Search Results

Documents authored by Ligett, Katrina


Document
Complete Volume
LIPIcs, Volume 192, FORC 2021, Complete Volume

Authors: Katrina Ligett and Swati Gupta

Published in: LIPIcs, Volume 192, 2nd Symposium on Foundations of Responsible Computing (FORC 2021)


Abstract
LIPIcs, Volume 192, FORC 2021, Complete Volume

Cite as

2nd Symposium on Foundations of Responsible Computing (FORC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 192, pp. 1-152, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Proceedings{ligett_et_al:LIPIcs.FORC.2021,
  title =	{{LIPIcs, Volume 192, FORC 2021, Complete Volume}},
  booktitle =	{2nd Symposium on Foundations of Responsible Computing (FORC 2021)},
  pages =	{1--152},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-187-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{192},
  editor =	{Ligett, Katrina and Gupta, Swati},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2021},
  URN =		{urn:nbn:de:0030-drops-138675},
  doi =		{10.4230/LIPIcs.FORC.2021},
  annote =	{Keywords: LIPIcs, Volume 192, FORC 2021, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Katrina Ligett and Swati Gupta

Published in: LIPIcs, Volume 192, 2nd Symposium on Foundations of Responsible Computing (FORC 2021)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

2nd Symposium on Foundations of Responsible Computing (FORC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 192, pp. 0:i-0:viii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ligett_et_al:LIPIcs.FORC.2021.0,
  author =	{Ligett, Katrina and Gupta, Swati},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{2nd Symposium on Foundations of Responsible Computing (FORC 2021)},
  pages =	{0:i--0:viii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-187-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{192},
  editor =	{Ligett, Katrina and Gupta, Swati},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2021.0},
  URN =		{urn:nbn:de:0030-drops-138680},
  doi =		{10.4230/LIPIcs.FORC.2021.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Bounded-Leakage Differential Privacy

Authors: Katrina Ligett, Charlotte Peale, and Omer Reingold

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
We introduce and study a relaxation of differential privacy [Dwork et al., 2006] that accounts for mechanisms that leak some additional, bounded information about the database. We apply this notion to reason about two distinct settings where the notion of differential privacy is of limited use. First, we consider cases, such as in the 2020 US Census [Abowd, 2018], in which some information about the database is released exactly or with small noise. Second, we consider the accumulation of privacy harms for an individual across studies that may not even include the data of this individual. The tools that we develop for bounded-leakage differential privacy allow us reason about privacy loss in these settings, and to show that individuals preserve some meaningful protections.

Cite as

Katrina Ligett, Charlotte Peale, and Omer Reingold. Bounded-Leakage Differential Privacy. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ligett_et_al:LIPIcs.FORC.2020.10,
  author =	{Ligett, Katrina and Peale, Charlotte and Reingold, Omer},
  title =	{{Bounded-Leakage Differential Privacy}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.10},
  URN =		{urn:nbn:de:0030-drops-120265},
  doi =		{10.4230/LIPIcs.FORC.2020.10},
  annote =	{Keywords: differential privacy, applications, privacy, leakage, auxiliary information}
}
Document
A New Analysis of Differential Privacy’s Generalization Guarantees

Authors: Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We give a new proof of the "transfer theorem" underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and gives structural insights that we expect will be useful elsewhere. We show: 1) that differential privacy ensures that the expectation of any query on the conditional distribution on datasets induced by the transcript of the interaction is close to its expectation on the data distribution, and 2) sample accuracy on its own ensures that any query answer produced by the mechanism is close to the expectation of the query on the conditional distribution. This second claim follows from a thought experiment in which we imagine that the dataset is resampled from the conditional distribution after the mechanism has committed to its answers. The transfer theorem then follows by summing these two bounds, and in particular, avoids the "monitor argument" used to derive high probability bounds in prior work. An upshot of our new proof technique is that the concrete bounds we obtain are substantially better than the best previously known bounds, even though the improvements are in the constants, rather than the asymptotics (which are known to be tight). As we show, our new bounds outperform the naive "sample-splitting" baseline at dramatically smaller dataset sizes compared to the previous state of the art, bringing techniques from this literature closer to practicality.

Cite as

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld. A New Analysis of Differential Privacy’s Generalization Guarantees. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 31:1-31:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.ITCS.2020.31,
  author =	{Jung, Christopher and Ligett, Katrina and Neel, Seth and Roth, Aaron and Sharifi-Malvajerdi, Saeed and Shenfeld, Moshe},
  title =	{{A New Analysis of Differential Privacy’s Generalization Guarantees}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{31:1--31:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.31},
  URN =		{urn:nbn:de:0030-drops-117165},
  doi =		{10.4230/LIPIcs.ITCS.2020.31},
  annote =	{Keywords: Differential Privacy, Adaptive Data Analysis, Transfer Theorem}
}
Document
Differentially Private Combinatorial Optimization

Authors: Kunal Talwar, Anupam Gupta, Katrina Ligett, Frank McSherry, and Aaron Roth

Published in: Dagstuhl Seminar Proceedings, Volume 9511, Parameterized complexity and approximation algorithms (2010)


Abstract
Consider the following problem: given a metric space, some of whose points are ``clients,'' select a set of at most $k$ facility locations to minimize the average distance from the clients to their nearest facility. This is just the well-studied $k$-median problem, for which many approximation algorithms and hardness results are known. Note that the objective function encourages opening facilities in areas where there are many clients, and given a solution, it is often possible to get a good idea of where the clients are located. This raises the following quandary: what if the locations of the clients are sensitive information that we would like to keep private? emph{Is it even possible to design good algorithms for this problem that preserve the privacy of the clients?} In this paper, we initiate a systematic study of algorithms for discrete optimization problems in the framework of differential privacy (which formalizes the idea of protecting the privacy of individual input elements). We show that many such problems indeed have good approximation algorithms that preserve differential privacy; this is even in cases where it is impossible to preserve cryptographic definitions of privacy while computing any non-trivial approximation to even the emph{value} of an optimal solution, let alone the entire solution. Apart from the $k$-median problem, we consider the problems of vertex and set cover, min-cut, facility location, and Steiner tree, and give approximation algorithms and lower bounds for these problems. We also consider the recently introduced submodular maximization problem, ``Combinatorial Public Projects'' (CPP), shown by Papadimitriou et al. cite{PSS08} to be inapproximable to subpolynomial multiplicative factors by any efficient and emph{truthful} algorithm. We give a differentially private (and hence approximately truthful) algorithm that achieves a logarithmic additive approximation. Joint work with Anupam Gupta, Katrina Ligett, Frank McSherry and Aaron Roth.

Cite as

Kunal Talwar, Anupam Gupta, Katrina Ligett, Frank McSherry, and Aaron Roth. Differentially Private Combinatorial Optimization. In Parameterized complexity and approximation algorithms. Dagstuhl Seminar Proceedings, Volume 9511, pp. 1-31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{talwar_et_al:DagSemProc.09511.6,
  author =	{Talwar, Kunal and Gupta, Anupam and Ligett, Katrina and McSherry, Frank and Roth, Aaron},
  title =	{{Differentially Private Combinatorial Optimization}},
  booktitle =	{Parameterized complexity and approximation algorithms},
  pages =	{1--31},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{9511},
  editor =	{Erik D. Demaine and MohammadTaghi Hajiaghayi and D\'{a}niel Marx},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09511.6},
  URN =		{urn:nbn:de:0030-drops-24986},
  doi =		{10.4230/DagSemProc.09511.6},
  annote =	{Keywords: Differential Privacy, Approximation Algorithms}
}