Search Results

Documents authored by Mhalla, Mehdi


Document
Track A: Algorithms, Complexity and Games
Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems

Authors: Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the notion of k-stabilizer universal quantum state, that is, an n-qubit quantum state, such that it is possible to induce any stabilizer state on any k qubits, by using only local operations and classical communications. These states generalize the notion of k-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and k-vertex-minor universal graphs. First, we demonstrate the existence of k-stabilizer universal graph states that are optimal in size with n = Θ(k²) qubits. We also provide parameters for which a random graph state on Θ(k²) qubits is k-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of k-stabilizer universal graph states on n = O(k⁴) qubits. Both rely upon the incidence graph of the projective plane over a finite field 𝔽_q. This provides a major improvement over the previously known explicit construction of k-pairable graph states with n = O(2^{3k}), bringing forth a new and potentially powerful family of multipartite quantum resources.

Cite as

Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé. Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cautres_et_al:LIPIcs.ICALP.2024.36,
  author =	{Cautr\`{e}s, Maxime and Claudet, Nathan and Mhalla, Mehdi and Perdrix, Simon and Savin, Valentin and Thomass\'{e}, St\'{e}phan},
  title =	{{Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{36:1--36:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.36},
  URN =		{urn:nbn:de:0030-drops-201796},
  doi =		{10.4230/LIPIcs.ICALP.2024.36},
  annote =	{Keywords: Quantum networks, graph states, vertex-minors, k-pairability}
}
Document
Coherent Control and Distinguishability of Quantum Channels via PBS-Diagrams

Authors: Cyril Branciard, Alexandre Clément, Mehdi Mhalla, and Simon Perdrix

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
Even though coherent control of quantum operations appears to be achievable in practice, it is still not yet well understood. Among theoretical challenges, standard completely positive trace preserving (CPTP) maps are known not to be appropriate to represent coherently controlled quantum channels. We introduce here a graphical language for coherent control of general quantum channels inspired by practical quantum optical setups involving polarising beam splitters (PBS). We consider different situations of coherent control and disambiguate CPTP maps by considering purified channels, an extension of Stinespring’s dilation. First, we show that in classical control settings, the observational equivalence classes of purified channels correspond to the standard definition of quantum channels (CPTP maps). Then, we propose a refinement of this equivalence class generalising the "half quantum switch" situation, where one is allowed to coherently control which quantum channel is applied; in this case, quantum channel implementations can be distinguished using a so-called transformation matrix. A further refinement characterising observational equivalence with general extended PBS-diagrams as contexts is also obtained. Finally, we propose a refinement that could be used for more general coherent control settings.

Cite as

Cyril Branciard, Alexandre Clément, Mehdi Mhalla, and Simon Perdrix. Coherent Control and Distinguishability of Quantum Channels via PBS-Diagrams. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{branciard_et_al:LIPIcs.MFCS.2021.22,
  author =	{Branciard, Cyril and Cl\'{e}ment, Alexandre and Mhalla, Mehdi and Perdrix, Simon},
  title =	{{Coherent Control and Distinguishability of Quantum Channels via PBS-Diagrams}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.22},
  URN =		{urn:nbn:de:0030-drops-144629},
  doi =		{10.4230/LIPIcs.MFCS.2021.22},
  annote =	{Keywords: Quantum Computing, Diagrammatic Language, Quantum Control, Polarising Beam Splitter, Categorical Quantum Mechanics, Quantum Switch}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail