Document

**Published in:** LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)

Let G be a simple topological graph and let Gamma be a polyline drawing of G. We say that Gamma partially preserves the topology of G if it has the same external boundary, the same rotation system, and the same set of crossings as G. Drawing Gamma fully preserves the topology of G if the planarization of G and the planarization of Gamma have the same planar embedding. We show that if the set of crossing-free edges of G forms a connected spanning subgraph, then G admits a polyline drawing that partially preserves its topology and that has curve complexity at most three (i.e., at most three bends per edge). If, however, the set of crossing-free edges of G is not a connected spanning subgraph, the curve complexity may be Omega(sqrt{n}). Concerning drawings that fully preserve the topology, we show that if G has skewness k, it admits one such drawing with curve complexity at most 2k; for skewness-1 graphs, the curve complexity can be reduced to one, which is a tight bound. We also consider optimal 2-plane graphs and discuss trade-offs between curve complexity and crossing angle resolution of drawings that fully preserve the topology.

Emilio Di Giacomo, Peter Eades, Giuseppe Liotta, Henk Meijer, and Fabrizio Montecchiani. Polyline Drawings with Topological Constraints. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 39:1-39:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{digiacomo_et_al:LIPIcs.ISAAC.2018.39, author = {Di Giacomo, Emilio and Eades, Peter and Liotta, Giuseppe and Meijer, Henk and Montecchiani, Fabrizio}, title = {{Polyline Drawings with Topological Constraints}}, booktitle = {29th International Symposium on Algorithms and Computation (ISAAC 2018)}, pages = {39:1--39:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-094-1}, ISSN = {1868-8969}, year = {2018}, volume = {123}, editor = {Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.39}, URN = {urn:nbn:de:0030-drops-99871}, doi = {10.4230/LIPIcs.ISAAC.2018.39}, annote = {Keywords: Topological graphs, graph drawing, curve complexity, skewness-k graphs, k-planar graphs} }

Document

**Published in:** LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)

We present a number of breakthroughs for coordinated motion planning, in which the objective is to reconfigure a swarm of labeled convex objects by a combination of parallel, continuous, collision-free translations into a given target arrangement. Problems of this type can be traced back to the classic work of Schwartz and Sharir (1983), who gave a method for deciding the existence of a coordinated motion for a set of disks between obstacles; their approach is polynomial in the complexity of the obstacles, but exponential in the number of disks. Despite a broad range of other non-trivial results for multi-object motion planning, previous work has largely focused on sequential schedules, in which one robot moves at a time, with objectives such as the number of moves; attempts to minimize the overall makespan of a coordinated parallel motion schedule (with many robots moving simultaneously) have defied all attempts at establishing the complexity in the absence of obstacles, as well as the existence of efficient approximation methods.
We resolve these open problems by developing a framework that provides constant-factor approximation algorithms for minimizing the execution time of a coordinated, parallel motion plan for a swarm of robots in the absence of obstacles, provided their arrangement entails some amount of separability. In fact, our algorithm achieves constant stretch factor: If all robots want to move at most d units from their respective starting positions, then the total duration of the overall schedule (and hence the distance traveled by each robot) is O(d). Various extensions include unlabeled robots and different classes of robots. We also resolve the complexity of finding a reconfiguration plan with minimal execution time by proving that this is NP-hard, even for a grid arrangement without any stationary obstacles. On the other hand, we show that for densely packed disks that cannot be well separated, a stretch factor Omega(N^{1/4}) may be required. On the positive side, we establish a stretch factor of O(N^{1/2}) even in this case. The intricate difficulties of computing precise optimal solutions are demonstrated by the seemingly simple case of just two disks, which is shown to be excruciatingly difficult to solve to optimality.

Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Christian Scheffer, and Henk Meijer. Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.SoCG.2018.29, author = {Demaine, Erik D. and Fekete, S\'{a}ndor P. and Keldenich, Phillip and Scheffer, Christian and Meijer, Henk}, title = {{Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {29:1--29:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.29}, URN = {urn:nbn:de:0030-drops-87423}, doi = {10.4230/LIPIcs.SoCG.2018.29}, annote = {Keywords: Robot swarms, coordinated motion planning, parallel motion, makespan, bounded stretch, complexity, approximation} }