Found 2 Possible Name Variants:

Document

**Published in:** LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)

The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability.
We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14.

Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki. Reachability in Fixed Dimension Vector Addition Systems with States. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.48, author = {Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Lazi\'{c}, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip}, title = {{Reachability in Fixed Dimension Vector Addition Systems with States}}, booktitle = {31st International Conference on Concurrency Theory (CONCUR 2020)}, pages = {48:1--48:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-160-3}, ISSN = {1868-8969}, year = {2020}, volume = {171}, editor = {Konnov, Igor and Kov\'{a}cs, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.48}, URN = {urn:nbn:de:0030-drops-128605}, doi = {10.4230/LIPIcs.CONCUR.2020.48}, annote = {Keywords: reachability problem, vector addition systems, Petri nets} }

Document

Invited Talk

**Published in:** LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)

Studying one-dimensional grammar vector addition systems has long been advocated by Alain Finkel. In this presentation, we shall see how research on those systems has led to the recent breakthrough tower lower bound for the reachability problem on vector addition systems, obtained by Czerwiński et al. In fact, we shall look at how appropriate modifications of an underlying technical construction can lead to counter-examples to several conjectures on one-dimensional grammar vector addition systems, fixed-dimensional vector addition systems, and fixed-dimensional flat vector addition systems.

Ranko Lazić. Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems (Invited Talk). In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{lazic:LIPIcs.FSTTCS.2019.3, author = {Lazi\'{c}, Ranko}, title = {{Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems}}, booktitle = {39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)}, pages = {3:1--3:2}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-131-3}, ISSN = {1868-8969}, year = {2019}, volume = {150}, editor = {Chattopadhyay, Arkadev and Gastin, Paul}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.3}, URN = {urn:nbn:de:0030-drops-115653}, doi = {10.4230/LIPIcs.FSTTCS.2019.3}, annote = {Keywords: Petri nets, vector addition systems, reachability} }

Document

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous.

Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and James Worrell. When is Containment Decidable for Probabilistic Automata?. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 121:1-121:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{daviaud_et_al:LIPIcs.ICALP.2018.121, author = {Daviaud, Laure and Jurdzinski, Marcin and Lazic, Ranko and Mazowiecki, Filip and P\'{e}rez, Guillermo A. and Worrell, James}, title = {{When is Containment Decidable for Probabilistic Automata?}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {121:1--121:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.121}, URN = {urn:nbn:de:0030-drops-91251}, doi = {10.4230/LIPIcs.ICALP.2018.121}, annote = {Keywords: Probabilistic automata, Containment, Emptiness, Ambiguity} }

Document

**Published in:** LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)

Whether the reachability problem for branching vector addition systems, or equivalently the provability problem for multiplicative exponential linear logic, is decidable has been a long-standing open question. The one-dimensional case is a generalisation of the extensively studied one-counter nets, and it was recently established polynomial-time complete provided counter updates are given in unary. Our main contribution is to determine the complexity when the encoding is binary: polynomial-space complete.

Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 119:1-119:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{figueira_et_al:LIPIcs.ICALP.2017.119, author = {Figueira, Diego and Lazic, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip and Sutre, Gr\'{e}goire}, title = {{Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One}}, booktitle = {44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)}, pages = {119:1--119:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-041-5}, ISSN = {1868-8969}, year = {2017}, volume = {80}, editor = {Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.119}, URN = {urn:nbn:de:0030-drops-74374}, doi = {10.4230/LIPIcs.ICALP.2017.119}, annote = {Keywords: branching vector addition systems, reachability problem} }

Document

**Published in:** LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)

Branching VASS (BVASS) generalise vector addition systems with states by allowing for special branching transitions that can non-deterministically distribute a counter value between two control states. A run of a BVASS consequently becomes a tree, and reachability is to decide whether a given configuration is the root of a reachability tree. This paper shows P-completeness of reachability in BVASS in dimension one, the first decidability result for reachability in a subclass of BVASS known so far. Moreover, we show that coverability and boundedness in BVASS in dimension one are P-complete as well.

Stefan Göller, Christoph Haase, Ranko Lazic, and Patrick Totzke. A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 105:1-105:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{goller_et_al:LIPIcs.ICALP.2016.105, author = {G\"{o}ller, Stefan and Haase, Christoph and Lazic, Ranko and Totzke, Patrick}, title = {{A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {105:1--105:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.105}, URN = {urn:nbn:de:0030-drops-62409}, doi = {10.4230/LIPIcs.ICALP.2016.105}, annote = {Keywords: branching vector addition systems, reachability, coverability, boundedness} }

Document

**Published in:** LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)

The covering and boundedness problems for
branching vector addition systems
are shown complete for doubly-exponential time.

Stéphane Demri, Marcin Jurdzinski, Oded Lachish, and Ranko Lazic. The Covering and Boundedness Problems for Branching Vector Addition Systems. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 181-192, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)

Copy BibTex To Clipboard

@InProceedings{demri_et_al:LIPIcs.FSTTCS.2009.2317, author = {Demri, St\'{e}phane and Jurdzinski, Marcin and Lachish, Oded and Lazic, Ranko}, title = {{The Covering and Boundedness Problems for Branching Vector Addition Systems}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science}, pages = {181--192}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-13-2}, ISSN = {1868-8969}, year = {2009}, volume = {4}, editor = {Kannan, Ravi and Narayan Kumar, K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2317}, URN = {urn:nbn:de:0030-drops-23173}, doi = {10.4230/LIPIcs.FSTTCS.2009.2317}, annote = {Keywords: Vector addition systems, Petri nets, covering, boundedness, computational complexity} }

Document

**Published in:** LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)

The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability.
We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14.

Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki. Reachability in Fixed Dimension Vector Addition Systems with States. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.48, author = {Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Lazi\'{c}, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip}, title = {{Reachability in Fixed Dimension Vector Addition Systems with States}}, booktitle = {31st International Conference on Concurrency Theory (CONCUR 2020)}, pages = {48:1--48:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-160-3}, ISSN = {1868-8969}, year = {2020}, volume = {171}, editor = {Konnov, Igor and Kov\'{a}cs, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.48}, URN = {urn:nbn:de:0030-drops-128605}, doi = {10.4230/LIPIcs.CONCUR.2020.48}, annote = {Keywords: reachability problem, vector addition systems, Petri nets} }

Document

Invited Talk

**Published in:** LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)

Studying one-dimensional grammar vector addition systems has long been advocated by Alain Finkel. In this presentation, we shall see how research on those systems has led to the recent breakthrough tower lower bound for the reachability problem on vector addition systems, obtained by Czerwiński et al. In fact, we shall look at how appropriate modifications of an underlying technical construction can lead to counter-examples to several conjectures on one-dimensional grammar vector addition systems, fixed-dimensional vector addition systems, and fixed-dimensional flat vector addition systems.

Ranko Lazić. Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems (Invited Talk). In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{lazic:LIPIcs.FSTTCS.2019.3, author = {Lazi\'{c}, Ranko}, title = {{Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems}}, booktitle = {39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)}, pages = {3:1--3:2}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-131-3}, ISSN = {1868-8969}, year = {2019}, volume = {150}, editor = {Chattopadhyay, Arkadev and Gastin, Paul}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.3}, URN = {urn:nbn:de:0030-drops-115653}, doi = {10.4230/LIPIcs.FSTTCS.2019.3}, annote = {Keywords: Petri nets, vector addition systems, reachability} }

Document

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous.

Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and James Worrell. When is Containment Decidable for Probabilistic Automata?. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 121:1-121:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{daviaud_et_al:LIPIcs.ICALP.2018.121, author = {Daviaud, Laure and Jurdzinski, Marcin and Lazic, Ranko and Mazowiecki, Filip and P\'{e}rez, Guillermo A. and Worrell, James}, title = {{When is Containment Decidable for Probabilistic Automata?}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {121:1--121:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.121}, URN = {urn:nbn:de:0030-drops-91251}, doi = {10.4230/LIPIcs.ICALP.2018.121}, annote = {Keywords: Probabilistic automata, Containment, Emptiness, Ambiguity} }

Document

**Published in:** LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)

Whether the reachability problem for branching vector addition systems, or equivalently the provability problem for multiplicative exponential linear logic, is decidable has been a long-standing open question. The one-dimensional case is a generalisation of the extensively studied one-counter nets, and it was recently established polynomial-time complete provided counter updates are given in unary. Our main contribution is to determine the complexity when the encoding is binary: polynomial-space complete.

Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 119:1-119:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{figueira_et_al:LIPIcs.ICALP.2017.119, author = {Figueira, Diego and Lazic, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip and Sutre, Gr\'{e}goire}, title = {{Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One}}, booktitle = {44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)}, pages = {119:1--119:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-041-5}, ISSN = {1868-8969}, year = {2017}, volume = {80}, editor = {Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.119}, URN = {urn:nbn:de:0030-drops-74374}, doi = {10.4230/LIPIcs.ICALP.2017.119}, annote = {Keywords: branching vector addition systems, reachability problem} }

Document

**Published in:** LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)

Branching VASS (BVASS) generalise vector addition systems with states by allowing for special branching transitions that can non-deterministically distribute a counter value between two control states. A run of a BVASS consequently becomes a tree, and reachability is to decide whether a given configuration is the root of a reachability tree. This paper shows P-completeness of reachability in BVASS in dimension one, the first decidability result for reachability in a subclass of BVASS known so far. Moreover, we show that coverability and boundedness in BVASS in dimension one are P-complete as well.

Stefan Göller, Christoph Haase, Ranko Lazic, and Patrick Totzke. A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 105:1-105:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{goller_et_al:LIPIcs.ICALP.2016.105, author = {G\"{o}ller, Stefan and Haase, Christoph and Lazic, Ranko and Totzke, Patrick}, title = {{A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {105:1--105:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.105}, URN = {urn:nbn:de:0030-drops-62409}, doi = {10.4230/LIPIcs.ICALP.2016.105}, annote = {Keywords: branching vector addition systems, reachability, coverability, boundedness} }

Document

**Published in:** LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)

The covering and boundedness problems for
branching vector addition systems
are shown complete for doubly-exponential time.

Stéphane Demri, Marcin Jurdzinski, Oded Lachish, and Ranko Lazic. The Covering and Boundedness Problems for Branching Vector Addition Systems. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 181-192, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)

Copy BibTex To Clipboard

@InProceedings{demri_et_al:LIPIcs.FSTTCS.2009.2317, author = {Demri, St\'{e}phane and Jurdzinski, Marcin and Lachish, Oded and Lazic, Ranko}, title = {{The Covering and Boundedness Problems for Branching Vector Addition Systems}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science}, pages = {181--192}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-13-2}, ISSN = {1868-8969}, year = {2009}, volume = {4}, editor = {Kannan, Ravi and Narayan Kumar, K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2317}, URN = {urn:nbn:de:0030-drops-23173}, doi = {10.4230/LIPIcs.FSTTCS.2009.2317}, annote = {Keywords: Vector addition systems, Petri nets, covering, boundedness, computational complexity} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail