Document

**Published in:** LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)

We revisit asynchronous computing in networks of crash-prone processes, under the asynchronous variant of the standard LOCAL model, recently introduced by Fraigniaud et al. [DISC 2022]. We focus on the vertex coloring problem, and our contributions concern both lower and upper bounds for this problem.
On the upper bound side, we design an algorithm tolerating an arbitrarily large number of crash failures that computes an O(Δ²)-coloring of any n-node graph of maximum degree Δ, in O(log^⋆ n) rounds. This extends Linial’s seminal result from the (synchronous failure-free) LOCAL model to its asynchronous crash-prone variant. Then, by allowing a dependency on Δ on the runtime, we show that we can reduce the colors to ((1/2)(Δ+1)(Δ+2)-1). For cycles (i.e., for Δ = 2), our algorithm achieves a 5-coloring of any n-node cycle, in O(log^⋆ n) rounds. This improves the known 6-coloring algorithm by Fraigniaud et al., and fixes a bug in their algorithm, which was erroneously claimed to produce a 5-coloring.
On the lower bound side, we show that, for k < 5, and for every prime integer n, no algorithm can k-color the n-node cycle in the asynchronous crash-prone variant of LOCAL, independently from the round-complexities of the algorithms. This lower bound is obtained by reduction from an original extension of the impossibility of solving weak symmetry-breaking in the wait-free shared-memory model. We show that this impossibility still holds even if the processes are provided with inputs susceptible to help breaking symmetry.

Alkida Balliu, Pierre Fraigniaud, Patrick Lambein-Monette, Dennis Olivetti, and Mikaël Rabie. Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2024.5, author = {Balliu, Alkida and Fraigniaud, Pierre and Lambein-Monette, Patrick and Olivetti, Dennis and Rabie, Mika\"{e}l}, title = {{Asynchronous Fault-Tolerant Distributed Proper Coloring of Graphs}}, booktitle = {38th International Symposium on Distributed Computing (DISC 2024)}, pages = {5:1--5:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-352-2}, ISSN = {1868-8969}, year = {2024}, volume = {319}, editor = {Alistarh, Dan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.5}, URN = {urn:nbn:de:0030-drops-212328}, doi = {10.4230/LIPIcs.DISC.2024.5}, annote = {Keywords: LOCAL model, Graph Coloring, Renaming, Weak Symmetry-Breaking, Fault-Tolerance, Wait-Free Computing} }

Document

**Published in:** LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)

Over the past decade, a long line of research has investigated the distributed complexity landscape of locally checkable labeling (LCL) problems on bounded-degree graphs, culminating in an almost-complete classification on general graphs and a complete classification on trees. The latter states that, on bounded-degree trees, any LCL problem has deterministic worst-case time complexity O(1), Θ(log^* n), Θ(log n), or Θ(n^{1/k}) for some positive integer k, and all of those complexity classes are nonempty. Moreover, randomness helps only for (some) problems with deterministic worst-case complexity Θ(log n), and if randomness helps (asymptotically), then it helps exponentially.
In this work, we study how many distributed rounds are needed on average per node in order to solve an LCL problem on trees. We obtain a partial classification of the deterministic node-averaged complexity landscape for LCL problems. As our main result, we show that every problem with worst-case round complexity O(log n) has deterministic node-averaged complexity O(log^* n). We further establish bounds on the node-averaged complexity of problems with worst-case complexity Θ(n^{1/k}): we show that all these problems have node-averaged complexity Ω̃(n^{1 / (2^k - 1)}), and that this lower bound is tight for some problems.

Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid. On the Node-Averaged Complexity of Locally Checkable Problems on Trees. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2023.7, author = {Balliu, Alkida and Brandt, Sebastian and Kuhn, Fabian and Olivetti, Dennis and Schmid, Gustav}, title = {{On the Node-Averaged Complexity of Locally Checkable Problems on Trees}}, booktitle = {37th International Symposium on Distributed Computing (DISC 2023)}, pages = {7:1--7:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-301-0}, ISSN = {1868-8969}, year = {2023}, volume = {281}, editor = {Oshman, Rotem}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.7}, URN = {urn:nbn:de:0030-drops-191330}, doi = {10.4230/LIPIcs.DISC.2023.7}, annote = {Keywords: distributed graph algorithms, locally checkable labelings, node-averaged complexity, trees} }

Document

**Published in:** LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)

We give practical, efficient algorithms that automatically determine the asymptotic distributed round complexity of a given locally checkable graph problem in the [Θ(log n), Θ(n)] region, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O(log n) rounds. If not, it is known that the complexity has to be Θ(n^{1/k}) for some k = 1, 2, ..., and in this case the algorithms also output the right value of the exponent k.
In rooted trees in the O(log n) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O(log n) region remains an open question.

Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka Suomela. Efficient Classification of Locally Checkable Problems in Regular Trees. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2022.8, author = {Balliu, Alkida and Brandt, Sebastian and Chang, Yi-Jun and Olivetti, Dennis and Studen\'{y}, Jan and Suomela, Jukka}, title = {{Efficient Classification of Locally Checkable Problems in Regular Trees}}, booktitle = {36th International Symposium on Distributed Computing (DISC 2022)}, pages = {8:1--8:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-255-6}, ISSN = {1868-8969}, year = {2022}, volume = {246}, editor = {Scheideler, Christian}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.8}, URN = {urn:nbn:de:0030-drops-171993}, doi = {10.4230/LIPIcs.DISC.2022.8}, annote = {Keywords: locally checkable labeling, locality, distributed computational complexity} }

Document

**Published in:** LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)

Locally Checkable Labeling (LCL) problems are graph problems in which a solution is correct if it satisfies some given constraints in the local neighborhood of each node. Example problems in this class include maximal matching, maximal independent set, and coloring problems. A successful line of research has been studying the complexities of LCL problems on paths/cycles, trees, and general graphs, providing many interesting results for the LOCAL model of distributed computing. In this work, we initiate the study of LCL problems in the low-space Massively Parallel Computation (MPC) model. In particular, on forests, we provide a method that, given the complexity of an LCL problem in the LOCAL model, automatically provides an exponentially faster algorithm for the low-space MPC setting that uses optimal global memory, that is, truly linear.
While restricting to forests may seem to weaken the result, we emphasize that all known (conditional) lower bounds for the MPC setting are obtained by lifting lower bounds obtained in the distributed setting in tree-like networks (either forests or high girth graphs), and hence the problems that we study are challenging already on forests. Moreover, the most important technical feature of our algorithms is that they use optimal global memory, that is, memory linear in the number of edges of the graph. In contrast, most of the state-of-the-art algorithms use more than linear global memory. Further, they typically start with a dense graph, sparsify it, and then solve the problem on the residual graph, exploiting the relative increase in global memory. On forests, this is not possible, because the given graph is already as sparse as it can be, and using optimal memory requires new solutions.

Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus, Dennis Olivetti, and Jara Uitto. Exponential Speedup over Locality in MPC with Optimal Memory. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2022.9, author = {Balliu, Alkida and Brandt, Sebastian and Fischer, Manuela and Latypov, Rustam and Maus, Yannic and Olivetti, Dennis and Uitto, Jara}, title = {{Exponential Speedup over Locality in MPC with Optimal Memory}}, booktitle = {36th International Symposium on Distributed Computing (DISC 2022)}, pages = {9:1--9:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-255-6}, ISSN = {1868-8969}, year = {2022}, volume = {246}, editor = {Scheideler, Christian}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.9}, URN = {urn:nbn:de:0030-drops-172003}, doi = {10.4230/LIPIcs.DISC.2022.9}, annote = {Keywords: Distributed computing, Locally checkable labeling problems, Trees, Massively Parallel Computation, Sublinear memory} }

Document

**Published in:** LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)

We prove new bounds on the distributed fractional coloring problem in the LOCAL model. A fractional c-coloring of a graph G = (V,E) is a fractional covering of the nodes of G with independent sets such that each independent set I of G is assigned a fractional value λ_I ∈ [0,1]. The total value of all independent sets of G is at most c, and for each node v ∈ V, the total value of all independent sets containing v is at least 1. Equivalently, fractional c-colorings can also be understood as multicolorings as follows. For some natural numbers p and q such that p/q ≤ c, each node v is assigned a set of at least q colors from {1,…,p} such that adjacent nodes are assigned disjoint sets of colors. The minimum c for which a fractional c-coloring of a graph G exists is called the fractional chromatic number χ_f(G) of G.
Recently, [Bousquet, Esperet, and Pirot; SIROCCO '21] showed that for any constant ε > 0, a fractional (Δ+ε)-coloring can be computed in Δ^{O(Δ)} + O(Δ⋅log^* n) rounds. We show that such a coloring can be computed in only O(log² Δ) rounds, without any dependency on n.
We further show that in O((log n)/ε) rounds, it is possible to compute a fractional (1+ε)χ_f(G)-coloring, even if the fractional chromatic number χ_f(G) is not known. That is, the fractional coloring problem can be approximated arbitrarily well by an efficient algorithm in the LOCAL model. For the standard coloring problem, it is only known that an O((log n)/(log log n))-approximation can be computed in polylogarithmic time in the LOCAL model. We also show that our distributed fractional coloring approximation algorithm is best possible. We show that in trees, which have fractional chromatic number 2, computing a fractional (2+ε)-coloring requires at least Ω((log n)/ε) rounds.
We finally study fractional colorings of regular grids. In [Bousquet, Esperet, and Pirot; SIROCCO '21], it is shown that in regular grids of bounded dimension, a fractional (2+ε)-coloring can be computed in time O(log^* n). We show that such a coloring can even be computed in O(1) rounds in the LOCAL model.

Alkida Balliu, Fabian Kuhn, and Dennis Olivetti. Improved Distributed Fractional Coloring Algorithms. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.OPODIS.2021.18, author = {Balliu, Alkida and Kuhn, Fabian and Olivetti, Dennis}, title = {{Improved Distributed Fractional Coloring Algorithms}}, booktitle = {25th International Conference on Principles of Distributed Systems (OPODIS 2021)}, pages = {18:1--18:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-219-8}, ISSN = {1868-8969}, year = {2022}, volume = {217}, editor = {Bramas, Quentin and Gramoli, Vincent and Milani, Alessia}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.18}, URN = {urn:nbn:de:0030-drops-157935}, doi = {10.4230/LIPIcs.OPODIS.2021.18}, annote = {Keywords: distributed graph algorithms, distributed coloring, locality, fractional coloring} }

Document

**Published in:** LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)

A rich line of work has been addressing the computational complexity of locally checkable labelings (LCLs), illustrating the landscape of possible complexities. In this paper, we study the landscape of LCL complexities under bandwidth restrictions. Our main results are twofold. First, we show that on trees, the CONGEST complexity of an LCL problem is asymptotically equal to its complexity in the LOCAL model. An analog statement for non-LCL problems is known to be false. Second, we show that for general graphs this equivalence does not hold, by providing an LCL problem for which we show that it can be solved in O(log n) rounds in the LOCAL model, but requires Ω̃(n^{1/2}) rounds in the CONGEST model.

Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally Checkable Labelings with Small Messages. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2021.8, author = {Balliu, Alkida and Censor-Hillel, Keren and Maus, Yannic and Olivetti, Dennis and Suomela, Jukka}, title = {{Locally Checkable Labelings with Small Messages}}, booktitle = {35th International Symposium on Distributed Computing (DISC 2021)}, pages = {8:1--8:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-210-5}, ISSN = {1868-8969}, year = {2021}, volume = {209}, editor = {Gilbert, Seth}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.8}, URN = {urn:nbn:de:0030-drops-148109}, doi = {10.4230/LIPIcs.DISC.2021.8}, annote = {Keywords: distributed graph algorithms, CONGEST, locally checkable labelings} }

Document

**Published in:** LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)

We present a complete classification of the deterministic distributed time complexity for a family of graph problems: binary labeling problems in trees. These are locally checkable problems that can be encoded with an alphabet of size two in the edge labeling formalism. Examples of binary labeling problems include sinkless orientation, sinkless and sourceless orientation, 2-vertex coloring, perfect matching, and the task of coloring edges red and blue such that all nodes are incident to at least one red and at least one blue edge. More generally, we can encode e.g. any cardinality constraints on indegrees and outdegrees.
We study the deterministic time complexity of solving a given binary labeling problem in trees, in the usual LOCAL model of distributed computing. We show that the complexity of any such problem is in one of the following classes: O(1), Θ(log n), Θ(n), or unsolvable. In particular, a problem that can be represented in the binary labeling formalism cannot have time complexity Θ(log^* n), and hence we know that e.g. any encoding of maximal matchings has to use at least three labels (which is tight).
Furthermore, given the description of any binary labeling problem, we can easily determine in which of the four classes it is and what is an asymptotically optimal algorithm for solving it. Hence the distributed time complexity of binary labeling problems is decidable, not only in principle, but also in practice: there is a simple and efficient algorithm that takes the description of a binary labeling problem and outputs its distributed time complexity.

Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Classification of Distributed Binary Labeling Problems. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2020.17, author = {Balliu, Alkida and Brandt, Sebastian and Efron, Yuval and Hirvonen, Juho and Maus, Yannic and Olivetti, Dennis and Suomela, Jukka}, title = {{Classification of Distributed Binary Labeling Problems}}, booktitle = {34th International Symposium on Distributed Computing (DISC 2020)}, pages = {17:1--17:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-168-9}, ISSN = {1868-8969}, year = {2020}, volume = {179}, editor = {Attiya, Hagit}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.17}, URN = {urn:nbn:de:0030-drops-130957}, doi = {10.4230/LIPIcs.DISC.2020.17}, annote = {Keywords: LOCAL model, graph problems, locally checkable labeling problems, distributed computational complexity} }

Document

**Published in:** LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)

The landscape of the distributed time complexity is nowadays well-understood for subpolynomial complexities. When we look at deterministic algorithms in the LOCAL model and locally checkable problems (LCLs) in bounded-degree graphs, the following picture emerges:
- There are lots of problems with time complexities Theta(log^* n) or Theta(log n).
- It is not possible to have a problem with complexity between omega(log^* n) and o(log n).
- In general graphs, we can construct LCL problems with infinitely many complexities between omega(log n) and n^{o(1)}.
- In trees, problems with such complexities do not exist.
However, the high end of the complexity spectrum was left open by prior work. In general graphs there are problems with complexities of the form Theta(n^alpha) for any rational 0 < alpha <=1/2, while for trees only complexities of the form Theta(n^{1/k}) are known. No LCL problem with complexity between omega(sqrt{n}) and o(n) is known, and neither are there results that would show that such problems do not exist. We show that:
- In general graphs, we can construct LCL problems with infinitely many complexities between omega(sqrt{n}) and o(n).
- In trees, problems with such complexities do not exist.
Put otherwise, we show that any LCL with a complexity o(n) can be solved in time O(sqrt{n}) in trees, while the same is not true in general graphs.

Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost Global Problems in the LOCAL Model. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2018.9, author = {Balliu, Alkida and Brandt, Sebastian and Olivetti, Dennis and Suomela, Jukka}, title = {{Almost Global Problems in the LOCAL Model}}, booktitle = {32nd International Symposium on Distributed Computing (DISC 2018)}, pages = {9:1--9:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-092-7}, ISSN = {1868-8969}, year = {2018}, volume = {121}, editor = {Schmid, Ulrich and Widder, Josef}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.9}, URN = {urn:nbn:de:0030-drops-97982}, doi = {10.4230/LIPIcs.DISC.2018.9}, annote = {Keywords: Distributed complexity theory, locally checkable labellings, LOCAL model} }

Document

**Published in:** LIPIcs, Volume 91, 31st International Symposium on Distributed Computing (DISC 2017)

On the one hand, the correctness of routing protocols in networks is an issue of utmost importance for guaranteeing the delivery of messages from any source to any target. On the other hand, a large collection of routing schemes have been proposed during the last two decades, with the objective of transmitting messages along short routes, while keeping the routing tables small. Regrettably, all these schemes share the property that an adversary may modify the content of the routing tables with the objective of, e.g., blocking the delivery of messages between some pairs of nodes, without being detected by any node.
In this paper, we present a simple certification mechanism which enables the nodes to locally detect any alteration of their routing tables. In particular, we show how to locally verify the stretch 3 routing scheme by Thorup and Zwick [SPAA 2001] by adding certificates of ~O(sqrt(n)) bits at each node in n-node networks, that is, by keeping the memory size of the same order of magnitude as the original routing tables. We also propose a new name-independent routing scheme using routing tables of size ~O(sqrt(n)) bits. This new routing scheme can be locally verified using certificates on ~O(sqrt(n)) bits. Its stretch is 3 if using handshaking, and 5 otherwise.

Alkida Balliu and Pierre Fraigniaud. Certification of Compact Low-Stretch Routing Schemes. In 31st International Symposium on Distributed Computing (DISC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 91, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.DISC.2017.6, author = {Balliu, Alkida and Fraigniaud, Pierre}, title = {{Certification of Compact Low-Stretch Routing Schemes}}, booktitle = {31st International Symposium on Distributed Computing (DISC 2017)}, pages = {6:1--6:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-053-8}, ISSN = {1868-8969}, year = {2017}, volume = {91}, editor = {Richa, Andr\'{e}a}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2017.6}, URN = {urn:nbn:de:0030-drops-79807}, doi = {10.4230/LIPIcs.DISC.2017.6}, annote = {Keywords: Distributed verification, compact routing, local computing} }

Document

**Published in:** LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)

We are considering distributed network computing, in which computing entities are connected by a network modeled as a connected graph. These entities are located at the nodes of the graph, and they exchange information by message-passing along its edges. In this context, we are adopting the classical framework for local distributed decision, in which nodes must collectively decide whether their network configuration satisfies some given boolean predicate, by having each node interacting with the nodes in its vicinity only. A network configuration is accepted if and only if every node individually accepts. It is folklore that not every Turing-decidable network property (e.g., whether the network is planar) can be decided locally whenever the computing entities are Turing machines (TM). On the other hand, it is known that every Turing-decidable network property can be decided locally if nodes are running non-deterministic Turing machines (NTM). However, this holds only if the nodes have the ability to guess the identities of the nodes currently in the network. That is, for different sets of identities assigned to the nodes, the correct guesses of the nodes might be different. If one asks the nodes to use the same guess in the same network configuration even with different identity assignments, i.e., to perform identity-oblivious guesses, then it is known that not every Turing-decidable network property can be decided locally.
In this paper, we show that every Turing-decidable network property can be decided locally if nodes are running alternating Turing machines (ATM), and this holds even if nodes are bounded to perform identity-oblivious guesses. More specifically, we show that, for every network property, there is a local algorithm for ATMs, with at most 2 alternations, that decides that property. To this aim, we define a hierarchy of classes of decision tasks where the lowest level contains tasks solvable with TMs, the first level those solvable with NTMs, and level k contains those tasks solvable with ATMs with k alternations. We characterize the entire hierarchy, and show that it collapses in the second level. In addition, we show separation results between the classes of network properties that are locally decidable with TMs, NTMs, and ATMs. Finally, we establish the existence of completeness results for each of these classes, using novel notions of local reduction.

Alkida Balliu, Gianlorenzo D'Angelo, Pierre Fraigniaud, and Dennis Olivetti. What Can Be Verified Locally?. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{balliu_et_al:LIPIcs.STACS.2017.8, author = {Balliu, Alkida and D'Angelo, Gianlorenzo and Fraigniaud, Pierre and Olivetti, Dennis}, title = {{What Can Be Verified Locally?}}, booktitle = {34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)}, pages = {8:1--8:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-028-6}, ISSN = {1868-8969}, year = {2017}, volume = {66}, editor = {Vollmer, Heribert and Vall\'{e}e, Brigitte}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.8}, URN = {urn:nbn:de:0030-drops-70253}, doi = {10.4230/LIPIcs.STACS.2017.8}, annote = {Keywords: Distributed Network Computing, Distributed Algorithm, Distributed Decision, Locality} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail