Document

**Published in:** LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

Motivated by indoor localization by tripwire lasers, we study the problem of cutting a polygon into small-size pieces, using the chords of the polygon. Several versions are considered, depending on the definition of the "size" of a piece. In particular, we consider the area, the diameter, and the radius of the largest inscribed circle as a measure of the size of a piece. We also consider different objectives, either minimizing the maximum size of a piece for a given number of chords, or minimizing the number of chords that achieve a given size threshold for the pieces. We give hardness results for polygons with holes and approximation algorithms for multiple variants of the problem.

Esther M. Arkin, Rathish Das, Jie Gao, Mayank Goswami, Joseph S. B. Mitchell, Valentin Polishchuk, and Csaba D. Tóth. Cutting Polygons into Small Pieces with Chords: Laser-Based Localization. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{arkin_et_al:LIPIcs.ESA.2020.7, author = {Arkin, Esther M. and Das, Rathish and Gao, Jie and Goswami, Mayank and Mitchell, Joseph S. B. and Polishchuk, Valentin and T\'{o}th, Csaba D.}, title = {{Cutting Polygons into Small Pieces with Chords: Laser-Based Localization}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {7:1--7:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.7}, URN = {urn:nbn:de:0030-drops-128736}, doi = {10.4230/LIPIcs.ESA.2020.7}, annote = {Keywords: Polygon partition, Arrangements, Visibility, Localization} }

Document

**Published in:** LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)

Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π=f(P), is β-stretch if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p∈P and q∈P, the length of the sub-curve of π connecting f(p) with f(q) is at most β||f(p)-f(q)‖, where ‖.‖ denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a β-stretch path P connecting s and t. The βSP also asks that we output P if it exists.
The βSP quantifies a notion of "near straightness" for paths in a graph G, motivated by gerrymandering regions in a map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes.
We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ε>0, β∈O(poly(log |V(G)|)), and s,t∈V(G), outputs a β-stretch path between s and t, if a (1-ε)β-stretch path between s and t exists in the drawing.

Esther M. Arkin, Faryad Darabi Sahneh, Alon Efrat, Fabian Frank, Radoslav Fulek, Stephen Kobourov, and Joseph S. B. Mitchell. Computing β-Stretch Paths in Drawings of Graphs. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{arkin_et_al:LIPIcs.SWAT.2020.7, author = {Arkin, Esther M. and Sahneh, Faryad Darabi and Efrat, Alon and Frank, Fabian and Fulek, Radoslav and Kobourov, Stephen and Mitchell, Joseph S. B.}, title = {{Computing \beta-Stretch Paths in Drawings of Graphs}}, booktitle = {17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)}, pages = {7:1--7:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-150-4}, ISSN = {1868-8969}, year = {2020}, volume = {162}, editor = {Albers, Susanne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.7}, URN = {urn:nbn:de:0030-drops-122540}, doi = {10.4230/LIPIcs.SWAT.2020.7}, annote = {Keywords: stretch factor, dilation, geometric spanners} }

Document

**Published in:** LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)

We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra "helper" modules ("musketeers") suffice to reconfigure the remaining n modules between any two given configurations. Our algorithm uses O(n^2) pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive "sliding" moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models.

Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán. Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.ESA.2019.3, author = {Akitaya, Hugo A. and Arkin, Esther M. and Damian, Mirela and Demaine, Erik D. and Dujmovi\'{c}, Vida and Flatland, Robin and Korman, Matias and Palop, Belen and Parada, Irene and van Renssen, Andr\'{e} and Sacrist\'{a}n, Vera}, title = {{Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers}}, booktitle = {27th Annual European Symposium on Algorithms (ESA 2019)}, pages = {3:1--3:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-124-5}, ISSN = {1868-8969}, year = {2019}, volume = {144}, editor = {Bender, Michael A. and Svensson, Ola and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.3}, URN = {urn:nbn:de:0030-drops-111247}, doi = {10.4230/LIPIcs.ESA.2019.3}, annote = {Keywords: Reconfiguration, geometric algorithm, pivoting squares, modular robots} }

Document

**Published in:** LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)

Given n pairs of points, S = {{p_1, q_1}, {p_2, q_2}, ..., {p_n, q_n}}, in some metric space, we study the problem of two-coloring the points within each pair, red and blue, to optimize the cost of a pair of node-disjoint networks, one over the red points and one over the blue points. In this paper we consider our network structures to be spanning trees, traveling salesman tours or matchings. We consider several different weight functions computed over the network structures induced, as well as several different objective functions. We show that some of these problems are NP-hard, and provide constant factor approximation algorithms in all cases.

Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Su Jia, Matthew J. Katz, Tyler Mayer, and Joseph S. B. Mitchell. Network Optimization on Partitioned Pairs of Points. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{arkin_et_al:LIPIcs.ISAAC.2017.6, author = {Arkin, Esther M. and Banik, Aritra and Carmi, Paz and Citovsky, Gui and Jia, Su and Katz, Matthew J. and Mayer, Tyler and Mitchell, Joseph S. B.}, title = {{Network Optimization on Partitioned Pairs of Points}}, booktitle = {28th International Symposium on Algorithms and Computation (ISAAC 2017)}, pages = {6:1--6:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-054-5}, ISSN = {1868-8969}, year = {2017}, volume = {92}, editor = {Okamoto, Yoshio and Tokuyama, Takeshi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.6}, URN = {urn:nbn:de:0030-drops-82700}, doi = {10.4230/LIPIcs.ISAAC.2017.6}, annote = {Keywords: Network Optimization, TSP tour, Matching, Spanning Tree, Pairs, Partition, Algorithms, Complexity} }

Document

**Published in:** LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)

We show how to preprocess a polygonal domain with a fixed starting point s in order to answer efficiently the following queries: Given a point q, how should one move from s in order to see q as soon as possible? This query resembles the well-known shortest-path-to-a-point query, except that the latter asks for the fastest way to reach q, instead of seeing it. Our solution methods include a data structure for a different generalization of shortest-path-to-a-point queries, which may be of independent interest: to report efficiently a shortest path from s to a query segment in the domain.

Esther M. Arkin, Alon Efrat, Christian Knauer, Joseph S. B. Mitchell, Valentin Polishchuk, Günter Rote, Lena Schlipf, and Topi Talvitie. Shortest Path to a Segment and Quickest Visibility Queries. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 658-673, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{arkin_et_al:LIPIcs.SOCG.2015.658, author = {Arkin, Esther M. and Efrat, Alon and Knauer, Christian and Mitchell, Joseph S. B. and Polishchuk, Valentin and Rote, G\"{u}nter and Schlipf, Lena and Talvitie, Topi}, title = {{Shortest Path to a Segment and Quickest Visibility Queries}}, booktitle = {31st International Symposium on Computational Geometry (SoCG 2015)}, pages = {658--673}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-83-5}, ISSN = {1868-8969}, year = {2015}, volume = {34}, editor = {Arge, Lars and Pach, J\'{a}nos}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.658}, URN = {urn:nbn:de:0030-drops-51474}, doi = {10.4230/LIPIcs.SOCG.2015.658}, annote = {Keywords: path planning, visibility, query structures and complexity, persistent data structures, continuous Dijkstra} }

Document

**Published in:** OASIcs, Volume 42, 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2014)

We study a facility location problem motivated by requirements pertaining to the distribution of charging stations for electric vehicles: Place a minimum number of battery charging stations at a subset of nodes of a network, so that battery-powered electric vehicles will be able to move between destinations using "t-spanning" routes, of lengths within a factor t > 1 of the length of a shortest path, while having sufficient charging stations along the way. We give constant-factor approximation algorithms for minimizing the number of charging stations, subject to the t-spanning constraint. We study two versions of the problem, one in which the stations are required to support a single ride (to a single destination), and one in which the stations are to support multiple rides through a sequence of destinations, where the destinations are revealed one at a time.

Esther M. Arkin, Paz Carmi, Matthew J. Katz, Joseph S. B. Mitchell, and Michael Segal. Locating Battery Charging Stations to Facilitate Almost Shortest Paths. In 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 42, pp. 25-33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)

Copy BibTex To Clipboard

@InProceedings{arkin_et_al:OASIcs.ATMOS.2014.25, author = {Arkin, Esther M. and Carmi, Paz and Katz, Matthew J. and Mitchell, Joseph S. B. and Segal, Michael}, title = {{Locating Battery Charging Stations to Facilitate Almost Shortest Paths}}, booktitle = {14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems}, pages = {25--33}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-939897-75-0}, ISSN = {2190-6807}, year = {2014}, volume = {42}, editor = {Funke, Stefan and Mihal\'{a}k, Mat\'{u}s}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2014.25}, URN = {urn:nbn:de:0030-drops-47500}, doi = {10.4230/OASIcs.ATMOS.2014.25}, annote = {Keywords: approximation algorithms; geometric spanners; transportation networks} }