Document

**Published in:** LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)

The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut.
For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H:
- Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}.
- For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH).
The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ESA.2024.39, author = {Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}}, title = {{List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {39:1--39:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.39}, URN = {urn:nbn:de:0030-drops-211103}, doi = {10.4230/LIPIcs.ESA.2024.39}, annote = {Keywords: Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion, Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH} }

Document

**Published in:** LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)

We study a general family of problems that form a common generalization of classic hitting (also referred to as covering or transversal) and packing problems. An instance of 𝒳-HitPack asks: Can removing k (deletable) vertices of a graph G prevent us from packing 𝓁 vertex-disjoint objects of type 𝒳? This problem captures a spectrum of problems with standard hitting and packing on opposite ends. Our main motivating question is whether the combination 𝒳-HitPack can be significantly harder than these two base problems. Already for one particular choice of 𝒳, this question can be posed for many different complexity notions, leading to a large, so-far unexplored domain at the intersection of the areas of hitting and packing problems.
At a high level, we present two case studies: (1) 𝒳 being all cycles, and (2) 𝒳 being all copies of a fixed graph H. In each, we explore the classical complexity as well as the parameterized complexity with the natural parameters k+𝓁 and treewidth. We observe that the combined problem can be drastically harder than the base problems: for cycles or for H being a connected graph on at least 3 vertices, the problem is Σ₂^𝖯-complete and requires double-exponential dependence on the treewidth of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem admits qualitatively similar running times as the base problems in some cases, although significant novel ideas are required. For 𝒳 being all cycles, we establish a 2^{poly(k+𝓁)}⋅ n^{𝒪(1)} algorithm using an involved branching method, for example. Also, for 𝒳 being all edges (i.e., H = K₂; this combines Vertex Cover and Maximum Matching) the problem can be solved in time 2^{poly(tw)}⋅ n^{𝒪(1)} on graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound obtained from an algebraic (linear delta-matroid) representation of possible matchings.

Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki. Hitting Meets Packing: How Hard Can It Be?. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 55:1-55:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.ESA.2024.55, author = {Focke, Jacob and Frei, Fabian and Li, Shaohua and Marx, D\'{a}niel and Schepper, Philipp and Sharma, Roohani and W\k{e}grzycki, Karol}, title = {{Hitting Meets Packing: How Hard Can It Be?}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {55:1--55:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.55}, URN = {urn:nbn:de:0030-drops-211261}, doi = {10.4230/LIPIcs.ESA.2024.55}, annote = {Keywords: Hitting, Packing, Covering, Parameterized Algorithms, Lower Bounds, Treewidth} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)

It is known for many algorithmic problems that if a tree decomposition of width t is given in the input, then the problem can be solved with exponential dependence on t. A line of research initiated by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many cases known algorithms already achieve the best possible exponential dependence on t, assuming the Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the same lower bounds can already be obtained in a much more restricted setting: informally, a graph consisting of a block of t vertices connected to components of constant size already has the same hardness as a general tree decomposition of width t.
Formally, a (σ,δ)-hub is a set Q of vertices such that every component of Q has size at most σ and is adjacent to at most δ vertices of Q. We explore if the known tight lower bounds parameterized by the width of the given tree decomposition remain valid if we parameterize by the size of the given hub.
- For every ε > 0, there are σ,δ > 0 such that Independent Set (equivalently Vertex Cover) cannot be solved in time (2-ε)^p⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the SETH. This matches the earlier tight lower bounds parameterized by width of the tree decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut, q-Coloring, and edge/vertex deletions versions of q-Coloring.
- For every ε > 0, there are σ,δ > 0 such that △-Partition cannot be solved in time (2-ε)^p ⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be proved assuming the SETH.
- For Dominating Set, we can prove a non-tight lower bound ruling out (2-ε)^p ⋅ n^𝒪(1) algorithms, assuming either the SETH or the SCC, but this does not match the 3^p⋅ n^{𝒪(1)} upper bound. Thus our results reveal that, for many problems, the research on lower bounds on the dependence on tree width was never really about tree decompositions, but the real source of hardness comes from a much simpler structure.
Additionally, we study if the same lower bounds can be obtained if σ and δ are fixed universal constants (not depending on ε). We show that lower bounds of this form are possible for Max Cut and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However, no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every fixed (σ,δ).

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ICALP.2024.34, author = {Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}}, title = {{Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {34:1--34:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.34}, URN = {urn:nbn:de:0030-drops-201772}, doi = {10.4230/LIPIcs.ICALP.2024.34}, annote = {Keywords: Parameterized Complexity, Tight Bounds, Hub, Treewidth, Strong Exponential Time Hypothesis, Vertex Coloring, Vertex Deletion, Edge Deletion, Triangle Packing, Triangle Partition, Set Cover Hypothesis, Dominating Set} }

Document

**Published in:** LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)

The Multicut problem asks for a minimum cut separating certain pairs of vertices: formally, given a graph G and a demand graph H on a set T ⊆ V(G) of terminals, the task is to find a minimum-weight set C of edges of G such that whenever two vertices of T are adjacent in H, they are in different components of G⧵ C. Colin de Verdière [Algorithmica, 2017] showed that Multicut with t terminals on a graph G of genus g can be solved in time f(t,g) n^O(√{g²+gt+t}). Cohen-Addad et al. [JACM, 2021] proved a matching lower bound showing that the exponent of n is essentially best possible (for every fixed value of t and g), even in the special case of Multiway Cut, where the demand graph H is a complete graph.
However, this lower bound tells us nothing about other special cases of Multicut such as Group 3-Terminal Cut (where three groups of terminals need to be separated from each other). We show that if the demand pattern is, in some sense, close to being a complete bipartite graph, then Multicut can be solved faster than f(t,g) n^{O(√{g²+gt+t})}, and furthermore this is the only property that allows such an improvement. Formally, for a class ℋ of graphs, Multicut(ℋ) is the special case where the demand graph H is in ℋ. For every fixed class ℋ (satisfying some mild closure property), fixed g, and fixed t, our main result gives tight upper and lower bounds on the exponent of n in algorithms solving Multicut(ℋ).
In addition, we investigate a similar setting where, instead of parameterizing by the genus g of G, we parameterize by the minimum number k of edges of G that need to be deleted to obtain a planar graph. Interestingly, in this setting it makes a significant difference whether the graph G is weighted or unweighted: further nontrivial algorithmic techniques give substantial improvements in the unweighted case.

Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.SoCG.2024.57, author = {Focke, Jacob and H\"{o}rsch, Florian and Li, Shaohua and Marx, D\'{a}niel}, title = {{Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {57:1--57:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.57}, URN = {urn:nbn:de:0030-drops-200021}, doi = {10.4230/LIPIcs.SoCG.2024.57}, annote = {Keywords: MultiCut, Multiway Cut, Parameterized Complexity, Tight Bounds, Embedded Graph, Planar Graph, Genus, Surface, Exponential Time Hypothesis} }

Document

**Published in:** LIPIcs, Volume 75, 16th International Symposium on Experimental Algorithms (SEA 2017)

We consider the minimum spanning tree (MST) problem in an uncertainty model where uncertain edge weights can be explored at extra cost. The task is to find an MST by querying a minimum number of edges for their exact weight. This problem has received quite some attention from the algorithms theory community. In this paper, we conduct the first practical experiments for MST under uncertainty, theoretically compare three known algorithms, and compare theoretical with practical behavior of the algorithms. Among others, we observe that the average performance and the absolute number of queries are both far from the theoretical worst-case bounds. Furthermore, we investigate a known general preprocessing procedure and develop an implementation thereof that maximally reduces the data uncertainty. We also characterize a class of instances that is solved completely by our preprocessing. Our experiments are based on practical data from an application in telecommunications and uncertainty instances generated from the standard TSPLib graph library.

Jacob Focke, Nicole Megow, and Julie Meißner. Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments. In 16th International Symposium on Experimental Algorithms (SEA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 75, pp. 22:1-22:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.SEA.2017.22, author = {Focke, Jacob and Megow, Nicole and Mei{\ss}ner, Julie}, title = {{Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments}}, booktitle = {16th International Symposium on Experimental Algorithms (SEA 2017)}, pages = {22:1--22:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-036-1}, ISSN = {1868-8969}, year = {2017}, volume = {75}, editor = {Iliopoulos, Costas S. and Pissis, Solon P. and Puglisi, Simon J. and Raman, Rajeev}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2017.22}, URN = {urn:nbn:de:0030-drops-76202}, doi = {10.4230/LIPIcs.SEA.2017.22}, annote = {Keywords: MST, explorable uncertainty, competitive ratio, experimental algorithms} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail