Search Results

Documents authored by Berkemer, Sarah J.


Document
RNA Triplet Repeats: Improved Algorithms for Structure Prediction and Interactions

Authors: Kimon Boehmer, Sarah J. Berkemer, Sebastian Will, and Yann Ponty

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
RNAs composed of Triplet Repeats (TR) have recently attracted much attention in the field of synthetic biology. We study the mimimum free energy (MFE) secondary structures of such RNAs and give improved algorithms to compute the MFE and the partition function. Furthermore, we study the interaction of multiple RNAs and design a new algorithm for computing MFE and partition function for RNA-RNA interactions, improving the previously known factorial running time to exponential. In the case of TR, we show computational hardness but still obtain a parameterized algorithm. Finally, we propose a polynomial-time algorithm for computing interactions from a base set of RNA strands and conduct experiments on the interaction of TR based on this algorithm. For instance, we study the probability that a base pair is formed between two strands with the same triplet pattern, allowing an assessment of a notion of orthogonality between TR.

Cite as

Kimon Boehmer, Sarah J. Berkemer, Sebastian Will, and Yann Ponty. RNA Triplet Repeats: Improved Algorithms for Structure Prediction and Interactions. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boehmer_et_al:LIPIcs.WABI.2024.18,
  author =	{Boehmer, Kimon and Berkemer, Sarah J. and Will, Sebastian and Ponty, Yann},
  title =	{{RNA Triplet Repeats: Improved Algorithms for Structure Prediction and Interactions}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{18:1--18:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.18},
  URN =		{urn:nbn:de:0030-drops-206625},
  doi =		{10.4230/LIPIcs.WABI.2024.18},
  annote =	{Keywords: RNA folding, RNA interactions, triplet repeats, dynamic programming, NP-hardness}
}
Document
Automated Design of Dynamic Programming Schemes for RNA Folding with Pseudoknots

Authors: Bertrand Marchand, Sebastian Will, Sarah J. Berkemer, Laurent Bulteau, and Yann Ponty

Published in: LIPIcs, Volume 242, 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)


Abstract
Despite being a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, RNA secondary structure prediction remains challenging whenever pseudoknots come into play. To circumvent the NP-hardness of energy minimization in realistic energy models, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. While these methods rely on hand-crafted DP schemes, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. We formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the tree-width tw of the fatgraph, and its output represents a 𝒪(n^{tw+1}) algorithm for predicting the MFE folding of an RNA of length n. Our general framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case.

Cite as

Bertrand Marchand, Sebastian Will, Sarah J. Berkemer, Laurent Bulteau, and Yann Ponty. Automated Design of Dynamic Programming Schemes for RNA Folding with Pseudoknots. In 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 242, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{marchand_et_al:LIPIcs.WABI.2022.7,
  author =	{Marchand, Bertrand and Will, Sebastian and Berkemer, Sarah J. and Bulteau, Laurent and Ponty, Yann},
  title =	{{Automated Design of Dynamic Programming Schemes for RNA Folding with Pseudoknots}},
  booktitle =	{22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-243-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{242},
  editor =	{Boucher, Christina and Rahmann, Sven},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2022.7},
  URN =		{urn:nbn:de:0030-drops-170414},
  doi =		{10.4230/LIPIcs.WABI.2022.7},
  annote =	{Keywords: RNA folding, treewidth, dynamic programming}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail