Search Results

Documents authored by Boehmer, Niclas


Document
Deepening the (Parameterized) Complexity Analysis of Incremental Stable Matching Problems

Authors: Niclas Boehmer, Klaus Heeger, and Rolf Niedermeier

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
When computing stable matchings, it is usually assumed that the preferences of the agents in the matching market are fixed. However, in many realistic scenarios, preferences change over time. Consequently, an initially stable matching may become unstable. Then, a natural goal is to find a matching which is stable with respect to the modified preferences and as close as possible to the initial one. For Stable Marriage/Roommates, this problem was formally defined as Incremental Stable Marriage/Roommates by Bredereck et al. [AAAI '20]. As they showed that Incremental Stable Roommates and Incremental Stable Marriage with Ties are NP-hard, we focus on the parameterized complexity of these problems. We answer two open questions of Bredereck et al. [AAAI '20]: We show that Incremental Stable Roommates is W[1]-hard parameterized by the number of changes in the preferences, yet admits an intricate XP-algorithm, and we show that Incremental Stable Marriage with Ties is W[1]-hard parameterized by the number of ties. Furthermore, we analyze the influence of the degree of "similarity" between the agents' preference lists, identifying several polynomial-time solvable and fixed-parameter tractable cases, but also proving that Incremental Stable Roommates and Incremental Stable Marriage with Ties parameterized by the number of different preference lists are W[1]-hard.

Cite as

Niclas Boehmer, Klaus Heeger, and Rolf Niedermeier. Deepening the (Parameterized) Complexity Analysis of Incremental Stable Matching Problems. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 21:1-21:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{boehmer_et_al:LIPIcs.MFCS.2022.21,
  author =	{Boehmer, Niclas and Heeger, Klaus and Niedermeier, Rolf},
  title =	{{Deepening the (Parameterized) Complexity Analysis of Incremental Stable Matching Problems}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{21:1--21:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.21},
  URN =		{urn:nbn:de:0030-drops-168194},
  doi =		{10.4230/LIPIcs.MFCS.2022.21},
  annote =	{Keywords: Stable Marriage, Stable Roommates, adapting to changing preferences, NP-hardness, W\lbrack1\rbrack-hardness, XP, FPT, master lists, incremental algorithms}
}
Document
Track A: Algorithms, Complexity and Games
The Complexity of Finding Fair Many-To-One Matchings

Authors: Niclas Boehmer and Tomohiro Koana

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We analyze the (parameterized) computational complexity of "fair" variants of bipartite many-to-one matching, where each vertex from the "left" side is matched to exactly one vertex and each vertex from the "right" side may be matched to multiple vertices. We want to find a "fair" matching, in which each vertex from the right side is matched to a "fair" set of vertices. Assuming that each vertex from the left side has one color modeling its attribute, we study two fairness criteria. In one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of their occurrences does not exceed a given threshold. Fairness is relevant when finding many-to-one matchings between students and colleges, voters and constituencies, and applicants and firms. Here colors may model sociodemographic attributes, party memberships, and qualifications, respectively. We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect to the number of vertices on the right side. Our algorithms make use of a variety of techniques including color coding. At the core lie integer linear programs encoding Hall like conditions. To establish the correctness of our integer programs, we prove a new separation result, inspired by Frank’s separation theorem [Frank, Discrete Math. 1982], which may also be of independent interest. We further obtain complete complexity dichotomies regarding the number of colors and the maximum degree of each side.

Cite as

Niclas Boehmer and Tomohiro Koana. The Complexity of Finding Fair Many-To-One Matchings. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{boehmer_et_al:LIPIcs.ICALP.2022.27,
  author =	{Boehmer, Niclas and Koana, Tomohiro},
  title =	{{The Complexity of Finding Fair Many-To-One Matchings}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{27:1--27:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.27},
  URN =		{urn:nbn:de:0030-drops-163680},
  doi =		{10.4230/LIPIcs.ICALP.2022.27},
  annote =	{Keywords: Graph theory, polynomial-time algorithms, NP-hardness, FPT, ILP, color coding, submodular and supermodular functions, algorithmic fairness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail