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Abstract
Optimistic rollups are in wide use today as an opt-in scalability layer for blockchains like Ethereum.
In such systems, Ethereum is referred to as L1 (Layer 1) and the rollup provides an environment
called L2, which reduces fees and latency but cannot instantly and trustlessly interact with L1. One
practical issue for optimistic rollups is that trustless transfers of tokens and ETH, as well as general
messaging, from L2 to L1 is not finalized on L1 until the passing of a dispute period (aka withdrawal
window) which is currently 7 days in the two leading optimistic rollups: Arbitrum and Optimism.
In this paper, we explore methods for sidestepping the dispute period when withdrawing ETH from
L2 (called an exit), even in the case when it is not possible to directly validate L2. We fork the
most-used rollup, Arbitrum Nitro, to enable exits to be traded on L1 before they are finalized.
We also study the combination of tradeable exits and prediction markets to enable insurance for
withdrawals that do not finalize. As a result, anyone (including contracts) on L1 can safely accept
withdrawn tokens while the dispute period is open despite having no knowledge of what is happening
on L2. Our scheme also allows users to opt-into a fast withdrawal at any time. All fees are set by
open market operations.

2012 ACM Subject Classification Security and privacy; Security and privacy → Cryptography

Keywords and phrases Ethereum, layer 2, rollups, bridges, prediction markets

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.22

Supplementary Material Software (Source Code): https://github.com/MadibaGroup/nitro/tree/
fast-withdrawals archived at swh:1:dir:5e160d45808e5387baa1e65eff88f6eed0e37c97

Funding Jeremy Clark: acknowledges support for this research project from (i) the National Sciences
and Engineering Research Council (NSERC), Raymond Chabot Grant Thornton, and Catallaxy
Industrial Research Chair in Blockchain Technologies (IRCPJ/545498-2018), (ii) the Autorité des
Marchés Financiers, and (iii) a NSERC Discovery Grant (RGPIN/04019-2021).

Acknowledgements This paper includes useful comments from the reviewers, discussions with
Edward W. Felten and Rachel Bousfield, and feedback from presentations at Devcon 6 and a16z
crypto research.

1 Introductory Remarks

Ethereum-compatible blockchain environments, called Layer 2s (or L2s) [5], have demonstrated
an ability to reduce transaction fees by 99–99.9% while preserving the strong guarantees of
integrity and availability in the underlying Layer 1 (or L1) blockchain. The subject of this
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paper concerns one subcategory of L2 technology called an optimistic rollup. The website L2
Beat attempts to capitalize all tokens of known value across the top 25 L2 projects. It finds
that the top two L2s are both optimistic rollups, Arbitrum and Optimism, which respectively
account for 50% and 30% of all L2 value – $4B USD at the time of writing. 1

We will describe the working details of optimistic rollups later in this paper but here are
the main takeaways: currently, rollups are faster and cheaper than Ethereum itself. However,
each L2 is essentially an isolated environment that cannot instantly and trustlessly interact
with accounts and contracts that are running on either L1 or other L2s. An optimistic
rollup project will typically provide a smart contract, called a validating bridge [9], that can
trustlessly move ETH (and other tokens and even arbitrary messages) between L1 and its
own L2. It implements a transfer by locking the ETH in an L1 contract and minting the
equivalent ETH on L2 and assigning it to the user’s L2 address. More precisely, L2 ETH is a
transferrable claim for L1 ETH from the L1 bridge at the request of the current owner of
the L2 claim. Later when the user requests a withdrawal, the ETH will be destroyed on L2
and released by the bridge back onto L1 according to whom its new owner is on L2 at the
time of the request. This requires the rollup to convince the L1 bridge contract of whom the
current owner of withdrawn ETH is on L2. We provide details later but this process takes
time: the bridge has to wait for a period of time called the dispute window. The current
default is 7 days in Arbitrum and Optimism, however the filing of new disputes can extend
the window. The bottom line is that users have to wait at least 7 days to draw down ETH
from an optimistic rollup.

Contributions

In this paper, we compare several methods – atomic swaps and tradeable exits – for working
around this limitation. While we argue workarounds cannot be done generally (e.g., for
NFTs, function outputs, or arbitrary messages), some circumstances allow it: namely, when
the withdrawn token is liquid, fungible, and available on L1 and the withdrawer is willing to
pay a fee to speed up the withdrawal. While these techniques work easily between human
participants that have off-chain knowledge, such as the valid state of the L2, it is harder to
make them compatible with L1 smart contracts that have no ability to validate the state
of L2. We propose a solution using tradeable exits and prediction markets to enable an
L1 smart contract to safely accept withdrawn tokens before the dispute period is over. We
fork the current version, Nitro, of the most used optimistic rollup, Arbitrum, maintained as
open source software2 by Offchain Labs. Arbitrum is a commercial product with academic
origins [8]. We implement our solution and provide measurements. We also provide an
analysis of how to price exits and prediction market shares.

2 Background

While we describe optimistic rollups as generally as possible, some details and terms are
specific to Arbitrum.

2.1 Inbox
Rollups have emerged as a workable approach to reduce fees and latency for Ethereum-based
decentralized applications. In a rollup, transactions to be executed on L2 are recorded in
an L1 smart contract called the inbox. Depending on the system, users might submit to

1 L2 Beat: https://l2beat.com/scaling/tvl/, accessed Oct. 2022.
2 GitHub: Nitro https://github.com/OffchainLabs/nitro
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the inbox directly, or they might submit to an offchain service, called a sequencer, that will
batch together transactions from many users and pay the L1 fees for posting them into the
inbox. Transactions recorded in the inbox (as calldata) are not executed on Ethereum,
instead, they are executed in a separate environment off the Ethereum chain, called L2. This
external environment is designed to reduce fees, increase throughput, and decrease latency.

2.2 Outbox
Occasionally (e.g., every 30–60 minutes), validators on L2 will produce a checkpoint of the
state of all contracts and accounts in the complete L2 according to the latest transactions
and will place this asserted state (called an RBlock) in a contract on L1 called the outbox.
Note that anyone with a view of L1 can validate that the sequence of transactions recorded
in the inbox produces the asserted RBlock in the outbox. This includes Ethereum itself, but
asking it to validate this be equivalent to running the transactions on Ethereum. The key
breakthrough is that the assertion will be posted with evidence that the RBlock is correct so
Ethereum does not have to check completely.

2.3 Optimistic vs. zk-rollups
In practice, two main types of evidence are used. In zk-rollups,3 a succinct computational
argument that the assertion is correct is posted and can be checked by Ethereum for far
less cost than running all of the transactions. However the proof is expensive to produce.
In optimistic rollups, the assertions are backed by a large amount of cryptocurrency acting
as a fidelity bond. The correctness of an RBlock can be challenged by anyone on Ethereum
and Ethereum itself can decide between two (or more) RBlocks for far less cost than running
all of the transactions (by having the challengers isolate the exact point in the execution
trace where the RBlocks differ). It will then reallocate the fidelity bonds to whoever made
the correct RBlock. If an RBlock is undisputed for a window of time (e.g., 7 days), it is
considered final.

2.4 Bridge
A final piece of the L2 infrastructure is a bridge, which can move ETH, tokens, NFTs, and
even arbitrary messages, between L1 and L2. Our fast withdrawals is limited to ETH and
fungible tokens. If Alice has ETH on Ethereum, she can submit her ETH to a bridge smart
contract on Ethereum which will lock the ETH inside of it, while generating the same amount
of ETH in Alice’s account inside the L2 environment. The bridge does not need to be trusted
because every bridge operation is already fully determined by the contents of the inbox. Say
that Alice transfers this ETH to Bob’s address on L2. Bob is now entitled to draw down the
ETH from L2 to L1 by submitting a withdrawal request using the same process as any other
L2 transaction – i.e., placing the transaction in the inbox on L1, having it executed on L2,
and seeing it finalized in an RBlock on L1. Optimistically, the RBlock is undisputed for 7
days and is finalized. Bob can now ask the bridge on L1 to release the ETH to his address
by demonstrating his withdrawal (called an exit) is included in the finalized RBlock (e.g.,
with a Merkle-proof).

3 zk stands for zero-knowledge, a slight misnomer: succinct arguments of knowledge that only need to be
complete and sound, not zero-knowledge, are used [10].
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2.5 Related Work
Arbitrum is first described at USENIX Security [8]. Gudgeon et al. provide a systemization
of knowledge (SoK) of Layer 2 technology (that largely predates rollups) [5]. McCorry
et al. provide an SoK that covers rollups and validating bridges [9], while Thibault et al.
provide a survey specifically about rollups [13]. Some papers implement research solutions
on Arbitrum for improved performance: decentralized order books [11] and secure multiparty
computation [2]. The idea of tradeable exits predates our work but is hard to pinpoint a
source (our contribution is implementation and adding hedges). Further academic work on
optimistic rollups and bridges is nascent – we anticipate it will become an important research
area.

Other related topics are atomic swaps and prediction markets. Too many papers propose
atomic swap protocols to list here but see Zamyatin et al. for an SoK of the area (and a
new theoretical result) [14]. Decentralized prediction markets proposals predate Ethereum
and include Clark et al. [1] and Truthcoin [12]. Early Ethereum projects Augur and Gnosis
began as prediction markets.

3 Proposed Solution

For simplicity, we will describe a fast exit system for withdrawing ETH from L2, however it
works for any L1 native fungible token (e.g., ERC20) that is available for exchange on L1. We
discuss challenges of fast exits for non-liquid/non-fungible tokens in Section 6.4. Consider an
amount of 100 ETH. When this amount is in the user’s account on L1, we use the notation
100 ETHL1. When it is in the bridge on L1 and in the user’s account on L2, we denote it 100
ETHL2. When the ETH has been withdrawn on L2 and the withdrawal has been asserted
in the L1 outbox, but the dispute window is still open, we refer to it as 100 ETHXX. Other
transitionary states are possible but not needed for our purposes.

3.1 Design Landscape
In Table 1, we compare our solution to alternatives in industry and the blockchain (academic
and grey) literature that could be used for fast withdrawals.

3.1.1 Properties
We are interested in solutions that do not require a trusted third party. If trust is acceptable,
a centralized exchange that has custody of its users funds is a fast and user-friendly solution.
We consider anything faster than the 7-day dispute period as “fast” but take measurements
of solutions that can settle within a fully confirmed “L1 transaction” (e.g., minutes) and
within a unconfirmed L2 RBlock (e.g., hours). This assumes that all counterparties perform
instantly upon request. Settlement is from the perspective of the withdrawer, Alice, only
and does not necessarily mean other counterparties will complete within the same timeframe.
For example, in many solutions, Alice will have her withdrawn ETH quickly at the expense
of a counterparty waiting out the dispute period.

Some solutions require one party to act, followed by an action of the counterparty in a
follow-up transaction. This creates the risk that the counterparty aborts the protocol before
taking their action. Since it is unknown if the counterparty will act or not, these protocols
establish a window of time for the counterparty to act and if the window passes without action,
the initial party has to begin the protocol again with a new counterparty. The protocols
ensure that funds are never at risk of being lost, stolen, or locked up forever, however the
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Table 1 Comparing alternatives for fast withdrawals from optimistic rollups for liquid and
fungible tokens where • satisfies the property fully, ◦ partially satisfies the property, and no dot
means the property is not satisfied. ⊥ was not measured. For our work, ∼ means we propose how
to fully achieve the property but do not by default (see caveats in Section 6.1).
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Normal Exit (baseline) Arbitrum • • • 200K 80K –

Centralized Binance • • • • • 400K 21K Operator

HTLC Swaps Celer • ◦ • • 625K 92K

Conditional Transfers StarkEx • • • ⊥ ⊥ Operator

Bridge Tokens Hop ◦ • • • • 1.8M 300K Operator

Tradeable Exits This Work • ∼ • • • • 200K 80K Discount

Hedged Tradeable Exits This Work • ∼ • • • • 265K 80K FAILPM

protocols admit two smaller issues. The first issue is that a malicious counterparty could
accept to participate with no intention of completing the protocol just to “grief” the party
taking the action – wasting their time and possibly gas fees for setting up and tearing down
the conditions of the trade. The second issue is that a strategic counterparty can accept to
participate and then selectively choose to complete or abort, as well as timing exactly when
they choose to complete (within the window), based on price movements or other market
information. This is called (somewhat cryptically) a “free option;” finance people might
recognize it as akin to being given an American call option for free.

A solution is “opt-in anytime” if the user can withdraw normally and then (say upon
realizing for the first time that there is a 7 day dispute window) decide to speed up their
transaction. While it is not a design goal of our paper, many of these solutions are generic
cross-chain transactions (including L2-to-L2 swaps). A drawback of our solution is that it is
narrowly scoped to L2-to-L1 withdrawals on rollups. Therefore our solution is not intended
as a complete replacement of atomic swaps or the other solutions in Table 1. It is designed
to be best-in-class only for slow rollup withdraws.

Finally we estimate the costs involved for the seller of ETHL2. For some protocols, the
gas cost of the buyer might differ from the seller depending if its actions are symmetric or
not – we comment on this but did not find it interesting enough to put in the table. The
more interesting aspect is that many alternatives do require a third party to be involved
(we generically call them “operators”) and they must be compensated for their actions. In
some alternatives, the operators might be not be inherently necessary (e.g., an HTLC swap)
but are used in practice (e.g., Celer) to ease friction (e.g., users finding other users to swap
with): in this case, we are charitable and do not mark the fee. So the fees are for things
fundamental to how the alternative works. We expand more within the discussion of each
alternative below.
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3.1.2 Alternatives

Centralized

Consider Alice who has 100 ETHL2 and wants 100 ETHL1 for it. A centralized exchange (e.g.,
Coinbase, Binance) can open a market for ETHL2/ETHL1. Alternatively, a bridge might rely
on an established set of trustees to relay L2 actions to L1. This is called proof of authority;
it is distributed but not decentralized (i.e., not an open set of participants). The gas costs
consists of Alice transferring her ETHL2 onto the exchange (withdraw to L1 is paid for by the
exchange). An exchange will not be profitable if it offers this for free, therefore it captures a
operator fee for the service.

Hash Time Locked Contracts (HTLCs)

Assume Bob has 100 ETHL1 and is willing to swap with Alice. An atomic swap binds together
(i) an L2 transaction moving 100 ETHL2 from Alice to Bob and (ii) an L1 transaction moving
100 ETHL1 from Bob to Alice. Either both execute or both fail. HTLC is a blockchain-friendly
atomic swap protocol. Its main drawback is that it also has a time window where Alice
(assuming she is the first mover in the protocol) must wait on Bob, who might abort causing
Alice’s ETHL2 to be locked up while waiting (called the griefing problem), or might watch
price movements before deciding to act (called free option problem). Bob needs to monitor
both chains so he cannot be an autonomous smart contract. HTLCs can work generically
between any two chains capable of hash- and time-locking transaction outputs; this includes
between two L2s.

The transaction (containing a hashlock and timeout) is slightly more complicated than
a standard ETH transfer, requiring smart contract logic on both layers. The measurement
based on Celer is not a pure HTLC and uses operators as well for liquidity and staking, but
we omit these fees from the table because theoretically Alice and Bob could find each other
and perform a pure HTLC with no added infrastructure.

Conditional Transfers

The intuition behind a conditional transfer (CT) is that L1-to-L2 messaging (or bridging)
is fast even if L2-to-L1 messaging is slow. CT exploits this to build an HTLC-esque swap
specifically for withdrawing from rollups (while HTLCs are designed generically for cross-
chain swaps). Alice beings by registering her intent to trade 100 ETHL2 for 100 ETHL1 in
a special registry contract on L1, and she locks (e.g., for an hour) 100 ETHL2 in escrow
on L2. If Bob agrees to the swap, Alice provides him (off-chain) with a signed transaction
(called the conditional transfer) that transfers the escrowed 100 ETHL2 to Bob, conditioned
on Alice having receiving 100 ETHL1 in the registry contract on L1. After Bob transfers the
ETHL1 on L1, this fact can be bridged to the L2 escrow contract (with customization of the
rollup’s inbox) quickly (recall that L1-to-L2 messaging is fast). The L2 escrow contract will
flag that the L1 transaction has paid by Bob, and Bob can broadcast his signed (by Alice)
L2 transaction to recover 100 ETHL2 from escrow (if Bob broadcasts it before the flag is set,
it simply reverts).

In terms of existing implementations, we could not adequately isolate the conditional
transfer component from the rest of the bridge to measure gas costs (denoted in the table
using a ⊥ symbol) however it should be slight more expensive than an HTLC as the logic of
the transaction is more complex.
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Also note that Bob must be a validator on L2 to confirm that the state of the escrow and
conditional transfer on L2 will result in him being paid – this is where the speedup really
comes from, if he waits for L1 to finalize this, then the transfer happens after the dispute
period and it is no different than a normal exit. Consequently, Bob cannot be an autonomous
L1 smart contract unable to validate L2 state until it is finalized on L1 (which is the design
goal of our alternative: hedged tradeable exits).

Bridge Token

A bridge token is not a novel technical innovation but it is a practical market design for
supplying bridges with liquidity. Bridges between L1 and L2 can technically be implemented
by anyone. It is natural for the inbox/outbox provider to provide a bridge but it is not
strictly necessary.

Assume a third party creates a contract on L1 that accepts ETHL1 and releases a
transferable claim for ETHL1; it creates the same contract on L2. Assume enough of these
claims come into circulation that a liquid market for them emerges on both layers. To move
ETHL2 to ETHL1, Alice starts by trading her ETHL2 for a claim to the same amount on
L2. She then asks the L2 contract to transfer the claim which it does by burning them and
firing an event. An authorized party, called a bonder, notices the event on L2, goes to the L1
contract and mints the same number of claims on L1 for ETHL1 and transfers them to Alice’s
address. Technically the L1 contract is insolvent as more claims exist than actual ETHL1 in
the contract, but the L2 contract is oversolvent by the same amount. The contracts can be
rebalanced (1) through movements in the opposite direction; (2) through a bulk withdrawal
after the normal 7-day dispute period; or (3) by incentivize bonders to purposefully rebalance
the contracts by burning claims on L1 and minting on L2. To prevent the bonder from
maliciously minting tokens on L1 that were not burned on L2, it must post a fidelity bond of
equal or greater value. (Alternatively, the bonder can be a trusted party which makes it the
same in analysis as a centralized exchange). After the 7-day dispute period, the L1 contract
can verify the bonder’s actions are consistent with the burns on L2 and release its fidelity
bond.

Note that when you collapse this functionality, it is equivalent to the bonder buying
ETHXX from Alice for ETHL1 and receiving their ETHL1 back 7 days later. The extra
infrastructure is necessary because today native bridges do not support transferring ETHXX.
As in atomic swaps, the bonder can fail to act (griefing) which is worst in this case if Alice
cannot “unburn” her tokens, but there is no free option because Bob is a relay and not
a recipient of the tokens. The gas fee measurement is based on Hop and standard token
transfers on L1 and L2. The main cost of bridge tokens is paying the bonder (called an
operator in the table) who are providing a for-profit service.

3.2 Tradeable Exits
Alice wants to withdraw 100 ETHL2. Unlike the other solutions, Bob takes the risk that
the exit never finalized and therefore will offer less than 100 ETHL1 (say 99.95 ETHL1) for
it (this is denoted “discount” in Table 1). Assume Bob has 99.95 ETHL1 that will not use
until after the dispute window. Bob also runs an L2 validator so he is assured that if Alice
withdraws, it is valid and will eventually finalize. With a tradeable exit, the outbox allows
Alice to change the recipient of her withdraw from herself to Bob. Thus Alice swaps her
pending exit of 100 ETHL1 (which we call 100 ETHXX) for Bob’s 99.95 ETHL1 on L1 (note
we discuss the actual difference in price in Section 5). Since ETHL1 and ETHXX are both on
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L1, Alice can place an ask price for her ETHXX and the first trader willing to swap can do
so atomicly, with no ability to grief or capitalize on a free option. After 7 days, Bob can
ask the bridge to transfer the ETHL1 to his address, and the bridge checks the outbox to
validate that Bob’s address is the current owner of the exit.

In our forked bridge, Alice can transfer any of her exits that are in an RBlock (i.e., an
asserted L2 state update registered in the outbox). Technically, Bob can check the validity
of the withdrawal as soon as it is in the inbox, and not wait 30-60 minutes for an RBlock.
However for implementation reasons, it is easier to track an exit based on its place (i.e.,
Merkle path) in an RBlock, rather than its place in the inbox. When we say a withdrawal is
“fast,” we mean 30-60 minutes (i.e., one L2 rollup).

Tradeable exits can be approximated by a third party L1 contract that does not modify
the rollup. In this scenario, a L1 contract would act like a proxy for the exit. Alice would
specify that she is exiting 100 ETHL2 to the proxy contract address (instead of to her address)
and set the proxy contract to forward it to her address (if/when it comes through after 7
days). Before the dispute window closes, she can sign a transaction instructing the proxy
contract to forward the exit to Bob instead of to her (while giving Bob signing authority
over it). In this way, the exit becomes tradeable. After 7 days, the current owner can ask
the proxy to fetch the actual transfer from the bridge and forward it to them. If the exit
fails, the bridge will refuse the exit.

Given this option, why modify the bridge/outbox of the rollup? This paper is not
intended as a strong endorsement of either approach – the reader can decide between the two
approaches. Our intention with this research is to discuss, design, implement, and measure
the actual functionality of what is needed. This will be largely the same whether it is placed
inside or outside the bridge/outbox. The main advantage of modifying the bridge/outbox
is that is backward compatible with existing web3 bridge interfaces and with current user
behaviour – if web3 interfaces or users do a slow withdraw, our solution can “bail them
out” after the fact. Placing the functionality inside the bridge/outbox is more challenging in
some regards (e.g., existing code is complex to understand) but also easier in other regards
(e.g., our code has direct access to state variables). An outside contract might require minor
changes to the bridge anyways, such as creating public interfaces to state variables or other
data (e.g., as one example, we later discuss how a prediction market must be able to query
the outbox to know if an RBlock is pending, finalized, or failed, which is not a current
feature). By contrast, the main advantage of an outside contract is modularity and reducing
complexity (and thus risk) within the bridge.

3.3 Hedged Tradeable Exits
One remaining issue with tradeable exits is how specialized Bob is: he must have liquidity in
ETHL1 (or worst, every token being withdrawn from L2), be online and active, know how to
price derivatives, and be a L2 validator. While we can expect blockchain participants with
each specialization, it is a lot to assume of a single entity. The goal of this subsection is to
split Bob into two distinct participants: Carol and David. Our goal is to allow Carol who
does not (or functionally cannot) know anything about L2’s current state to safely accept a
tradeable exit as if it were equivalent to finalized ETHL1 (or L1 tokens). Carol could be a
L1 contract that accepts the withdrawn tokens for a service or enables exchange. In order
to make Carol agnostic of L2, we need David to be aware of L2: David is a L2 validator
who understands the risks of an RBlock failing and is willing to bet against it happening.
Therefore David needs to also have some liquidity to bet with however it could be ETHL1 or
a stablecoin, while Alice and Carol can interact with all sorts of tokens that David need not
heard of or even ones David would not want to hold himself.
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Recall that Alice wants ETHL1 quickly in order to do something on L1 with it; Carol
can be that destination contract. The primary risk for Carol accepting ETHXX as if it were
ETHL1 is that the RBlock containing the ETHXX withdrawal fails and the exit is worthless.
If Alice can obtain insurance for the ETHXX that can be verified via L1, then Carol’s risk
is hedged and she could accept ETHXX. The insurance could take different forms but we
propose using a prediction market.

Prediction markets

A decentralized prediction market is an autonomous (e.g., vending machine-esque) third
party contract. Since we are insuring L1 ETHXX, we need to run the market on L1 (despite
the fact that it would be cheaper and faster on L2). Consider a simple market structure
based on [1]. A user can request that a new market is created for a given RBlock. The market
checks the outbox for the RBlock and its current status (which must be pending). Once
opened, any user can submit 1 ETHL1 (for example, the actual amount would be smaller
but harder to read) and receive two “shares”: one that is a bet that the RBlock will finalize,
called FINALPM, and one that is a bet that the RBlock will fail, called FAILPM. These shares
can be traded on any platform. At any time while the prediction market is open, any user
can redeem 1 FINALPM and 1 FAILPM for 1 ETHL1. Once the dispute period is over, any
user can request that the market close. The market checks the rollup’s outbox for the status
of the RBlock– since both contacts are on L1, this can be done directly without oracles or
governance. If the RBlock finalizes, it offers 1 ETHL1 for any 1 FINALPM (and conversely if
it fails). The market always has enough ETHL1 to fully settle all outstanding shares.

It is argued in the prediction market literature [1] that (i) the price of one share matches
the probability (according to the collective wisdom of the market) that its winning condition
will occur, and (ii) the price of 1 FINALPM and 1 FAILPM will sum up to 1 ETHL1. For
example, if FAILPM trades for 0.001 ETHL1, then (i) the market believes the RBlock will fail
with probability of 0.1% and (ii) FINALPM will trade for 0.999 ETHL1. These arguments
do not assume market friction: if the gas cost for redeeming shares is D (for delivery cost),
both share prices will incorporate D (see Section 5). Lastly, prediction markets are flexible
and traders can enter and exit positions at any time – profiting when they correctly identify
over- or under-valued forecasts. This is in contrast to an insurance-esque arrangement where
the insurer is committed to hold their position until completion of the arrangement.

Hedging exits

Given a prediction market, Alice can hedge 100 ETHXX by obtaining 100 FAILPM as insurance.
Any autonomous L1 contract (Carol) should be willing to accept a portfolio of 100 ETHXX
and 100 FAILPM as a guaranteed delivery of 100 ETHL1 after the dispute period, even if
Carol cannot validate the state of L2.

Perhaps surprisingly, this result collapses when withdrawing ETHL2– consider Path 1
through the protocol. Alice withdraws 100 ETHL2 from L2 and obtains 100 ETHXX. Bob
creates 100 FAILPM and 100 FINALPM for a cost of 100 ETHL1. Alice buys 100 FAILPM from
Bob for a small fee. Alice gives Carol 100 ETHXX and 100 FAILPM and is credited as if she
deposited 100 ETHL1. In seven days, Bob gets 100 ETHL1 for his 100 FINALPM and Carol
gets 100 ETHL1 for her 100 ETHXX. If the RBlock fails, Bob has 0 ETHL1 and Carol has 100
ETHL1 from the 100 FAILPM. In both cases, Alice has a balance of 100 ETHL1 with Carol.
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In path 2, Alice withdraws 100 ETHL2 from L2 and obtains 100 ETHXX. Alice sells 100
ETHXX to Bob for 100 ETHL1. Alice gives Carol 100 ETHL1 and is credited with a balance
of 100 ETHL1. In 7 days, Bob gets 100 ETHL1 for his 100 ETHXX and Carol has 100 ETHL1.
If the RBlock fails, Bob has 0 ETHL1, Carol has 100 ETHL1, and Alice has a balance of 100
ETHL1 with Carol.

Modulo differing gas costs and market transaction fees, paths 1 and 2 are equivalent.
Path 2 does not use a prediction market at all, it only uses basic tradeable exits. Given this,
do prediction markets add nothing to tradeable exits? We argue prediction markets still
have value for a few reasons. (1) Speculators will also participate in the prediction market
which gives Alice a chance for a fast exit even without Bob (an L2 validator). (2) If Alice
withdraws a token other than ETH, the prediction market should still be set up to payout in
ETH (otherwise you end up with 50 separate prediction markets for the 50 different kinds
of tokens in any given RBlock). In this case, Alice can obtain FAILPM when Bob has no
liquidity or interest in the token she is withdrawing (however Carol needs to incorporate an
exchange rate risk when accepting an exit in one token and the insurance in ETH). (3) The
PM can also help with NFTs and other non-liquid tokens (see Section 6.4).

Three of the most common types of traders are utility traders, speculators, and dealers [6].
With a prediction market, Alice is a utility trader and Bob is a dealer. However, there might
exist speculators who want to participate in the market because they have forecasts about
rollup technology, a given RBlock, the potential for software errors in the rollup or in the
validator software, etc. Executives of rollup companies could receive bonuses in FINALPM.
Quick validators might profit from noticing an invalid RBlock with FAILPM or they might
be betting on an implementation bug or weeklong censorship of the network. Speculators
add liquidity to the prediction market which reduces transactional fees for Alice. However,
speculation also brings externalities to the rollup system where the side-bets on an RBlock
could exceed the staking requirements for posting an RBlock, breaking the crypo-economic
arguments for the rollup. In reality, these externalities can never be prevented in any
decentralized incentive-based system [3].

4 Implementation and Performance Measurements

We run Arbitrum Nitro test-net locally and use Hardhat [4] for our experiments. We obtain
our performance metrics using TypeScripts scripts.

4.1 Tradeable Exits
Trading the exit directly through the bridge/outbox

We fork the Arbitrum Nitro outbox to add native support for tradeable exits. The modified
outbox is open source, written in 294 lines (SLOC) of Solidity, and a bytecode of 6,212 bytes
(increased by 1,197 bytes). The solidity code and Hardhat scripts are available in a GitHub
repository.4 Our modifications include:

Adding the transferSpender() function which allows the exit owner to transfer the exit
to any L1 address even though the dispute period is not passed.
Adding the isTransferred() mapping which stores key-value pairs efficiently. The key
of the mapping is the exit number and the value is a boolean.

4 GitHub:Nitro, Fast-Withdrawals: https://github.com/MadibaGroup/nitro/tree/fast-withdrawals
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Adding the transferredToAddress mapping which stores key-value pairs efficiently. The
key of the mapping is the exit number and the value is the current owner of the exit.
Modifying the executeTransactionImpl() function. Once the dispute period is passed
and the withdrawal transaction is confirmed, anyone can call the executeTransaction()
function from the outbox (which internally calls the executeTransactionImpl()) and
release the funds to the account that was specified by the user 7 days earlier in the L2
withdrawal request. With our modifications, this function is now enabled to release the
requested funds to the current owner of the exit.

To execute the transferSpender() function; Alice (who has initiated a withdrawal for
100 ETHL2) has to provide variables related to her exit (e.g., exit number), which she can
query using the Arbitrum SDK5, as well as the L1 address she wants to transfer her exit
to. The transferSpender() function then checks (1) if the exit is already spent, (2) it is
already transferred, and (3) the exit is actually a leaf in any unconfirmed RBlock. If the
exit has been transferred, the msg.sender is cross-checked against the current owner of the
exit (recall exit owners are tracked in the transferredToAddress mapping added to the
outbox). Once these tests are successfully passed, the transferSpender() function updates
the exit owner by changing the address in the transferredToAddress mapping. This costs
85,945 units of L1 gas. Note that the first transfer always costs more as the user has to
pay for initializing the transferredToAddress mapping. transferSpender() costs 48,810
and 48,798 units of L1 gas for the second and third transfer respectively. The gasUed for
executing the new executeTransactionImpl() function is 91,418 units of L1 gas.

Trading the exit through an L1 market

We also implement and deploy an L1 market that allows users to trade their exits on L1 even
though the dispute window is not passed (see Section 6.3 for why Uniswap is not appropriate).
In addition, we add a new function to the Arbitrum Nitro outbox, the checkExitOwner(),
which returns the current owner of the exit. Figure 1 illustrates an overview of participant
interactions and related gas costs. To start trading, Alice needs to lock her exit up in the
market by calling the transferSpender() function from the outbox. Next, she can open a
market on this exit by calling the openMarket() from the market contract and providing the
ask price. The market checks if Alice has locked her exit (by calling the checkExitOwner()
from the outbox) and only in that case a listing is created on this exit. The market would be
open until a trade occurs or Alice calls the closeMarket() on her exit. Bob, who is willing
to buy Alice’s exit, calls the payable submitBid() function from the market contract. If the
msg.value is equal or greater than Alice’s ask price, the trade occurs; (1) the market calls
the transferSpender() from the outbox providing Bob’s address. Note that market can
only do that since it is the current owner of the exit being traded, and (2) the msg.value is
transferred to Alice.

The market and modified outbox are open source and written in 125 and 294 lines (SLOC)
of Solidity respectively. The solidity code for these contracts in addition to the Hardhat
scripts are available in a GitHub repository.6 Once deployed, the bytecode of the market
and outbox is 5,772 and 6,264 bytes respectively.

5 A typescript library for client-side interactions with Arbitrum.
6 GitHub:Nitro, Fast-Withdrawals: https://github.com/MadibaGroup/nitro/tree/fast-withdrawals

AFT 2023

https://github.com/MadibaGroup/nitro/tree/fast-withdrawals


22:12 Fast and Furious Withdrawals from Optimistic Rollups

Alice Bob Outbox Bridge Market

Alice Bob Outbox Bridge Market

transferSpender(exit #10, Market Address)
gasUsed: 87,075

gasUsed: 328,029

openMarket(exit #10, Ask Price 99)

submitBid(Bid Price 99.1)

transferSpender(exit #10, Bob Address)

Transfer 99.1 ETH

Execute exit #10

Release funds

2

1

3

3

3

4

4

gasUsed: 101,176

[A#er 7 days]

gasUsed: 92,522

Figure 1 Overview of trading the exit through an L1 market.

4.2 Prediction Market
As described in Section 3.3, a prediction market can be used to hedge the exit. We do not
implement this as one can use an existing decentralized prediction market (e.g., Augur or
Gnosis). However, we further modify Arbitrum Nitro to make it friendly to a prediction
market that wants to learn the status of an RBlock (pending, confirmed). More specifically,
we modify the Arbitrum Nitro outbox and RollupCore smart contracts, modifications include:

Adding the assertionAtState mapping to the outbox which stores key-value pairs
efficiently. The key of the mapping is the exit number and the value is the user-
defined data type state that restricts the variable to have only one of the pending and
confirmed predefined values.
Adding the markAsPending function to the outbox which accepts an RBlock and marks
it as pending in the assertionAtState mapping.
Adding the markAsConfirmed function to the outbox which accepts an RBlock and marks
it as confirmed in the assertionAtState mapping.
Modifying the createNewNode() function in the RollupCore contract. To propose an
RBlock, the validator acts through the RollupCore contract by calling a createNewNode()
function. We modify this function to call the markAsPending() from the outbox which
marks the RBlock as pending.
Modifying the confirmNode() function in the RollupCore contract. Once an RBlock
is confirmed, the validator acts through the RollupCore contract via confirmNode to
move the now confirmed RBlock to the outbox. We modify this function to call the
markAsConfirmed() from the outbox which marks the RBlock as confirmed.

The modified outbox and RollupCore are open source and written in 297 and 560 lines
(SLOC) of Solidity respectively. The solidity code for these contracts in addition to the
Hardhat scripts are available in a GitHub repository.7 Once deployed, the bytecode of the
outbox and RollupCore is 6,434 and 3,099 bytes respectively.

7 GitHub:Nitro, Fast-Withdrawals: https://github.com/MadibaGroup/nitro/tree/fast-withdrawals
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5 Pricing

Pricing ETHXX

Consider how much you would pay for 100 ETHXX (finalized in 7 days = 168 hours) in
ETHL1 today. Since ETHXX is less flexible than ETHL1, it is likely that you do not prefer it
to ETHL1, so our intuition is that it should be priced less (e.g., 100 ETHXX = 99 ETHL1).
However, our solution works for any pricing and we can even contrive corner cases where
ETHXX might be worth more than ETHL1 by understanding the factors underlying the price.

In traditional finance [7], forward contracts (and futures, which are standardized, exchange
traded forwards) are very similar to ETHXX in that they price today the delivery of an asset
or commodity at some future date. One key difference is that with a forward contract, the
price is decided today but the actual money is exchanged for the asset at delivery time.
When ETHXX is sold for ETHL1, both price determination and the exchange happen today,
while the delivery of ETHL1 for ETHXX happens in the future. The consequence is that we
can adapt pricing equations for forwards/futures, however, the signs (positive/negative) of
certain terms need to be inverted.

We review the factors [7] that determine the price of a forward contract (F0) and translate
what they mean for ETHXX:

Spot price of ETHL1 (S0): the price today of what will be delivered in the future. ETHXX
is the future delivery of ETHL1, which is by definition worth 100 ETHL1 today.
Settlement time (∆t): the time until the exit can be traded for ETHL1. In Arbitrum,
the time depends on whether disputes happen. We simplify by assuming ∆t is always 7
days (168 hours) from the assertion time. A known fact about forwards is that F0 and
S0 converge as ∆t approaches 0.
Storage cost (U): most relevant for commodities, receiving delivery of a commodity at a
future date relieves the buyer of paying to store it in the short-term. Securing ETHXX
and securing ETHL1 is identical in normal circumstances, so not having to take possession
of ETHL1 for ∆t time does not reduce costs for a ETHXX holder.
Delivery cost (D): the cost of delivery of the asset, which in our case will encompass gas
costs. Exchanging ETHL1 for ETHXX requires a transaction fee and also creates a future
transaction fee to process the exit (comparable in cost to purchasing a token from an
automated market maker). An ETHL1 seller should be compensated for these costs in
the price of ETHXX.
Exchange rate risk: a relevant factor when the asset being delivered is different than the
asset paying for the forward. In our case, we are determining the price in ETHL1 for
future delivery of ETHL1, thus, there is no exchange risk at this level of the transaction.
However, the price of gas (in the term D) is subject to ETH/gas exchange rates. For
simplicity, we assume this is built into D.
Interest / Yield (−r + y): both ETHL1 and ETHXX have the potential to earn interest
or yield (compounding over ∆t), while for other tokens, there might be an opportunity
to earn new tokens simply by holding the token. Let r be the (risk-free) interest (yield)
rate for ETHL1 that cannot be earned by ETHXX, while y is the opposite: yield earned
from ETHXX and not ETHL1. Initially y > 1 and r = 0, however, with ETHXX becoming
mainstream, it is possible r = y (especially hedged ETHXX).
Settlement risk (R): the probability that ETHL1 will fail to be delivered for ETHXX
discounts the price of ETHXX. We will deal with this separately.
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Figure 2 Price of 100 ETHXX (in ETH) as the probability an RBlock actually finalizes (given the
validator checks it with software validation) varies from 99% to 100%, which is denoted by R. Note
that 99% is an extraordinarily low probability for this event (considering an RBlock has never failed
at the time of writing). The take-away is that the price is not very sensitive to how precisely we
estimate R.
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Figure 3 This chart shows the percentage of ETH recovered (F0/S0) as the amount withdrawn
(S0) increases (log scale), demonstrating it is only economical for withdrawing larger amounts of
ETHL2. At low values, the gas costs of a withdrawal dominate. At very low values, the gas costs
exceed the price of ETHXX causing the curve to go negative.

Put together, the price of ETHXX (F0) is:

F0 = (S0 + U − D) · e(−r+y)·∆t · R

This value, F0, is an expected value – the product of the value and the probability that
the RBlock fails to finalize. However, the trader is informed because they have run verification
software and checked that the RBlock validates.

R = (1 − Pr[rblock fails to finalize|rblock passes software verification])

Working Example

We start with R. For an RBlock to be up for consideration, it must be submitted to the
outbox as a potential solution and for it to fail, a dispute must be filed with an alternative
RBlock that the L1 outbox deems to be correct. In our case, the buyer of ETHXX actually
runs a L2 validator and thus performs software validation on the RBlock, and will not accept
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it if the software does not validate it. For an RBlock to fail given the software validation,
it software must have an error that causes a discrepancy between it and the L1 outbox.
Furthermore, at least one other validator would need to have different, correct software, and
this validator would need to be paying attention to this specific RBlock and independently
check it. This should be a rare event and assume R = (1 − 10−15) for this example. Figure 2
shows a range of R values.

Next, consider the resulting price of F0. Alice starts with 100 ETHXX and Bob purchases
it from her. Bob can hold ETHXX with no cost (U = 0). Alice pays the transaction fee
for the deposit, however the cost for the contract for exiting ETHXX into ETHL1 after the
dispute period is expected to be D = 0.008 ETH (D). Assume a safe-ish annual percent yield
(APY) on ETH deposits is 0.2%. Assume ETHXX expires in 6 days (0.0164 years). ETHXX
earns no yield (y = 0). Plugging this into the equation, F0 = 99.665 ETH.

As a second example, consider a smaller amount like 0.05 ETHXX (less than $100 USD at
time of writing). Now the gas costs are more dominating. F0 = 0.04186 ETHL1 which is only
83.7%. This demonstrates that fast exits are expensive for withdrawals of amounts in the
hundreds of dollars. Figure 3 shows a range of withdraw amounts.

Lastly, could ETHXX ever be worth more than ETHL1? The equation says yes: with
a sufficiently high U or y. A contrived example would be some time-deferral reason (e.g.,
tax avoidance) to prefer receiving ETHL1 in 7 days instead of today. However, in order to
purchase ETHXX at a premium to ETHL1, it would have to be cheaper to trade for it than to
simply manufacture it. Someone holding ETHL1 and wanting ETHXX could simply move it
to L2 and then immediately withdraw it to create ETHXX. The gas cost of this path will be
one upper bound on how much ETHXX could exceed ETHL1 in value.

Pricing FINALPM and FAILPM

It might appear surprising at first, but one of the main results of this paper is that the price
of 100 ETHXX and the of price 100 FINALPM are essentially the same. Both are instruments
that are redeemable at the same future time for the same amount of ETHL1 (either 100 if
the RBlock finalizes and 0 if the RBlock fails) with the same probability of failure (that the
RBlock fails). The carrying costs of both are identical. There may be slight differences in the
gas costs of redeeming ETHL1 once the dispute period is over. However, the operation (at
a computational level) is largely the same process. This is actually a natural result: if 100
FAILPM perfectly hedges (reduces the risk to zero) the failure of 100 ETHXX to finalize, then
the compliment to FAILPM, FINALPM, should be priced the same as ETHXX.

6 Discussion

6.1 Prediction Market Fidelity
A prediction market that covers a larger event should attract more interest and liquidity. For
example, betting on an entire RBlock will have more market interest than betting on Alice’s
specific exit. On the other hand, if markets are exit-specific, the market can be established
immediately after Alice’s withdrawal hits the inbox instead of waiting for an RBlock (hence
∼ in Table 1 to indicate it could be done within one L1 transaction). Another consideration
arrises when tokens other than ETH are being withdrawn – if the payout of the market
matches the withdrawn token, FAILPM will perfectly hedge the exit. Otherwise the hedge
is in the equivalent amount of ETH which could change over 7 days. Our suggestion is to
promote the most traders in a single market and avoid fragmentation – so we suggest one
market in one payout currency (ETH) for one entire RBlock.
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6.2 Withdrawal Format
As implemented, transferable exits can only be transferred in their entirety. If Alice wants
to withdraw 100 ETHL2 and give 50 ETHXX to one person and 50 ETHXX to another, she
cannot change this once she has initiated the withdraw (if she anticipates it, she can request
two separate withdrawals for the smaller amounts). We could implement divisible exits and
for ETH; there are no foreseen challenges since the semantics of ETHL1 are specified at the
protocol-level of Ethereum. However for custom tokens, the bridge would need to know
how divisible (if at all) a token is. In fact, a bridge should ensure that the L2 behavior of
the tokens is the same as L1 (or that any inconsistencies are not meaningful). Even if a
token implementation is standard, such as ERC20, this only ensures it realizes a certain
interface (function names and parameters) and does not mean the functions themselves are
implemented as expected (parasitic ERC20 contracts are sometimes used to trick automated
trading bots.8 The end result is that bridges today do not allow arbitrary tokens; they
are built with allowlists of tokens that are human-reviewed and added by an authorized
developer. In this case, ensuring divisible exits are not more divisible than the underlying
token should be feasible, but we have not implemented it.

6.3 Markets
At the time of writing, the most common way of exchanging tokens on-chain is with an
automated market maker (AMM) (e.g., Uniswap). If Alice withdraws ETHXX and Bob is a
willing buyer with ETHL1, an AMM is not the best market type for them to arrange a trade.
AMMs use liquidity providers (LPs) who provide both token types: Alice has ETHXX but no
ETHL1 that she is willing to lock up (hence why she is trying to fast exit). Bob has ETHL1
but to be an LP, he would also need to have ETHXX from another user. However, this only
pushes the problem to how Bob got ETHXX from that user. The first user to sell ETHXX
cannot use an AMM without locking up ETHL1, which is equivalent to selling ETHXX to
herself for ETHL1. The second challenge of an AMM is the unlikely case that an RBlock fails
and ETHXX is worthless – then the LPs have to race to withdraw their collateral before other
users extract it with worthless ETHXX. It is better to use a traditional order-based market;
however, these are expensive to run on L1 [11]. One could do the matchmaking on L2 and
then have the buyer and seller execute on L1, but this reintroduces the griefing attacks we
have tried to avoid. For now, we implement a very simple one-sided market where Alice can
deposit her ETHXX and an offer price, and Bob can later execute the trade against. If Alice
is unsure how to price ETHXX, an auction mechanism could be used instead.

6.4 Low Liquidity or Non-Fungible Tokens
For tokens that have low liquidity on L1, or in the extreme case, are unique (e.g., an NFT),
fast exits do not seem feasible. All the fast exit methods we examined do not actually
withdraw the original tokens faster; they substitute a functionally equivalent token that is
already on L1. However, we can still help out with low-liquidity withdrawals. We should
consider why the user wants a fast exit. If it is to sell the token, they can sell the exit instead
of the token to any buyer that is L2-aware and willing to wait 7 days to take actual possession.
To sell to an L2-agnostic buyer, the seller can insure the exit with enough FAILPM to cover
the purchase price. In this case, the buyer does not get the NFT if the RBlock fails but they
get their money back.

8 “Bad Sandwich: DeFi Trader ’Poisons’ Front-Running Miners for $250K Profit.” Coindesk, Mar 2021.
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7 Concluding Remarks

This paper addresses a common “pain point” for users of L2 optimistic rollups on Ethereum.
The 7-day dispute period prevents users from withdrawing ETH, tokens, and data quickly.
Tradeable exits provide users with flexibility after they request a withdrawal. If they decide
7 days is too long, they can seek to trade their exit for ETHL1 or they can ask a contract to
accept their ETHXX by bundling it with insurance against the failure of the RBlock– this way
the contract does not have to be L2-aware. While some users might still prefer the features of
other withdrawal methods (centralized exchanges or solution like Hop), it is useful to make
the native rollup functionality as flexible as possible, especially for users who do not realize
that a withdrawal induces a 7-day waiting period until it is too late.
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