Search Results

Documents authored by Goharshady, Amir Kafshdar


Document
Faster Treewidth-Based Approximations for Wiener Index

Authors: Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a widely-used graph property in chemistry, initially introduced to examine the link between boiling points and structural properties of alkanes, which later found notable applications in drug design. Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every vertex models an atom of a molecule and every edge models a bond, is of significant interest to the computational chemistry community. In this work, we build upon the observation that molecular graphs are sparse and tree-like and focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index. We present a new randomized approximation algorithm using a combination of tree decompositions and centroid decompositions. Our algorithm approximates the Wiener index within any desired multiplicative factor (1 ± ε) in time O(n ⋅ log n ⋅ k³ + √n ⋅ k/ε²), where n is the number of vertices of the graph and k is the treewidth. This time bound is almost-linear in n. Finally, we provide experimental results over standard benchmark molecules from PubChem and the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world chemical graphs and comparing it with previous methods.

Cite as

Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani. Faster Treewidth-Based Approximations for Wiener Index. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{conrado_et_al:LIPIcs.SEA.2024.6,
  author =	{Conrado, Giovanna Kobus and Goharshady, Amir Kafshdar and Hudec, Pavel and Li, Pingjiang and Motwani, Harshit Jitendra},
  title =	{{Faster Treewidth-Based Approximations for Wiener Index}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.6},
  URN =		{urn:nbn:de:0030-drops-203718},
  doi =		{10.4230/LIPIcs.SEA.2024.6},
  annote =	{Keywords: Computational Chemistry, Treewidth, Wiener Index}
}
Document
Algorithms and Hardness Results for Computing Cores of Markov Chains

Authors: Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, Roodabeh Safavi, and Ðorđe Žikelić

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
Given a Markov chain M = (V, v_0, δ), with state space V and a starting state v_0, and a probability threshold ε, an ε-core is a subset C of states that is left with probability at most ε. More formally, C ⊆ V is an ε-core, iff ℙ[reach (V\C)] ≤ ε. Cores have been applied in a wide variety of verification problems over Markov chains, Markov decision processes, and probabilistic programs, as a means of discarding uninteresting and low-probability parts of a probabilistic system and instead being able to focus on the states that are likely to be encountered in a real-world run. In this work, we focus on the problem of computing a minimal ε-core in a Markov chain. Our contributions include both negative and positive results: (i) We show that the decision problem on the existence of an ε-core of a given size is NP-complete. This solves an open problem posed in [Jan Kretínský and Tobias Meggendorfer, 2020]. We additionally show that the problem remains NP-complete even when limited to acyclic Markov chains with bounded maximal vertex degree; (ii) We provide a polynomial time algorithm for computing a minimal ε-core on Markov chains over control-flow graphs of structured programs. A straightforward combination of our algorithm with standard branch prediction techniques allows one to apply the idea of cores to find a subset of program lines that are left with low probability and then focus any desired static analysis on this core subset.

Cite as

Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, Roodabeh Safavi, and Ðorđe Žikelić. Algorithms and Hardness Results for Computing Cores of Markov Chains. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ahmadi_et_al:LIPIcs.FSTTCS.2022.29,
  author =	{Ahmadi, Ali and Chatterjee, Krishnendu and Goharshady, Amir Kafshdar and Meggendorfer, Tobias and Safavi, Roodabeh and \v{Z}ikeli\'{c}, Ðor{\d}e},
  title =	{{Algorithms and Hardness Results for Computing Cores of Markov Chains}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.29},
  URN =		{urn:nbn:de:0030-drops-174216},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.29},
  annote =	{Keywords: Markov Chains, Cores, Complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail