Search Results

Documents authored by Saneian, Mohammad


Document
Query Complexity of Stochastic Minimum Vertex Cover

Authors: Mahsa Derakhshan, Mohammad Saneian, and Zhiyang Xun

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study the stochastic minimum vertex cover problem for general graphs. In this problem, we are given a graph G = (V, E) and an existence probability p_e for each edge e ∈ E. Edges of G are realized (or exist) independently with these probabilities, forming the realized subgraph 𝒢. The existence of an edge in 𝒢 can only be verified using edge queries. The goal of this problem is to find a near-optimal vertex cover of 𝒢 using a small number of queries. Previous work by Derakhshan, Durvasula, and Haghtalab [STOC 2023] established the existence of 1.5 + ε approximation algorithms for this problem with O(n/ε) queries. They also show that, under mild correlation among edge realizations, beating this approximation ratio requires querying a subgraph of size Ω(n ⋅ RS(n)). Here, RS(n) refers to Ruzsa-Szemerédi Graphs and represents the largest number of induced edge-disjoint matchings of size Θ(n) in an n-vertex graph. In this work, we design a simple algorithm for finding a (1 + ε) approximate vertex cover by querying a subgraph of size O(n ⋅ RS(n)) for any absolute constant ε > 0. Our algorithm can tolerate up to O(n ⋅ RS(n)) correlated edges, hence effectively completing our understanding of the problem under mild correlation.

Cite as

Mahsa Derakhshan, Mohammad Saneian, and Zhiyang Xun. Query Complexity of Stochastic Minimum Vertex Cover. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 41:1-41:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{derakhshan_et_al:LIPIcs.ITCS.2025.41,
  author =	{Derakhshan, Mahsa and Saneian, Mohammad and Xun, Zhiyang},
  title =	{{Query Complexity of Stochastic Minimum Vertex Cover}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{41:1--41:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.41},
  URN =		{urn:nbn:de:0030-drops-226691},
  doi =		{10.4230/LIPIcs.ITCS.2025.41},
  annote =	{Keywords: Sublinear algorithms, Vertex cover, Query complexity}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Asymptotically Optimal Colors

Authors: Mohammad Saneian and Soheil Behnezhad

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a graph G, an edge-coloring is an assignment of colors to edges of G such that any two edges sharing an endpoint receive different colors. By Vizing’s celebrated theorem, any graph of maximum degree Δ needs at least Δ and at most (Δ + 1) colors to be properly edge colored. In this paper, we study edge colorings in the streaming setting. The edges arrive one by one in an arbitrary order. The algorithm takes a single pass over the input and must output a solution using a much smaller space than the input size. Since the output of edge coloring is as large as its input, the assigned colors should also be reported in a streaming fashion. The streaming edge coloring problem has been studied in a series of works over the past few years. The main challenge is that the algorithm cannot "remember" all the color assignments that it returns. To ensure the validity of the solution, existing algorithms use many more colors than Vizing’s bound. Namely, in n-vertex graphs, the state-of-the-art algorithm with Õ(n s) space requires O(Δ²/s + Δ) colors. Note, in particular, that for an asymptotically optimal O(Δ) coloring, this algorithm requires Ω(nΔ) space which is as large as the input. Whether such a coloring can be achieved with sublinear space has been left open. In this paper, we answer this question in the affirmative. We present a randomized algorithm that returns an asymptotically optimal O(Δ) edge coloring using Õ(n √{Δ}) space. More generally, our algorithm returns a proper O(Δ^{1.5}/s + Δ) edge coloring with Õ(n s) space, improving prior algorithms for the whole range of s.

Cite as

Mohammad Saneian and Soheil Behnezhad. Streaming Edge Coloring with Asymptotically Optimal Colors. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 121:1-121:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saneian_et_al:LIPIcs.ICALP.2024.121,
  author =	{Saneian, Mohammad and Behnezhad, Soheil},
  title =	{{Streaming Edge Coloring with Asymptotically Optimal Colors}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{121:1--121:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.121},
  URN =		{urn:nbn:de:0030-drops-202640},
  doi =		{10.4230/LIPIcs.ICALP.2024.121},
  annote =	{Keywords: Streaming, Edge coloring, Adversarial order}
}
Document
Simple Streaming Algorithms for Edge Coloring

Authors: Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We revisit the classical edge coloring problem for general graphs in the streaming model. In this model, the input graph is presented as a stream of edges, and the algorithm must report colors assigned to the edges in a streaming fashion, using a memory of size O(n polylog n) on graphs of up to O(n²) edges. In ESA 2019 and SOSA 2021, two elegant randomized algorithms were presented for this problem in the adversarial edge arrival model, where the latest one colors any input graph using O(Δ²/s) colors with high probability in Õ(ns) space. In this short note, we propose two extremely simple streaming algorithms that achieve the same color and space bounds deterministically. Besides being surprisingly simple, our algorithms do not use randomness at all, and are very simple to analyze.

Cite as

Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh. Simple Streaming Algorithms for Edge Coloring. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 8:1-8:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ansari_et_al:LIPIcs.ESA.2022.8,
  author =	{Ansari, Mohammad and Saneian, Mohammad and Zarrabi-Zadeh, Hamid},
  title =	{{Simple Streaming Algorithms for Edge Coloring}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{8:1--8:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.8},
  URN =		{urn:nbn:de:0030-drops-169468},
  doi =		{10.4230/LIPIcs.ESA.2022.8},
  annote =	{Keywords: Edge coloring, streaming model, adversarial order}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail