Search Results

Documents authored by Li, Elaine


Document
Certified Implementability of Global Multiparty Protocols

Authors: Elaine Li and Thomas Wies

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Implementability is the decision problem at the heart of top-down approaches to protocol verification. In this paper, we present a mechanization of a recently proposed precise implementability characterization by Li et al. for a large class of protocols that subsumes many existing formalisms in the literature. Our protocols and implementations model asynchronous commmunication, and can exhibit infinite behavior. We improve upon their pen-and-paper results by unifying distinct formalisms, simplifying existing proof arguments, elaborating on the construction of canonical implementations, and even uncovering a subtle bug in the semantics for infinite words. As a corollary of our mechanization, we show that the original characterization of implementability applies even to protocols with infinitely many participants. We also contribute a reusable library for reasoning about generic communicating state machines. Our mechanization consists of about 15k lines of Rocq code. We believe that our mechanization can provide the foundation for deductively proving the implementability of protocols beyond the reach of prior work, extracting certified implementations for finite protocols, and investigating implementability under alternative asynchronous communication models.

Cite as

Elaine Li and Thomas Wies. Certified Implementability of Global Multiparty Protocols. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ITP.2025.15,
  author =	{Li, Elaine and Wies, Thomas},
  title =	{{Certified Implementability of Global Multiparty Protocols}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.15},
  URN =		{urn:nbn:de:0030-drops-246139},
  doi =		{10.4230/LIPIcs.ITP.2025.15},
  annote =	{Keywords: Asynchronous protocols, communicating state machines, labeled transition systems, infinite semantics, realizability, multiparty session types, choreographies, deadlock freedom}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail