Published in: Dagstuhl Reports, Volume 5, Issue 8 (2016)
Matthias Hein, Gabor Lugosi, and Lorenzo Rosasco. Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 15361). In Dagstuhl Reports, Volume 5, Issue 8, pp. 54-73, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@Article{hein_et_al:DagRep.5.8.54, author = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo}, title = {{Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 15361)}}, pages = {54--73}, journal = {Dagstuhl Reports}, ISSN = {2192-5283}, year = {2016}, volume = {5}, number = {8}, editor = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.5.8.54}, URN = {urn:nbn:de:0030-drops-56783}, doi = {10.4230/DagRep.5.8.54}, annote = {Keywords: learning theory, non-smooth optimization (convex and non-convex), signal processing} }
Published in: Dagstuhl Reports, Volume 1, Issue 7 (2011)
Matthias Hein, Gabor Lugosi, Lorenzo Rosasco, and Steve Smale. Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 11291). In Dagstuhl Reports, Volume 1, Issue 7, pp. 53-69, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)
@Article{hein_et_al:DagRep.1.7.53, author = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo and Smale, Steve}, title = {{Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 11291)}}, pages = {53--69}, journal = {Dagstuhl Reports}, ISSN = {2192-5283}, year = {2011}, volume = {1}, number = {7}, editor = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo and Smale, Steve}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.1.7.53}, URN = {urn:nbn:de:0030-drops-33093}, doi = {10.4230/DagRep.1.7.53}, annote = {Keywords: learning theory, machine learning, sparsity, high-dimensional geometry, manifold learning, online learning} }
Feedback for Dagstuhl Publishing