Document

**Published in:** LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)

A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, … , k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring).
Here, we investigate the complexity of approximating the "linearly ordered chromatic number" of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and Živný (2023).

Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner. Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 34:1-34:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{filakovsky_et_al:LIPIcs.STACS.2024.34, author = {Filakovsk\'{y}, Marek and Nakajima, Tamio-Vesa and Opr\v{s}al, Jakub and Tasinato, Gianluca and Wagner, Uli}, title = {{Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs}}, booktitle = {41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)}, pages = {34:1--34:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-311-9}, ISSN = {1868-8969}, year = {2024}, volume = {289}, editor = {Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.34}, URN = {urn:nbn:de:0030-drops-197445}, doi = {10.4230/LIPIcs.STACS.2024.34}, annote = {Keywords: constraint satisfaction problem, hypergraph colouring, promise problem, topological methods} }

Document

Track B: Automata, Logic, Semantics, and Theory of Programming

**Published in:** LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)

A linearly ordered (LO) k-colouring of an r-uniform hypergraph assigns an integer from {1, …, k} to every vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently, for r = 3, if two vertices in an edge are assigned the same colour, then the third vertex is assigned a larger colour (as opposed to a different colour, as in classic non-monochromatic colouring). Barto, Battistelli, and Berg [STACS'21] studied LO colourings on 3-uniform hypergraphs in the context of promise constraint satisfaction problems (PCSPs). We show two results.
First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial time an LO k-colouring with k = O(√{nlog log n}/log n), where n is the number of vertices of the input hypergraph. This is established by building on ideas from algorithms designed for approximate graph colourings.
Second, given an r-uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness of finding an LO 3-colouring for every constant uniformity r ≥ 5. In fact, we determine the precise relationship of polymorphism minions for all uniformities r ≥ 3, which reveals a key difference between r = 3,4 and r ≥ 5 and which may be of independent interest. Using the algebraic approach to PCSPs, we actually show a more general result establishing NP-hardness of finding an LO (k+1)-colouring for LO k-colourable r-uniform hypergraphs for k ≥ 2 and r ≥ 5.

Tamio-Vesa Nakajima and Stanislav Živný. Linearly Ordered Colourings of Hypergraphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 128:1-128:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{nakajima_et_al:LIPIcs.ICALP.2022.128, author = {Nakajima, Tamio-Vesa and \v{Z}ivn\'{y}, Stanislav}, title = {{Linearly Ordered Colourings of Hypergraphs}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {128:1--128:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.128}, URN = {urn:nbn:de:0030-drops-164692}, doi = {10.4230/LIPIcs.ICALP.2022.128}, annote = {Keywords: hypegraph colourings, promise constraint satisfaction, PCSP, polymorphisms, minions, algebraic approach} }