Document

**Published in:** LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)

We study the chore division problem in the classic Arrow-Debreu exchange setting, where a set of agents want to divide their divisible chores (bads) to minimize their disutilities (costs). We assume that agents have linear disutility functions. Like the setting with goods, a division based on competitive equilibrium is regarded as one of the best mechanisms for bads. Equilibrium existence for goods has been extensively studied, resulting in a simple, polynomial-time verifiable, necessary and sufficient condition. However, dividing bads has not received a similar extensive study even though it is as relevant as dividing goods in day-to-day life.
In this paper, we show that the problem of checking whether an equilibrium exists in chore division is NP-complete, which is in sharp contrast to the case of goods. Further, we derive a simple, polynomial-time verifiable, sufficient condition for existence. Our fixed-point formulation to show existence makes novel use of both Kakutani and Brouwer fixed-point theorems, the latter nested inside the former, to avoid the undefined demand issue specific to bads.

Bhaskar Ray Chaudhury, Jugal Garg, Peter McGlaughlin, and Ruta Mehta. On the Existence of Competitive Equilibrium with Chores. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 41:1-41:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{chaudhury_et_al:LIPIcs.ITCS.2022.41, author = {Chaudhury, Bhaskar Ray and Garg, Jugal and McGlaughlin, Peter and Mehta, Ruta}, title = {{On the Existence of Competitive Equilibrium with Chores}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {41:1--41:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.41}, URN = {urn:nbn:de:0030-drops-156378}, doi = {10.4230/LIPIcs.ITCS.2022.41}, annote = {Keywords: Fair Division, Competitive Equilibrium, Fixed Point Theorems} }

Document

**Published in:** LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)

We study the smoothed complexity of finding pure Nash equilibria in Network Coordination Games, a PLS-complete problem in the worst case, even when each player has two strategies. This is a potential game where the sequential-better-response algorithm is known to converge to a pure NE, albeit in exponential time. First, we prove polynomial (respectively, quasi-polynomial) smoothed complexity when the underlying game graph is complete (resp. arbitrary), and every player has constantly many strategies. The complete graph assumption is reminiscent of perturbing all parameters, a common assumption in most known polynomial smoothed complexity results. We develop techniques to bound the probability that an (adversarial) better-response sequence makes slow improvements to the potential. Our approach combines and generalizes the local-max-cut approaches of Etscheid and Röglin (SODA `14; ACM TALG, `17) and Angel, Bubeck, Peres, and Wei (STOC `17), to handle the multi-strategy case. We believe that the approach and notions developed herein could be of interest in addressing the smoothed complexity of other potential games.
Further, we define a notion of a smoothness-preserving reduction among search problems, and obtain reductions from 2-strategy network coordination games to local-max-cut, and from k-strategy games (k arbitrary) to local-max-bisection. The former, with the recent result of Bibak, Chandrasekaran, and Carlson (SODA `18) gives an alternate O(n^8)-time smoothed algorithm when k=2. These reductions extend smoothed efficient algorithms from one problem to another.

Shant Boodaghians, Rucha Kulkarni, and Ruta Mehta. Smoothed Efficient Algorithms and Reductions for Network Coordination Games. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 73:1-73:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{boodaghians_et_al:LIPIcs.ITCS.2020.73, author = {Boodaghians, Shant and Kulkarni, Rucha and Mehta, Ruta}, title = {{Smoothed Efficient Algorithms and Reductions for Network Coordination Games}}, booktitle = {11th Innovations in Theoretical Computer Science Conference (ITCS 2020)}, pages = {73:1--73:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-134-4}, ISSN = {1868-8969}, year = {2020}, volume = {151}, editor = {Vidick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.73}, URN = {urn:nbn:de:0030-drops-117581}, doi = {10.4230/LIPIcs.ITCS.2020.73}, annote = {Keywords: Network Coordination Games, Smoothed Analysis} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

The complexity class CLS was proposed by Daskalakis and Papadimitriou in 2011 to understand the complexity of important NP search problems that admit both path following and potential optimizing algorithms. Here we identify a subclass of CLS - called UniqueEOPL - that applies a more specific combinatorial principle that guarantees unique solutions. We show that UniqueEOPL contains several important problems such as the P-matrix Linear Complementarity Problem, finding Fixed Point of Contraction Maps, and solving Unique Sink Orientations (USOs). UniqueEOPL seems to a proper subclass of CLS and looks more likely to be the right class for the problems of interest. We identify a problem - closely related to solving contraction maps and USOs - that is complete for UniqueEOPL. Our results also give the fastest randomised algorithm for P-matrix LCP.

John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of Potential Line. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 56:1-56:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{fearnley_et_al:LIPIcs.ICALP.2019.56, author = {Fearnley, John and Gordon, Spencer and Mehta, Ruta and Savani, Rahul}, title = {{Unique End of Potential Line}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {56:1--56:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.56}, URN = {urn:nbn:de:0030-drops-106327}, doi = {10.4230/LIPIcs.ICALP.2019.56}, annote = {Keywords: P-matrix linear complementarity problem, unique sink orientation, contraction map, TFNP, total search problems, continuous local search} }

Document

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

Suppose a set of requests arrives online: each request gives some value v_i if accepted, but requires using some amount of each of d resources. Our cost is a convex function of the vector of total utilization of these d resources. Which requests should be accept to maximize our profit, i.e., the sum of values of the accepted demands, minus the convex cost?
We consider this problem in the random-order a.k.a. secretary model, and show an O(d)-competitive algorithm for the case where the convex cost function is also supermodular. If the set of accepted demands must also be independent in a given matroid, we give an O(d^3 alpha)-competitive algorithm for the supermodular case, and an improved O(d^2 alpha) if the convex cost function is also separable. Here alpha is the competitive ratio of the best algorithm for the submodular secretary problem. These extend and improve previous results known for this problem. Our techniques are simple but use powerful ideas from convex duality, which give clean interpretations of existing work, and allow us to give the extensions and improvements.

Anupam Gupta, Ruta Mehta, and Marco Molinaro. Maximizing Profit with Convex Costs in the Random-order Model. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 71:1-71:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.ICALP.2018.71, author = {Gupta, Anupam and Mehta, Ruta and Molinaro, Marco}, title = {{Maximizing Profit with Convex Costs in the Random-order Model}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {71:1--71:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.71}, URN = {urn:nbn:de:0030-drops-90751}, doi = {10.4230/LIPIcs.ICALP.2018.71}, annote = {Keywords: Online algorithms, secretary problem, random order, convex duality} }

Document

**Published in:** LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)

A new approach to understanding evolution [Valiant, JACM 2009], namely viewing it through the lens of computation,
has already started yielding new insights, e.g., natural selection under sexual reproduction can be interpreted
as the Multiplicative Weight Update (MWU) Algorithm in coordination games played among genes [Chastain, Livnat, Papadimitriou, Vazirani, PNAS 2014]. Using this machinery, we study the role of mutation in changing environments in the presence of sexual reproduction. Following [Wolf, Vazirani, Arkin, J. Theor. Biology], we model changing environments via a Markov chain, with the states representing environments, each with its own fitness matrix. In this setting, we show that in the absence of mutation, the population goes extinct, but in the presence of mutation, the population survives with positive probability.
On the way to proving the above theorem, we need to establish some facts about dynamics in games. We provide the first, to our knowledge, polynomial convergence bound for noisy MWU in a coordination game.
Finally, we also show that in static environments, sexual evolution with mutation converges, for any level of mutation.

Ruta Mehta, Ioannis Panageas, Georgios Piliouras, Prasad Tetali, and Vijay V. Vazirani. Mutation, Sexual Reproduction and Survival in Dynamic Environments. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 16:1-16:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{mehta_et_al:LIPIcs.ITCS.2017.16, author = {Mehta, Ruta and Panageas, Ioannis and Piliouras, Georgios and Tetali, Prasad and Vazirani, Vijay V.}, title = {{Mutation, Sexual Reproduction and Survival in Dynamic Environments}}, booktitle = {8th Innovations in Theoretical Computer Science Conference (ITCS 2017)}, pages = {16:1--16:29}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-029-3}, ISSN = {1868-8969}, year = {2017}, volume = {67}, editor = {Papadimitriou, Christos H.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.16}, URN = {urn:nbn:de:0030-drops-81655}, doi = {10.4230/LIPIcs.ITCS.2017.16}, annote = {Keywords: Evolution, Non-linear dynamics, Mutation} }

Document

**Published in:** LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)

A key question in biological systems is whether genetic diversity persists in the long run under evolutionary competition, or whether a single dominant genotype emerges. Classic work by [Kalmus, J. og Genetics, 1945] has established that even in simple diploid species (species with chromosome pairs) diversity can be guaranteed as long as the heterozygous (having different alleles for a gene on two chromosomes) individuals enjoy a selective advantage. Despite the classic nature of the problem, as we move towards increasingly polymorphic traits (e.g., human blood types) predicting diversity (and its implications) is still not fully understood. Our key contribution is to establish complexity theoretic hardness results implying that even in the textbook case of single locus (gene) diploid models, predicting whether diversity survives or not given its fitness landscape is algorithmically intractable.
Our hardness results are structurally robust along several dimensions, e.g., choice of parameter distribution, different definitions of stability/persistence, restriction to typical subclasses of fitness landscapes. Technically, our results exploit connections between game theory, nonlinear dynamical systems, and complexity theory and establish hardness results for predicting the evolution of a deterministic variant of the well known multiplicative weights update algorithm in symmetric coordination games; finding one Nash equilibrium is easy in these games. In the process we characterize stable fixed points of these dynamics using the notions of Nash equilibrium and negative semidefiniteness. This as well as hardness results for decision problems in coordination games may be of independent interest. Finally, we complement our results by establishing that under randomly chosen fitness landscapes diversity survives with significant probability. The full version of this paper is available at http://arxiv.org/abs/1411.6322.

Ruta Mehta, Ioannis Panageas, Georgios Piliouras, and Sadra Yazdanbod. The Computational Complexity of Genetic Diversity. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 65:1-65:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{mehta_et_al:LIPIcs.ESA.2016.65, author = {Mehta, Ruta and Panageas, Ioannis and Piliouras, Georgios and Yazdanbod, Sadra}, title = {{The Computational Complexity of Genetic Diversity}}, booktitle = {24th Annual European Symposium on Algorithms (ESA 2016)}, pages = {65:1--65:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-015-6}, ISSN = {1868-8969}, year = {2016}, volume = {57}, editor = {Sankowski, Piotr and Zaroliagis, Christos}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.65}, URN = {urn:nbn:de:0030-drops-64073}, doi = {10.4230/LIPIcs.ESA.2016.65}, annote = {Keywords: Dynamical Systems, Stability, Complexity, Optimization, Equilibrium} }