Search Results

Documents authored by Krishnamoorthy, Bala


Document
Steinhaus Filtration and Stable Paths in the Mapper

Authors: Dustin L. Arendt, Matthew Broussard, Bala Krishnamoorthy, Nathaniel Saul, and Amber Thrall

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We define a new filtration called the Steinhaus filtration built from a single cover based on a generalized Steinhaus distance, a generalization of Jaccard distance. The homology persistence module of a Steinhaus filtration with infinitely many cover elements may not be q-tame, even when the covers are in a totally bounded space. While this may pose a challenge to derive stability results, we show that the Steinhaus filtration is stable when the cover is finite. We show that while the Čech and Steinhaus filtrations are not isomorphic in general, they are isomorphic for a finite point set in dimension one. Furthermore, the VR filtration completely determines the 1-skeleton of the Steinhaus filtration in arbitrary dimension. We then develop a language and theory for stable paths within the Steinhaus filtration. We demonstrate how the framework can be applied to several applications where a standard metric may not be defined but a cover is readily available. We introduce a new perspective for modeling recommendation system datasets. As an example, we look at a movies dataset and we find the stable paths identified in our framework represent a sequence of movies constituting a gentle transition and ordering from one genre to another. For explainable machine learning, we apply the Mapper algorithm for model induction by building a filtration from a single Mapper complex, and provide explanations in the form of stable paths between subpopulations. For illustration, we build a Mapper complex from a supervised machine learning model trained on the FashionMNIST dataset. Stable paths in the Steinhaus filtration provide improved explanations of relationships between subpopulations of images.

Cite as

Dustin L. Arendt, Matthew Broussard, Bala Krishnamoorthy, Nathaniel Saul, and Amber Thrall. Steinhaus Filtration and Stable Paths in the Mapper. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 10:1-10:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{arendt_et_al:LIPIcs.SoCG.2025.10,
  author =	{Arendt, Dustin L. and Broussard, Matthew and Krishnamoorthy, Bala and Saul, Nathaniel and Thrall, Amber},
  title =	{{Steinhaus Filtration and Stable Paths in the Mapper}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{10:1--10:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.10},
  URN =		{urn:nbn:de:0030-drops-231625},
  doi =		{10.4230/LIPIcs.SoCG.2025.10},
  annote =	{Keywords: Cover and nerve, Jaccard distance, persistence stability, Mapper, recommender systems, explainable machine learning}
}
Document
Semi-Streaming Algorithms for Weighted k-Disjoint Matchings

Authors: S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We design and implement two single-pass semi-streaming algorithms for the maximum weight k-disjoint matching (k-DM) problem. Given an integer k, the k-DM problem is to find k pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For k ≥ 2, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is 1/(3+ε)-approximate. We also develop an approximation preserving reduction from k-DM to the maximum weight b-matching problem. Leveraging this reduction and an existing semi-streaming b-matching algorithm, we design a (1/(2+ε))(1 - 1/(k+1))-approximate semi-streaming algorithm for k-DM. For any constant ε > 0, both of these algorithms require O(nk log_{1+ε}² n) bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the k-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 95 real-world and synthetic test problems, including thirteen graphs generated from data center network traces. On these instances, our streaming algorithms used significantly less memory (ranging from 6× to 512× less) and were faster in runtime than the offline algorithms. Our solutions were often within 5% of the best weights from the offline algorithms. We highlight that the existing offline algorithms run out of 1 TB memory for most of the large instances (> 1 billion edges), whereas our streaming algorithms can solve these problems using only 100 GB memory for k = 8.

Cite as

S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy. Semi-Streaming Algorithms for Weighted k-Disjoint Matchings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 53:1-53:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.ESA.2024.53,
  author =	{Ferdous, S M and Samineni, Bhargav and Pothen, Alex and Halappanavar, Mahantesh and Krishnamoorthy, Bala},
  title =	{{Semi-Streaming Algorithms for Weighted k-Disjoint Matchings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{53:1--53:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.53},
  URN =		{urn:nbn:de:0030-drops-211245},
  doi =		{10.4230/LIPIcs.ESA.2024.53},
  annote =	{Keywords: Matchings, Semi-Streaming Algorithms, Approximation Algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail