ← v

19: else
20: vi ← vdf mod 2
21: if all messages in Mi(ri − 1) have the same value vi then
22: uCounteri ← 1 + min{uCounter|(·, ri − 1, vi, ·, uCounter, ·) ∈Mi(ri − 1)}
23: else
24: uCounteri ← 0
25: priorityi ← max(0,

⌊ uCounteri

T
⌋
− 5)

26: if priorityi ≥ 6T + 4 then
27: Decidei(vi)
28: else
29: Mi ←Mi ∪Reci(ri)
30: vdf← ⊥; nonce← a new arbitrary value
31: for j : 1..k do
32: vdf = Get((Mi, nonce), vdf)
33: broadcast (ri, vi, priorityi, uCounteri, Mi, nonce, vdf)

Given their differences in both failure model and timing assumptions, it is perhaps
surprising that so little needs to change when moving from Sandglass to Gorilla. After all,
Sandglass assumes a model where failures are benign and a hybrid synchronous model of
communication [28]; Gorilla instead assumes a Byzantine failure model, and a synchronous
network model (§3). Note, however, that although Sandglass assumes benign failures, its
hybrid communication model implicitly accounts for Byzantine nodes strategically choosing
the timing for receiving and sending messages to correct nodes: Gorilla can then simply
inherit from Sandglass the mechanisms for tolerating such behaviors.

DISC 2023

31:8 Gorilla: Safe Permissionless Byzantine Consensus

5 Correctness

Despite the similarlity between the Gorilla and Sandglass protocols, proving Gorilla’s cor-
rectness directly is challenging. Unlike Sandglass, Byzantine nodes can act between step
boundaries, interleave VDF computations instead of producing one VDF (and hence one
message) at the time, etc. To overcome this complexity, our approach is to leverage as much
as possible Sandglass’s proof of correctness.

Our battle plan was to first map executions of Gorilla to executions of Sandglass. Then
we intended to proceed by contradiction: assume that a correctness guarantee is violated in
Gorilla, and map this violation to Sandglass; since correctness violations are not possible in
Sandglass [27], we could then conclude that neither they can be in Gorilla.

The best laid plans often go awry, and, as we discuss below, ours was no exception – but
we were able to nonetheless retain the conceptual simplicity of our initial approach.

5.1 The Main Story, and How it Fails
The mapping from Gorilla to Sandglass must satisfy certain well-formedness and equivalence
conditions. The former specify how to map a Gorilla execution into one that satisfies
the Sandglass model (SM) and follows the Sandglass protocol; the latter allow us to map
violations from Gorilla to Sandglass, i.e., they preserve certain properties of the behavior of
correct nodes in Gorilla and reinterpret them as the behavior of good nodes in Sandglass.

Well-formedness requires mapping correct nodes to good nodes, and Byzantine nodes to
defective nodes, while respecting model constraints (e.g., at each step defective nodes should
be fewer than good nodes). The first half of this mapping is easy: except for calculating a
VDF, correct nodes in GM are not doing anything different than good nodes in SM. Thus,
mapping a step in GM to a step in SM yields a straightforward connection between correct
and good nodes. The second half, however, is trickier. Defective nodes in SM can suffer from
benign faults like omission and crashing, but these fall short of fully capturing Byzantine
behavior in GM. In particular, Byzantine nodes, even when sending valid messages, can
violate the timing constraints that Gorilla places on a node’s actions, e.g., by splitting the
calculation of a single VDF into multiple steps. Thus, before a Gorilla execution can be
mapped to a Sandglass execution, Byzantine nodes’ actions must be brought to conform
to step boundaries and not spill across steps. After tidying things up this way, it must
become possible to map the faulty actions of the Byzantine nodes to a combination of crashes,
omissions, and network delays, i.e., to the faults and anomalies that SM allows.

Equivalence in turn requires that, when mapping executions from Gorilla to Sandglass, a
correct node and its corresponding good node send and receive in every step messages that
allow them to update their proposed value, round number, priority, and unanimity counter
in the same way. Since messages play the same role in both protocols, this is sufficient for
good nodes in Sandglass to decide identically to the corresponding correct nodes in Gorilla.

Our plan to realize this logical mapping involved splitting it into two concrete, intermediate
mappings: a first mapping from an initial Gorilla execution to an intermediate Gorilla
execution in which Byzantine actions conform to step boundaries; and a second mapping from
that intermediate execution to a Sandglass execution. We require all of our well-formedness
and equivalence conditions to hold throughout these mappings: (i) model constraints must
be always respected, (ii) correct nodes in the intermediate execution send and receive the
equivalent (indeed, the same!) messages as their counterparts in the initial execution, at the
same steps, and (iii) good nodes in the final execution send and receive equivalent messages
as their correct counterparts in the intermediate execution, at the same steps.

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:9

0 1 2 3 4

1 1

1

2 2

2

3 3 3

4

5 5

6 6 6 5

4

4

(a) The counterexample.

0 1 2 3 4

11 1 3 3 3 2 2 2

4 4 4

6 6 6

5 5 5

(b) The solution enabled by peeking.

Figure 1 An execution that cannot be reorganized in GM (a), and how peeking solves the problem
in GM+ (b).

Unfortunately, well-formedness and equivalence cannot be satisfied by the first mapping.
To see why, consider Figure 1a. Here, each square represents a VDF unit calculated by a
Byzantine node for a specific input, denoted by a unique color. Numbered circles represent
the corresponding messages, e.g., the VDF units containing 1⃝ are associated with message
1⃝. Each VDF calculation takes three ticks, and a step comprises three ticks. The numbered
dashed lines indicate the steps, i.e., the three ticks between lines i and i + 1 belong to step i.
Assume that, to maintain a majority of correct nodes in the system, the maximum allowable
number of Byzantine nodes in the four steps shown in the figure are, respectively, 1, 1, 3,
and 1. Moreover, assume that messages 4⃝, 5⃝, and 6⃝ all include in their coffers messages
1⃝, 2⃝, and 3⃝. Finally, assume that messages 4⃝, 5⃝, and 6⃝ are sent to correct nodes at
the start of Step 4. Since the actions of Byzantine nodes in Figure 1a do not conform to
step boundaries, the first mapping should be able to organize them in a way that ensures
that (i) correct nodes receive messages 4⃝, 5⃝, and 6⃝ at the beginning of Step 4, and (ii)
each of these messages in turn includes messages 1⃝, 2⃝, and 3⃝. Thus, the calculation of the
VDFs for messages 1⃝, 2⃝, and 3⃝ must be completed before those for 4⃝, 5⃝, and 6⃝ can
start. Now, since steps 0 and 1 include only one Byzantine node, they can only accommodate
one VDF, i.e., only one VDF can be calculated in each of steps 0 and 1. Without loss of
generality, let those VDFs be 1⃝ and 3⃝, respectively. VDF 2⃝ must still complete before
messages 4⃝, 5⃝, and 6⃝: thus, it has to be placed in Step 2. Note that, although Step 2
could accommodate two more Byzantine VDFs at Step 2, they cannot be placed there, since
the completion of VDF 2⃝ must precede the start of the calculation of VDFs 4⃝, 5⃝, and 6⃝:
the earliest step where they can start is Step 3. However, it is impossible to accommodate
all three there, since in Step 3 there is a single Byzantine node.

Our first attempt at mapping executions from Gorilla to Sandglass has thus failed.
Fortunately, though, it is possible to retain the strategy that underlies it and overcome the
above counterexample without weakening our well-formedness and equivalence conditions.
Instead, we proceed to weaken the model in which we operate, by giving Byzantine nodes
extra power.

5.2 A New Beginning

The first step in our two-step process for mapping a Gorilla execution ηG into a Sanglass
execution ηS is to reorganize the actions taken by Byzantine nodes in ηG: we want to map ηG

to an execution where Byzantine nodes join the system and receive valid messages at the
beginning of a step (by the first tick) and broadcast valid messages and leave the system at
the step’s end (at its K-th tick). Since, as explained in Section 5.1, satisfying all of these
requirements is not possible, we extend GM to a new model.

DISC 2023

31:10 Gorilla: Safe Permissionless Byzantine Consensus

We need some way to calculate a VDF on an input that includes the final result of
VDF calculations that are still in progress. To achieve this, we extend the oracle’s API to
allow Byzantine nodes to peek at those future outcomes. By issuing the oracle a peek query,
Byzantine nodes active in any step s can learn the result of a VDF computed by Byzantine
nodes finishing at step s before its calculation has ended.

We thus introduce GM+, a model that extends GM by having a new oracle, Ω+, that
supports one additional method:

Peek(γ): immediately returns vdfγ .

In any tick, a Byzantine node in GM+ can call Peek() multiple times, with different
inputs. However, Byzantine nodes can only call Peek subject to two conditions:

A Byzantine node can peek in step s at vdfγ only if Byzantine nodes commit to finish
the VDF calculation for input γ within s; and
a Byzantine node does not peek at vdfγ , where γ = (M, nonce), if M in turn contains
some VDF result v obtained by peeking, and the calculation of v has yet to finish in this
tick.

Note that these restrictions only limit the additional powers that GM+ grants the adversary:
in GM+, Byzantine nodes remain strictly stronger than in GM.

With this new model, taking a detour, we first map an execution of Gorilla in GM to an
execution of Gorilla in GM+, in which Byzantine behavior is reorganized with the addition of
peeking. Hence follows the first lemma of our scaffolding: the existence of the first mapping.

▶ Definition 4. Consider an execution ηG in GM and an execution η+
G in GM+. We say ηG

and η+
G are equivalent iff the following conditions are satisfied:

Reorg-1 For every correct node p in ηG, there exists a correct node p+ in η+
G, such that p

and p+ (i) join and leave the system at the same ticks in the same steps and (ii) receive
and send the same messages at the same ticks in the same steps.

Reorg–2 Each Byzantine node in η+
G (i) joins at the first tick of a step and leaves after the

last tick of that step; (ii) receives messages at the first tick of a step and sends messages
at the last tick of that step; and (iii) sends and receives only valid messages.

Reorg-3 If in ηG a Byzantine node sends a valid message m at a tick in step s, then in η+
G

a Byzantine node sends m at a tick in some step s′ ≤ s.

▶ Lemma 5. There exists a mapping Reorg that maps an execution ηG in GM to an
execution η+

G in GM+, denoted η+
G = Reorg(ηG), such that ηG is equivalent to η+

G.

While peeking solves the challenge with reorganizing Byzantine behavior, it complicates
our second mapping. The ability to peek granted to Byzantine nodes in GM+ has no
equivalent in Sandglass – it simply cannot be reduced to the effects of network delays or
to the behavior of defective nodes. Therefore, we weaken SM so that defective nodes can
benefit from a capability equivalent to peeking.

We do so by introducing SM+, an extension of SM that is identical to SM, except for the
following change: defective nodes at step s can receive any message m sent by a defective
node no later than s – as opposed to (s− 1) in SM – as long as m does not contain in its
coffer a message that is sent at s. Note that allowing defective nodes to receive in a given
step a message m sent by defective nodes within that very step maps to allowing Byzantine
nodes to peek at a message whose vdf will be finished by Byzantine nodes within the same
step; and the constraint that m shouldn’t contain in its coffer other messages sent in the
same step, maps to the constraint that Byzantine nodes cannot peek at messages whose
coffer also contains a peek result from the same step.

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:11

One might rightfully ask: was not the plan to leverage the correctness of Sandglass in SM?
Indeed, but fortunately, Sandglass still guarantees deterministic agreement and termination
with probability 1 under the SM+ model (§A.3 of [29]). Thus, it is suitable to map a Gorilla
execution in GM+ to a Sandglass execution in SM+, and orient our proof by contradiction
with respect to the correctness of Sandglass in SM+.

Formally, we specify our second mapping as follows.

▶ Definition 6. Given a message m in the Gorilla protocol, the mapping Mapm produces a
message in the Sandglass protocol as follows
1. Omit the vdf and the nonce from m.
2. Let pi be the node that sends m. Include pi as a field in m.
3. If m is the j-th message sent by pi, add a field uid = j to m.
4. Repeat the steps above for all of the messages in m’s coffer.
Denote the result by m̂ = Mapm(m). We say m and m̂ are equivalent. Furthermore, with a
slight abuse of notation, we apply Mapm to a set of messages as well, i.e., if M is a set of
messages, and we map each message m ∈M, we obtain the message set Mapm(M).

▶ Definition 7. Consider an execution η+
G in GM+ and an execution η+

S in SM+. We say η+
G

and η+
S are equivalent iff the following conditions are satisfied:

1. The nodes in η+
G are in a one-to-one correspondence with the nodes in η+

S . For every
node p in η+

G, we denote the corresponding node in η+
S with p̂.

2. Nodes p and p̂ join and leave at the same steps in η+
G and η+

S , respectively. Furthermore,
their initial values are the same.

3. If p is a Byzantine node, then p̂ is defective in SM+; otherwise, p̂ is a good node in SM+.
4. p̂ sends m̂ at step s in η+

S , iff p generates a message m in η+
G at step s. Note that in η+

G,
correct nodes send their messages to all as soon as they are generated, while Byzantine
nodes may only send their messages to a subset of nodes once their messages are generated.

5. p̂ receives m̂ at step s in η+
S , iff p receives m at step s in η+

G.

▶ Lemma 8. Consider any execution ηG in GM, and an execution η+
G in GM+ equivalent

to ηG. There exists a mapping Interpret that maps η+
G to an execution η+

S in SM+, denoted
as η+

S = Interpret(η+
G), such that η+

S is equivalent to η+
G.

Finally, for our proof by contradiction to work, we have to show that Sandglass is correct in
SM+. The proof is deferred to §A.3 of [29].

▶ Theorem 9. Sandglass satisfies agreement and validity deterministically and termination
with probability 1 in SM+.

5.3 Safety
We prove that Gorilla satisfies Validity and Agreement. The proofs follow the same pattern:
assume a violation exists in some execution ηG of Gorilla running in GM; map that execution
to η+

G = Reorg(ηG) in GM+; then, map η+
G again to η+

S = Reorg(η+
G) in SM+; and, finally,

rely on the fact that these mappings ensure that correct nodes in ηG and good nodes in η+
S

reach the same decisions in the same steps to drive a contradiction.
This approach is made rigorous in following lemmas, proved in §B.2 of [29].

▶ Lemma 10. Consider an arbitrary Gorilla execution ηG, and η+
G = Reorg(ηG). If a

correct node p decides a value v at step s in ηG, then p’s corresponding node p+ decides v at
step s in η+

G.

DISC 2023

31:12 Gorilla: Safe Permissionless Byzantine Consensus

▶ Lemma 11. Consider any execution ηG in GM. If an execution η+
G = Reorg(ηG) in GM+

and an execution η+
S in SM+ are equivalent, then the following statements hold:

1. If a correct node p decides a value v at step s in η+
G, then p̂ decides v at step s in η+

S .
2. Consider the first message m = (r, v, priority, uCounter, M, nonce, vdf) that p generates

for round r. Let the step when m is generated be s. If uCounter is 0, then p̂ randomly
chooses value v as the proposal value at step s in η+

S .

We can now state and prove the safety guarantees.

▶ Theorem 12. Gorilla satisfies agreement in GM.

Proof. By contradiction, assume that there exists a Gorilla execution ηG in GM that
violates agreement. This means that there exist two correct nodes p1 and p2, two steps s1
and s2, and two values v1 ̸= v2 such that p1 decides v1 at s1 and p2 decides v2 at s2.
Consider η+

G = Reorg(ηG). According to Lemma 10, p+
1 decides v1 at s1 and p+

2 decides v2
at s2, in η+

G. Now, consider η+
S = Interpret(η+

G). According to Lemma 11, p̂+
1 decides v1

at s1 and p̂+
2 decides v2 at s2, in η+

S . However, this contradicts the fact Sandglass satisfies
agreement in SM+ (Theorem 9). Therefore, Gorilla satisfies agreement in GM. ◀

▶ Theorem 13. Gorilla satisfies validity in GM.

Proof. By contradiction, assume that there exists a Gorilla execution ηG, such that (i) all
nodes that ever join the system have initial value v; (ii) there are no Byzantine nodes; and
(iii) a correct node p decides v′ ̸= v.

Since GM+ is an extension of GM, ηG conforms to GM+. According to Definition 4, η+
G =

ηG in GM+ is trivially equivalent to ηG. Consider η+
S = Interpret(η+

G).
By the construction of the Interpret mapping (in Lemma 8), good nodes in η+

S have
the same initial values as their corresponding correct nodes in ηG. Furthermore, since there
are no Byzantine nodes in η+

G, there are no defective nodes in η+
S by Definition 7. Therefore,

by Validity of Sandglass in SM+ (Theorem 9), no good node decides v′ ̸= v. However, by
Lemma 10 and Lemma 11, p decides v′ ≠ v, which leads to a contradiction. Therefore,
Gorilla satisfies validity in GM. ◀

5.4 Liveness
Similar to the safety proof, the liveness proof proceeds by contradiction: it starts with a
liveness violation in Gorilla, and maps it to a liveness violation in Sandglass.

Formalizing the notion of violating termination with probability 1 requires specifying the
probability distribution used to characterize the probability of termination. To do so, we
first have to fix all sources of non-determinism [1, 5, 14]. For our purposes, non-determinism
in GM and GM+ stems from correct nodes, Byzantine nodes and their behavior; in SM+, it
stems from good nodes, defective nodes and the scheduler.

For correct, good, and defective nodes, non-determinism arises from the joining/leaving
schedule and the initial value of each joining node. For Byzantine nodes in GM and GM+,
fixing non-determinism means fixing their action strategy according to the current history of
an execution. Similarly, fixing the scheduler’s non-determinism means specifying the timing
of message deliveries and the occurrence of benign failures, based on the current history. We,
therefore, define non-determinism formally in terms of an environment and a strategy.

To this end, we introduce the notion of a message history, and define what it means for a
set of messages exchanged in a given step to be compatible with the message history that
precedes them.

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:13

▶ Definition 14. For any given execution in GM and GM+ (resp., SM+), and any step s,
the message history up to s, MHs, is the set of ⟨m, p, s′⟩ triples such that p is a correct node
(resp., good node) and p receives m at s′ ≤ s.

▶ Definition 15. We say a set MPs+1 of ⟨m, p, s + 1⟩ triples is compatible with a message
history up to s, MHs, if there exists an execution such that for any ⟨m, p, s + 1⟩ ∈ MPs+1,
the correct node (resp., good node) p receives m at step (s + 1).

▶ Definition 16. An environment E in GM and GM+ (resp., SM+) is a fixed joining/leaving
schedule and fixed initial value schedule for correct nodes (resp., good and defective nodes).

▶ Definition 17. Given an environment E, a strategy ΘE for the Byzantine nodes (resp.,
scheduler) in GM and GM+ (resp., SM+) is a function that takes the message history MHs

up to a given step s as the input, and outputs a set MPs+1 that is compatible with MHs.

Before proceeding, there is one additional point to address. The most general way
of eliminating non-determinism is to introduce randomness through a fixed probability
distribution over the available options. However, the following lemma, proved in §B.3 of [29],
establishes that Byzantine nodes do not benefit from employing such a randomized strategy.

▶ Lemma 18. For any environment E, if there exists a randomized Byzantine strategy for
Gorilla that achieves a positive non-termination probability, then there exists a deterministic
Byzantine strategy for Gorilla that achieves a positive non-termination probability.

Since the output vdf of a call to the VDF oracle is a random number, the (vdf mod 2)
operation in line 20 of Gorilla is equivalent to tossing an unbiased coin. Given a strategy ΘE ,1
the nodes might observe different coin tosses as the execution proceeds; thus, the strategy
specifies the action of the Byzantine nodes for all possible coin toss outcomes. The scheduler’s
strategy in SM+ is similarly specified for all coin toss outcomes. Therefore, once a strategy
is determined, it admits a set of different executions based on the coin toss outcomes; we
denote it by HΘ. Specifically, a strategy determines an action for each outcome of any coin
toss.

Given a strategy Θ, we can define a probability distribution PHΘ over HΘ. For each
execution η ∈ HΘ, there exists a unique string of zeros and ones, representing the coin tosses
observed during η. Denote this bijective correspondence by Coins : HΘ → {0, 1}∗ ∪ {0, 1}∞,
and the probability distribution on the coin toss strings in Coins(HΘ) by P̃HΘ . For every
event E ⊂ HΘ, if Coins(E) is measurable in Coins(HΘ), then P̃HΘ(Coins(E)) is well-
defined; thus, PHΘ(E) is also well-defined and PHΘ(E) = P̃HΘ(Coins(E)). We denote PHΘ

as the probability distribution induced over HΘ by its coin tosses.
Equipped with these definitions, we can formally define termination with probability 1.

▶ Definition 19. The Gorilla protocol terminates with probability 1 iff for every environment E
and every Byzantine strategy Θ based on E , the probability of the termination event T in HΘ,
i.e., PHΘ(T), is equal to 1.

This definition gives us the recipe for proving by contradiction that Gorilla terminates with
probability 1. We first assume there exists a Byzantine strategy Θ that achieves a non-zero
non-termination probability, and map this strategy through the Reorg and Interpret
mappings to a scheduler strategy Λ that achieves a non-zero non-termination probability
in SM+. However, Λ cannot exist, as the Sandglass protocol terminates with probability 1
in SM+ (Theorem 9).

1 When it is clear from the context, we will omit the environment from the subscript of the strategy.

DISC 2023

31:14 Gorilla: Safe Permissionless Byzantine Consensus

▶ Lemma 20. If there exists an environment E and a Byzantine strategy ΘE in GM that
achieves a positive non-termination probability, then there exists an environment E ′ and a
Byzantine strategy ΨE′ in GM+ that also achieves a positive non-termination probability.

Proof. Assume there exist an environment E and a Byzantine strategy ΘE in GM that
achieves a positive non-termination probability. Consider the Reorg mapping. Since,
according to Lemma 5, the joining/leaving and initial value schedules for correct nodes
remain untouched by the Reorg mapping, we just set E ′ = E . In the rest of the proof, we
omit the environments for brevity.

We now show that the strategy Ψ exists, and is in fact the same as Θ. For brevity,
let RΘ denote Reorg(HΘ), and consider any execution η in HΘ. By Lemma 5, correct nodes
in η receive the same messages, at the same steps, as the correct nodes in Reorg(η) and,
moreover, the coin results in η are exactly the same as the ones in Reorg(η). Thus, the
message history of correct nodes up to any step s in η is the same as the message history of
correct nodes up to the same step in Reorg(η). In addition, because Reorg(η) is a GM+
execution, compatibility is trivially satisfied. Thus, we conclude that Byzantine nodes in RΘ
follow the same strategy as in Θ, conforming to the same coin toss process. Let us denote
this strategy with Ψ.

Note that according to Lemma 10, whenever a correct node decides at some step s

in η, its corresponding correct node in Reorg(η) decides the same value at the same
step. Therefore, the set of non-terminating executions in HΘ are mapped to the set of
non-terminating executions in RΘ in a bijective manner. Let us denote these sets as NTH

and NTR, respectively. Since the same coin toss process induces probability distributions PHΘ

and PRΘ on HΘ and RΘ, respectively, we conclude that PHΘ(NTH) = PRΘ(NTR). Therefore,
since PHΘ(NTH) > 0 by assumption, this concludes our proof, as we have shown the existence
of a strategy Ψ in GM+ that achieves a positive non-termination probability. ◀

A similar lemma applies to the second mapping. We prove it in §B.3 of [29].

▶ Lemma 21. If there exists an environment E and a strategy Ψ for Byzantine nodes in GM+
that achieves a positive non-termination probability, then there exists an environment E ′ and
a scheduler strategey ΛE′ in SM+ that also achieves a positive non-termination probability.

Based on these lemmas, we are finally ready to prove Gorilla’s liveness guarantee.

▶ Theorem 22. The Gorilla protocol terminates with probability 1.

Proof. By contradiction, assume that there exist a GM environment and a Byzantine
strategy Θ in Gorilla that achieve a positive non-termination probability. By Lemma 20,
there exist a GM+ environment and a strategy Ψ for the Byzantine nodes in GM+ that
achieve a positive non-termination probability. Similarly, by Lemma 21, there exists an SM+
environment and a scheduler strategy Λ in SM+ that achieve a positive non-termination
probability. But this is a contradiction, since Sandglass terminates with probability 1 in SM+
(Theorem 9). Thus, Byzantine strategy Θ cannot force a positive non-termination probability;
Gorilla terminates with probability 1. ◀

6 Conclusion

Gorilla Sandglass is the first Byzantine-tolerant consensus protocol to guarantee, in the same
synchronous model adopted by Nakamoto, deterministic agreement and termination with
probability 1 in a permissionless setting. To this end, Gorilla leverages VDFs to extend the

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal 31:15

approach of Sandglass, the first protocol to provide similar safety guarantees in the presence
of benign failures. Neither Gorilla nor Sandglass are practical protocols, however: they
exchange a very large number of messages and the number of rounds they require to decide
is large even under favorable circumstances, and can, in general, be exponential. Is there
a practical permissionless protocol that can achieve deterministic safety and tolerate fewer
than a half Byzantine nodes?

References
1 James Aspnes. Randomized protocols for asynchronous consensus. Distributed Computing,

16(2-3):165–175, 2003.
2 James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with infinite arrivals. In

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 524–533,
2002.

3 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 913–930, 2018.

4 Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 585–602, 2019.

5 Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. Foundations of Probabilistic Pro-
gramming. Cambridge University Press, 2020.

6 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Annual international cryptology conference, pages 757–788. Springer, 2018.

7 Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography and Data Security:
23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22,
2019, Revised Selected Papers 23, pages 23–41. Springer, 2019.

8 Soubhik Deb, Sreeram Kannan, and David Tse. Posat: proof-of-work availability and unpre-
dictability, without the work. In Financial Cryptography and Data Security: 25th International
Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II 25,
pages 104–128. Springer, 2021.

9 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

10 Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Pro-
ceedings CRYPTO ’92: 12th International Cryptology Conference, pages 139–147. Springer,
1992.

11 Matthias Fitzi, Peter Ga, Aggelos Kiayias, and Alexander Russell. Parallel chains: Improving
throughput and latency of blockchain protocols via parallel composition. Cryptology ePrint
Archive, 2018.

12 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium on
operating systems principles, pages 51–68, 2017.

13 Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In Secure
Information Networks, pages 258–272. Springer, 1999.

14 Benjamin Lucien Kaminski. Advanced weakest precondition calculi for probabilistic programs.
PhD thesis, RWTH Aachen University, 2019.

15 Rami Khalil and Naranker Dulay. Short paper: Posh proof of staked hardware consensus.
Cryptology ePrint Archive, 2020.

DISC 2023

31:16 Gorilla: Safe Permissionless Byzantine Consensus

16 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Advances in Cryptology–CRYPTO 2017:
37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20–24,
2017, Proceedings, Part I, pages 357–388. Springer, 2017.

17 Andrew Lewis-Pye and Tim Roughgarden. Resource pools and the cap theorem. arXiv preprint
arXiv:2006.10698, 2020.

18 Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the permissionless setting,
2021. doi:10.48550/ARXIV.2101.07095.

19 Jieyi Long. Nakamoto consensus with verifiable delay puzzle. arXiv preprint arXiv:1908.06394,
2019.

20 Dahlia Malkhi, Atsuki Momose, and Ling Ren. Byzantine consensus under fully fluctuating
participation. Cryptology ePrint Archive, 2022.

21 Michael Mirkin, Lulu Zhou, Ittay Eyal, and Fan Zhang. Sprints: Intermittent blockchain pow
mining. Cryptology ePrint Archive, 2023.

22 Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, pages 2295–2308,
2022.

23 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

24 Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution of the
availability-finality dilemma. In 2021 IEEE Symposium on Security and Privacy (SP), pages
446–465. IEEE, 2021.

25 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Advances in Cryptology – EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), pages 643–673. Springer Verlag, 2017.

26 Rafael Pass and Elaine Shi. The sleepy model of consensus. In Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptol-
ogy and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II
23, pages 380–409. Springer, 2017.

27 Youer Pu, Lorenzo Alvisi, and Ittay Eyal. Safe Permissionless Consensus. In Christian
Scheideler, editor, 36th International Symposium on Distributed Computing (DISC 2022),
volume 246 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:15,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.DISC.2022.33.

28 Youer Pu, Lorenzo Alvisi, and Ittay Eyal. Safe permissionless consensus. Cryptology ePrint
Archive, Paper 2022/796, 2022. URL: https://eprint.iacr.org/2022/796.

29 Youer Pu, Ali Farahbakhsh, Lorenzo Alvisi, and Ittay Eyal. Gorilla: Safe permissionless
byzantine consensus, 2023. arXiv:2308.04080.

30 Ronghua Xu and Yu Chen. Fairledger: a fair proof-of-sequential-work based lightweight
distributed ledger for iot networks. In 2022 IEEE International Conference on Blockchain
(Blockchain), pages 348–355. IEEE, 2022.

https://doi.org/10.48550/ARXIV.2101.07095
https://doi.org/10.4230/LIPIcs.DISC.2022.33
https://doi.org/10.4230/LIPIcs.DISC.2022.33
https://eprint.iacr.org/2022/796
https://arxiv.org/abs/2308.04080

Distributed Sketching Lower Bounds for k-Edge
Connected Spanning Subgraphs, BFS Trees, and
LCL Problems
Peter Robinson #

School of Computer & Cyber Sciences, Augusta University, GA, USA

Abstract
We investigate graph problems in the distributed sketching model, where each node sends a single
message to a referee who computes the output. We define a class of graphs and give a framework for
proving lower bounds for certain embeddable problems, which leads to several new results: First, we
present a tight lower bound of Ω(n) bits for the message size of computing a breadth-first search
(BFS) tree. For locally-checkable labeling (LCL) problems, we show that verifying whether a given
vertex labeling forms a weak 2-coloring requires messages of Ω(n1/3 log2/3 n) bits, and the same
lower bound holds for verifying whether a subset of nodes forms a maximal independent set. We also
prove that computing a k-edge connected spanning subgraph (k-ECSS) requires messages of size
at least Ω

(
k log2(n/k)

)
, which is tight up to a logarithmic factor. To show these results, we define

a simultaneous multiparty (SMP) model of communication complexity, where the players obtain
certain subgraphs as their input, and develop a generic embedding argument that allows us to prove
lower bounds for the graph sketching model by using reductions from the SMP model. We point out
that these results also extend to single-round algorithms in the broadcast congested clique.

We also (nearly) settle the space complexity of the k-ECSS problem in the streaming model by
extending the work of Kapralov, Nelson, Pachoki, Wang, and Woodruff (FOCS 2017): We prove a
communication complexity lower bound for a direct sum variant of the UR⊂

k problem and show that
this implies Ω(k n log2(n/k)) bits of memory for computing a k-ECSS. This is known to be optimal
up to a logarithmic factor.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed graph algorithm, graph sketching, streaming

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.32

1 Introduction

Understanding the amount of communication that is required for solving fundamental graph
problems has been at the forefront of research in distributed computing. In this work, we
consider the distributed graph sketching model (SKETCH), introduced in [5]. In SKETCH
there are n nodes and each node starts out knowing its neighborhood of the input graph.
After observing its initial state and the shared randomness, each node sends a single message
to the referee, who does not get any input and is responsible for computing the output by
inspecting the received messages. As elaborated in [16, 3, 28], the distributed sketching
model is equivalent to the single-round broadcast congested clique (BCC1), where each node
sends a single message of β bits, where β denotes the link bandwidth, and these messages are
received by all nodes simultaneously at the end of the round. Consequently, the results of
our work apply to both models.

We assume that the nodes are assigned unique IDs from the set [n]. In addition, we equip
the nodes with some amount of initial knowledge of the input graph, namely, each node
knows not only its own ID but also the IDs of all of its neighbors. This is known as the
KT1 assumption, which has turned out to be a key ingredient for achieving communication-
efficiency in distributed algorithms (see [19, 14, 13, 4]). We point out that KT1 knowledge
presents a significant obstacle when proving lower bounds, due to fact that each edge is

© Peter Robinson;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:perobinson@augusta.edu
https://orcid.org/0000-0002-7442-7002
https://doi.org/10.4230/LIPIcs.DISC.2023.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

part of the input of both of its endpoints. Consequently, we cannot independently modify
the input of a player (i.e. node) without affecting other nodes. This is a crucial difference
between the models assumed in our work and, for instance, the edge-partition models, where
each player obtains a subset of edges as their input [25, 27].

At a first glance, it may seem that the non-interactive computation of one-round algorithms
presents a severe handicap to solving any interesting problem with a distributed algorithm
in this setting, despite the initial KT1 knowledge. However, the breakthrough results of
Ahn, and Guha, and McGregor [2] (see also the work of Kapron, King, and Mountjoy [18])
introduced a linear sketching technique that opened up the possibility of communication-
efficient solutions in SKETCH and BCC1 for several fundamental graph problems, including
computing spanning trees and deciding graph connectivity, while requiring messages (also
called “sketches”) of only polylogarithmic length.

1.1 Our Contributions and Related Work
A Lower Bound Technique for the Distributed Graph Sketching Model. We present an
embedding approach for proving lower bounds in the distributed sketching model (SKETCH)
and, equivalently, in the single-round broadcast congested clique (BCC1). This technique
generalizes an approach that was pioneered by Nelson and Yu [22], who proved an Ω(log3 n)
lower bound in this setting for computing a spanning forest. In a subsequent breakthrough,
Yu [28] extended this work by showing that this is a tight lower bound even for the easier
problem of graph connectivity.

Our approach differs from previous works by defining a simultaneous multiparty (SMP)
model as an intermediate step, where some of the players may get an entire subgraph as
their input rather than just the neighborhood of a single node. A technical challenge is
that the inputs of different players overlap with each other, which rules out using simple
product distributions for the lower bound. We specify a class of fairly generic lower bound
graphs and introduce the notion of embeddable problem, which captures a broad range of
intuitive properties, making it applicable to seemingly unrelated problems such as computing
a k-edge connected spanning subgraph and verifying a weak 2-coloring. For embeddable
problems that have unique outputs for a given input (e.g., decision problems), we obtain a
reconstruction procedure that succeeds with sufficiently high probability in recovering the
output, while omitting the transcript of some players. For general embeddable problems,
which may not have uniquely determined outputs, we use Pinsker’s inequality to argue that
omitting the transcript of some players does not significantly skew the probability distribution
of certain important cut sets. We point out that the reconstruction mechanism for unique
output problems has a significantly improved error probability compared to using Pinsker’s
inequality as in [22, 28], which may be useful for other applications.

In more detail, we choose the class of lower bound graphs such that there is a large set
of nodes V with the property that all nodes in V have neighborhoods that are “similar”,
i.e., are identically distributed. We show that, for solving an embeddable problem, the
referee needs to obtain a sufficient amount of information about the neighborhood of one
specific important node vσ ∈ V . However, since the index σ is not given to the algorithm,
the neighbors of the nodes in V do not know which one of their own neighbors is vσ and
consequently end up sending messages of large size to ensure a small probability of error.
For instance, when computing a BFS tree, the node vσ is chosen to be the only node in V

for which all of its incident edges are part of any BFS tree. Due to the lack of knowledge of
σ thus effectively requires the referee to learn about the neighborhoods of all nodes in V .1

1 The author would like to thank the anonymous DISC 2023 reviewer for suggesting this intuition.

P. Robinson 32:3

Computing a BFS Tree. Similarly to computing a spanning tree, computing a BFS tree
has a small output size of Θ(n log n) bits, and hence one might expect that the sketching
technique of [2], which allows recovering an incident edge for each vertex, would lead to a
solution using only sketches of length O(poly log n). We show that this intuition is misleading
by presenting a tight bound of Ω(n) on the message size for computing a BFS tree in BCC1
and SKETCH. This reveals a near-linear gap to the problem of computing a spanning tree,
which requires only messages of O

(
log3 n

)
bits. For the proof of this result, we only need to

use the generic lower bound graph construction and do not require the full machinery of the
embedding argument. With the right lower bound construction in place, the result readily
follows from a reduction to the index problem in two-party communication.

▶ Theorem 1. Any public coin constant-error randomized algorithm that computes a BFS
tree rooted at a designated node of an n-node graph, requires a worst case message length of
Ω(n) bits in the distributed sketching model (SKETCH) and the one-round broadcast congested
clique (BCC1).

Verifying Symmetry Breaking Problems. We apply the embedding technique to locally-
checkable labeling (LCL) problems [21], which have been studied extensively in the distributed
computing literature and, roughly speaking, are graph problems that can be verified locally
in the sense that each node only needs to check the consistency of the assigned labels in its
O(1)-neighborhood. Here, we focus on verifying a weak 2-coloring, which is a vertex coloring
of the graph with two colors, with the only restriction being that each non-isolated vertex has
at least one neighbor with a different color. Since a weak 2-coloring can be computed from
the output of other symmetry breaking problems, it comes as no surprise that more difficult
LCL problems such as verifying a maximal independent set adhere to the same lower bound
as weak 2-coloring. While the work of Assadi, Kol, and Oshman [3] shows a lower bound of
Ω
(
n1/2−ϵ

)
bits on the message size for computing an MIS in the distributed sketching model,

it is unclear whether their result has any implications for the verification problem, due to
the fundamentally different nature of computation and verification of symmetry breaking
problems. We instantiate the embedding technique to prove the following result:

▶ Theorem 2. Any 1
25 -error randomized algorithm that verifies if a labeling of a subset of

vertices forms a weak 2-coloring of an n-node input graph, requires a worst case message
length of Ω

(
n1/3 log2/3 n

)
bits in SKETCH and BCC1. The same bound holds for deciding

whether a subset of nodes forms a maximal independent set.

Computing a k-Edge Connected Spanning Subgraph. By applying the embedding tech-
nique, we obtain the first lower bounds for computing a k-edge connected spanning subgraph.
Prior to our work, the only known lower bound for this problem was the one for spanning
tree construction (i.e., Ω(log3 n) bits, see [22]), which does not scale with k. In particular, for
k = O(log n), the lower bound of [22] for computing a spanning forest immediately implies
an Ω(log3 n) lower bound, since the referee can recover a spanning tree from a k-ECSS.

▶ Theorem 3. Any public coin randomized algorithm that computes a k-edge connected
spanning subgraph of an n-node graph in SKETCH or BCC1 with probability at least 1 − o(1),
has a worst case message length of Ω

(
k log2 n

k

)
bits, for any k = o

(
n1/4

log1/2 n

)
.

We point out that Theorem 3 is tight up to a logarithmic factor, since the algorithm for
deciding k-edge connectivity of Ahn, Guha, and McGregor [2] also computes a “witness”, i.e.,
a k-edge connected subgraph. It is straightforward to implement their technique in SKETCH
using messages of O

(
k log3 n

)
bits.

DISC 2023

32:4 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

In Section 6, we consider the k-ECSS problem in the dynamic data streaming setting
where the graph is represented as a stream of edge arrivals and departures. To prove a lower
bound, we introduce a new communication complexity problem called ℓ-fold UR⊂

k , which
essentially consists of ℓ instances of the UR⊂

k problem, defined by Kapralov, Nelson, Pachoki,
Wang, and Woodruff [17]. In the UR⊂

k problem, there are two players, Alice and Bob. Alice
gets a set S, whereas Bob gets a proper subset T ⊂ S. After Alice sends a single message to
Bob, he must output k elements in S \T . It was shown in [17] that the UR⊂

k problem requires
Ω
(
k log2 n

k

)
bits in the one-way two-party model. The ℓ-fold UR⊂

k problem is a direct-sum
variant of the UR⊂

k problem and, by a simple extension of the lower bound technique of [17],
we prove that ℓ-fold UR⊂

k requires Ω(k ℓ log2 n
k) bits. This in turn gives rise to a lower bound

on the required memory:

▶ Theorem 4. Any Monte Carlo data structure for computing a k-edge connected spanning
subgraph of an n-node graph requires Ω

(
k n log2 n

k

)
space in the one-pass fully dynamic

turnstile model.

1.2 Additional Related Work
Closely related to k-ECSS is the problem of computing a spanning forest of the input graph
in the distributed sketching model. As mentioned above, Nelson and Yu [22] prove a lower
bound of Ω(log3 n) bits and this is known to be optimal due to the graph sketching approach
of [2], which relies on access to shared randomness. Holm, King, Thorup, Zamir, and
Zwick [15] show that a spanning tree can be computed with a message length of O(

√
n log n)

bits, without access to shared randomness. Currently, there are no lower bounds known for
the distributed sketching model if nodes only have access to private random bits.

While our results only apply to single-round algorithms in the BCC1 model, several
other works have studied multi-round lower bounds in this setting: Drucker, Kuhn, and
Oshman [10] show round lower bounds for subgraph detection problems, whereas Chen
and Grossman [7] prove a lower bound for the directed planted clique problem. Pai and
Pemmaraju [23] give round complexity lower bounds depending on the per-round bandwidth
for graph connectivity and finding connected components in BCC1. The work of [12] considers
so called hybrid models resulting from combining the broadcast congested clique with other
distributed computing models.

Several other works show lower bounds for one-round algorithms in the related CONGEST
model [24], which differs from the congested clique by assuming that the input graph
corresponds to the actual communication network. Fischer, Gonen, Kuhn, and Oshman [11]
show that one-round randomized algorithms for triangle detection require nodes to send
messages of at least Ω(∆) bits, where ∆ is the maximum degree of the graph. Previously,
Abboud, Censor-Hillel, Khoury, and Lenzen [1] showed that a slightly stronger bound of
Ω(∆ log n) bits for deterministic algorithms based on their novel fooling views framework.
We point out that the proof of [1] assumes that all three nodes must detect that they are
part of a triangle (if one exists), rather than just at least node as in [11]. A related question
is the minimum link bandwidth necessary for obtaining a solution in a certain number of
rounds, which is also called bandwidth complexity in [6].

2 A Lower Bound Technique for Embeddable Problems

In this section, we present a generic technique for showing lower bounds for problems that
satisfy certain “embeddability” properties. We first define a general class of graphs that
we will use for all our lower bounds in Sections 3, 4 and 5, albeit with somewhat different

P. Robinson 32:5

parameters. On these graphs, we define the simultaneous multiparty (SMP) model, and show
that embeddable problems have specific properties that enable us to compute a solution
while omitting the messages of some player.

2.1 The Lower Bound Graph Gℓ

For a positive integer parameter ℓ, we define a class of graphs Gℓ that contains all graphs
G defined as follows. The vertices of G consist of sets U , V , and W , whereby |V | = ℓ, and
we further partition U into vertex sets U1, . . . , Uℓ. Each vi is connected to a subset of the
vertices in Ui and W . We use Ei to denote the edges in the cut E(vi, W). Figure 1 on
page 19 shows the general structure of the graphs in Gℓ. We will fix the precise cardinalities
of U and W as well as the edges E(U, V) and E(V, W) when we introduce the specific input
distributions in the subsequent sections. In the problems that we consider, the output will
depend on the neighborhood of a particular vertex vσ, where σ ∈ [ℓ] is called the embedding
index.

We give each vertex a unique integer as its ID. In addition to an ID, we also assume that
each vertex in W has a label. For instance, in the context of verifying a weak 2-coloring, a
label of a vertex indicates its color. For k-edge connected spanning subgraphs, on the other
hand, we simply omit the labels. The crucial difference between IDs and vertex labels will
become apparent when considering the SKETCH model: Every node knows only its own
label, but knows the IDs of all nodes in its neighborhood.

2.2 The Simultaneous Multiparty (SMP) Model
In our lower bound constructions, we use the following simultaneous multiparty model as
an intermediate step: There are ℓ + 2 players Alice1, . . . , Aliceℓ, Bob, and Charlie. When
revealing the neighborhood of a vertex u to a specific player, the player learns the ID and
the label of u, as well as the IDs of all of u’s neighbors in G. The inputs of the players
are defined as follows; see Figure 2 on page 19: For each vi ∈ V , player Alicei knows the
neighborhood of vertex vi, whereas Bob knows the neighborhoods of all vertices in W . In
other words, Bob knows the entire cut E(V, W), including the labels of W . Charlie gets as
input the neighborhoods of all nodes in U , the index σ, and the IDs and labels of the nodes
in W .

Alice1, . . . , Aliceℓ and Bob each send a single message to Charlie who must output the
solution. Apart from these messages there is no other communication between the players.
However, we assume that they have access to an infinite string R of random bits when
considering randomized algorithms.

Random Variables and Notation

Let Πi denote the message sent by Alicei and let ΠB denote Bob’s message. We use random
variable C to denote Charlie’s output. By a slight abuse of notation, we assume that U

and W also denote the IDs of the vertex sets U and W , respectively. Furthermore, we
use LW to denote the labels of the nodes in W . We define the abbreviation Π(⩽j) :=
(Π1, . . . , Πj) and define Π⩾j analogously. Observe that Charlie computes C based on his
initial knowledge, the received messages ΠB, Π(⩽ℓ), and the shared randomness R, i.e.,
C := C(R, U, W, E(U, V), LW , Π(⩽ℓ), ΠB , σ). To shorten the notation, we define

Z := (U, W, E(U, V), LW),

DISC 2023

32:6 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

and point out that Charlie’s input is Z and σ. We use the indicator random variable 1Succ
for the event that the protocol succeeds.

Throughout this section, we make use of basic notions from information theory. We
refer the reader to Appendix A for the formal definition of these quantities and pointers
to further references. For random variables X, Y , and Z, we use H[X | Y] to denote the
conditional entropy of X conditioned on Y , which, intuitively speaking, captures the expected
remaining uncertainty of X’s value after revealing Y . We use I[X : Y | Z] for the conditional
mutual information between X and Y conditioned on Z, which is the expected amount of
information X reveals about Y (and vice versa) after revealing Z.

2.3 Embeddable Problems
We say that a problem P is embeddable if there is an input distribution D on graphs in Gℓ

that satisfies the following two properties:

(P1) Independence of the embedding index σ: Random variable σ is sampled uniformly
from [ℓ], and is independent of the edges, labels, and vertex IDs.

(P2) Independence of cut sets under conditioning: Random variables E1, . . . , Eℓ are
mutually independent conditioned on Z.

Intuitively speaking, Property (P1) guarantees that the specific value of the index σ

does not bias the distribution of the transcripts of the players Alice1, . . . , Aliceℓ, and Bob.
Property (P2) ensures that knowing some of the cut sets does not leak information about the
remaining cut sets, in particular Eσ. As we will see in Lemma 6 below, Properties (P1) and
(P2) are sufficient for obtaining a probability distribution on Eσ that is close to the one that
Charlies has access to when computing his output, even though it does not take into account
Bob’s transcript. For problems that also satisfy the following property (P3), which avoids
dependencies between Charlie’s output and parts of the graph that are unrelated to Eσ,
we give a bound on the probability of directly reconstructing Charlie’s output in Lemma 5
below. Note that (P3) is a natural property of decision problems, where Eσ and the labels of
its neighbors fully determines the output of the algorithm.

(P3) Unique Output: Conditioned on Charlie’s input Z, σ, the cut set Eσ, the shared
randomness R, and the event that Charlie’s output C correctly solves problem P, it
holds that C is a deterministic function of Eσ, i.e., H[C | Eσ, R, Z, σ, 1Succ =1] = 0.

In the next lemma, we formalize a crucial property of embeddable problems: We can
compute a solution with sufficiently large probability just by inspecting Charlie’s input and
the transcripts of Alice1, . . . , Aliceℓ.

▶ Lemma 5 (Existence of Reconstruction Protocol). Consider an embeddable problem P with
input distribution D on Gℓ that satisfies (P1), (P2), and (P3). Suppose that there is a public
coin randomized SMP protocol that solves P with error δ ⩽ min

{
1
2 , 1

|C|2

}
. Then there exists

a reconstruction protocol R(R, Z, σ, Π(⩽ℓ)) that returns Charlie’s output C with probability at

least 2−
(|ΠB |

ℓ +3
√

δ
)
.

To gain some intuition for applying Lemma 5, suppose that Charlie just outputs a single
bit, i.e., |C| ⩽ 1 and that δ ⩽ 1

25 , which means that
√

δ ⩽ 1
5 . Now assume that Bob sends a

message of at most ℓ/5 ⩽
√

δℓ bits, which means that, on average, his message can reveal
only a (1

5)-fraction of a bit of information for each of the ℓ cut sets Ei between V and

P. Robinson 32:7

W . Then, Lemma 5 tells us that we can recover Charlie’s output with probability at least
1

21/5+3/5 ≈ 0.57 without Bob’s message ΠB . Moreover, if we consider protocols that succeed
with high probability, i.e., δ ⩽ 1

ℓ , and restrict the length of Bob’s message to at most
√

ℓ

bits, we get a recovery protocol that succeeds with probability at least 1
2(4/

√
ℓ) = 1 − o(1).

For random variables X and Y , consider the probability distributions µ(X) and µ(X |
Y =y). We define |µ(X) − µ(X | Y =y)|T V to be the total variation distance, which is the
maximum difference in the probability of any event E on X for these two distributions. We
use parts of the techniques developed in the proof of Lemma 5 to show the following result:2

▶ Lemma 6. Consider an algorithm for an embeddable problem that satisfies (P1) and (P2).
Then, it holds that

E
[∣∣µ(Eσ | Z, σ, Π⩽ℓ) − µ(Eσ | Z, σ, Π⩽ℓ, ΠB)

∣∣
T V

]
⩽ 2
√

|ΠB |/ℓ,

where the expectation is taken over Z, σ, Π⩽ℓ, and ΠB.

Note that, strictly speaking, Lemma 6 does not give a concrete reconstruction protocol,
but instead only an upper bound on the statistical distance between the distribution of Eσ,
conditioned on Charlie’s input and Π⩽ℓ, and the distribution of Eσ where we also condition
on ΠB. However, this turns out to be sufficient for obtaining a concrete reconstruction
protocol, as we demonstrate in Section 5.

2.4 Proof of Lemma 5
High-Level Overview. Recalling that our goal is to obtain a protocol that recovers the
output C without seeing Bob’s message ΠB, we start by deriving an upper bound on how
much information his message may contain about C. We show that this is roughly equivalent
to the amount of information that ΠB conveys about the cut set Eσ (see Lemma 7). In
particular, since Bob does not know σ, the amount of information that ΠB contains about
Eσ is only a |ΠB |

ℓ -fraction on average (see Lemma 8). In other words, if Bob’s message is
short compared to the number of cut sets ℓ, then it cannot convey a significant amount of
information about Eσ. In Lemma 9, we combine these observations to show that we can
guess Charlie’s output with a probability of at least 2− |Π|

ℓ , where we have omitted some error
terms that depend on the success probability of the original protocol.

We now give the detailed argument. Observe that Π(⩽ℓ), ΠB , R, Z, and σ fully determine
C, and thus

I
[
C : Π(⩽ℓ), ΠB

∣∣ R, Z, σ
]

= H[C | R, Z, σ]. (1)

Therefore, by the chain rule, we have that

I
[
C : Π(⩽ℓ)

∣∣ R, Z, σ
]

= I
[
C : Π(⩽ℓ), ΠB

∣∣ R, Z, σ
]

− I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]

(by (1)) = H[C | R, Z, σ] − I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
. (2)

The next lemma shows that we can upper-bound the amount of information that Bob’s
transcript reveals about Charlie’s output in terms of the information that the transcript
reveals about the cut set Eσ, assuming that the protocol succeeds.

▶ Lemma 7. I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
⩽ I
[
Eσ : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]

+ 3
√

δ.

2 Omitted proofs are presented in the full version of the paper.

DISC 2023

32:8 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

Next, we show that Bob’s message reveals the same amount of information about any cut
set (on average), which holds for Eσ in particular.

▶ Lemma 8. I
[
Eσ : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
⩽

|ΠB |
ℓ

and also I
[
Eσ : ΠB

∣∣ Z, Π(⩽ℓ), σ
]
⩽

|ΠB |
ℓ

.

Plugging the bound of Lemma 8 into Lemma 7, we obtain

I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
⩽

|ΠB |
ℓ

+ 3
√

δ.

Returning to (2), we get

I
[
C : Π(⩽ℓ)

∣∣ R, Z, σ
]
⩾ H[C | R, Z, σ] − |ΠB |

ℓ
− 3

√
δ. (3)

Intuitively speaking, (3) says that the transcript of Alice1, . . . , Aliceℓ reveal all except a
fraction of a bit of the information contained in Charlie’s output C, in expectation. However,
we cannot directly use the assumed SMP protocol P for reconstructing Charlie’s output,
because P is only guaranteed to work given the transcripts of all players. Nevertheless, the
next lemma shows that there exists a simple reconstruction protocol, which completes the
proof of Lemma 5.

▶ Lemma 9. There exists a protocol R that takes R, Z, Π(⩽ℓ), and σ as input, and correctly

computes Charlie’s output C with probability at least 2−
(|ΠB |

ℓ +3
√

δ
)
.

Proof. Protocol R works as follows: Given the input {Π1 =π1, . . . , Πℓ =πℓ, R=r, Z =z, σ =
i}, it returns the output of Charlie that maximizes the probability, which is

arg max
c

Pr[C =c | π1, . . . , πℓ, r, z, i].

Let Y = (Π(⩽ℓ), R, Z, σ), and let pc|y = Pr[C =c | Y =y]. We observe that

Pr[R succeeds] =
∑

y

Pr[Y =y] max
c

pc|y

= E
y

[
2log maxc pc|y

]
(by Jensen’s inequality) ⩾ 2E[log maxc pc|y]

= 2E
[

log(maxc(pc|y)·
∑

c
pc|y)

]
⩾ 2E

[
log(
∑

c
p2

c|y)
]
. (4)

For a fixed y, we define the random variable Py(c) := pc|y, which is a function of c. In this
notation, the exponent on the right-hand side becomes

E
y

[
log
(∑

c

pc|yPy(c)
)]

= E
y

[
log
(

E
c
[Py(c)]

)]
(by Jensen’s inequality) ⩾ E

y

[
E
c
[log Py(c)]

]
= − E

y
[H[C | Y =y]]

= − H[C | Y]

P. Robinson 32:9

Returning to (4), we get

Pr[R succeeds] ⩾ 2− H[C | Y] = 2− H[C | Π(⩽ℓ),R,Z,σ].

Since H[C | Π(⩽ℓ), R, Z, σ] = H[C | R, Z, σ] − I
[
C : Π(⩽ℓ)

∣∣ R, Z, σ
]
, it follows that

Pr[R succeeds] ⩾ 2−(H[C | R,Z,σ]−I[C : Π(⩽ℓ) | R,Z,σ])

(by (3)) ⩾ 2−
(|ΠB |

ℓ +3
√

δ
)
. ◀

3 A Lower Bound for Computing a BFS Tree

As a warm-up, we instantiate the generic class of lower bound graphs defined in Section 2.1
to show a tight bound on the message length for computing a breadth-first search (BFS)
tree, where a fixed node s starts out knowing that it is designated as the source and the goal
for the referee is to output a BFS tree rooted at s.

▶ Theorem 1 (restated). Any public coin constant-error randomized algorithm that computes
a BFS tree rooted at a designated node of an n-node graph, requires a worst case message
length of Ω(n) bits in the distributed sketching model (SKETCH) and the one-round broadcast
congested clique (BCC1).

Proof. We are able to obtain this lower bound via a direct reduction from the IndexN problem
in the two-party one-way setting, where there are two players, Diane and Edward. Diane
starts with a binary vector x of length N and Edward gets an index i ∈ [N]. Diane can send
a single message to Edward who must output the i-th bit of x.

As discussed in Section 1, the models SKETCH and BCC1 are equivalent and we will
focus on the former out of convenience. Suppose that there is a SKETCH algorithm A
that computes a BFS tree rooted at any given source node. We describe how Diane and
Edward can simulate A to solve the Indexℓ2 problem. Based on the lower bound graph
class Gℓ that we described in Section 2.1, they sample a graph as follows: All the IDs of
the nodes are fixed and the cardinalities of the vertex sets are defined as |U | = |V | =
|W | = ℓ. Moreover, there is a fixed perfect matching between U and V known to both
players, i.e., we have edges (u1, v1), . . . , (uℓ, vℓ). Assume that Diane gets input x, which is
a binary vector of length ℓ2. Diane interprets her input x as the characteristic vector of
the ℓ2 possible edges between the sets V and W , for the fixed ordering ρ of V × W where
ρ = ((v1, w1), . . . , (v1, wℓ), (v2, w1), . . . , (v2, wℓ), . . . , (vℓ, wℓ)). That is, Diane adds the i-th
edge of ρ to the graph if and only if xi = 1. As a result, Diane knows the neighborhoods of
all nodes in V ∪ W . She simulates A on each one of them and sends the resulting messages
to Edward.

Edward gets as input some index i ∈ [ℓ2]. Since he knows the ordering ρ, he computes
the index σ ∈ [ℓ] such that vσ ∈ V is incident to the i-th (potential) edge in ρ, and adds
the edge (s, uσ). Figure 3 in the attached full paper shows the resulting graph. Then, he
simulates A on s and each vertex in U , whereby s is designated as the source node of the
tree. Upon receiving Diane’s message, he simulates the referee and obtains the BFS tree
assuming that A succeeded. If the i-th edge is included in the BFS-edges leading from vσ to
W , he outputs 1, otherwise he answers 0. Correctness follows since the BFS tree rooted at s

must contain all the edges in the cut (vσ, W).
It was shown in [20] that the Indexℓ2 problem requires Ω(ℓ2) bits in the one-way two-party

model, for achieving constant probability of success. Therefore, Diane’s simulation produces
a message of length Ω(ℓ2) bits, and thus one of the 2ℓ vertices simulated by her must have
sent a message of size Ω(ℓ) bits. The result follows since the lower bound graph has n = 3ℓ+1
vertices in total. ◀

DISC 2023

32:10 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

4 A Lower Bound for Verifying Symmetry Breaking Problems

We now turn our attention to the problem of verifying whether a given labeling of the vertices
is a weak 2-coloring of the input graph, which means that each non-isolated vertex has at
least one differently-colored neighbor.3

High-level Overview. As we plan to employ Lemma 5, we start by defining the EIm problem
in the SMP model and show that it is an embeddable problem satisfying Properties (P1),
(P2), and (P3) with a suitable input distribution on the graphs in Gℓ. Next, we show how to
simulate a given EIm algorithm in the one-way two-party communication complexity model
for solving set disjointness. From this, we derive a lower bound on the length of Aliceσ’s
message. We obtain the sought lower bound by showing that a protocol for 2-weak coloring
can be used to solve the EIm problem in the SMP model.

4.1 The Edge Intersection Problem EIm

Here, in addition to vertex IDs, we assume that each vertex in W is labeled with a bit
indicating its color, and we define Wb ⊆ W to be the b-labeled vertices, for b ∈ {0, 1}. As
defined in Section 2, random variable LW represents the label assignment for nodes in W . We
consider the simultaneous multiparty (SMP) model with the input assignments as described
in Section 2.2, i.e., Alicei knows the neighborhood of vi, Bob knows all nodes (and labels) in
W as well as their neighbors, and Charlie knows the IDs of U , W , the labels LW , and the
embedding index σ. Charlie receives a message from Alice1, . . . , Aliceℓ and Bob, and then
computes his answer. The goal is to determine whether an edge in Eσ “intersects” with (i.e.,
has an endpoint in) the 1-labeled nodes in W . Thus, to correctly solve the EIm problem, it
must hold for Charlie’s output that

C =
{

“yes” if Eσ ∩ W1 ̸= ∅;
“no” otherwise.

(5)

4.2 The Hard Input Distribution DEIm

Let ℓ =
⌈
m3 log m

⌉
. We define the following distribution DEIm on the class Gℓ. We fix the

IDs of all vertices in advance, i.e., they are the same for all graphs sampled from DEIm .
In particular, we specify that |W | = m2 and we assign the set [m2] as the IDs of the
vertices in W . The sets Ui are singletons, i.e., Ui = {ui}, and there is a perfect matching
{u1, v1}, . . . , {uℓ, vℓ} between U and V .

We will choose the edges in the cut sets E1, . . . , Eσ and the labels of W by sampling
the input from the product distribution on certain set families for which set disjointness is
known to be hard:

▶ Lemma 10 (follows from Lemmas 1 and 2 in [9]). There exist set families X , Y ⊆
([m2]

m

)4

such that (a) |X | ⩾ 2(m log m)/4, (b) |Y| ⩽ 1
4 m log m. Moreover, for all distinct X, X ′ ∈ X ,

it holds that (c) |X ∩ X ′| ⩽ m
4 , and (d) there exists Y ∈ Y such that Y has a nonempty

intersection with either X or X ′.

3 The weak 2-coloring problem was introduced in the seminal work of [21].
4
([N]

m

)
denotes the family of all m-element subsets of [N].

P. Robinson 32:11

We make use of the set families guaranteed by Lemma 10 to sample a graph G from DEIm as
follows:
1. Sample σ uniformly from [ℓ].
2. For each vi, sample a random set X ∈ X and connect vi to each w ∈ W that has an ID

in X.
3. Randomly pick a set Y ∈ Y and label the nodes in W according to the output of the

resulting indicator function on W : That is, for j ∈ [m2], the label of wj is 1 if j ∈ Y and
0 otherwise.

Figure 4a shows a graph sampled from DEIm .

▶ Lemma 11. Problem EIm is embeddable with input distribution DEIm , and satisfies Proper-
ties (P1), (P2), and (P3) (as defined in Section 2).

4.3 A Lower Bound for the EIm Problem
To prove that the EIm problem requires a large transcript length, we use a reduction from
set disjointness.

▶ Lemma 12 (implicit in Theorem 4 in [9]). Solving set disjointness in the one-way two-party
model with a public coin randomized protocol that succeeds with probability 1

2 + ϵ, for some
constant ϵ > 0, has a communication complexity of Ω(m log m) bits, when Diane’s input is
sampled uniformly from X and Edward’s input is sampled uniformly from Y.

▶ Lemma 13. Consider a public coin randomized protocol P that solves the EIm problem
with error δ ⩽ 1

25 . If |ΠB | ⩽ 1
16 m3 log m, then |Πσ| = Ω(m log m).

Proof. We show a reduction from the set disjointness problem [26] in the one-way two-party
model, where there are two players, Diane and Edward that are given subsets X and Y

respectively. Diane sends a single message to Edward who must decide whether X ∩ Y = ∅.
Given an instance of set disjointness, Diane and Edward will simulate the assumed EIm

protocol A on a graph sampled from DEIm by embedding the set disjointness instance into
the neighborhood of node vσ. Suppose that Diane has input X ∈ X and Edward has input
Y ∈ Y, both of which were sampled uniformly. As required, they choose the cardinalities
|U | = ℓ and |W | = m2, and make each Ui a singleton set. Moreover, they fix the IDs of
all nodes in advance such that the set [m2] defines the IDs of the nodes in W . Note that
this also determines the perfect matching between U and V . In the simulation, Diane will
simulate only Aliceσ, whereas Edward simulates Alicei (i ̸= σ) and Charlie. Note that, in
addition to the edges, the players also need to assign binary vertex labels to the vertices
in W :
1. Using public randomness, they uniformly sample an index σ from [ℓ].
2. Diane uses her input X to define the IDs of the neighbors of vσ in W .
3. Similarly, for each vi ∈ V (i ̸= σ), Edward uniformly samples a random Xi ∈ X and

connects vi to W by connecting vi to each w ∈ W with an ID in Xi.
4. Edward uses his input Y to assign the labels of the nodes in W . That is, for each index

j ∈ Y , the label of wj is 1, and he labels all wk (k /∈ Y) with 0.

It is straightforward to verify that the sampling procedure executed by Diane and Edward
results in an input assignment to players Alice1, . . . , Aliceℓ, and Charlie that is the same as
in distribution DEIm . Therefore, Diane can simulate the EIm protocol for Aliceσ and send the
resulting message to Edward who, in turn, is able to simulate Alicei (i ̸= σ). Once Edward
receives Diane’s message, he knows Z, Π(⩽ℓ), and σ, and hence he also knows Charlie’s

DISC 2023

32:12 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

input. Since |ΠB | ⩽ 1
16 m3 log m and ℓ = ⌈m3 log m⌉ in DEIm , it follows that |ΠB |

ℓ ⩽ 1
16 . Thus,

Edward invokes the reconstruction protocol R guaranteed by Lemma 5 to recover Charlie’s
output. He answers that X and Y are disjoint if and only if Charlie’s output is “no”. Since R
succeeds with probability at least 2−

(|ΠB |
ℓ +3

√
δ
)
⩾ 2−(1/16+3/5) > 0.63, applying Lemma 12

completes the proof of Lemma 13. ◀

4.4 Proof of Theorem 2
▶ Theorem 2 (restated). Any 1

25 -error randomized algorithm that verifies if a labeling of a
subset of vertices forms a weak 2-coloring of an n-node input graph, requires a worst case
message length of Ω

(
n1/3 log2/3 n

)
bits in SKETCH and BCC1. The same bound holds for

deciding whether a subset of nodes forms a maximal independent set.

We prove the theorem via a reduction from the EIm problem in the SMP model. Let G be
an input graph sampled from DEIm and let Q be a protocol that satisfies the premise of the
theorem. The players will simulate Q on a graph H, which extends G with some edges and
adds a vertex coloring, as we describe in more detail below. Each player Alicei simulates Q
for node vi, while assigning color 0 to vi. Bob simulates all nodes in W and adds an edge
between some arbitrary node in w ∈ W1 and every node in W0. For the simulation, the nodes
in Wb (b ∈ {0, 1}) are colored with color b. See Figure 4b for an example of the resulting
graph. Charlie, on the other hand, simulates the referee and all nodes in U , where he colors
uσ with 0 and the nodes in U \ {uσ} with 1. Moreover, he adds an edge between uσ and
some arbitrary uj (j ̸= σ). Note that Charlie knows which node is uσ since the index σ is
part of his input. The edges added by Bob and Charlie ensure that every node (with the
possible exception of vσ) has a differently-colored neighbor by construction. It follows that
the output of the EIm protocol verifies whether the given coloring of G is valid:

▶ Observation 14. The coloring is a weak 2-coloring if and only if Eσ ∩ W1 is nonempty. An
analogous property holds for the question whether the vertices with color 1 form a maximal
independent set or a minimal dominating set.

Now, assume towards a contradiction that the worst case sketch length produced by protocol
Q is at most 1

16 m log m. This ensures that Bob sends a message of at most 1
16 |W |m log m =

1
16 m3 log m bits in the simulation. Since this satisfies the premise of Lemma 13, it follows
that the node vσ simulated by Aliceσ sends a sketch of length Ω(m log m) in the worst case.
The total number of nodes in H is n = |U | + |V | + |W | = 2⌈m3 log m⌉ + m2 = Θ

(
m3 log m

)
.

Hence it follows that log m = Ω(log n) and thus m = Ω
(

(n/log n)1/3
)

. We conclude that
Aliceσ’s sketch must have a length of Ω(n1/3 log2/3 n) bits. By Observation 14, the same
result holds for verifying a maximal independent set or a minimal dominating set.

5 A Lower Bound for k-ECSS in Sketching Model

In this section, we will apply Lemma 6 for showing a lower bound of Ω
(
k log2 n

k

)
on the

message size for computing a k-edge connected spanning subgraph (k-ECSS).

High-level Overview. We first define an embeddable problem, the ERk,m problem, and a
suitable input distribution on the lower bound graphs Gℓ (see Section 2.1). We consider the
ERk,m problem in the SMP model, where each vertex in V has m neighbors and the goal is
to find a subset of k edges in the cut Eσ of the input graph. Subsequently, we show that it is

P. Robinson 32:13

in fact an embeddable problem (see Sec. 2) that satisfies Properties (P1) and (P2), and thus
Lemma 6 applies. We then simulate the assumed ERk,m protocol in the one-way two-party
communication model and use it to solve the UR⊂

k problem defined in [17], which implies a
lower bound on the length of Aliceσ’s message. The final step is to simulate a given k-ECCS
protocol P designed for the SKETCH model to solve the ERk,m problem in the SMP model,
and this will yield the sought lower bound on the worst case sketch size of P.

5.1 The Edge Recovery Problem ERk,m

We consider the simultaneous multiparty model and the graph class Gℓ, where each vertex
in V has exactly m neighbors. A protocol solves the ERk,m problem if, after receiving the
messages from Alice1, . . . , Aliceℓ, and Bob, player Charlie outputs a subset of k edges in the
cut Eσ.

5.2 The Hard Input Distribution DERk,m

Our distribution is similar to the one used in [22], albeit with some crucial differences. Let
ℓ := ⌈m2 log2 m

k ⌉ and let Γ = ⌈m2/k⌉. To sample a graph G ∈ Gℓ from DERk,m
, we fix the

IDs of nodes in V to be the set [ℓ] and perform the following steps:
1. Uniformly sample σ from [ℓ].
2. Fix the size of the sets U1, . . . , Uℓ, and W to be Γ. Sample (ℓ + 1) disjoint random subsets

A1, . . . , Aℓ+1, each of size Γ from F0 := [ℓ2] \ [ℓ], and use Ai to assign the IDs to the
nodes in Ui, whereas, for the nodes in W , we use Aℓ+1.

3. For each vi ∈ V , we choose a random m-element set S ⊆ [Γ] and a uniformly random
T ⊂ S such that |S \ T | ⩾ k and |T | ⩾ k. We connect vi to |S \ T | random vertices from
W and |T | random vertices in Ui.

Figure 5a shows an instance of a graph sampled from DERk,m
.

▶ Lemma 15. The total number of nodes in graph G is n = O
(
m4 log2(m/k)

)
.

▶ Lemma 16. The ERk,m problem is embeddable with distribution DERk,m
, i.e., satisfies

properties (P1) and (P2).

5.3 A Lower Bound for the ERk,m Problem
We use Lemma 6 to show the following:

▶ Lemma 17. Consider a deterministic protocol P that solves the ERk,m problem with
probability at least 1 − o(1) on inputs sampled from DERk,m

, and suppose that |ΠB | = o(ℓ).
Then, there exists a deterministic protocol R that succeeds with probability at least 1 − o(1) on
inputs from DERk,m

, just by inspecting Charlie’s input and the transcripts of Alice1, . . . , Aliceℓ,
i.e., while omitting Bob’s transcript ΠB.

The UR⊂
k Problem. There are two players, Diane and Edward. For some integer N > 0,

Diane is given a set S ⊆ [N] and Edward starts with a subset T ⊂ S. To solve the UR⊂
k

problem, Diane sends a single message to Edward, who in turn must output k elements in
S \ T . Theorem 3 in [17] shows a worst case communication complexity lower bound of
Ω(k log2(N/k)) bits for algorithms that succeed with constant probability. For the purpose
of our reduction, we need a slightly more specific result:

In the full version of the paper, we show how to adapt Theorem 3 in [17] to obtain the
following result:

DISC 2023

32:14 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

▶ Lemma 18. Consider a universe of size N . Let m = ⌊
√

Nk⌋ and suppose that k ⩽ N/210.
Suppose that Diane’s set S is chosen from

([N]
m

)
and Edward’s input set is any proper subset

T ⊂ S under the restriction that |S \ T | ⩾ k and |T | ⩾ k. Then, any UR⊂
k protocol P that

errs with small constant probability in the one-way 2-party model with public coins, has a
worst case transcript length of Ω(k log2(N

k

)
) bits.

In the proof of the next lemma, we use the hardness of UR⊂
k to show a lower bound for

the ERk,m problem by simulating the SMP model in the 2-party setting. We point out that
the approach is similar to Section 3 of [22] and postpone the full proof to the full version.

▶ Lemma 19. Consider a protocol P that solves the ERk,m problem with error at most o(1) on
inputs sampled from DERk,m

. If |ΠB | = o(ℓ), where ℓ = ⌈m2 log2 m
k ⌉, then |Πσ| = Ω

(
k log2 m

k

)
.

5.4 Proof of Theorem 3
▶ Theorem 3 (restated). Any public coin randomized algorithm that computes a k-edge
connected spanning subgraph of an n-node graph in SKETCH or BCC1 with probability at
least 1 − o(1), has a worst case message length of Ω

(
k log2 n

k

)
bits, for any k = o

(
n1/4

log1/2 n

)
.

We first describe the hard input distribution Dk-ECSS for computing a k-connected
spanning subgraph in the SKETCH model, which is a simple extension of DERk,m

:
1. Sample a graph G from DERk,m

.
2. Graph H contains all edges of G; in addition, we make the subgraph induced by each Ui

(i ∈ [ℓ]) a clique, and we also add a clique on W .
Let A be a deterministic algorithm that computes a k-connected spanning subgraph in the
SKETCH model on inputs sampled from Dk-ECSS with probability at least 1 − o(1). Note
that the result immediately extends to randomized algorithms by a simple application of
Yao’s lemma. Given a graph G sampled from the hard input distribution DERk,m

, we add the
necessary edges to G according to Dk-ECSS and then simulate A on the resulting graph H to
solve the ERk,m problem in the SMP model. Figure 5b shows an example of this graph.

Observe that every Ui and W consist of ⌈m2/k⌉ > k vertices and hence there are k

edge-disjoint paths between any two vertices that lie within such a set. Moreover, we sample
the neighborhoods of vi such that |E(vi, W)| ⩾ k and |E(vi, Ui)| ⩾ k (see Step 3 of DERk,m

).
This ensures that there are at least k edge-disjoint paths between all pairs of vertices of H:

▶ Observation 20. Graph H is k-edge connected.

For each i ∈ [ℓ], player Alicei simulates A for node vi and sends the corresponding sketch
to Charlie. Bob, on the other hand, sends Charlie the concatenated sketches of the nodes
in W , which he computes by simulating A given their respective neighborhood in H as an
input. Finally, Charlie, simulates A for all nodes in U , and he also simulates the referee. It
follows immediately from the input assignment of the ERk,m problem that the players have
the necessary information to perform the simulation. Observe that every k-edge connected
subgraph of H must include k edges in the cut E(vσ, W), and hence the simulation solves
the ERk,m problem with the same probability of success.

Let L be the worst case sketch length of protocol A. In our simulation, Bob’s message
is of length |ΠB | ⩽ L |W | ⩽ O

(
L m2

k2

)
. Assume that L = o

(
k log2 m

k

)
, as otherwise we

are done. By Lemma 15, we know that log m
k = Ω

(
log n

k

)
, which implies that |ΠB | =

o
(
m2 log2 n

k

)
= o(ℓ). By applying Lemma 19, we conclude that Aliceσ must send a message

of Ω
(
k log2 m

k

)
= Ω

(
k log2 n

k

)
bits in the worst case.

P. Robinson 32:15

6 A Streaming Lower Bound for k-ECSS

In this section, we consider the data streaming setting, where the algorithm learns about
the input graph as a stream of edges. That is, in the fully dynamic turnstile model, the
algorithm observes the stream entries sequentially. Each entry of the stream refers to two
vertices u and v and indicates whether the edge {u, v} is added or removed from the current
graph, and the algorithm needs to react to this update. The main objective is to minimize
the amount of memory used by the algorithm while taking (preferably) only a single pass
over the data stream.

We show a memory lower bound for computing a k-ECSS in the fully dynamic turnstile
model by extending the work of [17].

▶ Theorem 4 (restated). Any Monte Carlo data structure for computing a k-edge connected
spanning subgraph of an n-node graph requires Ω

(
k n log2 n

k

)
space in the one-pass fully

dynamic turnstile model.

In our proof of Theorem 4, we use a reduction from the 2-party communication complexity,
where we need to solve multiple instances of UR⊂

k in parallel. We first recall the definition of
the UR⊂

k problem from Section 5: We are given the universe [N] and there are two players
called Alice and Bob. Alice obtains a set S ⊆ [N] and Bob has a subset T ⊂ S. Alice sends
a message to Bob who must then output k elements in S \ T .5 We define the ℓ-fold UR⊂

k

problem, where Alice and Bob obtain ℓ independently sampled instances of UR⊂
k (on the

same universe) and they need to solve all of them, again, assuming that Alice can send only
a single message to Bob.

▶ Lemma 21. Consider any k = Ω(log N) and a universe of size N > k. Any one-way
communication protocol that solves the ℓ-fold UR⊂

k problem with error at most δ requires
Ω
(
(1 − δ)k ℓ log2(N

k

))
bits.

We now show how the lemma implies Theorem 4: Suppose that there exists an algorithm
A that maintains a k-edge connected spanning subgraph in the turnstile model. We simulate
A in the 2-party model. Our simulation is similar to the one used for showing a lower bound
on the memory needed for maintaining a spanning forest in Lemma 1 of [22]. Consider a
graph G with vertex sets X and Y , each of size ℓ, for some ℓ > k. The IDs of the vertices
in X are given by [ℓ], whereas the neighborhood of the i-th vertex in Y will correspond to
the i-th instance of UR⊂

k . Recall that Alice starts with the input S1, . . . , Sℓ and Bob has
input T1, . . . , Tℓ, where (Si, Ti) is the i-th instance of UR⊂

k . Alice and Bob will perform edge
insertions/removals and execute the streaming algorithm A accordingly. Alice first inserts
edges such that X forms a clique. Then, for each set Si and each x ∈ Si, Alice adds an
edge {x, yi} to G. Subsequently, Alice sends the memory state of A to Bob who, in turn,
for each Ti and each x′ ∈ Ti, continues to simulate A by removing {x′, yi} from G. Recall
that |Si \ Ti| ⩾ k, which guarantees that the degree of each node in Y is at least k after the
last update. Moreover, the nodes in X form a clique of size greater than k, and hence it
follows that G is k-edge connected. Finally, Bob returns the output of A which must include
k edges incident to each yi ∈ Y with probability at least 1 − δ to ensure k-connectivity. Each
one of these edges corresponds to an element in Si \ Ti, and hence the simulation solves
ℓ-fold UR⊂

k with precisely the same probability. Since Lemma 21 tells us that ℓ-fold UR⊂
k

has a communication complexity of Ω(k n log2(n/k)) for ℓ = n, it follows that A must use at
least Ω(k n log2(n/k)) bits of memory. This completes the proof of Theorem 4.

5 Here, we restrict ourselves to the case where the inputs satisfy that |S \ T | ⩾ k.

DISC 2023

32:16 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

7 Future Work and Open Problems

Our results reveal insights into the communication complexity of distributed graph verification
problems. However, we are not aware of any communication-efficient 1-round verification
algorithm for these type of symmetry breaking problems.

▶ Open Problem 1. Is there an algorithm that verifies an LCL problem in just a single
round of the broadcast congested clique while sending o(m) bits on graphs with m edges?

While we showed a lower bound on the memory for maintaining a k-edge connected
spanning subgraph in the turnstile model, the more fundamental question regarding the
space required to solve graph connectivity (i.e., k = 1) has yet to be answered, as pointed
out in [28]:

▶ Open Problem 2. Is there a lower bound of Ω(n log3 n) memory for solving graph
connectivity in the turnstile model?

References
1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Christoph Lenzen. Fooling views: a new

lower bound technique for distributed computations under congestion. Distributed Comput.,
33(6):545–559, 2020. doi:10.1007/s00446-020-00373-4.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 459–467. SIAM, 2012.

3 Sepehr Assadi, Gillat Kol, and Rotem Oshman. Lower bounds for distributed sketching of
maximal matchings and maximal independent sets. In PODC ’20: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 79–88, 2020.
doi:10.1145/3382734.3405732.

4 Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A trade-off between
information and communication in broadcast protocols. J. ACM, 37(2):238–256, 1990. doi:
10.1145/77600.77618.

5 Florent Becker, Martin Matamala, Nicolas Nisse, Ivan Rapaport, Karol Suchan, and Ioan
Todinca. Adding a referee to an interconnection network: What can (not) be computed in
one round. In 2011 IEEE International Parallel & Distributed Processing Symposium, pages
508–514. IEEE, 2011.

6 Matthias Bonne and Keren Censor-Hillel. Distributed detection of cliques in dynamic networks.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 132:1–132:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.132.

7 Lijie Chen and Ofer Grossman. Broadcast congested clique: Planted cliques and pseudorandom
generators. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
pages 248–255, 2019.

8 T. Cover and J.A. Thomas. Elements of Information Theory, second edition. Wiley, 2006.
9 Anirban Dasgupta, Ravi Kumar, and D Sivakumar. Sparse and lopsided set disjointness

via information theory. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 517–528. Springer, 2012.

10 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris, France,
July 15-18, 2014, pages 367–376, 2014. doi:10.1145/2611462.2611493.

https://doi.org/10.1007/s00446-020-00373-4
https://doi.org/10.1145/3382734.3405732
https://doi.org/10.1145/77600.77618
https://doi.org/10.1145/77600.77618
https://doi.org/10.4230/LIPIcs.ICALP.2019.132
https://doi.org/10.1145/2611462.2611493

P. Robinson 32:17

11 Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16-18, 2018, pages 153–162,
2018. doi:10.1145/3210377.3210401.

12 Pierre Fraigniaud, Pedro Montealegre, Pablo Paredes, Ivan Rapaport, Martín Ríos-Wilson,
and Ioan Todinca. Computing power of hybrid models in synchronous networks. arXiv preprint
arXiv:2208.02640, 2022.

13 Mohsen Ghaffari and Fabian Kuhn. Distributed MST and broadcast with fewer messages, and
faster gossiping. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium
on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume
121 of LIPIcs, pages 30:1–30:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.DISC.2018.30.

14 Robert Gmyr and Gopal Pandurangan. Time-message trade-offs in distributed algorithms.
In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on Distributed
Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs,
pages 32:1–32:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.DISC.2018.32.

15 Jacob Holm, Valerie King, Mikkel Thorup, Or Zamir, and Uri Zwick. Random k-out subgraph
leaves only o(n/k) inter-component edges. In 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
896–909, 2019. doi:10.1109/FOCS.2019.00058.

16 Tomasz Jurdzinski, Krzysztof Lorys, and Krzysztof Nowicki. Communication complexity in
vertex partition whiteboard model. In International Colloquium on Structural Information
and Communication Complexity, pages 264–279. Springer, 2018.

17 Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P Woodruff, and
Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers and finding
duplicates in streams. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 475–486. Ieee, 2017.

18 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1131–1142, 2013. doi:10.1137/1.9781611973105.81.

19 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an MST
in a distributed network with o(m) communication. In Chryssis Georgiou and Paul G. Spirakis,
editors, Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 71–80. ACM, 2015.
doi:10.1145/2767386.2767405.

20 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication com-
plexity. Computational Complexity, 8(1):21–49, 1999.

21 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

22 Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming spanning
forest computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1844–1860,
2019. doi:10.1137/1.9781611975482.111.

23 Shreyas Pai and Sriram V Pemmaraju. Connectivity lower bounds in broadcast congested clique.
In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

24 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

DISC 2023

https://doi.org/10.1145/3210377.3210401
https://doi.org/10.4230/LIPIcs.DISC.2018.30
https://doi.org/10.4230/LIPIcs.DISC.2018.32
https://doi.org/10.4230/LIPIcs.DISC.2018.32
https://doi.org/10.1109/FOCS.2019.00058
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1145/2767386.2767405
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1137/1.9781611975482.111
https://doi.org/10.1137/1.9780898719772

32:18 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

25 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. SIAM J. Comput., 45(1):174–196, 2016. doi:10.1137/
15M1007525.

26 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

27 David P. Woodruff and Qin Zhang. When distributed computation is communication expensive.
Distributed Computing, 30(5):309–323, 2017. doi:10.1007/s00446-014-0218-3.

28 Huacheng Yu. Tight distributed sketching lower bound for connectivity. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021, pages 1856–1873, 2021. doi:10.1137/1.9781611976465.111.

A Tools from Information Theory

We give the definitions of some basic notions from information theory and restate some facts
(without proofs) that we use throughout the paper. We refer the reader to [8] for additional
details. Throughout this section, we assume that X, Y , Z, etc. are discrete random variables.
We use capitals to denote random variables and corresponding lowercase characters for values,
unless stated otherwise. When computing expected values, we sometimes use the subscript
notation Ex to make it explicit that the expectation is taken over the distribution of a specific
random variable X.

▶ Definition 22. The entropy of X is defined as

H[X] =
∑

x

Pr[X =x] log2(1/ Pr[X =x]). (6)

The conditional entropy of X conditioned on Y is given by

H[X | Y] = E
y

[H[X | Y =y]] (7)

=
∑

y

Pr[Y =y] H[X | Y =y].

▶ Definition 23. Let X and Y be discrete random variables. The mutual information
between X and Y is defined as

I[X : Y] =
∑
x,y

Pr[x, y] · log
(

Pr[x, y]
Pr[x] Pr[y]

)
(8)

▶ Definition 24. Let X, Y , and Z be discrete random variables. The conditional mutual
information of X and Y is defined as

I[X : Y | Z] = H[X | Z] − H[X | Y, Z]. (9)

▶ Lemma 25. I[X : Y | Z] ⩽ H[X | Z] ⩽ H[X].

▶ Lemma 26 (Theorem 6.1 in [26]). Consider any random variable X. Every encoding of X

has expected length at least H[X].

▶ Lemma 27 (Theorem 6.12 in [26]). Let X1, . . . , Xk be independent random variables, and
let B be jointly distributed. Then,

k∑
i=1

I[X1 : B] ⩽ I[X1, . . . , Xk : B].

https://doi.org/10.1137/15M1007525
https://doi.org/10.1137/15M1007525
https://doi.org/10.1007/s00446-014-0218-3
https://doi.org/10.1137/1.9781611976465.111

P. Robinson 32:19

▶ Lemma 28 (Data Processing Inequality, see Theorem 2.8.1 in [8]). If random variables X, Y ,
and Z form the Markov chain X → Y → Z, i.e., the conditional distribution of Z depends
only on Y and is conditionally independent of X, then

I[X : Y] ⩾ I[X : Z].

Figure 1 The general structure of the lower bound graphs in Gℓ. Each vi is connected to a subset
of the vertices in Ui and to a subset of the vertices in W . Note that the cardinalities of the sets
U1, . . . , Uℓ, and W , as well as the edges E(U, V) and E(V, W) depend on the hard input distribution,
which is problem-specific. In this example, the labels of the nodes in W are chosen from {a, b, c}.

(a) Alicei’s input: the entire
neighborhood of vi.

(b) Bob’s input: E(V, W) and
LW .

(c) Charlie’s input: E(U, V), σ,
and LW .

Figure 2 The input assignment in the SMP model.

DISC 2023

32:20 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

Figure 3 The lower bound graph G for proving the hardness of computing a BFS tree in the
distributed sketching model and the one-round broadcast congested clique. The BFS tree rooted at
s must include all edges in the cut E(vσ, W). Note that we sample the edges in the cut E(V, W)
according to the hard input distribution of the Indexℓ2 problem.

(a) A graph G sampled from distribution DEIm .
To solve the EIm problem in the simultaneous
multiparty model, Charlie must output some
edge in Eσ ∩ W1 if it exists.

(b) The graph used in the simulation argument.
The players add the thick orange edges to the
graph sampled from DEIm (see Figure 4a). Red
corresponds to color 0 and green to color 1. The
given vertex coloring forms a weak 2-coloring if
and only if vσ has a green-colored neighbor in
W .

Figure 4 The lower bound graph construction used in the proof of Theorem 2.

P. Robinson 32:21

...

...

v1

vσ

vℓ

U1

Uσ

Uℓ

W

(a) A graph sampled from the lower bound dis-
tribution DERk,m

. The distribution ensures that,
for all i ∈ [ℓ], the cuts E(Ui, vi) and E(vi, W)
have at least k = 2 edges.

...

...

v1

vσ

vℓ

U1

Uσ

Uℓ

W

(b) A k-edge connected graph G that we use to
prove a lower bound for the k-ECSS problem,
for k = 2. To simulate a SKETCH algorithm,
the players sample G from the lower bound dis-
tribution DERk,m

and then add the thick orange
edges to form cliques of size greater than k.

Figure 5 The lower bound graph construction of Theorem 3.

DISC 2023

Memory-Anonymous Starvation-Free Mutual
Exclusion: Possibility and Impossibility Results
Gadi Taubenfeld Ñ

Reichman University, Herzliya, Israel

Abstract
In an anonymous shared memory system, all inter-process communications are via shared objects;
however, unlike in standard systems, there is no a priori agreement between processes on the names
of shared objects [14, 15]. Furthermore, the algorithms are required to be symmetric; that is, the
processes should execute precisely the same code, and the only way to distinguish processes is by
comparing identifiers for equality. For such a system, read/write registers are called anonymous
registers. It is known that symmetric deadlock-free mutual exclusion is solvable for any finite number
of processes using anonymous registers [1]. The main question left open in [14, 15] is the existence of
starvation-free mutual exclusion algorithms for two or more processes. We resolve this open question
for memoryless algorithms, in which a process that tries to enter its critical section does not use
any information about its previous attempts. Almost all known mutual exclusion algorithms are
memoryless. We show that,
1. There is a symmetric memoryless starvation-free mutual exclusion algorithm for two processes

using m ≥ 7 anonymous registers if and only if m is odd.
2. There is no symmetric memoryless starvation-free mutual exclusion algorithm for n ≥ 3 processes

using (any number of) anonymous registers.
Our impossibility result is the only example of a system with fault-free processes, where global
progress (i.e., deadlock-freedom) can be ensured, while individual progress to each process (i.e.,
starvation-freedom) cannot. It complements a known result for systems with failure-prone processes,
that there are objects with lock-free implementations but without wait-free implementations [2, 5].

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Shared memory algorithms; Theory of computation → Distributed algorithms

Keywords and phrases anonymous shared memory, memory-anonymous algorithms, anonymous
registers, starvation-free mutual exclusion

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.33

1 Introduction

1.1 Anonymous shared memory
A central issue in distributed systems is coordinating the actions of asynchronous processes.
In the context where processes communicate via reading and writing from shared memory, in
almost all published concurrent algorithms, it is assumed that the shared memory locations
have global names, which are a priori known to all the participating processes. The intriguing
question of what and how coordination can be achieved without relying on such lower-level
agreement about the names of the memory locations was introduced and studied in [14, 15].

We assume that all inter-process communications are via shared read/write registers
which are initially in a known state. However, unlike in the standard model, from the point
of view of the processes, the registers do not have global names. Such registers are called
anonymous registers. Algorithms correct for a model where the registers are anonymous are
called memory-anonymous algorithms.

There are fundamental differences between the standard shared memory model and the
strictly weaker anonymous shared memory model [15]. Besides enabling us to understand bet-
ter the intrinsic limits for coordinating the actions of asynchronous processes, the anonymous

© Gadi Taubenfeld;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://faculty.runi.ac.il/gadi
https://orcid.org/0000-0003-3070-5370
https://doi.org/10.4230/LIPIcs.DISC.2023.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Memory-Anonymous Starvation-Free Mutual Exclusion

shared memory model with symmetric processes has been shown to be useful in modeling
biologically inspired distributed computing methods, especially those based on ideas from
molecular biology [9]. The main question left open in [14, 15] is regarding the existence of
symmetric starvation-free mutual exclusion algorithms for two or more processes when using
anonymous registers. In this article, we resolve this open question for memoryless algorithms.

1.2 Mutual exclusion, symmetric algorithms, memoryless algorithms
The mutual exclusion problem. The mutual exclusion problem is to design an algorithm
that guarantees mutually exclusive access to a critical section among several competing
processes [4]. It is assumed that each process executes a sequence of instructions in an
infinite loop. The instructions are divided into four continuous sections: the remainder,
entry, critical, and exit. The exit section is required to be wait-free – its execution must
always terminate. It is assumed that processes do not fail and that a process always leaves
its critical section. The mutual exclusion problem is writing the code for the entry and exit
sections to satisfy the following two basic requirements.

Deadlock-freedom: If a process tries to enter its critical section, then some process, not
necessarily the same one, eventually enters its critical section.
Mutual exclusion: No two processes are in their critical sections simultaneously.

The satisfaction of the above two properties is the minimum required for a mutual exclusion
algorithm. For an algorithm to be fair, the satisfaction of the following stronger progress
condition is required.

Starvation-freedom: If a process is trying to enter its critical section, then this process
eventually enters its critical section.

Symmetric algorithms. A symmetric algorithm is an algorithm in which the processes
execute exactly the same code, and the only way to distinguish processes is by comparing
identifiers for equality. A process can determine if two identifiers are the same, but nothing
else can be determined when they are different. Identifiers can be written, read, and compared,
but there is no way of looking inside any identifier. Thus, for example, knowing whether an
identifier is odd or even is impossible.

Furthermore, (1) a process can only compare its identifier with another and cannot
compare it with a constant value, and (2) the local variables of the different processes have
the same names, and (local variables with the same names) are initialized to the same values.
Otherwise, it would be possible to distinguish different processes. In symmetric algorithms,
as defined above, we say that the processes are symmetric.

As symmetric algorithms do not depend on an order relation between process identities,
they require fewer assumptions and are consequently more general than non-symmetric
algorithms. The symmetry constraint on process identities can be seen as the “last step”
before process anonymity [10, 11]. Symmetric algorithms with non-anonymous memory have
been investigated for years [12]. Following [14], we consider a model in which the memory is
anonymous, and the processes are symmetric.

Memoryless algorithms. A memoryless mutual exclusion algorithm is an algorithm in which
when all the processes are in their remainder section, the values of all the registers (local and
shared) are the same as their initial values. This means that a process that tries to enter
its critical section does not use any information about its previous attempts (like the fact
that it has entered its critical section five times so far). Put another way, in a memoryless
algorithm, processes have only a single remainder state and hence cannot retain any memory
of prior executions of the algorithm.

G. Taubenfeld 33:3

All known mutual exclusion algorithms which use anonymous registers and almost all
known mutual exclusion algorithms that use non-anonymous registers are memoryless. For
example, Lamport’s Bakery algorithm is memoryless [8]. Memoryless mutual exclusion
algorithms are usually simpler to understand than those that are not memoryless. Further-
more, memoryless algorithms can better handle system-wide failures (i.e., all processes crash
simultaneously), as upon recovery, the system can be initialized to the (single) initial state,
not affecting processes that had not participated in the algorithm during the failure. When
using non-anonymous registers, 2n − 1 registers are necessary and sufficient for designing a
symmetric memoryless starvation-free mutual exclusion algorithm for n processes [12].

1.3 Contributions: individual progress vs. global progress

It is known that symmetric memoryless deadlock-free mutual exclusion is solvable for any
finite number of processes using anonymous registers [1]. The main question left open in
[14, 15] is the existence of symmetric starvation-free mutual exclusion algorithms for two or
more processes. We resolve this open question for memoryless algorithms by proving the
following possibility and impossibility results,
1. There is a symmetric memoryless starvation-free mutual exclusion algorithm for two

processes using m ≥ 7 anonymous registers if and only if m is odd.
2. There is no symmetric memoryless starvation-free mutual exclusion algorithm for n ≥ 3

processes using (any number of) anonymous registers.
Our possibility result shows that (1) there is no separation between deadlock-freedom and
starvation-freedom for two processes, and (2) there is a separation between deadlock-freedom
and starvation-freedom for three or more processes. These results enable us to understand
better the intrinsic limits for achieving fairness between asynchronous processes.

Interestingly, as a byproduct of the proof of our impossibility result, we get a general time
complexity lower bound for every symmetric deadlock-free mutual exclusion algorithm for
n ≥ 2 processes using m anonymous registers. Namely, a process must incur ⌈m/2⌉ remote
memory references (RMR) to enter and exit its critical section once. The RMR complexity
of our starvation-free algorithm is O(m).

Two main progress conditions have been studied for asynchronous shared-memory systems
with failure-prone processes. The first, wait-freedom, ensures individual progress to each
process, i.e., its operations complete as long as it takes an infinite number of steps [6].
The second, lock-freedom, requires only global progress; namely, if a process takes an
infinite number of steps, then some (possibly other) processes complete their operations [7].
Wait-freedom corresponds to starvation-freedom in fault-free systems, while lock-freedom
corresponds to deadlock-freedom.

It was shown in [5] that there is an object for which there is a lock-free implementation
for two processes using only non-anonymous atomic registers, and there is no wait-free
algorithm in the same setting. A more general result was presented in [2], showing that such
a separation exists (1) also for more than two processes and (2) when primitives stronger than
atomic registers are used. Our result, which shows a separation between deadlock-freedom
and starvation-freedom for three or more processes, complements these results. The results
together show that in shared memory systems where either failures are possible or process
symmetry and memory anonymity are assumed, it is not always possible to ensure individual
progress in situations where global progress is possible. Thus, achieving various levels of
fairness depends on the underlying system assumptions.

DISC 2023

33:4 Memory-Anonymous Starvation-Free Mutual Exclusion

2 Preliminaries

Processes. Our model of computation consists of a fully asynchronous collection of n

deterministic processes that communicate via m anonymous registers. Asynchrony means
that there is no assumption on the relative speeds of the processes. Each process has a
unique identifier, which is a positive integer. Since we want to make as few assumptions
as possible, it is not assumed that the identifiers of the n processes are taken from the set
{1, ..., n}. Thus, a process does not a priori know the identifiers of the other processes. The
processes do know the values of n and m. We assume that processes do not fail. As always
assumed when solving the mutual exclusion problem, participation is not required – a process
may stay in its remainder section and never move to its entry section.

Memory. The shared memory consists of m anonymous shared registers. For m anonymous
registers, r1, ..., rm, the adversary can fix, for each process p, a permutation πp : {r1, ..., rm} →
{r1, ..., rm} of the registers such that, for process p, the j’th anonymous register is πp(rj). In
particular, when process p accesses its j’th anonymous register, it accesses πp(rj). Algorithms
designed for such a system must be correct regardless of the permutations chosen by the
adversary. The permutation fixed for process p is called the naming assignment of p.

All the anonymous registers are assumed to be initialized to the same value. Otherwise,
thanks to their different initial values, it would be possible to distinguish different registers,
and consequently, the registers would no longer be fully anonymous.

With an atomic register, it is assumed that operations on the register occur in some
definite order. That is, each operation is an indivisible action. In the sequel, by registers, we
mean anonymous atomic read/write registers. A read/write register is a shared register that
supports (atomic) read and write operations. The fact that anonymous registers do not have
global names implies that only multi-writer multi-reader anonymous registers are possible.
Such registers can both be written and read by all the processes.

Known results. In [14], it has been proven that a necessary and sufficient condition for
the design of a symmetric deadlock-free mutual exclusion algorithm for two processes using
anonymous registers is that the number of registers is odd.

▶ Theorem 1 ([14]). There is a symmetric deadlock-free mutual exclusion algorithm for two
processes using m ≥ 2 anonymous registers if and only if m is odd.

We will use this result for two processes later in the paper. The only if part of the above
theorem is a special case of the following more general result from [14] (Theorem 3.4): There
is a symmetric deadlock-free mutual exclusion algorithm for n ≥ 2 processes using m ≥ 2
anonymous registers only if for every positive integer 1 < ℓ ≤ n, m and ℓ are relatively prime.
An optimal symmetric deadlock-free mutual exclusion algorithm using anonymous registers
that matches the above general space bound for n ≥ 2 processes was presented in [1].

3 A starvation-free mutual exclusion algorithm for two processes

We show that, for two processes, it is possible to design a starvation-free mutual exclusion
algorithm. In the next section, we prove this is impossible for three or more processes.

▶ Theorem 2. There is a symmetric memoryless starvation-free mutual exclusion algorithm
for two processes using m ≥ 7 anonymous registers if and only if m is odd.

G. Taubenfeld 33:5

The only if direction follows from Theorem 1 (proven in [14]), where it has been proven that
(when using anonymous registers) any symmetric deadlock-free mutual exclusion algorithm
for two processes must use an odd number of anonymous registers. To prove the if direction,
we present in Algorithm 1 a symmetric memoryless starvation-free mutual exclusion algorithm
for two processes using m anonymous registers, where m is an odd number greater than
or equal to 7. The question of whether a symmetric memoryless starvation-free mutual
exclusion algorithm exists for two processes using 3 or 5 anonymous registers is open.

As the m registers do not have global names, each process independently numbers them.
We use the notation p.i[j] to denote the jth register according to process i’s numbering, for
1 ≤ j ≤ m. Recall that a process’s identifier is a positive integer.

3.1 An informal description of the algorithm
A shared register is free when its value is 0. Initially, all the registers are free. A register is
owned by process i, when its value is i. There are two ways for a process to get permission
to enter its CS (i.e., Critical Section). The first way is when a process owns m − 2 registers.
Initially, a process tries to own m − 2 registers by writing its identifier into free registers. If
the process succeeds, it may enter its CS, and when done, it releases (i.e., sets to 0) all the
registers it owns. By design, a process will never own more than m − 2 registers.

When there is contention, each process first tries to own as many registers as possible, but
no more than m − 2 registers. Thus, each process will always succeed in owning at least one
register (and not at least two registers, as explained in the sequel). After it attempts to own
m − 2 registers, if a process notices that it owns less than ⌈m/2⌉ registers, it becomes a loser.
A loser acts as follows: if it owns more than two registers, it releases all its owned registers
except two. Otherwise, when a loser owns one or two registers, it releases no registers. Then,
the loser writes “waiting” into the (one or two) registers it owns and waits. Since the waiting
process owns at most two registers, the other process, the winner, keeps on trying to own
more registers until it eventually succeeds in owning m − 2 registers and gets permission to
enter its CS.

When a winning process exits its CS, the winner releases all the m − 2 registers it owns,
which, as explained below, will prevent it from entering its CS again before a waiting process
gets a chance to enter its CS. This guarantees that starvation-freedom is satisfied. To
guarantee that one process will not enter its CS twice while the other process is waiting,
when a process starts its entry code, it repeatedly scans the registers until none of them has
the value “waiting,” and only then may it proceed.

The second way a process can enter its CS is by waiting first. A waiting process owns one
or two registers with the value “waiting.” The waiting process waits until all the registers it
does not own are released (i.e., have the value 0). Once this happens, the waiting process
may immediately enter its CS. That is, it need not own additional registers. Upon exiting its
CS, the (previously waiting) process releases the (one or two) registers it owns.

There is one very delicate possible race condition that should be avoided. Assume there
is contention; process i writes its identifier into m − 2 registers, while process j writes its
identifier into two registers. At that point, just before process j writes “waiting” into the
two registers it owns, process i enters and exits its CS, releases the m − 2 registers it owned
and then attempts to enter its CS again. Process i reads all the registers, finds out that no
process is waiting, and is ready to try to own m − 2 free registers. Now, process j continues
to write “waiting” into the two registers it owns, finds out that all the other m − 2 registers
are free, and enters its CS. Process i is now scheduled, owns the m − 2 free registers and
enters its CS, violating the mutual exclusion requirement.

DISC 2023

33:6 Memory-Anonymous Starvation-Free Mutual Exclusion

It is easy to resolve this race condition while satisfying only deadlock-freedom. Resolving
it while still satisfying starvation-freedom is more challenging. Our solution is as follows: the
first thing that process i is doing (upon entering its entry code) is to own one register and
only then check whether j is waiting. This will guarantee that either,
1. process i notices that j is waiting, in which case i releases its owned register and waits

until no register has the value “waiting,” letting the waiting process enter its CS first; or
2. process i notices that no process is waiting, in which case, after j writes “waiting” into

its owned registers; it will find out that not all the other registers are free, and will wait
for process i to enter its CS first.

This solution resolves the race condition.
There is one additional thing that needs to be explained. Why do we reserve two registers

for the waiting process, not just one? The answer is that by reserving two registers, when
“waiting” is written into two registers by some process, at least one of the two will not be
overwritten by the other process. Consider the following scenario. Let r1, r2 and r3 be free
registers. Process j writes into r1,r2 and is ready to write into r3. Process i writes into all
the m − 3 other registers and is ready to write into r3. Process j writes into r3, finds out it
is a loser (because m ≥ 7), releases r1, and writes “waiting” into r2 and r3. Now, process i is
activated and writes into r3, leaving only one register with the value “waiting.”

Finally, we explain why the algorithm does not work when m = 5 (or when m = 3).
Assume m = 5. Let r1, r2, r3, r4 and r5 be the five free registers. Consider the following
scenario. Process i writes into r1 and r2 and is ready to write into r3. Process j writes into
r5 and r4 and is ready to write into r3. Process i writes into r3, finds out that it owns m − 2
registers, and enters its CS. Then, Process j writes into r3, finds out that it owns m − 2
registers, and enters its CS, violating the mutual exclusion requirement. We point out that,
in contrast, there is a symmetric memoryless deadlock-free mutual exclusion algorithm for
two processes using m ≥ 3 anonymous registers when m is odd.

3.2 Correctness Proof

▶ Lemma 3. The algorithm satisfies mutual exclusion.

Proof. We assume to the contrary that both processes enter their CS simultaneously and
show that this leads to a contradiction. There are two ways for a process to enter its CS: (1)
by observing that it owns m − 2 registers, and (2) by writing “waiting” into the registers
it owns and then waiting until all the other registers have the value 0. So, four possible
combinations exist for having two processes in their CS simultaneously. We show that none
of them may happen. Let’s call the two processes p and q.
1. Both processes observe that they own m − 2 registers and enter their CS. Once p observes

that it owns m − 2 registers and enters its CS, at most one of these m − 2 registers may
later be overwritten by q. Thus, while p is in its CS, q may own at most 3 registers. Since
m ≥ 7, q cannot observe that it owns m − 2 registers and hence will not enter its CS,
while p is in its CS – a contradiction.

2. Both processes write “waiting” into the registers they own and later enter their CS. This
may happen only if p and q observe that each one of them owns less than half of the
registers. However, if p observes that it owns less than half of the registers, it must be
the case that q owns more than half of the registers and will not write “waiting” into the
registers it owns – a contradiction.

G. Taubenfeld 33:7

Algorithm 1 A symmetric memoryless starvation-free mutual exclusion algorithm for two pro-
cesses.

Code of process i // i ̸= 0

Constant:
m: an odd integer ≥ 7 // m ≥ 7 is the # of shared registers

Shared variables:
p.i[1..m]: array of m anonymous registers, of type integer + the symbol “waiting,” init. all 0

// p.i[j] is the jth register according to process i’s numbering
Local variables:

myview[1..m]: array of m variables, initially all 0
mycounter ,j,k: integer, initially 0
mygo: boolean, initially false

//give priority to a waiting process
1 repeat mycounter ← mycounter + 1 until p.i[mycounter] = 0 //looking for a zero entry
2 p.i[mycounter]← i //own one register
3 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
4 if ∃j ∈ {1, ..., m} : myview[j] = waiting then //is other process waiting?
5 if p.i[mycounter] = i then p.i[mycounter]← 0 end if //release owned register
6 repeat //the other process is waiting
7 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
8 until ∀j ∈ {1, ..., m} : myview[j] ̸= waiting //wait for CS to be released
9 end if

10 repeat //try to own m− 2 registers
11 for k = 1 to m do //access the m registers
12 if p.i[j] = 0 then //try to own one more
13 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
14 if i appears in less than m− 2 of the entries of myview[1..m] then
15 p.i[j]← i end if end if //own one more
16 end for

//lose or win?
17 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
18 if i appears in less than ⌈m/2⌉ of the entries of myview[1..m] then //lose
19 mycounter ← 0
20 for j = 1 to m do if p.i[j] = i then //release all owned registers
21 if mycounter = 2 then p.i[j]← 0 //except two of them
22 else p.i[j]← waiting; mycounter ← mycounter + 1 end if //signal waiting
23 end for
24 repeat //wait for CS to be released
25 for j = 1 to m do myview[j]← p.i[j] od //read the shared array
26 until ∀j ∈ {1, ..., m} : myview[j] ∈ {0, waiting} //no sign from other process
27 mygo ← true //may enter CS
28 end if
29 until i appears in m− 2 of the entries of myview[1..m] or mygo = true
30 critical section

//release all owned shared registers
31 if mygo = true then for j = 1 to m do if p.i[j] = waiting then p.i[j]← 0 end if end for
32 else for j = 1 to m do if p.i[j] = i then p.i[j]← 0 end if end for
33 end if
34 set all local variables to their initial values

DISC 2023

33:8 Memory-Anonymous Starvation-Free Mutual Exclusion

3. p observes that it owns m − 2 registers and enters its CS, while q writes “waiting” into
the registers it owns and later enters its CS while p is still in its CS. Once p enters its
CS, all the registers it owns are not free. So, q will not be able to proceed since not all
the registers it does not own are free as required – a contradiction.

4. p writes “waiting” into the registers it owns, waits until all the other registers have the
value 0 and enters its CS. q observe that it owns m − 2 registers and enters its CS, while
p is still in its CS. Since, after writing “waiting,” p must observe that all the registers it
does not own have the value 0 before it may enter its CS; it must be the case that q has
written into one of the registers (line 2), after p has written “waiting.” Thus, q will notice
(line 4) that p is waiting and will not proceed to its CS – a contradiction. ◀

▶ Lemma 4. The algorithm satisfies starvation-freedom.

Proof. There are three loops where a process can get stuck.
Loop 1: The repeat loop at lines 6-8, where a process waits until none of the registers is
set to waiting.
Loop 2: The inner repeat loop at lines 24-26, where a (waiting) process waits until all
the registers are set to 0 or waiting.
Loop 3: The outer repeat loop at lines 10-29 where a process waits until it either owns
m − 2 registers or its local register mygo is set to true.

We show that a process cannot get stuck (i.e., loop forever) in any of these loops, which
implies starvation-freedom. Let’s call the processes p and q.

Assume p is waiting in loop 1, and cannot proceed. This means that (1) p is not owning
any of the registers, and (2) that q has set at least one of its owned registers to “waiting”
(line 22). By the time q reaches loop 3 (line 24), all its owned registers are set “waiting,” and
all the other registers are free. Thus, q will exit the loop, set mygo to true and enter its CS.
Later, in its exit code q will release its owned registers and return to its remainder region.
From that point on (even if q will try to enter its CS again), as long as p is waiting in loop 1,
no register will be set to waiting. This means that the condition in line 8 is evaluated to
true and thus p can proceed beyond loop 1.

Assume p is waiting in loop 2, and cannot proceed. This means that (1) p has set the
(one or two) registers it owns to “waiting” and is not trying to own more registers, and (2) q

owns at least one register. There are two cases to consider:
q notices (in line 4) that p is waiting, in which case q releases its owned register and waits
until no register has the value “waiting,” letting the waiting process p proceed beyond
loop 2, setting mygo to true and proceed beyond loop 3.
q notices that no process is waiting, in which case, after p writes “waiting” into its owned
registers and waits in loop 2, there is nothing that prevents q from owning m − 2 registers
and entering its CS. Later, in its exit code q will release its owned registers and return to
its remainder region. If q does not try to enter its CS again, then p can proceed beyond
loop 2 and loop 3. If q does try to enter its CS again, then q might acquire (line 3) one
register before p notices that the register is free; however, q will later notice (in line 4)
that p is waiting, in which case q will release its owned register and waits until no register
has the value “waiting,” letting the p proceed beyond loop 2 and loop 3.

Assume p is looping in loop 3, never waits in loop 2, and cannot proceed. Since m is odd,
this means that p owns more than half of the registers, while q holds less than half of the
registers. Thus, q will eventually release the registers it owns, except at most two of them.
This will enable p to acquire m − 2 registers and proceed beyond loop 3. ◀

G. Taubenfeld 33:9

RMR complexity. An operation that a process performs on a memory location is considered
a remote memory reference (RMR) if the process cannot perform the operation locally on
its cache and must transact over the multiprocessor’s interconnection network to complete
the operation. RMRs are undesirable because they take long to execute and increase the
interconnection traffic. Our algorithm achieves the ideal RMR complexity of O(m) for cache
coherent machines. (Distributed Shared Memory machines are irrelevant for anonymous
shared memory systems.) This means that a process incurs O(m) number of RMRs to satisfy
a request (i.e, to enter and exit the critical section once). It follows from Observation 12
(Section 4) that this bound is tight.

4 An impossibility result

In the previous section, we have shown that, for two processes, it is possible to design a
symmetric memoryless starvation-free mutual exclusion algorithm. Next, we show this is
impossible for three or more processes.

▶ Theorem 5. There is no symmetric memoryless starvation-free mutual exclusion algorithm
for n ≥ 3 processes using (any number of) anonymous registers.

The main argument is that, under the appropriate assignment of names to registers, there
is a way to run two processes when they are in their remainder section, requiring them to
write to all registers before one of them can enter its critical section. This is essentially
accomplished by renaming unwritten registers on the fly so that if the two processes are
about to write to the same unwritten register for the first time, then they end up writing to
two distinct, unwritten ones. Thus, it is possible to hide all the write operations of a third
process, which will prevent it from ever entering its critical section.

4.1 Basic definitions and observations
We first prove some basic (but general) observations regarding the mutual exclusion problem.
All the lemmas and definitions in Subsection 4.1 refer to one arbitrary deadlock-free mutual
exclusion algorithm for n processes using read/write registers. Here, we do not need to
assume that the algorithm is starvation-free, symmetric, or memoryless, nor do we need to
assume that the registers are anonymous.

We will use the following notions and notations. An event corresponds to an atomic step
performed by a process. An algorithm’s (global) state is entirely described by the values of
the (local and shared) registers and the values of the program counters of all the processes. A
run is a sequence of alternating states and events (also called steps). For the purpose of the
impossibility proof, it is more convenient to define a run as a sequence of events omitting all
the states except the initial state. Since the events and the initial state uniquely determine
the states in a run, no information is lost by omitting the states.

Each event in a run is associated with a specific process that is involved in the event. We
will use x, y, and z to denote runs. When x is a prefix of y, we denote by (y − x) the suffix
of y obtained by removing x from y. Also, we denote by x; seq the sequence obtained by
extending x with the sequence of events seq. Processes are deterministic; that is, for every
two runs x; e and x; e′ if e and e′ are events by the same process, then e = e′.

We will often use statements like “in run x process p is in its remainder”, and implicitly
assume that there is a function that for any run and process, lets us know whether a process
is in its remainder, entry code, critical section, or exit code. Also, saying that an extension y

of x involves only process p, means that all events in (y − x) involve only process p. Finally,

DISC 2023

33:10 Memory-Anonymous Starvation-Free Mutual Exclusion

by a run we always mean a finite run, by a register we mean a shared register, and by
the value of register r in run x, we always mean, the value of r at the end of x. Our first
definition captures when two runs are indistinguishable to a given process.

▶ Definition. Run x looks like run y to process p, if the subsequence of all events by p in x

is the same as in y, and the values of all the registers in x are the same as in y.

The looks like relation is an equivalence relation.1 The next step by a given process always
depends on the process’s previous steps and the registers’ current values. The previous steps
uniquely determine whether the next step is a read or a write. The current values of the
registers determine what value will be read in case of a read step. If two runs look alike to
process p, then the next step by p in both runs is the same.

▶ Lemma 6. Let x be a run which looks like run y to every process in a set P . If z is an
extension of x which involves only processes in P , then y; (z − x) is a run.

Proof. By a simple induction on k – the number of events in (z − x). The basis when k = 0
holds trivially. We assume the lemma holds for k ≥ 0 and prove for k + 1. Assume that the
number of events in (z − x) is k + 1. For some event e, it is the case that z = z′; e. Since the
number of events in (z′ − x) is k, by the induction hypothesis y′ = y; (z′ − x) is a run. Let
p ∈ P be the process which is involved in e. Then, from the construction, the runs z′ and y′

look alike to p, which implies that the next step by p in both runs is the same. Thus, since
z = z′; e is a run, also y′; e = y; (z − x) is a run. ◀

We next define the notion of a hidden process.2 Intuitively, a process is hidden in a given
run, if all the steps it has taken since the last time it has been in its remainder, communicate
no information to the other processes. We say that a write event e1 is overwritten by event
e2 in a given run r if e2 is a write event that happens after e1 in r, and both e1 and e2 are
writing events to the same register.

▶ Definition. For process p and run z, let z′ be the longest prefix of z such that p is in its
remainder in z′. Process p is hidden in run z if each event which p is involved in (z − z′) is
either: a read event, or a write event that is overwritten (in z) before any other process has
read the value written.

We notice that a process is not hidden if it is involved in a write event that is not later
overwritten, even if the write does not change the current value of a register. Also, if a
process is in its remainder in z then it is hidden in z, and thus initially, all the processes
are hidden. A hidden process looks just like a process halted in its remainder, and hence no
process can wait until a hidden process takes a step.

▶ Lemma 7. If a process p is in its critical section in run z then p is not hidden in z.

Proof. Assume to the contrary that process p is hidden and is in its critical section in run z.
Let z′ be the longest prefix of z such that p is in its remainder in z′. Since p is hidden in run
z, it is possible to remove from z all the events in which p is involved in (z − z′) and get a
new run y. The run y looks like z to all processes other than p, and p is in its remainder
in y. By the deadlock-freedom property, there is an extension of y that does not involve p

in which some process q ̸= p enters its critical section. Since y looks like z to all processes

1 The term looks like, adopted from [13], is also called indistinguishable in the literature.
2 The notion of a hidden process was first defined in [3].

G. Taubenfeld 33:11

other than p, by Lemma 6, a similar extension exists starting from z. That is, q can enter
its critical section in an extension of z, while p is still in its critical section. However, this
violates the mutual exclusion property. ◀

It follows from Lemma 7 that a process must write before it enters its critical section.

4.2 Anonymity
The lemma in Subsection 4.2 refers to one arbitrary deadlock-free mutual exclusion algorithm
for n processes using anonymous registers. Here, we do not need to assume that the algorithm
is starvation-free, symmetric, or memoryless. We denote by ep a (read or write) event which
involves process p. When x is a run and πp is a naming assignment of p, we denote by

x[p, ri ↔ rj] the sequence obtained by replacing every read event of register ri by process
p in x with a read event of register rj by p which returns the same value (as the event of
reading ri), and vice versa.
πp[ri ↔ rj] is the naming assignment where, (1) πp[ri ↔ rj](ri) = πp(rj); (2) πp[ri ↔
rj](rj) = πp(ri); and (3) for every k /∈ {i, j}, πp[ri ↔ rj](rk) = πp(rk).

Recall that all the anonymous registers are initialized to the same value.

▶ Lemma 8. Let x be a run, p a process, πx
p the naming assignment of p (used in the

run x), and ri and rj two registers that were never written (by any process) in x. Then,
y = x[p, ri ↔ rj] is a run, where the naming assignment for p (used in y) is πx

p [ri ↔ rj],
and for the other processes the naming assignments are the same as in x. Furthermore, if
x; ep is a run where ep is an event of writing the value v into ri then y; e′

p where e′
p is an

event of writing the value v into rj is also a run.

Proof. Since ri and rj were never written in x, a read event by p or any other process of
each of those registers in x would return the initial value. So, swapping the read events of ri

and rj by process p, may only affect process p.
As for p, before its first event in x, the adversary has fixed, for process p, a naming

assignment πx
p : {r1, ..., rm} → {r1, ..., rm} of the registers such that, for process p, the j’th

anonymous register is πx
p (rj). In particular, when process p accesses its j’th anonymous

register, it accesses πx
p (rj). Let us define the permutation πy

p : {r1, ..., rm} → {r1, ..., rm}
as follows, (1) πy

p(ri) = πx
p (rj); (2) πy

p(rj) = πx
p (ri); and (3) for every k where k /∈ {i, j},

πy
p(rk) = πx

p (rk). That is, whenever p accessed ri before it will now access rj and vice versa.
Now, consider a run in which the processes are scheduled exactly in the order as they are
scheduled in x, the naming assignment fixed (by the adversary) for p is πy

p , and the naming
assignments (in y) of the other processes are as in x. By construction, the resulting run is
run y. Furthermore, if the next event by p in x is of writing the value v into ri then, since
πy

p(ri) = πx
p (rj), the next event by p in y is of writing the value v into rj . ◀

4.3 The notions of a symmetric run and a symmetric state
A (global) state is entirely described by the values of the local and shared registers and the
values of the program counters of all the processes.

Intuitively, a state σ is symmetric w.r.t. two processes if the “subjective views” of the
processes at σ are the same. In the standard non-anonymous model, once two (symmetric)
processes write their ids (one after the other) into the same register, say r1, their views after
these two writes are completed are no longer the same, if they inspect the current state, one
process will see that the value of r1 equals its id, while the other will see that the value is
different from its id. In the anonymous model, it is possible for each process to see that the
value of the first register according to its naming assignment equals its id.

DISC 2023

33:12 Memory-Anonymous Starvation-Free Mutual Exclusion

Below we define this notion more formally. Let m be the number of registers; let valσ(r)
be the value of register r in state σ, and assume that the names of the local variables of
the processes are the same. To distinguish the local variables of the different (symmetric)
processes, we will add the process id as a subscript to the variable names.

▶ Definition. Let σ be a state and let πp and πq be the naming assignments of p and q,
respectively. State σ is symmetric w.r.t. p and q and their naming assignments πp and πq,
if for every 1 ≤ k ≤ m either,

valσ(πp(rk)) = valσ(πq(rk)) and valσ(πp(rk)) /∈ {p, q}, or
valσ(πp(rk)) = p and valσ(πq(rk)) = q, or
valσ(πp(rk)) = q and valσ(πq(rk)) = p.

Furthermore, in σ, for every local variable, say local, either (1) localp = localq and the value
of localp is not in {p, q}, or (2) localp = p and localq = q, or (3) localp = q and localq = p.

▶ Definition. Run x is symmetric w.r.t. p and q and their naming assignments πp and
πq, if the state at the end of x is symmetric w.r.t. p and q and their naming assignments πp

and πq.

The following lemma follows immediately from the definitions of a symmetric run and a
symmetric state.

▶ Lemma 9. When processes p and q are symmetric (and deterministic), if run x is
symmetric w.r.t. p and q and their naming assignments πp and πq, then
1. either the next step of both processes is a read or the next step of both is a write;
2. if p accesses πp(rk) in its next step, then q accesses πq(rk) in its next steps;
3. if x is extended by a read event of p followed by a read event of q, then the resulting run

is symmetric w.r.t. p and q and their naming assignments;
4. if x is extended by a write event of p followed by a write event of q then the resulting run

is symmetric w.r.t. p and q and their naming assignments, provided that p and q do not
write into the same physical location; and

5. p and q cannot be in their critical sections at (the end of) x.

▶ Lemma 10. In a symmetric deadlock-free mutual exclusion algorithm for n ≥ 2 processes
using anonymous registers, the initial state where all the processes are in their remainder
sections is symmetric w.r.t. every two processes and their naming assignments.

Proof. The proof follows immediately from the fact that in anonymous shared memory, all
the anonymous registers are initialized to the same value; and that when the processes are
symmetric, the local variables of the different processes have the same names and (local
variables with the same names) are initialized to the same values. ◀

To simplify the presentation, for the rest of the section, by a symmetric run (resp. symmetric
state), we always mean a symmetric run (resp. symmetric state) w.r.t. to every two processes
and their naming assignments.

4.4 Symmetry and anonymity
The following lemma in Subsection 4.4 refers to one arbitrary symmetric deadlock-free mutual
exclusion algorithm for n ≥ 2 processes using m anonymous registers. Here, there is no need
to assume that the algorithm is starvation-free or memoryless.

A quiescent state is one in which all the processes are in their remainder sections. A
memoryless algorithm is an algorithm that has exactly one quiescent state (which is the
initial state). When the possible number of quiescent states of a symmetric starvation-free

G. Taubenfeld 33:13

mutual exclusion algorithm is more than one, by Lemma 10, the initial (quiescent) state
is symmetric w.r.t. every two processes and their naming assignments. However, for a
non-memoryless algorithm, except for the initial state, the other quiescent states are not
necessarily symmetric.

▶ Lemma 11 (main technical lemma). For every two processes p and q, and every symmetric
quiescent state σ, there exist naming assignments πp and πq for p and q, and a run ρ with
the following properties,
1. ρ starts from the state σ and ends in some quiescent state,
2. during ρ, only p and q take steps, and they enter and exit their critical sections once,
3. during ρ, each one of the two processes writes into ⌈m/2⌉ different registers, and
4. during ρ, each one of the m anonymous registers is written at least once.

Proof. It follows from Theorem 1 that (when using anonymous registers) any symmetric
deadlock-free mutual exclusion algorithm for two processes must use an odd number of
anonymous registers. So, for the rest of this proof, we assume that m is odd.

We prove the lemma by running the two processes p and q, starting from the (symmetric)
state σ, keeping the run symmetric (i.e., without breaking symmetry). As long as symmetry
is not broken, by Lemma 9, none of the processes can enter its CS, because if it does, then
the other process may enter its CS as well, violating the mutual exclusion requirement. Each
time two more registers are written until only one is left. At that point, the two processes
try to write this last register. Only when this last register is written is symmetry broken, all
the m anonymous registers are written, and we are done.

Initially, the adversary fixes for process p, the identity permutation πp(rk) = rk (where
1 ≤ k ≤ m), and fix for q its reverse permutation πq(rk) = rm−k+1. For the sake of
explanation, we arrange the registers in pairs, where the kth pair is (πp(rk), πq(rk)), where
1 ≤ k ≤ m. In this pairing, each pair includes two different registers except the ⌈m/2⌉ pair
in which the register r⌈m/2⌉ appears twice. Each other register appears in two pairs, and
the other register is the same in those two pairs. For example, when m = 5, the pairs are
(r1, r5), (r2, r4), (r3, r3),(r4, r2), and(r5, r1).

Next, we run the processes in lock-steps. Each lock-step includes a step by p followed by
a step of q. We observe that, as long as the constructed run is symmetric, in one lock-step,
if p accesses ri and q accesses rj , then (1) the pair (ri, rj) appears in the pairing described
above, and (2) by Lemma 9, both processes either read ri and rj or write into them. Because
of the initial symmetry, none of the processes may enter its CS without writing first. (this
also follows from Lemma 7).

The run ρ is constructed by iteratively executing the following procedure until all the m

registers are written at least once, as required. Let πp and πq denote the current naming
assignments of p and q. Let us denote by xi−1, the run constructed so far, before the
beginning of the ith iteration. As we will see, by construction, xi will be a symmetric run for
all i ≥ 0. By assumption, the quiescent state σ is symmetric, and thus, the run x0, where all
the processes are still in their remainder sections, is symmetric.3

Iteration i ≥ 1 begins here. As explained, xi−1 is the symmetric run constructed so far.
First, p and q run (in lock-steps) until they are ready to write into ri and rj , respectively.
Recall that by Lemma 9, either both steps are read or both are write, in each lock-step.

3 We notice that in the special case where the algorithm is memoryless, there is no need to assume that σ
is symmetric, as by Lemma 10, the single initial (quiescent) state σ is symmetric.

DISC 2023

33:14 Memory-Anonymous Starvation-Free Mutual Exclusion

Thus, to break symmetry they must eventually try to write. Let’s denote by yi−1 the run
just before the two writes. Clearly, if xi−1 is symmetric, then so is yi−1. There are four
possible cases,
1. ri and rj are different registers. In this simple case, we let both processes complete their

write operations. The run xi is the run just after these two writes. If xi−1 is symmetric,
then so is xi. The ith iteration completes here, and we are ready to start the next i + 1
iteration.

2. ri and rj refer to the same register, which has been written before. The construction
ensures this situation never happens (see Case 4 below).

3. ri and rj refer to the same register which has not been written before, and all other m − 1
registers have already been written. In this case, we let both processes complete their
write operations. At this point, all the m registers have been written as requested. So we
let the processes continue running until, as guaranteed by the deadlock-freedom property,
each one of them will eventually enter its CS (but not simultaneously), return to its
remainder section, and we are done. The constructed run is ρ, and the construction of
the run ρ terminates here.

4. ri and rj refer to the same register which has not been written before, and not all other
m − 1 registers have already been written. This is the more challenging case. For some
k, let πp(rk) and πq(rk) be two registers (different from ri) that have not been written
so far (we do not care whether πp(rk) and πq(rk) have or have not been read so far).
By Lemma 8, z1

i−1 = yi−1[p, ri ↔ πp(rk)] is a legal run, assuming πp is replaced with
πp[ri ↔ πp(rk)]. Furthermore, by applying lemma 8 again, z2

i−1 = z1
i−1[q, rj ↔ πq(rk)]

is a legal run, assuming πq is replaced with πq[ri ↔ πq(rk)]. Since ri, πp(rk) and πq(rk)
have never been written yet, if xi−1 is symmetric, so is z2

i−1.
Furthermore, at (the end of) z2, p and q are ready to write into the two registers πp(rk)
and πq(rk), respectively. We now continue with run z2

i−1, and let both processes complete
their write operations into πp(rk) and πq(rk). Again symmetry is preserved. The resulting
run, after the writes is xi with which we continue to the next iteration. It is important to
notice that in this case (unlike in the other two cases) xi is not an extension of xi−1, it is
a completely new run. In addition, in the next round, which starts with xi, we use the
(updated) naming assignments πp[ri ↔ πp(rk)] and πq[rj ↔ πq(rk)] for processes p and q.
As explained xi is symmetric w.r.t. p and q and their updated naming assignments.

In case 4, we switch to a new run and new naming assignments. We emphasize that, during a
specific run, we do not change the naming assignments associated with that run. We change
them only when we switch to a completely new run. The run ρ that we end up with at the
end of the construction uses fixed naming assignments for p and q from the beginning to
the end. This whole construction can be viewed as searching for a run ρ and fixed naming
assignments πp and πq for which Case 4 will never happen, and this is exactly what we end
up with. That is, once run ρ is constructed with its associated naming assignments for p and
q, if we consider execution of run ρ starting from σ with the associated naming assignments,
then, by construction, the only time p and q will try to write into the same register, would
be after all other m − 1 registers have already been written. ◀

▶ Observation 12. The RMR complexity of every symmetric deadlock-free mutual exclusion
algorithm for n ≥ 2 processes using m anonymous registers is at least ⌈m/2⌉.

Proof. Let σ be the initial state. By Lemma 10, the initial state σ is symmetric. By
Lemma 11, there exists a run which starts from σ, in which exactly two processes participate
during which they enter and exit their critical sections once, and each one of the two processes
writes into ⌈m/2⌉ different registers. The result follows. ◀

G. Taubenfeld 33:15

4.5 Proof of Theorem 5
Proof. Assume to the contrary that there is a symmetric memoryless starvation-free mutual
exclusion algorithm for n ≥ 3 processes using anonymous registers. Let’s call this algorithm
A. Let us denote by σ the single possible initial state. By Lemma 10, σ is symmetric. Let
p1, p2 and q be three processes. Using Lemma 11, we will reach a contradiction by hiding all
the write operations of q, which, by Lemma 7, will prevent q from ever entering its critical
section.

This is done as follows. Assume all the processes are in their remainder sections; thus, the
current state is σ. Now, process q tries to enter its critical section. Before doing so, q should
execute its entry section which must, by Lemma 7, involve at least one write operation.
So, we run q alone until it is about to execute its first write operation. Let’s call the first
register that q is about to write register r1. Since q has not modified any register yet, all
the processes except q cannot distinguish the current state from the state σ where all the
processes (including q) are still in their remainder sections. Thus, by Lemma 6 and Lemma
11, there is an extension of the current run which involves only p1 and p2, in which p1 and
p2 enter and then exit their critical sections once, and in that extension, each one of the
anonymous registers is written (by either p1 or p2) at least once. We slightly modify this
extension of p1 and p2 by stopping them just before writing into register r1; let q complete a
write operation into r1; then let p1 and p2 overwrite the value written by q, and continue
until p1 and p2 return to their remainder sections.

Since the write of q into r1 was immediately overwritten, q is hidden. Hence all the
processes except q cannot again distinguish the current state from the state σ where all
the processes (including q) are still in their remainder sections. Notice that here we use
the assumption that the algorithm is memoryless, and this will enable us to use Lemma 11
repeatedly. It is important to understand that since we have already used Lemma 11 once
in the proof, the naming assignments for processes p1 and p2 have been fixed, and these
assignments can not be changed after that. However, because of the memoryless assumption,
this does not prevent us from applying Lemma 11 again to σ using processes p1 and p2.

We notice that without the memoryless assumption, after p1 and p2 return to their
remainder sections, it is no longer necessarily true that all the processes except q cannot
again distinguish the current state from the state σ. This is so because there might be
another state σ′ where all the processes are in their remainder sections. Hence, in such a case
(without the memoryless assumption), it would not be possible to apply Lemma 11 again.

By Lemma 7, at this point, since q is hidden, q must write again before it may enter its
critical section. So, we run q alone until it is about to execute its second write operation.
Let’s call the register that q is about to write register r2. (Register r2 might denote a
different or the same register as r1.) As before, all the processes except q cannot distinguish
the current state from the state σ. Thus, again by Lemma 11, there is an extension of the
current run that involves only process p1 and p2, in which p1 and p2 enter and then exit their
critical sections once, and in that run each one of the anonymous registers is written at least
once. We slightly modify this extension of p1 and p2 by stopping them just before writing
register r2; let q complete a write operation into r2; then let p1 and p2 overwrite the value
written by q, and continue until they return to their remainder sections. Since the write of q

into r2 was also immediately overwritten, q is still hidden, and thus all the processes except
q cannot distinguish the current state from σ.

We can apply the above procedure as often as necessary, hiding all the write operations
of q, which by Lemma 7, prevents q from ever entering its critical section. Thus, algorithm
A does not satisfy starvation-freedom as promised. A contradiction. ◀

DISC 2023

33:16 Memory-Anonymous Starvation-Free Mutual Exclusion

4.6 A generalization

For a non-memoryless algorithm, except for the initial state, the other quiescent states are
not necessarily symmetric. Under the assumption that all the quiescent states are symmetric,
it is possible to prove the following generalization of Theorem 5.

▶ Theorem 13. There is no symmetric starvation-free mutual exclusion algorithm, with at
most s quiescent states, for n ≥ 2s + 1 processes using (any number of) anonymous registers,
assuming all the quiescent states are symmetric.

Proof. We slightly modify the proof of the impossibility result in Subsection 4.5. We assume
to the contrary that there is a symmetric starvation-free mutual exclusion algorithm for
n ≥ 2s + 1 processes using anonymous registers. With each quiescent state σi we associate
two processes pi

1 and pi
2. Let q be a process not associated with any quiescent state. Using

the above-modified version of Lemma 11, we can reach a contradiction by hiding all the write
operations of q, which, by Lemma 7, will prevent q from ever entering its critical section.

This is done as follows. Assume that all the processes are in their remainder sections,
and the current state is σi which is assumed to be symmetric (this is required for applying
the modified version of Lemma 11). Now, process q tries to enter its critical section. Before
doing so, q must execute at least one write operation. So, we run q alone until it is about to
execute a write operation. Let’s call the register that q is about to write, register r. Since q

has not modified r yet, all the processes except q cannot distinguish the current state from
the quiescent state σi. Thus, there is an extension of the current run, which involves only
pi

1 and pi
2, in which pi

1 and pi
2 enter and then exit their critical sections once, and in that

extension, each one of the anonymous registers is written at least once. We slightly modify
this extension by stopping pi

1 and pi
2 just before writing into register r; let q complete a write

operation into r; then let pi
1 and pi

2 overwrite the value written by q, and continue until pi
1

and pi
2 return to their remainder sections.

Since the write of q into r was immediately overwritten, q is still hidden, and thus all the
processes except q cannot distinguish the current state from one of the s quiescent states.
We can apply the above procedure as often as necessary, hiding all the write operations of q,
which by Lemma 7, prevents q from ever entering its critical section. Thus, the algorithm
does not satisfy starvation-freedom as promised – a contradiction. ◀

5 Discussion

We have shown that, while for two processes, it is possible to design a symmetric memoryless
starvation-free mutual exclusion algorithm using anonymous registers, this is impossible for
three or more processes. These results imply that, while there is no separation between
deadlock-freedom and starvation-freedom for two processes, such a separation between
deadlock-freedom and starvation-freedom exists for three or more processes. Thus, in
anonymous shared memory systems where process symmetry is assumed, it is impossible
always to ensure individual progress in situations where global progress is possible. This is
the first known case of fault-free systems, demonstrating a separation between individual
and global progress.

G. Taubenfeld 33:17

References
1 Z. Aghazadeh, D. Imbs, M. Raynal, G. Taubenfeld, and Ph. Woelfel. Optimal memory-

anonymous symmetric deadlock-free mutual exclusion. In Proceedings of the 38th ACM
Symposium on Principles of Distributed Computing, PODC ’19, pages 157–166, 2019.

2 H. Attiya, A. Castañeda, D. Hendler, and M. Perrin. Separating lock-freedom from wait-freedom
at every level of the consensus hierarchy. Journal of Parallel and Distributed Computing,
163:181–197, 2022. Conf. version appeared in PODC 2018.

3 J. N. Burns and N. A. Lynch. Bounds on shared-memory for mutual exclusion. Information
and Computation, 107(2):171–184, December 1993.

4 E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965.

5 M. Herlihy. Impossibility results for asynchronous PRAM. In Proc. of the 3rd Annual ACM
Symp. on Parallel Algorithms and Architectures, pages 327–336, 1991.

6 M. P. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages and
Systems, 13(1):124–149, January 1991.

7 M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. on Programming Languages and Systems, 12(3):463–492, 1990.

8 L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communications
of the ACM, 17(8):453–455, August 1974.

9 S. Rashid, G. Taubenfeld, and Z. Bar-Joseph. The epigenetic consensus problem. In 28nd In-
ternational Colloquium on Structural Information and Communication Complexity (SIROCCO
2021), pages 146–163, June 2021. LNCS 12810.

10 M. Raynal and G. Taubenfeld. Symmetry and anonymity in shared memory concurrent
systems. Bulletin of the European Association of Theoretical Computer Science (EATCS), 136,
2022. 17 pages.

11 M. Raynal and G. Taubenfeld. A visit to mutual exclusion in seven dates. Theoretical Computer
Science, 919:47–65, June 2022.

12 E. Styer and G. L. Peterson. Tight bounds for shared memory symmetric mutual exclusion
problems. In Proc. 8th ACM Symp. on Principles of Distributed Computing, pages 177–191,
August 1989.

13 G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson / Prentice-
Hall, 2006. ISBN 0-131-97259-6, 423 pages.

14 G. Taubenfeld. Coordination without prior agreement. In Proceedings of the ACM Symposium
on Principles of Distributed Computing, PODC ’17, pages 325–334, 2017.

15 G. Taubenfeld. Anonymous shared memory. J. ACM, 69(4):1?30, August 2022.

DISC 2023

Improved and Partially-Tight Lower Bounds for
Message-Passing Implementations of Multiplicity
Queues
Anh Tran
Bucknell University, Lewisburg, PA, USA

Edward Talmage #

Bucknell University, Lewisburg, PA, USA

Abstract
A multiplicity queue is a concurrently-defined data type which relaxes the conditions of a linearizable
FIFO queue to allow concurrent Dequeue instances to return the same value. It would seem that this
should allow faster message-passing implementations, as processes should not need to wait as long to
learn about concurrent operations at remote processes and previous work has shown that multiplicity
queues are computationally less complex than the unrelaxed version. Intriguingly, other work has
shown that there is, in fact, not much speedup possible versus an unrelaxed queue implementation.
Seeking to understand this difference between intuition and real behavior, we improve the existing
lower bound for uniform algorithms. We also give an upper bound for a special case to show that
our bound is tight at that point. To achieve our lower bounds, we use extended shifting arguments,
which are rarely used. We use these techniques in series of inductive indistinguishability proofs,
extending our proofs beyond the usual limitations of traditional shifting arguments. This proof
structure is an interesting contribution independently of the main result, as new lower bound proof
techniques may have many uses in future work.

2012 ACM Subject Classification Software and its engineering → Abstract data types; Theory of
computation → Distributed algorithms; Computing methodologies → Distributed algorithms

Keywords and phrases Distributed Data Structures, ADTs, Lower Bounds, Shifting Arguments,
Multiplicity Queues

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.34

Related Version Short Version: https://doi.org/10.1145/3583668.3594602 [17]
Preliminary Version: https://arxiv.org/abs/2305.11286 [18]

Funding Anh Tran: Bucknell University Emerging Scholars Program.
Edward Talmage: Bucknell University.

1 Introduction

In the search for efficient structured access to shared data, relaxed data types [5] have risen
as an efficient way to trade off some of the precise guarantees of an ordered data type for
more performance [14]. Multiplicity queues are a recently-developed relaxation of queues [4]
which allow concurrent Dequeue instances to return the same value. Since they cannot have
a sequential specification (being defined in terms of concurrency), previous results on relaxed
queues do not apply to multiplicity queues.

Multiplicity queues are particularly interesting due to the implications for the compu-
tational power of the type. In [4], Castañeda et al. implement multiplicity queues from
Read/Write registers, which is impossible for FIFO queues. This means that it is possible
to have queue-like semantics without the cost of strong primitive operations like Read-

© Anh Tran and Edward Talmage;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 34; pp. 34:1–34:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elt006@bucknell.edu
https://doi.org/10.4230/LIPIcs.DISC.2023.34
https://doi.org/10.1145/3583668.3594602
https://arxiv.org/abs/2305.11286
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Multiplicity Queue Lower Bounds

Modify-Write. Further work showed that this allows interesting applications in areas such
as work-stealing [3] and more efficient implementations in shared memory systems with
strong primitives than the best known algorithms for FIFO queues [7].

We are interested in message-passing implementations of data types, which provide the
simplicity and well-defined semantics of a shared memory system in the message passing
models inherent to geographically distributed systems [2]. Specifically, we want to implement
shared structures efficiently in terms of the time between when a user invokes an operation
and when the algorithm generates the operation’s response. In queue implementations, the
need for concurrent Dequeue instances to wait long enough to learn about each other, so
that they can be sure to return different values, is one of the primary reasons that Dequeue

is expensive to implement [19]. Between the higher performance multiplicity queues achieve
in shared memory models and the intuitive notion that concurrent Dequeue instances need
not learn about each other, it seems intuitive that multiplicity queues should have efficient
implementations in message-passing systems.

However, recent work [13] showed the possible performance gains are limited. In a partially-
synchronous system with maximum message delay d and delay uncertainty u, that work
showed that the worst-case invocation-return delay for Dequeue is at least min

{ 2d
3 , d+u

2
}

,
which is within roughly a factor of 2 of a known unrelaxed queue implementation, where
|Dequeue| = d + ϵ [19]. We here extend the work in [13], increasing the lower bound for the
return time of Dequeue in uniform algorithms (those whose behavior does not depend on
the number of participating processes) to min

{ 3d+2u
5 , d

2 + u
}

. Intuitively, while a particular
Dequeue instance may not need to know about other, concurrent instances, determining
which instances are concurrent is expensive in its own right.

This suggests new insights into fundamental properties of message passing implementations
of shared data structures, showing that differentiating previous from concurrent instances is
responsible for much of the time operation instances require. This could help develop more
efficient algorithms or new relaxations with minimal weakening while providing maximum
performance improvements. The piecewise nature of our bound also provides potential
insight into what the optimal lower bound may be. We show that the d

2 + u portion of the
bound, which has lower slope, is actually tight in the case when all messages have equal delay
(u = 0). However, for larger uncertainties in message delay (u > d/6), the 3d+2u

5 portion
of the bound is higher. In fact, if we could strengthen the base case of our induction, it
appears our argument would give larger bounds than 3d+2u

5 for large values of u. That base
case is already the most complex portion of our proof, so such strengthening and finding an
optimal lower bound remain as future work. The two parts of the bound we show here relate
to different constraints, with d

2 + u relating to admissibility of runs in our proof and 3d+2u
5

relating to how fast information can travel through the system and when processes can make
conclusions about the ordering of Dequeue instances at other processes.

Except for the edge case of u = 0, where they match and which we show is tight, our
new bound is larger than the previous state of the art, and further demonstrates better
tools for larger lower bound proofs in general. The proofs in [13] relied on shifting and other
indistinguishability arguments among three or fewer processes, and the bounds were limited
by the number of processes. In this paper, we develop more complex indistinguishability
arguments, using inductive definitions of different runs of the algorithm on many processes.
This requires using advanced shifting and indistinguishability tools, similar to those developed
in [19]. These stronger tools allow us to prove larger bounds, and are interesting in their
own right as a hint to how to prove larger lower bounds on other problems, as well.

A. Tran and E. Talmage 34:3

1.1 Related Work
The idea of relaxing data types grew out of the study of consistency conditions weaker than
linearizability. Afek et al. proposed Quasi-Linearizability in [1], which requires linearizations
to be within a certain distance of a legal sequence, instead of themselves legal. From another
perspective, this is just an expansion of the set of legal sequences on the data type. In [5],
Henzinger et al. formalized these relaxations of abstract data type specifications by increasing
the set of legal sequences and defined several parameterized ways to do so.

These relaxations and other work which followed [14, 12, 15] concentrated on relaxing
sequential data type specifications and showed that they have more efficient implementations
in a message passing system than an unrelaxed queue does. This approach cannot consider
concurrency, which is simply not defined in the sequential space, so Castañeda et al. [4] defined
multiplicity queues, which allow different behavior in the presence of concurrent operations
than during sequential operation. They also replaced linearizability with set-linearizability
as the consistency condition to accommodate non-sequential data types definitions.

In shared memory models, multiplicity queues have a number of advantages over unrelaxed
queues, and even other, sequential relaxations. Castañeda et al. showed that multiplicity
queues can be implemented purely from Read/Write registers, which is impossible for FIFO
queues [6] and most previously-considered relaxed queues [12, 16], as they have consensus
number 2. This suggests that they may be a practical way to get queue-like behavior cheaply
in shared memory systems. Castañeda and Piña [3] use multiplicity queues to provide the
first work-stealing algorithms without strong synchronization requirements. Johnen et al. [7]
considered the time complexity of shared memory implementations of queues, implementing
multiplicity queues in O(log n) steps for each of Enqueue and Dequeue, while the best
previous algorithm for unrelaxed queues took O(

√
n) steps [8].

2 Model and Definitions

2.1 System Model
To have parameters we can use to prove lower bounds, we work in a partially synchronous
model of computation. Lower bounds in this model also apply in asynchronous models, so a
high lower bound here is still meaningful. We work in the same system model as [13] and its
precedents, a partially-synchronous, message passing model without process failures used in
the literature for various shared data type implementation algorithms and lower bounds.1

There are n processes, {p0, . . . , pn−1}, participating in an algorithm implementing a shared
memory object. Each process allows a user to invoke operations on the simulated shared
memory object and generates responses to those invocations. Each user can invoke operations
at any time when their process does not have a pending operation–an invocation which does
not yet have a matching response. Processes have local clocks running at the same rate as
real time, but each potentially offset from real time, and can use these clocks to set timers.

Processes are state machines, where operation invocations, message arrivals and timer
expirations trigger steps, which may perform local computation, set timers, send messages,
and generate operation responses. A run of an algorithm is a set of sequences of state machine
steps, one sequence for each process. Each sequence in a run is a valid state machine history

1 There are several distinct models which the literature calls partially synchronous. We consider a model
that is never totally synchronous or totally asynchronous, but always has some uncertainty in message
delay, and thus cannot perfectly synchronize processes [10].

DISC 2023

34:4 Multiplicity Queue Lower Bounds

with a real time for each step, and is either infinite or ends in a state with no unexpired
timers and no messages sent to that process but not received. A run is admissible if every
message send step has a uniquely corresponding message receive step with the delay between
send and receive at least d − u and at most d real time and the skew, or maximum difference
between local clocks, is at most ε := (1 − 1/n)u [10]. We assume d and u ≤ d are known
system parameters.

An implementation must provide liveness: every operation invocation must have a
matching response. We call this invocation and corresponding response pair an operation
instance. We are exploring the time cost of implementations, as measured by the worst-case
delay between an instance’s invocation and response. For operation OP , |OP | denotes
the maximum, over all admissible runs of the algorithm, of the real time between the
invocation and response of any instance of OP . We measure communication cost, so we
assume local computation is instantaneous. We also restrict ourselves to eventually quiescent
implementations, requiring that if there are a finite number of operation invocations in a run,
there is a finite time after the last invocation by which processes reach and stay in a quiescent
state with no messages in transit and no timers set. A uniform algorithm is independent of
the number of processes, with each process’ state machine is identical for all n.2

A sequential data type specification gives a set of operations the user may invoke, with
argument and return types, and the set of legal sequences of instances of those operations.
We are interested in data types whose behavior may depend on concurrency in a distributed
system, so we consider set-sequential data type specifications. A set-sequential data type
specification similarly defines the set of operations the user may invoke, but instead of a set
of legal sequences of instances, specifies a set of legal sequences of sets of instances. Thus,
not all instances in a run must be totally ordered relative to each other, but each set of
instances must be totally ordered relative to other sets.

To determine whether an algorithm implementing a set-sequential data type is correct,
we require it to be set-linearizable, as defined in [11] and [4]. Set-linearizability requires that
for every admissible run of the algorithm, there is a total order of sets of operation instances
which contains every instance in the run, is legal by the set-sequential data type specification,
and respects the real-time order of non-overlapping instances. That is, there must be a way
to place all operation instances in the run in sets and order those sets into a legal sequence
such that for every pair of instances where op1 returns before op2’s invocation, op1 is in a set
which precedes the set containing op2. The classic notion of linearizability is a special case
of set-linearizability where all sets are required to have cardinality 1.

2.2 Multiplicity Queues
A queue is a First-In, First-Out data type providing operations Enqueue(arg) which returns
nothing and Dequeue() which returns a data value, where any sequence of operations instances
is legal iff each Dequeue instance returns the argument of the earliest preceding Enqueue

instance whose argument has not already been returned by a Dequeue, or ⊥ (which cannot
be an Enqueue instance’s argument) if there is no such Enqueue instance. We consider a
related data type called a multiplicity queue, defined in [4], with the same operations but
defined set-sequentially.

2 It may seem that broadcasting requires knowledge of n, but since each process can simply iterate across
all neighbors, no logic changes for different n.

A. Tran and E. Talmage 34:5

▶ Definition 1. A multiplicity queue over value set V is a data type with two operations:
Enqueue(arg) takes one parameter arg ∈ V and returns nothing. Dequeue() takes no
parameter and returns one value in V ∪ {⊥}, where ⊥ is special “empty” value. A sequence
of sets of Enqueue and Dequeue instances is legal if (i) every Enqueue instance is in a
singleton set, (ii) all Dequeue instances in a set return the same value, and (iii) each
Dequeue instance deq returns the argument of the earliest Enqueue instance preceding deq

in the sequence, which has not been returned by another Dequeue instance preceding deq. If
there is no such Enqueue instance, deq returns ⊥.

This definition implies that concurrent Dequeue instances may, but do not necessarily,
return the same value. If they do, they would set-linearize in the same set. If two Dequeue

instances are not concurrent, then one must precede the other in the set linearization, so
they must return different values. We assume all Enqueue arguments are unique, which is
easily achieved by a higher abstraction layer timestamping the users’ arguments.

2.3 Shifting Proofs
To prove our lower bounds, we will use indistinguishability arguments, where we argue that
in a given time range in two runs, one or more processes have the same inputs (invocations,
messages, timers) at the same local clock times. Since each process is a (deterministic) state
machine, a process receiving the same inputs at the same times performs the same steps
in the two runs. We will sometimes argue indistinguishability directly, but in some cases
we will use shifting [10, 9, 19], a technique which mechanically changes the real time of
events at one or more processes, while adjusting message delays and clock offsets such that
each event happens at the same local time. Thus, if one run is a shift of another, they are
indistinguishable. More formally, given run R and vector v⃗ of length n, we define Shift(R, v⃗)
as a new run in which each event e at each pi, 0 ≤ i < n which occurs at real time t in R

occurs at real time t + v[i]. In Shift(R, v⃗) each local clock offset ci becomes c′
i = ci − v[i].

Finally, any message from pi to pj which had delay x in R has delay x + v[j] − v[i], as the
real times when it is sent and received change.

A challenge in using shifting arguments is that the shifted run must be admissible to
require the algorithm to behave correctly. Great care is required to define a run’s message
delays and clock offsets so that the skew and message delays are admissible after shifting. We
use an extended shifting technique by Wang et al. [19] which shows that if a shift is too large,
making the shifted run inadmissible, it is in some cases possible to chop off each process’
sequence of steps before a message arrives after an inadmissible delay, then extend the run
from that collection of chop points with different message delays which are admissible. This
extended run is not necessarily indistinguishable past the chop, but we can sometimes argue
that the runs are indistinguishable long enough to form conclusions about the new run’s
behavior.

3 Lower Bound Proof Outline

Our primary result is a lower bound on the worst-case time of any uniform set-linearizable
implementation of a multiplicity queue. For comparison, a linearizable implementation of
an unrelaxed FIFO queue is possible with worst-case Dequeue cost d + ε = d + (1 − 1/n)u.
Our lower bound is over half of that, indicating a limit on the performance gains of the
multiplicity relaxation. Since our lower bound shows the impossibility of a more efficient
multiplicity queue implementation in a relatively well-behaved partially synchronous model of

DISC 2023

34:6 Multiplicity Queue Lower Bounds

computation, it follows that it is similarly impossible in more realistic, and less well-behaved,
models, such as those with asynchrony or failures. It is possible that the cost to port a FIFO
queue to a less well-behaved model is higher than the cost to port a multiplicity queue, but
that remains an open question.

We prove our bound by building up two sets of runs. In both sets, each process invokes
a single Dequeue instance. In the first set we show that each of these Dequeue instances,
despite being concurrent with at least one other Dequeue instance, returns a unique value. In
the second set, we show that there are fewer distinct return values than Dequeue instances,
so there must be some Dequeue instances returning the same value. We then show that, for
sufficiently large n, these two sets of runs eventually converge, in the sense that processes
cannot distinguish which set they are in until after they choose return values for their
Dequeue instances. This means they must have the same behavior in both, a contradiction
which implies the worst-case cost of Dequeue must be higher. We need large n to ensure that
the information about all of the Dequeue instances cannot reach the last process in time
for it to distinguish which run it is in, so the lower bound on n depends on the relationship
between d and u, increasing as u approaches d.

Both sets of runs are based on and building towards one simple run, which sequentially
enqueues values 1..n, then once the system is quiescent, has each process dequeue once,
with invocation times staggered so that the Dequeue instances at different processes overlap
slightly (unless |Dequeue| < u, in which case processes invoke Dequeue simultaneously,
which the variable s below handles). Any set linearization of any of our runs will start with
n singleton sets, enqueueing the values 1..n in order. Further operation instances will set-
linearize after those Enqueue instances. In general, messages from lower-indexed processes
to higher-indexed processes take d − u time, while those from higher-indexed processes to
lower-indexed processes take d time. The primary exception is that after a certain point,
messages from pn−1 to pn will also take d time. This prevents pn from collecting complete
information on other processes’ actions, which is enough uncertainty to cause incorrect
behavior. As we develop our proof, we will modify other delays, but start from this pattern.

Let Q := min
{ 3d+2u

5 , d
2 + u

}
throughout the paper. To prove that |Dequeue| ≥ Q, in

the following we assume for the sake of contradiction that |Dequeue| < Q ≤ d.

4 Distinct Return Values

For our first set of runs, we show that each Dequeue instance may return a distinct value,
despite the fact that each is concurrent with at least one other instance. While this is the
easier part of the proof, it is interesting as it shows that, under uncertainty in message delay,
processes cannot tell whether their Dequeue instances are or are not concurrent, so the
relaxation gives no advantage, as processes must spend time to choose distinct return values.

We denote this set of runs by Dk, 1 ≤ k ≤ n, where the first k processes invoke Dequeue

instances slightly overlapped as discussed, and higher-indexed processes invoke Dequeue

slightly later. We will inductively show that the Dequeue at pk must return a different value
from those at p0, . . . , pk−1, then shift the run to obtain Dk+1, which is indistinguishable.
When the inductive chain of shifts is complete, we will see that all n Dequeue instances in
Dn must return different values.

▶ Construction 2. Define run Dk (D for Distinct) as follows, for each 1 ≤ k < n:
p0 invokes Enqueue(1) · · · Enqueue(n) in order. Let t be any arbitrary time after
Enqueue(n) returns at which the system is quiescent.
∀0 ≤ i < k, process pi invokes Dequeue at time t + i × s, where s = max{0, Q − u}.
∀k ≤ j < n, process pj invokes Dequeue at time t + (j − 1)s + (s + u).

A. Tran and E. Talmage 34:7

Process p0 has local clock offset c0 = 0.
∀0 < i < k, process pi has local clock offset ci =

(
i
n

)
u.

∀k ≤ j < n, process pj has local clock offset cj =
(

j−n
n

)
u.

∀0 ≤ i < k ≤ j < n, messages from pi to pj have delay d, from pj to pi have delay d − u.
∀0 ≤ a < b < k, messages from pa to pb have delay d − u, from pb to pa have delay d.
∀k ≤ c < d < n, messages from pc to pd have delay d − u, from pd to pc have delay d.

Define run Dn similarly, but setting clock offsets, invocations, and message delays only for
processes pi with i < n. Since pn does not exist, it does not invoke Dequeue, send or receive
messages, or have a local clock offset.

Since all local clock offsets for processes pi with 0 < i < k are positive and increase
with i and all offsets for processes pj with k ≤ j < n are negative and increase with j, the
maximum skew between processes is |ck−1 − ck| =

∣∣ k−1
n − k−n

n u
∣∣ = n−1

n u = ε, except when
k = n, when no such pj exists and the maximum skew is

∣∣0 − n−1
n u

∣∣ = ε. With this fact and
since all message delays are in the range [d − u, d], we see that each Dk is an admissible run.

Our first step is to note that each Dk is a shifted version of Dk−1, which implies that
they are all indistinguishable. The proof is a straightforward application of classic shifting,
adjusting real times, clock offsets, and message delays, and is included in the appendix. Then
we can prove that each Dequeue instance in Dn must return a different value.

▶ Lemma 3. For all 2 ≤ k < n, Dk = Shift(Dk−1, −−→sk−1), where −−→sk−1’s only non-zero
component is −u at index k − 1: −−→sk−1 = ⟨0, . . . , 0, −u, 0, . . . , 0⟩.

▶ Lemma 4. In run Dk, 1 ≤ k ≤ n, every Dequeue instance returns a distinct value.
Specifically, for each 0 ≤ i < n, the Dequeue instance at pi returns i + 1.

Proof. Consider D1. Here, p0 invokes Dequeue at time t, which must return by time
t + |Dequeue|. p1 invokes Dequeue at time t + (1 − 1)s + (s + u) > t + |Dequeue|, which
is after p0’s Dequeue instance returns. Every process pi with i ≥ 1 invokes Dequeue no
earlier than p1, so no other Dequeue instance is concurrent with p0’s, and thus that one
must set-linearize before any other. This means that p0 returns 1 to its Dequeue instance
and all other processes return values in the set {2, . . . , n} to their Dequeue instances.

Assume that for some arbitrary 0 ≤ k < n − 1, each process pi, 0 ≤ i < k returns i + 1
to its Dequeue instance. We will then show that process pk returns k + 1 to its Dequeue

instance. First, note that in Dk, pk invokes Dequeue at time t + (k − 1)s + (s + u), while
every pi, 0 ≤ i < k has its Dequeue instance return no later than t + (i − 1)s + |Dequeue| ≤
t + ((k − 1) − 1)s + |Dequeue| < t + (k − 2)s + (s + u). Since s ≥ 0, this is before pk

invokes Dequeue, so pk’s Dequeue instance must set-linearize strictly after all of those at
any lower-indexed pi. By the inductive hypothesis, each of those k processes returns i + 1, so
pk must return a value larger than k.

Now, consider Dk+1. Since Dk+1 is a shifted version of Dk, no process can distinguish the
two runs, so all behave the same way in both. Specifically, pk will return the same value to its
Dequeue instance. But in Dk+1, by an identical argument to that in the previous paragraph,
each pj , k < j < n invokes Dequeue after the Dequeue instance at pk returns, so they must
all set-linearize strictly after pk’s Dequeue instance, and those of each pi, 0 ≤ i ≤ k. Since
there are only k + 1 Dequeue instances set-linearized with or before that at pk, these must
return values from the set {1, . . . , k + 1}. But we know that those at processes with indices
in {0, . . . , k − 1} all return values from {1, . . . , k}, and the Dequeue instance at pk returns a
value distinct from any of these, so it must return k + 1, and we have the claim. ◀

DISC 2023

34:8 Multiplicity Queue Lower Bounds

5 Repeated Return Values

For the second set of runs, we will show that n processes, each invoking one Dequeue instance
in our same partially-overlapping pattern, will not return all different values to those Dequeue

instances. To do this, we first show that if only three processes invoke Dequeue, then they
will only return two distinct values. We then inductively construct more and more complex
runs, with one more process joining the pattern and invoking Dequeue in each successive pair
of runs. When the induction reaches n, we will show that we have a run indistinguishable
from the Dn we constructed in the previous section. Since each of the Dequeue instances in
that run returns a distinct value, and those in the run we construct here do not all return
distinct values, we have a contradiction, proving that the assumed algorithm cannot exist.

First, we define the family of runs Sk, in each of which only k ≤ n processes invoke
Dequeue. We inductively show that each of these has some pair of Dequeue instances which
return the same value, eventually showing that not all Dequeue instances in Sn return
distinct values. Then, to show the chain of indistinguishabilities in our induction, we will
need another set of runs, which are intermediate steps.

▶ Construction 5. Define run Sk (S for Same) as follows:
p0 invokes Enqueue(1) · · · Enqueue(n) in order. Let t be the same arbitrary time after
Enqueue(n) returns at which the system is quiescent as in the definition of Dk.
∀0 ≤ i < k, process pi invokes Dequeue at time t + i × s, where s = max{0, Q − u}.
Process p0 has local clock offset c0 = 0, and ∀0 < i < n, process pi has ci =

(
i
n

)
u.

∀0 ≤ i < j < n, messages from pj to pi have delay d and from pi to pj have delay d − u,
except for those from pk−2 to pk−1 sent after t∗

k−2 = t+(k −2)(d−u), which have delay d.

▶ Construction 6. For 1 ≤ k < n, define run S′
k from run Sk−1 by additionally having pk−1

invoke Dequeue at time t + (k − 1)s. Adjust the delay of all messages from pk−2 to pk−1
sent at or after t∗

k−2 = t + (k − 2)(d − u) to d.

In S′
k, we have added the next Dequeue instance, but have two processes’ messages

(pk−3’s and pk−2’s) to the next, larger-indexed, process delayed. We can show that processes
p0 through pk−2 cannot distinguish Sk−1 from S′

k before generating return values for their
Dequeue instances, so they must return the same values, which gives us information about
what pk−1 must return to its Dequeue instance. We then show that S′

k and Sk are indistin-
guishable to pk−1 until after it has generated a return value for its Dequeue instance, telling
us what values it could return. The prof is by mathematical induction on k, from 3 to n.

▶ Lemma 7. For sufficiently large n, all Dequeue instances in S′
n and Sn return values

from {1, . . . , n − 1}.

Proof. We proceed by induction on k.

Base Case. We proceed by induction on k, with base case k = 3, when only the first three
of our n processes invoking Dequeue, which is run S3. We show that all Dequeue instances
return values from {1, 2}, for sufficiently large n. Due to higher-indexed processes invoking
Dequeue later than lower-indexed processes, and the way we will set message delays, the
first Dequeue instance will behave as if it were running alone, returning 1. We will then
shift run S3, using a technique like that in [19] that allows us to over-shift and break some
message delays, then re-insert those messages with new, admissible delays. We can then
show that the resulting patched run is still indistinguishable from the starting run for long
enough. In this run, we will argue that the second process does not learn about the first

A. Tran and E. Talmage 34:9

process’ Dequeue instance until after its own returns, and thus cannot distinguish this run
from one in which it is running alone, so it must also return 1. Given these two return values,
set-linearizability implies that the third process’ Dequeue instance must return 2. We will
then show that the third process cannot distinguish between the original and shifted runs
before choosing its return value, so will return 2 in S3.

First, observe that p0 cannot learn about the Dequeue instances at p1 and p2 until
after its own Dequeue instance has returned. Since all messages from a higher-indexed
process to a lower-indexed process have delay d, the earliest p0 will learn about the other
Dequeue instances is at time t + s + d, since t + s is when p1 invokes Dequeue, and any
message indicating that this has happened will take d time to reach p0. Since p2 invokes
its Dequeue instance at time t + 2s ≥ t + s, the same logic will imply that p0 will also not
learn about that instance until after its own Dequeue instance has returned. p0’s Dequeue

instance returns no later than time t + |Dequeue|, by definition, which is strictly less than
t + d. Together, we see that p0 learns about a remote Dequeue invocation no sooner than
t + s + d ≥ t + d > t + |Dequeue|, so through the return of its Dequeue instance, p0 cannot
distinguish S3 from a run in which that is the only Dequeue instance. Thus, it returns the
same value, which by set-linearization is necessarily 1. Similarly, p1 must return a value in
{1, 2}, since it cannot learn about the Dequeue instance at p2 until time t + 2s + d, which is
larger than when its own Dequeue instance returns by t + s + |Dequeue|.

Next, we want to show that p2 will also return a value from {1, 2} to its Dequeue instance.
We cannot directly argue this, since if p2 learns about both the Dequeue instances at p0
and p1 before it generates a return value for its own, it may decide to return a different
value than either. Instead, we will shift events at p1 earlier, then argue that in this run, the
information about p0’s Dequeue instance does not arrive at p1 until after it has generated its
Dequeue return value, forcing p1 to return 1 to its Dequeue instance. Now, while p1 may be
able to distinguish this new run from S3, we will argue that p2 will not be able to distinguish
them until after it generates its Dequeue return, so must return the same value in both. In
the shifted run, p0 and p1 will both return 1, which means that p2 must return either 1 or 2
to satisfy set-linearizability.

We will shift S3 by the vector ⟨0, −X, 0, . . . , 0⟩, where X is a value we will determine
shortly. Next, we will alter message delays, both to delay p1 from learning about p0’s
Dequeue instance and to make the shifted run admissible, yielding run SX

3 .
Our first step is to find what shift amounts X for p1 will make SX

3 admissible, then argue
the behavior of each process. First, note that this shift will increase the local clock offset of
p1 by X. In S3, c1 = 1

n u, the smallest clock offset is c0 = 0 and the largest is cn−1 = n−1
n u.

To keep the run admissible, we must have X ≤
(

n−1
n u − 1

n u
)

= n−2
n u, since we are not

changing the smallest clock offset, so must keep c1 within ε of that offset.
Next, as shown in Table 1, we see that for a non-negative value of X, we will have some

inadmissible message delays in Shift(S3, ⟨0, −X, 0, . . . , 0⟩) (highlighted in the Shift(S3)
column). To correct these, we trim the run before any of the inadmissible messages would
arrive, then extend the run with other, admissible message delays (highlighted in the SX

3
column), following the technique introduced in [19]. Unlike a shift, this may change the
behavior of the run, so we must argue what each process does in run SX

3 . We chose these
new delays to delay processes from learning about remote actions, setting all of the adjusted
delays to the maximum, d. Since X ≤ n−2

n u < u, then the delays not highlighted in the
SX

3 column are in the range [d − u, d], and we conclude that if 0 ≤ X ≤ n−2
n u, then SX

3 is
admissible.

DISC 2023

34:10 Multiplicity Queue Lower Bounds

Table 1 Table showing message delays to and from p1 in runs for base case in repeated Dequeue

return values proof. Delays for other processes are unchanged across the three runs.

Message Path S3 Shift(S3) Adjusted: SX
3

p0 → p1 d − u d − u − X d

p1 → p0 d d + X d

p1 → p2 (initially) d − u d − u + X d − u + X

p1 → p2 (after t∗
1) d d + X d

p1 → p≥3 d − u d − u + X d − u + X

p≥2 → p1 d d − X d − X

Now that we know what values of X make SX
3 an admissible run, we will find which of

those values of X will make all three Dequeue instances return values from {1, 2} in SX
3 .

p0 will not learn about p2’s Dequeue instance until after its own returns, by the same
argument as in S3. We want p0 to also not learn about p1’s Dequeue instance until after its
own returns. p1 invokes Dequeue at t + s − X in SX

3 , since we shifted events at p1 earlier by
X. A message sent at this time will arrive at p0 at time t + s − X + d, and we want to argue
that this will be after t + |Dequeue|, and thus after p0’s Dequeue instance returns. This
happens if and only if d + s − X > |Dequeue|, or X < d + s − |Dequeue|. Since s ≥ 0, it is
sufficient to require that X < d − |Dequeue| to ensure that p0’s Dequeue instance returns 1.

To force p1’s Dequeue instance to return 1, we want information about p0’s invocation
of Dequeue to arrive after p1 generates its Dequeue return value. Thus, we want to have
time t + d (since messages from p0 to p1 have delay d in SX

3) later than when p1 generates a
return value. p1 invokes Dequeue at time t + s − X and the Dequeue instance returns at
most |Dequeue| time after invocation, so we want to have t + d > t + s − X + |Dequeue|.
Solving for X, we find that this is true iff X > |Dequeue| + s − d. Here, we split into
cases depending on the value of s: If s = 0, we want X > |Dequeue| − d, but we assumed
that |Dequeue| < d, so any non-negative value of X is sufficient. If s = Q − u, we want
X > |Dequeue| + (Q − u) − d = |Dequeue| + Q − (d + u).

Similarly to previous arguments, since p2 invokes Dequeue at least X after p1 does (p2
invokes Dequeue s after p1 in S3, which means s + X after in SX

3), and message delays
from p2 to p1 are d − X, p1 cannot learn about p2’s Dequeue invocation until at least
X + (d − X) = d > |Dequeue| after p1 invokes Dequeue. This is after p1 generates its
Dequeue return value. Combining this with the previous conclusion that p1 is unaware
of p0’s Dequeue invocation until after it chooses a return value, we conclude that p1 will
return the same value as in a run where neither p0 nor p2 invoked Dequeue. The only legal
set-linearization of such a run requires that p1 return 1.

We can now reason about p2’s behavior. Since both p0 and p1 must return 1 to their
Dequeue instances in SX

3 , we conclude that p2 must return either 1 or 2, as there is no legal
set-linearization of any other return value. We will thus argue that p2 cannot distinguish
SX

3 from S3 until after it generates its Dequeue return value, concluding that p2 will return
either 1 or 2 to its Dequeue instance in S3 as well.

Consider when each process in S3 can first distinguish that it is not in SX
3 . These

differences correspond to the adjusted message delays highlighted in the final column of
Table 1. p0 can distinguish the runs when it does not receive a message p1 may have sent at
its Dequeue invocation as soon as it would have received it in SX

3 , since in SX
3 we reduced

the delay on messages from p1 to p0. This detection would occur at time t+s+(d−X), when
that message does not arrive. p1 can first distinguish the runs at time t + (d − u), when it can

A. Tran and E. Talmage 34:11

receive a message p0 sent at its Dequeue invocation but which arrives later in SX
3 , where we

increased the delay on messages from p0 to p1. Note t + s + (d − X) + (d − u) > t + (d − u)
and t + s + (d − X) ≤ t + (d − u) + d, so neither process can send a message after it detects
the difference which will arrive before the recipient detects the difference itself.

Finally, p2 can distinguish the runs either by receiving a message p0 or p1 sends after
distinguishing the runs or directly from adjusted message delays. We argue that each of
these must occur after the Dequeue instance at p2 returns, so p2 cannot distinguish S3 from
SX

3 until after that Dequeue instance’s return value is set, so the value must be the same in
both runs.

Consider when p2 can receive a forwarded detection of a difference in the runs:
p0 can send this information no sooner than t + s + (d − X), and the message would take
d time to arrive, meaning that the earliest p2 could distinguish the runs based on this
information is t+s+2d−X. We want to show that this is greater than t+2s+ |Dequeue|,
and thus after p2’s Dequeue instance returns. This is true iff 2d − X − u > s + |Dequeue|.
Consider cases for the value of s:

s = 0: We want to show that 2d − X − u > |Dequeue|. This is true if and only if X <

(d − |Dequeue|) + (d − u), but we know that d ≥ u so this holds if X < d − |Dequeue|.
s = Q − u: We want to show that 2d − X − u > |Dequeue| + Q − u. This is true if
and only if X < (d − Q) + (d − |Dequeue|). Since Q ≤ d and we are already assuming
X < d − |Dequeue|, this inequality holds.

p1 can send a message informing p2 that it is in S3, not SX
3 , no sooner than t + (d − u).

Since t + (d − u) = t∗
2, this message will take d time to arrive at p2. We want to show

that this is after p2’s Dequeue instance returns, which happens at t + 2s + |Dequeue|.
Thus, we want t + (d − u) + d > t + 2s + |Dequeue|, or 2d − u > 2s + |Dequeue|. Solving
for |Dequeue|, this is equivalent to |Dequeue| < 2d − 2s − u. Consider the possible values
of s:

s = 0: We want to show that |Dequeue| < 2d − u. But we know that d ≥ u, so
d − u ≥ 0 and |Dequeue| < d, so this inequality holds.
s = Q − u: We want to show that |Dequeue| < 2d − 2(Q − u) − u = 2d − 2Q + u.
But |Dequeue| < Q, so it is sufficient to show that Q ≤ 2d − 2Q + u. This holds iff
Q ≤ 2d+u

3 . But we assumed Q ≤ 3d+2u
5 ≤ 2d+u

3 , so we have the desired relationship.
Thus, p2 cannot learn from p1 that it is in SX

3 before it generates a return value for its
Dequeue instance.

Finally, we show that p2 cannot directly differentiate S3 from SX
3 based on the altered

message delays in SX
3 before its Dequeue instance returns. At the earliest, this can happen

at t∗
2 + d − X, when p2 does not receive a message in S3 that it may have in SX

3 , since in
SX

3 we decreased the delay of messages p1 sends to p2 at or after time t∗
2 − X. We again

want to show that this is after p2’s Dequeue instance returns which happens no later than
t + 2s + |Dequeue|. That is, we want t∗

2 + d − X = t + (d − u) + d − X > t + 2s + |Dequeue|.
Equivalently, we want 2d − u − X > 2s + |Dequeue|. Consider cases for s:

s = 0: In this case, we want 2d − u − X > |Dequeue|, which is true iff X ≤ (d −
|Dequeue|) + (d − u). We already have the constraint that X < d − |Dequeue| and u ≤ d.
s = Q − u: Here, we want 2d − u − X > 2(Q − u) + |Dequeue|, which is true if
X < 2d + u − 2Q − |Dequeue|. This is a new constraint on X which we must meet.

Thus, in all cases (if X meets all our constraints simultaneously), p2 cannot distinguish
S3 from SX

3 until after its Dequeue instance returns. This means it returns the same value
in both runs, and since we proved it returns a value from {1, 2} in SX

3 , it also does in S3.

DISC 2023

34:12 Multiplicity Queue Lower Bounds

Our last step is to verify that our constraints on X are compatible–that there is a value
of X which will make Sk

3 admissible and give the behavior we want. Our constraints are
X ≥ 0 and X > |Dequeue| + Q − (d + u)
X < d − |Dequeue|, X < 2d + u − 2Q − |Dequeue|, and X ≤ n−2

n u

These three upper bounds and two lower bounds lead to six cases to check to show that
there exists a value of X which satisfies all of our constraints.

d − |Dequeue| > 0: By assumption, |Dequeue| < d, so d − |Dequeue| > 0.
d − |Dequeue| > |Dequeue| + Q − (d + u): This is true iff 2d + u > 2|Dequeue| + Q. Since
|Dequeue| < Q, it is sufficient to show that 2d + u ≥ 3Q, or Q ≤ 2d+u

3 , but we assumed
that Q ≤ 3d+2u

5 ≤ 2d+u
3 , so this relationship holds.

2d + u − 2Q − |Dequeue| > 0: This is equivalent to the previous case.
2d+u−2Q−|Dequeue| > |Dequeue|+Q−(d+u): This is true iff 3d+2u > 3Q+2|Dequeue|,
but it is sufficient to show that 3d + 2u ≥ 5Q, and we assumed that Q ≤ 3d+2u

5 , so this
relationship holds.
n−2

n u ≥ 0: n > 2 and u ≥ 0, and a positive fraction of u will thus be non-negative.
n−2

n u > |Dequeue| + Q − (d + u): Solving for |Dequeue| and Q, this is true iff Q +
|Dequeue| < d+ n−2

n u+u. Since |Dequeue| < d
2 +u, there is some N0 s.t. for all n ≥ N0,

|Dequeue| < d
2 + n−2

n u. Further |Q| ≤ d
2 + u, so combining these, the inequality holds

for n ≥ N0.
Thus, since every upper bound is larger than every lower bound, for sufficiently large n

(n ≥ N0), there exists at least one X such that SX
3 is admissible and p0, p1, and p2 all return

values from {1, 2} to their Dequeue instances, and we have the claim.

Inductive Case. Assume that for some arbitrary 4 ≤ k ≤ n, all Dequeue instances in Sk−1
return values from the set {1, . . . , k − 2}. We will show that in Sk and S′

k, all Dequeue

instances return values from the set {1, . . . , k − 1}. First, we will use Sk−1 to argue the
behavior of S′

k, then use that behavior to prove the behavior of Sk.
To show that in S′

k, all processes return values from the set {1, . . . , k−1} to their Dequeue

instances, we argue that processes p0, . . . , pk−1 cannot distinguish Sk−1 from S′
k until after

they have all generated their Dequeue return values. Thus, they will return the same values
as in Sk−1, which are all in {1, . . . k − 2} by the inductive hypothesis. We can then conclude
that pk−1, which invokes a Dequeue instance in S′

k but not in Sk−1 must return a value in
the set {1, . . . , k − 1} to satisfy set-linearizability.

Recall that S′
k differs from Sk−1 in two ways: First, pk−1 invokes Dequeue at time

t + (k − 1)s. Second, messages from pk−2 to pk−1 sent at or after t∗
k−2 = t + (k − 2)(d − u)

have delay d instead of d − u. Thus, the first point at which any process can discern that it
is in S′

k instead of Sk−1 is pk−1 at whichever of these events happens first. For any other
process, the first point where it can distinguish the runs is when it can receive a message
pk−1 sends after it discerns the difference. We will argue that such a message arrives at any
of p0, . . . , pk−2 after it has chosen a return value for its Dequeue instance. Note that we
need only prove that such a message arrives at pk−2 more than |Dequeue| after it invokes
Dequeue, since each process with a lower index invokes Dequeue at the same time or sooner,
and the message delay from pk−1 to any lower-index process is the same. We proceed by
cases on which distinguishing event at pk−1 occurs first.

pk−1 first distinguishes the runs when it invokes Dequeue: The message delay from pk−1
to pk−2 is d, and any indirect path would take even longer, since any such path must
have some message from a higher-indexed to lower-indexed process, which has delay d.
Thus, the earliest pk−2 can distinguish the runs is t + (k − 1)s + d. We want to show

A. Tran and E. Talmage 34:13

that this is later than the return time of pk−2’s Dequeue instance, which must return by
t+(d−2)s+|Dequeue|. This inequality is true iff t+(k−1)s+d > t+(k−2)s+|Dequeue|,
which reduces to s + d > |Dequeue|.
Since d > Q and s ≥ 0, this inequality holds, which means that pk−2 (and similarly
p0, . . . , pk−3) cannot use the extra Dequeue invocation at pk−1 to distinguish S′

k from
Sk−1 until after their Dequeue instances have returned.
pk−1 first distinguishes the runs when it fails to receive a message whose delay was
increased: The earliest possible sending time of such a message is t∗

k−2 = t+(k −2)(d−u).
pk−1 can detect that it has not arrived d−u later (when it would have arrived in Sk−1), and
then the earliest it can get information about the differentiation to a lower-indexed process
is another d after that. We similarly want to show that this is after the Dequeue instance
at pk−2 returns, which is true iff t+ (k − 2)(d−u) + (d−u) + d > t + (k − 2)s + |Dequeue|,
which reduces to (k − 1)(d − u) + d > (k − 2)s + |Dequeue|.
Since d > |Dequeue|, d ≥ u, and s = max{0, Q − u}, we see that d − u ≥ s, so the
inequality holds. Thus, in this case no process in p0, . . . , pk−2 can distinguish S′

k from
Sk−1 until after it has generated a return value for its Dequeue instance.

Since in neither case can p0, . . . , pk−2 distinguish S′
k from Sk−1 until after its Dequeue

instance returns, all their Dequeue instances return the same values in both runs. Specifically,
by the inductive hypothesis they all return values from the set {1, . . . , k − 2}. The Dequeue

instance at pk−1 must then return a value in the set {1, . . . , k − 1}, as any larger value would
violate set-linearizability, since there would be no Dequeue instance returning k − 1.

Now, having determined the behavior of S′
k, we use it to show that Sk will behave similarly.

This is another indistinguishability argument, showing that pk−1 cannot distinguish Sk from
S′

k, until after it has generated a return value for its Dequeue instances. Recall that the
difference between Sk and S′

k is that in Rk all messages from pk−3 to pk−2 have delay d − u,
while in S′

k, those sent at or after t∗
k−3 have delay d.

Before we start the indistinguishability argument, note that if pk did not invoke Dequeue

in Sk, the remaining k − 1 Dequeue instances must return values from the set {1, . . . , k − 1},
since there would only be k−1 instances, so there would be no way to set-linearize an instance
that returned a larger value. These processes must behave the same way in Sk as in this run,
since the first point where any could detect a difference would be d after pk’s invocation,
which is after all other Dequeue instances have returned, similar to prior arguments. Thus,
we need only concern ourselves with showing that pk−1 cannot distinguish Sk from S′

k before
its Dequeue instance returns, so that it will return a value in {1, . . . , k − 1}, as we proved it
does in S′

k.
The only process which can directly detect a difference between Sk and S′

k is pk−2, when
it receives a message in Sk which arrives sooner than it could in S′

k. This occurs d − u

after time t∗
k−3, when the message delays changed. The soonest pk−1 can learn about the

difference is when a message from pk−2, sent after it detected the difference, could arrive.
But t∗

k−3 + (d − u) = t∗
k−2, so any message pk−2 sends to pk−1 after this point has delay d.

Thus, the soonest pk−1 can distinguish Sk from S′
k is t∗

k−2 + d = t + (k − 2)(d − u) + d. We
argue that this is after pk−1 generates its Dequeue return value, which occurs no later than
t+(k−1)s+|Dequeue|. We thus want to show that t+(k−2)(d−u)+d > t+(k−1)s+|Dequeue|.
Consider the cases for s:

If s = 0: The inequality holds iff (k − 2)(d − u) + d > |Dequeue|, which is true because
d ≥ u and d > |Dequeue|. If s = Q − u: The inequality holds if (k − 2)(d − u) + d >

(k − 1)(Q − u) + |Dequeue|, or (k − 1)d > (k − 1)Q − u + |Dequeue|. Since |Dequeue| < Q,
it is sufficient to show that (k − 1)d ≥ kQ − u, or Q ≤ (k−1)d+u

k .

DISC 2023

34:14 Multiplicity Queue Lower Bounds

To prove this final inequality, recall that Q ≤ 3d+2u
5 and that k ≥ 4. For all k ≥ 4,

(k−1)d+u
k ≥ 3d+u

4 , so it suffices to show that 3d+2u
5 ≤ 3d+u

4 . This follows because 3d+2u
5 =(3d+u

4
) (4

5
)

+ u
5 , and u

5 ≤
(1

5
) (3d+u

4
)
, as that inequality reduces to u ≤ d, which is true.

We conclude that pk cannot distinguish Sk from S′
k until after it generates a return value

for its Dequeue instance, so it must return the same value in both runs, which we previously
proved was in the set {1, . . . , k − 1}. Thus, by mathematical induction, when k = n, all
Dequeue instances in Sn return values from the set {1, . . . , n−1}, and we have the claim. ◀

6 Contradiction

Let us quickly recap what we have shown so far. First, we showed that there is a run
Dn with n overlapping Dequeue instances each returning a different value. Then, we
(somewhat laboriously) showed that there is a run Sn with n overlapping Dequeue instances
in which two Dequeue instances return the same value. Now, we want to show that these
runs are indistinguishable, a contradiction, as processes must return the same values in
indistinguishable runs.

▶ Theorem 8. There is no uniform, set-linearizable implementation of a multiplicity queue
with |Dequeue| < min

{
d
2 + u, 3d+2u

5
}

.

Proof. Assume, in contradiction, that there is such an algorithm. Then the conditions for
Lemma 4 and Lemma 7 are satisfied, so we know that Sn and Dn exist, where all Dequeue

instances in Sn return values from {1, . . . , n − 1} and the Dequeue instance at pi in Dn

returns i + 1, for all 0 ≤ i < n. Recall that Sn requires that n ≥ N0, defined in Section 5 s.t.
for all n ≥ N0, |Dequeue| < d

2 + n−2
n u.

Note that Sn and Dn are nearly identical–they have the same initial sequence of Enqueue

instances at p0, the same clock offsets (c0 = 0, ci = i
n u, 1 ≤ i < n), and the same Dequeue

invocations (pi invokes Dequeue at time t + (i − 1)s). The two runs also have nearly identical
message delays, where if 0 ≤ i < j < n, messages from pj to pi have delay d and those from
pi to pj have delay d − u, except that in Sn, messages from pn−2 to pn−1 sent at or after
time t∗

n−2 have delay d. Thus, if we extend those message delays in Dn, we will have the
same run. We will argue that we will still have Dn’s behavior, which differs from Sn’s, in
the same run, which is a contradiction.

Suppose first that u < d. Construct D∗ from Dn by delaying all messages from pn−2 to
pn−1 sent at or after t∗

n−2 by d. We argue that no process can distinguish that it is in D∗

instead of Dn before its Dequeue instance returns. The first point where any process could
distinguish the two runs is when a message pn−2 sends at t∗

n−2 does not arrive at pn−1 at the
same time in D∗ it would in Dn, because we extended its delay. Thus, the first time a process
can distinguish the two runs is t∗

n−2 + d − u = t + (n − 2)(d − u) + (d − u) = t + (n − 1)(d − u).
We argue that, for sufficiently large n, this is after pn−1’s Dequeue instance returns. That
happens at or before t + (n − 1)s + Q. We thus want t + (n − 1)(d − u) > t + (n − 1)s + Q,
which is true iff (n − 1)(d − u) > (n − 1)s + Q. Consider the possible values of s by cases:

s = 0: We want to show that (n − 1)(d − u) > Q. This is true when n > Q
d−u + 1. Since

d > u, this is true for sufficiently large n. Let N1 be such that for all n ≥ N1, n > Q
d−u +1.

s = D − u: We want to show that (n − 1)(d − u) > (n − 1)(Q − u) + Q. This is true
when (n − 1)d − (n − 1)u > nQ − (n − 1)u, or (n − 1)d > nQ. If we solve for n, we have
n(d − Q) − d > 0, or n > d

d−Q , since d − Q > 0. Again, this is true for sufficiently large
n, so let N2 be such that for all n ≥ N2, n > d

d−Q .

A. Tran and E. Talmage 34:15

Thus, in runs with sufficiently large n (at least max{N0, N1, N2}), pn−1 cannot distinguish
that it is in D∗, not Dn, until after its Dequeue instance has returned. Similarly, no other
process can distinguish the runs before its Dequeue instance returns, as those returns occur
by t + (i)s + Q ≤ t + (n − 1)s + Q for 0 ≤ i < n, so there is not time for pn−1 to inform
any other process of the discrepancy since by the time pn−1 discovers it, all other processes’
Dequeue instances have already returned.

Next, we have the case where u = d. In this case, observe that t∗
n−2 = t+(n−2)(d−u) = t,

so all messages from pn−2 to pn−1 starting at t have delay d. Thus, pn−1 can distinguish the
runs at t + (d − u) = t, which is before its Dequeue instance returns.

Instead, we can use a reduction argument to disprove the existence of an algorithm
performing better than our bound. Choose a new message uncertainty u′ = d+|Dequeue|

2 ,
noting that this gives 0 < u′ < d. Now, since our assumed algorithm correctly implements
a multiplicity queue in a system with message delays in the range [0, d] with |Dequeue| <

min
{ 3d+2u

5 , d
2 + u

}
= d, it must also correctly implement that multiplicity queue in a system

with message delays [d − u′, d], since any run possible in that system is possible in the
system where d = u since the range of possible message delays is completely contained in
[d − u, d]. It thus implements multiplicity queues in a system with message uncertainty
u′ with |Dequeue| < d = 2u′ − |Dequeue|. Then |Dequeue| < u′ < min

{
3d+2u′

5 , d
2 + u′

}
because d > u′. But this contradicts the impossibility of such an algorithm as proved in the
u < d case above, so our assumed algorithm cannot exist. ◀

Note that the n ≥ max{N0, N1, N2} constraint is the only place we need the assumption
of uniform algorithms. This shows that our proof applies not only to uniform algorithms,
but to any algorithm on at least that many processes. However, we state the result as for
uniform algorithms to get a result applicable to any system, as we have not excluded higher
performance of non-uniform algorithms in small systems.

Finally, we note that our result is an improvement over the previously best known bound
of |Dequeue| ≥ min

{ 2d
3 , d+u

2
}

[13], with the added restriction to uniform algorithms. This
claim follows from elementary algebra, as d+u

2 = d
2 + u

2 < d
2 +u and d+u

2 ≤ 2.5d+2.5u
5 ≤ 3d+2u

5 ,
since u ≤ d.

▶ Corollary 9. Any uniform, set-linearizable implementation of a multiplicity queue must
have |Dequeue| ≥ d+u

2 ≥ min
{ 2d

3 , d+u
2

}
.

7 Partial Tightness

While it may seem that the d
2 + u term in the lower bound is an artifact of our limited proof

techniques for lower bounds, and future work may increase the bound to 3d+2u
5 or better for

all values of u, we here outline an algorithm for the special case where u = 0 which matches
the d

2 + u = d
2 lower bound, beating 3d

5 . This suggests d
2 + u may be somehow fundamental,

despite not holding everywhere.
The idea of the algorithm is to have all processes maintain a local copy of the queue, which

they update based on messages about operation invocations. For every operation invocation,
the invoking process broadcasts operation and arguments immediately, then returns after
d/2 time. Thus, if two instances are concurrent, neither can learn about the other, since
messages take d time to arrive. If they are non-concurrent, then there is more than d time
from the invocation of the first instance to the return of the second instance, so at the end of
a Dequeue instance the invoking process must know about any strictly-preceding instances.
Each process will execute every Enqueue instance on its local copy, d/2 after invocation

DISC 2023

34:16 Multiplicity Queue Lower Bounds

at the invoking process and d after invocation at every other process, when it receives the
message. Non-invoking processes will only locally execute Dequeue instances if they have
not already seen another Dequeue instance concurrent with it. If they have, detected by
timestamps, then they have already removed the return value from their local copy, so there
is no further work to do. Full pseudocode for the algorithm appears in the appendix, along
with the proof of the following theorem.

▶ Theorem 10. If u = 0, there is a uniform, set-linearizable implementation of a multiplicity
queue with |Dequeue| = d/2.

8 Conclusion

We developed a new combination of shifting and other indistinguishability arguments to
prove a larger lower bound of |Dequeue| ≥ min

{ 3d+2u
5 , d

2 + u
}

in uniform multiplicity queue
implementations. This both improves the state of the art and suggests ways to improve the
bound further. For example, strengthening the base case for Lemma 7 in Section 5 should
improve the 3d+2u

5 portion of the lower bound. We hypothesize that this may increase to
approach a limit of |Dequeue| ≥ d for all non-zero values of u, which seems an intuitive
value. If that is true, our tightness result that |Dequeue| = d/2 is possible when u = 0 is
more interesting, as it suggests the bounds may be discontinuous. We continue exploring
these bounds to understand multiplicity queues, and then use that understanding to design
and understand other data type relaxations.

References
1 Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability: Relaxed consistency

for improved concurrency. In Chenyang Lu, Toshimitsu Masuzawa, and Mohamed Mosbah,
editors, Principles of Distributed Systems - 14th International Conference, OPODIS 2010,
Tozeur, Tunisia, December 14-17, 2010. Proceedings, volume 6490 of Lecture Notes in Computer
Science, pages 395–410. Springer, 2010. doi:10.1007/978-3-642-17653-1_29.

2 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.

3 Armando Castañeda and Miguel Piña. Fully read/write fence-free work-stealing with
multiplicity. In Seth Gilbert, editor, 35th International Symposium on Distributed Com-
puting, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume
209 of LIPIcs, pages 16:1–16:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.DISC.2021.16.

4 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Relaxed queues and stacks from
read/write operations. In Quentin Bramas, Rotem Oshman, and Paolo Romano, editors, 24th
International Conference on Principles of Distributed Systems, OPODIS 2020, December 14-16,
2020, Strasbourg, France (Virtual Conference), volume 184 of LIPIcs, pages 13:1–13:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.OPODIS.2020.13.

5 Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova.
Quantitative relaxation of concurrent data structures. In Roberto Giacobazzi and Radhia
Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 317–328.
ACM, 2013. doi:10.1145/2429069.2429109.

6 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991. doi:10.1145/114005.102808.

7 Colette Johnen, Adnane Khattabi, and Alessia Milani. Efficient wait-free queue algorithms with
multiple enqueuers and multiple dequeuers. In Eshcar Hillel, Roberto Palmieri, and Etienne
Rivière, editors, 26th International Conference on Principles of Distributed Systems, OPODIS
2022, December 13-15, 2022, Brussels, Belgium, volume 253 of LIPIcs, pages 4:1–4:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.OPODIS.2022.4.

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/200836.200869
https://doi.org/10.4230/LIPIcs.DISC.2021.16
https://doi.org/10.4230/LIPIcs.OPODIS.2020.13
https://doi.org/10.1145/2429069.2429109
https://doi.org/10.1145/114005.102808
https://doi.org/10.4230/LIPIcs.OPODIS.2022.4

A. Tran and E. Talmage 34:17

8 Pankaj Khanchandani and Roger Wattenhofer. On the importance of synchronization primitives
with low consensus numbers. In Paolo Bellavista and Vijay K. Garg, editors, Proceedings of
the 19th International Conference on Distributed Computing and Networking, ICDCN 2018,
Varanasi, India, January 4-7, 2018, pages 18:1–18:10. ACM, 2018. doi:10.1145/3154273.
3154306.

9 Martha J. Kosa. Time bounds for strong and hybrid consistency for arbitrary abstract data
types. Chic. J. Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/
articles/1999/9/contents.html.

10 Jennifer Lundelius and Nancy A. Lynch. An upper and lower bound for clock synchronization.
Information and Control, 62(2/3):190–204, 1984. doi:10.1016/S0019-9958(84)80033-9.

11 Gil Neiger. Set-linearizability. In James H. Anderson, David Peleg, and Elizabeth Borowsky,
editors, Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, Los Angeles, California, USA, August 14-17, 1994, page 396. ACM, 1994. doi:
10.1145/197917.198176.

12 Nir Shavit and Gadi Taubenfeld. The computability of relaxed data structures: queues
and stacks as examples. Distributed Comput., 29(5):395–407, 2016. doi:10.1007/
s00446-016-0272-0.

13 Edward Talmage. Lower bounds on message passing implementations of multiplicity-relaxed
queues and stacks. In Merav Parter, editor, Structural Information and Communication
Complexity - 29th International Colloquium, SIROCCO 2022, Paderborn, Germany, June
27-29, 2022, Proceedings, volume 13298 of Lecture Notes in Computer Science, pages 253–264.
Springer, 2022. doi:10.1007/978-3-031-09993-9_14.

14 Edward Talmage and Jennifer L. Welch. Improving average performance by relaxing distributed
data structures. In Fabian Kuhn, editor, Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes
in Computer Science, pages 421–438. Springer, 2014. doi:10.1007/978-3-662-45174-8_29.

15 Edward Talmage and Jennifer L. Welch. Relaxed data types as consistency conditions.
Algorithms, 11(5):61, 2018. doi:10.3390/a11050061.

16 Edward Talmage and Jennifer L. Welch. Anomalies and similarities among consensus
numbers of variously-relaxed queues. Computing, 101(9):1349–1368, 2019. doi:10.1007/
s00607-018-0661-2.

17 Anh Tran and Edward Talmage. Brief announcement: Improved, partially-tight multiplicity
queue lower bounds. In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and
Alkida Balliu, editors, Proceedings of the 2023 ACM Symposium on Principles of Distributed
Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023, pages 370–373. ACM, 2023.
doi:10.1145/3583668.3594602.

18 Anh Tran and Edward Talmage. Improved and partially-tight lower bounds for message-passing
implementations of multiplicity queues, 2023. doi:10.48550/arXiv.2305.11286.

19 Jiaqi Wang, Edward Talmage, Hyunyoung Lee, and Jennifer L. Welch. Improved time
bounds for linearizable implementations of abstract data types. Inf. Comput., 263:1–30, 2018.
doi:10.1016/j.ic.2018.08.004.

A Appendix

A.1 Proofs Omitted from Paper Body
▶ Lemma 11. For all 2 ≤ k < n, Dk = Shift(Dk−1, −−→sk−1), where −−→sk−1’s only non-zero
component is −u at index k − 1: −−→sk−1 = ⟨0, . . . , 0, −u, 0, . . . , 0⟩.

Proof. Let k be an arbitrary value with 2 ≤ k < n. Consider what happens when we shift
Dk−1 by −−→sk−1. All events at pk−1 occur u earlier in real time, so pk−1 invokes Dequeue at
time t + ((k − 1) − 1)s + (s + u) − u = t + (k − 2)s + s = t + (k − 1)s, which matches the

DISC 2023

https://doi.org/10.1145/3154273.3154306
https://doi.org/10.1145/3154273.3154306
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
https://doi.org/10.1016/S0019-9958(84)80033-9
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/197917.198176
https://doi.org/10.1007/s00446-016-0272-0
https://doi.org/10.1007/s00446-016-0272-0
https://doi.org/10.1007/978-3-031-09993-9_14
https://doi.org/10.1007/978-3-662-45174-8_29
https://doi.org/10.3390/a11050061
https://doi.org/10.1007/s00607-018-0661-2
https://doi.org/10.1007/s00607-018-0661-2
https://doi.org/10.1145/3583668.3594602
https://doi.org/10.48550/arXiv.2305.11286
https://doi.org/10.1016/j.ic.2018.08.004

34:18 Multiplicity Queue Lower Bounds

definition of Dk. Let 0 ≤ i < k − 1 < j < n. Message delays in Dk−1 from pk−1 to pi were
d − u, and from pi to pk−1 were d. In the other direction, messages delays from pk−1 to pj

were d − u and from pj to pk−1 were d. When we shift the send and receive events at pk−1
earlier, messages from pk−1 have a longer delay by u and messages to pk−1 have a shorter
delay u. We see that this leaves all delays from pk−1 to another process at d and all delays
to pk−1 at d − u, which are admissible. Since we only shifted one process, messages between
other processes are unchanged.

Finally, we consider clock offsets. ck−1 is
(

(k−1)−n
n

)
u in Dk−1, and must increase by

u to hide the difference in real time when we shift. Thus, in Shift(Dk−1, −−→sk−1), ci−1 =(
1 + (k−1)−n

n

)
u =

(
(k−1)

n

)
u, matching the specification for Dk. ◀

A.2 Partial Tightness: Special Case Upper Bound
The algorithm is event-driven, where each process can react to operation invocations, message
receptions, and expiration of local timers it sets. Because u = 0, every message takes exactly
d time to arrive. Thus, since the algorithm broadcasts every message, when any process
receives a message, it knows all other processes receive the same message at the same time.
Further, since there is no uncertainty, the maximum clock skew is (1 − 1/n)0 = 0, so every
process’ local clock (read by the function localClock()) is equal to real time. We thus let every
operation instance take d/2 time. By the message delay and operation instance duration, a
process learns about an instance at another process before it returns to an instance at itself
if and only if that remote instance returned before the local one’s invocation, so applying
remote operations to the local copy of the structure immediately upon receipt and choosing
Dequeue return values d/2 after invocation together keep the local copies synchronized and
choose correct values.

Let R be an arbitrary run of Algorithm 1. Observe that every invocation in R either has
a matching response, d/2 after invocation. We define a set-linearization of R and prove that
π respects real time order and is legal.

▶ Construction 12. Place each Enqueue instance in a singleton set and define the set’s
timestamp as the pair of the invoking process’ local clock read on line 3 plus d/2 and the
invoking process’ id. For each Dequeue return value x, place all Dequeue instances which
return x in a set, and define the set’s timestamp as the smallest timestamp of any instance
in the set, where a Dequeue instance’s timestamp is the pair of the local clock read in line 5
and the invoking process’ id, with the id breaking ties between clock values. Let π be the
sequence of these sets ordered by increasing timestamps (break ties by process id).

▶ Lemma 13. π respects the order of non-overlapping operation instances.

Proof. Let op1 and op2 be any two non-overlapping operation instances, with op1 invoked at
pi and returning before op2’s invocation at pj . Since local clocks are exactly real time, and
all instances have duration d/2, then op1’s timestamp will be more than d/2 smaller than
op2’s. Thus, the only way that op1 would not strictly precede op2 in π is if they were in the
same set, which could happen if they are both Dequeue instances which returned the same
value x. But in that case, since op1 returned before op2’s invocation and each of op1 and op2
took d/2 time between invocation and response, then pj would receive the message pi sent
on line 5 at op1’s invocation before op2 returns. This should have removed x from pj ’s local
copy of the queue, unless there were another element preceding x in pj ’s local queue when
op2 returned. By the FIFO ordering of the multiplicity queue, this can only happen if there
is a Dequeue instance which pi applied before op1 returned but pj did not apply before op2

A. Tran and E. Talmage 34:19

Algorithm 1 Set-linearizable implementation of a multiplicity queue with u = 0. Code for each pi.

Initially: localQueue is an empty FIFO queue, mostRecentDequeue = 0
1: HandleInvocation Enqueue(arg)
2: send ⟨enq, arg⟩ to all other processes
3: setT imer(d/2, ⟨enq, arg, ⟨localClock(), i⟩, return⟩)
4: HandleInvocation Dequeue
5: send ⟨deq, ts = ⟨localClock(), i⟩⟩ to all other processes
6: setT imer(d/2, ⟨deq, ts⟩)
7: HandleTimer Expire(⟨enq, arg, ts, return⟩)
8: Generate Enqueue response to user
9: setT imer(d/2, ⟨enq, arg, apply⟩)

10: HandleTimer Expire(⟨enq, arg, apply⟩)
11: localQueue.enqueue(arg)
12: HandleTimer Expire(⟨deq, ⟨clockV al, i⟩⟩)
13: Generate Dequeue response to user with return value localQueue.dequeue()
14: mostRecentDequeue = clockV al

15: HandleReceive ⟨enq, arg⟩
16: localQueue.enqueue(arg)
17: HandleReceive ⟨deq, ⟨clockV al, j⟩⟩
18: if clockV al > mostRecentDequeue + d/2 then
19: localQueue.dequeue()
20: mostRecentDequeue = clockV al

returned. Any Dequeue instance which pi has applied before op1 returns was either delivered
to pj at the same time as to pi, and thus applied to pj ’s local copy or invoked at pi before
op1, but then by the time op1 returns, by the fact that every Dequeue returns d/2 time after
invocation, pj would also receive and apply that Dequeue instance before op2’s invocation.
Thus, there cannot be an element in pj ’s local queue preceding x when it applies op1, and
op2 cannot return x. ◀

▶ Lemma 14. π is legal by the specification of a multiplicity queue.

Proof. We proceed by induction on σ, a prefix of π. If σ is empty, then it is legal, as the
empty sequence is always legal.

Suppose that σ = ρ · S, where S is a set of operation instances. Assume that ρ is legal.
We will show that σ is also legal by cases on S.

If S = Enqueue(x), then σ is necessarily legal, as Enqueue does not return a value, so
cannot be illegal.

If S is a set of Dequeue instances returning x, then we need to argue that the algorithm
chose x correctly. Each invoking process chose the oldest value in its local copy of the queue
as a return value, in line 13, so we merely need to argue that the local copy of the queue
contains the elements enqueued and not dequeued in ρ, in order. Consider the Dequeue

instance in S with the smallest timestamp, and call it d and its invoking process pi. When
pi executes line 13 to generate d’s return, it will have received every Enqueue invocation in
ρ, as those were invoked at least d/2 before than this Dequeue, and added them to its local
queue. The order of Enqueue instances in ρ matches their timestamp order, which is the
order in which they are locally applied, since every process adds each Enqueue argument d

DISC 2023

34:20 Multiplicity Queue Lower Bounds

time after its invocation. When any other process pj which has a Dequeue instance return
the same value as d executes line 13 for that instance, it will have locally applied all Enqueue

instances pi has, and possible more. But any additional Enqueue instances will have larger
timestamps, and thus follow Enqueue(x) in π, so would not be the correct return value for
this Dequeue instance.

Thus, each process chooses x as the oldest-enqueued value in ρ which it has not already
removed for another Dequeue instance. Such an instance must be in ρ, as another Dequeue

instance at the same process would have a smaller timestamp and one at another process
would not remove a value from the local queue until d after its invocation, which means it
would have a smaller timestamp than this Dequeue instance which returns x.

Further, each process only removes values from its local queue when there is a Dequeue

instance returning it. Suppose this were not so. Then some process pk must have received
a Dequeue instance which returned y and executed line 19 when it had already removed
y from its local queue. But pk could only remove y when it either returned y to its own
Dequeue instance or received a message about another Dequeue instance. But either of
those cases would update mostRecentDequeue, so the check on line 18 means that the two
Dequeue instances which returned y had timestamps more than d/2 apart, which implies
they were not concurrent, so they could not have returned the same value as that would
imply they are in the same set in π, which is not possible by Lemma 13.

Finally, there cannot be a Dequeue instance returning x in ρ, as all instances returning
x are in the set S. Thus, x is the argument of the first Enqueue instance in ρ which is not
returned by a Dequeue instance in ρ. ◀

▶ Theorem 15. If u = 0, Algorithm 1 is a uniform, set-linearizable implementation of a
multiplicity queue with |Dequeue| = d/2.

Proof. By Lemma 13, the sequence π we defined in Construction 12 respects the real-time
order of non-overlapping instances. Lemma 14 proves that π is legal, so it is a legal set-
linearization, proving by construction that Algorithm 1 is a set-linearizable implementation
of a multiplicity queue. By lines 6 and 13, every Dequeue instance returns d/2 time after
invocation, so |Dequeue| = d/2. Finally, the code for Algorithm 1 does not depend on n, so
it is a uniform algorithm. ◀

Since this matches our lower bound of |Dequeue| ≥ min
{ 3d+2u

5 , d
2 + u

}
= d

2 when u = 0,
this algorithm is optimal and proves the bound is tight in this case.

Brief Announcement: BatchBoost: Universal
Batching for Concurrent Data Structures
Vitaly Aksenov #

City, University of London, UK
ITMO University, St. Petersburg, Russia

Michael Anoprenko #

Institut Polytechnique de Paris, Palaiseau, France

Alexander Fedorov #

IST Austria, Klosterneuburg, Austria

Michael Spear #

Lehigh University, Betlehem, PA, USA

Abstract
Batching is a technique that stores multiple keys/values in each node of a data structure. In
sequential search data structures, batching reduces latency by reducing the number of cache misses
and shortening the chain of pointers to dereference. Applying batching to concurrent data structures
is challenging, because it is difficult to maintain the search property and keep contention low in the
presence of batching.

In this paper, we present a general methodology for leveraging batching in concurrent search
data structures, called BatchBoost. BatchBoost builds a search data structure from distinct “data”
and “index” layers. The data layer’s purpose is to store a batch of key/value pairs in each of its
nodes. The index layer uses an unmodified concurrent search data structure to route operations
to a position in the data layer that is “close” to where the corresponding key should exist. The
requirements on the index and data layers are low: with minimal effort, we were able to compose
three highly scalable concurrent search data structures based on three original data structures as
the index layers with a batched version of the Lazy List as the data layer. The resulting BatchBoost
data structures provide significant performance improvements over their original counterparts.

2012 ACM Subject Classification Computing methodologies → Concurrent algorithms

Keywords and phrases Concurrency, Synchronization, Locality

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.35

1 Motivation and Background

Batching is an increasingly important technique for maximizing the performance of concurrent
data structures. Briefly, batching is the technique by which a linked data structure stores
multiple elements in a single data node. The most well-known batched data structure is
the B-tree [4], but batching has been applied to a variety of trees [17,23], lists [5], and skip
lists [3, 5]. The benefit of batching is that it co-locates multiple elements in a contiguous
region of memory (e.g., a cache line). While batching typically does not improve asymptotic
guarantees, it can reduce the total number of cache lines accessed by an operation.

The latency reductions that stem from batching are broadly beneficial. In data structures
that provide scan operations and range queries [2,3,8,12,24], batching coarsens the granular-
ity of synchronization metadata, so that it can be accessed less frequently. In data structures
that use remote direct memory access (RDMA), Non-Uniform Memory Access (NUMA), or
non-volatile byte-addressable memory (NVM), batching reduces the number of accesses to a

© Vitaly Aksenov, Michael Anoprenko, Alexander Fedorov, and Michael Spear;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 35; pp. 35:1–35:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aksenov.vitaly@gmail.com
https://orcid.org/0000-0001-9134-5490
mailto:manoprenko@gmail.com
mailto:alexander.fedorov@ist.ac.at
https://orcid.org/0000-0002-5109-9595
mailto:spear@lehigh.edu
https://orcid.org/0000-0002-7681-5877
https://doi.org/10.4230/LIPIcs.DISC.2023.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Brief Announcement: BatchBoost: Universal Batching

memory that is slower than local DRAM. Batching can also benefit algorithms for GPUs [16]
and emerging near-memory computing paradigms [11], where careful consideration of data
placement is paramount.

Batching is not without its downsides, for both sequential and concurrent programs. For
example, consider an ordered map implemented as a batched linked list (i.e., each node uses
a sorted vector to represent a batch of N key/value pairs). While lookup operations within
a batch take O(log N) time, it takes O(N) work to insert or remove an element in a batch,
in order to preserve sorting. If instead we used an unsorted batch, each operation would cost
O(N), but with lower constants. Similarly, if each batch is protected by a coarse lock, then
when keys K1 and K2 are stored in the same batch, threads operating on those keys would
not be able to proceed in parallel.

While it may seem difficult to find an ideal batch implementation, recent work has shown
that it is not too difficult, especially for workloads that deal with large volumes of data and
low rates of skew, so long as batch sizes remain modest. Examples of scalable, low-latency
batched data structures include maps (e.g., Kiwi [3], CUSL [19], Skip Vector [21], OCC (a,
b)-tree [22], Lock-Free B+Tree [6]), and queues [10, 20, 25]. These works tended to treat
batching as a first-class design consideration, raising the question of whether it is possible to
build a general methodology for adding batching to an existing concurrent data structure.
We propose the BatchBoost methodology as a step toward this goal. BatchBoost is designed
specifically for ordered maps. It provides programmers with a scalable batched doubly-linked
list. The original data structure is then treated as an index to some node in the list. The
key innovation is that an out-of-date index will always return a valid node, from which the
“correct” node can be found by moving through the links of our doubly-linked links. In this
way, BatchBoost lets programmers keep their existing, scalable index, while still benefitting
from batching of key/value pairs.

2 Requirements and the BatchBoost Construction

Our goal is to emphasize orthogonality. It should be possible for a programmer to think of a
data structure as consisting of an index layer and a data layer. The data layer should be
batched, with as few configuration knobs as possible. The index layer should be decoupled
from the data layer, and chosen based on workload and machine characteristics. At any time,
it should be trivial to replace the index or data layer with a more suitable data structure,
without changing the other layer’s implementation.

In BatchBoost, data structure operations always linearize in the data layer. The index
layer can be thought of as providing routing “hints.” Given relatively straightforward
requirements on the data layer, an operation proceeds in three steps. First, it queries the
index layer to find a good starting position in the data layer. Second, it operates on the data
layer. Finally, it might update the index. A key point is that the index layer need not be
kept consistent with the data layer, so long as (1) data layer operations can recover from bad
hints, and (2) the index and data layers agree on how to achieve safe memory reclamation.

Listing 1 Composition of index and data layer operations into BatchBoost operations.
1 fn lookup (IndexLayer I, Key K) -> Option <V>
2 at = I. findApprox (K)
3 <ret , val , node > = at. lookup (K)
4 if ret == Found: return Some(val)†
5 if ret == NotFound : return None ()†
6 if ret == DeletedNode : I. remove (node.key); goto 2

V. Aksenov, M. Anoprenko, A. Fedorov, and M. Spear 35:3

7
8 fn insert (IndexLayer I, Key K, Value V) -> bool
9 at = I. findApprox (K)

10 <ret , node > = at. insert (K, V)
11 if ret == InsertSuccess : return true†
12 if ret == AlreadyExists : return false†
13 if ret == DeletedNode : I. remove (node.key); goto 9
14 assert (ret == InsertSuccessAndSplit)
15 I. insert (node.key , node)
16 if node. deleted : I. remove (node.key)
17 return true
18
19 fn remove (IndexLayer I, Key K) -> bool
20 at = I. findApprox (K)
21 <ret , node > = at. remove (K)
22 if ret == RemoveSuccess : return true†
23 if ret == NotPresent : return false†
24 if ret == DeletedNode : I. remove (node.key); goto 20
25 assert (ret == RemoveSuccessAndMerge)
26 I. remove (node.key)
27 return true

Listing 1 presents a general BatchBoosted data structure. We model the DataLayer type
as a collection of nodes, each of which stores a tuple ⟨pairs, lower, upper, size, capacity⟩, as
well as links to other nodes. pairs is a collection of size key/value pairs (size ≤ capacity),
whose keys are in the range [lower, upper). The range of the DataLayer is from ⊥ to ⊤,
which is also the union of all nodes’ ranges. We require that from any node, there is a way
to reach any other node (perhaps because nodes have predecessor and successor pointers, or
because everything is reachable from some sentinel node). We also require that the node
include a field indicating if it has been removed from the data layer (a mark or deleted
bit). Each node in DataLayer supports three operations with a key argument: 1) lookup
operation (line 3) traverses the doubly-linked list and returns the node that should contain
the key; 2) insert operation (line 10) traverses the doubly-linked list, finds the node where
the key should be inserted, and inserts there; 3) remove operation (line 21) traverses the
doubly-linked list, finds the node where the key should be, and removes it from there.

The IndexLayer type is an ordered map from keys to DataLayer::Node objects. We do
not specify its implementation, only that it allows the creation and removal of mappings,
and supports some suitable findApprox(k) function that returns a value mapped to a key
which is likely to be close to k. The precision of findApprox() does not affect correctness,
but the performance of BatchBoosted data structures is likely to correlate with the precision
of the index’s findApprox() implementation.

Initially the data layer contains a single node, which is mapped to the index with key ⊥.
The index may store references to logically deleted nodes; it can also lack references to nodes
that are in the data layer. IndexLayer::findApprox(key) represents these possibilities:
when queried with a key, there is no guarantee that the returned node contains it or even be
somewhere close. Note that for an ordered map, findApprox(key) can be implemented in
many ways, including ceil(key) and floor(key).

The index is updated lazily. Insertion of a key/value pair into a node may result in the
creation of a new node in the data layer; removal of a pair may result in a node becoming
“too small”, in which case it can be unlinked once its contents are merged into an adjacent
node. These conditions are returned on lines 10 and 21, respectively. If a node becomes

DISC 2023

35:4 Brief Announcement: BatchBoost: Universal Batching

deleted between when it is created and when it is added to the index, an insert operation is
responsible for removing it (line 16). Coupled with standard assumptions about safe memory
reclamation, this ensures a node pointed to by the index is still safe to access, even if it
has been unlinked from the data layer. Similarly, removal of a merged node from the index
layer can delay (line 24), in which case some other thread may remove it (e.g., line 6), and
a subsequent insertion can put a different key/node mapping into the index. When this
happens, the removal of a valid node is possible. Lines marked with † represent places where
an operation may choose to remedy this situation by trying to insert node if node ̸= at.

For clarity, the code in Listing 1 skips other optimizations. We do not describe the
exact implementation of the data layer because there are lots of them. For example, some
data layer implementations may allow lookup to succeed even when the node returned by
findApprox has been unlinked, avoiding the need for line 6.

3 Performance Evaluation

Description. We implemented BatchBoost in C++. We use three non-batched search
structures as index layers: Fraser’s skip list [13] and trees by Bronson et al. [7] and Natarajan
et al. [18]. For all index layers we use the existing floor method for findApprox. The
skip-list code is from SynchroBench [14], the trees are from SetBench [9]. For the data
layer, we created a batched, doubly linked list based on the Lazy List [15]. While many
configurations of the data layer are possible, we only consider a fixed-capacity array storing
its key/value pairs in ascending order. We use epoch-based memory reclamation; threads
enter the epoch at the beginning of an operation in Listing 1, and exit the epoch immediately
before the operation returns.

All experiments were conducted on a machine with two Intel Xeon Gold 5218 CPUs
at 2.30GHz (32 total cores / 64 threads), running Ubuntu 22.04 (Linux Kernel 5.15). We
compiled all code with clang 15 (–O3 optimizations). Each data point is the average of five
5-seconds trials. Variance was typically low, and is indicated via error bars.

Experiments are parameterized by lookup ratio R and key range K. Each operation
type is chosen randomly and is a lookup with R% probability, with remaining operations
split equally between insert and remove. Data structures are pre-filled with 50% of keys, so
that the data structure size stays roughly constant. Integer keys are chosen with uniform
probability from [1, K].

Sensitivity to Batch Size. The batch size is a critical configuration parameter. If it is too
small, batching might increase latency. If it is too large, then contention on batches will be
too high, hindering scalability. Figure 1 measures throughput at 32 threads as we vary the
batch size (K = 107). We consider lookup ratios of 34% and 90%. The labels sl, bro, and
nat refer to Fraser’s skip list [13], Bronson’s tree [7], and Natarajan’s tree [18], respectively.
The _bb suffix refers to a BatchBoost data structure composing the corresponding index
with our doubly-linked list.

While the results confirm that there is a sensitivity to batch size, the expected performance
plateau is surprisingly wide. Thus while there is more than 2× difference between good and
bad batch sizes, the exact size does not seem to be particularly significant. We observe that
sensitivity is lower than in nonblocking batched data structures [22]. This is due to our use
of a lock-based list, which allows in-place modification instead of copy-on-write. Since the
drop-off is worse when the batch size gets too large, we conservatively chose a batch size of
100 for all subsequent experiments.

V. Aksenov, M. Anoprenko, A. Fedorov, and M. Spear 35:5

100 101 102 103

Batch size, log scale

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Th

ro
ug

hp
ut

 (o
ps

/s
ec

)
1e7 lookup ratio 34%, key range 107

sl
bro
nat
sl_bb
bro_bb
nat_bb

100 101 102 103

Batch size, log scale

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

1e7 lookup ratio 90%, key range 107

sl
bro
nat
sl_bb
bro_bb
nat_bb

Figure 1 Impact of batch size on throughput at 32 threads.

Table 1 Impact of batch size on cache miss ratio at 16 threads.

4 64 1024
bro_bb 44.43 30.22 36.68
sl_bb 29.07 22.27 35.58

nat_bb 37.14 36.32 40.71

Using the Linux perf tool, we were able to attribute these results directly to a reduction
of cache misses. Table 1 shows cache miss ratio against the total number of cache loads for
different batch sizes. In effect, BatchBoost shrinks the size of the index, thereby reducing
pointer chasing. While the data layer has more cache accesses than a leaf of the unmodified
data structure, the increase is less than the savings in the index layer. However, with the
increasing batch the ratio of cache misses also increases, thus, we need to choose some ideal
batch size.

Throughput and Scalability. Figure 2 measures throughput of our BatchBoost data struc-
tures with a fixed batch size as we vary the thread count. BatchBoost consistently improves
the performance. The peak speedup depends on workload parameters and varies from 5−10%
to almost 2×.

0 10 20 30 40 50 60
Threads

0

2

4

6

8

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

1e7 lookup ratio 34%, key range 106

sl
bro
nat
sl_bb
bro_bb
nat_bb

0 10 20 30 40 50 60
Threads

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

1e7 lookup ratio 90%, key range 107

sl
bro
nat
sl_bb
bro_bb
nat_bb

Figure 2 BatchBoost throughput and scalability for varied R and K.

DISC 2023

35:6 Brief Announcement: BatchBoost: Universal Batching

Furthermore, we do not observe significant cache traffic due to contention. By the
time threads reach the data layer, the index has dispersed them, reducing the likelihood
of contention. Thus as long as the data layer has low latency, the window of contention is
low, and threads are not likely to interfere with each other. Additionally, the data layer
hides most mutations (insertions and removals) from the index layer. A smaller index, with
fewer writes, is more likely to remain resident in most CPUs’ caches. In essence, BatchBoost
increases the likelihood that the index stays in its common (read-only) case.

4 Conclusions and Future Work

In this paper we introduced the BatchBoost methodology, and demonstrated that it simplifies
the creation of scalable data structures with good locality. As discussed in Section 1, batching
has broad potential. An important future research direction is to apply our BatchBoost
construction in additional domains, as well as on more complex benchmarks. We also intend
to compare against other batching techniques. Another important research question pertains
to the data layer: We demonstrated that BatchBoost worked well with different index
layer implementations, but what about alternate data layer implementations (especially
nonblocking)? Further afield, our evaluation showed that BatchBoost amplified the “common
case” in the index layer. This may motivate designing new index layers with an explicit
and highly optimized findApprox operations. For example, we are interested whether
we can use a fast sequential index data structure, e.g., Abseil B-trees [1], protected by a
scalable readers/writer lock. This could allow concurrent updates and reads, since even under
concurrent rebalancing, index lookup operations will give a good enough approximation in
our doubly-linked list.

References
1 Abseil b-tree containers. URL: https://abseil.io/about/design/btree.
2 Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based reclamation for efficient range

queries. ACM SIGPLAN Notices, 53(1):14–27, 2018.
3 Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel,

Idit Keidar, and Moshe Sulamy. Kiwi: A key-value map for scalable real-time analytics. In
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 357–369, 2017.

4 Rudolf Bayer and Edward McCreight. Organization and maintenance of large ordered indices.
In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control, pages 107–141, 1970.

5 Anastasia Braginsky and Erez Petrank. Locality-conscious lock-free linked lists. In Distributed
Computing and Networking: 12th International Conference, ICDCN 2011, Bangalore, India,
January 2-5, 2011. Proceedings 12, pages 107–118. Springer, 2011.

6 Anastasia Braginsky and Erez Petrank. A Lock-Free B+tree. In Proceedings of the 24th ACM
Symposium on Parallelism in Algorithms and Architectures, Pittsburgh, PA, June 2012.

7 Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical concurrent
binary search tree. ACM Sigplan Notices, 45(5):257–268, 2010.

8 Trevor Brown and Hillel Avni. Range queries in non-blocking k-ary search trees. In Principles
of Distributed Systems: 16th International Conference, OPODIS 2012, Rome, Italy, December
18-20, 2012. Proceedings 16, pages 31–45. Springer, 2012.

9 Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. Non-blocking interpolation search
trees with doubly-logarithmic running time. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 276–291, 2020.

https://abseil.io/about/design/btree

V. Aksenov, M. Anoprenko, A. Fedorov, and M. Spear 35:7

10 Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue with
elimination and combining. In Distributed Computing: 28th International Symposium, DISC
2014, Austin, TX, USA, October 12-15, 2014. Proceedings 28, pages 406–420. Springer, 2014.

11 Jiwon Choe, Andrew Crotty, Tali Moreshet, Maurice Herlihy, and R Iris Bahar. Hybrids:
Cache-conscious concurrent data structures for near-memory processing architectures. In
Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 321–332, 2022.

12 Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. Persistent non-blocking binary
search trees supporting wait-free range queries. In The 31st ACM Symposium on Parallelism
in Algorithms and Architectures, pages 275–286, 2019.

13 Keir Fraser. Practical lock-freedom. Technical report, University of Cambridge, Computer
Laboratory, 2004.

14 Vincent Gramoli. More than you ever wanted to know about synchronization: Synchrobench,
measuring the impact of the synchronization on concurrent algorithms. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
1–10, 2015.

15 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N Scherer, and Nir
Shavit. A lazy concurrent list-based set algorithm. In Principles of Distributed Systems: 9th
International Conference, OPODIS 2005, Pisa, Italy, December 12-14, 2005, Revised Selected
Papers 9, pages 3–16. Springer, 2006.

16 Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, Nandita
Vijaykumar, Onur Mutlu, and Stephen W Keckler. Transparent offloading and mapping (tom)
enabling programmer-transparent near-data processing in gpu systems. ACM SIGARCH
Computer Architecture News, 44(3):204–216, 2016.

17 Justin J Levandoski, David B Lomet, and Sudipta Sengupta. The bw-tree: A b-tree for
new hardware platforms. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 302–313. IEEE, 2013.

18 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 317–328, 2014.

19 Kenneth Platz, Neeraj Mittal, and S. Venkatesan. Concurrent Unrolled Skiplist. In Proceedings
of the 39th IEEE International Conference on Distributed Computing Systems, Dallas, TX,
July 2019.

20 Anastasiia Postnikova, Nikita Koval, Giorgi Nadiradze, and Dan Alistarh. Multi-queues can
be state-of-the-art priority schedulers. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 353–367, 2022.

21 Matthew Rodriguez, Ahmed Hassan, and Michael Spear. Exploiting locality in scalable
ordered maps. In 2021 IEEE 41st International Conference on Distributed Computing Systems
(ICDCS), pages 998–1008. IEEE, 2021.

22 Anubhav Srivastava and Trevor Brown. Elimination (a, b)-trees with fast, durable updates.
In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 416–430, 2022.

23 Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael Kaminsky,
and David G Andersen. Building a bw-tree takes more than just buzz words. In Proceedings
of the 2018 International Conference on Management of Data, pages 473–488, 2018.

24 Yuanhao Wei, Naama Ben-David, Guy E Blelloch, Panagiota Fatourou, Eric Ruppert, and
Yihan Sun. Constant-time snapshots with applications to concurrent data structures. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 31–46, 2021.

25 Chaoran Yang and John Mellor-Crummey. A Wait-Free Queue as Fast as Fetch-and-Add.
SIGPLAN Notices, 51(8), February 2016. doi:10.1145/3016078.2851168.

DISC 2023

https://doi.org/10.1145/3016078.2851168

Brief Announcement: Multi-Valued Connected
Consensus: A New Perspective on Crusader
Agreement and Adopt-Commit
Hagit Attiya #

Department of Computer Science, Technion, Haifa, Israel

Jennifer L. Welch #

Department of Computer Science and Engineering, Texas A&M University, College Station, TX,
USA

Abstract
Algorithms to solve fault-tolerant consensus in asynchronous systems often rely on primitives such
as crusader agreement, adopt-commit, and graded broadcast, which provide weaker agreement
properties than consensus. Although these primitives have a similar flavor, they have been defined
and implemented separately in ad hoc ways. We propose a new problem called connected consensus
that has as special cases crusader agreement, adopt-commit, and graded broadcast, and generalizes
them to handle multi-valued (non-binary) inputs. The generalization is accomplished by relating
the problem to approximate agreement on graphs.

We present three algorithms for multi-valued connected consensus in asynchronous message-
passing systems, one tolerating crash failures and two tolerating malicious (unauthenticated Byzan-
tine) failures. We extend the definition of binding, a desirable property recently identified as
supporting binary consensus algorithms that are correct against adaptive adversaries, to the multi-
valued input case and show that all our algorithms satisfy the property. Our crash-resilient algorithm
has failure-resilience and time complexity that we show are optimal. When restricted to the case
of binary inputs, the algorithm has improved time complexity over prior algorithms. Our two
algorithms for malicious failures trade off failure resilience and time complexity. The first algorithm
has time complexity that we prove is optimal but worse failure-resilience, while the second has
failure-resilience that we prove is optimal but worse time complexity. When restricted to the case of
binary inputs, the time complexity (as well as resilience) of the second algorithm matches that of
prior algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases graded broadcast, gradecast, binding, approximate agreement

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.36

Related Version Full Version: https://arxiv.org/abs/2308.04646

Funding Hagit Attiya: partially supported by the Israel Science Foundation (grants 380/18 and
22/1425).

1 Introduction

One way to address the impossibility of solving consensus in asynchronous systems is to
employ unreliable failure detectors [6]. Several algorithms in this class (e.g., [4, 14]) combine
a failure detector with a mechanism for detecting whether processes have reached unanimity,
in the form of an adopt-commit protocol [21]. In such a protocol, each process starts with
a binary input value and returns a pair (v, g) where v is one of the input values and g is
either 1 or 2. The process is said to pick v as its output value; furthermore, if g = 2, then it
commits to v, and if g = 1, then it adopts v. In addition to the standard validity property

© Hagit Attiya and Jennifer L. Welch;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 36; pp. 36:1–36:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:welch@cse.tamu.edu
https://orcid.org/0000-0003-2725-9875
https://doi.org/10.4230/LIPIcs.DISC.2023.36
https://arxiv.org/abs/2308.04646
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Brief Announcement: Multi-Valued Connected Consensus

that the output value is the input of some correct process, an adopt-commit protocol ensures
that processes commit to at most one value, and if any process commits to a value, then no
process adopts the other value.

Another way to address the impossibility of consensus is to use randomization and provide
only probabilistic termination. Some algorithms in this class (e.g., [20]) rely on a mechanism
called crusader agreement [9]: Roughly, if all processes start with the same value v, they must
decide on this value, and otherwise, they may pick an undecided value, denoted ⊥. Other
algorithms in this class (e.g., [7]) rely on graded broadcast [12], also called graded crusader
agreement, graded consensus, or just gradecast. In a sense, graded broadcast is a combination
of adopt-commit with crusader agreement: the decisions are either (v, g), where v is a binary
value and g is either 1 or 2, or ⊥ (also denoted (⊥, 0)). As in adopt-commit, the requirement
is that processes commit to at most one value, but in addition, if any process adopts a value,
then no process adopts the other value. In a sense, the ⊥ value allows a separation between
adopting one value and adopting a different value.

The relation between crusader agreement, adopt-commit and graded broadcast becomes
apparent when they are pictorially represented, as in Figure 1, with the possible decisions
represented by vertices on a path. The different “convergence” requirements all boil down to
ensuring that processes decide on the same or adjacent vertices on the path.

With binary inputs, this description of the problems resembles approximate agreement
on the [0, 1] real interval with parameter ϵ [10]: processes start at the two extreme points
of the interval, 0 or 1, and must decide on values that are at most ϵ apart from each other.
Decisions must also be valid, i.e., contained in the interval of the inputs.

Indeed, crusader agreement reduces to approximate agreement with ϵ = 1
2 : Run approx-

imate agreement with your input (0 or 1) to get some output y, then choose the value in
{0, 1

2 , 1} that is closest to y (taking the smaller one if there are two such values, e.g., for
y = 1

4). Finally, return ⊥ if 1
2 is chosen. (A similar observation is noted in [11,16].) Likewise,

adopt-commit reduces to approximate agreement with ϵ = 1
3 , and graded consensus to

taking ϵ = 1
4 . This connection makes it clear why binary crusader agreement, adopt-commit

and graded broadcast can be solved in an asynchronous message-passing system, in the
presence of crash and malicious (unauthenticated Byzantine) failures, within a small number
of communication rounds.

In some circumstances, agreement must be reached on a non-binary value, e.g., the
identity of a leader, or the next operation to apply in state machine replication. To handle
multi-valued inputs, where processes can start with an input from some set V with |V | ≥ 2,
we define a new problem, connected consensus. Connected consensus elegantly unifies
seemingly-diverse problems, including crusader agreement, graded broadcast, and adopt-
commit, and generalizes them to accept multi-valued inputs. The definition takes inspiration
from approximate agreement on graphs [5], in which each process starts with a vertex of a
graph as its input and must decide on a vertex such that all decisions are within distance
one of each other and within the convex hull of the inputs.

Figure 1 Left: crusader agreement. Center: adopt-commit. Right: graded broadcast.

H. Attiya and J. L. Welch 36:3

Figure 2 Spider graphs: R = 1 (left) and R = 2 (right).

2 Connected Consensus and Related Problems

Connected consensus can be viewed as approximate agreement on a restricted class of graphs,
called spider graphs [15]. These graphs consist of a central clique (which could be a single
vertex) to which are attached |V | paths (“branches”) of length R, the refinement parameter.

More formally, let V be a finite, totally-ordered set of values; assume ⊥ /∈ V . Given a
positive integer R, let GS(V, R) be the “spider” graph consisting of a central vertex labeled
(⊥, 0) that has |V | paths extending from it, with one path (“branch”) associated with each
v ∈ V . The path for each v has R vertices on it, not counting (⊥, 0), labeled (v, 1) through
(v, R), with (v, R) being the leaf. (See Figure 2.) Given a subset V ′ of V , we denote by
T (V, R, V ′) the minimal subtree of GS(V, R) that connects the set of leaves {(v, R)|v ∈ V ′};
note that when V ′ is a singleton set {v} then T (V, R, {v}) is the single (leaf) vertex (v, R).

In the connected consensus problem for V and R, each process has an input from V . The
requirements are:

Termination: Each correct process must decide on a vertex of GS(V, R), namely, an element
of {(v, r)|v ∈ V, 1 ≤ r ≤ R} ∪ {(⊥, 0)}.

Validity: Let I = {(v, R)|v is the input of a (correct)1 process}. The output of each (correct)
process must be a vertex in T (V, R, I). In particular, if all (correct) processes start with
the same input v, then (v, R) must be decided.

Agreement: The distance between the vertices labeled by the decisions of all (correct)
processes is at most one.

Setting R = 1 gives crusader agreement [9]. Setting R = 2 gives graded broadcast [13],
also called adopt-commit-abort [8].

Recently, the definition of binary (graded) crusader agreement was extended to include a
binding property [1]: “before the first non-faulty party terminates, there is a value v ∈ {0, 1}
such that no non-faulty party can output the value v in any continuation of the execution.”
That paper demonstrates that this property facilitates the modular design of randomized
consensus algorithms that tolerate an adaptive adversary. We refer to [1] for an excellent
description of the usage, and its pitfalls, of (graded) crusader agreement, together with
common coin protocols, in randomized consensus; they show how faster (graded) crusader
agreement algorithms lead to faster randomized consensus algorithms.

1 When “correct” is in parentheses, it only applies for the case of malicious failures.

DISC 2023

36:4 Brief Announcement: Multi-Valued Connected Consensus

Figure 3 Centerless spider graph with R = 2 (left) and its reduction to a (centered) graph (right).

We generalize the binding property to hold for multi-valued inputs: once the first process
decides, one value is “locked”, so that in all possible extensions, the decisions are on the
same branch of the spider graph. Formally:

Binding: In every execution prefix that ends with the first (correct) process deciding, one
value is “locked”, meaning that in every extension of the execution prefix, the decision of
every (correct) process must be on the same branch of the spider graph.

If the first decision is not (⊥, 0), then this condition follows from Agreement. More
interestingly, if the first decision is (⊥, 0), then there are many choices as to which branch is
locked but the choice must be the same in every extension. Note that when |V | = 2, our
definition is equivalent to the original one [1], but for larger V , our definition is stronger –
the original definition only excludes one value, leaving |V | − 1 possible decision values, while
ours excludes |V | − 1 values, leaving only one possible decision value.

When R = 1, there are only two vertices on any given branch of the spider graph, (v, 1)
and (⊥, 0). Thus, the Binding property implies the Agreement property. If R = 2, though,
the Binding property only restricts the branch of the spider graph on which decisions can be
made; both (⊥, 0) and (v, 2) are on the same branch, but Agreement does not permit them
to both be decided.

Recall that in adopt-commit [14, 21], processes return a pair (v, g) where v is one of
the input values and g is either 1 (adopt) or 2 (commit). Thus, there is no analog of the
“center” vertex. We model this with a centerless spider graph (see left side of Figure 3).
Here, GS(V, R) is the graph consisting of a clique on the vertices (v, 1) for all v ∈ V , each
with a path extending from it, with R − 1 vertices on it, not counting (⊥, 0), labeled (v, 2)
through (v, R), with (v, R) being the leaf. Decisions must satisfy Termination, Validity and
Agreement as specified for the variant with a center. Since the graph has no center, binding
cannot be defined; indeed, when a process returns (v, 1), other processes might return (v′, 1),
for v ̸= v′.

The centerless problem can be reduced to the centered problem with the same refinement
parameter: Call the algorithm for the centered problem with your input u. If the return
value is (v, g) with g > 0, then decide this value for the centerless problem; when the return
value is (⊥, 0), decide (u, 1) for the centerless problem. (See right side of Figure 3.)

In the vacillate-adopt-commit (VAC) problem [2], the possible output values are
(v,commit), (v,adopt), and (v,vacillate), where v is any value. If any output is (v,commit),
then every other output is either (v,commit) or (v,adopt), for the same v. Furthermore,
if there is no commit output and there is at least one (v,adopt) output, then every other
output is either (v,adopt), with the same value v, or (w,vacillate), where w can be any value.
VAC corresponds to a centerless spider graph with refinement parameter R = 3. However, a
closer look at the usage of VAC suggests that the return value of vacillate is irrelevant and
the problem could be represented as a centered spider graph with R = 2.

H. Attiya and J. L. Welch 36:5

3 New Algorithms for Connected Consensus

With these definitions at hand, we turn to designing algorithms for connected consensus
in asynchronous message-passing systems that tolerate crash or malicious failures. There
is an algorithm for approximate agreement on general graphs in the presence of malicious
failures [19]. However, it requires exponential local computation and does not satisfy the
Binding property. We are interested in special-case spider graphs, as described above;
furthermore, we focus on the cases when the refinement parameter R equals either 1 or 2,
which captures the applications of interest. Thus we exploit opportunities for optimizations
to obtain better algorithms.

For communication complexity, we count the maximum, over all executions, of the
number of messages sent by all the (correct) processes. We adopt the definition in [3] for
time complexity in an asynchronous message-passing system. We start by defining a timed
execution as an execution in which nondecreasing nonnegative integers (“times”) are assigned
to the events, with no two events by the same process having the same time. For each timed
execution, we consider the prefix ending when the last correct process decides, and then
scale the times so that the maximum time that elapses between the sending and receipt of
any message between correct processes is 1. We define the time complexity as the maximum,
over all such scaled timed execution prefixes, of the time assigned to the last event. (For
simplicity, we assume all processes start at time 0.) This definition of time complexity is
analogous to that in [17,18], which measures the length of the longest sequence of causally
related messages.

We present an algorithm for R = 1 and R = 2 with the Binding property that tolerates
crash failures assuming n > 2f , where n is the number of processes and f is the maximum
number of faulty processes, which is optimal. Its time complexity is R and its message
complexity is O(n2). The message complexity is optimal and the time complexity is optimal
for reasonable resiliencies. The best previous algorithms, in [1], have slightly worse time
complexity: 2 for R = 1 (crusader agreement) and 3 for R = 2 (graded crusader agreement).
Furthermore, both of these previous algorithms are for the binary case (|V | = 2) only.

For malicious failures, we first present a simple algorithm with Binding for R = 1 and
R = 2, that assumes n > 5f . Like the crash-tolerant algorithm, its time complexity is R and
its message complexity is O(n2). The message complexity is optimal and the time complexity
is optimal for reasonable resiliencies. Both this algorithm and our crash-tolerant one derive
the Binding property from the inputs of the processes. That is, the assignment of input
values to the processes uniquely determines which non-⊥ value, if any, can be decided in any
execution with that input assignment. The fact that Binding is determined solely by the
inputs is conducive to the development of simple and efficient algorithms. However, we show
that in the presence of malicious failures Binding cannot be determined solely by the inputs
when n < 5f , even if faulty processes do not equivocate.

Our main algorithmic contribution is a connected consensus algorithm for R = 1 and
R = 2 with Binding that tolerates f malicious failures, where n > 3f . A simple proof shows
that this is the optimal resilience. Its time complexity is 5 for R = 1 and 7 for R = 2,
and its message complexity is O(|V | · n2), where V is the set of input values. The message
complexity can be reduced to O(n2), at the cost of increasing the time complexity by 2,
using techniques of [18].

The upper bounds of 5 and 7 on the time complexity are tight for our algorithm, as shown
by giving a concrete execution. The execution uses V = {0, 1} and it is also an execution
of the crusader agreement algorithm in [1], implying that the tight time complexity of the

DISC 2023

36:6 Brief Announcement: Multi-Valued Connected Consensus

Table 1 Summary of connected consensus algorithms for R = 1 (crusader agreement) and R = 2
(graded broadcast) with input set V ; all algorithms satisfy Binding.

failure type crash malicious
algorithm this paper [1] this paper this paper this paper [1]

(|V | = 2) + [18] (|V | = 2)
resilience n > 2f n > 2f n > 5f n > 3f n > 3f n > 3f

messages O(n2) O(n2) O(n2) O(|V | · n2) O(n2) O(n2)
time R = 1 1 2 1 5 7 5
time R = 2 2 3 2 7 9 7

latter algorithm is also 5, and that of the graded broadcast algorithm in [1] is 7. This is
in contrast to the round complexities of 4 and 6 calculated in [1] for their algorithms. The
round complexity counts the number of broadcasts performed by an algorithm. However,
in their algorithms (as well as in ours), waiting conditions are imposed before performing
the next broadcast. If the condition is simply to receive enough messages from the previous
broadcast, then at most one time unit elapses per broadcast. But when there is an additional
condition, then the condition may take more than one time unit to become true.

4 Discussion

This paper presents the connected consensus problem. A numeric refinement parameter, R,
allows connected consensus to generalize a number of primitives used to solve consensus,
including crusader agreement, graded broadcast, and adopt-commit. The problem can be
reduced to real-valued approximate agreement when the input set is binary and and to
approximate agreement on a specific class of spider graphs for multi-valued input sets (with
two or more inputs). We define the Binding property for the multi-valued case, which
previously was only defined for the binary case.

We design efficient message-passing algorithms for connected consensus when R is 1
(corresponding to crusader agreement) or 2 (corresponding to graded broadcast), in the
presence of crash and malicious failures, for arbitrarily large input sets. The algorithms are
modular in that the R = 2 case is obtained by appending more communication exchanges to
the R = 1 case. (Table 1 summarizes our algorithms and relates them to prior work.)

Our algorithm for crash failures has optimal resilience and message complexity. Its time
complexity is optimal for reasonable resiliencies and improves on the best previously known
algorithms, which only handled binary inputs. We provide two algorithms for malicious
failures: One algorithm has time complexity 1 or 2 (for R = 1 or R = 2) and sends O(n2)
messages, but requires n > 5f . The other algorithm only requires n > 3f , but has time
complexity 5 or 7 (for R = 1 or R = 2) and sends O(|V | · n2) messages. This is the same
performance as the algorithms in [1] which are only for the case when |V | = 2.

An intriguing open question is whether there is some measure, perhaps time, in which
solving connected consensus without Binding is more efficient than solving it with Binding?

H. Attiya and J. L. Welch 36:7

References
1 Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure

asynchronous binary agreement via binding crusader agreement. In 41st ACM Symposium on
Principles of Distributed Computing, pages 381–391, 2022.

2 Yehuda Afek, James Aspnes, Edo Cohen, and Danny Vainstein. Brief announcement: Object
oriented consensus. In 36th ACM Symposium on Principles of Distributed Computing, pages 367–
369, 2017. Full version in https://www.cs.yale.edu/homes/aspnes/papers/vac-abstract.html.

3 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill Publishing Company, 1st edition, 1998.

4 Zohir Bouzid, Achour Mostefaoui, and Michel Raynal. Minimal synchrony for Byzantine
consensus. In 34th ACM Symposium on Principles of Distributed Computing, pages 461–470,
2015.

5 Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Convergence and covering on
graphs for wait-free robots. Journal of the Brazilian Computer Society, 24:1–15, 2018.

6 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

7 Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient Byzantine agreement
and multi-party computation with asynchronous fallback. In 19th International Conference on
Theory of Cryptography, TCC, pages 623–653, 2021.

8 Carole Delporte-Gallet, Hugues Fauconnier, and Michel Raynal. On the weakest information
on failures to solve mutual exclusion and consensus in asynchronous crash-prone read/write
systems. Journal of Parallel and Distributed Computing, 153:110–118, 2021.

9 Danny Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–30, 1982.
10 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.

Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499–516, 1986.
11 Alan David Fekete. Asymptotically optimal algorithms for approximate agreement. Distributed

Computing, 4:9–29, 1990.
12 Paul Feldman and Silvio Micali. Optimal algorithms for Byzantine agreement. In 12th Annual

ACM Symposium on Theory of Computing, pages 148–161, 1988.
13 Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous Byzantine

agreement. SIAM J. Comput., 26(4):873–933, 1997.
14 Eli Gafni. Round-by-round fault detectors: unifying synchrony and asynchrony. In 17th ACM

Symposium on Principles of Distributed Computing, pages 143–152, 1998.
15 Manfred Koebe. On a new class of intersection graphs. In Annals of Discrete Mathematics,

volume 51, pages 141–143. Elsevier, 1992.
16 Stephen R Mahaney and Fred B Schneider. Inexact agreement: Accuracy, precision, and

graceful degradation. In 4th ACM Symposium on Principles of Distributed Computing, pages
237–249, 1985.

17 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
binary Byzantine consensus with t < n/3, O(n2) messages, and O(1) expected time. J. ACM,
62(4):31:1–31:21, 2015.

18 Achour Mostéfaoui and Michel Raynal. Signature-free asynchronous Byzantine systems: from
multivalued to binary consensus with t < n/3, O(n2) messages, and constant time. Acta
Informatica, 54(5):501–520, 2017.

19 Thomas Nowak and Joel Rybicki. Byzantine approximate agreement on graphs. In 33rd
International Symposium on Distributed Computing, pages 29:1–29:17, 2019.

20 Sam Toueg. Randomized Byzantine agreements. In 3rd ACM Symposium on Principles of
Distributed Computing, pages 163–178, 1984.

21 Jiong Yang, Gil Neiger, and Eli Gafni. Structured derivations of consensus algorithms for
failure detectors. In 17th ACM Symposium on Principles of Distributed Computing, pages
297–306, 1998.

DISC 2023

Brief Announcement: Relations Between
Space-Bounded and Adaptive Massively Parallel
Computations
Michael Chen
Iowa State University, Ames, IA, USA

A. Pavan
Iowa State University, Ames, IA, USA

N. V. Vinodchandran
University of Nebraska–Lincoln, NE, USA

Abstract
In this work, we study the class of problems solvable by (deterministic) Adaptive Massively Parallel
Computations in constant rounds from a computational complexity theory perspective. A language
L is in the class AMPC0 if, for every ε > 0, there is a deterministic AMPC algorithm running in
constant rounds with a polynomial number of processors, where the local memory of each machine
s = O(Nε). We prove that the space-bounded complexity class ReachUL is a proper subclass of
AMPC0. The complexity class ReachUL lies between the well-known space-bounded complexity
classes Deterministic Logspace (DLOG) and Nondeterministic Logspace (NLOG). In contrast, we
establish that it is unlikely that PSPACE admits AMPC algorithms, even with polynomially many
rounds. We also establish that showing PSPACE is a subclass of nonuniform-AMPC with polynomially
many rounds leads to a significant separation result in complexity theory, namely PSPACE is a
proper subclass of EXPΣP

2 .

2012 ACM Subject Classification Computing methodologies → Massively parallel algorithms;
Theory of computation → Complexity classes

Keywords and phrases Massively Parallel Computation, AMPC, Complexity Classes, LogSpace, NL,
PSPACE

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.37

Funding This work is supported in part by NSF grants 1934884, 2130536, and 2130608.

Acknowledgements The authors thank Sriram Pemmaraju and Meena Mahajan for their helpful
discussions. We thank anonymous reviewers for their valuable comments and pointers to some
critical references.

1 Introduction

The Massively Parallel Computation (MPC) model is widely accepted as the standard
theoretical model for distributed computation frameworks such as MapReduce, Spark,
Hadoop, FlumeJava, Beame, Pregel, and Gigraph [7, 9]. It was defined in [5], and it captures
computation on large data: data is adversarially distributed to processors, and each processor
has local memory s = O(Nε) (0 < ε < 1 where N is the input size. Computation occurs
in rounds, and in each round, every machine performs computation based on its local
data and then communicates with other machines with the constraint that the amount of
communication by a process is equal to that of its local memory s. A salient feature of the
MPC model is that no computational restriction is placed on the processor, except that each
processor has local memory s, and a key objective is to minimize the number of rounds.

© Michael Chen, A. Pavan, and N. V. Vinodchandran;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 37; pp. 37:1–37:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Relations Between Space-Bounded and Adaptive Massively Parallel

Ideally, one would like to design an algorithm with constant rounds with a small number
of processors. The MPC model has been extensively studied in the context of designing
algorithms as well as its relationship with complexity classes [2, 3, 4, 7, 5, 6, 16].

Recent work of [7] introduced an adaptive extension of the MPC model called Adaptive
Massively Parallel Computation model (AMPC). In the AMPC model, the processors
communicate via a shared memory called Distributed Data Stores (DDS) by reading from
and writing to the DDS. In a single round, a machine can adaptively query the DDS to
obtain s words and write at most s words, and as in the case of MPC, s is O(Nε). In [7],
authors designed a constant round randomized AMPC algorithm for 1v2-Cycle as well as
a few other graph problems.

In this work, we report progress on the power and limitation of the AMPC model from a
computational complexity theory viewpoint. Towards this, we define a robust complexity
class which we denote by AMPC0. A language L is in AMPC0 if for every ε there is a constant
round (depending on ε) AMPC algorithm with P = p(N) many processors (where p(·) is a
polynomial) each with s = O(Nε) memory. We define a similar complexity class AMPCpoly

where the number of rounds is polynomial. We study the relationship of these AMPC
complexity classes with respect to the standard space-bounded complexity classes DLOG,
NLOG, and PSPACE. The starting point of our work is that the ideas from the randomized
AMPC algorithm for 1v2-Cycle from [7] can be used to show that the complexity class
DLOG is a subset of (uniform) AMPC0. Motivated by this, we explore whether NLOG is a
subset of AMPC0. We make progress toward this question by studying a complexity class
ReachUL [8, 1, 11]. This is a natural complexity class that lies between DLOG and NLOG and
has been studied earlier in the context of designing space-efficient algorithms for reachability
that beat the Savitch’s bound [1]. We prove that ReachUL is a subset of (uniform) AMPC0,
More interestingly, we show that ReachUL is a proper subset of (uniform) AMPC0. On the
contrary, we observe that it is unlikely that the whole of PSPACE (or even NP) can be solved
even in AMPCpoly. This is because every language that admits (uniform) AMPCpoly algorithm
can be solved in subexponential time. Since we do not believe that PSPACE can be solved
in subexponential time, we obtain that it is unlikely that PSPACE ⊆ AMPCpoly. We also
consider the limitation of nonuniform AMPCpoly. We unconditionally show that there exist
languages in EΣP

2 that are not in AMPCpoly. We note that the work reported in [15] also
considered the relations of complexity classes such as DLOG and NLOG to MPC model.

▶ Remark. In an algorithmic setting, it is typically desired that the total memory of an
AMPC algorithm P · s to be N · poly log(N). However, to define a robust complexity class
(closed under reductions), we allow P to be polynomial and require that for every 0 < ε < 1,
there is an algorithm with s local memory per processor.

2 Preliminaries

We now give the formal description of the AMPC model [7, 9]. Let p(·), s(·) and r(·) are
functions from N to N. An AMPC[p(N), s(N), r(N)] algorithm for length N , is a collection
of processors Mi,j , 1 ≤ i ≤ p(N) and 1 ≤ j ≤ r(N) where each processor has a memory
bound of s(N). In addition to the processors there is a collection of Distributed Data Stores
(DDS) denoted by D0,D1,D2, . . .Dr(N). For each DDS, the data is stored in a bit addressable
manner (as done in [9]) i.e., a collection of key-value pairs in the form of (i, ith bit of DDS).
The input string x = x1 . . . xN is stored in D0 in the form of {(i, xi)}N

i=1. The computation
occurs in rounds. The processors Mi,j , 1 ≤ i ≤ p(N) participate in the jth round. In the
jth round, each of these processors is allowed to make s(N) adaptive queries to read from

M. Chen, A. Pavan, and N. V. Vinodchandran 37:3

Dj−1 and each processor is allowed to can write up to s(N) bits to Dj . The computation
stops after r(N) rounds, and we say that the algorithm accepts string x if the value of key 1
in Dr(N) is 1.

Inherently this is a nonuniform model of computation. A language L is in the class
(nonuniform) AMPC0 if for every 0 < ε < 1, there exists a polynomial p(·), and a constant
r = r(N) > 0 such that for every input length N ≥ 0, there is a AMPC[p(N), Nε, r] algorithm
that accepts L on strings at length N . We define the uniform AMPC model. This definition
is similar to the uniform MRC model as defined in [10]. For an algorithm P , we use Pi,j

to denote a processor whose behavior is the same as P on inputs i and j. A language L

is in the class (uniform) AMPC0 if for every ε > 0, there exists a polynomial p(·) and a
constant r = r(N), and a logspace bounded algorithm U that on input 1N outputs the code
of a processor P with the following properties: the processors Pi,j 1,≤ i ≤ p(N), 1 ≤ j ≤ r

constitute a AMPC[p(N), Nε, r] algorithm that accepts L at strings of length N . Analogously
we define uniform and nonuniform versions of the class AMPCpoly where the number of rounds
is allowed to be a polynomial. In the rest of the document, we write AMPC0 to denote
(uniform) AMPC0.

We use DLOG (resp. PSPACE) to denote the class of languages accepted by deterministic
logspace (resp. polynomial-space) Turing machines. The complexity class E is the class of
languages that are accepted by deterministic 2O(N)-time bounded machines, and ΣP

2 denote
the class of languages in the second level of the polynomial-hierarchy. A language L is in the
class SubEXP, if for every ε > 0, there is a O(2Nε)-time bounded machine that accepts L. A
language L is in NC1 if L can be decided by a family of circuits {CN}N∈N where CN has
poly(N) size and O(log N) depth.

▶ Definition 1 ([8, 1]). A nondeterministic machine is called reach-unambiguous if for
every configuration C, there is at most one path from the start configuration to C. The
class ReachUL is the class of languages that are accepted by O(log N)-space-bounded reach-
unambiguous machines.

▶ Definition 2 (Reach-Unambiguous). Reach-Unambiguous is the language consisting
of tuples ⟨G, a, b⟩ such that (1) G = (V, E) is a directed graph, (2) for all u ∈ V there exists
at most 1 directed path from a to u and, (3) there exists a directed path from a to b.

It is known that Reach-Unambiguous is complete for ReachUL with respect to logspace
reductions [13, 8, 1].

3 Results

3.1 ReachUL in AMPC0

We show that ReachUL is a proper subset of AMPC0. We start with the following theorem.

▶ Theorem 3. DLOG ⊊ AMPC0. That is, DLOG is a proper subset of AMPC0.

▶ Corollary 4. AMPC0 is closed under logspace reductions.

Inclusion of Theorem 3 follows from [7]. The authors showed a randomized constant round
AMPC algorithm for the DLOG-complete problem, 1v2-Cycle. Their algorithm can be
modified to obtain a deterministic algorithm by allowing for O(N) processors and using
O(N1+ε) total memory for any ε. The strictness of inclusion follows from Theorem 8 which
we prove.

DISC 2023

37:4 Relations Between Space-Bounded and Adaptive Massively Parallel

Let ⟨G, a, b⟩ be an input instance of Reach-Unambiguous where G = (V, E) is a reach-
unambiguous graph such that V = {v1, . . . , vN} and a, b ∈ V . Without loss of generality, we
assume that the out-degree of each vertex is at most 2. For u ∈ V and s ∈ N, define Ts(u) to
be the tree resulting from a Breadth First Search (BFS) starting from u in G upto s nodes
such that no node is partially visited, i.e., either all the children of any vertex are in the
tree, or none of them are. We shall call every node other than u in Ts(u) a descendent of
u. The main ingredient in our proof is Algorithm 1 that constructs a compressed version
of Ts(u). This algorithm is based on the tree contraction idea [1]. We note that recently
tree contraction has been studied in the context AMPC in [12]. For any graph G, we often
overload the notation G to also refer to the vertex set of the graph.

▶ Definition 5. Let u ∈ V , and v be a descendant of u in Ts(u). v is said to be an
intermediate vertex for Ts(u) if there exists an edge (v, w) ∈ E such that w ̸∈ Ts(u). Define
Is(u) ⊆ Ts(u) as the set of vertices that are intermediate for Ts(u). We say that Ts(u) is
complete if Is(u) = ∅, otherwise Ts(u) is incomplete.

Intermediate vertices capture the idea of vertices that can still be explored. If v is an
intermediate vertex for Ts(u), that means v can still be further explored. But due to the
BFS parameter s, it could not explore v any further. We shall assume for simplicity of the
analysis that if a tree Ts(u) is incomplete, the tree has exactly s + 1 vertices (in general, such
a tree could have either s or s + 1 vertices). Thus the condition |Ts(u)| < s + 1 denotes the
condition that Ts(u) is complete.

Algorithm 1 Construct Algorithm.

1 Function Construct(u, s):
2 Compute Ts(u) using at most O(s) queries.
3 if b ∈ Ts(u) then

// b can be reached from u within s queries
4 T ′

s(u)← ({b}, ∅)
5 else if |Ts(u)| < s + 1 then

// b cannot be reached from u

6 T ′
s(u)← ({u}, ∅)

7 else
// b cannot be reached from u within s queries, need to explore

8 Compute Is(u) using at most O(s) queries
9 T ′

s(u)← A complete binary tree whose leaves are exactly Is(u)
10 Write T ′

s(u) to the DDS

Let T ′
s(u) be the output of Construct(u, s) in Algorithm 1. T ′

s(u) is a contracted version
of Ts(u). If b ∈ Ts(u) or |Ts(u)| < s + 1, the search from u is completed, and we can contract
the tree to a single node. Otherwise, the tree is contracted to a complete binary tree whose
leaves are Is(u), which are precisely the candidates that can lead to b. Locally, it is possible
that T ′

s(u) does not contract. Claim 6 shows that globally the contraction will occur.
Define the tree T ′ generated by starting with T ′

s(a), and recursively substituting every
leaf l ∈ T ′ with T ′

s(l). Continuing the process until substituting leaves does not change the
tree. This graph has the property that ⟨T ′, a, b⟩ ∈ Reach-Unambiguous ⇐⇒ ⟨G, a, b⟩ ∈
Reach-Unambiguous since the only vertices that remain are those vertices that have the
potential to reach b. For an AMPC model, T ′ need not be explicitly constructed since each

M. Chen, A. Pavan, and N. V. Vinodchandran 37:5

tree is locally computed and is then updated in the DDS. We shall now show that the graph
size reduces by a factor of s/2, which is sufficient to get the algorithm to halt in constant
rounds by setting s = O(Nε).

▷ Claim 6. |T ′| ≤ 2N/s

Given u ∈ V , for analysis’ sake construct Hs(u) by making every descendant in Ts(u)
a child of u, i.e. Hs(u) is a re-arranged version of Ts(u) such that edges go from u to the
descendants of u in Ts(u).

We now construct an s-ary tree, H, such that it is always full (vertices either have out
degree 0 or s). Start with Hs(a), then for every leaf l whose parent is p such that l ∈ Is(p)
substitute l with Hs(l) if Ts(p) = s + 1. If the BFS search was incomplete, substitute it with
b if b ∈ Hs(l), otherwise, do nothing. Repeat the process until no more substitutions can be
done. This construction leads to a full s-ary tree H , such that |H| ≤ N . H represents a BFS
traversal done in “batches” of size s, where only intermediate nodes are substituted with
another s-ary tree. Exploring non-intermediate nodes would be redundant. Let i denote the
number of internal nodes of this s-ary tree.

Proof of Claim 6. Since H is a full s-ary tree, i = |H|/s ≤ N/s. And H is essentially a
rearrangement of T ′ such that internal vertices in H correspond to intermediate vertices in
T ′. However, due to line 9 of Algorithm 1, we may be adding more vertices, but however, it
is no more than twice. i.e. we have |T ′| ≤ 2i. Therefore we have |T ′| ≤ 2N/s ◁

▶ Theorem 7. Reach-Unambiguous ∈ AMPC0

Proof. Let ⟨G, a, b⟩ be a problem instance of Reach-Unambiguous with G = (V, E) such
that V = {v1, . . . , vN}. Fix ε ∈ (0, 1). Define the AMPC algorithm with s = O(Nε) local
memory. Assign G1 ← G and R ← O(1/ε), for i = 1, . . . , R rounds do the following, for
each v ∈ Gi, a machine executes Construct(v, s) for Gi to get a new graph T ′ as described
earlier. Assign Gi+1 ← T ′. After the rounds are complete, |GR| = N

(s/2)R = O(1). Then a
single machine can perform normal reachability on GR, accepting the input if and only if
there is a path from a to b. ◀

▶ Theorem 8. For every c ∈ N. There exists a problem in AMPC0 that is not in
DSPACE(logc N)

Proof. Let A ∈ DSPACE(N2) but A ̸∈ DSPACE(N). We know such a problem exists due to
the space hierarchy theorem. Consider a padded language B defined as B = {⟨x, y⟩ | x ∈
A, |x| = M, |y| = 2M1/c −M}.

We claim that B ̸∈ DSPACE(logc N). Assume by contradiction, B ∈ DSPACE(logc N).
We show that in that case, A ∈ DSPACE(N). Let x be an input instance of A of length
M ; we shall solve it by reducing it to an instance of B, by generating z = ⟨x, y⟩, where
y = 02M1/c

−M , we have |z| = N = 2M1/c . The instance z need not be explicitly stored;
every bit can be computed on the fly. Thus the space used is O(M). Then use algorithm
for B to solve z using space O(logc N) = O(logc 2M1/c) = O(M). Thus A ∈ DSPACE(N) a
contradiction. Therefore, B ̸∈ DSPACE(logc N).

Now we show that B is in AMPC0. Let z = ⟨x, y⟩ be a problem instance of B of length
N . The crucial point to note is that the membership of z in B depends only on x, which has
length O(logc N). If x does not have this length, we can safely reject it. Fix an arbitrary
ε ∈ (0, 1). Consider the AMPC algorithm with just one machine and one round. Let z = ⟨x, y⟩
be an input of length N . The machineM reads x which has length M = O(logc N) ⊆ O(Nε),

DISC 2023

37:6 Relations Between Space-Bounded and Adaptive Massively Parallel

then checks if x ∈ A using space O(M2) = O(log2c N) ⊆ O(Nε), via our assumption that
A ∈ DSPACE(N2). If x ∈ A then M accepts otherwise rejects. Thus we have exhibited a
language B such that B ∈ AMPC0 but B ̸∈ DSPACE(logc N). ◀

▶ Theorem 9. ReachUL ⊊ AMPC0. That is, ReachUL is a proper subset of AMPC0.

Proof. The containment follows since Reach-Unambiguous is complete for ReachUL under
logspace reductions and by Corollary 4, AMPC0 is closed under logspace reductions. The
strict containment follows from the fact that ReachUL ⊆ NLOG ⊆ DSPACE(log2 N). Hence
by Theorem 8, there is a language in AMPC0 that is not in ReachUL. ◀

3.2 Limitations
This section discusses the limitations of the AMPC model in relation to well-known complexity
classes.

Uniform Model. Since each processor in each round has a memory bound of O(Nε), the
number of configurations of each processor is poly(2Nε) and hence runs in O(2Nε′

) for some
0 < ε′ < 1 (since the processors are halting). Thus it is clear that uniform AMPCpoly is
in SubEXP. Thus by time-hierarchy theorem, there is a language in EXP that is not in
AMPCpoly. This also establishes that it is unlikely that PSPACE is in AMPCpoly as this will
imply PSPACE is a subset of SubEXP. Moreover, no NP-complete problem (under logspace
reduction) is in AMPCpoly unless NP ⊆ SubEXP.

Non-uniform Model. In the case of non-uniform AMPC computations, we can argue that
any language accepted by a polynomial round AMPC algorithm can be simulated by a
Boolean circuit of size poly(2Nε). This is because every bit computed by a processor is a
decision tree of size O(2Nε) and hence has a Boolean circuit of size O(2Nε). Since the number
of bits written by all machines overall (polynomial) rounds is bounded by a polynomial, the
size of the Boolean circuit simulating the whole computation is poly(2Nε). It is known that
there is a language L in EΣP

2 that has maximum circuit complexity [14], it follows that L

is not in non-uniform AMPCpoly. This lower bound establishes that showing PSPACE is in
non-uniform AMPCpoly is difficult as this will imply an unknown complexity theory separation
that PSPACE is a proper subset of EXPΣP

2 .

References
1 E. Allender and K.-J. Lange. RUSPACE(log n) ⊆ DSPACE(log2 n/ log log n). Theory of

Computing Systems, 31(5):539–550, October 1998. doi:10.1007/s002240000102.
2 Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel graph

connectivity in log diameter rounds. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), 2018.

3 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Log Diameter Rounds Algorithms for
2-Vertex and 2-Edge Connectivity. In 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019), Leibniz International Proceedings in Informatics (LIPIcs),
pages 14:1–14:16, 2019.

4 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding
well-connected components in sparse graphs. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC ’19, 2019. doi:10.1145/3293611.3331596.

5 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. J. ACM, 64(6), October 2017. doi:10.1145/3125644.

https://doi.org/10.1007/s002240000102
https://doi.org/10.1145/3293611.3331596
https://doi.org/10.1145/3125644

M. Chen, A. Pavan, and N. V. Vinodchandran 37:7

6 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab Mirrokni.
Near-optimal massively parallel graph connectivity. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1615–1636, 2019. doi:10.1109/FOCS.2019.
00095.

7 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab Mirrokni, and
Warren Schudy. Massively parallel computation via remote memory access. In The 31st ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’19, pages 59–68, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3323165.3323208.

8 Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange, and Peter Rossmanith. Unambiguity and
fewness for logarithmic space. In L. Budach, editor, Fundamentals of Computation Theory,
pages 168–179, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

9 Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional lower bounds for adaptive
massively parallel computation. In Proceedings of the 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’20, pages 141–151, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3350755.3400230.

10 Benjamin Fish, Jeremy Kun, Ádám D. Lelkes, Lev Reyzin, and György Turán. On the
computational complexity of mapreduce. In Yoram Moses, editor, Distributed Computing,
pages 1–15, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

11 Brady Garvin, Derrick Stolee, Raghunath Tewari, and N. V. Vinodchandran. Reach-
fewl = reachul. computational complexity, 23(1):85–98, March 2014. doi:10.1007/
s00037-012-0050-8.

12 MohammadTaghi Hajiaghayi, Marina Knittel, Hamed Saleh, and Hsin-Hao Su. Adaptive
Massively Parallel Constant-Round Tree Contraction. In 13th Innovations in Theoretical
Computer Science Conference (ITCS 2022), Leibniz International Proceedings in Informatics
(LIPIcs), pages 83:1–83:23, 2022. doi:10.4230/LIPIcs.ITCS.2022.83.

13 Klaus-Jörn Lange. An unambiguous class possessing a complete set. In Rüdiger Reischuk and
Michel Morvan, editors, STACS 97, pages 339–350, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

14 Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In Takao Asano, Hiroshi Imai, D. T.
Lee, Shin-Ichi Nakano, and Takeshi Tokuyama, editors, Computing and Combinatorics, 5th
Annual International Conference, COCOON ’99, Proceedings, Lecture Notes in Computer
Science, 1999.

15 Danupon Nanongkai and Michele Scquizzato. Equivalence classes and conditional hardness
in massively parallel computations. Distributed Computing, 35(2):165–183, April 2022. doi:
10.1007/s00446-021-00418-2.

16 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits (on
lower bounds for modern parallel computation). J. ACM, 65(6), November 2018. doi:
10.1145/3232536.

DISC 2023

https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1145/3323165.3323208
https://doi.org/10.1145/3350755.3400230
https://doi.org/10.1007/s00037-012-0050-8
https://doi.org/10.1007/s00037-012-0050-8
https://doi.org/10.4230/LIPIcs.ITCS.2022.83
https://doi.org/10.1007/s00446-021-00418-2
https://doi.org/10.1007/s00446-021-00418-2
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3232536

Brief Announcement: On Implementing Wear
Leveling in Persistent Synchronization Structures
Jakeb Chouinard #

Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada

Kush Kansara #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Xialin Liu #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Nihal Potdar #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Wojciech Golab #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Abstract
The last decade has witnessed an explosion of research on persistent memory, which combines the
low access latency of dynamic random access memory (DRAM) with the durability of secondary
storage. Intel’s implementation of persistent memory, called Optane, comes close to realizing the
game-changing potential of persistent memory in terms of performance; however, it also suffers
from limited endurance and relies on a proprietary wear leveling mechanism to mitigate memory
cell wear-out. The traditional embedded approach to wear leveling, in which the storage device
itself maps logical addresses to physical addresses, can be fast and energy-efficient, but it is also
relatively inflexible and can lead to missed opportunities for optimization. An alternative school
of thought, exemplified by “open channel” solid state drives (SSDs), delegates responsibility for
wear leveling to software, where it can be tailored to specific applications. In this research, we
consider a hypothetical hardware platform where the same paradigm is applied to the persistent
memory device, and ask how the wear leveling mechanism can be co-designed with synchronization
structures that generate highly skewed memory access patterns. Building on the recent work of
Liu and Golab, we implement an improved wear leveling atomic counter by leveraging hardware
transactional memory in a novel way. Our solution is close to optimal with respect to both space
complexity and measured performance.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases persistent memory, transactional memory, wear leveling, atomic counter,
concurrency, fault tolerance, theory

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.38

Funding This research was supported by an Ontario Early Researcher Award, a Google Faculty
Research Award, as well as the Natural Sciences and Engineering Research Council (NSERC) of
Canada.

Acknowledgements We thank the anonymous reviewers for their helpful feedback on this work and
their insightful suggestions regarding future research directions.

1 Introduction

The last decade has witnessed an explosion of research on persistent memory. Research
activities in this area are primarily driven by the performance benefits of persistent memory,
which behaves like dynamic random access memory (DRAM) with respect to access latency
and yet provides the durability of secondary storage. Thus, persistent memory can be used

© Jakeb Chouinard, Kush Kansara, Xialin Liu, Nihal Potdar, and Wojciech Golab;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 38; pp. 38:1–38:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jakeb.chouinard@uwaterloo.ca
mailto:kush.kansara@uwaterloo.ca
mailto:xialin.liu@uwaterloo.ca
mailto:nihal.potdar@uwaterloo.ca
mailto:wgolab@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
https://doi.org/10.4230/LIPIcs.DISC.2023.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 BA: On Implementing Wear Leveling in Persistent Synchronization Structures

directly to store application state during a computation, and its use opens the door to
recovering such state efficiently from the memory device after a power failure or system crash.
Intel’s implementation of persistent memory, called Optane, comes close to realizing the
game-changing potential of persistent memory in terms of performance, but it suffers from
limited endurance, meaning that the memory cells tend to wear out in response to repeated
overwriting [3]. To prevent irrecoverable data loss during the product warranty period,
Optane persistent memory modules use a proprietary wear leveling mechanism that remaps
logical memory addresses to physical addresses somewhat similarly to a flash translation
layer (FTL) in a solid state drive (SSD).

The traditional embedded approach to wear leveling, in which the storage device itself
internally performs address remapping, can be fast and energy-efficient. However, this
one-size-fits-all solution is relatively inflexible, and it can lead to missed opportunities for
optimization when the workload (i.e., data access pattern) generated by an application
deviates from the one anticipated by the hardware designer. An alternative school of thought,
exemplified by “open channel” solid state drives (SSDs) [8], addresses this inherent limitation
by delegating responsibility for wear leveling to software, where it can be tailored more
effectively to specific applications. In this research, we consider a hypothetical hardware
platform where the same paradigm is applied to the persistent memory device, and ask how
the wear leveling mechanism can be co-designed with persistent data structures.

The case for application-managed wear leveling in the context of persistent memory
is especially interesting due to stringent design constraints that limit the solution space.
Specifically, the physical form factor of the persistent memory module limits how much
logical-to-physical (L2P) address translation data can be stored on the device, and the
translation algorithm must be extremely fast to enable memory access at DRAM-like latency.
To operate within these constraints, the wear leveling algorithm cannot accurately account
for the number of write cycles applied to every individual memory word, and so it must
operate at a coarser granularity. Details of Intel’s Optane persistent memory are not well
documented, but it is known that these memory modules are internally organized into blocks
of 256 bytes [5, 7]. Because of this, we speculate that wear leveling state is likely tracked on a
per-block basis (or even more coarsely). While such a block-based wear leveling scheme could
work effectively for workloads dominated by sequential writing, like storing append-only
logs, it can lead to severe resource under-utilization in a scenario where a single memory
word is repeatedly overwritten. This limitation is particularly relevant for a byte-addressable
“write-in-place” storage medium like Intel’s Optane memory, whereas a flash-based SSD’s
entire data block must always be erased before it can be overwritten.

This paper focuses on software-managed wear leveling for synchronization structures, such
as shared counters, which generate precisely the kind of skewed memory access pattern that
can delude a general-purpose embedded wear leveling solution. Building on the foundations
established by Liu and Golab [6], we propose a novel software implementation of an atomic
counter that internally harnesses together multiple words of persistent memory to distribute
wear. Our implementation uses transactional memory in a new way and vastly outperforms
Liu and Golab’s algorithm, which is based on ordinary Compare-And-Swap.

2 The Wear Leveling Problem

For the purposes of this paper, wear leveling is the abstract problem of implementing a
concurrent object that maintains correctness across many state changes while using base
objects that may lose their correctness after relatively few state changes. Liu and Golab [6]
formalized this notion as the following endurance property, where T can denote a constant
or a function of some model-specific parameters like the number of concurrent threads:

J. Chouinard, K. Kansara, X. Liu, N. Potdar, and W. Golab 38:3

▶ Definition 1. An object has endurance T if it maintains its safety and liveness properties
in all executions where at most T updates (i.e., operations other than reads) are invoked on
the object, but not in some execution where T + 1 updates are invoked.

In general, the endurance of an implemented object (e.g., one that is strictly linearizable
[1, 2] and lock-free) is limited by the endurance of the base objects from which the implemented
object is constructed. We focus in this work on endurance-oblivious [6] implementations that
treat the endurance of the base objects as an unknown.

3 The Transactional Counter Algorithm

Building on the work of Liu and Golab [6], we seek improved implementations of the atomic
counter, also known as a Fetch-And-Increment object, in the system-wide crash-recover failure
model with persistent main memory and a volatile cache. The abstract state of a counter
object is an integer, typically initialized to zero. The object supports a single operation
that retrieves the current value of the counter and also increases the value by one. As an
example, a strictly linearizable [1, 2] lock-free implementation of an atomic counter using
the FetchAndIncrement instruction is presented in Figure 1. Although the implementation
lacks wear leveling, it illustrates our syntax conventions and the correct use of persistence
instructions to manage the volatile cache.1 The linearization point of the Increment operation
is the first (process-initiated or environment-initiated) flush step that persists either the
value of the counter established at line 1 or a larger value.

Persistent shared variables:
B: base object supporting FetchAndIncrement operation, initially 0
Procedure Increment().

1 ret := FetchAndIncrement(&B)
2 Persist(&B)
3 return ret

Figure 1 Baseline counter implementation.

Following [6], we partition the state of the counter across a collection of k base objects
B0 . . . Bk−1 such that the value of the implemented object equals the sum of the values of
the base objects. In theory, the endurance of the implemented object can be increased by
a factor of k as long as two conditions are met. First, each implemented operation must
correctly compute the fetched value, which amounts to obtaining a snapshot of the states
of the base objects that appears to be atomic with respect to the increment. Second, each
implemented operation must not only spread out wear evenly across the base objects, but
also limit the number of updates applied to the base objects to avoid undesirable write
amplification. Ideally, each implemented operation would increment only a single base object.

Both challenges are addressed by maintaining a particular state invariant over the base
objects, as illustrated by way of example in Figure 2. The pattern is that the i’th Increment
operation on the implemented object (counting starting at zero) updates base object number
⌊i/m⌋ mod k, where m is a parameter we call the bin size. Intuitively, m increments are

1 The ampersand symbol (&) means “address of” as in C/C++. Persist represents a process-initiated
flush step on a base object that is assumed to fit inside a single cache line. It can be implemented on
the Intel platform using the function pmem_persist in the Persistent Memory Development Kit [9].

DISC 2023

38:4 BA: On Implementing Wear Leveling in Persistent Synchronization Structures

state of base base base base
implemented object object B0 object B1 object B2 . . . object Bk−1

0 0 0 0 . . . 0
1 1 0 0 . . . 0
2 2 0 0 . . . 0
m m 0 0 . . . 0

m + 1 m 1 0 . . . 0
2m m m 0 . . . 0
km m m m . . . m

km + 1 m + 1 m m . . . m

km + m + 1 2m m + 1 m . . . m

Figure 2 State representation of wear leveling counter for bin size m and k base objects.

applied to base object B0, then m to B1, . . . , m to Bk−1, then m more to B0, etc., in
round-robin fashion. As long as the base objects have endurance T such that T is a multiple
of m, the implemented object can count up to kT , which improves on the baseline technique
from Figure 1 by a factor of k. Not only does this strategy amplify endurance, but it also
expands the counter’s domain of values by the same factor k.

The central technical challenge in maintaining our state invariant under concurrent
access is to apply the correct state transition to the correct base object each time the
implemented counter is accessed. This is a non-trivial task since the correct base object and
state transition depend on the position of an Increment operation in the linearization order,
which is not known to processes ahead of time. Liu and Golab [6] solved the problem for bin
size m = 1 using an algorithm based on the CompareAndSwap instruction, which is lock-free
but inefficient under high contention. We improve upon this preliminary design by replacing
the CompareAndSwap instruction with FetchAndIncrement. The immediate problem this
strategy presents is that incrementing a base object unconditionally can increase its value
beyond the threshold permitted by the invariant presented earlier in Figure 2, which we rely
on crucially to correctly compute the response of an Increment operation. For example, if
more than m processes attempt to increment base object B0 starting from the initial state,
then the final value of B0 will exceed the value of B1 by more than m, which violates the
invariant. We address this problem by encapsulating the FetchAndIncrement instruction
in a hardware transaction, and aborting the transaction whenever the invariant is violated.
Secondly, we optimize the selection of the base object by introducing static variables that
allow processes to remember which object was last accessed.2 Assuming that processes access
the counter frequently and that the bin size m is large relative to the number of processes,
this second optimization mostly avoids the costly linear search in Liu and Golab’s algorithm.

We present pseudo-code for the algorithm in Figure 3, which borrows syntax from the
GCC transactional memory intrinsics [4]. At the beginning, process p computes the boundary
between the current bin and the next bin at line 4 based on its recollection of the current
bin obtained from static variable binp. The transaction then starts at line 6 inside the outer
while loop, and its current status is determined at line 7 using the _xbegin intrinsic. For the
reader unfamiliar with the GCC transactional intrinsics, the algorithm should be interpreted

2 A static variable retains its value across calls to Increment. Our algorithms do not persist such variables,
and function correctly (albeit more slowly) even if the variables hold stale values after a crash.

J. Chouinard, K. Kansara, X. Liu, N. Potdar, and W. Golab 38:5

Persistent shared variables:
B[0..(k − 1)]: array of base objects, each element initially 0

Private static variables:
indexp: integer in the interval [0, k), initially 0
binp: integer ≥ 0, initially 0

Private variables:
limitp, prevp, statusp, bumpedp, tempp: integers

Procedure Increment().

4 limitp := (binp + 1) × m

5 while true do
6 statusp := _xbegin()
7 if statusp = _XBEGIN_STARTED then
8 prevp := FetchAndIncrement(&B[indexp])
9 if prevp ≥ limitp then

10 _xabort(_ABORT_BIN_EXCEEDED)
11 else
12 _xend()
13 Persist(&B[indexp])
14 return prevp + m × (binp × (k − 1) + indexp)

15 else if _XABORT_CODE(statusp) = _ABORT_BIN_EXCEEDED then
16 bumpedp := false
17 while true do
18 tempp := B[indexp]
19 if tempp < limitp then
20 break
21 else
22 indexp := (indexp + 1) mod k

23 if indexp = 0 then
24 binp := ⌊tempp/m⌋
25 limitp := (binp + 1) × m

26 bumpedp := true

27 if bumpedp then
28 Persist(&B[(indexp + k − 1) mod k])

Figure 3 Endurance-oblivious counter implementation using hardware transactions and
FetchAndIncrement. Pseudo-code shown for process p, k base objects, and bin size m.

as returning a successful status (_XBEGIN_STARTED) when line 7 is first executed in an
iteration of the outer while loop. It then proceeds with the FetchAndIncrement instruction
at line 8 and continues onward to the commit point at line 12 and beyond (lines 13–14),
unless the transaction aborts. The latter can occur due to an explicit abort at line 10 via the
_xabort intrinsic or due to a spontaneous abort, and in either case, the algorithm is rolled
back to line 6 where _xbegin is re-executed and returns a special status code different from
_XBEGIN_STARTED. The _XABORT_CODE intrinsic (a GCC macro) at line 15 determines
the user-defined code (if any) passed to _xabort at line 10. If the transaction aborted

DISC 2023

38:6 BA: On Implementing Wear Leveling in Persistent Synchronization Structures

spontaneously then it is restarted at the next iteration of the while loop, otherwise the
fallback execution path at lines 16–28 is executed to adjust the values of the static variables
indexp and binp, and another transaction is attempted.

4 Experiments

We implemented a collection of wear leveling counters in C++ and evaluated their performance
on a 20-core Intel Xeon Gold 6230 platform with Optane persistent memory. The Intel
Persistent Memory Development Kit (PMDK) [9] was used to access the Optane memory using
memory-mapped files. The Persist operation featured in our pseudo-code was implemented
using the pmem_persist function in the PMDK, which internally performs a cache line write-
back (clwb) and store fence. Intel’s Restricted Transactional Memory (RTM) was accessed
using GCC intrinsics [4], which we explained earlier in Section 3. Persistent memory and
hardware transactions are typically not used together as the transactions do not guarantee
failure-atomicity, and persistence instructions inside a transaction can cause an abort on
some platforms. However, the transaction used in our algorithm circumvents these drawbacks
by accessing only a single memory word and persisting after committing.

 100000

 1x106

 1x107

 1x108

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

in
cr

em
en

t o
pe

ra
ti

on
s

/ s
)

Number of Threads

Baseline (Fetch-And-Increment)
Transactional with Fetch-And-Increment

Transactional with Load and Store
CAS

(a) Comparison of counter implementations with
cache line write-backs and store fences.

 100000

 1x106

 1x107

 1x108

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

in
cr

em
en

t o
pe

ra
ti

on
s

/ s
)

Number of Threads

bin size 1024
bin size 256
bin size 64
bin size 16
bin size 4
bin size 1

(b) Sensitivity of transactional FetchAndIncrement
implementation to the bin size parameter.

Figure 4 Scalability experiments.

Figure 4a presents an experimental comparison of the baseline algorithm from Figure 1,
our transactional counter algorithm from Figure 3, an alternative implementation of our
algorithm that uses load and store instead of FetchAndIncrement, and the Liu-Golab
algorithm (denoted CAS). The bin size parameter (m in Section 3) was 1 for the baseline and
Liu-Golab algorithms, and 1024 for the two transactional algorithms. We observe that the
transactional FetchAndIncrement-based algorithm is roughly 1.5× slower than the baseline,
which lacks wear leveling, and outperforms the alternative transactional algorithm by roughly
2×. It also outperforms Liu-Golab by roughly 15×. Next, we consider the effect of the bin
size on performance in Figure 4b, and find that a bin size of 256 ≤ m ≤ 1024 works well.

References
1 Marcos K. Aguilera and S. Frølund. Strict linearizability and the power of aborting. Technical

Report HPL-2003-241, Hewlett-Packard Labs, 2003.
2 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-

volatile main memory. In Proc. of the 19th International Conference on Principles of Distributed
Systems (OPODIS), pages 20:1–20:17, 2016.

J. Chouinard, K. Kansara, X. Liu, N. Potdar, and W. Golab 38:7

3 Frank Hady. Intel Optane technology delivers new levels of endurance, 2019.
URL: https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-technology/delivering-new-levels-of-endurance-article-brief.html.

4 Free Software Foundation Inc. Transactional memory intrinsics. [last accessed 5/01/2023]. URL:
https://gcc.gnu.org/onlinedocs/gcc/x86-transactional-memory-intrinsics.html.

5 Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven
Swanson. Basic performance measurements of the Intel Optane DC persistent memory module.
CoRR, abs/1903.05714, 2019. arXiv:1903.05714.

6 Xialin Liu and Wojciech Golab. Brief announcement: Towards a theory of wear leveling in
persistent data structures. In Proc. of the 41st ACM Symposium on Principles of Distributed
Computing (PODC), pages 220–223, 2022.

7 Ivy Bo Peng, Maya B. Gokhale, and Eric W. Green. System evaluation of the Intel Optane byte-
addressable NVM. In Proc. of the International Symposium on Memory Systems (MEMSYS),
pages 304–315, 2019.

8 Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pinar Tözün. Open-channel SSD (what
is it good for). In In Proc. of the 10th Conference on Innovative Data Systems Research
(CIDR), 2020.

9 Andy Rudoff and the Intel PMDK Team. Persistent memory development kit. [last accessed
5/01/2023]. URL: https://pmem.io/pmdk/.

DISC 2023

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/delivering-new-levels-of-endurance-article-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/delivering-new-levels-of-endurance-article-brief.html
https://gcc.gnu.org/onlinedocs/gcc/x86-transactional-memory-intrinsics.html
https://arxiv.org/abs/1903.05714
https://pmem.io/pmdk/

Brief Announcement: Subquadratic Multivalued
Asynchronous Byzantine Agreement WHP
Shir Cohen #

Technion, Haifa, Israel

Idit Keidar #

Technion, Haifa, Israel

Abstract
There have been several reductions from multivalued consensus to binary consensus over the past 20
years. To the best of our knowledge, none of them solved it for Byzantine asynchronous settings. In
this short paper, we close this gap. Moreover, we do so in subquadratic communication, using newly
developed subquadratic binary Byzantine Agreement techniques.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Cryptographic primitives; Mathematics of computing → Probabilistic algorithms

Keywords and phrases Byzantine agreement, subquadratic communication, fault tolerance in
distributed systems

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.39

Related Version Full Version: https://arxiv.org/abs/2308.02927 [3]

Funding Shir Cohen: Supported by the Adams Fellowship Program of the Israel Academy of Sciences
and Humanities.

1 Introduction

Byzantine Agreement (BA) is a well-studied problem where a set of correct processes have
input values and aim to agree on a common decision despite the presence of malicious ones.
This problem was first defined over 40 years ago [8]. However, in the past decade BA gained a
renewed interest due to the emergence of blockchains as a new distributed and decentralized
tool. Moreover, the scale of the systems in which this problem is solved is much larger than
in the past. As a result, there is a constant effort to find new techniques that will enable the
reduction of communication complexity of BA solutions.

A significant improvement in BA scalability was enabled by subquadratic solutions,
circumventing Dolev and Reischuk’s renown lower bound of Ω(n2) messages [5]. This was
done by King and Saia [7] in the synchronous model and later by Algorand [6] (first in the
synchronous model and then with eventual synchrony). In their work, Algorand presented a
validated committee sampling primitive, based on the idea of cryptographic sortition using
verifiable random functions (VRF) [9]. This primitive allows different subsets of processes
to execute different parts of the BA protocol. Each committee is used for sending exactly
one protocol message and messages are sent only by committee members, thus reducing the
communication cost.

In this paper, we tackle the asynchronous model, which best describes real-life settings.
Importantly, subquadratic asynchronous BA was first introduced not so long ago by Cohen
et. al [4] and Blum et. al [2]. The limitation of these results is that both solve a binary BA,
where the inputs and outputs are in {0, 1}. We extend the binary results to multivalued BA,
which is more suitable in real-world systems. Nowadays, perhaps the most extensive use of
BA solution appears in blockchains to agree on the next block. These blocks carry multiple

© Shir Cohen and Idit Keidar;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 39; pp. 39:1–39:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shirco@campus.technion.ac.il
mailto:idish@ee.technion.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2023.39
https://arxiv.org/abs/2308.02927
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Brief Announcement: Subquadratic Multivalued Asynchronous BA WHP

transactions (as well as additional metadata), which is clearly not a binary value. We note
that a similar extension for multivalued consensus was presented in asynchrony by Mostefaoui,
Raynal, and Tronel [11] but it cannot handle Byzantine failures. Another reduction by Turpin
and Coan [12] is able to handle Byzantine failures, but only in a synchronous model. Despite
not solving the multivalued case in the Byzantine asynchronous model, both of them have
quadratic word complexity (Following the standard complexity notions [1, 10]).

We consider a system with a static set of n processes and an adversary, in the so-called
“permissioned” setting, where the ids of all processes are well-known. The adversary may
adaptively corrupt up to f = (1

3 − ϵ)n processes in the course of a run, where 1
2 ln n < ϵ < 1

3 .
In addition, we assume a trusted public key infrastructure (PKI) that allows us to use
verifiable random functions (VRFs) [9]. Finally, we assume that once the adversary takes
over a process, it cannot “‘front run” messages that that process had already sent when it
was correct, causing the correct messages to be supplanted. This assumption can be replaced
if one assumes an erasure model as used in [2, 6]. That is, using a separate key to encrypt
each message, and deleting the secret key immediately thereafter.

Let us first examine the “straightforward” (yet faulty) reduction from multivalued BA to
binary BA, both satisfying the strong unanimity validity property. This property states that
if all correct processes have the same input value, then this must be the decision they all
output. To solve the multivalued BA, any process interprets its input as a binary string, and
then all processes participate in a sequence of binary BA instances. The input for the ith

instance by process p is the ith digit in the binary representation. It is easy to see, that if all
correct processes share the same input value, they start each instance with the same binary
value and by validity agree upon it. Hence, by the end of the last BA instance, they all reach
the same (input) decision. Otherwise, they can agree on some arbitrary common value.

Unfortunately, the simple binary-to-multivalued reduction does not work when applied
with existing asynchronous subquadratic solutions. Assume that in the multivalued version of
BA, values are taken from a finite domain V . If the size of V is in O(n), then to represent the
input value as a binary string we need O(log n) bits, and the same number of BA instances.
Although this number keeps the overall complexity subquadratic, it breaks the probability
arguments made in the existing solutions. Briefly, both works take advantage of logarithmic
subsets of processes that drive the protocol progress. These so-called committees are elected
uniformly such that with high probability (WHP) it contains “enough” correct processes,
and not “too many” Byzantine ones. Since, WHP, both algorithms complete in a constant
number of rounds, their safety and liveness are guaranteed WHP. However, once we apply
these techniques and make the probability arguments more than a constant number of times
(as we would if we were to apply the reduction), the high probability does not remain high
at all.

To overcome this challenge, we take a different approach. We generalize the method in [12]
to work with asynchronous committee sampling and solve for weak unanimity validity. Our
algorithm requires only two additional committees, compared to any binary BA algorithm.
Finally, we present the first multivalued BA with a word complexity of Õ(n).

Validated Committee Sampling

Using VRFs, it is possible to implement validated committee sampling, which is a primitive
that allows processes to elect committees without communication and later prove their
election. It provides every process pi with a private function samplei(s, λ), which gets a
string s and a threshold 1 ≤ λ ≤ n and returns a tuple ⟨vi, σi⟩, where vi ∈ {true, false} and
σi is a proof that vi = samplei(s, λ). If vi = true we say that pi is sampled to the committee

S. Cohen and I. Keidar 39:3

for s and λ. The primitive ensures that pi is sampled with probability λ
n . In addition, there is

a public (known to all) function, committee-val(s, λ, i, σi), which gets a string s, a threshold
λ, a process identification i and a proof σi, and returns true or false.

Consider a string s. For every i, 1 ≤ i ≤ n, let ⟨vi, σi⟩ be the return value of samplei(s, λ).
The following is satisfied for every pi:

committee-val(s, λ, i, σi) = vi.
If pi is correct, then it is infeasible for the adversary to compute samplei(s, λ).
It is infeasible for the adversary to find ⟨v, σ⟩ s.t. v ̸= vi and committee-val(s, λ, i, σ) =
true.

Due to space limitations, we present here the parameters and guarantees as presented
and proven in [4] using Chernoff bounds. For simplicity, we only state the claims we are
using in this paper.

Committee Sampling Properties from [4]. Let the set of processes sampled to the committee
for s and λ be C(s, λ), where λ is set to 8 ln n. Let d be a parameter of the system such that
1
λ < d < ϵ

3 − 1
3λ . We set W ≜

⌈
(2

3 + 3d)λ
⌉

and B ≜
⌊
(1

3 − d)λ
⌋
. With high probability the

following hold:
(S3) At least W processes in C(s, λ) are correct.
(S4) At most B processes in C(s, λ) are Byzantine.
(S5) Consider C(s, λ) for some string s and two sets P1, P2 ⊂ C(s, λ) s.t |P1| = |P2| = W .

Then, |P1 ∩ P2| ≥ B + 1.

2 From Binary BA to Multivalued BA

In the Byzantine Agreement (BA) problem, a set Π of n processes attempt to reach a common
decision. In addition, the decided value must be “valid” in some sense which makes the
problem non-trivial. We consider two standard variants of BA for asynchrony that differ
in their validity condition and the domain of inputs by processes in the system. In the
binary version, all inputs are taken from the domain {0, 1}, while in the multivalued case
they can be any value from any finite domain V. For the validity condition, in order to
support a larger domain we weaken the validity condition. Instead of the known strong
unanimity property, we opt for weak unanimity as defined below. In this work we show how
to reduce a subquadratic weak multivalued BA to a subquadratic binary strong BA, both
are solved WHP. That is, a probability that tends to 1 as n goes to infinity. Formally, we
take a black-box solution to:

▶ Definition 1 (Binary Strong Byzantine Agreement WHP). In Binary Strong Byzantine
Agreement WHP, each correct process pi ∈ Π proposes a binary input value vi and decides
on an output value decisioni s.t. with high probability the following properties hold:

Validity (Strong Unanimity). If all correct processes propose the same value v, then any
correct process that decides, decides v.
Agreement. No two correct processes decide differently.
Termination. Every correct process eventually decides.

And use it to solve:

▶ Definition 2 (Multivalued Weak Byzantine Agreement WHP). In Multivalued Weak Byzantine
Agreement WHP, each correct process pi ∈ Π proposes an input value vi and decides on an
output value decisioni s.t. with high probability the following properties hold:

DISC 2023

39:4 Brief Announcement: Subquadratic Multivalued Asynchronous BA WHP

Algorithm 1 Multivalued Byzantine Agreement(vi): code for pi.

local variables: alert ∈ {true, false}, initially false

count ∈ N, initially 0
init-set, init-values-set, converge-set ∈ P(Π), initially 0

1: if samplei(init, λ) = true then broadcast ⟨init, vi⟩i
2: upon receiving ⟨init, vj⟩j with valid vj from validly sampled pj do
3: init-set ← init-set ∪{j}
4: init-values-set ← init-values-set ∪{vj}
5: if samplei(converge, λ) = true and |init-set| = W for the first time then
6: if init-values-set = {vi} then ▷ All received values are pi’s initial value
7: batch the W messages into QCvi

8: send ⟨converge, true, QCvi⟩i to all processes
9: else

10: send ⟨converge, false,⊥⟩i to all processes
11: upon receiving ⟨converge, is_content, QCv⟩j from validly sampled pj do
12: converge-set ← converge-set ∪{j}
13: if is_content=true then
14: count+ = 1
15: when |converge-set| = W for the first time
16: alert← count < B + 1
17: binary_decisioni ← Binary Byzantine Agreement(alert)
18: if binary_decisioni = true then
19: decisioni ← ⊥

else
20: wait for a message of the form ⟨converge, true, QCv⟩j from validly sampled pj if

such was not already received
21: decisioni ← v

Validity (Weak Unanimity). If all processes are correct and propose the same value v,
then any correct process that decides, decides v.
Agreement. Same as above.
Termination. Same as above.

We employ committee sampling and a binary subquadratic strong BA to present a
multivalued solution to the weak BA problem. That is, the processes’ initial values are from
an arbitrary domain V. We follow the method presented in [12] and adjust it to work with
an asynchronous environment and committee sampling to achieve a subquadratic solution.
The algorithm, presented in Algorithm 1, consists of two communication phases followed by
a binary BA execution. To reduce the communication costs of the algorithm, the two phases
are being executed only by a subset of the processes that are elected uniformly in random by
a committee sampling primitive.

The first step is an init step, in which all init committee members send their signed
initial value to all other processes (line 1). The second is a converge step, during which
all converge committee members aim to converge around one common value. To do
so, converge processes are waiting to hear from sufficiently many processes in the init
committee. Since committees are elected using randomization, it is impossible for processes
to wait for all of the previous committee members, as the size of the committee is unknown.
Instead, it is guaranteed that a process hears from at least W processes WHP.

For some process p in the converge committee, if all W init messages include the
same value v, that is also p’s initial value, then p is considered to be content. To inform
all other processes, p sends a converge message claiming to be content, that also carries

S. Cohen and I. Keidar 39:5

a quorum certificate (QC) on the value v containing all received messages (line 8). In the
complementary case, where p knows of at least two different values by line 6, it sends a
converge message with a false is_content flag (line 10).

In the third part of the algorithm, processes run a binary consensus whose target is
deciding whether the system as a whole is content. To do so, processes update an alert
flag that is determined according to the number of content processes in the converge
committee (lines 13 – 16). It is designed such that if a correct process p hears from at
least one non-content correct process, it sets its alert flag to true. To do so, we utilize the
parameter B which is, according to the specification, an upper bound on the number of
Byzantine processes in a committee.

After processes set their boolean alert flag, they make a binary decision on its values at
line 17. If the output is true, then all correct processes output ⊥ (line 19). Notice that by
the strong unanimity property of the binary BA, it is impossible that all correct processes
have had alert=false before the execution. Namely, there were many non-content processes
in the converge committee. Otherwise, if the binary decision is true, then it must be the
case that (i) all content processes are content with respect to the same value and (ii) at
least one correct process was content in the converge committee (proof appears in the full
version [3]). In this case, that process carries a quorum certificate with W different signatures
on a value v, that can be safely decided upon (line 21) and is guaranteed to eventually arrive
at all correct processes. This is mainly thanks to the fact that two subsets of the converge
committee of size W intersect by at least one correct process.

Complexity

In Algorithm 1 all correct processes that are sampled to the two committees (lines 1,5) send
messages to all other processes. Each of these messages contains a value from the finite
domain, a VRF proof of the sender’s election to the committee, and possibly a quorum
certificate of W different signatures. Therefore, each message’s size is either a constant
number of words or W words. Thus, the total word complexity of a multivalued weak BA
WHP is O(nWC) where C is the number of processes that are sampled to the committees.
Since each process is sampled to a committee with probability λ

n , we get a word complexity
of O(nWλ) = O(n log2 n) = Õ(n) in expectation.

In the full version [3], we prove the following theorem:

▶ Theorem 3. Algorithm 1 implements multivalued weak Byzantine Agreement WHP with a
word complexity of Õ(n).

3 Conclusions

Real-world systems are asynchronous and prone to Byzantine failures. This paper presents an
algorithm that reduces the multivalued weak BA WHP to binary strong BA. Together with
the binary BA presented in [4, 2] this paper yields that first subquadratic multivalued BA.

DISC 2023

39:6 Brief Announcement: Subquadratic Multivalued Asynchronous BA WHP

References
1 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated

asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2019.

2 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. Cryptology ePrint Archive, Report 2020/851,
2020.

3 Shir Cohen and Idit Keidar. Subquadratic multivalued asynchronous byzantine agreement
whp. arXiv preprint arXiv:2308.02927, 2023.

4 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic
asynchronous byzantine agreement whp. In 34th International Symposium on Distributed
Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

5 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191–204, January 1985.

6 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68, 2017.

7 Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. Journal of the ACM (JACM), 58(4):1–24, 2011.

8 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

9 Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Foundations
of Computer Science, 1999. 40th Annual Symposium on, pages 120–130. IEEE, 1999.

10 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
binary byzantine consensus with t < n/3, O(n2) messages, and O(1) expected time. Journal
of the ACM (JACM), 62(4):31, 2015.

11 Achour Mostefaoui, Michel Raynal, and Frédéric Tronel. From binary consensus to multivalued
consensus in asynchronous message-passing systems. Information Processing Letters, 73(5-
6):207–212, 2000.

12 Russell Turpin and Brian A Coan. Extending binary byzantine agreement to multivalued
byzantine agreement. Information Processing Letters, 18(2):73–76, 1984.

Brief Announcement:
Distributed Derandomization Revisited
Sameep Dahal #

Aalto University, Finland

Francesco d’Amore #

Aalto University, Finland

Henrik Lievonen #

Aalto University, Finland

Timothé Picavet #

Aalto University, Finland
ENS de Lyon, France

Jukka Suomela #

Aalto University, Finland

Abstract
One of the cornerstones of the distributed complexity theory is the derandomization result by
Chang, Kopelowitz, and Pettie [FOCS 2016]: any randomized LOCAL algorithm that solves a locally
checkable labeling problem (LCL) can be derandomized with at most exponential overhead. The
original proof assumes that the number of random bits is bounded by some function of the input
size. We give a new, simple proof that does not make any such assumptions – it holds even if the
randomized algorithm uses infinitely many bits. While at it, we also broaden the scope of the result
so that it is directly applicable far beyond LCL problems.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Pseudorandomness and derandomization

Keywords and phrases Distributed algorithm, Derandomization, LOCAL model

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.40

Funding This work was supported in part by the Research Council of Finland, Grant 333837.

Acknowledgements We thank the participants in our reading group at Aalto University for helpful
discussions.

1 Introduction

Distributed derandomization. A long line of recent work has led to a near-complete
understanding of the distributed computational complexity of locally checkable labeling
problems (LCLs) [5]. These are graph problems that can be defined by giving a finite list of
feasible local neighborhoods [3]; for example, c-coloring in graphs of maximum degree ∆ (for
some fixed c and ∆) is an LCL problem.

We are in particular interested in the round complexity of LCLs in two standard models
of distributed computing: deterministic and randomized versions of the LOCAL model [2, 4].
One of the cornerstones of the distributed complexity theory is the derandomization result
by Chang, Kopelowitz, and Pettie [1, Theorem 3.1]:

▶ Theorem 1 (Chang, Kopelowitz, and Pettie). Let Arand be a randomized LOCAL algorithm
that solves an LCL problem P in Trand(n) communication rounds in n-node graphs with
probability at least 1 − 1/n. Then there is a deterministic LOCAL algorithm Adet that solves
P in Tdet(n) rounds, where Tdet(n) = Trand

(
2n2)

.

© Sameep Dahal, Francesco d’Amore, Henrik Lievonen, Timothé Picavet, and Jukka Suomela;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 40; pp. 40:1–40:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sameep.dahal@aalto.fi
https://orcid.org/0000-0002-7323-2932
mailto:francesco.damore@aalto.fi
https://orcid.org/0000-0001-7498-0660
mailto:henrik.lievonen@aalto.fi
https://orcid.org/0000-0002-1136-522X
mailto:timothe.picavet@aalto.fi
https://orcid.org/0000-0002-7129-0127
mailto:jukka.suomela@aalto.fi
https://orcid.org/0000-0001-6117-8089
https://doi.org/10.4230/LIPIcs.DISC.2023.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Brief Announcement: Distributed Derandomization Revisited

Prior
work

This
work

Arand[f]

Arand[f] Anorm

Find f

Find Anorm

Run Arand[f]

Run Anorm

Existence proof
One-time local
computation:

0 rounds

Distributed
computation:

Trand
(
2n2)

rounds

Figure 1 Proof strategy in this work and prior work [1].

But what do we mean, precisely, when we say that Arand is a randomized algorithm in the
LOCAL model? Chang, Kopelowitz, and Pettie [1] assume that there is some upper bound
r(n) on the number of random bits used by a node. This is a non-standard definition; while
many reasonable algorithms naturally satisfy this, formally speaking it is not compatible with
e.g. a randomized algorithm in which each node picks a number from a geometric distribution
by repeated Bernoulli trials. All other results that build on Theorem 1 are also influenced by
this assumption; the foundations of the field are on a bit shaky ground.

New result: unbounded randomness. In this short note we prove a stronger version of
Theorem 1. Our proof does not need to assume anything about the number of random bits
consumed by a node. Hence, we can now safely conclude that all corollaries of Theorem 1
also hold in the standard randomized LOCAL model, in which local computation – including
the number of random bits generated – is unbounded.

Similar to [1], we assume that n and Trand (or sufficiently tight bounds on them) are known.
Similar to [1], the proof is constructive and Adet is a uniform, computable, deterministic
algorithm. The only difference is that we assume less about Arand.

Key new ideas. Exactly like Chang, Kopelowitz, and Pettie [1, Theorem 3.1], we start by
defining N = 2n2 . Then even though we are working in an n-node graph, we lie to Arand
that we have a graph with N nodes. The running time increases to Trand(N), but the success
probability improves to 1 − 1/N , which is large enough to show that there exists a mapping
f from unique identifiers to random bits that works for every n-node graph.

At this point our paths deviate – see Figure 1 for an illustration. In [1, Theorem 3.1],
Adet is constructed as follows: Each node checks each possible mapping f , and picks the first
one that works for every n-node graph; then Adet simply simulates Arand with random bits
from f . This is where they make use of bounded randomness: for a fixed n there are only
finitely many possible functions f to check.

We proceed as follows – instead of looking at the internal behavior of the algorithm we
look at its external behavior :
1. Since a good mapping f exists, we could in principle hard-code this specific mapping to

obtain a deterministic algorithm A = Arand[f]. At this point we merely know that A
exists – this step is non-constructive, and A might not even be computable.

S. Dahal, F. d’Amore, H. Lievonen, T. Picavet, and J. Suomela 40:3

2. However, any deterministic LOCAL algorithm can be represented in a normal form as a
function Anorm that maps each possible Trand(N)-radius neighborhood to a local output.
Since A exists, we know that such a function Anorm also exists and solves P correctly in
all n-node graphs.

3. Now Adet simply finds the first valid Anorm, and then simulates Anorm.
This way we can construct a computable, uniform, deterministic algorithm Adet even if we
merely know that Arand exists, and even if Arand is non-computable or non-uniform.

Two extensions. While Theorem 1 was originally presented for LCL problems, our new
proof works for a broader class of problems: we show how to handle labeling problems that
are defined component-wise. The proof is given in Section 3; Theorem 1 then follows as a
special case.

We also briefly discuss in Section 4 one extension: how to derandomize algorithms that
are only guaranteed to work in connected graphs. A bit more care is needed when we lie
about the number of nodes in that case.

2 Preliminaries

Let G = (V, E) denote a simple undirected graph. For any two nodes u, v ∈ V , we denote
their distance by d(u, v), i.e., the number edges in a shortest path connecting u to v; if such
path does not exist, then d(u, v) = +∞. Furthermore, by deg(v) we denote the degree of v,
i.e., the number of incident edges.

LOCAL model. Let G = (V, E) be any graph with n nodes. In the deterministic LOCAL
model, each node v ∈ V is given a unique identifier id(v) ∈ {1, 2, . . . , nc} for some constant
c ≥ 1. The initial knowledge of a node consists of its own identifier, its degree, the number of
nodes n and (possibly) an input label. Each node runs the same algorithm and computation
proceeds in synchronous rounds. In each round, nodes send messages of arbitrary size to their
neighbors, then receive some messages, and then perform local computations of arbitrary
complexity. After some number of rounds, a node must terminate its computation and decide
on its local output. The running time (or complexity) of a distributed algorithm is defined
as the number of rounds needed by all nodes to decide the local output.

In the randomized LOCAL model, each node is also given access to an infinite random
bit stream, and the bit streams of the nodes are mutually independent. We say that an
algorithm is uniform if the size of the description of the algorithm does not depend on n.

For any fixed locality T , the LOCAL model can also be viewed as a mapping from each
radius-T neighborhood NT [v] of each node v to a local output. Here by NT [v] we mean
the graph (V ′, E′), where V ′ ⊆ V is the set of all nodes u ∈ V (G) with d(v, u) ≤ T and E′

is the set of edges {s, t} ∈ E with d(v, s) ≤ T − 1 and d(v, t) ≤ T . Each node of NT [v] is
also labeled with its original degree deg(u), unique identifier id(u), local input, and – for
randomized algorithms – its stream of random bits. This is exactly the information node v

can gather in T rounds.

Labeling problems. Let Σin be a finite set of input labels and Σout be a finite set of
admissible output labels. An input labeling of a graph G = (V, E) is a function λin : V → Σin,
and an output labeling is a function λout : V → Σout. A labeling problem P specifies for each
graph and each input labeling a set of feasible output labelings.

DISC 2023

40:4 Brief Announcement: Distributed Derandomization Revisited

We say that P is a component-wise verifiable problem if for each graph G and each con-
nected component C of G, the set of valid output labelings restricted to C only depends on C.

Let r ∈ N be a constant. We say that P is a locally verifiable problem with verification
radius r if for each graph G and each node v of G, the set of valid output labelings restricted
to Nr[v] only depends on Nr[v].

We note that LCL problems [3] are a special case of locally verifiable problems with a
constant bound on the degree of the nodes. Locally verifiable problems are in turn a special
case of component-wise verifiable problems.

3 Main result

We give the derandomization result directly for component-wise verifiable problems; Theorem 1
then follows as a corollary.

▶ Theorem 2. Let Arand be a randomized LOCAL algorithm that solves a component-wise
verifiable problem P in Trand(n) communication rounds in n-node graphs with probability at
least 1 − 1/n. Then there is a deterministic LOCAL algorithm Adet that solves P in Tdet(n)
rounds, where Tdet(n) = Trand

(
2n2)

.

Proof. Consider any sufficiently large n, and let N = 2n2 . In what follows, we lie to algorithm
Arand that the input graph consists of N nodes. Hence, it runs in time T := Trand(N) =
Tdet(n) and succeeds with probability 1 − 1/N .

Let Rn = {f : {0, 1}c log n → {0, 1}N} be the family of all possible assignments of random
bits streams to unique identifiers. For f ∈ Rn, we write Arand[f] to denote the deterministic
LOCAL algorithm in which node v runs Arand but uses f(id(v)) as its random bit stream.
Note that Arand is equivalent to the following process: choose f ∈ Rn uniformly at random
and apply Arand[f].

Let Gn be the set of all possible inputs (G, id, λin), where G is an n-node graph, id is a
unique identifier assignment, and λin is an input labeling. We know that

|Gn| ≤ 2(n
2) · 2cn log n · |Σin|n < N = 2n2

for a large enough n. We say that f is good if Arand[f] outputs a valid solution for every
input in family Gn.

Now, we show there exists a good f . Let F be a uniform random variable over Rn. Then

Pr(F is bad) ≤
∑

G∈Gn

Pr(Arand[F] fails on G) =
∑

G∈Gn

Pr(Arand fails on G) ≤ |Gn|
N

< 1.

Therefore, Pr(F is good) > 0. Hence, there exists a good function; let f be any such function.
Thus, there is a deterministic algorithm A = Arand[f] that solves P on all inputs in Gn in at
most T rounds.

Any deterministic T -round algorithm in the LOCAL model defines a mapping Anorm
from radius-T neighborhoods to local outputs. Conversely, such a mapping Anorm can be
interpreted as a T -round algorithm. Furthermore, for a fixed n, there are only finitely many
such mappings.

Now Adet works as follows: Given n, each node first enumerates all candidate mappings
Anorm in lexicographic order, checks if Anorm solves P for every Gn, and stops once the
first such Anorm is found. Then Adet uses T rounds so that each node v learns its radius-T
neighborhood NT [v], and finally each node applies mapping Anorm to NT [v] to determine its
local output. ◀

S. Dahal, F. d’Amore, H. Lievonen, T. Picavet, and J. Suomela 40:5

4 Technicality: connected graphs

In the proof of Theorem 2, a key step was that we lied about n. The algorithm cannot catch
us lying, as the n-node input graph G is indistinguishable from some hypothetical N -node
input graph G′ in which one connected component is isomorphic to G. As P was assumed to
be component-wise verifiable, an algorithm that succeeds globally in G′ also has to succeed
locally when restricted to G.

The proof heavily exploited graphs that may consist of multiple connected components.
In this section we briefly note that this is not necessary. We can prove the following version
of Theorem 2 that holds even if Arand only works correctly in connected graphs. However,
component-wise problems are too broad class of problems in this case, and we consider locally
verifiable problems instead:

▶ Theorem 3. Let Arand be a randomized LOCAL algorithm that solves a locally verifiable
problem P in Trand(n) communication rounds in n-node connected graphs with probability
at least 1 − 1/n. Then there is a deterministic LOCAL algorithm Adet that solves P in
O(Tdet(n)) rounds, where Tdet(n) = Trand

(
2n2)

.

Proof. Let t = Tdet(n) + r, where r is the verification radius of problem P. In algorithm
Adet, each node v first explores its radius-t neighborhood to determine if the entire input
graph G is contained in Nt[v]. If yes, we spend another t rounds to inform all nodes about
G. In this case all nodes have learned G, and we can solve P by brute force and stop.

Otherwise, we can proceed as we did in the proof of Theorem 2. We can now safely lie
about N . To see this, assume that Arand fails in some n-node graph G with probability more
than n/N if we lie that G has N nodes. Then the algorithm also has to fail locally in the
radius-r neighborhood of some node v with probability more than 1/N . Now it is possible to
construct an N -node graph G′ with node v′ such that radius-t neighborhood of v in G is
isomorphic to the radius-t neighborhood of v′ in G′ (here we exploit the fact that radius-t
neighborhood of v does not contain the entire graph G). As radius-t neighborhoods of v and
v′ agree, and the running time of Arand is t − r rounds, the output distributions of Nr[v]
and Nr[v′] also agree. Now it follows that Arand fails locally in the radius-r neighborhood
of v′ in G′ with probability more than 1/N , and hence it also fails globally in G′ with
probability more than 1/N , which is a contradiction with the assumption that Arand solves
P in connected N -node graphs with probability at least 1 − 1/N .

Now as long as we choose a large enough n such that |Gn| < N/n, the rest of the proof of
Theorem 2 goes through. ◀

References
1 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between ran-

domized and deterministic complexity in the local model. SIAM Journal on Computing,
48(1):122–143, 2019. doi:10.1137/17M1117537.

2 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

3 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

4 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

5 Jukka Suomela. Landscape of locality (invited talk). In 17th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT 2020), 2020. doi:10.4230/LIPIcs.SWAT.2020.2.

DISC 2023

https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.4230/LIPIcs.SWAT.2020.2

Brief Announcement:
Byzantine Consensus Under Dynamic Participation
with a Well-Behaved Majority
Eli Gafni #

University of California, Los Angeles, CA, USA

Giuliano Losa #

Stellar Development Foundation, San Francisco, CA, USA

Abstract
In a permissionless system like Ethereum, participation may fluctuate dynamically as some partici-
pants unpredictably go offline and some others come back online. In such an environment, traditional
Byzantine fault-tolerant consensus algorithms may stall – even in the absence of failures – because
they rely on the availability of fixed-sized quorums.

The sleepy model formally captures the main requirements for solving consensus under dynamic
participation, and several algorithms solve consensus with probabilistic safety in this model assuming
that, at any time, more than half of the online participants are well behaved. However, whether
safety can be ensured deterministically under these assumptions, especially with constant latency,
remained an open question.

Assuming a constant adversary, we answer in the positive by presenting a consensus algorithm
that achieves deterministic safety and constant latency in expectation. In the full version of this
paper, we also present a second algorithm which obtains both deterministic safety and liveness,
but is likely only of theoretical interest because of its high round and message complexity. Both
algorithms are striking in their simplicity.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Consensus, Sleepy Model, Dynamic Participation, Byzantine Failures

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.41

Related Version Full Version: https://arxiv.org/abs/2301.04817

Supplementary Material Model: https://doi.org/10.5281/zenodo.8226236

1 Introduction

In a permissionless system like Ethereum, the parties running the consensus algorithm are
known and fixed (up to reconfigurations) but they may unpredictably go offline or come back
online. We say that participation is dynamic.

Ideally, we would like to solve consensus even if the set of online participants fluctuates
unpredictably, as long as a sufficient fraction of those who are online are well-behaved. BFT
consensus algorithms like PBFT [5], Algorand Agreement [6], or Tendermint [4] do not work
in this setting because they rely on the availability of fixed-size quorums to make progress,
and thus they stall – even in the absence of failures – if too many participants go offline.

In this paper, we consider the consensus problem in a synchronous system with dynamic
participation similar to the sleepy model [19]. We assume that a fixed set of processes execute
a sequence of rounds where, each round, an adversary partitions the processes into three sets:
offline processes, online and faulty (i.e. controlled by the adversary) processes, and online
and well-behaved processes. Communication is synchronous, which means that a message

© Eli Gafni and Giuliano Losa;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 41; pp. 41:1–41:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eli@ucla.edu
mailto:giuliano@stellar.org
https://orcid.org/0000-0003-2341-7928
https://doi.org/10.4230/LIPIcs.DISC.2023.41
https://arxiv.org/abs/2301.04817
https://doi.org/10.5281/zenodo.8226236
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

sent in round r is guaranteed to be received by all processes that are online in round r + 1.
Importantly, in each round, the processes do not know a priori who is online and who is not,
nor who is well behaved and who is faulty.

Several algorithms solve consensus in variants of this setting [19, 2, 8, 13, 18, 16, 9, 20].
However, one question that remained open is whether we can solve consensus under dynamic
participation with deterministic safety and constant latency in expectation, assuming that:
a) each round, a strict majority of the online participants are well behaved, b) a PKI and
verifiable random functions [17] (VRF) are available, and c) the faulty set is constant from
one round to the next. In this paper, we present such a consensus algorithm.

Solving consensus under those constraints is not easy. On the one hand, we could imagine
using a variant of the Dolev-Strong algorithm [10]. However, this algorithm takes a number
of rounds linear in the number of failures, while we aim at constant latency. On the other
hand, it seems that techniques based on intersecting quorums will not work: In a given
round, it is possible that an online, well-behaved process p receives a message m from a strict
majority of the processes it hears of, while another online, well-behaved process p′ receives a
message m′ ̸= m from a strict majority of the processes it hears of.

We start by observing that we can prevent faulty processes from equivocating and
witholding messages to some processes, using a simple two-round algorithm. This allows us
to simulate what we call the no-equivocation model, in which it is no longer possible for two
well-behaved processes to hear of conflicting strict majorities. Next, taking inspiration from
Gafni and Zikas [12], we solve the commit-adopt problem [11] (a graded agreement [7] with
two grades) deterministically and in exactly 2 rounds of the no-equivocation model (for a
total of 4 rounds of the base model).

Finally, using commit-adopt, we propose a consensus algorithm reminiscent of the phase-
king algorithm [3], where we use a probabilistically-elected leader (which can be done using
VRFs) instead of selecting a king round-robin. The algorithm ensures safety deterministically,
terminates in 18 rounds in expectation, and, in an execution with at most m online partici-
pants, each process broadcasts at most m messages each round. Whether the termination
bound and message complexity can be improved is left for future work.

In the full version of this paper [15], we generalize the model to a setting where the
set of processes has unknown cardinality and failures are governed by a more powerful
mobile message adversary. We then show with detailed proofs that the consensus algorithm
described in the present paper works in this model, and we present another consensus
algorithm, inspired by the Dolev-Strong algorithm [10], that achieves both deterministic
safety and liveness, although with a linear latency in the number of failures (even if the set
of processes is unknown) as long as there is a strict subset of the processes that contains all
the faulty sets.

2 The model

We consider a finite, nonempty set P of processes running an algorithm in a synchronous,
message-passing system with point-to-point links between every pair of processes. An
unknown subset F ⊂ P of the processes is faulty.

The set P is publicly known and every process p has a key pair Kp whose public component
is also known to all (this is an abstraction of a PKI). We write Kp(m) for the message m

signed with the private component of Kp.

E. Gafni and G. Losa 41:3

The system executes an infinite sequence of rounds numbered 1, 2, 3, Each round r,
an adversary partitions the processes into a nonempty set Or of online processes and a set
P \ Or of offline processes such that a) all the faulty processes are online (i.e. F ⊆ Or) and
b) the faulty processes consist of a strict minority of the online processes (i.e. 2|F | < |Or|).
The sets Or and F are a priori unknown to the processes.

Operationally, execution proceeds as follows. Initially, each process receives an external
input. Then, each round r consists of a send phase followed by a receive phase. In the
send phase, each online, well-behaved process sends a set of messages that, if r = 1, is a
function of its input, and that otherwise is a function of the set of messages it received in the
preceding round and of the output of a leader-election oracle described below. In both cases,
the algorithm determines the function. Faulty processes are controlled by the adversary and
may deviate by sending arbitrary messages, except that they cannot forge signatures. In the
receive phase, each process, online or not, receives all the messages sent to it in the round1.

The leader-election oracle gives an output to each online process at the beginning of
every round r > 1, and it ensures with probability 1/2 that every process that is online
and well-behaved in round r receives the identity of a unique process that is online and
well-behaved in round r − 1. In practice, the oracle can be implemented using VRFs by
selecting the process that has the highest VRF output.

Note that, as mentioned in the introduction, a difficulty in this model is that two well-
behaved processes may witness two conflicting strict majorities in the same round. For
example, take 5 processes p1 to p5 and consider a round r where all processes participate
and only p4 and p5 are faulty. Let p1 and p2 broadcast message m while p3 broadcasts
message m′ ̸= m. Moreover, let p4 and p5 send message m′ to p1 while they do not send any
messages to p2. Observe that p1 hears of 5 processes and receives m′ from 3 processes, and
so it witnesses a strict majority for m′. However, p2 hears of 3 processes and receives m from
2 processes, so it witnesses a strict majority for m.

3 Implementing commit-adopt

The most important building block of the consensus algorithm we present in the next section
is a solution to the commit-adopt problem. In the commit-adopt problem, each online process
initially receives an arbitrary input. After a fixed number of rounds R, each online process
must produce an output either of the form ⟨commit, v⟩ for some v, in which case we say
the process commits v, or of the form ⟨adopt, v⟩ for some v, in which case we say that the
process adopts v. The outputs must satisfy the following properties:
Agreement If a well-behaved process commits a value v, then every process that is online

and well-behaved in round R must either commit or adopt v.
Validity If all well-behaved processes that initially receive an input receive the same value v

as input, then all well-behaved processes that are online in round R commit v.

Next, we present an algorithm that implements commit-adopt in R = 4 rounds. We first
simulate a model that we call the no-equivocation model, and then implement commit-adopt
in the no-equivocation model.

1 Assuming that all processes receive messages is convenient, and it does not make things easier since
only the processes that are online in round r + 1 can use the messages they received in round r.

DISC 2023

41:4 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

3.1 Simulating the no-equivocation model
The no-equivocation model is similar to the base model of the preceding section except that,
each round r, each online process broadcasts a single message, and faulty processes may
deviate only by omitting to send their message to some processes (they cannot equivocate, i.e.
send different messages to different processes). Moreover, when a faulty process q deviates
in round r, then the online, well-behaved processes of the next round r + 1 get a failure
notification for q, noted λ, and such that one of the following three cases hold in round r + 1:
1. All online, well-behaved processes receive the same message m from q, or
2. Some online, well-behaved processes receive the same message m from q while all the

others receive the failure notification λ for q, or
3. Some online, well-behaved processes receive the failure notification λ for q while all the

others do not hear of q.

Note that the no-equivocation model does not allow for two different online, well-behaved
processes to witness two conflicting strict majorities of messages in the same round. Moreover,
the failure notification λ limits the ability of faulty processes to make other processes witness
different levels of participation.

We now simulate each no-equivocation round in two rounds of the base model:
1. In the first round, each process p must broadcast the tuple ⟨m, Kp(m)⟩, where m is the

message to simulate the broadcasting of.
2. In the second round, each process p must broadcast ⟨heard-of, m, Kp(m)⟩ for each message

⟨m, Kp(m)⟩ that it received in the first round. Finally, at the end of the second round,
for each process q such that p receives ⟨heard-of, mq, Kq(∗)⟩ for some message ∗:
a. If there is a message m′ such that p receives ⟨heard-of, m′, Kq(m′)⟩ from a strict

majority of the processes it hears of and p does not receive ⟨heard-of, m′′, Kq(m′′)⟩ for
any m′′ ̸= m′, then p must simulate receiving m′ for q.

b. Otherwise, p must simulate receiving the failure notification λ for q.
Essentially, processes broadcast their message and then tell each other what messages they
received in order to detect equivocations or missing messages. Note that the simulated
messages satisfy the minority-failure requirement because, since the set of faulty processes
being constant, the adversary cannot inflate round-1 participation after the fact.

3.2 Implementing commit-adopt in the no-equivocation model
We now implement commit-adopt in 2 rounds of the no-equivocation model (which amounts
to 4 rounds of the base model) as follows.
1. In the first no-equivocation round, each process must broadcast its input inp.
2. In the second no-equivocation round, each process must broadcast ⟨propose-commit, v⟩

if it receives v from a strict majority of the processes it hears of, and otherwise it must
broadcast ⟨no-commit⟩.

3. Finally, at the end of the second no-equivocation round, for each process p:
a. If p receives ⟨propose-commit, v⟩ from a strict majority of the processes it hears of,

then it must commit v.
b. Else, if there is a value v such that p receives ⟨propose-commit, v⟩ more often than it

receives ⟨propose-commit, v′⟩ for any other value v′, then p must adopt v.
c. Else, p must adopt its input inp.

Let us sketch why the commit-adopt algorithm satisfies the agreement property. Assume
that a well-behaved process p commits a value v. Note that it suffices to show that, for
every v′ ̸= v, no well-behaved process p′ receives ⟨propose-commit, v′⟩ more often than

E. Gafni and G. Losa 41:5

⟨propose-commit, v⟩. For every process q and value w, let count(q, w) be the number of times
q receives the message ⟨propose-commit, w⟩. With this notation, what we would like to show
is that count(p′, v) − count(p′, v′) > 0.

Note that, since processes may not witness conflicting strict majorities in the no-
equivocation model, no well-behaved process broadcasts ⟨propose-commit, v′⟩ for v′ ̸= v.
Additionally, remember that a faulty process q cannot send different messages to different pro-
cesses and that, should it selectively send a message to only some processes but not others, the
others receive the failure notification λ for q. From this, we get that count(p′, v)−count(p′, v′)
is equal to count(p, v) minus the number of processes q such that either a) p receives
⟨propose-commit, v⟩ from q and p′ receives the failure notification λ for q, or b) p′ receives
⟨propose-commit, v′⟩ from q and p did not receive ⟨propose-commit, v⟩ from q. In both cases,
q must be a faulty process. Thus, we have count(p′, v) − count(p′, v′) ≥ count(p, v) − |F2|,
where F2 is the set of faulty processes in the second no-equivocation round.

Finally, since p commits v, we have count(p, v) > |F2|.2 We conclude that count(p′, v) −
count(p′, v′) > 0, i.e. p′ receives ⟨propose-commit, v⟩ more often than ⟨propose-commit, v′⟩.

4 Consensus with deterministic safety and constant expected latency

In the consensus problem, each process that is initially online receives an input, and each
process may produce an output called a decision subject to the following requirements:
Agreement No two well-behaved processes produce different decisions.
Validity If all processes receive the same input v, the no well-behaved process decides v′ ≠ v.
Liveness With nonzero probability, in some round, all online, well-behaved processes decide.

commit-adopt
on locked

value
(4 rounds)

le
ad

er
 p

ro
po

sa
l

(1
 ro

un
d) commit-adopt

on decision
(4 rounds)

conciliator ratifier

possible decision

commit-adopt
on locked

value
(4 rounds)

le
ad

er
 p

ro
po

sa
l

(1
 ro

un
d) commit-adopt

on decision
(4 rounds)

conciliator ratifier

possible decision

Figure 1 Infinite alternating sequence of conciliators and ratifiers. Horizontal arrows represent
processes locally taking their output from one block and using it as input to the next block, while
vertical arrows represent processes possibly outputing a consensus decision.

To solve consensus, we use the construction shown in Figure 1. It consists of an infinite
alternating sequence of conciliators and ratifiers (following the terminology of Aspnes [1]),
starting with a conciliator. Informally, a ratifier tries to produce a consensus decision using
commit-adopt, but since processes are not guaranteed to commit, it may fail to do so. Thus,
the job of a conciliator is to try to make processes agree on their input to the next ratifier.
We do this using a leader. However, to ensure that no leader overrides a previous decision,
processes first negotiate, again using commit-adopt, on whether to listen to the leader or not.

More precisely, a ratifier simply consists of an instance of the commit-adopt algorithm in
which processes try to commit a consensus decision. Each process p inputs ⟨decide, vp⟩ to
the commit-adopt, where vp is p’s output in the preceding conciliator, and each process that
commits ⟨decide, v⟩ for some v decides v as a consensus decision.

2 This is only true if all faulty processes make themselves heard. A complete proof appears in the full
version of this paper.

DISC 2023

41:6 Byzantine Consensus Under Dynamic Participation with a Well-Behaved Majority

In a conciliator, each process p first inputs ⟨lock, vp⟩ into a commit-adopt instance to
try to lock the value vp that it gets as output in the preceding ratifier. Then follows an
additional round, called the leader-proposal round, in which each process p broadcasts its
commit-adopt output. At the end of the leader-proposal round, for each process p that
receives ⟨commit, ⟨lock, v⟩⟩ for some v from a strict majority of the processes it hears of, p

considers v locked and outputs v. Otherwise, p outputs the value v received from the process
identified as leader by the leader-election oracle, if any, and else outputs an arbitrary value.

The lock mechanism ensures that a value unanimously supported by online, well-behaved
processes at the beginning of the conciliator cannot be overridden during the leader-proposal
round. Thus, once a value is first decided, all online, well-behaved processes keep unanimously
supporting that value in all subsequent rounds and the agreement property of consensus is
guaranteed. The validity property holds for similar reasons.

Finally, for liveness, note that if the oracle outputs the same online, well-behaved leader
to all, then all online, well-behaved processes output the same value from the conciliator
(because if an online, well-behaved process considers a value locked, then the leader must
have proposed that value). Since this happens with probability 1/2, the liveness property
holds. Moreover, given that a ratifier takes 4 rounds and a conciliator takes 5 rounds, it
takes at best 9 rounds to decide and 18 rounds in expectation.

5 Related Work

Starting with Bitcoin’s longest-chain protocol, a series of works solve consensus under dynamic
participation with probabilistic safety [19, 8, 2, 9, 13].

In this paper, we are interested in deterministic safety. Sandglass [20] achieves determinis-
tic safety under a minority of benign failures even under a growing adversary. The algorithm
we present also works in the Sandglass model: without Byzantine failures, we do not need to
assume a constant adversary.

Momose and Ren [18] tolerate a minority of Byzantine failures under an eventual-
stabilization assumption. Malkhi, Momose, and Ren [16] remove the stabilization assumption
but tolerate only one-third failures. We improve on this result by tolerating a minority
(i.e. less than 1/2) of failures, albeit only under a constant adversary. Whether there is an
algorithm that tolerates a growing adversary remains open.

Finally, we have used a simple model in order to focus on essential algorithmic issues.
See Lewis-Pye and Roughgarden [14] for more holistic models of permissionless systems.

References
1 James Aspnes. A modular approach to shared-memory consensus, with applications to the

probabilistic-write model. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, 2010. doi:10.1145/1835698.1835802.

2 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros Genesis: Composable Proof-of-Stake Blockchains with Dynamic Availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
2018. doi:10.1145/3243734.3243848.

3 P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science, 1989. doi:
10.1109/SFCS.1989.63511.

4 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus, 2019.
doi:10.48550/arXiv.1807.04938.

https://doi.org/10.1145/1835698.1835802
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.48550/arXiv.1807.04938

E. Gafni and G. Losa 41:7

5 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20, 2002. doi:10.1145/571637.571640.

6 Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. ALGORAND AGREE-
MENT: Super Fast and Partition Resilient Byzantine Agreement, 2018. URL: https:
//eprint.iacr.org/2018/377.

7 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777, 2019. doi:10.1016/j.tcs.2019.02.001.

8 Phil Daian, Rafael Pass, and Elaine Shi. Snow White: Robustly Reconfigurable Consensus
and Applications to Provably Secure Proof of Stake. In Financial Cryptography and Data
Security, 2019. doi:10.1007/978-3-030-32101-7_2.

9 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No More Attacks on
Proof-of-Stake Ethereum? arXiv preprint arXiv:2209.03255, 2022.

10 D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAM
Journal on Computing, 12, 1983. doi:10.1137/0212045.

11 Eli Gafni. Round-by-round Fault Detectors (Extended Abstract): Unifying Synchrony and
Asynchrony. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, 1998. doi:10.1145/277697.277724.

12 Eli Gafni and Vasileios Zikas. Synchrony/Asynchrony vs. Stationary/Mobile? The Latter is
Superior...in Theory, 2023. doi:10.48550/arXiv.2302.05520.

13 Vipul Goyal, Hanjun Li, and Justin Raizes. Instant Block Confirmation in the Sleepy Model.
In Financial Cryptography and Data Security, 2021. doi:10.1007/978-3-662-64331-0_4.

14 Andrew Lewis-Pye and Tim Roughgarden. Permissionless Consensus, 2023. doi:10.48550/
arXiv.2304.14701.

15 Giuliano Losa and Eli Gafni. Consensus in the Unknown-Participation Message-Adversary
Model, January 2023. doi:10.48550/arXiv.2301.04817.

16 Dahlia Malkhi, Atsuki Momose, and Ling Ren. Byzantine Consensus under Fully Fluctuating
Participation, 2022. URL: https://eprint.iacr.org/2022/1448.

17 S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th Annual Symposium
on Foundations of Computer Science, 1999. doi:10.1109/SFFCS.1999.814584.

18 Atsuki Momose and Ling Ren. Constant Latency in Sleepy Consensus. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022.
doi:10.1145/3548606.3559347.

19 Rafael Pass and Elaine Shi. The Sleepy Model of Consensus. In Advances in Cryptology –
ASIACRYPT 2017, 2017. doi:10.1007/978-3-319-70697-9_14.

20 Youer Pu, Lorenzo Alvisi, and Ittay Eyal. Safe Permissionless Consensus. In 36th International
Symposium on Distributed Computing (DISC 2022), volume 246, 2022. doi:10.4230/LIPIcs.
DISC.2022.33.

DISC 2023

https://doi.org/10.1145/571637.571640
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1137/0212045
https://doi.org/10.1145/277697.277724
https://doi.org/10.48550/arXiv.2302.05520
https://doi.org/10.1007/978-3-662-64331-0_4
https://doi.org/10.48550/arXiv.2304.14701
https://doi.org/10.48550/arXiv.2304.14701
https://doi.org/10.48550/arXiv.2301.04817
https://eprint.iacr.org/2022/1448
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1145/3548606.3559347
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.4230/LIPIcs.DISC.2022.33
https://doi.org/10.4230/LIPIcs.DISC.2022.33

Brief Announcement: Scalable Agreement
Protocols with Optimal Optimistic Efficiency
Yuval Gelles
Hebrew University of Jerusalem, Israel

Ilan Komargodski
Hebrew University of Jerusalem, Israel
NTT Research, Sunnyvale, CA, USA

Abstract
Designing efficient distributed protocols for various agreement tasks such as Byzantine Agreement,
Broadcast, and Committee Election is a fundamental problem. We are interested in scalable protocols
for these tasks, where each (honest) party communicates a number of bits which is sublinear in n,
the number of parties. The first major step towards this goal is due to King et al. (SODA 2006) who
showed a protocol where each party sends only Õ(1)1 bits throughout Õ(1) rounds, but guarantees
only that 1 − o(1) fraction of honest parties end up agreeing on a consistent output, assuming
constant < 1/3 fraction of static corruptions. Few years later, King et al. (ICDCN 2011) managed to
get a full agreement protocol in the same model but where each party sends Õ(

√
n) bits throughout

Õ(1) rounds. Getting a full agreement protocol with o(
√

n) communication per party has been a
major challenge ever since.

In light of this barrier, we propose a new framework for designing efficient agreement protocols.
Specifically, we design Õ(1)-round protocols for all of the above tasks (assuming constant < 1/3
fraction of static corruptions) with optimistic and pessimistic guarantees:

Optimistic complexity: In an honest execution, all parties send only Õ(1) bits.

Pessimistic complexity: In any other case, (honest) parties send Õ(
√

n) bits.
Thus, all an adversary can gain from deviating from the honest execution is that honest parties will
need to work harder (i.e., transmit more bits) to reach agreement and terminate. Besides the above
agreement tasks, we also use our new framework to get a scalable secure multiparty computation
(MPC) protocol with optimistic and pessimistic complexities.

Technically, we identify a relaxation of Byzantine Agreement (of independent interest) that
allows us to fall-back to a pessimistic execution in a coordinated way by all parties. We implement
this relaxation with Õ(1) communication bits per party and within Õ(1) rounds.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Byzantine Agreement, Consensus, Optimistic-Pessimistic, Secure Multi-Party
Computation

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.42

Related Version Full Version: https://eprint.iacr.org/2023/751 [12]

Funding This research is supported in part by an Alon Young Faculty Fellowship, by a grant from
the Israel Science Foundation (ISF Grant No. 1774/20), and by a grant from the US-Israel Binational
Science Foundation and the US National Science Foundation (BSF-NSF Grant No. 2020643).
Ilan Komargodski: Incumbent of the Harry & Abe Sherman Senior Lectureship at the School of
Computer Science and Engineering at the Hebrew University.

1 We use the notation Õ(·), Ω̃(·) to hide poly-logarithmic factors in n.

© Yuval Gelles and Ilan Komargodski;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 42; pp. 42:1–42:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.42
https://eprint.iacr.org/2023/751
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Scalable Agreement Protocols with Optimal Optimistic Efficiency

1 Introduction and Results

We propose a new framework for designing efficient fault-tolerant distributed algorithms for
large scale networks. Fault-tolerance means that the functionality of the protocol should
not be compromised even if some of the participants in the protocol collude and arbitrarily
deviate from the protocol’s specification. Basic and well-studied abstractions in this context
are Byzantine Agreement (BA) [20, 19], Broadcast, and Committee Election. These serve
as building blocks in many distributed protocols. Perhaps most notably, these protocols
underlie essentially all secure (cryptographic) multiparty computation protocols [2, 13, 5].

We are interested in designing protocols for all of the above tasks that can be used in
large scale settings, where the number of parties could potentially be really large. Let n be
the number of parties involved. For protocols to be scalable, we want the amount of work
or communication required by each party to be sub-linear in n. Even for the very basic
tasks, such as BA, this question was out of reach for many years. The situation changed
with the groundbreaking work of [18] that gave a technique for “almost everywhere” scalable
agreement. Using their technique, it is possible to solve BA, Broadcast, and Committee
Election in a scalable fashion with the caveat that only 1 − o(1) fraction of the honest parties
agree on the output of the protocol. In terms of efficiency though, their protocol is essentially
optimal: it requires only Õ(1) communication rounds and Õ(1) communication per party.

The model that is considered in [18] is point-to-point synchronous communication and
with a computationally unbounded Byzantine (a.k.a malicious) adversary that controls a
(1/3 − ϵ)-fraction of the parties for any ϵ > 0. Corruptions occur statically, namely, before
the protocol begins (but after it is specified). Further, the adversary has full-information,
namely, it sees all messages sent, even messages sent between two honest party, and it is
rushing, namely, it gets to send its messages after seeing the honest party’s messages for that
round. This is the model that we consider in this work as well.

Since [18]’s work, there has been an effort to boost their almost everywhere agreement
property into full agreement in various different settings [16, 17, 15, 3]. In the classical
information theoretic setting, the work of [15] managed to get full agreement protocols for all
of the above tasks at the cost of increased overhead: each party’s communication is Õ(

√
n)

bits (the round complexity remains Õ(1)). More than a decade since this work, it is still
essentially the state of the art (excluding protocols relying on cryptographic assumptions).
The work of [14] proved a lower bound saying that Ω̃(3

√
n) communication is necessary for

at least one party for a certain (non-trivial) class of protocols. See Section 2 for more
details. Thus, it is still major open problem to get a full agreement protocol with o(

√
n)

communication per party.

Optimistic/pessimistic efficiency

Given the lack of progress in getting better agreement protocols in the worst-case, we
suggest a new “beyond worst-case” approach for designing protocols. Specifically, we consider
protocols that could have different complexities, depending on the attacker’s actions. It is
important to emphasize that we want protocols that are correct/secure no matter what; i.e.,
all honest parties terminate and full agreement is reached. Thus, all an adversary can gain
from deviating from the honest execution is that honest parties will need to work harder (i.e.,
transmit more bits) to reach agreement and terminate. So, it is conceivable to assume that
in some applications an attacker will have no incentive to execute an attack. That is, if all
the adversary cares about is breaking correctness/security (and gains nothing from a delay),
then there is no point to deviate from the protocol and much better efficiency is obtained in
this case. We state our main result next.

Y. Gelles and I. Komargodski 42:3

▶ Theorem 1 (Scalable agreement compiler). Let X ∈ {ByzantineAgreement, Broadcast,
CommitteeElection} be a task. Assume that there is a protocol Π for X tolerating 1/3 − ϵ

fraction of static corruptions for any ϵ > 0. Then, there is another protocol Π′ for X

(tolerating 1/3 − ϵ fraction of static corruptions for any ϵ > 0) with the following features:
Optimistic Complexity: In an honest execution, each party sends Õ(1) bits and the protocol

terminates within Õ(1) rounds.
Pessimistic Complexity: In the worst-case, the communication and round complexities of Π′

is the same as that of Π plus Õ(1).

We remark that while we stated above that our protocols obtain optimistic efficiency
(Õ(1) communication overall per party) in honest executions, in fact, this is the case even if
crash failures are allowed (i.e., an adversary can crash corrupt nodes).

As a corollary of Theorem 1, using the protocols of [18, 15] as Π, we get the following
result.

▶ Corollary 2 (Scalable agreement instantiation). There are Õ(1)-round Byzantine Agreement,
Committee Election, and Broadcast protocols tolerating 1/3 − ϵ fraction of static corruptions
for any ϵ > 0 with the following features:
Optimistic Complexity: In an honest execution, each party sends Õ(1) bits.
Pessimistic Complexity: In the worst-case, each honest party sends Õ(

√
n) bits.

The Õ(
√

n) term in the pessimistic complexity bullet comes from the cost of [15]’s protocol.
Any improvement on the latter will immediately translate to improved pessimistic complexity.

Technical highlight: agreement with error detection. The main building block of the
above theorem is a new protocol for a relaxed variant of an agreement functionality. Recall
that in an agreement functionality the goal is to guarantee that all parties terminate and agree
on some specified value. We introduce a relaxation of the above requirement by requiring
that (1) in an honest execution, indeed all parties terminate and reach agreement, but (2)
in all other cases, all parties should agree on a special Fail symbol. With this abstraction,
we can identify failure, fallback and invoke another (expensive) agreement protocol. To
get Theorem 1, we implement such a relaxed agreement protocol using a protocol with Õ(1)
rounds and per-party communication.

Generic optimistic/pessimistic framework. More generally, we use our agreement with
error detection protocol to obtain a generic framework for combining efficient optimistic
protocols with less efficient pessimistic protocols. Specifically, we manage to combine an
efficient protocol Πlight (solving a given task X) where it is guaranteed that a failure was
noticed by at least one party with a less efficient protocol Πheavy (solving the same task X)
that is executed only if everyone knows that some failure occurred. The complexity of the
combined protocol is inherited from Πlight in an honest execution and from Πheavy in any
other case.

Application to Scalable MPC

The above agreement tasks can be thought of as special cases of secure multi-party com-
putation (MPC) [13, 2, 5]. MPC protocols enable a set of mutually distrusting parties to
compute a function on their private inputs, while guaranteeing various properties such as
correctness, privacy, independence of inputs, and more. We consider the problem of scalable
MPC in the peer-to-peer synchronous communication model with private channels. (We
emphasize that only this result relies on private channels.)

DISC 2023

42:4 Scalable Agreement Protocols with Optimal Optimistic Efficiency

Feasibility results for (non-scalable) MPC have been long known, e.g., the BGW [2]
protocol gives a method for computing an arbitrary function with communication cost that
grows multiplicatively with the circuit size of the function and some polynomial in the number
of parties. That is, the communication complexity of each of the n parties is s · poly(n) when
computing a function represented as a circuit of size s.2 The question of scalable MPC,
i.e., protocols where the dominant term in the complexity is just the circuit size, is still an
active topic and modern results achieve MPC protocols with strong security guarantees and
communication complexity Õ(s + poly(n)) (see Section 2 for an overview and references).

We use our scalable agreement protocols to obtain a new generic scalable MPC. The
properties of the resulting protocol are summarized in the next theorem.

▶ Theorem 3 (Scalable MPC). There is a statistically maliciously secure MPC protocol
tolerating 1/3 − ϵ fraction of static corruptions for any ϵ > 0 with the following features.
Given a circuit of size s and depth d over n inputs, the protocol has the following complexity:
Optimistic Complexity: In an honest execution, each party sends Õ(s/n) bits.
Pessimistic Complexity: In the worst-case, each party sends Õ(s/n +

√
n) bits.

Round Complexity: All parties terminate after Õ(d) rounds.

The additive Õ(
√

n) term in the pessimistic complexity bullet comes generically from
Theorem 1. At a high level, the above MPC is obtained by using our agreement protocol
to generate a quorum: assign to each party its own representative (small and balanced)
committee where there is a strong majority of honest parties. Then, we distribute the gates
of the circuit to these committees. Each gate is evaluated by its assigned committees using
some standard MPC (e.g., BGW). We emphasize that our protocol has the appealing feature
that in an honest execution the total communication complexity is essentially equal to the
circuit size, for any circuit, and it is split in a balanced manner across parties. This idea
largely appeared in the scalable MPC protocol of [9]. The main difference is that we obtain
optimistic/pessimistic complexity, while they only had pessimistic complexity, and this is
due to the use of Theorem 1 instead of the protocol of [15].

2 Background and Related Work

Scalable agreement

The BA problem was introduced in the landmark work of Lamport, Shostak, and Pease [19].
In the following couple of decades, several protocols were presented (e.g., [10]) but they
all had quadratic total overhead, that is, every party had to essentially communicate with
every other party. The protocol of [18] was the first to break this barrier, but it had the
caveat of almost-everywhere agreement (rather than full agreement). Extending their almost-
everywhere agreement to full agreement in a scalable manner and with minimal cost is still
an exciting challenge. We mention some of the key papers addressing this challenge.

First, [16] presented a protocol that satisfies full agreement but it is not balanced. That
is, while most parties do communicate a sublinear amount of bits in n overall, there are few
parties that communicate essentially with everyone. Several follow up works (e.g., [4, 1])
suffer from the same issue. Then, [15] presented a protocol that satisfies full agreement and
it is balanced, but this comes with an extra Õ(

√
n) term in the communication cost.

2 Interestingly, in BGW it was already observed that their protocol has an optimistic/pessimistic flavor
where in the former the polynomial in n is slightly better than in the pessimistic case.

Y. Gelles and I. Komargodski 42:5

The extra cost in efficiency is partially explained by an Ω(3
√

n) lower bound on the
communication complexity of at least one party in any BA protocol with full agreement, due
to [14]. This lower bound, however, applies only to protocols with static filtering. In static
filtering, every party decides on the set of parties it will listen to before the beginning of each
round (as a function of its internal view at the end of the previous round). It is an intriguing
open problem to extend the lower bound beyond protocol with static filtering rules.

Lastly, we mention a work of [3]. They assume cryptographic and trusted setup as-
sumptions and further that the adversary is computationally bounded. Also, they assume
dynamic filter – namely, the decision of which message is received can be based on the content
of received messages (in their case, every message is checked if it contains a valid digital
signature). With these relaxations of the model, no lower bound is known. They showed a
communication-optimal protocol: only Õ(1) bits of communication per party are needed to
reach full agreement.3

We remark that all of the above works, as well as ours, assume near-optimal resilience, i.e.,
up to (1/3 − ϵ) fraction of corruptions (i.e., near-optimal resilience range). Less than n/3 − 1
corruptions is strictly necessary due to lower bounds of [19, 11] (unless further assumptions
are made such as a trusted setup or a computationally bounded adversary).

Scalable MPC

There has been a rich line of work on scalable MPC protocols. The main goal is to design
protocols where the total communication complexity scales like O(s + poly(n)) for securely
computing a size s circuit by n parties. This was studied in the context of perfect or statistical
security and optimal resilience (up to n/3 − 1 or n/2 − 1 corrupted parties) e.g., [2, 13], or
with perfect or statistical security and near-optimal resilience (up to (1/3 − ϵ) or (1/2 − ϵ)
fraction of corrupted parties) e.g., [9, 6]. In all of these works a broadcast channel is assumed
but its usage is limited to a number of times which is independent of the circuit size. All of
these works obtain somewhat stronger notions of security than what we obtain in Theorem 3
(e.g., they often tolerate adaptive corruptions while we handle only static ones). Note that
we can use our broadcast protocol from Theorem 1 to instantiate the broadcast channel in
the above works, achieving statistical security for (1/3 − ϵ) fraction of static corruptions.

Most related to us are the works [7, 9]. In these works the authors used the full agreement
protocol of [15] to get a scalable MPC with complexity Õ(s/n +

√
n) to compute a size s

circuit by n parties, per party. The corruption model is (1/3 − ϵ) fraction static corruptions,
same as ours. Our MPC prootcol is very similar to theirs (associating the wires of the
circuit to quorum members); but, our description is somewhat simpler because we use generic
maliciously secure MPC as black-box whereas they sometime use internal building blocks
such as verifiable secret sharing. The optimistic/pessimistic aspect is new to our work. Lastly,
we mention the work of [8] who studied scalable MPC protocols in an asynchronous setting.

3 [3] have two variants presenting tradeoffs between the cryptographic assumptions and the trusted setup
assumptions. Either a weaker trusted setup assumption (a public-key infrastructure and a common
random string) and a stronger cryptographic assumption (SNARKs with linear-time extraction and a
collision resistant hash).

DISC 2023

42:6 Scalable Agreement Protocols with Optimal Optimistic Efficiency

References
1 Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication complexity of byzantine agreement, revisited. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC, pages 317–326,
2019.

2 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, STOC, pages 1–10, 1988.

3 Elette Boyle, Ran Cohen, and Aarushi Goel. Breaking the O(
√

n)-bit barrier: Byzantine
agreement with polylog bits per party. In ACM Symposium on Principles of Distributed
Computing, PODC, pages 319–330, 2021.

4 Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. Fast byzantine agreement. In
ACM Symposium on Principles of Distributed Computing, PODC, pages 57–64, 2013.

5 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (abstract). In Advances in Cryptology - CRYPTO, volume 293, page 462, 1987.

6 Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam D. Smith.
Scalable multiparty computation with nearly optimal work and resilience. In Advances in
Cryptology - CRYPTO, pages 241–261, 2008.

7 Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Breaking the O(mn) bit
barrier: Secure multiparty computation with a static adversary. In 8th Student Conference,
page 64, 2012.

8 Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Quorums quicken queries: Ef-
ficient asynchronous secure multiparty computation. In Distributed Computing and Networking
- ICDCN, pages 242–256, 2014.

9 Varsha Dani, Valerie King, Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Secure
multi-party computation in large networks. Distributed Computing, 30:193–229, 2017.

10 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM J. Comput., 12(4):656–666, 1983.

11 Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Comput., 1(1):26–39, 1986.

12 Yuval Gelles and Ilan Komargodski. Scalable agreement protocols with optimal optimistic
efficiency. Cryptology ePrint Archive, Paper 2023/751, 2023.

13 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, STOC, pages 218–229, 1987.

14 Dan Holtby, Bruce M. Kapron, and Valerie King. Lower bound for scalable byzantine agreement.
Distributed Comput., 21(4):239–248, 2008.

15 Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. Load balanced scalable
byzantine agreement through quorum building, with full information. In Distributed Computing
and Networking - ICDCN, pages 203–214, 2011.

16 Valerie King and Jared Saia. From almost everywhere to everywhere: Byzantine agreement
with õ(n3/2) bits. In Distributed Computing, 23rd International Symposium, DISC, pages
464–478, 2009.

17 Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. In Proceedings of the 29th Annual ACM Symposium on Principles
of Distributed Computing, PODC, pages 420–429, 2010.

18 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In 17th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 990–999, 2006.

19 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

20 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

Brief Announcement: Let It TEE: Asynchronous
Byzantine Atomic Broadcast with n ≥ 2f + 1
Marc Leinweber #

Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology
(KIT), Germany

Hannes Hartenstein #

Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology
(KIT), Germany

Abstract
Asynchronous Byzantine Atomic Broadcast (ABAB) promises simplicity in implementation as well as
increased performance and robustness in comparison to partially synchronous approaches. We adapt
the recently proposed DAG-Rider approach to achieve ABAB with n ≥ 2f + 1 processes, of which f

are faulty, with only a constant increase in message size. We leverage a small Trusted Execution
Environment (TEE) that provides a unique sequential identifier generator (USIG) to implement
Reliable Broadcast with n > f processes and show that the quorum-critical proofs still hold when
adapting the quorum size to ⌊ n

2 ⌋ + 1. This first USIG-based ABAB preserves the simplicity of
DAG-Rider and serves as starting point for further research on TEE-based ABAB.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Byzantine Fault Tolerance, Trusted Execution Environments, Asynchrony

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.43

Funding This work was supported by funding from the topic Engineering Secure Systems of the
Helmholtz Association (HGF).

1 Introduction

Atomic Broadcast primitives play a crucial role for Byzantine-fault tolerant (BFT) State
Machine Replication (SMR). A prominent example for BFT SMR in the partially synchronous
model is PBFT [6]. By use of small Trusted Execution Environments (TEE) that generate
and sign unique sequential identifiers on each process, called USIGs, Veronese et al. [12]
showed that PBFT’s communication complexity can be reduced and the fault tolerance can
be increased to n ≥ 2f + 1 while still tolerating Byzantine faults. The authenticity/integrity
of TEEs can be verified remotely and, thus, TEEs are assumed to only fail by crashing.
However, as shown by Miller et al. [11], Asynchronous Byzantine Atomic Broadcast (ABAB)
outperforms approaches based on the partially synchronous model particularly under faults
and tends to show a simpler design. While it is known that any asynchronous crash fault-
tolerant algorithm can be compiled to withstand Byzantine faults using TEEs [3, 7], the
proposed compilers show either a polynomial or an exponential overhead in runtime. We
are interested in a simple and straightforward design of a USIG-enhanced ABAB that does
not add further message rounds and only adds a constant number of bits to each message
(essentially a counter value and a signature). To this end, we adapt DAG-Rider [10] to
provide ABAB with n ≥ 2f + 1 processes. We give a quick recap on DAG-Rider and explain
the adaption TEE-Rider. Besides using TEE-based Reliable Broadcast and changing the
required quorums from 2f + 1 to ⌊n

2 ⌋+ 1, we leave DAG-Rider unchanged. We show that
the quorum-based arguments of DAG-Rider still hold for TEE-Rider.

© Marc Leinweber and Hannes Hartenstein;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 43; pp. 43:1–43:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marc.leinweber@kit.edu
https://orcid.org/0000-0002-9638-8526
mailto:hannes.hartenstein@kit.edu
https://orcid.org/0000-0003-3441-3180
https://doi.org/10.4230/LIPIcs.DISC.2023.43
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Brief Announcement: Let It TEE

2 TEE-Rider: Transforming DAG-Rider to n ≥ 2f + 1

We make use of the following definition of Atomic Broadcast for a set of processes P, n := |P |.
The processes communicate over authenticated point-to-point links with eventual delivery.

▶ Definition 1 (Atomic Broadcast). Each process pi ∈ P receives client transactions t

via events clientRequest(t). Correct processes deliver tuples (t, r, pi), where t is a client
transaction, r ∈ N0 a round number, and pi ∈ P the process that initially received t, satisfying
the following properties:
Agreement: If a correct process pi ∈ P delivers (t, r, pj), then every other correct process

pk ∈ P, k ̸= i eventually delivers (t, r, pj) with probability 1.
Integrity: For each round r ∈ N0 and process pj ∈ P , a correct process pi ∈ P delivers

(t, r, pj) at most once.
Validity: If a correct process pi ∈ P receives an event clientRequest(t), then every correct

process pk ∈ P eventually delivers (t, r, pi) with probability 1.
Total Order: Let m1 and m2 be any two valid tuples that are delivered by any two correct

processes pi, pj ∈ P . If pi delivers m1 before m2, then pj delivers m1 before m2.

2.1 Changes in Assumptions, Building Blocks, and Setup

In addition to the assumptions of DAG-Rider, we assume that each process is equipped with
a USIG [12] that may only fail by crashing. It implements a signature service that binds a
unique counter value to each signature it produces. The USIG is used for Reliable Broadcast
with a fault tolerance of n > f as, e.g., implemented in [8, Algorithm 1]: it is a “single echo”
algorithm with USIG-signed messages and attached counter value. Correct processes relay
a message once and reject messages with invalid USIG signatures or with counter values
already received which prevents equivocating messages for the same counter. An instance of
the Reliable Broadcast abstraction has two functions: broadcast(r, m) to reliably broadcast
exactly one arbitrary message m for round r to all processes in P , and delivered() which
returns all messages that were received by the instance since the last call to delivered(). We
expect the Reliable Broadcast abstraction to fullfil the following properties:

▶ Definition 2 (Reliable Broadcast). A sender ps ∈ P, n := |P | can call broadcast(c, m).
Correct processes deliver (c, m) where c ∈ N0 and m an arbitrary message satisfying the
following properties:
RB-Agreement: If a correct process pi ∈ P delivers (c, m), then every other correct process

pk ∈ P, k ̸= i eventually delivers the same (c, m).
RB-Integrity: For each c ∈ N0, a correct process pk ∈ P delivers (c, m) at most once.
RB-Validity: If a correct sender calls broadcast(c, m), then every correct process pi ∈ P

eventually delivers (c, m).

Additionally, we assume an asynchronous common coin, e.g. as defined by Cachin et al. [5],
that produces a uniformly distributed common random number p out of {p | p ∈ N0 : p < n}
for all correct processes and a name i ∈ N0 as soon as f + 1 processes invoked toss(i);
repetitive calls with same the i yield the same p. We further assume a trusted setup of the
common coin and the USIGs using a public key infrastructure (to set up the common coin’s
threshold signature scheme, dealerless variants [4] and those with an asynchronous setup [1]
exist).

M. Leinweber and H. Hartenstein 43:3

1 2 3 4 1 2 3 4 1…

…

…

…

…

…

…

…

…

…

…

… Vertex selected
by coin

Reaches leader
via strong path

Figure 1 Example DAG for n = 5 processes of which at maximum 2 may be faulty. Shown
is the “global” state of the graph, i.e., after every process eventually received every vertex. For
simplicity, all vertices are valid and weak edges are left out. The direct commit rule is not fulfilled
for any process for wave w; it is fulfilled for processes p3, p4, and p5 for wave w + 1. The green
coloring highlights the effect of the direct commit rule as proven in Lemma 3. The direct commit
rule ensures that a correct process can commit a wave retrospectively if it was not able to commit
when it finished the wave. Since the leader vertex of wave w + 1 has a strong path to the leader
vertex of wave w, wave w will be committed retrospectively.

2.2 The Algorithm

DAG-Rider uses n Reliable Broadcast instances to disseminate process messages and to
construct a directed acyclic graph (DAG) that captures the communication history of all
processes. In a second step, each process derives consensus on the order of transactions
using a Common Coin based on the graph structure. The adapted DAG-Rider algorithm
executed by a correct process pi ∈ P is shown in Algorithm 1. Utility functions are listed in
Algorithm 2. The core of the approach is the construction and interpretation of a (local)
DAG that captures received transactions and the observed communication sequence between
processes. The DAG is structured in rounds and a round contains at maximum one vertex
per process, i.e., n vertices. Rounds are addressed in an array style and the local view of a
process pi on the DAG is indicated by an index i. The very first round DAGi[0] is initialized
with n hard-coded “genesis” vertices. A vertex in round r has two types of edges: strong
edges point to vertices of round r−1 and weak edges point to vertices of any round r′ ≤ r−2.
As soon as pi received ⌊n

2 ⌋+ 1 valid vertices for a round r, i.e., ⌊n
2 ⌋+ 1 vertices referencing

⌊n
2 ⌋ + 1 vertices of round r − 1 as strong edges (v.strong, l. 11), for which it also knows

its predecessors (l. 15), pi will complete round r and transition to round r + 1. Now, as
soon as pi receives a client transaction, it will become the payload of a vertex v which is
created and broadcast by pi for round r + 1 (ll. 44 and 21-27). The vertex v connects to
all vertices pi received for round r (l. 23). If pi received vertices u for older rounds that are
not reachable from the newly created vertex using the transitive closure of strong and weak
edges (a “path”), u will become a weak edge of v (v.weak, l. 26). The new vertex is broadcast
using Reliable Broadcast instance i to all processes (l. 27). Every fourth round a so-called
wave, consisting of four rounds, is completed (l. 19) and the DAG structure is used to derive
a total order on the transactions (ll. 28-42). Each wave w has exactly one wave leader v

which is chosen calling coin.toss(w) from the vertices of w’s first round(w, 1). The random
number is used to select the process whose vertex is to be used as wave leader. If v was not

DISC 2023

43:4 Brief Announcement: Let It TEE

(yet) received or there are no ⌊n
2 ⌋+ 1 vertices in w’s fourth round(w, 4) that have v in their

transitive closure of strong edges (a “strong path”), i.e. the direct commit rule is not fulfilled,
the wave cannot be committed (l. 30). If wave w can be committed, process pi checks first
if there are wave leaders of waves w′ between the last wave that was committed (variable
decidedWave) and the current wave w that were received in the meantime and are connected
to the leader of the wave w′ + 1 (retrospective commit, ll. 33-36). The wave leaders are used
as the root for a deterministic graph traversal to determine the total order of transactions
(ll. 38-42). An example for a resulting graph with n = 5 processes, i.e. f ≤ 2, is shown in
Figure 1.

3 Correctness Argument

Lemmas 1 and 2 of the original DAG-Rider publication [10] are crucial for Total Order and
Agreement and rely on quorum intersection arguments. The following Lemmas 3 and 4 show
the corresponding results for a quorum size of ⌊n

2 ⌋+ 1. Results for Integrity and Validity
simply follow from the original paper.

▶ Lemma 3. If a correct process pi ∈ P commits the wave leader v of a wave w when it
completes wave w in round(w, 4), then any valid vertex v′ of any process pj ∈ P broadcast
for a round r ≥ round(w + 1, 1) will have a strong path to v.

Proof. Since pi commits v in round(w, 4), the direct commit rule is fulfilled (l. 30): ∃U ⊆
DAGi[round(w, 4)] : |U | ≥ ⌊n

2 ⌋+ 1∧∀u ∈ U : strongPath(u, v). A valid vertex must reference
at least ⌊n

2 ⌋+ 1 distinct vertices of the previous round with a strong edge (l. 11). Thus, a
process pj ∈ P broadcasting a valid vertex vj for round(w + 1, 1) selected at least ⌊n

2 ⌋+ 1
vertices of round(w, 4) as strong edges for vj . Any two subsets of size ⌊n

2 ⌋+ 1 of a superset
of size n intersect at least in one element. Thus, every valid vertex of a process broadcast for
round(w + 1, 1) must have at least one edge to a vertex of U , and, via U to v. As every valid
vertex of round(w + 1, 1) has a strong path to v, and every valid vertex of round(w + 1, 2)
connects to at least ⌊n

2 ⌋+ 1 vertices of round(w + 1, 1), by induction, any valid vertex v′ of
any process pj ∈ P broadcast for a round r ≥ round(w + 1, 1) has a strong path to v. ◀

▶ Lemma 4. When a correct process pi ∈ P completes round(w, 4) of wave w, then ∃V1 ⊆
DAGi[round(w, 1)], V4 ⊆ DAGi[round(w, 4)] : |V1| ≥ ⌊n

2 ⌋ + 1 ∧ |V4| ≥ ⌊n
2 ⌋ + 1 ∧ (∀v1 ∈

V1, ∀v4 ∈ V4 : strongPath(v4, v1)).

Proof. By use of Reliable Broadcast and validity checks in ll. 11 and 15, faulty processes
are limited to omission faults. Thus, the get-core argument of Attiya and Welch [2, Sec.
14.3.1] still holds [2, Sec. 14.3.3]: Let A ∈ {0, 1}n×n be a matrix that contains a row for
each possible vertex of round(w, 3) and a column for each possible vertex of round(w, 2). Let
A[j, k] = 1 if the vertex of process pj of round(w, 3) has a strong edge to the vertex of process
pk of round(w, 2) or pj sends no vertex (or an invalid one) but pk sends a valid vertex for
round(w, 2). As there are at least ⌊n

2 ⌋+1 ≤ n−f correct processes, each row of A contains at
least ⌊n

2 ⌋+ 1 ones and A contains at least n(⌊n
2 ⌋+ 1) ones. Since there are n columns, there

must be a column l with at least ⌊n
2 ⌋+ 1 ones. This implies there is a vertex vl by process pl

in round(w, 2) s.t. ∃V3 ⊆ DAGi[round(w, 3)] : |V3| ≥ ⌊n
2 ⌋+ 1 ∧ ∀v3 ∈ V3 : strongPath(v3, vl).

As at most f vertices in V3 belong to faulty processes that may commit send omission faults
for round(w, 3) and ⌊n

2 ⌋+1 ≥ f +1, by quorum section at least one vertex of V3 is received by
any correct process pj ∈ P before it sends its vertex for round(w, 4). Thus, every valid vertex
in DAGi[round(w, 4)] has at least one strong edge to a vertex of V3. Since vl must be valid

M. Leinweber and H. Hartenstein 43:5

Algorithm 1 TEE-Rider pseudocode for process pi ∈ P, n := |P |, n ≥ 2f + 1.

1: state DAG : array of sets of vertices, DAG[0] initialized with “genesis” vertices
2: state r : N, initialized with 1
3: state decidedWave : N0, initialized with 0
4: state transactionsToPropose : queue of client transactions t, initialized empty
5: state buffer : set of vertices, initialized empty
6: state rb : array of n Reliable Broadcast instances with delivered() and broadcast(r, m)
7: state coin : common coin instance with toss(w)
8: while True do
9: for k ← 0 up to n− 1 do

10: for m = (r′, v) ∈ rb[k].delivered() do
11: if |v.strong| < ⌊n

2 ⌋+ 1 then continue
12: v.source ← pk; v.round ← r′; v.delivered ← False
13: buffer .add(v)
14: for v ∈ buffer do
15: if v.round > r ∨ ∃u ∈ v.strong ∪ v.weak : u ̸∈ ∪r′≥0DAG[r′] then continue
16: DAG[v.round].add(v)
17: buffer .remove(v)
18: if |DAG[r]| < ⌊n

2 ⌋+ 1 then continue
19: if r mod 4 = 0 then waveReady(r

4)
20: r ← r + 1
21: wait until ¬transactionsToPropose.isEmpty()
22: v ← new vertex
23: v.block ← transactionsToPropose.dequeue(); v.strong ← DAG[r − 1]
24: for r′ ← r − 2 down to 1 do
25: for u ∈ DAG[r′] do
26: if ¬path(v, u) then v.weak.add(u)
27: rb[i].broadcast(r, v)
28: function waveReady(w)
29: v ← getWaveLeader(w) ▷ ⊥ if round(w, 1) vertex of chosen process is not in DAG
30: if v = ⊥ ∨ |{u | u ∈ DAG[round(w, 4)] : strongPath(u, v)}| < ⌊n

2 ⌋+ 1 then return
31: leadersStack ← new stack; leadersStack.push(v)
32: for w′ ← w − 1 down to decidedWave + 1 do
33: u← getWaveLeader(w′)
34: if u ̸= ⊥ ∧ strongPath(v, u) then
35: leadersStack.push(u); v ← u

36: decidedWave ← w

37: while ¬leadersStack.isEmpty() do
38: v ← leadersStack.pop()
39: verticesToDeliver ← {u | u ∈ ∪r′>0DAG[r′] : path(v, u) ∧ ¬u.delivered}
40: for u ∈ verticesToDeliver in deterministic order do
41: u.delivered ← True; deliver (u.block, u.round, u.source)
42: upon clientRequest (t)
43: transactionsToPropose.enqueue(t)

DISC 2023

43:6 Brief Announcement: Let It TEE

Algorithm 2 Utility functions pseudocode.

1: function path(v, u) : boolean
2: return exists a sequence of vertices (v1, v2, ..., vk) ∈ ∪r′≥0DAG[r′] such that
3: v1 = v ∧ vk = u ∧ ∀i ∈ [2, k] : vi ∈ vi−1.strong ∪ vi−1.weak

4: function strongPath(v, u) : boolean
5: return exists a sequence of vertices (v1, v2, ..., vk) ∈ ∪r′≥0DAG[r′] such that
6: v1 = v ∧ vk = u ∧ ∀i ∈ [2, k] : vi ∈ vi−1.strong

7: function getWaveLeader(w) : vertex or ⊥
8: pj ← coin.toss(w)
9: if ∃v ∈ DAG[round(w, 1)] : v.source = pj then return v

10: return ⊥
11: function round(w, i) : N
12: return 4(w − 1) + i

and thus has a strong edge to each vertex of a set V1 ⊆ DAGi[round(w, 1)], |V1| ≥ ⌊n
2 ⌋+ 1,

any valid vertex of rounds r ≥ round(w, 4) has a strong path to every vertex, including V1,
reached by vl via strong paths. Please note that the construction of the set V1 is valid for all
correct processes that complete the wave and, thus, represents the “common core”. ◀

4 Discussion and Conclusion

DAG-Rider shows the power of causal order broadcast to implement consensus. The adaption
for TEEs preserves the simplicity of DAG-Rider while increasing its fault tolerance and
reducing the communication effort (i.e., from “double echo” to “single echo” Reliable Broad-
cast). The ease of adaption of DAG-Rider for TEEs make it a perfect textbook example for
TEE-based ABAB. Follow-up work to DAG-Rider, Tusk [9], addresses a major deployability
issue, namely garbage collection, shortens the wave length, and replaces the underlying
Reliable Broadcast with a communication scheme that leverages the graph structure to
achieve linear communication complexity in the happy case. Additionally, to the best of our
knowledge, there exists no TEE-based, dealerless, and asynchronous common coin primitive.
In summary, investigating a TEE-based dealerless setup as well as transforming the follow-ups
of DAG-Rider for empirical studies to investigate the assumed superiority of asynchronous
TEE-based approaches, e.g., in comparison to MinBFT [12], is a promising line of research.

References

1 Ittai Abraham, Marcos Kawazoe Aguilera, and Dahlia Malkhi. Fast asynchronous consensus
with optimal resilience. In Nancy A. Lynch and Alexander A. Shvartsman, editors, Distributed
Computing, volume 6343 of Lecture Notes in Computer Science, pages 4–19. Springer, 2010.
doi:10.1007/978-3-642-15763-9_3.

2 Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and
advanced topics (2. ed.). Wiley, 2004. doi:10.1002/0471478210.

3 Naama Ben-David, Benjamin Y. Chan, and Elaine Shi. Revisiting the power of non-equivocation
in distributed protocols. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM
Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages
450–459. ACM, 2022. doi:10.1145/3519270.3538427.

https://doi.org/10.1007/978-3-642-15763-9_3
https://doi.org/10.1002/0471478210
https://doi.org/10.1145/3519270.3538427

M. Leinweber and H. Hartenstein 43:7

4 Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-diffie-hellman-group signature scheme. In Yvo Desmedt, editor, Public Key Cryptography

— PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer, 2003.
doi:10.1007/3-540-36288-6_3.

5 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. J. Cryptol., 18(3):219–246,
2005. doi:10.1007/s00145-005-0318-0.

6 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398–461, 2002. doi:10.1145/571637.571640.

7 Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. On the (limited) power
of non-equivocation. In Darek Kowalski and Alessandro Panconesi, editors, ACM Symposium
on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18,
2012, pages 301–308. ACM, 2012. doi:10.1145/2332432.2332490.

8 Miguel Correia, Giuliana Santos Veronese, and Lau Cheuk Lung. Asynchronous byzantine
consensus with 2f+1 processes. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher,
Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings of the 2010 ACM Symposium
on Applied Computing (SAC), Sierre, Switzerland, March 22-26, 2010, pages 475–480. ACM,
2010. doi:10.1145/1774088.1774187.

9 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and Tusk: a DAG-based mempool and efficient BFT consensus. In Yérom-David Bromberg,
Anne-Marie Kermarrec, and Christos Kozyrakis, editors, EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April 5 - 8, 2022, pages 34–50. ACM, 2022.
doi:10.1145/3492321.3519594.

10 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 165–175. ACM, 2021. doi:10.1145/3465084.3467905.

11 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proc. 2016 ACM SIGSAC Conf. on Computer and Communications
Security, Vienna, Austria, 2016, pages 31–42. ACM, 2016. doi:10.1145/2976749.2978399.

12 Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Veríssimo. Efficient byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16–30,
2013. doi:10.1109/TC.2011.221.

DISC 2023

https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.1145/1774088.1774187
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1109/TC.2011.221

Brief Announcement: Recoverable and Detectable
Self-Implementations of Swap
Tomer Lev Lehman #

Department of Computer Science, Ben Gurion University, Beer Sheva, Israel

Hagit Attiya #

Department of Computer Science, Technion, Haifa, Israel

Danny Hendler #

Department of Computer Science, Ben Gurion University, Beer Sheva, Israel

Abstract
Recoverable algorithms tolerate failures and recoveries of processes by using non-volatile memory. Of
particular interest are self-implementations of key operations, in which a recoverable operation is
implemented from its non-recoverable counterpart (in addition to reads and writes).

This paper presents two self-implementations of the SWAP operation. One works in the system-
wide failures model, where all processes fail and recover together, and the other in the independent
failures model, where each process crashes and recovers independently of the other processes.

Both algorithms are wait-free in crash-free executions, but their recovery code is blocking. We
prove that this is inherent for the independent failures model. The impossibility result is proved
for implementations of distinguishable operations using interfering functions, and in particular, it
applies to a recoverable self-implementation of swap.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases Persistent memory, non-volatile memory, recoverable objects, detectablitly

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.44

Related Version Full Version: https://arxiv.org/abs/2308.03485

Funding Partially supported by the Israel Science Foundation (grants 380/18 and 22/1425).
Tomer Lev Lehman: Partially supported by the Lynne and William Frankel Center for Computer
Science.

1 Introduction

Recent years have seen a rising interest in the failure-recovery model for concurrent computing.
This model captures an unstable system, where processes may crash and recover, and it
has two variants: In the system-wide failure model (also called the global-crash model),
all processes fail simultaneously and a single process is responsible for the recovery of the
whole system. In the independent failures model (also called the individual-crash model),
each process can incur a crash independently of other processes and recovers independently.
Recoverable algorithms, tolerating failures and recoveries, have been presented for various
concurrent data structures, for both the system-wide model [5, 7, 9, 14, 18, 20, 21] and the
independent-failure model [1, 3, 5, 18,20].

The correctness of a recoverable algorithm can be specified in several ways. Durable
Linearizability [16] intuitively requires linearizability of all operations that survive the crashes.
Detectability [9] ensures that upon recovery, it is possible to infer whether the failed operation
took effect or not and, in the former case, obtain its response. Nesting-safe Recoverable
Linearizability (NRL) [1], defined for the independent failures model, ensures detectability and
linearizability. It also allows the nesting of recoverable objects. By providing implementations
of NRL primitive objects, a programmer can combine several of these primitives to create
recoverable implementations of complex higher-level objects and algorithms. This level of
abstraction can be helpful in the adoption of recoverable algorithms.

© Tomer Lev Lehman, Hagit Attiya, and Danny Hendler;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 44; pp. 44:1–44:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:levletom@post.bgu.ac.il
mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:hendlerd@cs.bgu.ac.il
https://orcid.org/0000-0001-7152-7828
https://doi.org/10.4230/LIPIcs.DISC.2023.44
https://arxiv.org/abs/2308.03485
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Brief Announcement: Recoverable and Detectable Self-Implementations of Swap

To facilitate high-level implementations of complex NRL objects it is helpful to introduce
implementations of low-level base NRL objects. An attractive approach to designing low-level
based NRL objects is through self-implementations [20], in which a recoverable operation
is implemented with instances of the same primitive operation, possibly with additional
reads and writes on shared variables. This approach ensures that when using the recoverable
version of an operation, the system must only support its hardware-implemented counterpart.

NRL self-implementations already exist for various primitives, including read, write,
test&set, and compare&swap [1, 3], as well as fetch&add [20]. A universal construction [3]
using NRL read, write and compare&swap objects builds upon previously-introduced self-
implementations of NRL objects to take any concurrent program with read, write and CAS,
and make it recoverable while adding only constant computational overhead.

This paper presents the first NRL self-implementations of swap, for both the system-wide
and the independent failures models. Swap is a widely-used primitive that is employed
by concurrent algorithms. Our implementations borrow ideas from the recoverable mutual
exclusion (RME) [12] algorithms of [11, 17], which use a similar approach to overcome swap
failures. Unlike these algorithms, however, our implementations are also challenged with the
task of satisfying wait-freedom and linearizability.

Both our algorithms are wait-free in crash-free executions, while the recovery code in
both is blocking.

We present an impossibility proof for implementing a class of distinguishable operations
using a set of interfering functions [13] in a recoverable lock-free fashion in the independent
failures model. In particular, this result applies to self-implementations of swap, but it
also holds for, e.g., implementing swap using fetch-and-add and swap combined. Other
distinguishable operations to which this proof applies are the deque of a queue object and
the pop of a stack object. Our impossibility result unifies and extends specific results for
self-implementations of test&set [1] and fetch&add [20]. Another related impossibility result
addresses recoverable consensus in the independent failures model [10].

Several previous papers introduce general transformations to port existing algorithms
and make them persistent, e.g., [3, 4, 6, 8, 15]. Most of these transformations use strong
primitives such as compare&swap while their non-recoverable counterparts may use weaker
primitives, in terms of their consensus number [13]. We believe future research may use our
self-implementation of swap to extend general constructions such as [3] mentioned above to
programs that also use swap as a primitive.

Similarly to NRL, detectable sequence specifications (DSS), introduced by Li and Golab [18],
formalizes the notion of detectability. The DSS-based approach is more portable and less
reliant on system assumptions in comparison to NRL, but delegates the responsibility for
nesting to application code.

2 Model, In Brief

We use a simplified version of the NRL system model [1]. There are n asynchronous processes
p1, . . . , pn, which communicate by applying atomic primitive read, write and read-modify-
write operations to base objects. The state of each process consists of non-volatile shared
variables, which serve as base objects, as well as volatile local variables. A crash-failure (or
simply a crash) can occur at any point during the execution. A crash resets all local variables
to arbitrary values but preserves the values of all non-volatile variables.

A process p invokes an operation Op on an object by performing an invocation step. Op
completes by executing a response step, in which the response of OP is stored to a local
volatile variable of p. It follows that the response value is lost if p incurs a crash before
persisting it, that is, before writing it to a non-volatile variable.

T. Lev Lehman, H. Attiya, and D. Hendler 44:3

In the independent failures model a recoverable operation Op is associated with a recovery
procedure Op.RECOVER that is responsible for completing Op upon recovery from a crash.
Following a crash of process p that occurs when p has a pending recoverable operation opp,
the system eventually resurrects p by invoking the recovery procedure of the failed opp.

As proven by [2], detectable algorithms for the NRL model must keep an auxiliary
state that is provided from outside the operation, either via operation arguments or via
a non-volatile variable accessible by it. We assume that Op.RECOVER has access to a
designated per-process non-volatile variable storing the sequence number of Op which is
incremented before each operation invocation.

For the system-wide failures model in which all processes crash simultaneously, the system
recovers by executing a parameterless global recovery procedure called Op.GRECOVER. Once
Op.GRECOVER completes, the system resurrects each of the failing processes for performing
an individual recovery procedure for Op, called Op.RECOVER.

3 Detectable Swap Algorithms

A swap object supports the SWAP(val) operation, which atomically swaps the object’s
current value cur to val and returns cur. A key challenge to overcome when implementing a
detectable swap object from read, write, and primitive swap operations is that the return
values of one or more primitive swap operations may be lost upon a system-wide failure that
occurs before the operations are persisted. These non-persisted operations may have already
affected the state of the swap object and, moreover, operations by other processes may have
already returned the values written by these primitive operations. To ensure linearizability,
the implementation must identify such operations and handle them correctly.

The return value of each SWAP operation must be the input of another SWAP operation
(or the initial value of the swap object). Furthermore, the operand swapped in by one SWAP
operation can be returned by at most a single other SWAP operation.

To ensure linearizability, the real-time order between non-overlapping operations must
be preserved, as illustrated in Figure 1. This scenario involves six processes, p1, . . . p6,
performing eight SWAP operations, op0, . . . op7. A system-wide crash occurs when operations
op0, op2, op4, op6 have already been completed (hence their return values are specified), while
operations op1, op4, op5, op7 are pending. Note that operations op1, op4, op5, although not
completed, have surely affected the global state of the swap object as their inputs are the
return values of other operations, while op7 (pending as well) might or might not have
affected the object’s state.

There are several ways the system may recover in order to produce a correct linearizable
result. In all of them, op1 must return 0. The remaining operations might return different
values in the following ways: (1) op4 returns 2, op5 returns 3, and op7 returns 6. (2) op7
returns 2, op4 returns 7, and op5 returns 3. (3) op4 returns 2, op7 returns 3, and op5 returns 7.
There are several possible linearizations in this example, because op7 may be linearized in
several ways since its effect on the global state is unknown.

We represent the order of SWAP operations as a linked list of Node structures, the end
of which is pointed to by a tail variable manipulated with primitive swaps. The list starts
with a sentinel node called headNode, which holds the object’s initial value (denoted ⊥).

Each Node structure represents a single SWAP operation and stores a pointer prev to
the node of its predecessor operation and the SWAP’s operand val. The order of SWAP
operations is reflected by the order of the Node structures in the list. By doing so, each
Node points to the previous Node structure that represents the previous SWAP operation,
hence, the operation’s return value will be Node.prev.val.

DISC 2023

44:4 Brief Announcement: Recoverable and Detectable Self-Implementations of Swap

A problem occurs if a process successfully swaps its Node into the list but fails before
pointing from its structure to the previous Node. This type of failure may create fragments
in the list representing the SWAP operations. Thus, instead of a single complete list, crashes
may result in several incomplete disconnected lists. In order to reconnect these fragments
back to a complete list, our algorithm goes over all previously-announced operations upon
recovery and recreate a correctly-ordered complete list of operations.

A similar challenge occurs in the RME algorithms of Golab and Hendler [11] and Jayanti
et al. [17]. These algorithms mend fragments of the linked-list based queue, used in the MCS
lock [19], which are created when failures occur just before or after primitive swap operations.

Our algorithm needs to address two additional challenges, however. First, the SWAP
operations of our algorithm should be wait-free, whereas RME implementations are allowed to
block. Second, unlike the RME implementations, our algorithm should provide linearizability.
Specifically, the order of list fragments, constructed during recovery, must respect the
real-time order between SWAP operations.

We address these challenges by employing a fragment ordering scheme, which we view as
the key algorithmic novelty of our algorithms. The scheme encapsulates the critical steps
of each SWAP operation by two vector timestamp computations. Based on the resulting
timestamps, the recovery code ensures the following invariant: if a fragment A contains a
Node nA that was created after an operation associated with a Node nB on fragment B was
completed, then fragment B will be ordered after fragment A in the connected list. (Note
that prev pointers define the reverse order between operations.)

Figure 2 presents a set of fragments that may be generated immediately after the system-
wide crash ending the execution depicted in Figure 1. As specified, when ordering fragments,
the algorithm uses vector timestamps for maintaining linearizability. As an example, consider
a linked list, reconnecting the fragments of Figure 2, in which op4.prev ← op0, op1.prev ← op3,
op7.prev ← op2 and op5.prev ← op7. Although this list contains the Nodes of all operations
from tail to head, it violates linearizability because op3 is ordered after op2 although it follows
it in real-time order. By using the two vector timestamps, our algorithm is able to order the
fragments so that linearizability is maintained.

The full version presents the details of the algorithm and its correctness proof, proving
the next theorem:

▶ Theorem 1. There is an algorithm that implements a recoverable NRL SWAP in the
system-wide failures model using only read, write and primitive Swap operations. The SWAP
operations are wait-free.

For the independent failures model, a recoverable algorithm must allow one or more
processes to execute its recovery code concurrently, while other processes may concurrently
execute their SWAP operations. In order to handle this concurrency correctly, we introduce
two key changes to the system-wide failures algorithm. First, the recovery procedure now

Figure 1 An example of the effect of a system-wide failure.

T. Lev Lehman, H. Attiya, and D. Hendler 44:5

Figure 2 List fragments existing after the execution described in Figure 1, immediately after a
system-wide crash. Operations 1,4,5 crashed after swapping their Nodes to tail but before persisting
their pointer to their predecessor Node.

synchronizes concurrent invocations by using a starvation-free RME lock, effectively serializing
the execution of the recovery code. We employ the RME lock of Golab and Ramaraju [12],
which uses only reads and writes. The second change allows the recovery code to wait for a
concurrent SWAP operation Op to either complete or crash. Only once this happens, can
the recovery code continue. The full version presents the details of the algorithm and its
correctness proof, proving the following theorem:

▶ Theorem 2. There is an algorithm that implements a recoverable NRL SWAP in the
independent failures model using only read, write and primitive Swap operations. The SWAP
operations are wait-free.

4 Impossibility of lock-freedom for the independent failures model

We prove a theorem establishing the impossibility of implementing lock-free algorithms for
a wide variety of recoverable objects under the independent failures model. This result
generalizes previous results [1, 20], to a wider family of operations and implementations.

The result applies to distinguishable operations: Informally, an operation Op is distin-
guishable if it can be invoked with two operands, x ≠ y, such that the return values of these
invocations allows the system to determine which operation was applied first. The proof
applies when implementations use only read, write, and a set of interfering functions [13],
which are functions that either commute or overwrite. (See the full version.)

▶ Theorem 3. There is no recoverable implementation of a distinguishable operation M

from read, write, and interfering primitive operations in the independent failures model, such
that both M and M.RECOVER are lock-free.

Consider a swap object with initial value 0; when SWAP(1) and SWAP(2) are applied
sequentially, only the first operation applied returns 0. This shows that SWAP is a dis-
tinguishable operation. Note also that a primitive swap is overwriting, since applying it
twice overwrites the first application. Thus, the theorem implies that there is no recoverable
self-implementation of SWAP, where both SWAP and SWAP.RECOVER are lock-free. This
shows that the mutual exclusion lock in our algorithm for the individual failures model
cannot be avoided.

It is also possible to show that the pop operation of a stack object, and the deque
operation of a queue object, as well as fetch&add and test&set, are distinguishable.

DISC 2023

44:6 Brief Announcement: Recoverable and Detectable Self-Implementations of Swap

5 Discussion

We present two NRL self-implementations of the swap object, one for the system-wide failures
model and the other for the independent failures model. In both, SWAP operations are
wait-free and the recovery code is blocking. In the system-wide failures model, this is a result
of delegating the recovery to a single process, while in the independent failures model, it is
due to coordination between the recovering process and the other processes. We also prove
the impossibility of a lock-free implementation of distinguishable operations using read-write
and a set of interfering functions, in the independent failures model. In particular, this shows
that with independent failures, a self-implementation of swap cannot be lock-free.

Our algorithms use O(m ∗ n) space, where m is the number of SWAP invocations in
the execution. Bounding memory consumption to O(n) is relatively easy if a recoverable
swap operation by one process can wait for operations by other processes to either make
progress or fail. An interesting open question is to figure out whether the space complexity
of detectable swap self-implementations with wait-free operations can be reduced to o(m) or
if Ω(m) is inherently required. We leave this question for future work.

References
1 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable linearizabil-

ity: Modular constructions for non-volatile memory. In ACM Symposium on Principles of
Distributed Computing, pages 7–16, 2018.

2 Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and lower bounds on the
space complexity of detectable objects. In 39th ACM Symposium on Principles of Distributed
Computing, pages 11–20, 2020.

3 Naama Ben-David, Guy E Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free concur-
rency on faulty persistent memory. In 31st ACM Symposium on Parallelism in Algorithms
and Architectures, pages 253–264, 2019.

4 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-
volatile main memory. In 19th International Conference on Principles of Distributed Systems
(OPODIS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

5 Kyeongmin Cho, Seungmin Jeon, and Jeehoon Kang. Practical detectability for persistent
lock-free data structures. arXiv preprint arXiv:2203.07621, 2022.

6 Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent memory and the rise of
universal constructions. In 15th European Conference on Computer Systems, pages 1–15, 2020.

7 Panagiota Fatourou, Nikolaos D Kallimanis, and Eleftherios Kosmas. The performance power
of software combining in persistence. In 27th ACM Symposium on Principles and Practice of
Parallel Programming, pages 337–352, 2022.

8 Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch, and Erez Petrank.
NVTraverse: In NVRAM data structures, the destination is more important than the journey.
In 41st ACM Conference on Programming Language Design and Implementation, pages
377–392, 2020.

9 Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. A persistent lock-free
queue for non-volatile memory. ACM SIGPLAN Notices, 53(1):28–40, 2018.

10 Wojciech Golab. The recoverable consensus hierarchy. In 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, pages 281–291, 2020.

11 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.
In ACM Symposium on Principles of Distributed Computing, pages 211–220, 2017.

12 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. In 2016 ACM Symposium
on Principles of Distributed Computing, pages 65–74, 2016.

T. Lev Lehman, H. Attiya, and D. Hendler 44:7

13 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991.

14 Morteza Hoseinzadeh and Steven Swanson. Corundum: Statically-enforced persistent memory
safety. In 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 429–442, 2021.

15 Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory
updates via justdo logging. ACM SIGARCH Computer Architecture News, 44(2):427–442,
2016.

16 Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In 30th International Symposium on
Distributed Computing, pages 313–327. Springer, 2016.

17 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. A recoverable mutex algorithm with
sub-logarithmic RMR on both cc and dsm. In ACM Symposium on Principles of Distributed
Computing, pages 177–186, 2019.

18 Nan Li and Wojciech Golab. Detectable sequential specifications for recoverable shared objects.
In 35th International Symposium on Distributed Computing (DISC), 2021.

19 John M Mellor-Crummey and Michael L Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, 1991.

20 Liad Nahum, Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Recoverable and detectable
fetch&add. In 25th International Conference on Principles of Distributed Systems (OPODIS
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

21 Matan Rusanovsky, Hagit Attiya, Ohad Ben-Baruch, Tom Gerby, Danny Hendler, and Pedro
Ramalhete. Flat-combining-based persistent data structures for non-volatile memory. In 23rd
International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS,
pages 505–509. Springer, 2021.

DISC 2023

Brief Announcement:
Line Formation in Silent Programmable Matter
Alfredo Navarra # Ñ

Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy

Francesco Piselli1 #

Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy

Abstract
Programmable Matter (PM) has been widely investigated in recent years. One reference model is
certainly Amoebot, with its recent canonical version (DISC 2021). Along this line, with the aim of
simplification and to address concurrency, the SILBOT model has been introduced (AAMAS 2020).
Within SILBOT, we consider the Line formation primitive in which particles are required to end
up in a configuration where they are all aligned and connected. We propose a simple and elegant
distributed algorithm, optimal in terms of number of movements.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Concurrency; Theory of computation → Self-organization

Keywords and phrases Programmable Matter, Line formation, Asynchrony, Stigmergy

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.45

Related Version An extended version appears in the Proceedings of the 25th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS), 2023.
Full Version: https://arxiv.org/abs/2307.16731

1 Introduction

In the recent years, main attention has been devoted to the so-called Programmable Matter
(PM). This usually refers to a set of weak and self-organizing computational entities, called
particles, with the ability to change its physical properties (e.g., shape or color) in a
programmable way. Various models have been proposed so far. One that deserves main
attention is certainly Amoebot, introduced in [7]. By then, various papers have considered
that model, possibly varying some parameters. Moreover, a recent proposal to try to
homogenize the referred literature has appeared in [6]. The main intent was to enhance the
model with concurrency.

One of the weakest models for PM, that includes concurrency and eliminates direct
communication among particles as well as local and shared memory, is SILBOT [4]. The
purpose was to investigate the minimum settings for PM under which basic global tasks can
be performed in a distributed manner. Toward this direction, we aim at studying in SILBOT
the Line formation problem, where particles are required to reach a configuration where they
are all aligned (i.e., lie on a same axis) and connected.

The relevance of the Line formation problem is provided by the interest shown in the last
decades within various contexts of distributed computing. In graph theory, the problem has
been considered in [10] where the requirement was to design a distributed algorithm that,
given an arbitrary connected graph G of nodes with unique labels, converts G into a sorted
list of nodes. In swarm robotics, the problem has been faced from a practical point of view,
see, e.g. [11]. The relevance of line or V-shape formations has been addressed in various

1 Corresponding author.

© Alfredo Navarra and Francesco Piselli;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 45; pp. 45:1–45:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alfredo.navarra@unipg.it
https://navarra.sites.dmi.unipg.it
https://orcid.org/0000-0001-8547-5934
mailto:francesco.piselli@unifi.it
https://doi.org/10.4230/LIPIcs.DISC.2023.45
https://arxiv.org/abs/2307.16731
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Brief Announcement: Line Formation in Silent Programmable Matter

practical scenarios, as in [1, 19]. Most of the work on robots considers direct communications,
memory, and some computational power. For application underwater or in the outerspace,
instead, direct communications are rather unfeasible and this motivates the investigation on
removing such a capability, see, e.g. [12, 17]. Concerning more theoretical models, the aim
has been usually to study the minimal settings under which it is possible to realize basic
primitives like Line formation. In [2, 16], for instance, Line formation has been investigated
for (semi-)synchronized robots (punctiform or not, i.e., entities occupying some space) moving
within the Euclidean plane, admitting limited visibility, and sharing the knowledge of one
axis of direction. For synchronous robots moving in 3D space, in [18], the plane formation has
been considered, which might be considered as the problem corresponding to Line formation
for robots moving in 2D. In [13], robots operate within a triangular grid and Line formation is
required as a preliminary step for accomplishing the Coating of an object. Within Amoebot,
Line formation has been approached in [8], subject to the resolution of the leader election.

2 Definitions and notation

In this section, we review the SILBOT model for PM introduced in [4], and then we formalize
the Line formation problem along with other useful definitions.

In SILBOT, particles operate on an infinite triangular grid embedded in the plane. Each
node can contain at most one particle. Each particle is an automaton with two states,
contracted or expanded (they do not have any other form of persistent memory). In the
former state, a particle occupies a single node of the grid while in the latter, the particle
occupies one single node and one of the adjacent edges, see, e.g. Figure 1. Hence, a particle
always occupies one node, at any time. Each particle can sense its surrounding up to a
distance of 2 hops, i.e., if a particle occupies a node v, then it can see the neighbors of v,
denoted by N(v), and the neighbors of the neighbors of v. Hence, within its visibility range,
a particle can detect empty nodes, contracted, and expanded particles.

Any positioning of contracted or expanded particles that includes all n particles
composing the system is referred to as a configuration. Particles alternate between active
and inactive periods decided by an adversarial schedule, independently for each particle.

In order to move, a particle alternates between expanded and contracted states. In
particular, a contracted particle occupying node v can move to a neighboring node u by
expanding along edge (v, u), and then re-contracting on u. Note that, if node u is already
occupied by another particle then the expanded one will reach u only if u becomes empty,
eventually, in a successive activation. There might be arbitrary delays between the actions
of these two particles. When the particle at node u has moved to another node, the edge
between v and u is still occupied by the originally expanded particle. In this case, we say
that node u is semi-occupied.

A particle commits itself into moving to node u by expanding in that direction, and at the
next activation of the same particle, it is constrained to move to node u, if u is empty. A
particle cannot revoke its expansion once committed.

The SILBOT model introduces a fine grained notion of asynchrony with possible delays
between observations and movements performed by the particles. This reminds the so-called
Async schedule designed for theoretical models dealing with mobile and oblivious robots
(see, e.g. [3, 5, 9]). All operations performed by the particles are non-atomic: there can be
delays between the actions of sensing the surroundings, computing the next decision (e.g.,
expansion or contraction), executing the decision.

A. Navarra and F. Piselli 45:3

a) b)

Figure 1 (a) A possible initial configuration with emphasized the floor (dashed line); (b) a possible
evolution of the configuration shown in (a) with an expanded particle. The shaded parallelogram is
the minimum bounding box containing all the particles.

a) b) c)

Figure 2 (a) A representation of the orientation of a particle; (b) An initial configuration where
Line formation is unsolvable within SILBOT; (c) Enumerated visible neighborhood of a particle; the
two trapezoids emphasize two relevant areas for the definition of our algorithm for Line formation.

The well-established fairness assumption is included, where each particle must be activated
within finite time, infinitely often, in any execution of the particle system, see, e.g., [9].

Particles are required to take deterministic decisions. Each particle may be activated at
any time independently from the others. Once activated, a particle looks at its surrounding
(i.e., at 2 hops distance) and, on the basis of such an observation, decides (deterministically)
its next action.

If two contracted particles decide to expand on the same edge simultaneously, exactly
one of them (arbitrarily chosen by the adversary) succeeds.

If two particles are expanded along two distinct edges incident to a same node w, toward
w, and both particles are activated simultaneously, exactly one of the particles (again, chosen
arbitrarily by the adversary) contracts to node w, whereas the other particle does not change
its expanded state according to the commitment constraint described above.

A relevant property that is usually required in such systems concerns connectivity. A
configuration is said to be connected if the set of nodes occupied by particles induces a
connected subgraph of the grid.

▶ Definition 1. A configuration is said to be initial, if all the particles are contracted
and connected.

▶ Definition 2 (Line formation). Given an initial configuration, the Line formation problem
asks for an algorithm that leads to a configuration where all the particles are contracted,
connected and aligned.

▶ Definition 3. Given a configuration C, the corresponding bounding box of C is the smallest
parallelogram with sides parallel to the West–East and SouthWest–NorthEast directions,
enclosing all the particles.

DISC 2023

45:4 Brief Announcement: Line Formation in Silent Programmable Matter

Table 1 Literature on SILBOT.

Problem Schedule View Orientation Reference
Leader Election Async 2 hops no [4]
Scattering ED-Async 1 hop no [14]
Coating Async 2 hops chirality [15]
Line formation Async 2 hops yes this paper

See Figure 1.b for a visualization of the bounding box of a configuration. Note that, in
general, since we are dealing with triangular grids, there might be three different bounding
boxes according to the choice of two directions out of the three available. As it will be
clarified later, for our purposes we just need to define one by choosing the West–East and
SouthWest–NorthEast directions. In fact, as we are going to see in the next section, in order
to solve Line formation in SILBOT, we need to add some capabilities to the particles. In
particular, we add a common orientation to the particles. As shown in Figure 2.a, all particles
commonly distinguish among the six directions of the neighborhood that by convention are
referred to as the cardinal points NW, NE, W, E, SW, and SE.

Furthermore, in order to describe our algorithm, we need two further definitions that
identify where the particles will be aligned.

▶ Definition 4. Given a configuration C, the line of the triangular grid containing the
southern side of the bounding box of C is called the floor.

▶ Definition 5. A configuration is said to be final if all the particles are contracted,
connected and lie on floor.

By the above definition, a final configuration is also initial. Moreover, if a configuration is
final, then Line formation has been solved. Actually, it might be the case that a configuration
satisfies the conditions of Def. 2 but still it is not final with respect to Def. 5. This is just
due to the design of our algorithm that always leads to solve Line formation on floor.

3 Impossibility results

As shown in the previous section, the SILBOT model is very constrained in terms of particles
capabilities. Since its first appearance [4], where the Leader Election problem has been solved,
the authors pointed out the need of new assumptions in order to allow the resolution of other
basic primitives. In fact, due to the very constrained capabilities of the particles, it was not
possible to exploit the election of a leader to solve subsequent tasks. The parameters that can
be manipulated have concerned the type of schedule, the hop distance from which particles
acquire information, and the orientation of the particles. Table 1 summarizes the primitives
so far approached within SILBOT and the corresponding assumptions. Leader Election was
the first problem solved when introducing SILBOT [4]. Successively, the Scattering problem
has been investigated [14]. It asks for moving the particles in order to reach a configuration
where no two particles are neighboring to each other. Scattering has been solved by reducing
the visibility range to just 1 hop distance but relaxing on the schedule which is not Async.
In fact, the ED-Async schedule has been considered. It stands for Event-Driven Asynchrony,
i.e., a particle activates as soon as it admits a neighboring particle, even though all subsequent
actions may take different but finite time as in Async. For Coating [15], where particles are

A. Navarra and F. Piselli 45:5

required to surround an object that occupies some connected nodes of the grid, the original
setting has been considered apart for admitting chirality, i.e., a common handedness among
particles.

In this paper, we consider the Line formation problem, where particles are required to
reach a configuration where they are all aligned and connected. About the assumptions, we
add a common orientation to the particles to the basic SILBOT model. The motivation for
endowing the particles with such a capability comes by the following result:

▶ Theorem 6. Line formation is unsolvable within SILBOT, even though particles share a
common chirality.

By the assumed orientation, a particle can enumerate its neighborhood, up to distance of
2 hops, as shown in Figure 2.c. This will be useful for the definition of our algorithm.

4 Algorithm WRain

The rationale behind the name WRain of the proposed algorithm comes by the type of
movements allowed. In fact, the evolution of the system on the basis of the algorithm mimics
the behavior of particles that fall down like drops of rain subject to a westerly wind. The
Line formation is then reached on the lower part of the initial configuration where there is at
least a particle – what we have called floor.

In order to define Algorithm WRain, we need to define some functions, expressing
properties related to a node of the grid. We make use of the enumeration shown in Fig. 2.c,
and in particular to the neighbors enclosed by the two trapezoids.

▶ Definition 7. Given a node v, the next Boolean functions are defined:
Upper(v) is true if at least one of the visible neighboring nodes from v at positions
{1, 2, 4, 5, 6} is occupied by a particle;
Lower(v) is true if at least one of the visible neighboring nodes from v at positions
{13, 14, 15, 17, 18} is occupied by a particle;
Pointed(v) is true if there exists a particle p occupying a node u ∈ N(v) such that p is
expanded along edge (u, v);
Near(v) is true if there exists an empty node u ∈ N(v) such that Pointed(u) is true.

For the sake of conciseness, sometimes we make use of the above functions by providing a
particle p as input in place of the corresponding node v occupied by p.

We are now ready to formalize our Algorithm WRain.

Algorithm 1 WRain.

Require: Node v occupied by a contracted particle p.
Ensure: Line formation.

1: if ¬Near(v) then
2: if Pointed(v) then
3: p expands toward E
4: else
5: if ¬Upper(v) ∧ Lower(v) then
6: p expands toward SE

It is worth noting that Algorithm WRain allows only two types of expansion, toward
E or SE. Moreover, the movement toward E can happen only when the node v occupied
by a particle is intended to be reached by another particle, i.e., Pointed(v) holds. Another

DISC 2023

45:6 Brief Announcement: Line Formation in Silent Programmable Matter

remarkable property is that the algorithm only deals with expansion actions. This is due
to the constraint of the SILBOT model that does not permit to intervene on expanded
particles, committed to terminate their movement.

5 Correctness and Optimality

In this section, we sketch the proof of correctness of Algorithm WRain as well as its optimality
in terms of number of moves performed by the particles.

The correctness of Algorithm WRain is based on four claims:
Claim 1 - Configuration Uniqueness. Each configuration generated during the execution of

the algorithm is unique, i.e., non-repeatable, after movements, on the same nodes nor on
different nodes;

Claim 2 - Limited Dimension. The extension of any (generated) configuration is confined
within a finite bounding box of sides O(n);

Claim 3 - Evolution guarantee. If the (generated) configuration is connected and not final
there always exists at least a particle that can expand or contract;

Claim 4 - Connectivity. If two particles initially neighboring to each other get disconnected,
they recover their connection sooner or later (not necessarily becoming neighbors).

The four claims guarantee that a final configuration is achieved, eventually, in finite time,
i.e., Line formation is solved. In fact, if from any non-final configuration reached during an
execution of WRain there is always at least one particle that moves (Claim 3), the subsequent
configuration must be different from any already reached configuration (Claim 1). However,
since the area where the particles move is limited (Claim 2), then a final configuration must
be reached as the number of achievable configurations is finite. Actually, if we imagine a
configuration made of disconnected and contracted particles, all lying on floor, then the
configuration is not final according to Def. 5 but none of the particles would move. We can
prove that such type of configurations cannot occur, and in particular if two particles initially
neighboring to each other get disconnected, then they recover their connection, eventually
(Claim 4). Since the initial configuration is connected, then we are ensured that also the
final configuration is connected as well.

We are now ready to state the correctness and the optimality of WRain.

▶ Theorem 8. Given n contracted particles forming a connected configuration, Algorithm
WRain solves Line formation within Θ(n2) movements.

6 Conclusion

We investigated on the Line formation problem within PM on the basis of the SILBOT model.
With the aim of considering the smallest set of assumptions, we proved how chirality was
not enough for particles to accomplish Line formation. We then endowed particles with
a common sense of direction and we proposed WRain, an optimal algorithm – in terms
of number of movements, for solving Line formation. Actually, it remains open whether
by assuming just one common direction is enough for solving the problem. Furthermore,
although in the original paper about SILBOT [4], it has been pointed out that 1 hop visibility
is not enough for solving the Leader Election, it is worth investigating what happens for Line
formation.

Other interesting research directions concern the resolution of other basic primitives, the
formation of different shapes or the more general pattern formation problem.

A. Navarra and F. Piselli 45:7

References

1 He Cai, Shuping Guo, and Huanli Gao. A dynamic leader–follower approach for line marching
of swarm robots. Unmanned Systems, 11(01):67–82, 2023.

2 Jannik Castenow, Thorsten Götte, Till Knollmann, and Friedhelm Meyer auf der Heide. The
max-line-formation problem - and new insights for gathering and chain-formation. In Proc.
23rd Int.’l Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS), volume
13046 of LNCS, pages 289–304. Springer, 2021.

3 Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. A structured methodology for
designing distributed algorithms for mobile entities. Information Sciences, 574:111–132, 2021.
doi:10.1016/j.ins.2021.05.043.

4 Gianlorenzo D’Angelo, Mattia D’Emidio, Shantanu Das, Alfredo Navarra, and Giuseppe
Prencipe. Asynchronous silent programmable matter achieves leader election and compaction.
IEEE Access, 8:207619–207634, 2020.

5 Gianlorenzo D’Angelo, Gabriele Di Stefano, Alfredo Navarra, Nicolas Nisse, and Karol Suchan.
Computing on rings by oblivious robots: A unified approach for different tasks. Algorithmica,
72(4):1055–1096, 2015.

6 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical amoebot model:
Algorithms and concurrency control. In Proc. 35th Int.’l Symp. on Distributed Computing
(DISC), volume 209 of LIPIcs, pages 20:1–20:19, 2021.

7 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot - a new model for programmable matter.
In Proc. 26th ACM Symp. on Parallelism in Algorithms and Architectures, (SPAA), pages
220–222. ACM, 2014.

8 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader election and shape formation with self-organizing programmable
matter. In Andrew Phillips and Peng Yin, editors, Proc. 21st Int.’l Conf. on Computing and
Molecular Programming (DNA), volume 9211 of LNCS, pages 117–132. Springer, 2015.

9 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

10 Dominik Gall, Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo
Täubig. A note on the parallel runtime of self-stabilizing graph linearization. Theory Comput.
Syst., 55(1):110–135, 2014.

11 Donghwa Jeong and Kiju Lee. Dispersion and line formation in artificial swarm intelligence.
In Proc. 20th Int.’l Conf. on Collective Intelligence), 2014.

12 Zhiying Jiang, Xin Wang, and Jian Yang. Distributed line formation control in swarm robots.
In IEEE Int.’l Conf. on Information and Automation (ICIA), pages 636–641. IEEE, 2018.

13 Yonghwan Kim, Yoshiaki Katayama, and Koichi Wada. Pairbot: A novel model for autonomous
mobile robot systems consisting of paired robots, 2020. arXiv:2009.14426.

14 Alfredo Navarra, Giuseppe Prencipe, Samuele Bonini, and Mirco Tracolli. Scattering with
programmable matter. In Proc. 37th Int.’l Conf. on Advanced Information Networking and
Applications (AINA), Lecture Notes in Networks and Systems. Springer, 2023.

15 Francesco Piselli. Silent programmable matter: Coating. Master’s thesis, University of Perugia,
Italy, 2022.

16 Arijit Sil and Sruti Gan Chaudhuri. Formation of straight line by swarm robots. In Proc. 7th
Int.’l Conf. on Advanced Computing, Networking, and Informatics (ICACNI), pages 99–111.
Springer, 2020.

17 Thomas Sousselier, Johann Dréo, and Marc Sevaux. Line formation algorithm in a swarm of
reactive robots constrained by underwater environment. Expert Syst. Appl., 42(12):5117–5127,
2015.

DISC 2023

https://doi.org/10.1016/j.ins.2021.05.043
https://doi.org/10.1007/978-3-030-11072-7
https://arxiv.org/abs/2009.14426

45:8 Brief Announcement: Line Formation in Silent Programmable Matter

18 Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita. Plane formation by
synchronous mobile robots in the three-dimensional euclidean space. J. ACM, 64(3):16:1–16:43,
2017.

19 Jian Yang, Xin Wang, and Peter Bauer. Line and v-shape formation based distributed
processing for robotic swarms. Sensors, 18(8):2543, 2018.

Brief Announcement: The Space Complexity of
Set Agreement Using Swap
Sean Ovens
University of Toronto, Canada

Abstract
We prove that any randomized wait-free n-process k-set agreement algorithm using only swap objects
requires at least ⌈ n

k
⌉ − 1 objects. We also sketch a proof that any randomized wait-free consensus

algorithm using only readable swap objects with domain size b requires at least n−2
3b+1 objects.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases space complexity, consensus, set agreement, lower bound, shared memory

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.46

Related Version Full Version: https://arxiv.org/abs/2305.06507 [9]

Funding Support is gratefully acknowledged from the Natural Sciences and Engineering Research
Council of Canada under grant RGPIN-2020-04178 and the Ontario Graduate Scholarships program.

1 Introduction

Consensus is one of the most well-studied problems in distributed computing. In the consensus
problem, n processes begin with inputs and collectively agree on a single output. A consensus
algorithm satisfies the following properties: agreement (no two outputs may differ) and
validity (every output must be an input). There are known randomized wait-free [1, 5] and
obstruction-free [10] consensus algorithms using n registers.

In 1993, Ellen, Herlihy, and Shavit [7] proved that Ω(
√

n) registers are required to
solve nondeterministic solo-terminating consensus. Lower bounds for nondeterministic solo-
terminating algorithms also apply to randomized wait-free and obstruction-free algorithms.
In 2016, Zhu [10] proved that n − 1 registers are required to solve obstruction-free consensus.
Finally, in 2018, Ellen, Gelashvili, and Zhu [6] used a completely new technique to prove
that n registers are required to solve obstruction-free consensus. They also showed that
space complexity lower bounds for obstruction-free algorithms using readable objects apply
to nondeterministic solo-terminating algorithms.

The Ω(
√

n) space complexity lower bound actually applies to consensus algorithms that
use only historyless objects. A historyless object can only support two kinds of operations:
trivial operations, which cannot change the value of the object, and historyless operations,
which set the object to a fixed value. Registers are historyless objects because Read is trivial
and Write is historyless. Swap objects are historyless objects that support Swap(v), which
returns the current value of the object and then sets its value to v. Any historyless object
can be simulated by one readable swap object, which supports Read and Swap(v).

The k-set agreement problem, first defined by Chaudhuri [4], is a generalization of
consensus in which n processes begin with inputs and collectively agree on at most k distinct
outputs. Obstruction-free k-set agreement is solvable using n − k + 1 registers [2].

Ellen, Gelashvili, and Zhu [6] proved that any obstruction-free n-process k-set agreement
algorithm using only registers requires at least ⌈ n

k ⌉ registers. Before our results, there were
no known non-constant lower bounds on the space complexity of solving k-set agreement
using swap objects when k > 1.

© Sean Ovens;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 46; pp. 46:1–46:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.46
https://arxiv.org/abs/2305.06507
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Brief Announcement: The Space Complexity of Set Agreement Using Swap

Last year, we proved that any obstruction-free consensus algorithm using only readable
swap objects with domain size 2 requires at least n − 2 objects [8]. We also proved that any
obstruction-free consensus algorithm using only swap objects requires at least n − 1 objects.
We have since refined the techniques from that paper to prove that at least n−2

3b+1 readable
swap objects with domain size b are required to solve obstruction-free consensus, and that at
least ⌈ n

k ⌉ − 1 swap objects are required to solve obstruction-free k-set agreement. In the full
version of this paper [9], we also give an obstruction-free k-set agreement algorithm using
n − k swap objects, exactly matching our lower bound for k = 1.

In Section 2, we present some definitions needed to prove our lower bounds. In Section 3,
we prove our lower bound for set agreement using swap objects. In Section 4, we sketch the
proof of our lower bound for consensus using readable swap objects with bounded domains.

2 Definitions

Two configurations C and C ′ are indistinguishable to a process pi, denoted C
pi∼ C ′, if

and only if pi has the same state in C and C ′. Two executions α and α′ from C and C ′,
respectively, are indistinguishable to a process pi if C

pi∼ C ′ and pi takes the same sequence
of steps (and obtains the same responses) in α and α′. We use value(B, C) to denote the
value of the object B in configuration C.

In the m-valued k-set agreement problem, all process inputs are in {0, . . . , m − 1}. The
2-valued 1-set agreement problem is also called binary consensus. A nonempty set of processes
P is v-univalent in a configuration of a binary consensus algorithm C if, for every P-only
execution from C in which some process p ∈ P decides, v is the value decided by p. If P is
neither 0-univalent nor 1-univalent in C, then P is bivalent in C.

An algorithm is nondeterministic solo-terminating if, for every configuration C of the
algorithm and every process p, there is a solo-terminating execution by p from C. An
algorithm is obstruction-free if it is deterministic and nondeterministic solo-terminating. An
algorithm is randomized wait-free if, for every scheduler, the expected number of steps in any
execution produced by that scheduler is finite.

3 Lower Bound for Set Agreement Using Swap Objects

Our lower bound relies on the following technical lemma.

▶ Lemma 1. Consider an initial configuration C in which a set of processes Q have the
same input v. Let α be an execution from C that does not involve Q such that k distinct
values different from v are decided in Cα. Then the algorithm uses at least |Q| swap objects.

Proof. Let Q = {q1, . . . , q|Q|}. Define Qi = {q1, . . . , qi}, for 1 ≤ i ≤ |Q|, and define Q0 = ∅.
Let D be an initial configuration in which all processes have input v. For 0 ≤ i ≤ |Q|, we
show that there is a set of i swap objects Ai and a pair of Qi-only executions γi and δi

from Cα and D, respectively, such that value(B, Cαγi) = value(B, Dδi), for all B ∈ Ai. For
i = |Q|, this claim proves the lemma. We use induction on i. When i = 0, γi and δi are
empty executions, Ai = ∅, and the claim is trivially satisfied.

Now let 0 ≤ i < |Q| and suppose there exists γi, δi, and Ai such that value(B, Cαγi) =
value(B, Dδi), for all B ∈ Ai. Notice that Cαγi

qi+1∼ Dδi, since qi+1 has input v in both
configurations and takes no steps in α, γi, or δi. Consider a qi+1-only solo-terminating
execution σ from Dδi. By validity, qi+1 decides v in σ. Let τ be the longest prefix of σ such
that qi+1 only accesses objects in Ai during τ . Since value(B, Cαγi) = value(B, Dδi), for all

S. Ovens 46:3

B ∈ Ai, there is a qi+1-only execution τ ′ from Cαγi such that τ ′ qi+1∼ τ . If τ = σ, then qi+1
decides v in τ and τ ′. This is impossible, since k + 1 different values are decided in Cαγiτ

′.
Thus, τ is a proper prefix of σ. Then in Cαγiτ

′ and Dδiτ , qi+1 is poised to apply a Swap
operation s to an object B⋆ ̸∈ Ai.

Since qi+1 applies the same sequence of operations in τ ′ and τ and value(B, Cαγi) =
value(B, Dδi) for all B ∈ Ai, it follows that value(B, Cαγiτ

′) = value(B, Dδiτ) for all
B ∈ Ai. By definition of Swap, value(B⋆, Cαγiτ

′s) = value(B⋆, Dδiτs). Taking γi+1 = γiτ
′s,

δi+1 = δiτs, and Ai+1 = Ai ∪ {B⋆} completes the inductive step. ◀

We can now apply Lemma 1 to obtain the desired lower bound.

▶ Theorem 2. For all n > k ≥ 1, every nondeterministic solo-terminating, n-process
(k + 1)-valued k-set agreement algorithm from swap objects uses at least ⌈ n

k ⌉ − 1 objects.

Proof. Consider such an algorithm for the set of processes P = {p0, . . . , pn−1}. We will use
induction on k. When k = 1, the algorithm solves binary consensus. Consider an initial
configuration C of the algorithm in which process p0 has input 0 and all other processes have
input 1. Note that p0 decides 0 in its solo-terminating execution α from C. Therefore, by
Lemma 1, the algorithm uses at least n − 1 swap objects.

Now let 1 < k < n and suppose the theorem holds for k − 1. Let R be some set of⌈ n(k−1)
k

⌉
processes in P . Let I be the set of all initial configurations in which R’s inputs are

in {0, . . . , k − 1}. If, for every initial configuration C ∈ I and every R-only execution α from
C, at most k − 1 different values are decided in α, then the algorithm solves nondeterministic
solo-terminating k-valued (k − 1)-set agreement among the processes in R. Hence, by the
inductive hypothesis, the algorithm uses at least

⌈ |R|
k−1

⌉
− 1 = ⌈ n

k ⌉ − 1 swap objects.
Otherwise, there is a C ∈ I and an R-only execution α from C in which 0, . . . , k − 1 are

decided. Notice |P − R| = n −
⌈

n(k−1)
k

⌉
=

⌊
n
k

⌋
≥

⌈
n
k

⌉
− 1. By Lemma 1 (with Q = P − R

and v = k), the algorithm uses at least |P − R| ≥ ⌈ n
k ⌉ − 1 swap objects. ◀

4 Lower Bound for Consensus Using Readable Swap Objects

Let Q = {q0, q1} be a pair of processes and let P = {p0, . . . , pn−3} be the rest of the processes.
For all 0 ≤ i ≤ n − 3, define Pi = {pi, . . . , pn−3}. In particular, P0 = P. Define Pn−2 = ∅.
Let A be the set of all readable swap objects with domain size b used by the algorithm.

A set S of processes covers a set B of objects in a configuration C if, for every object
B ∈ B, there is a unique process in S that is poised to apply a Swap to B in C. A block
swap by S is an execution that consists of a single step by each process in S.

▶ Lemma 3 ([8]). Let C be a configuration in which Q is bivalent and a set S ⊆ P of
processes cover a set B of readable swap objects. Then there is a Q-only execution γ from C

such that Q is bivalent in Cγβ, where β is a block swap by S.

The following result uses Lemma 3 and appears in the full version of the paper [9].

▶ Lemma 4. Let pi ∈ P, let C be a configuration in which Q is bivalent, let C ′ be a
configuration such that C

pi∼ C ′, and let δ be pi’s solo-terminating execution from C ′.
Suppose δ consists of r steps and, for all s ∈ {0, . . . , r}, let δs be the prefix of δ that consists
of the first s steps by pi. Then there is a j ∈ {0, . . . , r − 1} such that,
(a) for all j′ ∈ {0, . . . , j}, there is a (Q ∪ Pi)-only execution αj′ from C such that Q is

bivalent in Cαj′ and αj′
pi∼ δj′ .

DISC 2023

46:4 Brief Announcement: The Space Complexity of Set Agreement Using Swap

Consider any (Q∪Pi)-only execution αj from C such that Q is bivalent in Cαj and αj
pi∼ δj .

Let d be the operation that pi is poised to apply to the object B in C ′δj. Then for every
(Q ∪ Pi+1)-only execution λ′ from Cαj,

(b) if value(B, Cαjλ′) = value(B, C ′δj), then Q is univalent in Cαjλ′d, and
(c) if value(B, C ′δj) = value(B, C ′δjd) and in some configuration of λ′ the value of B is

value(B, C ′δj), then Q is univalent in Cαjλ′.

We now sketch a proof of our main technical lemma. For all 0 ≤ i ≤ n − 2, it constructs
a configuration Ci and two functions fi and gi that map objects to increasingly large sets of
values that are forbidden in certain executions from Ci.

▶ Lemma 5. For all 0 ≤ i ≤ n − 2, there is a configuration Ci reachable from C0, a
set of processes Si ⊆ P − Pi, and a pair of functions fi, gi that map objects to subsets of
{0, . . . , b − 1} such that the following holds for every (Q ∪ Pi)-only execution λ from Ci:

(a) Q is bivalent in Ci,
(b) Si covers a set of |Si| objects in Ci,
(c) for every process p ∈ Si, if p is poised to apply a Swap(B, x) operation in Ci, then

x ̸∈ fi(B) ∪ gi(B),
(d)

∑
B∈A

(
2 · |fi(B)| + |gi(B)|

)
+ |Si| ≥ i,

(e) if the value of some object B is equal to some value in fi(B) in some configuration of λ,
then Q is univalent in Ciλ, and

(f) if some process p ∈ Pi is poised to apply a Swap(B, x) operation in Ciλ for some object
B and some x ∈ gi(B), then Q is univalent in Ciλ.

Proof sketch. We use induction on i. Let S0 = ∅ and let f0(B) = g0(B) = ∅ for all B ∈ A.
All properties of the lemma are simple to verify for i = 0.

Now suppose that the lemma holds for some 0 ≤ i ≤ n − 3. Let δ be pi’s solo-terminating
execution from Ciβi, where βi is a block swap by Si. Suppose that δ consists of r steps by
pi, and let δs be the prefix of δ that consists of its first s steps. Let 0 ≤ j ≤ r − 1 be the
value that satisfies the conditions of Lemma 4 (with C = Ci and C ′ = Ciβi).

In the full version of this paper [9], we prove that, for all B ∈ A and all forbidden values
x ∈ fi(B) ∪ gi(B), process pi does not apply any Swap(B, x) operations during δj+1.

Let d be the final step of δj+1 by pi. Let B⋆ be the object accessed by pi in step d. Let
v⋆ = value(B⋆, Ciβiδj). By Lemma 4(a), there is a (Q ∪ Pi)-only execution αj from Ci such
that Q is bivalent in Ciαj and αj

pi∼ δj . Define Ci+1 = Ciαj , so property (a) holds for i + 1.

Case 1. Step d does not change the value of B⋆ when it is applied in Ciβiδj . Define
fi+1(B) = fi(B) for all B ∈ A − {B⋆}, gi+1(B) = gi(B) for all B ∈ A, and fi+1(B⋆) =
fi(B⋆) ∪ {v⋆}.

If there is a process p ∈ Si that is poised to apply a Swap(B⋆, v⋆) operation in Ci, then
define Si+1 = Si − {p}. Otherwise, define Si+1 = Si. Since no process in Si takes steps
during αj and Si+1 ⊆ Si, property (b) holds for i + 1. In addition, property (c) holds for i,
so it holds for i + 1 as well.

Suppose v⋆ ∈ fi(B⋆). Then process pi does not apply Swap(B⋆, v⋆) during δj+1. Hence,
value(B⋆, Ciβi) = v⋆. Property (c) for i implies that no process applies Swap(B⋆, v⋆) during
βi. Thus, value(B⋆, Ci) = v⋆. By property (e) for i (where λ is the empty execution), Q is
univalent in Ci. This contradicts property (a) for i. Hence, v⋆ ̸∈ fi(B⋆). This implies that
|fi+1(B⋆)| = |fi(B⋆)| + 1. Since |Si+1| ≥ |Si| − 1, property (d) holds for i + 1.

S. Ovens 46:5

Let λ be a (Q ∪ Pi+1)-only execution from Ci+1. Then αjλ is a (Q ∪ Pi)-only execution
from Ci. By property (e) for i, if the value of some object B is equal to a value in fi(B) in
any configuration of αjλ, then Q is univalent in Ciαjλ. Lemma 4(c) (with λ′ = λ) implies
that, if the value of B⋆ is v⋆ in some configuration of λ, then Q is univalent in Ciαjλ. This
gives us property (e) for i + 1. Since gi+1(B) = gi(B) for all B ∈ A, property (f) for i + 1
follows from property (f) for i.

Case 2. Step d changes the value of B⋆ when it is applied in Ciβiδj . Then d is a Swap(B⋆, v′)
operation, for some v′ ∈ {0, . . . , b − 1} − {v⋆}. Define fi+1(B) = fi(B) for all B ∈ A,
gi+1(B) = gi(B) for all B ∈ A − {B⋆}, and gi+1(B⋆) = gi(B⋆) ∪ {v⋆}.

If some process p ∈ Si is poised to access B⋆ in Ci, then define Si+1 = (Si − {p}) ∪ {pi}.
Otherwise, define Si+1 = Si ∪ {pi}. In either case, we obtain property (b) for i + 1.

Since pi does not apply Swap(B, x) during δj+1, for any B ∈ A and any x ∈ fi(B)∪gi(B),
it follows that v′ ̸∈ fi(B⋆) ∪ gi(B⋆). Furthermore, we know that v′ ≠ v⋆. Hence, v′ ̸∈
fi+1(B⋆) ∪ gi+1(B⋆). This along with property (c) for i gives us property (c) for i + 1.

If B⋆ is not covered by Si in Ci, then Si+1 = Si ∪ {pi}, so |Si+1| = |Si| + 1. Furthermore,
|gi+1(B⋆)| ≥ |gi(B⋆)|. Property (d) for i + 1 follows from this and property (d) for i.

Otherwise, B⋆ is covered by Si in Ci. By property (c) for i, value(B, Ciβi) ̸∈ fi(B)∪gi(B)
for all objects B covered by Si in Ci. Furthermore, pi does not apply Swap(B, x) during
δj+1, for any B ∈ A and any x ∈ fi(B) ∪ gi(B). Hence, value(B, Ciβiδj) ̸∈ fi(B) ∪ gi(B)
for all objects B covered by Si in Ci. Since B⋆ is covered by Si in Ci, it follows that
v⋆ ̸∈ fi(B⋆) ∪ gi(B⋆). Hence, |gi+1(B⋆)| = |gi(B⋆)| + 1. Furthermore, |Si+1| = |Si|.
Combined with property (d) for i, this gives us property (d) for i + 1.

Let λ be a (Q ∪ Pi+1)-only execution from Ci+1. Then αjλ is a (Q ∪ Pi)-only execution
from Ci. Since fi+1(B) = fi(B) for all B ∈ A, property (e) for i + 1 follows from property (e)
for i. Suppose there is a p ∈ Pi+1 poised to apply a Swap(B⋆, v⋆) operation t in Ci+1λ.
Recall that αj

pi∼ δj , so pi is poised to apply d in Ciαj = Ci+1. Since pi takes no steps in λ,
it is poised to apply d in Ci+1λ. Since d is a Swap(B⋆, v′) operation, pi covers B⋆ in Ci+1λ.
If Q is bivalent in Ci+1λ, then, by Lemma 3 (with C = Ci+1λ and S = {pi}), there is a
Q-only execution γ from Ci+1λ such that Q is bivalent in Ci+1λγd and, hence, in Ci+1λγtd.
However, Lemma 4(b) (with λ′ = λγt) implies that Q is univalent in Ci+1λγtd. Hence, Q is
univalent in Ci+1λ. Property (f) for i + 1 follows from this and property (f) for i. ◀

Lemma 5(d) (with i = n−2) says that
∑

B∈A
(
2 · |fn−2(B)|+ |gn−2(B)|

)
+ |Sn−2| ≥ n−2.

By part (b), Sn−2 covers a set of |Sn−2| objects in Cn−2. Hence, |Sn−2| ≤ |A|. Moreover,∑
B∈A

(
2 · |fn−2(B)| + |gn−2(B)|

)
≤ 3 · b · |A| since fn−2(B) and gn−2(B) are subsets of

{0, . . . b − 1}. Thus, 3 · b · |A| + |A| ≥ n − 2, which implies the lower bound.

▶ Theorem 6. For all n, b ≥ 2, any n-process, obstruction-free binary consensus algorithm
from readable swap objects with domain size b uses at least n−2

3b+1 objects.

5 Conclusion

Determining the exact space complexity of solving obstruction-free k-set agreement using
swap objects when k > 1 remains an open problem. We conjecture that n − k swap objects
are required. Theorem 6 implies that any obstruction-free consensus algorithm from readable
swap objects with constant-sized domain requires Ω(n) objects. This asymptotically matches
Bowman’s [3] algorithm, which uses 2n − 1 registers with domain size 2.

DISC 2023

46:6 Brief Announcement: The Space Complexity of Set Agreement Using Swap

References
1 James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal

of Algorithms, 11(3):441–461, 1990. doi:10.1016/0196-6774(90)90021-6.
2 Zohir Bouzid, Michel Raynal, and Pierre Sutra. Anonymous obstruction-free (n, k)-set

agreement with n-k+1 atomic read/write registers. Distributed Comput., 31(2):99–117, 2018.
doi:10.1007/s00446-017-0301-7.

3 Jack R. Bowman. Obstruction-free snapshot, obstruction-free consensus, and fetch-and-add
modulo k. Master’s thesis, Dartmouth College, Computer Science, 2011. URL: https:
//digitalcommons.dartmouth.edu/senior_theses/67.

4 S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous
systems. Information and Computation, 105(1):132–158, 1993. doi:10.1006/inco.1993.1043.

5 B. Chor, A. Israeli, and M. Li. Wait-free consensus using asynchronous hardware. SIAM J.
Comput., 23:701–712, 1994.

6 Faith Ellen, Rati Gelashvili, and Leqi Zhu. Revisionist simulations: A new approach to proving
space lower bounds. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC ’18, pages 61–70, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3212734.3212749.

7 Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized synchro-
nization. J. ACM, 45(5):843–862, September 1998. A preliminary version appeared in PODC
’93. doi:10.1145/290179.290183.

8 Sean Ovens. The space complexity of consensus from swap. In Proceedings of the 2022 ACM
Symposium on Principles of Distributed Computing, PODC’22, pages 176–186, New York, NY,
USA, 2022. Association for Computing Machinery. doi:10.1145/3519270.3538420.

9 Sean Ovens. The space complexity of consensus from swap. CoRR, abs/2305.06507, 2023.
arXiv:2305.06507.

10 Leqi Zhu. A tight space bound for consensus. SIAM J. Comput., 50(3), 2019. A preliminary
version appeared in STOC ’16. doi:10.1137/16M1096785.

https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1007/s00446-017-0301-7
https://digitalcommons.dartmouth.edu/senior_theses/67
https://digitalcommons.dartmouth.edu/senior_theses/67
https://doi.org/10.1006/inco.1993.1043
https://doi.org/10.1145/3212734.3212749
https://doi.org/10.1145/290179.290183
https://doi.org/10.1145/3519270.3538420
https://arxiv.org/abs/2305.06507
https://doi.org/10.1137/16M1096785

Brief Announcement:
Grassroots Distributed Systems: Concept,
Examples, Implementation and Applications
Ehud Shapiro # Ñ

Weizmann Institute of Science, Rehovot, Israel

Abstract
Informally, a distributed system is grassroots if it is permissionless and can have autonomous,
independently-deployed instances – geographically and over time – that may interoperate voluntarily
once interconnected. More formally, in a grassroots system the set of all correct behaviors of a set of
agents P is strictly included in the set of the correct behaviors of P when they are embedded within
a larger set of agents P ′ ⊃ P .

Grassroots systems are potentially important as they may allow communities to conduct their
social, economic, civic, and political lives in the digital realm solely using their members’ networked
computing devices (e.g., smartphones), free of third-party control, surveillance, manipulation,
coercion, or rent seeking (e.g., by global digital platforms such as Facebook or Bitcoin).

Client-server/cloud computing systems are not grassroots, and neither are systems designed
to have a single global instance (Bitcoin/Ethereum with hardwired seed miners/bootnodes), and
systems that rely on a single global data structure (IPFS, DHTs). An example grassroots system
would be a serverless smartphone-based social network supporting multiple independently-budding
communities that can merge when a member of one community becomes also a member of another.

Here, we formalize the notion of grassroots distributed systems; describe a grassroots dissem-
ination protocol for the model of asynchrony and argue its safety, liveness, and being grassroots;
extend the implementation to mobile (address-changing) devices that communicate via an unreliable
network (e.g. smartphones using UDP); and discuss how grassroots dissemination can realize grass-
roots social networking and grassroots cryptocurrencies. The mathematical construction employs
distributed multiagent transition systems to define the notions of grassroots protocols, to specify the
grassroots dissemination protocols, and to prove their correctness. The protocols use the blocklace –
a distributed, partially-ordered counterpart of the replicated, totally-ordered blockchain.

2012 ACM Subject Classification Computer systems organization → Peer-to-peer architectures;
Networks → Network protocol design; Networks → Formal specifications; Software and its engineering
→ Distributed systems organizing principles

Keywords and phrases Grassroots Distributed Systems, Dissemination Protocol, Multiagent Trans-
ition Systems, Blocklace, Cordial Dissemination

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.47

Related Version Full Version: https://arxiv.org/abs/2301.04391

Acknowledgements I thank Andy Lewis-Pye, Nimrod Talmon and Oded Naor for their comments on
an earlier version of the manuscript and Idit Keidar for pointing me to related work. Ehud Shapiro
is the Incumbent of The Harry Weinrebe Professorial Chair of Computer Science and Biology at the
Weizmann Institute.

© Ehud Shapiro;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 47; pp. 47:1–47:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ehud.shapiro@weizmann.ac.il
https://www.weizmann.ac.il/math/shapiro/home
https://doi.org/10.4230/LIPIcs.DISC.2023.47
https://arxiv.org/abs/2301.04391
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Brief Announcement: Grassroots Distributed Systems

1 Introduction

The digital realm is dominated by global digital platforms of two architectures: The first is
autocratic (one person – all votes) cloud-based global digital platforms that have adopted
surveillance-capitalism [20] as their business model, driving the platforms to monitor, induce,
and manipulate their inhabitants for profit. Some regimes also require a “back-door” to the
global platform to monitor, censor, control, and even punish the digital behavior of its citizens.
The second is blockchain/cryptocurrencies-based systems, which are peer-to-peer and can
be “permissionless”, open to participation by everyone. These platforms are governed via
proof-of-work or proof-of-stake protocols, which are intrinsically plutocratic (one coin – one
vote). Despite the promise of openness and distribution of power, the leading cryptocurrency
platforms are controlled by a handful of ultra-high-performance server-clusters [8]. See the
full paper [13] for a discussion of other server-based systems [7, 3, 1, 6, 17, 4, 18].

Here, we are concerned with providing an alternative architecture for the digital realm,
referred to as a grassroots architecture, to serve as a foundations for peer-to-peer, smartphone-
based, serverless applications [18, 14]. Ultimately, a grassroots architecture may provide a
protocol stack to support grassroots digital democracy [15].

In general, a system designed to have a single global instance is not grassroots. Client-
server/cloud systems in which two instances cannot co-exist due to competition/conflict
on shared resources (e.g., same web address), or cannot interoperate when interconnected,
are not grassroots. Neither are peer-to-peer systems that require all-to-all dissemination,
including mainstream cryptocurrencies and standard consensus protocols [5, 19, 9], since a
community placed in a larger context cannot ignore members of the larger context. Neither
are systems that use a global shared data-structure such as pub/sub systems [6], IPFS [3],
and distributed hash tables [16], since a community placed in a larger context cannot ignore
updates to the shared resource by others.

2 Grassroots Protocols

We assume a potentially-infinite set of agents Π (think of all the agents yet to be produced),
but when referring to a subset of the agents P ⊆ Π we assume P to be finite. Each agent
is associated with a single and unique key-pair of its own choosing, and is identified by its
public key p ∈ Π. We refer the reader to the full paper [13] for the necessary definitions and
their explanations, and introduce the notion of a grassroots protocol without further ado:

▶ Definition 1 (Grassroots). A protocol F is grassroots if ∅ ⊂ P ⊂ P ′ ⊆ Π implies that
TS(P) ⊂ TS(P ′)/P .

Informally, a group of agents P with the a set of possible behaviors TS(P) has possible
behaviors TS(P ′)/P when embedded within a larger group P ′. A protocol is grassroots if:
(i) The behaviors of the agents P on their own, TS(P), are also possible behaviors of these
agents when embedded within a larger group P ′, TS(P ′)/P . In other words, the agents in P

may choose to ignore the agents in P ′ \ P . Hence the subset relation. (ii) This latter set of
behaviors TS(P ′)/P includes additional possible behaviors of P not in TS(P). Thus, there
are possible behaviors of P , when embedded within P ′, which are not possible when P are
on their own. This is presumably due to interactions between members of P and members of
P ′ \ P . Hence the subset relation is strict.

▶ Observation 2. An all-to-all dissemination protocol cannot be grassroots.

E. Shapiro 47:3

Intuitively, a group of agents P engaged in a hypothetical grassroots all-to-all dissemination
protocol may ignore the additional agents in P ′ \ P , in contradiction to the dissemination
protocol being all-to-all. The full paper provides a sufficient condition for a protocol to be
grassroots, which are useful in proving such a claim:

▶ Theorem 3 (Grassroots Protocol). An asynchronous, interactive, and non-interfering
protocol is grassroots.

Informally, a protocol is asynchronous if a transition by an agent, once enabled, cannot
be disabled by transitions taken by other agents; it is interactive if the addition of agents
to a group results in additional possible behaviors of the group; and it is non-interfering if
the possible behaviors of a group of agents are not hampered by the presence of additional
stationary agents, namely agents that remain in their initial state.

3 The Social Graph

Paul Baran’s original vision of the Internet [2] was of a network of unmanned nodes that
would act as switches, routing information from one node to another to their final destinations.
Grassroots dissemination is different from packet switching: A block in a blocklace has no
“destination”, only an author, and dissemination occurs via communication along the edges
of the social graph, based on the following social principles.

Social Principles of Cordial Dissemination:
1. Disclosure: Tell your friends which blocks you know and which you need
2. Cordiality: Send to your friends blocks you know and think they need

In Cordial Dissemination, agents may follow other agents, and two agents are friends if
they follow each other. The basic rule of Cordial Dissemination is that an agent p can receive
from agent q a q′-block b if p and q are friends and either q = q′ or both p and q follow
q′. Note that the friendship relation induces an undirected graph on the agents, referred
to as the social graph. A friendship path is a path in the social graph. The key liveness
claim of Cordial Dissemination is that p eventually knows any q-block if there is a friendship
path of correct agents from p to q, all of which follow q. The social principles of Cordial
Dissemination are realized via the blocklace, introduced next.

4 The Blocklace

The blocklace is a distributed, partially-ordered counterpart of the replicated, totally-ordered
blockchain data-structure. It is formally introduced in the full paper [13], and has already
been applied to the implementation of grassroots social networking [14], the Flash payment
system [11], and the Cordial Miners family of consensus protocols [10]. Here is a concise
introduction of its basic concepts.

We assume a given cryptographic hash function hash. A block created by agent p ∈ Π,
also referred to as a p-block, is a triple b = (h, x, H), with h being a hash pointer hash((x, H))
signed by p, also referred to as a p-pointer ; x being the payload of b; and H a finite set of
signed hash pointers. If H = ∅ then b is a genesis block; an hash pointer h′ ∈ H points to
the block (h′, x′, H)′, if such a block exists; and if h′ is a p-pointer it is also referred to as a
self-pointer.

DISC 2023

47:4 Brief Announcement: Grassroots Distributed Systems

Figure 1 A self-closed blocklace: Blocks are color-coded by agent, thus pointers among blocks of
the same color are self-pointers, others are non-self pointers, which may be dangling.

A blocklace is a set of blocks, which is closed if every pointer in every block in B points
to a block in B. A pointer that does not point to a block in B is dangling in B, hence a
closed blocklace has no dangling pointers. A blocklace is self-closed if it has no dangling
self-pointers. Note that the notion of a cryptographic hash function implies that it is
computationally-infeasible to create hash pointers that form a cycle. We are concerned only
with computationally-feasible blocklaces, and any such blocklace B induces a DAG, with the
blocks of B as vertices and with directed edges b → b′ for every b, b′ ∈ B for which b includes
a pointer to b′. A block b observes a block b′ in B if there is a path b = b1 → b2 . . . → bn = b′

in B, n ≥ 1. We note that the “observes” relation is a partial order on B. Two p-blocks
that do not observe each other are referred to as an equivocation by p, and if their payloads
include conflicting financial transactions by p, they are also called a double-spend by p. If B

includes an equivocation by p we say that p is an equivocator in B.

5 Cordial Dissemination

Here we present the blocklace-based Cordial Dissemination Protocol CD; claim it to be
live (Prop. 4) and grassroots (Prop. 5); present pseudocode realizing CD for the model of
Asynchrony (Alg. 1); and discuss an implementation for mobile agents communicating over
an unreliable network, namely smartphones communicating via UDP.

We employ the blocklace as follows. The local state of each agent p is a blocklace,
consisting of blocks produced by p and blocks by agents that p follows and that were received
by p. A correct agent maintains a self-closed blocklace, buffering received out-of-order blocks.
A configuration c consists of a set of local states, one for each agent. The local state of agent
p in c is denoted by cp. Given agents p, q ∈ Π, then p follows q in c if cp includes a p-block
with payload (follow, q); p needs the q-block b in c if p follows q in cp and b ∈ cq \ cp; and
p and q are friends in c if p and q follow each other in c. The social graph (P, E(c)) induced
by a configuration c has an edge (p, q) ∈ E(c) if p and q are friends in c.

E. Shapiro 47:5

The social principles of Cordial Dissemination are realized by the blocklace as follows:
Disclosure is realized by the Create transition, with any new p-block serving as a multichannel
ack/nack message, informing whether p follows another agent q, and if so also of the latest
q-block known to p, for every q ∈ Π. Cordiality is realized by the Cordially-Send-b-to-q
transition. The liveness condition requires an agent to disclose every so often the blocks they
know and to receive any block sent to it. The Follow transition allows p to offer friendship to
any agent q; but there is no liveness requirement on p to do so. Agents p and q are friends if
they follow each other, namely both have produced a follow block for the other. Agent p of
course knows if it follows q; but p can know that q follows it only if it receives a (follow, p)
block b. However, b may include q-pointers to blocks p does not know yet, hence p may
have to “peek” into its received but not-yet-incorporated blocks and look for a (follow, p)
q-block, in order to know whether it is friends with q.

The full paper describes the cordial dissemination protocol as a family of distributed
multiagent transition systems. Here we capture the essence of the protocol informally.

The CD Cordial Dissemination Protocol
The local state of each agent p consists of a blocklace B, which initially includes a
genesis p-block that has no payload and no pointers, as well as received blocks not
yet incorporated in B.
The protocol proceeds by any agent p taking any of the following transitions:
1. Create/Follow: Create a new p-block b that points to the tips of B, as well as

to the previous p-block, and add b to B. If the payload of b is (follow, q) then
send b to q.

2. Cordially-Send-b-to-q: If B has a block b such that (i) p knows that q is a
friend, (ii) p knows that q follows the creator of b, and (iii) p does not know that
q knows b, then send b to q.

3. Receive-b: If a received q-block b is not in B then add b to B, provided p follows
q and any q-block b points to is already in B.

The liveness condition of the protocol requires that every message sent is eventually
received, and every agent every so often creates a new block and cordially sends blocks
to their friends.

The safety assurance of the protocol is that the local blocklace of any correct agent p is
self-closed and has no equivocations by p (but may include equivocation by faulty agents).
The following liveness proposition holds for the model of asynchrony:

▶ Proposition 4 (CD Liveness). Let r be a run of CD, p, q ∈ P . If in some configuration
c ∈ r, p and q are connected via a friendship path, all of its members follow q in c and are
correct in r, then for every q-block b in r there is a configuration c′ ∈ r for which b ∈ c′

p.

▶ Proposition 5. The Cordial Dissemination protocol CD is grassroots.

6 Pseudocode Implementation

Algorithm 1 presents pseudocode implementation of the Cordial Dissemination protocol
CD, for an single agent p for the model of Asynchrony. We assume that the agent p can
specify the payload for a new block, including it being a friendship offer. As according to the
model of asynchrony each message sent is eventually received, we assume the reliably_send
construct to keep a record of sent messages so as not to send the same message to the same
agent twice.

DISC 2023

47:6 Brief Announcement: Grassroots Distributed Systems

Algorithm 1 Grassroots Cordial Dissemination for Asynchrony
Code for agent p.

Local variables:
1: B ← {create_block(⊥, ∅)} ▷ The local blocklace of agent p

2: upon decision to create block with payload x do
3: b← create_block(x, tips(B)) ▷ 1. Create
4: B ← B ∪ {b}
5: if x = (follow, q) then reliably_send b to q ▷ 1. Follow

6: upon a new block in B do ▷ 2. Cordially-Send-b-to-q
7: for all b ∈ B, q ∈ P : friend(q) ∧ follows(q, b.creator) ∧ ¬agentObserves(q, b) do
8: reliably_send b to q

9: upon receive b s.t. B ∪ {b} is self-closed and p follows b.creator do ▷ 3. Receive-b
10: B ← B ∪ {b}

Mobile Agents Communicating via UDP. A refinement of the Cordial Dissemination
protocol for mobile (address-hopping) agents communicating over an unreliable network,
namely smartphones communicating via UDP, is presented in the full paper, and a more
concrete variant of it is preserted in the context of grassroots social networking [14]. Cordial
dissemination over UDP exploits the ack/nak information of blocklace blocks to its fullest, by
p retransmitting to every friend q every block b that p knows (not only p-blocks) and believes
that q needs, until q acknowledges knowing b. In this protocol, every block includes also the
IP address of its creator at the time of creation, and a new p-block is created whenever p

changes its IP address. Retransmission is initiated by timeout, and assuming that timeouts
are separated by seconds and mobile address changes are independent and are separated by
hours, the probability of two friends hopping together without one successfully informing
the other of its new IP address is around 10−7. If the two hopping friends have a stationary
joint friend, then it is enough that one of the hoppers successfully informs the stationary
friend of the address change, for the other hopper to soon know this new address from their
stationary common friend. Under the same assumptions, the probability of a clique of n

friends loosing a member due to all hopping simultaneously is around 10−3.6∗n. Note that
such a loss is not terminal – assuming that friends have redundant ways to communicate
(physical meetings, email, SMS, global social media), new addresses can be communicated
and the digital friendship restored.

7 Applications of Cordial Dissemination

Applications of blocklace-based cordial dissemination include grassroots social networking [14],
grassroots cryptocurrencies[12], as well as non-grassroots applications: The Flash payment
system [11] and the Cordial Miners family of consensus protocol [10].

E. Shapiro 47:7

References
1 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine

broadcast: A complete categorization. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC’21, pages 331–341, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3465084.3467899.

2 Paul Baran. On distributed communications networks. IEEE transactions on Communications
Systems, 12(1):1–9, 1964.

3 Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv:1407.3561, 2014.
4 Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwitaman Datta. Peerson: P2p social

networking: early experiences and insights. In Proceedings of the Second ACM EuroSys
Workshop on Social Network Systems, pages 46–52, 2009.

5 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99,
pages 173–186, 1999.

6 Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg. Constructing scalable
overlays for pub-sub with many topics. In Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, pages 109–118, 2007.

7 Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of
Peer-to-Peer systems, volume 6, pages 68–72. Berkeley, CA, USA, 2003.

8 Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün Sirer.
Decentralization in bitcoin and ethereum networks. In International Conference on Financial
Cryptography and Data Security, pages 439–457. Springer, 2018.

9 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is dag, 2021. arXiv:2102.08325.

10 Idit Keidar, Oded Naor, and Ehud Shapiro. Cordial miners: A family of simple and efficient
consensus protocols for every eventuality. arXiv preprint arXiv:2205.09174, 2022.

11 Andrew Lewis-Pye, Oded Naor, and Ehud Shapiro. Flash: An asynchronous payment system
with good-case linear communication complexity. arXiv preprint arXiv:2305.03567, 2023.

12 Ehud Shapiro. Grassroots cryptocurrencies: A foundation for a grassroots digital economy.
arXiv preprint arXiv:2202.05619, 2022.

13 Ehud Shapiro. Grassroots distributed systems: Concept, examples, implementation and
applications. arXiv preprint arXiv:2301.04391, 2023.

14 Ehud Shapiro. Grassroots social networking: Serverless, permissionless protocols for twitter-
/linkedin/whatsapp. arXiv preprint arXiv:2306.13941, 2023.

15 Ehud Shapiro and Nimrod Talmon. Foundations for grassroots democratic metaverse. In
AAMAS ’22: Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, pages 1814–1818, 2022.

16 Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM computer
communication review, 31(4):149–160, 2001.

17 Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan Miller, Bodhi
Mukherjee, Daniel Sturman, and Michael Ward. Gryphon: An information flow based
approach to message brokering. arXiv preprint cs/9810019, 1998.

18 Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin. Secure scuttlebutt: An
identity-centric protocol for subjective and decentralized applications. In Proceedings of the
6th ACM conference on information-centric networking, pages 1–11, 2019.

19 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347–356, 2019.

20 Shoshana Zuboff. The age of surveillance capitalism: The fight for a human future at the new
frontier of power: Barack Obama’s books of 2019. Profile books, 2019.

DISC 2023

https://doi.org/10.1145/3465084.3467899
https://arxiv.org/abs/2102.08325

	p000-Frontmatter
	Preface
	Organization
	Awards
	2023 Principles of Distributed Computing Doctoral Dissertation Awards
	2023 Edsger W. Dijkstra Prize in Distributed Computing

	p001-Abraham
	1 Introduction
	2 Model and Desiderata
	2.1 Model
	2.2 Desiderata

	3 Revenue Scheme and epsilon-Sure NE
	3.1 Revenue Scheme
	3.2 epsilon-sure NE

	4 Colordag
	5 Analysis
	6 Conclusion
	A The Probability of a Safe History
	B Verifying the Colordag Ledger Properties

	p002-Altisen
	1 Introduction
	2 A BFS Spanning Tree Algorithm and its Certification
	2.1 Algorithm Definition and Informal Model
	2.2 The PADEC Library
	2.3 The Formal Algorithm

	3 Rounds
	3.1 Rounds in the Atomic-state Model
	3.1.1 Natural Language Definition
	3.1.2 Infinite Rounds
	3.1.3 Amount of Rounds to achieve a Property

	3.2 Rounds in PADEC
	3.2.1 Set of Unsatisfied Nodes
	3.2.2 Predicate At_most_rounds
	3.2.3 Functional Definition (Computation)
	3.2.4 Induction Scheme

	4 Round Complexity of the Algorithm
	5 Conclusion
	A Specification and Closure of Algorithm BFS
	B Detailed Proof of the Round Complexity of Algorithm BFS
	B.1 Part A
	B.1.1 Base Case
	B.1.2 Induction Step

	B.2 Part B
	B.3 Final Result

	p003-Appan
	1 Introduction
	1.1 Technical Overview
	1.2 Other Related Work
	1.3 Open Problems

	2 Preliminaries and Definitions
	2.1 Existing Asynchronous Primitives

	3 Best-of-Both-Worlds Byzantine Agreement (BA)
	4 Best-of-Both-Worlds VSS Protocol
	5 The Preprocessing Phase Protocol
	6 Best-of-Both-Worlds Circuit-Evaluation Protocol
	A Broadcast Protocols
	A.1 Acast
	A.2 Terminologies Associated with {Pi_{BC}}

	B VSS for sharing L secrets

	p004-Attiya
	1 Introduction
	1.1 Stepping Forward: FLP-Style Impossibility Proofs
	1.2 Stepping Back: Round-Reduction Impossibility Proofs
	1.3 Round-Reduction vs. FLP-Style Impossibility Proofs
	1.4 Applications

	2 Model and Definitions
	2.1 Colorless Tasks
	2.2 Colorless Algorithms

	3 Round-Reduction Proofs
	3.1 Colorless Closure
	3.2 Colorless Speedup Theorem

	4 The Topology of the Closure
	5 Round-Reduction is Complete for 1-Dimensional Tasks
	6 Relations Between Round-Reduction and FLP-Style Proofs
	6.1 FLP-Style Proofs
	6.2 Connections Between the Proof Techniques

	7 Applications
	7.1 Time Lower Bound for Approximate Agreement
	7.2 Impossibility of Covering Tasks

	8 Conclusion
	A Omitted Proofs

	p005-Attiya
	1 Introduction
	2 Preliminaries
	2.1 Elements of Combinatorial Topology and Decision Tasks
	2.2 Elements of Point-Set Topology
	2.3 System Model

	3 The Need of Continuity
	4 Proof of the Generalized Asynchronous Computability Theorem with an Application to Set Agreement
	5 Characterization of Task Solvability in General Models
	6 Relationship to the Classical Finite-Time Approach
	7 Conclusion
	A Additional Details for Section 2 (Preliminaries)
	B Additional Details for Section 4 (Proof of the Generalized Asynchronous Computability Theorem with an Application to Set Agreement)
	C Additional Details for Section 5 (Characterization of Task Solvability in General Models)

	p006-Azouvi
	1 Introduction
	2 Basic block reward mechanism in Ethereum
	3 Model and Assumptions
	4 A Miner's Deviation from the Honest Strategy
	5 The Attack's Effect on Other Miners
	5.1 Joining the Attack
	5.2 Join and Initiate the Attack

	6 Possible Mitigations
	7 User perspective
	8 Discussion
	9 Related work
	10 Conclusion and Future Work
	A Omitted Proofs
	B Delay Incurred by the Mitigation of Section 6

	p007-Balliu
	1 Introduction
	1.1 Our Contributions
	1.2 High-level Ideas and Challenges

	2 Preliminaries
	2.1 A Generic Way to Solve All LCLs

	3 Algorithm for Intermediate Worst-Case Complexity Problems
	3.1 The Decomposition Algorithm
	3.2 Local Maxima and Bounding Quality
	3.3 Distributed Algorithm and Node Averaged Complexity

	A Improved Algorithms in the Polynomial Regime
	B Lower Bounds in the Polynomial Regime

	p008-Bampas
	1 Introduction
	1.1 Related work
	1.2 Our contributions

	2 Model and problem setting
	2.1 Agent model
	2.2 Model parameters
	2.3 Execution
	2.4 The treasure hunt problem

	3 A treasure hunt algorithm for τ≥1 and μ≥2
	3.1 Pseudocode
	3.2 Correctness
	3.3 Complexity

	4 A treasure hunt algorithm for μ≥1 and τ≥16
	5 Concluding remarks
	A State transition diagram of Algorithm 1

	p009-Ben-David
	1 Introduction
	2 Model and Preliminaries
	2.1 Multicore Scalability Properties
	2.1.1 Disjoint-Access Parallelism
	2.1.2 Invisible Reads

	3 Multinode Performance Properties
	3.1 Distributed Disjoint-Access Parallelism
	3.2 Fast Decision
	3.3 Seamless Fault Tolerance

	4 Impossibility Results
	4.1 The FIDS Theorems
	4.2 Proof Overview
	4.2.1 Sharded Systems
	4.2.2 Replicated but Unsharded

	5 Possibility Results
	6 Related Work
	7 Discussion
	A Full proofs of the FIDS theorems (and the supporting lemmas)

	p010-Blum
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Further Related Work

	2 Preliminaries
	3 Message-Complexity Lower Bound for Static Corruptions
	4 Locality Lower Bound for Adaptive Corruptions

	p011-Cambus
	1 Introduction
	1.1 Previous Works on Ruling Sets and MIS
	1.2 A High-Level Technical Overview of Our Algorithm

	2 Parallel 2-Ruling-Set
	2.1 Structural Properties of the Subgraphs
	2.2 Counting the Bad Nodes
	2.3 Degree Reduction

	3 Implementation of Parallel 2-Ruling-Set
	3.1 Congested Clique
	3.2 Linear Memory MPC Model
	3.3 Semi-streaming

	4 Concentration Inequalities

	p012-Charron-Bost
	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 Preliminaries
	2.1 The computing model
	2.2 Dynamic graphs and probability measure
	2.3 The mod P-synchronization problem
	2.4 Probabilistic diameters

	3 The SAP algorithm
	3.1 Description of the algorithm
	3.2 Properties of SAP's executions

	4 Probabilistic correctness of SAP
	5 The SAP algorithm in the Application to push-based models
	5.1 The push model in a general symmetric network
	5.2 The push model in fully-connected networks

	6 Concluding Remarks
	A Extra proofs

	p013-Civit
	1 Introduction
	1.1 Contributions
	1.2 Technical Overview

	2 Related Work
	3 Preliminaries
	4 DARE
	4.1 Building Blocks: Overview
	4.1.1 Disperser
	4.1.2 Agreement
	4.1.3 Retriever

	4.2 Pseudocode
	4.3 Proof of Correctness & Complexity

	5 Disperser: Implementation & Analysis
	5.1 Implementation
	5.2 Analysis

	6 DARE-Stark
	6.1 Revisiting DARE: What Causes Disperser's Complexity?
	6.2 Implementation

	7 Concluding Remarks
	A Sync: Implementation
	B STARKs
	C Further Analysis of DARE
	C.1 Good-Case Complexity
	C.2 DARE (and DARE-Stark) with Unknown Delta

	p014-Cosson
	1 Introduction
	2 The Breadth-First Depth-Next algorithm
	2.1 Analysis of BFDN and proof of Theorem 1

	3 A two-player zero-sum game with balls in urns
	3.1 Game of balls in urns
	3.2 Connection to BFDN

	4 Extensions of BFDN to alternative settings
	4.1 Restricted memory and communications
	4.2 Adversarial robot break-downs
	4.3 Collaborative exploration of non-tree graphs

	5 Recursive Algorithms for Improved Dependence on Depth D
	A Comparisons between Algorithms CTE, Yo* and BFDN
	B Formal description of Anchor-based Invariants
	C Divide-depth Algorithm

	p015-Coutouly
	1 Introduction
	1.1 Main Contributions
	1.2 Related Works

	2 Models and Definitions
	2.1 Message Adversaries
	2.2 Iterated Immediate Snapshot Message Adversary
	2.3 Execution of a Distributed Algorithm

	3 A Topology by Geometrization
	3.1 Combinatorial Topology Definitions
	3.1.1 Geometric Simplicial Complexes
	3.1.2 The Standard Chromatic Subdivision

	3.2 Encoding Iterated Immediate Snapshots Configurations
	3.2.1 Algorithms in the Iterated Immediate Snapshots Model
	3.2.2 A Topology for IIS_n

	4 Geometrization Equivalence
	4.1 Definitions
	4.2 First Results on Geometrization
	4.3 A Characterization of Geo-Equivalence

	5 The Set-Agreement Problem
	5.1 Impossibility Result
	5.2 Algorithms for Set-Agreement
	5.2.1 From Sperner Lemma to Set-Agreement Algorithm
	5.2.2 Lower Bounds

	6 Conclusion and Implications for Topological Methods
	A Geometrization Topology
	A.1 Convexity and Metric Results
	A.2 Geometrization Topology vs Geometric Realization Topology

	B Sperner Panlabellings of the Standard Chromatic Subdivision

	p016-Depres
	1 Introduction
	1.1 On the nature of distributed computing
	1.2 From send/receive to cooperation abstractions
	1.3 On the read/write side
	1.4 Content of the article
	1.5 Roadmap

	2 Distributed Computing Model
	2.1 Process model
	2.2 Communication model
	2.3 Notation

	3 Three Basic Binary Message Patterns and their RW Counterparts
	3.1 Three basic binary message patterns
	3.2 From message patterns to RW patterns
	3.3 Comparing message patterns and RW patterns
	3.4 On the test-and-set side

	4 Mutual Broadcast
	4.1 Mutual broadcast: Definition
	4.2 What does MBroadcast do
	4.3 A real-time property
	4.4 Pair Broadcast: MP2 Alone Characterizes Test&Set()

	5 MBroadcast versus RW Registers
	5.1 From regular RW registers to MBroadcast
	5.2 From MBroadcast to atomic RW registers
	5.3 A remark on complexity
	5.4 What is actually needed to build a RW register

	6 MBroadcast in Action: Mutex
	6.1 Mutex
	6.2 An MBroadcast-based rewriting of Lamport's Bakery algorithm

	7 MBroadcast in Action: Consensus
	7.1 Definition
	7.2 Enriching the model with additional computability power
	7.3 An MBroadcast-based variant of the Paxos consensus algorithm

	8 Conclusion
	A Missing proofs
	A.1 From atomic RW registers to MBroadcast
	A.2 From MBroadcast to atomic RW registers
	A.3 Proof of the Mutex algorithm

	B MBroadcast in Action: Lattice Agreement
	B.1 Definition
	B.2 An MBroadcast-based lattice agreement algorithm

	C On the Computability Side: MP2 Alone Characterizes Test&Set()
	C.1 From two-process consensus to PBroadcast
	C.2 From PBroadcast to Test&Set()

	p017-Dhoked
	1 Introduction
	2 System Model
	2.1 RME Correctness and Other Properties Reformulated
	2.2 Complexity Measures

	3 An RMR-Optimal RME Algorithm with Dynamic Joining for CC and DSM Models
	3.1 Background: MCS Algorithm with Wait-Free Exit
	3.2 The Main Idea
	3.3 A Formal Description

	4 Adding the BCSR Property
	4.1 The Main Idea
	4.2 A Formal Description

	5 A Fully Dynamic RMR-Optimal RME Algorithm for the CC Model
	6 On Achieving Dynamic Joining and Leaving, Wait-Free Withdraw, Adaptive Space, and Bounded RMR Complexity in the DSM Model
	7 Related Work
	8 Conclusion and Future Work
	A A Recoverable Lock-Based Concurrent Linked List
	B Experimental Evaluation
	C Abortability and Withdrawability

	p018-DiLuna
	1 Introduction
	1.1 Our Contributions

	2 Definitions and Preliminaries
	3 Computation in Leaderless Networks
	3.1 Stabilizing Algorithm
	3.2 Terminating Algorithm

	4 Computation in Networks with Leaders
	4.1 Stabilizing Algorithm
	4.2 Terminating Algorithm

	5 Negative Results
	5.1 Leaderless Networks
	5.2 Networks with Leaders

	6 Conclusions
	A Impact on Fundamental Problems and State of the Art

	p019-Flin
	1 Introduction
	1.1 Related Work
	1.2 Our Techniques in a Nutshell
	1.3 Organization of the Paper

	2 Preliminaries & Definitions
	2.1 Slack Generation
	2.2 Sparse-Dense Decomposition
	2.3 Pseudo-degrees

	3 Detailed Overview of the Full Algorithm
	4 Coloring Dense Nodes
	4.1 Leader, Outliers & Colorful Matching
	4.2 Synchronized Color Trial
	4.3 Slack Color (with extra bandwidth)
	4.4 Learning Small Palettes (with extra bandwidth)

	A Missing Details in Synchronized Color Trial
	B Missing Details in the Proof of Lemma 23
	C Random Broadcast in Almost-Cliques
	D Proof of Theorem 1

	p020-Fraigniaud
	1 Introduction
	1.1 Proof-Labeling Schemes
	1.2 Clique-Width
	1.3 Our Results
	1.4 Related Work

	2 Models
	2.1 Proof-Labeling Schemes for MSO Properties
	2.2 Cographs and Cotrees

	3 Overview of our Techniques
	3.1 Certifying MSO_2 Properties in Graphs of Bounded Tree-Width
	3.2 Clique-Width and NLC-Width
	3.3 From Tree-Width to NLC-Width: The Main Messages
	3.4 Checking Consistency: Auxiliary, and Service Messages
	3.5 Dealing with MSO_1 Predicates
	3.6 Certificate Size

	4 Conclusion

	p021-Frey
	1 Introduction
	2 Preliminaries
	2.1 Computation Model
	2.2 Number theory preliminaries

	3 The AllowList and DenyList objects: Definition
	4 PROOF-LIST object specification
	5 The consensus number of the AllowList object
	6 The consensus number of the DenyList object
	6.1 Lower bound
	6.2 Upper bound

	7 Discussion
	7.1 Revocation of a verifiable credential
	7.2 The Anonymous Asset Transfer object
	7.3 Distributed e-vote systems

	8 Related Works
	9 Conclusion
	A Variations on the listed-values array
	B Anonymous Asset-Transfer object type
	B.1 Problem formalization
	B.2 Consensus number of the Anonymous Asset-Transfer object type

	p022-Fuchs
	1 Introduction and Related Work
	1.1 Our Contributions
	1.2 Organization of the paper

	2 Model and Preliminaries
	3 Distributed Oriented List Defective Coloring Algorithms
	3.1 Fundamentals
	3.2 Basic Oriented List Defective Coloring Algorithm
	3.2.1 Gamma-Classes and Parameters
	3.2.2 Algorithm
	3.2.3 Multiple Defects

	4 Recursive Color Space Reduction
	5 Applying List Defective Colorings
	A Main Oriented List Defective Coloring Algorithm

	p023-Grunau
	1 Introduction
	1.1 MPC Model and Exponential Speed-Up Over LOCAL Algorithms
	1.2 Our Technical Contribution
	1.3 Our Method in a Nutshell
	1.4 Further Related Work
	1.5 Outline

	2 Preliminaries and Notation
	3 Strict Lg-decompositions
	4 Strict Lg-decomposition in MPC
	5 Coloring, MIS, and Matching
	A Massively Parallel Subtree Rake and Compress
	A.1 The Conservative Peeling Algorithm
	A.2 Subtree Rake and Compress

	B Coloring, MIS, Matching, and Lg-decomposition with Optimal Space

	p024-Guerraoui
	1 Introduction
	1.1 Main results
	1.2 Technical challenges & proof techniques
	1.3 Related work

	2 Preliminaries
	2.1 Graph theoretical terminology
	2.2 Gossip protocols

	3 Mathematical framework for source anonymity in general graphs
	3.1 Measuring source anonymity with differential privacy
	3.2 Semantic of source anonymity

	4 Fundamental limits of source anonymity: lower bound on epsilon
	4.1 Warm-up
	4.2 Universal lower bound on epsilon

	5 Privacy guarantees: upper bound on epsilon
	5.1 Adversarial density
	5.2 General upper bound on epsilon

	6 Proof sketch for Theorem 8
	6.1 Step I: reduction to a random walk with probabilistic die out
	6.2 Step II: upper bounding the max divergence between death sites

	7 Trade-off: Dissemination time vs. privacy
	8 Summary & future directions

	p025-Jayanti
	1 Introduction
	2 Related Work
	3 Model
	4 Handles for dynamic joining and space adaptivity
	5 The DurEC Building Block
	6 DurECW and DuraLL: durable Writable LLSC implementations
	6.1 Intuitive description of Algorithm DurECW
	6.2 The DuraLL Algorithm

	7 DuraCAS: a durable implementation of Writable CAS
	8 Discussion and Remarks
	A DuraLL Implementation

	p026-Keidar
	1 Introduction
	2 Model and Problem Definition
	3 Cordial Miners Overview
	4 The Blocklace
	4.1 Blocklace Basics
	4.2 Blocklace Safety
	4.3 Blocklace Liveness

	5 Blocklace Ordering with tau
	6 The Cordial Miners Protocols
	6.1 Dissemination (Alg. 3)
	6.2 Specific utilities (Alg. 4)
	6.3 Correctness Proof Outline

	7 Performance Analysis
	8 Related Work
	9 Conclusion
	A Formal Model
	B Figures

	p027-Kostitsyna
	1 Introduction
	2 Shortest path trees
	2.1 Efficient SP-trees
	2.2 Feather trees

	3 Supply and demand
	4 Navigating the supply graph
	5 Algorithm
	6 Discussion
	A Simulation figures
	B Coarse grid

	p028-Li
	1 Introduction
	2 Heterogeneous Quorum Systems
	2.1 Processes and Quorums
	2.2 Properties

	3 Protocol Implementation
	4 Protocol Specification
	5 Impossibility
	5.1 Consensus
	5.2 Byzantine Reliable Broadcast

	6 Protocols
	6.1 Reliable Broadcast Protocol
	6.2 Byzantine Consensus Protocol

	7 Related Works
	8 Conclusion

	p029-Miller
	1 Introduction
	2 Tools
	3 The canonical line
	4 Arbitrary lines with known initial distance between agents
	4.1 The algorithm
	4.2 Analysis of the algorithm
	4.3 Lower bound
	4.3.1 The D = 1 case
	4.3.2 The D > 1 case

	5 Arbitrary lines with unknown initial distance between agents
	6 Conclusion
	A The Line Colouring Algorithm

	p030-Nataf
	1 Introduction
	1.1 Related Work

	2 Model and Preliminary Results
	2.1 Defining Knowledge
	2.2 Null Messages and Enhanced Message Chains

	3 Dealing with Failures
	3.1 Resilient Message Blocks

	4 Application: Information Transfer in Nice Runs
	5 Application: Coordination
	6 Robust Information Transfer
	7 Conclusions

	p031-Pu
	1 Introduction
	2 Related Work
	3 Model
	4 Gorilla
	5 Correctness
	5.1 The Main Story, and How it Fails
	5.2 A New Beginning
	5.3 Safety
	5.4 Liveness

	6 Conclusion

	p032-Robinson
	1 Introduction
	1.1 Our Contributions and Related Work
	1.2 Additional Related Work

	2 A Lower Bound Technique for Embeddable Problems
	2.1 The Lower Bound Graph G_{l}
	2.2 The Simultaneous Multiparty ({SMP}) Model
	2.3 Embeddable Problems
	2.4 Proof of Lemma 5

	3 A Lower Bound for Computing a BFS Tree
	4 A Lower Bound for Verifying Symmetry Breaking Problems
	4.1 The Edge Intersection Problem EI_{m}
	4.2 The Hard Input Distribution D_{EI_{m}}
	4.3 A Lower Bound for the EI_{m} Problem
	4.4 Proof of Theorem 2

	5 A Lower Bound for k-ECSS in Sketching Model
	5.1 The Edge Recovery Problem {ER_{k,m}}
	5.2 The Hard Input Distribution D_{{ER_{k,m}}}
	5.3 A Lower Bound for the {ER_{k,m}} Problem
	5.4 Proof of Theorem 3

	6 A Streaming Lower Bound for k-ECSS
	7 Future Work and Open Problems
	A Tools from Information Theory

	p033-Taubenfeld
	1 Introduction
	1.1 Anonymous shared memory
	1.2 Mutual exclusion, symmetric algorithms, memoryless algorithms
	1.3 Contributions: individual progress vs. global progress

	2 Preliminaries
	3 A starvation-free mutual exclusion algorithm for two processes
	3.1 An informal description of the algorithm
	3.2 Correctness Proof

	4 An impossibility result
	4.1 Basic definitions and observations
	4.2 Anonymity
	4.3 The notions of a symmetric run and a symmetric state
	4.4 Symmetry and anonymity
	4.5 Proof of Theorem 5
	4.6 A generalization

	5 Discussion

	p034-Tran
	1 Introduction
	1.1 Related Work

	2 Model and Definitions
	2.1 System Model
	2.2 Multiplicity Queues
	2.3 Shifting Proofs

	3 Lower Bound Proof Outline
	4 Distinct Return Values
	5 Repeated Return Values
	6 Contradiction
	7 Partial Tightness
	8 Conclusion
	A Appendix
	A.1 Proofs Omitted from Paper Body
	A.2 Partial Tightness: Special Case Upper Bound

	p035-Aksenov
	1 Motivation and Background
	2 Requirements and the BatchBoost Construction
	3 Performance Evaluation
	4 Conclusions and Future Work

	p036-Attiya
	1 Introduction
	2 Connected Consensus and Related Problems
	3 New Algorithms for Connected Consensus
	4 Discussion

	p037-Chen
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 ReachUL in AMPC0
	3.2 Limitations

	p038-Chouinard
	1 Introduction
	2 The Wear Leveling Problem
	3 The Transactional Counter Algorithm
	4 Experiments

	p039-Cohen
	1 Introduction
	2 From Binary BA to Multivalued BA
	3 Conclusions

	p040-Dahal
	1 Introduction
	2 Preliminaries
	3 Main result
	4 Technicality: connected graphs

	p041-Gafni
	1 Introduction
	2 The model
	3 Implementing commit-adopt
	3.1 Simulating the no-equivocation model
	3.2 Implementing commit-adopt in the no-equivocation model

	4 Consensus with deterministic safety and constant expected latency
	5 Related Work

	p042-Gelles
	1 Introduction and Results
	2 Background and Related Work

	p043-Leinweber
	1 Introduction
	2 TEE-Rider: Transforming DAG-Rider to n geq 2f+1
	2.1 Changes in Assumptions, Building Blocks, and Setup
	2.2 The Algorithm

	3 Correctness Argument
	4 Discussion and Conclusion

	p044-LevLehman
	1 Introduction
	2 Model, In Brief
	3 Detectable Swap Algorithms
	4 Impossibility of lock-freedom for the independent failures model
	5 Discussion

	p045-Navarra
	1 Introduction
	2 Definitions and notation
	3 Impossibility results
	4 Algorithm WRain
	5 Correctness and Optimality
	6 Conclusion

	p046-Ovens
	1 Introduction
	2 Definitions
	3 Lower Bound for Set Agreement Using Swap Objects
	4 Lower Bound for Consensus Using Readable Swap Objects
	5 Conclusion

	p047-Shapiro
	1 Introduction
	2 Grassroots Protocols
	3 The Social Graph
	4 The Blocklace
	5 Cordial Dissemination
	6 Pseudocode Implementation
	7 Applications of Cordial Dissemination

