Document

**Published in:** LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)

Given a graph G, an isometric path cover of a graph is a set of isometric paths that collectively contain all vertices of G. An isometric path cover 𝒞 of a graph G is also an isometric path partition if no vertex lies in two paths in 𝒞. Given a graph G, and an integer k, the objective of Isometric Path Cover (resp. Isometric Path Partition) is to decide whether G has an isometric path cover (resp. partition) of cardinality k.
In this paper, we show that Isometric Path Partition is NP-complete even on split graphs, i.e. graphs whose vertex set can be partitioned into a clique and an independent set. In contrast, we show that both Isometric Path Cover and Isometric Path Partition admit polynomial time algorithms on cographs (graphs with no induced P₄) and chain graphs (bipartite graphs with no induced 2K₂).

Dibyayan Chakraborty, Haiko Müller, Sebastian Ordyniak, Fahad Panolan, and Mateusz Rychlicki. Covering and Partitioning of Split, Chain and Cographs with Isometric Paths. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2024.39, author = {Chakraborty, Dibyayan and M\"{u}ller, Haiko and Ordyniak, Sebastian and Panolan, Fahad and Rychlicki, Mateusz}, title = {{Covering and Partitioning of Split, Chain and Cographs with Isometric Paths}}, booktitle = {49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)}, pages = {39:1--39:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-335-5}, ISSN = {1868-8969}, year = {2024}, volume = {306}, editor = {Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.39}, URN = {urn:nbn:de:0030-drops-205959}, doi = {10.4230/LIPIcs.MFCS.2024.39}, annote = {Keywords: Isometric path partition (cover), chordal graphs, chain graphs, split graphs} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)

A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into "pages", which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2^𝒪(√n) algorithm for computing a book embedding of an n-vertex graph on two pages - a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki. A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 68:1-68:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ICALP.2024.68, author = {Ganian, Robert and M\"{u}ller, Haiko and Ordyniak, Sebastian and Paesani, Giacomo and Rychlicki, Mateusz}, title = {{A Tight Subexponential-Time Algorithm for Two-Page Book Embedding}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {68:1--68:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.68}, URN = {urn:nbn:de:0030-drops-202114}, doi = {10.4230/LIPIcs.ICALP.2024.68}, annote = {Keywords: book embedding, page number, subexponential algorithms, subhamiltonicity, feedback edge number} }

Document

**Published in:** LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)

We revisit classic string problems considered in the area of parameterized complexity, and study them through the lens of dynamic data structures. That is, instead of asking for a static algorithm that solves the given instance efficiently, our goal is to design a data structure that efficiently maintains a solution, or reports a lack thereof, upon updates in the instance.
We first consider the CLOSEST STRING problem, for which we design randomized dynamic data structures with amortized update times d^𝒪(d) and |Σ|^𝒪(d), respectively, where Σ is the alphabet and d is the assumed bound on the maximum distance. These are obtained by combining known static approaches to CLOSEST STRING with color-coding.
Next, we note that from a result of Frandsen et al. [J. ACM'97] one can easily infer a meta-theorem that provides dynamic data structures for parameterized string problems with worst-case update time of the form 𝒪_k(log log n), where k is the parameter in question and n is the length of the string. We showcase the utility of this meta-theorem by giving such data structures for problems DISJOINT FACTORS and EDIT DISTANCE. We also give explicit data structures for these problems, with worst-case update times 𝒪(k 2^k log log n) and 𝒪(k²log log n), respectively. Finally, we discuss how a lower bound methodology introduced by Amarilli et al. [ICALP'21] can be used to show that obtaining update time 𝒪(f(k)) for DISJOINT FACTORS and EDIT DISTANCE is unlikely already for a constant value of the parameter k.

Jędrzej Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-Pawlewicz. Dynamic Data Structures for Parameterized String Problems. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 50:1-50:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{olkowski_et_al:LIPIcs.STACS.2023.50, author = {Olkowski, J\k{e}drzej and Pilipczuk, Micha{\l} and Rychlicki, Mateusz and W\k{e}grzycki, Karol and Zych-Pawlewicz, Anna}, title = {{Dynamic Data Structures for Parameterized String Problems}}, booktitle = {40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)}, pages = {50:1--50:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-266-2}, ISSN = {1868-8969}, year = {2023}, volume = {254}, editor = {Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.50}, URN = {urn:nbn:de:0030-drops-177026}, doi = {10.4230/LIPIcs.STACS.2023.50}, annote = {Keywords: Parameterized algorithms, Dynamic data structures, String problems, Closest String, Edit Distance, Disjoint Factors, Predecessor problem} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail