Document

**Published in:** LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)

We give lower bounds on the complexity of the word problem of certain non-solvable groups: for a large class of non-solvable infinite groups, including in particular free groups, Grigorchuk’s group and Thompson’s groups, we prove that their word problem is ALOGTIME-hard. For some of these groups (including Grigorchuk’s group and Thompson’s groups) we prove that the circuit value problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.

Laurent Bartholdi, Michael Figelius, Markus Lohrey, and Armin Weiß. Groups with ALOGTIME-Hard Word Problems and PSPACE-Complete Circuit Value Problems. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 29:1-29:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{bartholdi_et_al:LIPIcs.CCC.2020.29, author = {Bartholdi, Laurent and Figelius, Michael and Lohrey, Markus and Wei{\ss}, Armin}, title = {{Groups with ALOGTIME-Hard Word Problems and PSPACE-Complete Circuit Value Problems}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {29:1--29:29}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.29}, URN = {urn:nbn:de:0030-drops-125814}, doi = {10.4230/LIPIcs.CCC.2020.29}, annote = {Keywords: NC^1-hardness, word problem, G-programs, straight-line programs, non-solvable groups, self-similar groups, Thompson’s groups, Grigorchuk’s group} }

Document

Track B: Automata, Logic, Semantics, and Theory of Programming

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

We prove new complexity results for computational problems in certain wreath products of groups and (as an application) for free solvable groups. For a finitely generated group we study the so-called power word problem (does a given expression u₁^{k₁} … u_d^{k_d}, where u₁, …, u_d are words over the group generators and k₁, …, k_d are binary encoded integers, evaluate to the group identity?) and knapsack problem (does a given equation u₁^{x₁} … u_d^{x_d} = v, where u₁, …, u_d,v are words over the group generators and x₁,…,x_d are variables, have a solution in the natural numbers). We prove that the power word problem for wreath products of the form G ≀ ℤ with G nilpotent and iterated wreath products of free abelian groups belongs to TC⁰. As an application of the latter, the power word problem for free solvable groups is in TC⁰. On the other hand we show that for wreath products G ≀ ℤ, where G is a so called uniformly strongly efficiently non-solvable group (which form a large subclass of non-solvable groups), the power word problem is coNP-hard. For the knapsack problem we show NP-completeness for iterated wreath products of free abelian groups and hence free solvable groups. Moreover, the knapsack problem for every wreath product G ≀ ℤ, where G is uniformly efficiently non-solvable, is Σ₂^p-hard.

Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zetzsche. The Complexity of Knapsack Problems in Wreath Products. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 126:1-126:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{figelius_et_al:LIPIcs.ICALP.2020.126, author = {Figelius, Michael and Ganardi, Moses and Lohrey, Markus and Zetzsche, Georg}, title = {{The Complexity of Knapsack Problems in Wreath Products}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {126:1--126:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.126}, URN = {urn:nbn:de:0030-drops-125339}, doi = {10.4230/LIPIcs.ICALP.2020.126}, annote = {Keywords: algorithmic group theory, knapsack, wreath product} }