Search Results

Documents authored by Ravelomanana, Jean Bernoulli


Document
Track A: Algorithms, Complexity and Games
Metastability of the Potts Ferromagnet on Random Regular Graphs

Authors: Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel Štefankovič, and Eric Vigoda

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of "phases" (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the metastable phases for the q-state Potts model on the d-regular random graph for all integers q,d ≥ 3, and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on the d-regular tree, the two phases coexist. The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for large q and d ≥ 5. Based on our new structural understanding of the model, we obtain various algorithmic consequences. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph "planting" argument combined with delicate bounds on random-graph percolation.

Cite as

Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel Štefankovič, and Eric Vigoda. Metastability of the Potts Ferromagnet on Random Regular Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 45:1-45:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cojaoghlan_et_al:LIPIcs.ICALP.2022.45,
  author =	{Coja-Oghlan, Amin and Galanis, Andreas and Goldberg, Leslie Ann and Ravelomanana, Jean Bernoulli and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{Metastability of the Potts Ferromagnet on Random Regular Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{45:1--45:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.45},
  URN =		{urn:nbn:de:0030-drops-163865},
  doi =		{10.4230/LIPIcs.ICALP.2022.45},
  annote =	{Keywords: Markov chains, sampling, random regular graph, Potts model}
}
Document
Counting Planar Tanglegrams

Authors: Dimbinaina Ralaivaosaona, Jean Bernoulli Ravelomanana, and Stephan Wagner

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
Tanglegrams are structures consisting of two binary rooted trees with the same number of leaves and a perfect matching between the leaves of the two trees. We say that a tanglegram is planar if it can be drawn in the plane without crossings. Using a blend of combinatorial and analytic techniques, we determine an asymptotic formula for the number of planar tanglegrams with n leaves on each side.

Cite as

Dimbinaina Ralaivaosaona, Jean Bernoulli Ravelomanana, and Stephan Wagner. Counting Planar Tanglegrams. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ralaivaosaona_et_al:LIPIcs.AofA.2018.32,
  author =	{Ralaivaosaona, Dimbinaina and Ravelomanana, Jean Bernoulli and Wagner, Stephan},
  title =	{{Counting Planar Tanglegrams}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.32},
  URN =		{urn:nbn:de:0030-drops-89259},
  doi =		{10.4230/LIPIcs.AofA.2018.32},
  annote =	{Keywords: rooted binary trees, tanglegram, planar, generating functions, asymptotic enumeration, singularity analysis}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail