Published in: LIPIcs, Volume 336, 30th International Conference on Types for Proofs and Programs (TYPES 2024)
Robert Rose and Daniel R. Licata. Complexity of Cubical Cofibration Logics I: coNP-Complete Examples. In 30th International Conference on Types for Proofs and Programs (TYPES 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 336, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{rose_et_al:LIPIcs.TYPES.2024.9, author = {Rose, Robert and Licata, Daniel R.}, title = {{Complexity of Cubical Cofibration Logics I: coNP-Complete Examples}}, booktitle = {30th International Conference on Types for Proofs and Programs (TYPES 2024)}, pages = {9:1--9:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-376-8}, ISSN = {1868-8969}, year = {2025}, volume = {336}, editor = {M{\o}gelberg, Rasmus Ejlers and van den Berg, Benno}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2024.9}, URN = {urn:nbn:de:0030-drops-233711}, doi = {10.4230/LIPIcs.TYPES.2024.9}, annote = {Keywords: cubical sets, internal language, intuitionistic logic, dependent type theory, homotopy type theory, decision procedures} }
Published in: LIPIcs, Volume 108, 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)
Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal Universes in Models of Homotopy Type Theory. In 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 108, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{licata_et_al:LIPIcs.FSCD.2018.22, author = {Licata, Daniel R. and Orton, Ian and Pitts, Andrew M. and Spitters, Bas}, title = {{Internal Universes in Models of Homotopy Type Theory}}, booktitle = {3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)}, pages = {22:1--22:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-077-4}, ISSN = {1868-8969}, year = {2018}, volume = {108}, editor = {Kirchner, H\'{e}l\`{e}ne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2018.22}, URN = {urn:nbn:de:0030-drops-91929}, doi = {10.4230/LIPIcs.FSCD.2018.22}, annote = {Keywords: cubical sets, dependent type theory, homotopy type theory, internal language, modalities, univalent foundations, universes} }
Published in: LIPIcs, Volume 108, 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)
Max S. New and Daniel R. Licata. Call-by-Name Gradual Type Theory. In 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 108, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{new_et_al:LIPIcs.FSCD.2018.24, author = {New, Max S. and Licata, Daniel R.}, title = {{Call-by-Name Gradual Type Theory}}, booktitle = {3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)}, pages = {24:1--24:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-077-4}, ISSN = {1868-8969}, year = {2018}, volume = {108}, editor = {Kirchner, H\'{e}l\`{e}ne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2018.24}, URN = {urn:nbn:de:0030-drops-91944}, doi = {10.4230/LIPIcs.FSCD.2018.24}, annote = {Keywords: Gradual Typing, Type Systems, Program Logics, Category Theory, Denotational Semantics} }
Published in: LIPIcs, Volume 84, 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017)
Daniel R. Licata, Michael Shulman, and Mitchell Riley. A Fibrational Framework for Substructural and Modal Logics. In 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 84, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{licata_et_al:LIPIcs.FSCD.2017.25, author = {Licata, Daniel R. and Shulman, Michael and Riley, Mitchell}, title = {{A Fibrational Framework for Substructural and Modal Logics}}, booktitle = {2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017)}, pages = {25:1--25:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-047-7}, ISSN = {1868-8969}, year = {2017}, volume = {84}, editor = {Miller, Dale}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2017.25}, URN = {urn:nbn:de:0030-drops-77400}, doi = {10.4230/LIPIcs.FSCD.2017.25}, annote = {Keywords: type theory, modal logic, substructural logic, homotopy type theory} }
Feedback for Dagstuhl Publishing