Search Results

Documents authored by Humeau, Samuel


Document
Correspondences Between Codensity and Coupling-Based Liftings, a Practical Approach

Authors: Samuel Humeau, Daniela Petrisan, and Jurriaan Rot

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
The Kantorovich distance is a widely used metric between probability distributions. The Kantorovich-Rubinstein duality states that it can be defined in two equivalent ways: as a supremum, based on non-expansive functions into [0,1], and as an infimum, based on probabilistic couplings. Orthogonally, there are categorical generalisations of both presentations proposed in the literature, in the form of codensity liftings and what we refer to as coupling-based liftings. Both lift endofunctors on the category Set of sets and functions to that of pseudometric spaces, and both are parameterised by modalities from coalgebraic modal logic. A generalisation of the Kantorovich-Rubinstein duality has been more nebulous - it is known not to work in some cases. In this paper we propose a compositional approach for obtaining such generalised dualities for a class of functors, which is closed under coproducts and products. Our approach is based on an explicit construction of modalities and also applies to and extends known cases such as that of the powerset functor.

Cite as

Samuel Humeau, Daniela Petrisan, and Jurriaan Rot. Correspondences Between Codensity and Coupling-Based Liftings, a Practical Approach. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{humeau_et_al:LIPIcs.CSL.2025.29,
  author =	{Humeau, Samuel and Petrisan, Daniela and Rot, Jurriaan},
  title =	{{Correspondences Between Codensity and Coupling-Based Liftings, a Practical Approach}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.29},
  URN =		{urn:nbn:de:0030-drops-227861},
  doi =		{10.4230/LIPIcs.CSL.2025.29},
  annote =	{Keywords: Kantorovich distance, behavioural metrics, Kantorovich-Rubinstein duality, functor liftings}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Finite Presentation of Graphs of Treewidth at Most Three

Authors: Amina Doumane, Samuel Humeau, and Damien Pous

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide a finite equational presentation of graphs of treewidth at most three, solving an instance of an open problem by Courcelle and Engelfriet. We use a syntax generalising series-parallel expressions, denoting graphs with a small interface. We introduce appropriate notions of connectivity for such graphs (components, cutvertices, separation pairs). We use those concepts to analyse the structure of graphs of treewidth at most three, showing how they can be decomposed recursively, first canonically into connected parallel components, and then non-deterministically. The main difficulty consists in showing that all non-deterministic choices can be related using only finitely many equational axioms.

Cite as

Amina Doumane, Samuel Humeau, and Damien Pous. A Finite Presentation of Graphs of Treewidth at Most Three. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 135:1-135:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doumane_et_al:LIPIcs.ICALP.2024.135,
  author =	{Doumane, Amina and Humeau, Samuel and Pous, Damien},
  title =	{{A Finite Presentation of Graphs of Treewidth at Most Three}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{135:1--135:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.135},
  URN =		{urn:nbn:de:0030-drops-202787},
  doi =		{10.4230/LIPIcs.ICALP.2024.135},
  annote =	{Keywords: Graphs, treewidth, connectedness, axiomatisation, series-parallel expressions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail