Search Results

Documents authored by Gao, Guichen


Document
Track A: Algorithms, Complexity and Games
Fully Scalable MPC Algorithms for Euclidean k-Center

Authors: Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The k-center problem is a fundamental optimization problem with numerous applications in machine learning, data analysis, data mining, and communication networks. The k-center problem has been extensively studied in the classical sequential setting for several decades, and more recently there have been some efforts in understanding the problem in parallel computing, on the Massively Parallel Computation (MPC) model. For now, we have a good understanding of k-center in the case where each local MPC machine has sufficient local memory to store some representatives from each cluster, that is, when one has Ω(k) local memory per machine. While this setting covers the case of small values of k, for a large number of clusters these algorithms require undesirably large local memory, making them poorly scalable. The case of large k has been considered only recently for the fully scalable low-local-memory MPC model for the Euclidean instances of the k-center problem. However, the earlier works have been considering only the constant dimensional Euclidean space, required a super-constant number of rounds, and produced only k(1+o(1)) centers whose cost is a super-constant approximation of k-center. In this work, we significantly improve upon the earlier results for the k-center problem for the fully scalable low-local-memory MPC model. In the low dimensional Euclidean case in ℝ^d, we present the first constant-round fully scalable MPC algorithm for (2+ε)-approximation. We push the ratio further to (1 + ε)-approximation albeit using slightly more (1 + ε)k centers. All these results naturally extends to slightly super-constant values of d. In the high-dimensional regime, we provide the first fully scalable MPC algorithm that in a constant number of rounds achieves an O(log n/ log log n)-approximation for k-center.

Cite as

Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang. Fully Scalable MPC Algorithms for Euclidean k-Center. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 64:1-64:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2025.64,
  author =	{Czumaj, Artur and Gao, Guichen and Ghaffari, Mohsen and Jiang, Shaofeng H.-C.},
  title =	{{Fully Scalable MPC Algorithms for Euclidean k-Center}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{64:1--64:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.64},
  URN =		{urn:nbn:de:0030-drops-234416},
  doi =		{10.4230/LIPIcs.ICALP.2025.64},
  annote =	{Keywords: Massively Parallel Computing, Euclidean Spaces, k-Center Clustering}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail