Search Results

Documents authored by Kshemkalyani, Ajay D.


Document
Detecting Causality in the Presence of Byzantine Processes: The Synchronous Systems Case

Authors: Anshuman Misra and Ajay D. Kshemkalyani

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
Detecting causality or the happens before relation between events in a distributed system is a fundamental building block for distributed applications. It was recently proved that this problem cannot be solved in an asynchronous distributed system in the presence of Byzantine processes, irrespective of whether the communication mechanism is via unicasts, multicasts, or broadcasts. In light of this impossibility result, we turn attention to synchronous systems and examine the possibility of solving the causality detection problem in such systems. In this paper, we prove that causality detection between events can be solved in the presence of Byzantine processes in a synchronous distributed system. The positive result holds for unicast, multicast, as well as broadcast modes of communication. We prove the result by providing an algorithm. Our solution uses the Replicated State Machine (RSM) approach and vector clocks.

Cite as

Anshuman Misra and Ajay D. Kshemkalyani. Detecting Causality in the Presence of Byzantine Processes: The Synchronous Systems Case. In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{misra_et_al:LIPIcs.TIME.2023.11,
  author =	{Misra, Anshuman and Kshemkalyani, Ajay D.},
  title =	{{Detecting Causality in the Presence of Byzantine Processes: The Synchronous Systems Case}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{11:1--11:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023.11},
  URN =		{urn:nbn:de:0030-drops-191017},
  doi =		{10.4230/LIPIcs.TIME.2023.11},
  annote =	{Keywords: Byzantine fault-tolerance, causality, happens before, distributed system, message-passing, synchronous system}
}
Document
Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Authors: Ajay D. Kshemkalyani and Gokarna Sharma

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges, and degree Δ, we consider the problem of dispersing k ≤ n robots (or tokens) positioned initially arbitrarily on one or more nodes of the graph to exactly k different nodes of the graph, one on each node. The objective is to simultaneously minimize time to achieve dispersion and memory requirement at each robot. If all k robots are positioned initially on a single node, depth first search (DFS) traversal solves this problem in O(min{m,kΔ}) time with Θ(log(k+Δ)) bits at each robot. However, if robots are positioned initially on multiple nodes, the best previously known algorithm solves this problem in O(min{m,kΔ}⋅ log 𝓁) time storing Θ(log(k+Δ)) bits at each robot, where 𝓁 ≤ k/2 is the number of multiplicity nodes in the initial configuration. In this paper, we present a novel multi-source DFS traversal algorithm solving this problem in O(min{m,kΔ}) time with Θ(log(k+Δ)) bits at each robot, improving the time bound of the best previously known algorithm by O(log 𝓁) and matching asymptotically the single-source DFS traversal bounds. This is the first algorithm for dispersion that is optimal in both time and memory in arbitrary anonymous graphs of constant degree, Δ = O(1). Furthermore, the result holds in both synchronous and asynchronous settings.

Cite as

Ajay D. Kshemkalyani and Gokarna Sharma. Near-Optimal Dispersion on Arbitrary Anonymous Graphs. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kshemkalyani_et_al:LIPIcs.OPODIS.2021.8,
  author =	{Kshemkalyani, Ajay D. and Sharma, Gokarna},
  title =	{{Near-Optimal Dispersion on Arbitrary Anonymous Graphs}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.8},
  URN =		{urn:nbn:de:0030-drops-157837},
  doi =		{10.4230/LIPIcs.OPODIS.2021.8},
  annote =	{Keywords: Distributed algorithms, Multi-agent systems, Mobile robots, Local communication, Dispersion, Exploration, Time and memory complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail