Search Results

Documents authored by Barrett, Clark


Document
Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

Authors: Hanna Lachnitt, Mathias Fleury, Haniel Barbosa, Jibiana Jakpor, Bruno Andreotti, Andrew Reynolds, Hans-Jörg Schurr, Clark Barrett, and Cesare Tinelli

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Sledgehammer is a tool that increases the level of automation in the Isabelle/HOL proof assistant by asking external automatic theorem provers (ATPs), including SMT solvers, to prove the current goal. When the external ATP succeeds it must provide enough evidence that the goal holds for Isabelle to be able to reprove it internally based on that evidence. In particular, Isabelle can do this by replaying fine-grained proof certificates from proof-producing SMT solvers as long as they are expressed in the Alethe format, which until now was supported only by the veriT SMT solver. We report on our experience adding proof reconstruction support for the cvc5 SMT solver in Isabelle by extending cvc5 to produce proofs in the Alethe format and then adapting Isabelle to reconstruct those proofs. We discuss several difficulties and pitfalls we encountered and describe a set of tools and techniques we developed to improve the process. A notable outcome of this effort is that Isabelle can now be used as an independent proof checker for SMT problems written in the SMT-LIB standard. We evaluate cvc5’s integration on a set of SMT-LIB benchmarks originating from Isabelle as well as on a set of Isabelle proofs. Our results confirm that this integration complements and improves Sledgehammer’s capabilities.

Cite as

Hanna Lachnitt, Mathias Fleury, Haniel Barbosa, Jibiana Jakpor, Bruno Andreotti, Andrew Reynolds, Hans-Jörg Schurr, Clark Barrett, and Cesare Tinelli. Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lachnitt_et_al:LIPIcs.ITP.2025.26,
  author =	{Lachnitt, Hanna and Fleury, Mathias and Barbosa, Haniel and Jakpor, Jibiana and Andreotti, Bruno and Reynolds, Andrew and Schurr, Hans-J\"{o}rg and Barrett, Clark and Tinelli, Cesare},
  title =	{{Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.26},
  URN =		{urn:nbn:de:0030-drops-246243},
  doi =		{10.4230/LIPIcs.ITP.2025.26},
  annote =	{Keywords: interactive theorem proving, proof assistants, Isabelle/HOL, SMT, certification, proof certificates, proof reconstruction, proof automation}
}
Document
Bit-Precise Reasoning with Parametric Bit-Vectors

Authors: Zvika Berger, Yoni Zohar, Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett, and Cesare Tinelli

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
The SMT-LIB theory of bit-vectors is restricted to bit-vectors of fixed width. However, several important applications can benefit from reasoning about bit-vectors of symbolic widths, i.e., parametric bit-vectors. Recent work has introduced an approach for solving formulas over parametric bit-vectors, via an eager translation to quantified integer arithmetic with uninterpreted functions. The approach was shown to be successful for several applications, including the bit-width independent verification of compiler optimizations, invertibility conditions, and rewrite rules. We extend and improve that approach in several aspects. Theoretically, we improve expressiveness by defining a new theory of parametric bit-vectors that supports more operators and allows reasoning about the bit-widths themselves. Algorithmically, we introduce a lazy algorithm that avoids the use of uninterpreted functions and quantified axioms for them. Empirically, we show a significant improvement by implementing and evaluating our approach, and comparing it experimentally to the previous one.

Cite as

Zvika Berger, Yoni Zohar, Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. Bit-Precise Reasoning with Parametric Bit-Vectors. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 4:1-4:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{berger_et_al:LIPIcs.SAT.2025.4,
  author =	{Berger, Zvika and Zohar, Yoni and Niemetz, Aina and Preiner, Mathias and Reynolds, Andrew and Barrett, Clark and Tinelli, Cesare},
  title =	{{Bit-Precise Reasoning with Parametric Bit-Vectors}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{4:1--4:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.4},
  URN =		{urn:nbn:de:0030-drops-237385},
  doi =		{10.4230/LIPIcs.SAT.2025.4},
  annote =	{Keywords: Satisfiability Modulo Theories, Bit-precise Reasoning, Parametric Bit-vectors}
}
Document
Short Paper
Robust Mean Estimation by All Means (Short Paper)

Authors: Reynald Affeldt, Clark Barrett, Alessandro Bruni, Ieva Daukantas, Harun Khan, Takafumi Saikawa, and Carsten Schürmann

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We report the results of a verification experiment on an algorithm for robust mean estimation, i.e., an algorithm that computes a mean in the presence of outliers. We formalize the algorithm in the Coq proof assistant and devise a pragmatic approach for identifying and solving issues related to the choice of bounds. To keep our formalization succinct and generic, we recast the original argument using an existing library for finite probabilities that we extend with reusable lemmas. To formalize the original algorithm, which relies on a subtle convergence argument, we observe that by adding suitable termination checks, we can turn it into a well-founded recursion without losing its original properties. We also exploit a tactic for solving real-valued inequalities by approximation to heuristically fix inaccurate constant values in the original proof.

Cite as

Reynald Affeldt, Clark Barrett, Alessandro Bruni, Ieva Daukantas, Harun Khan, Takafumi Saikawa, and Carsten Schürmann. Robust Mean Estimation by All Means (Short Paper). In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 39:1-39:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{affeldt_et_al:LIPIcs.ITP.2024.39,
  author =	{Affeldt, Reynald and Barrett, Clark and Bruni, Alessandro and Daukantas, Ieva and Khan, Harun and Saikawa, Takafumi and Sch\"{u}rmann, Carsten},
  title =	{{Robust Mean Estimation by All Means}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{39:1--39:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.39},
  URN =		{urn:nbn:de:0030-drops-207679},
  doi =		{10.4230/LIPIcs.ITP.2024.39},
  annote =	{Keywords: robust statistics, probability theory, formal verification}
}
Document
DNN Verification, Reachability, and the Exponential Function Problem

Authors: Omri Isac, Yoni Zohar, Clark Barrett, and Guy Katz

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
Deep neural networks (DNNs) are increasingly being deployed to perform safety-critical tasks. The opacity of DNNs, which prevents humans from reasoning about them, presents new safety and security challenges. To address these challenges, the verification community has begun developing techniques for rigorously analyzing DNNs, with numerous verification algorithms proposed in recent years. While a significant amount of work has gone into developing these verification algorithms, little work has been devoted to rigorously studying the computability and complexity of the underlying theoretical problems. Here, we seek to contribute to the bridging of this gap. We focus on two kinds of DNNs: those that employ piecewise-linear activation functions (e.g., ReLU), and those that employ piecewise-smooth activation functions (e.g., Sigmoids). We prove the two following theorems: (i) the decidability of verifying DNNs with a particular set of piecewise-smooth activation functions, including Sigmoid and tanh, is equivalent to a well-known, open problem formulated by Tarski; and (ii) the DNN verification problem for any quantifier-free linear arithmetic specification can be reduced to the DNN reachability problem, whose approximation is NP-complete. These results answer two fundamental questions about the computability and complexity of DNN verification, and the ways it is affected by the network’s activation functions and error tolerance; and could help guide future efforts in developing DNN verification tools.

Cite as

Omri Isac, Yoni Zohar, Clark Barrett, and Guy Katz. DNN Verification, Reachability, and the Exponential Function Problem. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{isac_et_al:LIPIcs.CONCUR.2023.26,
  author =	{Isac, Omri and Zohar, Yoni and Barrett, Clark and Katz, Guy},
  title =	{{DNN Verification, Reachability, and the Exponential Function Problem}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.26},
  URN =		{urn:nbn:de:0030-drops-190205},
  doi =		{10.4230/LIPIcs.CONCUR.2023.26},
  annote =	{Keywords: Formal Verification, Computability Theory, Deep Neural Networks}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail