Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)

In the MaxSAT with Cardinality Constraint problem (CC-MaxSAT), we are given a CNF-formula Φ, and a positive integer k, and the goal is to find an assignment β with at most k variables set to true (also called a weight k-assignment) such that the number of clauses satisfied by β is maximized. Maximum Coverage can be seen as a special case of CC-MaxSat, where the formula Φ is monotone, i.e., does not contain any negative literals. CC-MaxSat and Maximum Coverage are extremely well-studied problems in the approximation algorithms as well as the parameterized complexity literature.
Our first conceptual contribution is that CC-MaxSat and Maximum Coverage are equivalent to each other in the context of FPT-Approximation parameterized by k (here, the approximation is in terms of the number of clauses satisfied/elements covered). In particular, we give a randomized reduction from CC-MaxSat to Maximum Coverage running in time 𝒪(1/ε)^{k} ⋅ (m+n)^{𝒪(1)} that preserves the approximation guarantee up to a factor of (1-ε). Furthermore, this reduction also works in the presence of "fairness" constraints on the satisfied clauses, as well as matroid constraints on the set of variables that are assigned true. Here, the "fairness" constraints are modeled by partitioning the clauses of the formula Φ into r different colors, and the goal is to find an assignment that satisfies at least t_j clauses of each color 1 ≤ j ≤ r.
Armed with this reduction, we focus on designing FPT-Approximation schemes (FPT-ASes) for Maximum Coverage and its generalizations. Our algorithms are based on a novel combination of a variety of ideas, including a carefully designed probability distribution that exploits sparse coverage functions. These algorithms substantially generalize the results in Jain et al. [SODA 2023] for CC-MaxSat and Maximum Coverage for K_{d,d}-free set systems (i.e., no d sets share d elements), as well as a recent FPT-AS for Matroid Constrained Maximum Coverage by Sellier [ESA 2023] for frequency-d set systems.

Tanmay Inamdar, Pallavi Jain, Daniel Lokshtanov, Abhishek Sahu, Saket Saurabh, and Anannya Upasana. Satisfiability to Coverage in Presence of Fairness, Matroid, and Global Constraints. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 88:1-88:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{inamdar_et_al:LIPIcs.ICALP.2024.88, author = {Inamdar, Tanmay and Jain, Pallavi and Lokshtanov, Daniel and Sahu, Abhishek and Saurabh, Saket and Upasana, Anannya}, title = {{Satisfiability to Coverage in Presence of Fairness, Matroid, and Global Constraints}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {88:1--88:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.88}, URN = {urn:nbn:de:0030-drops-202318}, doi = {10.4230/LIPIcs.ICALP.2024.88}, annote = {Keywords: Partial Vertex Cover, Max SAT, FPT Approximation, Matroids} }

Document

**Published in:** LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)

Vertex Cover is a fundamental optimization problem, and is among Karp’s 21 NP-complete problems. The problem aims to compute, for a given graph G, a minimum-size set S of vertices of G such that G - S contains no edge. Vertex Cover admits a simple polynomial-time 2-approximation algorithm, which is the best approximation ratio one can achieve in polynomial time, assuming the Unique Game Conjecture. However, on many restrictive graph classes, it is possible to obtain better-than-2 approximation in polynomial time (or even PTASes) for Vertex Cover. In the club of geometric intersection graphs, examples of such graph classes include unit-disk graphs, disk graphs, pseudo-disk graphs, rectangle graphs, etc.
In this paper, we study Vertex Cover on the broadest class of geometric intersection graphs in the plane, known as string graphs, which are intersection graphs of any connected geometric objects in the plane. Our main result is a polynomial-time 1.9999-approximation algorithm for Vertex Cover on string graphs, breaking the natural 2 barrier. Prior to this work, no better-than-2 approximation (in polynomial time) was known even for special cases of string graphs, such as intersection graphs of segments.
Our algorithm is simple, robust (in the sense that it does not require the geometric realization of the input string graph to be given), and also works for the weighted version of Vertex Cover. Due to a connection between approximation for Independent Set and approximation for Vertex Cover observed by Har-Peled, our result can be viewed as a first step towards obtaining constant-approximation algorithms for Independent Set on string graphs.

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. A 1.9999-Approximation Algorithm for Vertex Cover on String Graphs. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 72:1-72:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.SoCG.2024.72, author = {Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Xue, Jie and Zehavi, Meirav}, title = {{A 1.9999-Approximation Algorithm for Vertex Cover on String Graphs}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {72:1--72:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.72}, URN = {urn:nbn:de:0030-drops-200174}, doi = {10.4230/LIPIcs.SoCG.2024.72}, annote = {Keywords: vertex cover, geometric intersection graphs, approximation algorithms} }

Document

**Published in:** LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)

Drawing a graph in the plane with as few crossings as possible is one of the central problems in graph drawing and computational geometry. Another option is to remove the smallest number of vertices or edges such that the remaining graph can be drawn without crossings. We study both problems in a book-embedding setting for ordered graphs, that is, graphs with a fixed vertex order. In this setting, the vertices lie on a straight line, called the spine, in the given order, and each edge must be drawn on one of several pages of a book such that every edge has at most a fixed number of crossings. In book embeddings, there is another way to reduce or avoid crossings; namely by using more pages. The minimum number of pages needed to draw an ordered graph without any crossings is its (fixed-vertex-order) page number.
We show that the page number of an ordered graph with n vertices and m edges can be computed in 2^m ⋅ n^𝒪(1) time. An 𝒪(log n)-approximation of this number can be computed efficiently. We can decide in 2^𝒪(d √k log (d+k)) ⋅ n^𝒪(1) time whether it suffices to delete k edges of an ordered graph to obtain a d-planar layout (where every edge crosses at most d other edges) on one page. As an additional parameter, we consider the size h of a hitting set, that is, a set of points on the spine such that every edge, seen as an open interval, contains at least one of the points. For h = 1, we can efficiently compute the minimum number of edges whose deletion yields fixed-vertex-order page number p. For h > 1, we give an XP algorithm with respect to h+p. Finally, we consider spine+t-track drawings, where some but not all vertices lie on the spine. The vertex order on the spine is given; we must map every vertex that does not lie on the spine to one of t tracks, each of which is a straight line on a separate page, parallel to the spine. In this setting, we can minimize in 2ⁿ ⋅ n^𝒪(1) time either the number of crossings or, if we disallow crossings, the number of tracks.

Akanksha Agrawal, Sergio Cabello, Michael Kaufmann, Saket Saurabh, Roohani Sharma, Yushi Uno, and Alexander Wolff. Eliminating Crossings in Ordered Graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 1:1-1:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.SWAT.2024.1, author = {Agrawal, Akanksha and Cabello, Sergio and Kaufmann, Michael and Saurabh, Saket and Sharma, Roohani and Uno, Yushi and Wolff, Alexander}, title = {{Eliminating Crossings in Ordered Graphs}}, booktitle = {19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)}, pages = {1:1--1:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-318-8}, ISSN = {1868-8969}, year = {2024}, volume = {294}, editor = {Bodlaender, Hans L.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.1}, URN = {urn:nbn:de:0030-drops-200417}, doi = {10.4230/LIPIcs.SWAT.2024.1}, annote = {Keywords: Ordered graphs, book embedding, edge deletion, d-planar, hitting set} }

Document

**Published in:** LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)

We study the following INDEPENDENT STABLE SET problem. Let G be an undirected graph and ℳ = (V(G), ℐ) be a matroid whose elements are the vertices of G. For an integer k ≥ 1, the task is to decide whether G contains a set S ⊆ V(G) of size at least k which is independent (stable) in G and independent in ℳ. This problem generalizes several well-studied algorithmic problems, including RAINBOW INDEPENDENT SET, RAIBOW MATCHING, and BIPARTITE MATCHING WITH SEPARATION. We show that
- When the matroid ℳ is represented by the independence oracle, then for any computable function f, no algorithm can solve INDEPENDENT STABLE SET using f(k)⋅n^o(k) calls to the oracle.
- On the other hand, when the graph G is of degeneracy d, then the problem is solvable in time 𝒪((d+1)^k ⋅ n), and hence is FPT parameterized by d+k. Moreover, when the degeneracy d is a constant (which is not a part of the input), the problem admits a kernel polynomial in k. More precisely, we prove that for every integer d ≥ 0, the problem admits a kernelization algorithm that in time n^𝒪(d) outputs an equivalent framework with a graph on dk^{𝒪(d)} vertices. A lower bound complements this when d is part of the input: INDEPENDENT STABLE SET does not admit a polynomial kernel when parameterized by k+d unless NP ⊆ coNP/poly. This lower bound holds even when ℳ is a partition matroid.
- Another set of results concerns the scenario when the graph G is chordal. In this case, our computational lower bound excludes an FPT algorithm when the input matroid is given by its independence oracle. However, we demonstrate that INDEPENDENT STABLE SET can be solved in 2^𝒪(k)⋅‖ℳ‖^𝒪(1) time when ℳ is a linear matroid given by its representation. In the same setting, INDEPENDENT STABLE SET does not have a polynomial kernel when parameterized by k unless NP ⊆ coNP/poly.

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh. Stability in Graphs with Matroid Constraints. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.SWAT.2024.22, author = {Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Saurabh, Saket}, title = {{Stability in Graphs with Matroid Constraints}}, booktitle = {19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)}, pages = {22:1--22:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-318-8}, ISSN = {1868-8969}, year = {2024}, volume = {294}, editor = {Bodlaender, Hans L.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.22}, URN = {urn:nbn:de:0030-drops-200629}, doi = {10.4230/LIPIcs.SWAT.2024.22}, annote = {Keywords: frameworks, independent stable sets, parameterized complexity, kernelization} }

Document

**Published in:** LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)

In this paper, we give a framework to design exponential-time approximation schemes for basic graph partitioning problems such as k-way cut, Multiway Cut, Steiner k-cut and Multicut, where the goal is to minimize the number of edges going across the parts. Our motivation to focus on approximation schemes for these problems comes from the fact that while it is possible to solve them exactly in 2^nn^{{𝒪}(1)} time (note that this is already faster than brute-forcing over all partitions or edge sets), it is not known whether one can do better. Using our framework, we design the first (1+ε)-approximation algorithms for the above problems that run in time 2^{f(ε)n} (for f(ε) < 1) for all these problems.
As part of our framework, we present two compression procedures. The first of these is a "lossless" procedure, which is inspired by the seminal randomized contraction algorithm for Global Min-cut of Karger [SODA '93]. Here, we reduce the graph to an equivalent instance where the total number of edges is linearly bounded in the number of edges in an optimal solution of the original instance. Following this, we show how a careful combination of greedy choices and the best exact algorithm for the respective problems can exploit this structure and lead to our approximation schemes.
Our first compression procedure bounds the number of edges linearly in the optimal solution, but this could still leave a dense graph as the solution size could be superlinear in the number of vertices. However, for several problems, it is known that they admit significantly faster algorithms on instances where solution size is linear in the number of vertices, in contrast to general instances. Hence, a natural question arises here. Could one reduce the solution size to linear in the number of vertices, at least in the case where we are willing to settle for a near-optimal solution, so that the aforementioned faster algorithms could be exploited?
In the second compression procedure, using cut sparsifiers (this time, inspired by Benczúr and Karger [STOC '96]) we introduce "solution linearization" as a methodology to give an approximation-preserving reduction to the regime where solution size is linear in the number of vertices for certain cut problems. Using this, we obtain the first polynomial-space approximation schemes faster than 2^nn^{{𝒪}(1)} for Minimum bisection and Edge Bipartization. Along the way, we also design the first polynomial-space exact algorithms for these problems that run in time faster than 2^nn^{{𝒪}(1)}, in the regime where solution size is linear in the number of vertices. The use of randomized contraction and cut sparsifiers in the exponential-time setting is novel to the best of our knowledge and forms our conceptual contribution.

Tanmay Inamdar, Madhumita Kundu, Pekka Parviainen, M. S. Ramanujan, and Saket Saurabh. Exponential-Time Approximation Schemes via Compression. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 64:1-64:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{inamdar_et_al:LIPIcs.ITCS.2024.64, author = {Inamdar, Tanmay and Kundu, Madhumita and Parviainen, Pekka and Ramanujan, M. S. and Saurabh, Saket}, title = {{Exponential-Time Approximation Schemes via Compression}}, booktitle = {15th Innovations in Theoretical Computer Science Conference (ITCS 2024)}, pages = {64:1--64:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-309-6}, ISSN = {1868-8969}, year = {2024}, volume = {287}, editor = {Guruswami, Venkatesan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.64}, URN = {urn:nbn:de:0030-drops-195920}, doi = {10.4230/LIPIcs.ITCS.2024.64}, annote = {Keywords: Exponential-Time Algorithms, Approximation Algorithms, Graph Algorithms, Cut Problems} }

Document

**Published in:** LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)

We introduce a new framework for the analysis of preprocessing routines for parameterized counting problems. Existing frameworks that encapsulate parameterized counting problems permit the usage of exponential (rather than polynomial) time either explicitly or by implicitly reducing the counting problems to enumeration problems. Thus, our framework is the only one in the spirit of classic kernelization (as well as lossy kernelization). Specifically, we define a compression of a counting problem P into a counting problem Q as a pair of polynomial-time procedures: reduce and lift. Given an instance of P, reduce outputs an instance of Q whose size is bounded by a function f of the parameter, and given the number of solutions to the instance of Q, lift outputs the number of solutions to the instance of P. When P = Q, compression is termed kernelization, and when f is polynomial, compression is termed polynomial compression. Our technical (and other conceptual) contributions can be classified into two categories:
Upper Bounds. We prove two theorems: (i) The #Vertex Cover problem parameterized by solution size admits a polynomial kernel; (ii) Every problem in the class of #Planar F-Deletion problems parameterized by solution size admits a polynomial compression.
Lower Bounds. We introduce two new concepts of cross-compositions: EXACT-cross-composition and SUM-cross-composition. We prove that if a #P-hard counting problem P EXACT-cross-composes into a parameterized counting problem Q, then Q does not admit a polynomial compression unless the polynomial hierarchy collapses. We conjecture that the same statement holds for SUM-cross-compositions. Then, we prove that: (i) #Min (s,t)-Cut parameterized by treewidth does not admit a polynomial compression unless the polynomial hierarchy collapses; (ii) #Min (s,t)-Cut parameterized by minimum cut size, #Odd Cycle Transversal parameterized by solution size, and #Vertex Cover parameterized by solution size minus maximum matching size, do not admit polynomial compressions unless our conjecture is false.

Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Kernelization of Counting Problems. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 77:1-77:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ITCS.2024.77, author = {Lokshtanov, Daniel and Misra, Pranabendu and Saurabh, Saket and Zehavi, Meirav}, title = {{Kernelization of Counting Problems}}, booktitle = {15th Innovations in Theoretical Computer Science Conference (ITCS 2024)}, pages = {77:1--77:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-309-6}, ISSN = {1868-8969}, year = {2024}, volume = {287}, editor = {Guruswami, Venkatesan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.77}, URN = {urn:nbn:de:0030-drops-196059}, doi = {10.4230/LIPIcs.ITCS.2024.77}, annote = {Keywords: Kernelization, Counting Problems} }

Document

**Published in:** LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)

We consider the question of polynomial kernelization of a generalization of the classical Vertex Cover problem parameterized by a parameter that is provably smaller than the solution size. In particular, we focus on the c-Component Order Connectivity problem (c-COC) where given an undirected graph G and a non-negative integer t, the objective is to test whether there exists a set S of size at most t such that every component of G-S contains at most c vertices. Such a set S is called a c-coc set. It is known that c-COC admits a kernel with {O}(ct) vertices. Observe that for c = 1, this corresponds to the Vertex Cover problem.
We study the c-Component Order Connectivity problem parameterized by the size of a d-coc set (c-COC/d-COC), where c,d ∈ ℕ with c ≤ d. In particular, the input is an undirected graph G, a positive integer t and a set M of at most k vertices of G, such that the size of each connected component in G - M is at most d. The question is to find a set S of vertices of size at most t, such that the size of each connected component in G - S is at most c. In this paper, we give a kernel for c-COC/d-COC with O(k^{d-c+1}) vertices and O(k^{d-c+2}) edges. Our result exhibits that the difference in d and c, and not their absolute values, determines the exact degree of the polynomial in the kernel size.
When c = d = 1, the c-COC/d-COC problem is exactly the Vertex Cover problem parameterized by the solution size, which has a kernel with O(k) vertices and O(k²) edges, and this is asymptotically tight [Dell & Melkebeek, JACM 2014]. We also show that the dependence of d-c in the exponent of the kernel size cannot be avoided under reasonable complexity assumptions.

Sriram Bhyravarapu, Satyabrata Jana, Saket Saurabh, and Roohani Sharma. Difference Determines the Degree: Structural Kernelizations of Component Order Connectivity. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bhyravarapu_et_al:LIPIcs.IPEC.2023.5, author = {Bhyravarapu, Sriram and Jana, Satyabrata and Saurabh, Saket and Sharma, Roohani}, title = {{Difference Determines the Degree: Structural Kernelizations of Component Order Connectivity}}, booktitle = {18th International Symposium on Parameterized and Exact Computation (IPEC 2023)}, pages = {5:1--5:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-305-8}, ISSN = {1868-8969}, year = {2023}, volume = {285}, editor = {Misra, Neeldhara and Wahlstr\"{o}m, Magnus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.5}, URN = {urn:nbn:de:0030-drops-194241}, doi = {10.4230/LIPIcs.IPEC.2023.5}, annote = {Keywords: Kernelization, Component Order Connectivity, Vertex Cover, Structural Parameterizations} }

Document

**Published in:** LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)

For numerous graph problems in the realm of parameterized algorithms, using the size of a smallest deletion set (called a modulator) into well-understood graph families as parameterization has led to a long and successful line of research. Recently, however, there has been an extensive study of structural parameters that are potentially much smaller than the modulator size. In particular, recent papers [Jansen et al. STOC 2021; Agrawal et al. SODA 2022] have studied parameterization by the size of the modulator to a graph family ℋ(mod_ℋ(⋅)), elimination distance to ℋ(ed_ℋ(⋅)), and ℋ-treewidth (tw_ℋ(⋅)). These parameters are related by the fact that tw_ℋ lower bounds ed_ℋ, which in turn lower bounds mod_ℋ. While these new parameters have been successfully exploited to design fast exact algorithms their utility (especially that of ed_ℋ and tw_ℋ) in the context of approximation algorithms is mostly unexplored.
The conceptual contribution of this paper is to present novel algorithmic meta-theorems that expand the impact of these structural parameters to the area of FPT Approximation, mirroring their utility in the design of exact FPT algorithms. Precisely, we show that if a covering or packing problem is definable in Monadic Second Order Logic and has a property called Finite Integer Index (FII), then the existence of an FPT Approximation Scheme (FPT-AS, i.e., (1±ε)-approximation) parameterized by mod_ℋ(⋅), ed_ℋ(⋅), and tw_ℋ(⋅) is in fact equivalent. As a consequence, we obtain FPT-ASes for a wide range of covering, packing, and domination problems on graphs with respect to these parameters. In the process, we show that several graph problems, that are W[1]-hard parameterized by mod_ℋ, admit FPT-ASes not only when parameterized by mod_ℋ, but even when parameterized by the potentially much smaller parameter tw_ℋ(⋅). In the spirit of [Agrawal et al. SODA 2022], our algorithmic results highlight a broader connection between these parameters in the world of approximation. As concrete exemplifications of our meta-theorems, we obtain FPT-ASes for well-studied graph problems such as Vertex Cover, Feedback Vertex Set, Cycle Packing and Dominating Set, parameterized by tw_ℋ(⋅) (and hence, also by mod_ℋ(⋅) or ed_ℋ(⋅)), where ℋ is any family of minor free graphs.

Tanmay Inamdar, Lawqueen Kanesh, Madhumita Kundu, M. S. Ramanujan, and Saket Saurabh. FPT Approximations for Packing and Covering Problems Parameterized by Elimination Distance and Even Less. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{inamdar_et_al:LIPIcs.FSTTCS.2023.28, author = {Inamdar, Tanmay and Kanesh, Lawqueen and Kundu, Madhumita and Ramanujan, M. S. and Saurabh, Saket}, title = {{FPT Approximations for Packing and Covering Problems Parameterized by Elimination Distance and Even Less}}, booktitle = {43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)}, pages = {28:1--28:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-304-1}, ISSN = {1868-8969}, year = {2023}, volume = {284}, editor = {Bouyer, Patricia and Srinivasan, Srikanth}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.28}, URN = {urn:nbn:de:0030-drops-194013}, doi = {10.4230/LIPIcs.FSTTCS.2023.28}, annote = {Keywords: FPT-AS, F-Deletion, Packing, Elimination Distance, Elimination Treewidth} }

Document

**Published in:** LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

For any fixed positive integer r and a given budget k, the r-Eigenvalue Vertex Deletion (r-EVD) problem asks if a graph G admits a subset S of at most k vertices such that the adjacency matrix of G⧵S has at most r distinct eigenvalues. The edge deletion, edge addition, and edge editing variants are defined analogously. For r = 1, r-EVD is equivalent to the Vertex Cover problem. For r = 2, it turns out that r-EVD amounts to removing a subset S of at most k vertices so that G⧵ S is a cluster graph where all connected components have the same size.
We show that r-EVD is NP-complete even on bipartite graphs with maximum degree four for every fixed r > 2, and FPT when parameterized by the solution size and the maximum degree of the graph.
We also establish several results for the special case when r = 2. For the vertex deletion variant, we show that 2-EVD is NP-complete even on triangle-free and 3d-regular graphs for any d ≥ 2, and also NP-complete on d-regular graphs for any d ≥ 8. The edge deletion, addition, and editing variants are all NP-complete for r = 2. The edge deletion problem admits a polynomial time algorithm if the input is a cluster graph, while - in contrast - the edge addition variant is hard even when the input is a cluster graph. We show that the edge addition variant has a quadratic kernel. The edge deletion and vertex deletion variants admit a single-exponential FPT algorithm when parameterized by the solution size alone.
Our main contribution is to develop the complexity landscape for the problem of modifying a graph with the aim of reducing the number of distinct eigenvalues in the spectrum of its adjacency matrix. It turns out that this captures, apart from Vertex Cover, also a natural variation of the problem of modifying to a cluster graph as a special case, which we believe may be of independent interest.

Neeldhara Misra, Harshil Mittal, Saket Saurabh, and Dhara Thakkar. On the Complexity of the Eigenvalue Deletion Problem. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 53:1-53:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{misra_et_al:LIPIcs.ISAAC.2023.53, author = {Misra, Neeldhara and Mittal, Harshil and Saurabh, Saket and Thakkar, Dhara}, title = {{On the Complexity of the Eigenvalue Deletion Problem}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {53:1--53:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.53}, URN = {urn:nbn:de:0030-drops-193555}, doi = {10.4230/LIPIcs.ISAAC.2023.53}, annote = {Keywords: Graph Modification, Rank Reduction, Eigenvalues} }

Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

In the Vertex Connectivity Survivable Network Design (VC-SNDP) problem, the input is a graph G and a function d: V(G) × V(G) → ℕ that encodes the vertex-connectivity demands between pairs of vertices. The objective is to find the smallest subgraph H of G that satisfies all these demands. It is a well-studied NP-complete problem that generalizes several network design problems. We consider the case of uniform demands, where for every vertex pair (u,v) the connectivity demand d(u,v) is a fixed integer κ. It is an important problem with wide applications.
We study this problem in the realm of Parameterized Complexity. In this setting, in addition to G and d we are given an integer 𝓁 as the parameter and the objective is to determine if we can remove at least 𝓁 edges from G without violating any connectivity constraints. This was posed as an open problem by Bang-Jansen et.al. [SODA 2018], who studied the edge-connectivity variant of the problem under the same settings. Using a powerful classification result of Lokshtanov et al. [ICALP 2018], Gutin et al. [JCSS 2019] recently showed that this problem admits a (non-uniform) FPT algorithm where the running time was unspecified. Further they also gave an (uniform) FPT algorithm for the case of κ = 2. In this paper we present a (uniform) FPT algorithm any κ that runs in time 2^{O(κ² 𝓁⁴ log 𝓁)}⋅ |V(G)|^O(1).
Our algorithm is built upon new insights on vertex connectivity in graphs. Our main conceptual contribution is a novel graph decomposition called the Wheel decomposition. Informally, it is a partition of the edge set of a graph G, E(G) = X₁ ∪ X₂ … ∪ X_r, with the parts arranged in a cyclic order, such that each vertex v ∈ V(G) either has edges in at most two consecutive parts, or has edges in every part of this partition. The first kind of vertices can be thought of as the rim of the wheel, while the second kind form the hub. Additionally, the vertex cuts induced by these edge-sets in G have highly symmetric properties. Our main technical result, informally speaking, establishes that "nearly edge-minimal’’ κ-vertex connected graphs admit a wheel decomposition - a fact that can be exploited for designing algorithms. We believe that this decomposition is of independent interest and it could be a useful tool in resolving other open problems.

Jørgen Bang-Jensen, Kristine Vitting Klinkby, Pranabendu Misra, and Saket Saurabh. A Parameterized Algorithm for Vertex Connectivity Survivable Network Design Problem with Uniform Demands. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bangjensen_et_al:LIPIcs.ESA.2023.13, author = {Bang-Jensen, J{\o}rgen and Klinkby, Kristine Vitting and Misra, Pranabendu and Saurabh, Saket}, title = {{A Parameterized Algorithm for Vertex Connectivity Survivable Network Design Problem with Uniform Demands}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {13:1--13:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.13}, URN = {urn:nbn:de:0030-drops-186663}, doi = {10.4230/LIPIcs.ESA.2023.13}, annote = {Keywords: Parameterized Complexity, Vertex Connectivity, Network Design} }

Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

We consider the following problem about dispersing points. Given a set of points in the plane, the task is to identify whether by moving a small number of points by small distance, we can obtain an arrangement of points such that no pair of points is "close" to each other. More precisely, for a family of n points, an integer k, and a real number d > 0, we ask whether at most k points could be relocated, each point at distance at most d from its original location, such that the distance between each pair of points is at least a fixed constant, say 1. A number of approximation algorithms for variants of this problem, under different names like distant representatives, disk dispersing, or point spreading, are known in the literature. However, to the best of our knowledge, the parameterized complexity of this problem remains widely unexplored. We make the first step in this direction by providing a kernelization algorithm that, in polynomial time, produces an equivalent instance with 𝒪(d²k³) points. As a byproduct of this result, we also design a non-trivial fixed-parameter tractable (FPT) algorithm for the problem, parameterized by k and d. Finally, we complement the result about polynomial kernelization by showing a lower bound that rules out the existence of a kernel whose size is polynomial in k alone, unless NP ⊆ coNP/poly.

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi. Kernelization for Spreading Points. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 48:1-48:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2023.48, author = {Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Saurabh, Saket and Zehavi, Meirav}, title = {{Kernelization for Spreading Points}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {48:1--48:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.48}, URN = {urn:nbn:de:0030-drops-187017}, doi = {10.4230/LIPIcs.ESA.2023.48}, annote = {Keywords: parameterized algorithms, kernelization, spreading points, distant representatives, unit disk packing} }

Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

We re-visit the complexity of polynomial time pre-processing (kernelization) for the d-Hitting Set problem. This is one of the most classic problems in Parameterized Complexity by itself, and, furthermore, it encompasses several other of the most well-studied problems in this field, such as Vertex Cover, Feedback Vertex Set in Tournaments (FVST) and Cluster Vertex Deletion (CVD). In fact, d-Hitting Set encompasses any deletion problem to a hereditary property that can be characterized by a finite set of forbidden induced subgraphs. With respect to bit size, the kernelization complexity of d-Hitting Set is essentially settled: there exists a kernel with 𝒪(k^d) bits (𝒪(k^d) sets and 𝒪(k^{d-1}) elements) and this it tight by the result of Dell and van Melkebeek [STOC 2010, JACM 2014]. Still, the question of whether there exists a kernel for d-Hitting Set with fewer elements has remained one of the most major open problems in Kernelization.
In this paper, we first show that if we allow the kernelization to be lossy with a qualitatively better loss than the best possible approximation ratio of polynomial time approximation algorithms, then one can obtain kernels where the number of elements is linear for every fixed d. Further, based on this, we present our main result: we show that there exist approximate Turing kernelizations for d-Hitting Set that even beat the established bit-size lower bounds for exact kernelizations - in fact, we use a constant number of oracle calls, each with "near linear" (𝒪(k^{1+ε})) bit size, that is, almost the best one could hope for. Lastly, for two special cases of implicit 3-Hitting set, namely, FVST and CVD, we obtain the "best of both worlds" type of results - (1+ε)-approximate kernelizations with a linear number of vertices. In terms of size, this substantially improves the exact kernels of Fomin et al. [SODA 2018, TALG 2019], with simpler arguments.

Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi. Lossy Kernelization for (Implicit) Hitting Set Problems. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2023.49, author = {Fomin, Fedor V. and Le, Tien-Nam and Lokshtanov, Daniel and Saurabh, Saket and Thomass\'{e}, St\'{e}phan and Zehavi, Meirav}, title = {{Lossy Kernelization for (Implicit) Hitting Set Problems}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {49:1--49:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.49}, URN = {urn:nbn:de:0030-drops-187020}, doi = {10.4230/LIPIcs.ESA.2023.49}, annote = {Keywords: Hitting Set, Lossy Kernelization} }

Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

In the Minimum Bisection problem input is a graph G and the goal is to partition the vertex set into two parts A and B, such that ||A|-|B|| ≤ 1 and the number k of edges between A and B is minimized. The problem is known to be NP-hard, and assuming the Unique Games Conjecture even NP-hard to approximate within a constant factor [Khot and Vishnoi, J.ACM'15]. On the other hand, a 𝒪(log n)-approximation algorithm [Räcke, STOC'08] and a parameterized algorithm [Cygan et al., ACM Transactions on Algorithms'20] running in time k^𝒪(k) n^𝒪(1) is known.
The Minimum Bisection problem can be viewed as a clustering problem where edges represent similarity and the task is to partition the vertices into two equally sized clusters while minimizing the number of pairs of similar objects that end up in different clusters. Motivated by a number of egregious examples of unfair bias in AI systems, many fundamental clustering problems have been revisited and re-formulated to incorporate fairness constraints. In this paper we initiate the study of the Minimum Bisection problem with fairness constraints. Here the input is a graph G, positive integers c and k, a function χ:V(G) → {1, …, c} that assigns a color χ(v) to each vertex v in G, and c integers r_1,r_2,⋯,r_c. The goal is to partition the vertex set of G into two almost-equal sized parts A and B with at most k edges between them, such that for each color i ∈ {1, …, c}, A has exactly r_i vertices of color i. Each color class corresponds to a group which we require the partition (A, B) to treat fairly, and the constraints that A has exactly r_i vertices of color i can be used to encode that no group is over- or under-represented in either of the two clusters.
We first show that introducing fairness constraints appears to make the Minimum Bisection problem qualitatively harder. Specifically we show that unless FPT=W[1] the problem admits no f(c)n^𝒪(1) time algorithm even when k = 0. On the other hand, our main technical contribution shows that is that this hardness result is simply a consequence of the very strict requirement that each color class i has exactly r_i vertices in A. In particular we give an f(k,c,ε)n^𝒪(1) time algorithm that finds a balanced partition (A, B) with at most k edges between them, such that for each color i ∈ [c], there are at most (1±ε)r_i vertices of color i in A.
Our approximation algorithm is best viewed as a proof of concept that the technique introduced by [Lampis, ICALP'18] for obtaining FPT-approximation algorithms for problems of bounded tree-width or clique-width can be efficiently exploited even on graphs of unbounded width. The key insight is that the technique of Lampis is applicable on tree decompositions with unbreakable bags (as introduced in [Cygan et al., SIAM Journal on Computing'14]). An important ingredient of our approximation scheme is a combinatorial result that may be of independent interest, namely that for every k, every graph G admits a tree decomposition with adhesions of size at most 𝒪(k), unbreakable bags, and logarithmic depth.

Tanmay Inamdar, Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. Parameterized Complexity of Fair Bisection: (FPT-Approximation meets Unbreakability). In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 63:1-63:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{inamdar_et_al:LIPIcs.ESA.2023.63, author = {Inamdar, Tanmay and Lokshtanov, Daniel and Saurabh, Saket and Surianarayanan, Vaishali}, title = {{Parameterized Complexity of Fair Bisection: (FPT-Approximation meets Unbreakability)}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {63:1--63:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.63}, URN = {urn:nbn:de:0030-drops-187167}, doi = {10.4230/LIPIcs.ESA.2023.63}, annote = {Keywords: FPT Approximation, Minimum Bisection, Unbreakable Tree Decomposition, Treewidth} }

Document

**Published in:** LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)

Selection of a group of representatives satisfying certain fairness constraints, is a commonly occurring scenario. Motivated by this, we initiate a systematic algorithmic study of a fair version of Hitting Set. In the classical Hitting Set problem, the input is a universe 𝒰, a family ℱ of subsets of 𝒰, and a non-negative integer k. The goal is to determine whether there exists a subset S ⊆ 𝒰 of size k that hits (i.e., intersects) every set in ℱ. Inspired by several recent works, we formulate a fair version of this problem, as follows. The input additionally contains a family ℬ of subsets of 𝒰, where each subset in ℬ can be thought of as the group of elements of the same type. We want to find a set S ⊆ 𝒰 of size k that (i) hits all sets of ℱ, and (ii) does not contain too many elements of each type. We call this problem Fair Hitting Set, and chart out its tractability boundary from both classical as well as multivariate perspective. Our results use a multitude of techniques from parameterized complexity including classical to advanced tools, such as, methods of representative sets for matroids, FO model checking, and a generalization of best known kernels for Hitting Set.

Tanmay Inamdar, Lawqueen Kanesh, Madhumita Kundu, Nidhi Purohit, and Saket Saurabh. Fixed-Parameter Algorithms for Fair Hitting Set Problems. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 55:1-55:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{inamdar_et_al:LIPIcs.MFCS.2023.55, author = {Inamdar, Tanmay and Kanesh, Lawqueen and Kundu, Madhumita and Purohit, Nidhi and Saurabh, Saket}, title = {{Fixed-Parameter Algorithms for Fair Hitting Set Problems}}, booktitle = {48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)}, pages = {55:1--55:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-292-1}, ISSN = {1868-8969}, year = {2023}, volume = {272}, editor = {Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.55}, URN = {urn:nbn:de:0030-drops-185897}, doi = {10.4230/LIPIcs.MFCS.2023.55}, annote = {Keywords: Fairness, Parameterized Algorithms, Hitting Set} }

Document

**Published in:** LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)

Feedback Vertex Set (FVS) is one of the most studied vertex deletion problems in the field of graph algorithms. In the decision version of the problem, given a graph G and an integer k, the question is whether there exists a set S of at most k vertices in G such that G-S is acyclic. It is one of the first few problems which were shown to be NP-complete, and has been extensively studied from the viewpoint of approximation and parameterized algorithms. The best-known polynomial time approximation algorithm for FVS is a 2-factor approximation, while the best known deterministic and randomized FPT algorithms run in time 𝒪^*(3.460^k) and 𝒪^*(2.7^k) respectively.
In this paper, we contribute to the newly established area of parameterized approximation, by studying FVS in this paradigm. In particular, we combine the approaches of parameterized and approximation algorithms for the study of FVS, and achieve an approximation guarantee with a factor better than 2 in randomized FPT running time, that improves over the best known parameterized algorithm for FVS. We give three simple randomized (1+ε) approximation algorithms for FVS, running in times 𝒪^*(2^{εk}⋅ 2.7^{(1-ε)k}), 𝒪^*(({(4/(1+ε))^{(1+ε)}}⋅{(ε/3)^ε})^k), and 𝒪^*(4^{(1-ε)k}) respectively for every ε ∈ (0,1). Combining these three algorithms, we obtain a factor (1+ε) approximation algorithm for FVS, which has better running time than the best-known (randomized) FPT algorithm for every ε ∈ (0, 1). This is the first attempt to look at a parameterized approximation of FVS to the best of our knowledge. Our algorithms are very simple, and they rely on some well-known reduction rules used for arriving at FPT algorithms for FVS.

Satyabrata Jana, Daniel Lokshtanov, Soumen Mandal, Ashutosh Rai, and Saket Saurabh. Parameterized Approximation Scheme for Feedback Vertex Set. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 56:1-56:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{jana_et_al:LIPIcs.MFCS.2023.56, author = {Jana, Satyabrata and Lokshtanov, Daniel and Mandal, Soumen and Rai, Ashutosh and Saurabh, Saket}, title = {{Parameterized Approximation Scheme for Feedback Vertex Set}}, booktitle = {48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)}, pages = {56:1--56:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-292-1}, ISSN = {1868-8969}, year = {2023}, volume = {272}, editor = {Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.56}, URN = {urn:nbn:de:0030-drops-185902}, doi = {10.4230/LIPIcs.MFCS.2023.56}, annote = {Keywords: Feedback Vertex Set, Parameterized Approximation} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)

In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition of the vertex set of G into k parts, while minimizing the number of edges that go between different parts of the partition. The problem is NP-complete, and admits a simple 3ⁿ⋅n^𝒪(1) time dynamic programming algorithm, which can be improved to a 2ⁿ⋅n^𝒪(1) time algorithm using the fast subset convolution framework by Björklund et al. [STOC'07]. In this paper we give an algorithm for Min k-Cut with running time 𝒪((2-ε)ⁿ), for ε > 10^{-50}. This is the first algorithm for Min k-Cut with running time 𝒪(cⁿ) for c < 2.

Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. Breaking the All Subsets Barrier for Min k-Cut. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 90:1-90:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ICALP.2023.90, author = {Lokshtanov, Daniel and Saurabh, Saket and Surianarayanan, Vaishali}, title = {{Breaking the All Subsets Barrier for Min k-Cut}}, booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)}, pages = {90:1--90:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-278-5}, ISSN = {1868-8969}, year = {2023}, volume = {261}, editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.90}, URN = {urn:nbn:de:0030-drops-181422}, doi = {10.4230/LIPIcs.ICALP.2023.90}, annote = {Keywords: Exact algorithms, min k-cut, exponential algorithms, graph algorithms, k-way cut} }

Document

**Published in:** LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)

We revisit a natural variant of the geometric set cover problem, called minimum-membership geometric set cover (MMGSC). In this problem, the input consists of a set S of points and a set ℛ of geometric objects, and the goal is to find a subset ℛ^* ⊆ ℛ to cover all points in S such that the membership of S with respect to ℛ^*, denoted by memb(S,ℛ^*), is minimized, where memb(S,ℛ^*) = max_{p ∈ S} |{R ∈ ℛ^*: p ∈ R}|. We give the first polynomial-time approximation algorithms for MMGSC in ℝ². Specifically, we achieve the following two main results.
- We give the first polynomial-time constant-approximation algorithm for MMGSC with unit squares. This answers a question left open since the work of Erlebach and Leeuwen [SODA'08], who gave a constant-approximation algorithm with running time n^{O(opt)} where opt is the optimum of the problem (i.e., the minimum membership).
- We give the first polynomial-time approximation scheme (PTAS) for MMGSC with halfplanes. Prior to this work, it was even unknown whether the problem can be approximated with a factor of o(log n) in polynomial time, while it is well-known that the minimum-size set cover problem with halfplanes can be solved in polynomial time. We also consider a problem closely related to MMGSC, called minimum-ply geometric set cover (MPGSC), in which the goal is to find ℛ^* ⊆ ℛ to cover S such that the ply of ℛ^* is minimized, where the ply is defined as the maximum number of objects in ℛ^* which have a nonempty common intersection. Very recently, Durocher et al. gave the first constant-approximation algorithm for MPGSC with unit squares which runs in O(n^{12}) time. We give a significantly simpler constant-approximation algorithm with near-linear running time.

Sayan Bandyapadhyay, William Lochet, Saket Saurabh, and Jie Xue. Minimum-Membership Geometric Set Cover, Revisited. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bandyapadhyay_et_al:LIPIcs.SoCG.2023.11, author = {Bandyapadhyay, Sayan and Lochet, William and Saurabh, Saket and Xue, Jie}, title = {{Minimum-Membership Geometric Set Cover, Revisited}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {11:1--11:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.11}, URN = {urn:nbn:de:0030-drops-178610}, doi = {10.4230/LIPIcs.SoCG.2023.11}, annote = {Keywords: geometric set cover, geometric optimization, approximation algorithms} }

Document

**Published in:** LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)

Clustering with capacity constraints is a fundamental problem that attracted significant attention throughout the years. In this paper, we give the first FPT constant-factor approximation algorithm for the problem of clustering points in a general metric into k clusters to minimize the sum of cluster radii, subject to non-uniform hard capacity constraints (Capacitated Sum of Radii ). In particular, we give a (15+ε)-approximation algorithm that runs in 2^𝒪(k²log k) ⋅ n³ time.
When capacities are uniform, we obtain the following improved approximation bounds.
- A (4 + ε)-approximation with running time 2^𝒪(klog(k/ε)) n³, which significantly improves over the FPT 28-approximation of Inamdar and Varadarajan [ESA 2020].
- A (2 + ε)-approximation with running time 2^𝒪(k/ε² ⋅log(k/ε)) dn³ and a (1+ε)-approxim- ation with running time 2^𝒪(kdlog ((k/ε))) n³ in the Euclidean space. Here d is the dimension.
- A (1 + ε)-approximation in the Euclidean space with running time 2^𝒪(k/ε² ⋅log(k/ε)) dn³ if we are allowed to violate the capacities by (1 + ε)-factor. We complement this result by showing that there is no (1 + ε)-approximation algorithm running in time f(k)⋅ n^𝒪(1), if any capacity violation is not allowed.

Sayan Bandyapadhyay, William Lochet, and Saket Saurabh. FPT Constant-Approximations for Capacitated Clustering to Minimize the Sum of Cluster Radii. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bandyapadhyay_et_al:LIPIcs.SoCG.2023.12, author = {Bandyapadhyay, Sayan and Lochet, William and Saurabh, Saket}, title = {{FPT Constant-Approximations for Capacitated Clustering to Minimize the Sum of Cluster Radii}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {12:1--12:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.12}, URN = {urn:nbn:de:0030-drops-178628}, doi = {10.4230/LIPIcs.SoCG.2023.12}, annote = {Keywords: Clustering, FPT-approximation} }

Document

**Published in:** LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

The Delaunay graph of a point set P ⊆ ℝ² is the plane graph with the vertex-set P and the edge-set that contains {p,p'} if there exists a disc whose intersection with P is exactly {p,p'}. Accordingly, a triangulated graph G is Delaunay realizable if there exists a triangulation of the Delaunay graph of some P ⊆ ℝ², called a Delaunay triangulation of P, that is isomorphic to G. The objective of Delaunay Realization is to compute a point set P ⊆ ℝ² that realizes a given graph G (if such a P exists). Known algorithms do not solve Delaunay Realization as they are non-constructive. Obtaining a constructive algorithm for Delaunay Realization was mentioned as an open problem by Hiroshima et al. [Hiroshima et al., 2000]. We design an n^𝒪(n)-time constructive algorithm for Delaunay Realization. In fact, our algorithm outputs sets of points with integer coordinates.

Akanksha Agrawal, Saket Saurabh, and Meirav Zehavi. A Finite Algorithm for the Realizabilty of a Delaunay Triangulation. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2022.1, author = {Agrawal, Akanksha and Saurabh, Saket and Zehavi, Meirav}, title = {{A Finite Algorithm for the Realizabilty of a Delaunay Triangulation}}, booktitle = {17th International Symposium on Parameterized and Exact Computation (IPEC 2022)}, pages = {1:1--1:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-260-0}, ISSN = {1868-8969}, year = {2022}, volume = {249}, editor = {Dell, Holger and Nederlof, Jesper}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.1}, URN = {urn:nbn:de:0030-drops-173573}, doi = {10.4230/LIPIcs.IPEC.2022.1}, annote = {Keywords: Delaunay Triangulation, Delaunay Realization, Finite Algorithm, Integer Coordinate Realization} }

Document

**Published in:** LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

In this paper we initiate a systematic study of exact algorithms for some of the well known clustering problems, namely k-MEDIAN and k-MEANS. In k-MEDIAN, the input consists of a set X of n points belonging to a metric space, and the task is to select a subset C ⊆ X of k points as centers, such that the sum of the distances of every point to its nearest center is minimized. In k-MEANS, the objective is to minimize the sum of squares of the distances instead. It is easy to design an algorithm running in time max_{k ≤ n} {n choose k} n^𝒪(1) = 𝒪^*(2ⁿ) (here, 𝒪^*(⋅) notation hides polynomial factors in n). In this paper we design first non-trivial exact algorithms for these problems. In particular, we obtain an 𝒪^*((1.89)ⁿ) time exact algorithm for k-MEDIAN that works for any value of k. Our algorithm is quite general in that it does not use any properties of the underlying (metric) space - it does not even require the distances to satisfy the triangle inequality. In particular, the same algorithm also works for k-Means. We complement this result by showing that the running time of our algorithm is asymptotically optimal, up to the base of the exponent. That is, unless the Exponential Time Hypothesis fails, there is no algorithm for these problems running in time 2^o(n)⋅n^𝒪(1).
Finally, we consider the "facility location" or "supplier" versions of these clustering problems, where, in addition to the set X we are additionally given a set of m candidate centers (or facilities) F, and objective is to find a subset of k centers from F. The goal is still to minimize the k-Median/k-Means/k-Center objective. For these versions we give a 𝒪(2ⁿ (mn)^𝒪(1)) time algorithms using subset convolution. We complement this result by showing that, under the Set Cover Conjecture, the "supplier" versions of these problems do not admit an exact algorithm running in time 2^{(1-ε) n} (mn)^𝒪(1).

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit, and Saket Saurabh. Exact Exponential Algorithms for Clustering Problems. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 13:1-13:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.IPEC.2022.13, author = {Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Purohit, Nidhi and Saurabh, Saket}, title = {{Exact Exponential Algorithms for Clustering Problems}}, booktitle = {17th International Symposium on Parameterized and Exact Computation (IPEC 2022)}, pages = {13:1--13:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-260-0}, ISSN = {1868-8969}, year = {2022}, volume = {249}, editor = {Dell, Holger and Nederlof, Jesper}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.13}, URN = {urn:nbn:de:0030-drops-173691}, doi = {10.4230/LIPIcs.IPEC.2022.13}, annote = {Keywords: clustering, k-median, k-means, exact algorithms} }

Document

**Published in:** LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)

For a connected graph G = (V, E) and s, t ∈ V, a non-separating s-t path is a path P between s and t such that the set of vertices of P does not separate G, that is, G - V(P) is connected. An s-t path P is non-disconnecting if G - E(P) is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating s-t path of length at most k is W[1]-hard parameterized by k, while the non-disconnecting counterpart is fixed-parameter tractable (FPT) parameterized by k. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results, the shortest non-separating path problem is FPT parameterized by k on planar graphs and on unit disk graphs (where no s, t is given). Further, we give a polynomial-time algorithm on chordal graphs if k is the distance of the shortest path between s and t.

Ankit Abhinav, Susobhan Bandopadhyay, Aritra Banik, Yasuaki Kobayashi, Shunsuke Nagano, Yota Otachi, and Saket Saurabh. Parameterized Complexity of Non-Separating and Non-Disconnecting Paths and Sets. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{abhinav_et_al:LIPIcs.MFCS.2022.6, author = {Abhinav, Ankit and Bandopadhyay, Susobhan and Banik, Aritra and Kobayashi, Yasuaki and Nagano, Shunsuke and Otachi, Yota and Saurabh, Saket}, title = {{Parameterized Complexity of Non-Separating and Non-Disconnecting Paths and Sets}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {6:1--6:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.6}, URN = {urn:nbn:de:0030-drops-168041}, doi = {10.4230/LIPIcs.MFCS.2022.6}, annote = {Keywords: Non-separating path, Parameterized complexity} }

Document

**Published in:** LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)

The study of the Knot-Free Vertex Deletion problem emerges from its application in the resolution of deadlocks called knots, detected in a classical distributed computation model, that is, the OR-model. A strongly connected subgraph Q of a digraph D with at least two vertices is said to be a knot if there is no arc (u,v) of D with u ∈ V(Q) and v ∉ V(Q) (no-out neighbors of the vertices in Q). Given a directed graph D, the Knot-Free Vertex Deletion (KFVD) problem asks to compute a minimum-size subset S ⊂ V(D) such that D[V⧵S] contains no knots. There is no exact algorithm known for the KFVD problem in the literature that is faster than the trivial O^⋆(2ⁿ) brute-force algorithm. In this paper, we obtain the first non-trivial upper bound for KFVD by designing an exact algorithm running in time 𝒪^⋆(1.576ⁿ), where n is the size of the vertex set in D.

M. S. Ramanujan, Abhishek Sahu, Saket Saurabh, and Shaily Verma. An Exact Algorithm for Knot-Free Vertex Deletion. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 78:1-78:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{ramanujan_et_al:LIPIcs.MFCS.2022.78, author = {Ramanujan, M. S. and Sahu, Abhishek and Saurabh, Saket and Verma, Shaily}, title = {{An Exact Algorithm for Knot-Free Vertex Deletion}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {78:1--78:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.78}, URN = {urn:nbn:de:0030-drops-168769}, doi = {10.4230/LIPIcs.MFCS.2022.78}, annote = {Keywords: exact algorithm, knot-free graphs, branching algorithm} }

Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

We prove a structural theorem for unit-disk graphs, which (roughly) states that given a set 𝒟 of n unit disks inducing a unit-disk graph G_𝒟 and a number p ∈ [n], one can partition 𝒟 into p subsets 𝒟₁,… ,𝒟_p such that for every i ∈ [p] and every 𝒟' ⊆ 𝒟_i, the graph obtained from G_𝒟 by contracting all edges between the vertices in 𝒟_i $1𝒟' admits a tree decomposition in which each bag consists of O(p+|𝒟'|) cliques. Our theorem can be viewed as an analog for unit-disk graphs of the structural theorems for planar graphs and almost-embeddable graphs proved very recently by Marx et al. [SODA'22] and Bandyapadhyay et al. [SODA'22].
By applying our structural theorem, we give several new combinatorial and algorithmic results for unit-disk graphs. On the combinatorial side, we obtain the first Contraction Decomposition Theorem (CDT) for unit-disk graphs, resolving an open question in the work Panolan et al. [SODA'19]. On the algorithmic side, we obtain a new FPT algorithm for bipartization (also known as odd cycle transversal) on unit-disk graphs, which runs in 2^{O(√k log k)} ⋅ n^{O(1)} time, where k denotes the solution size. Our algorithm significantly improves the previous slightly subexponential-time algorithm given by Lokshtanov et al. [SODA'22] (which works more generally for disk graphs) and is almost optimal, as the problem cannot be solved in 2^{o(√k)} ⋅ n^{O(1)} time assuming the ETH.

Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh, and Jie Xue. True Contraction Decomposition and Almost ETH-Tight Bipartization for Unit-Disk Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 11:1-11:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{bandyapadhyay_et_al:LIPIcs.SoCG.2022.11, author = {Bandyapadhyay, Sayan and Lochet, William and Lokshtanov, Daniel and Saurabh, Saket and Xue, Jie}, title = {{True Contraction Decomposition and Almost ETH-Tight Bipartization for Unit-Disk Graphs}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {11:1--11:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.11}, URN = {urn:nbn:de:0030-drops-160190}, doi = {10.4230/LIPIcs.SoCG.2022.11}, annote = {Keywords: unit-disk graphs, tree decomposition, contraction decomposition, bipartization} }

Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

Suppose we are given a pair of points s, t and a set 𝒮 of n geometric objects in the plane, called obstacles. We show that in polynomial time one can construct an auxiliary (multi-)graph G with vertex set 𝒮 and every edge labeled from {0, 1}, such that a set 𝒮_d ⊆ 𝒮 of obstacles separates s from t if and only if G[𝒮_d] contains a cycle whose sum of labels is odd. Using this structural characterization of separating sets of obstacles we obtain the following algorithmic results.
In the Obstacle-removal problem the task is to find a curve in the plane connecting s to t intersecting at most q obstacles. We give a 2.3146^q n^{O(1)} algorithm for Obstacle-removal, significantly improving upon the previously best known q^{O(q³)} n^{O(1)} algorithm of Eiben and Lokshtanov (SoCG'20). We also obtain an alternative proof of a constant factor approximation algorithm for Obstacle-removal, substantially simplifying the arguments of Kumar et al. (SODA'21).
In the Generalized Points-separation problem input consists of the set 𝒮 of obstacles, a point set A of k points and p pairs (s₁, t₁), … (s_p, t_p) of points from A. The task is to find a minimum subset 𝒮_r ⊆ 𝒮 such that for every i, every curve from s_i to t_i intersects at least one obstacle in 𝒮_r. We obtain 2^{O(p)} n^{O(k)}-time algorithm for Generalized Points-separation. This resolves an open problem of Cabello and Giannopoulos (SoCG'13), who asked about the existence of such an algorithm for the special case where (s₁, t₁), … (s_p, t_p) contains all the pairs of points in A. Finally, we improve the running time of our algorithm to f(p,k) ⋅ n^{O(√k)} when the obstacles are unit disks, where f(p,k) = 2^{O(p)} k^{O(k)}, and show that, assuming the Exponential Time Hypothesis (ETH), the running time dependence on k of our algorithms is essentially optimal.

Neeraj Kumar, Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue. Point Separation and Obstacle Removal by Finding and Hitting Odd Cycles. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 52:1-52:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{kumar_et_al:LIPIcs.SoCG.2022.52, author = {Kumar, Neeraj and Lokshtanov, Daniel and Saurabh, Saket and Suri, Subhash and Xue, Jie}, title = {{Point Separation and Obstacle Removal by Finding and Hitting Odd Cycles}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {52:1--52:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.52}, URN = {urn:nbn:de:0030-drops-160609}, doi = {10.4230/LIPIcs.SoCG.2022.52}, annote = {Keywords: points-separation, min color path, constraint removal, barrier resillience} }

Document

**Published in:** LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)

We study two "above guarantee" versions of the classical Longest Path problem on undirected and directed graphs and obtain the following results. In the first variant of Longest Path that we study, called Longest Detour, the task is to decide whether a graph has an (s,t)-path of length at least dist_G(s,t)+k (where dist_G(s,t) denotes the length of a shortest path from s to t). Bezáková et al. [Ivona Bezáková et al., 2019] proved that on undirected graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2^{O(k)}⋅ n. Further, they left the parameterized complexity of the problem on directed graphs open. Our first main result establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new insights, we design a 2^{O (k)}· n^{O(1)} time algorithm for the problem on directed planar graphs. Further, the new approach yields a significantly faster FPT algorithm on undirected graphs.
In the second variant of Longest Path, namely Longest Path above Diameter, the task is to decide whether the graph has a path of length at least diam(G)+k(diam(G)denotes the length of a longest shortest path in a graph G). We obtain dichotomy results about Longest Path above Diameter on undirected and directed graphs. For (un)directed graphs, Longest Path above Diameter is NP-complete even for k=1. However, if the input undirected graph is 2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show that Longest Path above Diameter is solvable in polynomial time for each k ∈ {1,..., 4} and is NP-complete for every k ≥ 5. The parameterized complexity of Longest Detour on general directed graphs remains an interesting open problem.

Fedor V. Fomin, Petr A. Golovach, William Lochet, Danil Sagunov, Kirill Simonov, and Saket Saurabh. Detours in Directed Graphs. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.STACS.2022.29, author = {Fomin, Fedor V. and Golovach, Petr A. and Lochet, William and Sagunov, Danil and Simonov, Kirill and Saurabh, Saket}, title = {{Detours in Directed Graphs}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {29:1--29:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.29}, URN = {urn:nbn:de:0030-drops-158390}, doi = {10.4230/LIPIcs.STACS.2022.29}, annote = {Keywords: longest path, longest detour, diameter, directed graphs, parameterized complexity} }

Document

**Published in:** LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)

For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent vertices in G have at most c-1 neighbours in common. The closure of a graph G, denoted by cl(G), is the least positive integer c for which G is c-closed. The class of c-closed graphs was introduced by Fox et al. [ICALP `18 and SICOMP `20]. Koana et al. [ESA `20] started the study of using cl(G) as an additional structural parameter to design kernels for problems that are W-hard under standard parameterizations. In particular, they studied problems such as Independent Set, Induced Matching, Irredundant Set and (Threshold) Dominating Set, and showed that each of these problems admits a polynomial kernel, either w.r.t. the parameter k+c or w.r.t. the parameter k for each fixed value of c. Here, k is the solution size and c = cl(G). The work of Koana et al. left several questions open, one of which was whether the Perfect Code problem admits a fixed-parameter tractable (FPT) algorithm and a polynomial kernel on c-closed graphs. In this paper, among other results, we answer this question in the affirmative. Inspired by the FPT algorithm for Perfect Code, we further explore two more domination problems on the graphs of bounded closure. The other problems that we study are Connected Dominating Set and Partial Dominating Set. We show that Perfect Code and Connected Dominating Set are fixed-parameter tractable w.r.t. the parameter k+cl(G), whereas Partial Dominating Set, parameterized by k is W[1]-hard even when cl(G) = 2. We also show that for each fixed c, Perfect Code admits a polynomial kernel on the class of c-closed graphs. And we observe that Connected Dominating Set has no polynomial kernel even on 2-closed graphs, unless NP ⊆ co-NP/poly.

Lawqueen Kanesh, Jayakrishnan Madathil, Sanjukta Roy, Abhishek Sahu, and Saket Saurabh. Further Exploiting c-Closure for FPT Algorithms and Kernels for Domination Problems. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{kanesh_et_al:LIPIcs.STACS.2022.39, author = {Kanesh, Lawqueen and Madathil, Jayakrishnan and Roy, Sanjukta and Sahu, Abhishek and Saurabh, Saket}, title = {{Further Exploiting c-Closure for FPT Algorithms and Kernels for Domination Problems}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {39:1--39:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.39}, URN = {urn:nbn:de:0030-drops-158494}, doi = {10.4230/LIPIcs.STACS.2022.39}, annote = {Keywords: c-closed graphs, domination problems, perfect code, connected dominating set, fixed-parameter tractable, polynomial kernel} }

Document

**Published in:** LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)

De Berg et al. in [SICOMP 2020] gave an algorithmic framework for subexponential algorithms on geometric graphs with tight (up to ETH) running times. This framework is based on dynamic programming on graphs of weighted treewidth resulting in algorithms that use super-polynomial space. We introduce the notion of weighted treedepth and use it to refine the framework of de Berg et al. for obtaining polynomial space (with tight running times) on geometric graphs. As a result, we prove that for any fixed dimension d ≥ 2 on intersection graphs of similarly-sized fat objects many well-known graph problems including Independent Set, r-Dominating Set for constant r, Cycle Cover, Hamiltonian Cycle, Hamiltonian Path, Steiner Tree, Connected Vertex Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal are solvable in time 2^𝒪(n^{1-1/d}) and within polynomial space.

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, and Saket Saurabh. ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.FSTTCS.2021.21, author = {Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Saurabh, Saket}, title = {{ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {21:1--21:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.21}, URN = {urn:nbn:de:0030-drops-155323}, doi = {10.4230/LIPIcs.FSTTCS.2021.21}, annote = {Keywords: Subexponential Algorithms, Geometric Intersection Graphs, Treedepth, Treewidth} }

Document

**Published in:** LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)

In the Multi-Team Formation problem, we are given a ground set C of n candidates, each of which is characterized by a d-dimensional attribute vector in ℝ^d, and two positive integers α and β satisfying α β ≤ n. The goal is to form α disjoint teams T₁,...,T_α ⊆ C, each of which consists of β candidates in C, such that the total score of the teams is maximized, where the score of a team T is the sum of the h_j maximum values of the j-th attributes of the candidates in T, for all j ∈ {1,...,d}. Our main result is an 2^{2^O(d)} n^O(1)-time algorithm for Multi-Team Formation. This bound is ETH-tight since a 2^{2^{d/c}} n^O(1)-time algorithm for any constant c > 12 can be shown to violate the Exponential Time Hypothesis (ETH). Our algorithm runs in polynomial time for all dimensions up to d = clog log n for a sufficiently small constant c > 0. Prior to our work, the existence of a polynomial time algorithm was an open problem even for d = 3.

Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue. An ETH-Tight Algorithm for Multi-Team Formation. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 28:1-28:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.FSTTCS.2021.28, author = {Lokshtanov, Daniel and Saurabh, Saket and Suri, Subhash and Xue, Jie}, title = {{An ETH-Tight Algorithm for Multi-Team Formation}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {28:1--28:9}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.28}, URN = {urn:nbn:de:0030-drops-155391}, doi = {10.4230/LIPIcs.FSTTCS.2021.28}, annote = {Keywords: Team formation, Parameterized algorithms, Exponential Time Hypothesis} }

Document

**Published in:** LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

For a family of graphs F, given a graph G and an integer k, the F-Deletion problem asks whether we can delete at most k vertices from G to obtain a graph in the family F. The F-Deletion problems for all non-trivial families F that satisfy the hereditary property on induced subgraphs are known to be NP-hard by a result of Yannakakis (STOC'78). Ptolemaic graphs are the graphs that satisfy the Ptolemy inequality, and they are the intersection of chordal graphs and distance-hereditary graphs. Equivalently, they form the set of graphs that do not contain any chordless cycles or a gem as an induced subgraph. (A gem is the graph on 5 vertices, where four vertices form an induced path, and the fifth vertex is adjacent to all the vertices of this induced path.) The Ptolemaic Deletion problem is the F-Deletion problem, where F is the family of Ptolemaic graphs. In this paper we study Ptolemaic Deletion from the viewpoint of Kernelization Complexity, and obtain a kernel with 𝒪(k⁶) vertices for the problem.

Akanksha Agrawal, Aditya Anand, and Saket Saurabh. A Polynomial Kernel for Deletion to Ptolemaic Graphs. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2021.1, author = {Agrawal, Akanksha and Anand, Aditya and Saurabh, Saket}, title = {{A Polynomial Kernel for Deletion to Ptolemaic Graphs}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {1:1--1:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.1}, URN = {urn:nbn:de:0030-drops-153840}, doi = {10.4230/LIPIcs.IPEC.2021.1}, annote = {Keywords: Ptolemaic Deletion, Kernelization, Parameterized Complexity, Gem-free chordal graphs} }

Document

**Published in:** LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S ⊆ V(G) such that |S| ≤ k and G-S is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated a study towards this problem by requiring that G-S be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time 𝒪(9^k |V(G)|⁹). And they posed the question {whether BPVD admits a polynomial kernel.}
We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G,k) of BPVD, in polynomial time we obtain an equivalent instance (G',k') of BPVD such that k' ≤ k, and |V(G')|+|E(G')| ≤ k^{𝒪(1)}.

Lawqueen Kanesh, Jayakrishnan Madathil, Abhishek Sahu, Saket Saurabh, and Shaily Verma. A Polynomial Kernel for Bipartite Permutation Vertex Deletion. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{kanesh_et_al:LIPIcs.IPEC.2021.23, author = {Kanesh, Lawqueen and Madathil, Jayakrishnan and Sahu, Abhishek and Saurabh, Saket and Verma, Shaily}, title = {{A Polynomial Kernel for Bipartite Permutation Vertex Deletion}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {23:1--23:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.23}, URN = {urn:nbn:de:0030-drops-154065}, doi = {10.4230/LIPIcs.IPEC.2021.23}, annote = {Keywords: kernelization, bipartite permutation graph, bicliques} }

Document

**Published in:** LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)

Unlike the problem of deciding whether a digraph D = (V,A) has 𝓁 in-branchings (or 𝓁 out-branchings) is polynomial time solvable, the problem of deciding whether a digraph D = (V,A) has an in-branching B^- and an out-branching B^+ which are arc-disjoint is NP-complete. Motivated by this, a natural optimization question that has been studied in the realm of Parameterized Complexity is called Rooted k-Distinct Branchings. In this problem, a digraph D = (V,A) with two prescribed vertices s,t are given as input and the question is whether D has an in-branching rooted at t and an out-branching rooted at s such that they differ on at least k arcs. Bang-Jensen et al. [Algorithmica, 2016 ] showed that the problem is fixed parameter tractable (FPT) on strongly connected digraphs. Gutin et al. [ICALP, 2017; JCSS, 2018 ] completely resolved this problem by designing an algorithm with running time 2^{𝒪(k² log² k)}n^{𝒪(1)}. Here, n denotes the number of vertices of the input digraph. In this paper, answering an open question of Gutin et al., we design a polynomial kernel for Rooted k-Distinct Branchings. In particular, we obtain the following: Given an instance (D,k,s,t) of Rooted k-Distinct Branchings, in polynomial time we obtain an equivalent instance (D',k',s,t) of Rooted k-Distinct Branchings such that |V(D')| ≤ 𝒪(k²) and the treewidth of the underlying undirected graph is at most 𝒪(k). This result immediately yields an FPT algorithm with running time 2^{𝒪(klog k)}+ n^{𝒪(1)}; improving upon the previous running time of Gutin et al. For our algorithms, we prove a structural result about paths avoiding many arcs in a given in-branching or out-branching. This result might turn out to be useful for getting other results for problems concerning in-and out-branchings.

Jørgen Bang-Jensen, Kristine Vitting Klinkby, and Saket Saurabh. k-Distinct Branchings Admits a Polynomial Kernel. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{bangjensen_et_al:LIPIcs.ESA.2021.11, author = {Bang-Jensen, J{\o}rgen and Klinkby, Kristine Vitting and Saurabh, Saket}, title = {{k-Distinct Branchings Admits a Polynomial Kernel}}, booktitle = {29th Annual European Symposium on Algorithms (ESA 2021)}, pages = {11:1--11:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-204-4}, ISSN = {1868-8969}, year = {2021}, volume = {204}, editor = {Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.11}, URN = {urn:nbn:de:0030-drops-145925}, doi = {10.4230/LIPIcs.ESA.2021.11}, annote = {Keywords: Digraphs, Polynomial Kernel, In-branching, Out-Branching} }

Document

**Published in:** LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)

In the literature on parameterized graph problems, there has been an increased effort in recent years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator to a specific graph class. In this line of research, Bulian and Dawar [Algorithmica, 2016] introduced the notion of elimination distance and showed that deciding whether a given graph has elimination distance at most k to any minor-closed class of graphs is fixed-parameter tractable parameterized by k [Algorithmica, 2017]. They showed that Graph Isomorphism parameterized by the elimination distance to bounded degree graphs is fixed-parameter tractable and asked whether determining the elimination distance to the class of bounded degree graphs is fixed-parameter tractable. Recently, Lindermayr et al. [MFCS 2020] obtained a fixed-parameter algorithm for this problem in the special case where the input is restricted to K₅-minor free graphs.
In this paper, we answer the question of Bulian and Dawar in the affirmative for general graphs. In fact, we give a more general result capturing elimination distance to any graph class characterized by a finite set of graphs as forbidden induced subgraphs.

Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. An FPT Algorithm for Elimination Distance to Bounded Degree Graphs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 5:1-5:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.STACS.2021.5, author = {Agrawal, Akanksha and Kanesh, Lawqueen and Panolan, Fahad and Ramanujan, M. S. and Saurabh, Saket}, title = {{An FPT Algorithm for Elimination Distance to Bounded Degree Graphs}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {5:1--5:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.5}, URN = {urn:nbn:de:0030-drops-136507}, doi = {10.4230/LIPIcs.STACS.2021.5}, annote = {Keywords: Elimination Distance, Fixed-parameter Tractability, Graph Modification} }

Document

**Published in:** LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)

We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems, two from the theory of matroids and the third from graph theory. The input to the Weighted Diverse Bases problem consists of a matroid M, a weight function ω:E(M)→N, and integers k ≥ 1, d ≥ 0. The task is to decide if there is a collection of k bases B_1, ..., B_k of M such that the weight of the symmetric difference of any pair of these bases is at least d. This is a diverse variant of the classical matroid base packing problem. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids M₁,M₂ defined on the same ground set E, a weight function ω:E→N, and integers k ≥ 1, d ≥ 0. The task is to decide if there is a collection of k common independent sets I_1, ..., I_k of M₁ and M₂ such that the weight of the symmetric difference of any pair of these sets is at least d. This is motivated by the classical weighted matroid intersection problem. The input to the Diverse Perfect Matchings problem consists of a graph G and integers k ≥ 1, d ≥ 0. The task is to decide if G contains k perfect matchings M_1, ..., M_k such that the symmetric difference of any two of these matchings is at least d.
The underlying problem of finding one solution (basis, common independent set, or perfect matching) is known to be doable in polynomial time for each of these problems, and Diverse Perfect Matchings is known to be NP-hard for k = 2. We show that Weighted Diverse Bases and Weighted Diverse Common Independent Sets are both NP-hard. We show also that Diverse Perfect Matchings cannot be solved in polynomial time (unless P=NP) even for the case d = 1. We derive fixed-parameter tractable (FPT) algorithms for all three problems with (k,d) as the parameter.
The above results on matroids are derived under the assumption that the input matroids are given as independence oracles. For Weighted Diverse Bases we present a polynomial-time algorithm that takes a representation of the input matroid over a finite field and computes a poly(k,d)-sized kernel for the problem.

Fedor V. Fomin, Petr A. Golovach, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. Diverse Collections in Matroids and Graphs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.STACS.2021.31, author = {Fomin, Fedor V. and Golovach, Petr A. and Panolan, Fahad and Philip, Geevarghese and Saurabh, Saket}, title = {{Diverse Collections in Matroids and Graphs}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {31:1--31:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.31}, URN = {urn:nbn:de:0030-drops-136769}, doi = {10.4230/LIPIcs.STACS.2021.31}, annote = {Keywords: Matroids, Diverse solutions, Fixed-parameter tractable algorithms} }

Document

**Published in:** LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)

Over the past few decades, the study of dense structures from the perspective of approximation algorithms has become a wide area of research. However, from the viewpoint of parameterized algorithm, this area is largely unexplored. In particular, properties of random samples have been successfully deployed to design approximation schemes for a number of fundamental problems on dense structures [Arora et al. FOCS 1995, Goldreich et al. FOCS 1996, Giotis and Guruswami SODA 2006, Karpinksi and Schudy STOC 2009]. In this paper, we fill this gap, and harness the power of random samples as well as structure theory to design kernelization as well as parameterized algorithms on dense structures. In particular, we obtain linear vertex kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Multiway Cut and Multicut on everywhere dense graphs. In fact, these kernels are obtained by designing a polynomial-time algorithm when the corresponding parameter is at most Ω(n). Additionally, we obtain a cubic kernel for Vertex-Disjoint Paths on everywhere dense graphs. In addition to kernelization results, we obtain randomized subexponential-time parameterized algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and d-Way Cut. Finally, we show how all of our results (as well as EPASes for these problems) can be de-randomized.

William Lochet, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Exploiting Dense Structures in Parameterized Complexity. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 50:1-50:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{lochet_et_al:LIPIcs.STACS.2021.50, author = {Lochet, William and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav}, title = {{Exploiting Dense Structures in Parameterized Complexity}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {50:1--50:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.50}, URN = {urn:nbn:de:0030-drops-136950}, doi = {10.4230/LIPIcs.STACS.2021.50}, annote = {Keywords: Dense graphs, disjoint paths, odd cycle transversal, kernels} }

Document

**Published in:** LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)

For a fixed graph H, the H-free Edge Editing problem asks whether we can modify a given graph G by adding or deleting at most k edges such that the resulting graph does not contain H as an induced subgraph. The problem is known to be NP-complete for all fixed H with at least 3 vertices and it admits a 2^O(k)n^O(1) algorithm. Cai and Cai [Algorithmica (2015) 71:731–757] showed that, assuming coNP ⊈ NP/poly, H-free Edge Editing does not admit a polynomial kernel whenever H or its complement is a path or a cycle with at least 4 edges or a 3-connected graph with at least one edge missing. Based on their result, very recently Marx and Sandeep [ESA 2020] conjectured that if H is a graph with at least 5 vertices, then H-free Edge Editing has a polynomial kernel if and only if H is a complete or empty graph, unless coNP ⊆ NP/poly. Furthermore they gave a list of 9 graphs, each with five vertices, such that if H-free Edge Editing for these graphs does not admit a polynomial kernel, then the conjecture is true. Therefore, resolving the kernelization of H-free Edge Editing for graphs H with 4 and 5 vertices plays a crucial role in obtaining a complete dichotomy for this problem. In this paper, we positively answer the question of compressibility for one of the last two unresolved graphs H on 4 vertices. Namely, we give the first polynomial kernel for Paw-free Edge Editing with O(k⁶) vertices.

Eduard Eiben, William Lochet, and Saket Saurabh. A Polynomial Kernel for Paw-Free Editing. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.IPEC.2020.10, author = {Eiben, Eduard and Lochet, William and Saurabh, Saket}, title = {{A Polynomial Kernel for Paw-Free Editing}}, booktitle = {15th International Symposium on Parameterized and Exact Computation (IPEC 2020)}, pages = {10:1--10:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-172-6}, ISSN = {1868-8969}, year = {2020}, volume = {180}, editor = {Cao, Yixin and Pilipczuk, Marcin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.10}, URN = {urn:nbn:de:0030-drops-133136}, doi = {10.4230/LIPIcs.IPEC.2020.10}, annote = {Keywords: Kernelization, Paw-free graph, H-free editing, graph modification problem} }

Document

**Published in:** LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)

We initiate the parameterized complexity study of minimum t-spanner problems on directed graphs. For a positive integer t, a multiplicative t-spanner of a (directed) graph G is a spanning subgraph H such that the distance between any two vertices in H is at most t times the distance between these vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k, decide whether G has a multiplicative t-spanner with at most m-k arcs. Similarly, Directed Additive Spanner asks whether G has an additive t-spanner with at most m-k arcs. We show that
- Directed Multiplicative Spanner admits a polynomial kernel of size 𝒪(k⁴t⁵) and can be solved in randomized (4t)^k⋅ n^𝒪(1) time,
- Directed Additive Spanner is W[1]-hard when parameterized by k even if t = 1 and the input graphs are restricted to be directed acyclic graphs. The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem for undirected graphs is FPT when parameterized by t and k.

Fedor V. Fomin, Petr A. Golovach, William Lochet, Pranabendu Misra, Saket Saurabh, and Roohani Sharma. Parameterized Complexity of Directed Spanner Problems. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 12:1-12:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.IPEC.2020.12, author = {Fomin, Fedor V. and Golovach, Petr A. and Lochet, William and Misra, Pranabendu and Saurabh, Saket and Sharma, Roohani}, title = {{Parameterized Complexity of Directed Spanner Problems}}, booktitle = {15th International Symposium on Parameterized and Exact Computation (IPEC 2020)}, pages = {12:1--12:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-172-6}, ISSN = {1868-8969}, year = {2020}, volume = {180}, editor = {Cao, Yixin and Pilipczuk, Marcin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.12}, URN = {urn:nbn:de:0030-drops-133156}, doi = {10.4230/LIPIcs.IPEC.2020.12}, annote = {Keywords: Graph spanners, directed graphs, parameterized complexity, kernelization} }

Document

**Published in:** LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)

In the Maximum Degree Contraction problem, input is a graph G on n vertices, and integers k, d, and the objective is to check whether G can be transformed into a graph of maximum degree at most d, using at most k edge contractions. A simple brute-force algorithm that checks all possible sets of edges for a solution runs in time n^𝒪(k). As our first result, we prove that this algorithm is asymptotically optimal, upto constants in the exponents, under Exponential Time Hypothesis (ETH).
Belmonte, Golovach, van't Hof, and Paulusma studied the problem in the realm of Parameterized Complexity and proved, among other things, that it admits an FPT algorithm running in time (d + k)^(2k) ⋅ n^𝒪(1) = 2^𝒪(k log (k+d)) ⋅ n^𝒪(1), and remains NP-hard for every constant d ≥ 2 (Acta Informatica (2014)). We present a different FPT algorithm that runs in time 2^𝒪(dk) ⋅ n^𝒪(1). In particular, our algorithm runs in time 2^𝒪(k) ⋅ n^𝒪(1), for every fixed d. In the same article, the authors asked whether the problem admits a polynomial kernel, when parameterized by k + d. We answer this question in the negative and prove that it does not admit a polynomial compression unless NP ⊆ coNP/poly.

Saket Saurabh and Prafullkumar Tale. On the Parameterized Complexity of Maximum Degree Contraction Problem. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{saurabh_et_al:LIPIcs.IPEC.2020.26, author = {Saurabh, Saket and Tale, Prafullkumar}, title = {{On the Parameterized Complexity of Maximum Degree Contraction Problem}}, booktitle = {15th International Symposium on Parameterized and Exact Computation (IPEC 2020)}, pages = {26:1--26:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-172-6}, ISSN = {1868-8969}, year = {2020}, volume = {180}, editor = {Cao, Yixin and Pilipczuk, Marcin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.26}, URN = {urn:nbn:de:0030-drops-133297}, doi = {10.4230/LIPIcs.IPEC.2020.26}, annote = {Keywords: Graph Contraction Problems, FPT Algorithm, Lower Bound, ETH, No Polynomial Kernel} }

Document

**Published in:** LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)

The Feedback Vertex Set problem is undoubtedly one of the most well-studied problems in Parameterized Complexity. In this problem, given an undirected graph G and a non-negative integer k, the objective is to test whether there exists a subset S ⊆ V(G) of size at most k such that G-S is a forest. After a long line of improvement, recently, Li and Nederlof [SODA, 2020] designed a randomized algorithm for the problem running in time 𝒪^⋆(2.7^k). In the Parameterized Complexity literature, several problems around Feedback Vertex Set have been studied. Some of these include Independent Feedback Vertex Set (where the set S should be an independent set in G), Almost Forest Deletion and Pseudoforest Deletion. In Pseudoforest Deletion, each connected component in G-S has at most one cycle in it. However, in Almost Forest Deletion, the input is a graph G and non-negative integers k,𝓁 ∈ ℕ, and the objective is to test whether there exists a vertex subset S of size at most k, such that G-S is 𝓁 edges away from a forest. In this paper, using the methodology of Li and Nederlof [SODA, 2020], we obtain the current fastest algorithms for all these problems. In particular we obtain following randomized algorithms.
1) Independent Feedback Vertex Set can be solved in time 𝒪^⋆(2.7^k).
2) Pseudo Forest Deletion can be solved in time 𝒪^⋆(2.85^k).
3) Almost Forest Deletion can be solved in 𝒪^⋆(min{2.85^k ⋅ 8.54^𝓁, 2.7^k ⋅ 36.61^𝓁, 3^k ⋅ 1.78^𝓁}).

Kishen N. Gowda, Aditya Lonkar, Fahad Panolan, Vraj Patel, and Saket Saurabh. Improved FPT Algorithms for Deletion to Forest-Like Structures. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 34:1-34:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{gowda_et_al:LIPIcs.ISAAC.2020.34, author = {Gowda, Kishen N. and Lonkar, Aditya and Panolan, Fahad and Patel, Vraj and Saurabh, Saket}, title = {{Improved FPT Algorithms for Deletion to Forest-Like Structures}}, booktitle = {31st International Symposium on Algorithms and Computation (ISAAC 2020)}, pages = {34:1--34:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-173-3}, ISSN = {1868-8969}, year = {2020}, volume = {181}, editor = {Cao, Yixin and Cheng, Siu-Wing and Li, Minming}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.34}, URN = {urn:nbn:de:0030-drops-133781}, doi = {10.4230/LIPIcs.ISAAC.2020.34}, annote = {Keywords: Parameterized Complexity, Independent Feedback Vertex Set, PseudoForest, Almost Forest, Cut and Count, Treewidth} }

Document

**Published in:** LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)

In this paper we consider two classic cut-problems, Global Min-Cut and Min k-Cut, via the lens of fault tolerant network design. In particular, given a graph G on n vertices, and a positive integer f, our objective is to compute an upper bound on the size of the sparsest subgraph H of G that preserves edge connectivity of G (denoted by λ(G)) in the case of Global Min-Cut, and λ(G,k) (denotes the minimum number of edges whose removal would partition the graph into at least k connected components) in the case of Min k-Cut, upon failure of any f edges of G. The subgraph H corresponding to Global Min-Cut and Min k-Cut is called f-FTCS and f-FT-k-CS, respectively. We obtain the following results about the sizes of f-FTCS and f-FT-k-CS.
- There exists an f-FTCS with (n-1)(f+λ(G)) edges. We complement this upper bound with a matching lower bound, by constructing an infinite family of graphs where any f-FTCS must have at least ((n-λ(G)-1)(λ(G)+f-1))/2+(n-λ(G)-1)+/λ(G)(λ(G)+1))/2 edges.
- There exists an f-FT-k-CS with min{(2f+λ(G,k)-(k-1))(n-1), (f+λ(G,k))(n-k)+𝓁} edges. We complement this upper bound with a lower bound, by constructing an infinite family of graphs where any f-FT-k-CS must have at least ((n-λ(G,k)-1)(λ(G,k)+f-k+1))/2)+n-λ(G,k)+k-3+((λ(G,k)-k+3)(λ(G,k)-k+2))/2 edges. Our upper bounds exploit the structural properties of k-connectivity certificates. On the other hand, for our lower bounds we construct an infinite family of graphs, such that for any graph in the family any f-FTCS (or f-FT-k-CS) must contain all its edges. We also add that our upper bounds are constructive. That is, there exist polynomial time algorithms that construct H with the aforementioned number of edges.

Niranka Banerjee, Venkatesh Raman, and Saket Saurabh. Optimal Output Sensitive Fault Tolerant Cuts. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{banerjee_et_al:LIPIcs.FSTTCS.2020.10, author = {Banerjee, Niranka and Raman, Venkatesh and Saurabh, Saket}, title = {{Optimal Output Sensitive Fault Tolerant Cuts}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {10:1--10:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.10}, URN = {urn:nbn:de:0030-drops-132515}, doi = {10.4230/LIPIcs.FSTTCS.2020.10}, annote = {Keywords: Fault tolerant, minimum cuts, upper bound, lower bound} }

Document

**Published in:** LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)

A feedback vertex set in a hypergraph H is a set of vertices S such that deleting S from H results in an acyclic hypergraph. Here, deleting a vertex means removing the vertex and all incident hyperedges, and a hypergraph is acyclic if its vertex-edge incidence graph is acyclic. We study the (parameterized complexity of) the Hypergraph Feedback Vertex Set (HFVS) problem: given as input a hypergraph H and an integer k, determine whether H has a feedback vertex set of size at most k. It is easy to see that this problem generalizes the classic Feedback Vertex Set (FVS) problem on graphs. Remarkably, despite the central role of FVS in parameterized algorithms and complexity, the parameterized complexity of a generalization of FVS to hypergraphs has not been studied previously. In this paper, we fill this void. Our main results are as follows
- HFVS is W[2]-hard (as opposed to FVS, which is fixed parameter tractable).
- If the input hypergraph is restricted to a linear hypergraph (no two hyperedges intersect in more than one vertex), HFVS admits a randomized algorithm with running time 2^{𝒪(k³log k)}n^{𝒪(1)}.
- If the input hypergraph is restricted to a d-hypergraph (hyperedges have cardinality at most d), then HFVS admits a deterministic algorithm with running time d^{𝒪(k)}n^{𝒪(1)}. The algorithm for linear hypergraphs combines ideas from the randomized algorithm for FVS by Becker et al. [J. Artif. Intell. Res., 2000] with the branching algorithm for Point Line Cover by Langerman and Morin [Discrete & Computational Geometry, 2005].

Pratibha Choudhary, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Parameterized Complexity of Feedback Vertex Sets on Hypergraphs. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{choudhary_et_al:LIPIcs.FSTTCS.2020.18, author = {Choudhary, Pratibha and Kanesh, Lawqueen and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket}, title = {{Parameterized Complexity of Feedback Vertex Sets on Hypergraphs}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {18:1--18:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.18}, URN = {urn:nbn:de:0030-drops-132596}, doi = {10.4230/LIPIcs.FSTTCS.2020.18}, annote = {Keywords: feedback vertex sets, hypergraphs, FPT, randomized algorithms} }

Document

**Published in:** LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)

In the Stable Marriage problem, when the preference lists are complete, all agents of the smaller side can be matched. However, this need not be true when preference lists are incomplete. In most real-life situations, where agents participate in the matching market voluntarily and submit their preferences, it is natural to assume that each agent wants to be matched to someone in his/her preference list as opposed to being unmatched. In light of the Rural Hospital Theorem, we have to relax the "no blocking pair" condition for stable matchings in order to match more agents. In this paper, we study the question of matching more agents with fewest possible blocking edges. In particular, the goal is to find a matching whose size exceeds that of a stable matching in the graph by at least t and has at most k blocking edges. We study this question in the realm of parameterized complexity with respect to several natural parameters, k,t,d, where d is the maximum length of a preference list. Unfortunately, the problem remains intractable even for the combined parameter k+t+d. Thus, we extend our study to the local search variant of this problem, in which we search for a matching that not only fulfills each of the above conditions but is "closest", in terms of its symmetric difference to the given stable matching, and obtain an FPT algorithm.

Sushmita Gupta, Pallavi Jain, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. On the (Parameterized) Complexity of Almost Stable Marriage. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.FSTTCS.2020.24, author = {Gupta, Sushmita and Jain, Pallavi and Roy, Sanjukta and Saurabh, Saket and Zehavi, Meirav}, title = {{On the (Parameterized) Complexity of Almost Stable Marriage}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {24:1--24:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.24}, URN = {urn:nbn:de:0030-drops-132655}, doi = {10.4230/LIPIcs.FSTTCS.2020.24}, annote = {Keywords: Stable Matching, Parameterized Complexity, Local Search} }

Document

**Published in:** LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)

We develop new approximation algorithms for classical graph and set problems in the RAM model under space constraints. As one of our main results, we devise an algorithm for d–Hitting Set that runs in time n^{O(d² + (d / ε))}, uses O(d² + (d / ε) log n) bits of space, and achieves an approximation ratio of O((d / ε) n^ε) for any positive ε ≤ 1 and any constant d ∈ ℕ. In particular, this yields a factor-O(d log n) approximation algorithm which uses O(log² n) bits of space. As a corollary, we obtain similar bounds on space and approximation ratio for Vertex Cover and several graph deletion problems. For graphs with maximum degree Δ, one can do better. We give a factor-2 approximation algorithm for Vertex Cover which runs in time n^{O(Δ)} and uses O(Δ log n) bits of space.
For Independent Set on graphs with average degree d, we give a factor-(2d) approximation algorithm which runs in polynomial time and uses O(log n) bits of space. We also devise a factor-O(d²) approximation algorithm for Dominating Set on d-degenerate graphs which runs in time n^{O(log n)} and uses O(log² n) bits of space. For d-regular graphs, we observe that a known randomized algorithm which achieves an approximation ratio of O(log d) can be derandomized to run in polynomial time and use O(log n) bits of space.
Our results use a combination of ideas from the theory of kernelization, distributed algorithms and randomized algorithms.

Arindam Biswas, Venkatesh Raman, and Saket Saurabh. Approximation in (Poly-) Logarithmic Space. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{biswas_et_al:LIPIcs.MFCS.2020.16, author = {Biswas, Arindam and Raman, Venkatesh and Saurabh, Saket}, title = {{Approximation in (Poly-) Logarithmic Space}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {16:1--16:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.16}, URN = {urn:nbn:de:0030-drops-126852}, doi = {10.4230/LIPIcs.MFCS.2020.16}, annote = {Keywords: approximation, logspace, logarithmic, log, space, small, limited, memory, ROM, read-only} }

Document

**Published in:** LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)

In this paper we study two classical cut problems, namely Multicut and Multiway Cut on chordal graphs and split graphs. In the Multicut problem, the input is a graph G, a collection of 𝓁 vertex pairs (s_i, t_i), i ∈ [𝓁], and a positive integer k and the goal is to decide if there exists a vertex subset S ⊆ V(G)⧵ {s_i,t_i : i ∈ [𝓁]} of size at most k such that for every vertex pair (s_i,t_i), s_i and t_i are in two different connected components of G-S. In Unrestricted Multicut, the solution S can possibly pick the vertices in the vertex pairs {(s_i,t_i): i ∈ [𝓁]}. An important special case of the Multicut problem is the Multiway Cut problem, where instead of vertex pairs, we are given a set T of terminal vertices, and the goal is to separate every pair of distinct vertices in T× T. The fixed parameter tractability (FPT) of these problems was a long-standing open problem and has been resolved fairly recently. Multicut and Multiway Cut now admit algorithms with running times 2^{{𝒪}(k³)}n^{{𝒪}(1)} and 2^k n^{{𝒪}(1)}, respectively. However, the kernelization complexity of both these problems is not fully resolved: while Multicut cannot admit a polynomial kernel under reasonable complexity assumptions, it is a well known open problem to construct a polynomial kernel for Multiway Cut. Towards designing faster FPT algorithms and polynomial kernels for the above mentioned problems, we study them on chordal and split graphs. In particular we obtain the following results.
1) Multicut on chordal graphs admits a polynomial kernel with {𝒪}(k³ 𝓁⁷) vertices. Multiway Cut on chordal graphs admits a polynomial kernel with {𝒪}(k^{13}) vertices.
2) Multicut on chordal graphs can be solved in time min {𝒪(2^{k} ⋅ (k³+𝓁) ⋅ (n+m)), 2^{𝒪(𝓁 log k)} ⋅ (n+m) + 𝓁 (n+m)}. Hence Multicut on chordal graphs parameterized by the number of terminals is in XP.
3) Multicut on split graphs can be solved in time min {𝒪(1.2738^k + kn+𝓁(n+m), 𝒪(2^{𝓁} ⋅ 𝓁 ⋅ (n+m))}. Unrestricted Multicut on split graphs can be solved in time 𝒪(4^{𝓁}⋅ 𝓁 ⋅ (n+m)).

Pranabendu Misra, Fahad Panolan, Ashutosh Rai, Saket Saurabh, and Roohani Sharma. Quick Separation in Chordal and Split Graphs. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 70:1-70:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{misra_et_al:LIPIcs.MFCS.2020.70, author = {Misra, Pranabendu and Panolan, Fahad and Rai, Ashutosh and Saurabh, Saket and Sharma, Roohani}, title = {{Quick Separation in Chordal and Split Graphs}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {70:1--70:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.70}, URN = {urn:nbn:de:0030-drops-127391}, doi = {10.4230/LIPIcs.MFCS.2020.70}, annote = {Keywords: chordal graphs, multicut, multiway cut, FPT, kernel} }

Document

**Published in:** LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)

Directed Feedback Vertex Set (DFVS) is a fundamental computational problem that has received extensive attention in parameterized complexity. In this paper, we initiate the study of a wide generalization, the ℋ-SCC Deletion problem. Here, one is given a digraph D, an integer k and the objective is to decide whether there is a vertex set of size at most k whose deletion leaves a digraph where every strong component excludes graphs in the fixed finite family ℋ as (not necessarily induced) subgraphs. When ℋ comprises only the digraph with a single arc, then this problem is precisely DFVS.
Our main result is a proof that this problem is fixed-parameter tractable parameterized by the size of the deletion set if ℋ only contains rooted graphs or if ℋ contains at least one directed path. Along with generalizing the fixed-parameter tractability result for DFVS, our result also generalizes the recent results of Göke et al. [CIAC 2019] for the 1-Out-Regular Vertex Deletion and Bounded Size Strong Component Vertex Deletion problems. Moreover, we design algorithms for the two above mentioned problems, whose running times are better and match with the best bounds for DFVS, without using the heavy machinery of shadow removal as is done by Göke et al. [CIAC 2019].

Rian Neogi, M. S. Ramanujan, Saket Saurabh, and Roohani Sharma. On the Parameterized Complexity of Deletion to ℋ-Free Strong Components. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 75:1-75:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{neogi_et_al:LIPIcs.MFCS.2020.75, author = {Neogi, Rian and Ramanujan, M. S. and Saurabh, Saket and Sharma, Roohani}, title = {{On the Parameterized Complexity of Deletion to ℋ-Free Strong Components}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {75:1--75:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.75}, URN = {urn:nbn:de:0030-drops-127444}, doi = {10.4230/LIPIcs.MFCS.2020.75}, annote = {Keywords: Directed Cut Problems, Fixed-parameter Tractability, DFVS} }

Document

APPROX

**Published in:** LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)

A graph operation that contracts edges is one of the fundamental operations in the theory of graph minors. Parameterized Complexity of editing to a family of graphs by contracting k edges has recently gained substantial scientific attention, and several new results have been obtained. Some important families of graphs, namely the subfamilies of chordal graphs, in the context of edge contractions, have proven to be significantly difficult than one might expect. In this paper, we study the F-Contraction problem, where F is a subfamily of chordal graphs, in the realm of parameterized approximation. Formally, given a graph G and an integer k, F-Contraction asks whether there exists X ⊆ E(G) such that G/X ∈ F and |X| ≤ k. Here, G/X is the graph obtained from G by contracting edges in X. We obtain the following results for the F-Contraction problem.
- Clique Contraction is known to be FPT. However, unless NP ⊆ coNP/poly, it does not admit a polynomial kernel. We show that it admits a polynomial-size approximate kernelization scheme (PSAKS). That is, it admits a (1 + ε)-approximate kernel with {O}(k^{f(ε)}) vertices for every ε > 0.
- Split Contraction is known to be W[1]-Hard. We deconstruct this intractability result in two ways. Firstly, we give a (2+ε)-approximate polynomial kernel for Split Contraction (which also implies a factor (2+ε)-FPT-approximation algorithm for Split Contraction). Furthermore, we show that, assuming Gap-ETH, there is no (5/4-δ)-FPT-approximation algorithm for Split Contraction. Here, ε, δ > 0 are fixed constants.
- Chordal Contraction is known to be W[2]-Hard. We complement this result by observing that the existing W[2]-hardness reduction can be adapted to show that, assuming FPT ≠ W[1], there is no F(k)-FPT-approximation algorithm for Chordal Contraction. Here, F(k) is an arbitrary function depending on k alone. We say that an algorithm is an h(k)-FPT-approximation algorithm for the F-Contraction problem, if it runs in FPT time, and on any input (G, k) such that there exists X ⊆ E(G) satisfying G/X ∈ F and |X| ≤ k, it outputs an edge set Y of size at most h(k) ⋅ k for which G/Y is in F. We find it extremely interesting that three closely related problems have different behavior with respect to FPT-approximation.

Spoorthy Gunda, Pallavi Jain, Daniel Lokshtanov, Saket Saurabh, and Prafullkumar Tale. On the Parameterized Approximability of Contraction to Classes of Chordal Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 51:1-51:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{gunda_et_al:LIPIcs.APPROX/RANDOM.2020.51, author = {Gunda, Spoorthy and Jain, Pallavi and Lokshtanov, Daniel and Saurabh, Saket and Tale, Prafullkumar}, title = {{On the Parameterized Approximability of Contraction to Classes of Chordal Graphs}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)}, pages = {51:1--51:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-164-1}, ISSN = {1868-8969}, year = {2020}, volume = {176}, editor = {Byrka, Jaros{\l}aw and Meka, Raghu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.51}, URN = {urn:nbn:de:0030-drops-126545}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2020.51}, annote = {Keywords: Graph Contraction, FPT-Approximation, Inapproximability, Lossy Kernels} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

We prove that the Hadwiger number of an n-vertex graph G (the maximum size of a clique minor in G) cannot be computed in time n^o(n), unless the Exponential Time Hypothesis (ETH) fails. This resolves a well-known open question in the area of exact exponential algorithms. The technique developed for resolving the Hadwiger number problem has a wider applicability. We use it to rule out the existence of n^o(n)-time algorithms (up to ETH) for a large class of computational problems concerning edge contractions in graphs.

Fedor V. Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and Meirav Zehavi. Computation of Hadwiger Number and Related Contraction Problems: Tight Lower Bounds. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 49:1-49:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2020.49, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Mihajlin, Ivan and Saurabh, Saket and Zehavi, Meirav}, title = {{Computation of Hadwiger Number and Related Contraction Problems: Tight Lower Bounds}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {49:1--49:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.49}, URN = {urn:nbn:de:0030-drops-124568}, doi = {10.4230/LIPIcs.ICALP.2020.49}, annote = {Keywords: Hadwiger Number, Exponential-Time Hypothesis, Exact Algorithms, Edge Contraction Problems} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

In the Split Vertex Deletion (SVD) problem, the input is an n-vertex undirected graph G and a weight function w: V(G) → ℕ, and the objective is to find a minimum weight subset S of vertices such that G-S is a split graph (i.e., there is bipartition of V(G-S) = C ⊎ I such that C is a clique and I is an independent set in G-S). This problem is a special case of 5-Hitting Set and consequently, there is a simple factor 5-approximation algorithm for this. On the negative side, it is easy to show that the problem does not admit a polynomial time (2-δ)-approximation algorithm, for any fixed δ > 0, unless the Unique Games Conjecture fails.
We start by giving a simple quasipolynomial time (n^O(log n)) factor 2-approximation algorithm for SVD using the notion of clique-independent set separating collection. Thus, on the one hand SVD admits a factor 2-approximation in quasipolynomial time, and on the other hand this approximation factor cannot be improved assuming UGC. It naturally leads to the following question: Can SVD be 2-approximated in polynomial time? In this work we almost close this gap and prove that for any ε > 0, there is a n^O(log 1/(ε))-time 2(1+ε)-approximation algorithm.

Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. A (2 + ε)-Factor Approximation Algorithm for Split Vertex Deletion. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 80:1-80:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ICALP.2020.80, author = {Lokshtanov, Daniel and Misra, Pranabendu and Panolan, Fahad and Philip, Geevarghese and Saurabh, Saket}, title = {{A (2 + \epsilon)-Factor Approximation Algorithm for Split Vertex Deletion}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {80:1--80:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.80}, URN = {urn:nbn:de:0030-drops-124879}, doi = {10.4230/LIPIcs.ICALP.2020.80}, annote = {Keywords: Approximation Algorithms, Graph Algorithms, Split Vertex Deletion} }

Document

**Published in:** LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)

For a family of graphs 𝒢, the 𝒢-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide if there exists F ⊆ E(G) of size at most k such that G/F belongs to 𝒢. Here, G/F is the graph obtained from G by contracting all the edges in F. In this article, we initiate the study of Grid Contraction from the parameterized complexity point of view. We present a fixed parameter tractable algorithm, running in time c^k ⋅ |V(G)|^{{O}(1)}, for this problem. We complement this result by proving that unless ETH fails, there is no algorithm for Grid Contraction with running time c^{o(k)} ⋅ |V(G)|^{{O}(1)}. We also present a polynomial kernel for this problem.

Saket Saurabh, Uéverton dos Santos Souza, and Prafullkumar Tale. On the Parameterized Complexity of Grid Contraction. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{saurabh_et_al:LIPIcs.SWAT.2020.34, author = {Saurabh, Saket and Souza, U\'{e}verton dos Santos and Tale, Prafullkumar}, title = {{On the Parameterized Complexity of Grid Contraction}}, booktitle = {17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)}, pages = {34:1--34:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-150-4}, ISSN = {1868-8969}, year = {2020}, volume = {162}, editor = {Albers, Susanne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.34}, URN = {urn:nbn:de:0030-drops-122810}, doi = {10.4230/LIPIcs.SWAT.2020.34}, annote = {Keywords: Grid Contraction, FPT, Kernelization, Lower Bound} }

Document

**Published in:** LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)

The Art Gallery problem is a fundamental visibility problem in Computational Geometry. The input consists of a simple polygon P, (possibly infinite) sets G and C of points within P, and an integer k; the task is to decide if at most k guards can be placed on points in G so that every point in C is visible to at least one guard. In the classic formulation of Art Gallery, G and C consist of all the points within P. Other well-known variants restrict G and C to consist either of all the points on the boundary of P or of all the vertices of P. Recently, three new important discoveries were made: the above mentioned variants of Art Gallery are all W[1]-hard with respect to k [Bonnet and Miltzow, ESA'16], the classic variant has an O(log k)-approximation algorithm [Bonnet and Miltzow, SoCG'17], and it may require irrational guards [Abrahamsen et al., SoCG'17]. Building upon the third result, the classic variant and the case where G consists only of all the points on the boundary of P were both shown to be ∃ℝ-complete [Abrahamsen et al., STOC'18]. Even when both G and C consist only of all the points on the boundary of P, the problem is not known to be in NP.
Given the first discovery, the following question was posed by Giannopoulos [Lorentz Center Workshop, 2016]: Is Art Gallery FPT with respect to r, the number of reflex vertices? In light of the developments above, we focus on the variant where G and C consist of all the vertices of P, called Vertex-Vertex Art Gallery. Apart from being a variant of Art Gallery, this case can also be viewed as the classic Dominating Set problem in the visibility graph of a polygon. In this article, we show that the answer to the question by Giannopoulos is positive: Vertex-Vertex Art Gallery is solvable in time r^O(r²)n^O(1). Furthermore, our approach extends to assert that Vertex-Boundary Art Gallery and Boundary-Vertex Art Gallery are both FPT as well. To this end, we utilize structural properties of "almost convex polygons" to present a two-stage reduction from Vertex-Vertex Art Gallery to a new constraint satisfaction problem (whose solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.

Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. The Parameterized Complexity of Guarding Almost Convex Polygons. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.SoCG.2020.3, author = {Agrawal, Akanksha and Knudsen, Kristine V. K. and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav}, title = {{The Parameterized Complexity of Guarding Almost Convex Polygons}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {3:1--3:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.3}, URN = {urn:nbn:de:0030-drops-121614}, doi = {10.4230/LIPIcs.SoCG.2020.3}, annote = {Keywords: Art Gallery, Reflex vertices, Monotone 2-CSP, Parameterized Complexity, Fixed Parameter Tractability} }

Document

**Published in:** LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)

We present an algorithm for the extensively studied Long Path and Long Cycle problems on unit disk graphs that runs in time 2^{𝒪(√k)}(n+m). Under the Exponential Time Hypothesis, Long Path and Long Cycle on unit disk graphs cannot be solved in time 2^{o(√k)}(n+m)^𝒪(1) [de Berg et al., STOC 2018], hence our algorithm is optimal. Besides the 2^{𝒪(√k)}(n+m)^𝒪(1)-time algorithm for the (arguably) much simpler Vertex Cover problem by de Berg et al. [STOC 2018] (which easily follows from the existence of a 2k-vertex kernel for the problem), this is the only known ETH-optimal fixed-parameter tractable algorithm on UDGs. Previously, Long Path and Long Cycle on unit disk graphs were only known to be solvable in time 2^{𝒪(√klog k)}(n+m). This algorithm involved the introduction of a new type of a tree decomposition, entailing the design of a very tedious dynamic programming procedure. Our algorithm is substantially simpler: we completely avoid the use of this new type of tree decomposition. Instead, we use a marking procedure to reduce the problem to (a weighted version of) itself on a standard tree decomposition of width 𝒪(√k).

Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 44:1-44:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.SoCG.2020.44, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Zehavi, Meirav}, title = {{ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {44:1--44:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.44}, URN = {urn:nbn:de:0030-drops-122024}, doi = {10.4230/LIPIcs.SoCG.2020.44}, annote = {Keywords: Optimality Program, ETH, Unit Disk Graphs, Parameterized Complexity, Long Path, Long Cycle} }

Document

**Published in:** LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)

Parameterization above a guarantee is a successful paradigm in Parameterized Complexity. To the best of our knowledge, all fixed-parameter tractable problems in this paradigm share an additive form defined as follows. Given an instance (I,k) of some (parameterized) problem Π with a guarantee g(I), decide whether I admits a solution of size at least (at most) k+g(I). Here, g(I) is usually a lower bound (resp. upper bound) on the maximum (resp. minimum) size of a solution. Since its introduction in 1999 for Max SAT and Max Cut (with g(I) being half the number of clauses and half the number of edges, respectively, in the input), analysis of parameterization above a guarantee has become a very active and fruitful topic of research.
We highlight a multiplicative form of parameterization above a guarantee: Given an instance (I,k) of some (parameterized) problem Π with a guarantee g(I), decide whether I admits a solution of size at least (resp. at most) k ⋅ g(I). In particular, we study the Long Cycle problem with a multiplicative parameterization above the girth g(I) of the input graph, and provide a parameterized algorithm for this problem. Apart from being of independent interest, this exemplifies how parameterization above a multiplicative guarantee can arise naturally. We also show that, for any fixed constant ε>0, multiplicative parameterization above g(I)^(1+ε) of Long Cycle yields para-NP-hardness, thus our parameterization is tight in this sense. We complement our main result with the design (or refutation of the existence) of algorithms for other problems parameterized multiplicatively above girth.

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Parameterization Above a Multiplicative Guarantee. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 39:1-39:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ITCS.2020.39, author = {Fomin, Fedor V. and Golovach, Petr A. and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Zehavi, Meirav}, title = {{Parameterization Above a Multiplicative Guarantee}}, booktitle = {11th Innovations in Theoretical Computer Science Conference (ITCS 2020)}, pages = {39:1--39:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-134-4}, ISSN = {1868-8969}, year = {2020}, volume = {151}, editor = {Vidick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.39}, URN = {urn:nbn:de:0030-drops-117248}, doi = {10.4230/LIPIcs.ITCS.2020.39}, annote = {Keywords: Parameterized Complexity, Above-Guarantee Parameterization, Girth} }

Document

**Published in:** LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)

In the past decade, the design of fault tolerant data structures for networks has become a central topic of research. Particular attention has been given to the construction of a subgraph H of a given digraph D with as fewest arcs/vertices as possible such that, after the failure of any set F of at most k ≥ 1 arcs, testing whether D-F has a certain property P is equivalent to testing whether H-F has that property. Here, reachability (or, more generally, distance preservation) is the most basic requirement to maintain to ensure that the network functions properly. Given a vertex s ∈ V(D), Baswana et al. [STOC'16] presented a construction of H with O(2^kn) arcs in time O(2^{k}nm) where n=|V(D)| and m= |E(D)| such that for any vertex v ∈ V(D): if there exists a path from s to v in D-F, then there also exists a path from s to v in H-F. Additionally, they gave a tight matching lower bound. While the question of the improvement of the dependency on k arises for special classes of digraphs, an arguably more basic research direction concerns the dependency on n (for reachability between a pair of vertices s,t ∈ V(D)) - which are the largest classes of digraphs where the dependency on n can be made sublinear, logarithmic or even constant? Already for the simple classes of directed paths and tournaments, Ω(n) arcs are mandatory. Nevertheless, we prove that "almost acyclicity" suffices to eliminate the dependency on n entirely for a broad class of dense digraphs called bounded independence digraphs. Also, the dependence in k is only a polynomial factor for this class of digraphs. In fact, our sparsification procedure extends to preserve parity-based reachability. Additionally, it finds notable applications in Kernelization: we prove that the classic Directed Feedback Arc Set (DFAS) problem as well as Directed Edge Odd Cycle Transversal (DEOCT) (which, in sharp contrast to DFAS, is W[1]-hard on general digraphs) admit polynomial kernels on bounded independence digraphs. In fact, for any p ∈ N, we can design a polynomial kernel for the problem of hitting all cycles of length ℓ where (ℓ mod p = 1). As a complementary result, we prove that DEOCT is NP-hard on tournaments by establishing a combinatorial identity between the minimum size of a feedback arc set and the minimum size of an edge odd cycle transversal. In passing, we also improve upon the running time of the sub-exponential FPT algorithm for DFAS in digraphs of bounded independence number given by Misra et at. [FSTTCS 2018], and give the first sub-exponential FPT algorithm for DEOCT in digraphs of bounded independence number.

William Lochet, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Fault Tolerant Subgraphs with Applications in Kernelization. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 47:1-47:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{lochet_et_al:LIPIcs.ITCS.2020.47, author = {Lochet, William and Lokshtanov, Daniel and Misra, Pranabendu and Saurabh, Saket and Sharma, Roohani and Zehavi, Meirav}, title = {{Fault Tolerant Subgraphs with Applications in Kernelization}}, booktitle = {11th Innovations in Theoretical Computer Science Conference (ITCS 2020)}, pages = {47:1--47:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-134-4}, ISSN = {1868-8969}, year = {2020}, volume = {151}, editor = {Vidick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.47}, URN = {urn:nbn:de:0030-drops-117326}, doi = {10.4230/LIPIcs.ITCS.2020.47}, annote = {Keywords: sparsification, kernelization, fault tolerant subgraphs, directed feedback arc set, directed edge odd cycle transversal, bounded independence number digraphs} }

Document

**Published in:** LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)

In this work, we initiate the study of the Min-Ones d-SAT problem in the parameterized streaming model. An instance of the problem consists of a d-CNF formula F and an integer k, and the objective is to determine if F has a satisfying assignment which sets at most k variables to 1. In the parameterized streaming model, input is provided as a stream, just as in the usual streaming model. A key difference is that the bound on the read-write memory available to the algorithm is O(f(k) log n) (f: N -> N, a computable function) as opposed to the O(log n) bound of the usual streaming model. The other important difference is that the number of passes the algorithm makes over its input must be a (preferably small) function of k.
We design a (k + 1)-pass parameterized streaming algorithm that solves Min-Ones d-SAT (d >= 2) using space O((kd^(ck) + k^d)log n) (c > 0, a constant) and a (d + 1)^k-pass algorithm that uses space O(k log n). We also design a streaming kernelization for Min-Ones 2-SAT that makes (k + 2) passes and uses space O(k^6 log n) to produce a kernel with O(k^6) clauses.
To complement these positive results, we show that any k-pass algorithm for or Min-Ones d-SAT (d >= 2) requires space Omega(max{n^(1/k) / 2^k, log(n / k)}) on instances (F, k). This is achieved via a reduction from the streaming problem POT Pointer Chasing (Guha and McGregor [ICALP 2008]), which might be of independent interest. Given this, our (k + 1)-pass parameterized streaming algorithm is the best possible, inasmuch as the number of passes is concerned.
In contrast to the results of Fafianie and Kratsch [MFCS 2014] and Chitnis et al. [SODA 2015], who independently showed that there are 1-pass parameterized streaming algorithms for Vertex Cover (a restriction of Min-Ones 2-SAT), we show using lower bounds from Communication Complexity that for any d >= 1, a 1-pass streaming algorithm for Min-Ones d-SAT requires space Omega(n). This excludes the possibility of a 1-pass parameterized streaming algorithm for the problem. Additionally, we show that any p-pass algorithm for the problem requires space Omega(n/p).

Akanksha Agrawal, Arindam Biswas, Édouard Bonnet, Nick Brettell, Radu Curticapean, Dániel Marx, Tillmann Miltzow, Venkatesh Raman, and Saket Saurabh. Parameterized Streaming Algorithms for Min-Ones d-SAT. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.FSTTCS.2019.8, author = {Agrawal, Akanksha and Biswas, Arindam and Bonnet, \'{E}douard and Brettell, Nick and Curticapean, Radu and Marx, D\'{a}niel and Miltzow, Tillmann and Raman, Venkatesh and Saurabh, Saket}, title = {{Parameterized Streaming Algorithms for Min-Ones d-SAT}}, booktitle = {39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)}, pages = {8:1--8:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-131-3}, ISSN = {1868-8969}, year = {2019}, volume = {150}, editor = {Chattopadhyay, Arkadev and Gastin, Paul}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.8}, URN = {urn:nbn:de:0030-drops-115708}, doi = {10.4230/LIPIcs.FSTTCS.2019.8}, annote = {Keywords: min, ones, sat, d-sat, parameterized, kernelization, streaming, space, efficient, algorithm, parameter} }

Document

**Published in:** LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)

In this paper, we introduce a directed variant of the classical Bandwidth problem and study it from the view-point of moderately exponential time algorithms, both exactly and approximately. Motivated by the definitions of the directed variants of the classical Cutwidth and Pathwidth problems, we define Digraph Bandwidth as follows. Given a digraph D and an ordering sigma of its vertices, the digraph bandwidth of sigma with respect to D is equal to the maximum value of sigma(v)-sigma(u) over all arcs (u,v) of D going forward along sigma (that is, when sigma(u) < sigma (v)). The Digraph Bandwidth problem takes as input a digraph D and asks to output an ordering with the minimum digraph bandwidth. The undirected Bandwidth easily reduces to Digraph Bandwidth and thus, it immediately implies that Directed Bandwidth is {NP-hard}. While an O^*(n!) time algorithm for the problem is trivial, the goal of this paper is to design algorithms for Digraph Bandwidth which have running times of the form 2^O(n). In particular, we obtain the following results. Here, n and m denote the number of vertices and arcs of the input digraph D, respectively.
- Digraph Bandwidth can be solved in O^*(3^n * 2^m) time. This result implies a 2^O(n) time algorithm on sparse graphs, such as graphs of bounded average degree.
- Let G be the underlying undirected graph of the input digraph. If the treewidth of G is at most t, then Digraph Bandwidth can be solved in time O^*(2^(n + (t+2) log n)). This result implies a 2^(n+O(sqrt(n) log n)) algorithm for directed planar graphs and, in general, for the class of digraphs whose underlying undirected graph excludes some fixed graph H as a minor.
- Digraph Bandwidth can be solved in min{O^*(4^n * b^n), O^*(4^n * 2^(b log b log n))} time, where b denotes the optimal digraph bandwidth of D. This allow us to deduce a 2^O(n) algorithm in many cases, for example when b <= n/(log^2n).
- Finally, we give a (Single) Exponential Time Approximation Scheme for Digraph Bandwidth. In particular, we show that for any fixed real epsilon > 0, we can find an ordering whose digraph bandwidth is at most (1+epsilon) times the optimal digraph bandwidth, in time O^*(4^n * (ceil[4/epsilon])^n).

Pallavi Jain, Lawqueen Kanesh, William Lochet, Saket Saurabh, and Roohani Sharma. Exact and Approximate Digraph Bandwidth. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.FSTTCS.2019.18, author = {Jain, Pallavi and Kanesh, Lawqueen and Lochet, William and Saurabh, Saket and Sharma, Roohani}, title = {{Exact and Approximate Digraph Bandwidth}}, booktitle = {39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)}, pages = {18:1--18:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-131-3}, ISSN = {1868-8969}, year = {2019}, volume = {150}, editor = {Chattopadhyay, Arkadev and Gastin, Paul}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.18}, URN = {urn:nbn:de:0030-drops-115802}, doi = {10.4230/LIPIcs.FSTTCS.2019.18}, annote = {Keywords: directed bandwidth, digraph bandwidth, approximation scheme, exact exponential algorithms} }

Document

**Published in:** LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)

Given a symmetric l x l matrix M=(m_{i,j}) with entries in {0,1,*}, a graph G and a function L : V(G) - > 2^{[l]} (where [l] = {1,2,...,l}), a list M-partition of G with respect to L is a partition of V(G) into l parts, say, V_1, V_2, ..., V_l such that for each i,j in {1,2,...,l}, (i) if m_{i,j}=0 then for any u in V_i and v in V_j, uv not in E(G), (ii) if m_{i,j}=1 then for any (distinct) u in V_i and v in V_j, uv in E(G), (iii) for each v in V(G), if v in V_i then i in L(v). We consider the Deletion to List M-Partition problem that takes as input a graph G, a list function L:V(G) - > 2^[l] and a positive integer k. The aim is to determine whether there is a k-sized set S subseteq V(G) such that G-S has a list M-partition. Many important problems like Vertex Cover, Odd Cycle Transversal, Split Vertex Deletion, Multiway Cut and Deletion to List Homomorphism are special cases of the Deletion to List M-Partition problem. In this paper, we provide a classification of the parameterized complexity of Deletion to List M-Partition, parameterized by k, (a) when M is of order at most 3, and (b) when M is of order 4 with all diagonal entries belonging to {0,1}.

Akanksha Agrawal, Sudeshna Kolay, Jayakrishnan Madathil, and Saket Saurabh. Parameterized Complexity Classification of Deletion to List Matrix-Partition for Low-Order Matrices. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.ISAAC.2019.41, author = {Agrawal, Akanksha and Kolay, Sudeshna and Madathil, Jayakrishnan and Saurabh, Saket}, title = {{Parameterized Complexity Classification of Deletion to List Matrix-Partition for Low-Order Matrices}}, booktitle = {30th International Symposium on Algorithms and Computation (ISAAC 2019)}, pages = {41:1--41:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-130-6}, ISSN = {1868-8969}, year = {2019}, volume = {149}, editor = {Lu, Pinyan and Zhang, Guochuan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.41}, URN = {urn:nbn:de:0030-drops-115372}, doi = {10.4230/LIPIcs.ISAAC.2019.41}, annote = {Keywords: list matrix partitions, parameterized classification, Almost 2-SAT, important separators, iterative compression} }

Document

**Published in:** LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)

An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree at most d. By the classical theorem of Erdős and Gallai from 1959, every graph of degeneracy d>1 contains a cycle of length at least d+1. The proof of Erdős and Gallai is constructive and can be turned into a polynomial time algorithm constructing a cycle of length at least d+1. But can we decide in polynomial time whether a graph contains a cycle of length at least d+2? An easy reduction from Hamiltonian Cycle provides a negative answer to this question: Deciding whether a graph has a cycle of length at least d+2 is NP-complete. Surprisingly, the complexity of the problem changes drastically when the input graph is 2-connected. In this case we prove that deciding whether G contains a cycle of length at least d+k can be done in time 2^{O(k)}|V(G)|^O(1). In other words, deciding whether a 2-connected n-vertex G contains a cycle of length at least d+log{n} can be done in polynomial time. Similar algorithmic results hold for long paths in graphs. We observe that deciding whether a graph has a path of length at least d+1 is NP-complete. However, we prove that if graph G is connected, then deciding whether G contains a path of length at least d+k can be done in time 2^{O(k)}n^O(1). We complement these results by showing that the choice of degeneracy as the "above guarantee parameterization" is optimal in the following sense: For any epsilon>0 it is NP-complete to decide whether a connected (2-connected) graph of degeneracy d has a path (cycle) of length at least (1+epsilon)d.

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Going Far From Degeneracy. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 47:1-47:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2019.47, author = {Fomin, Fedor V. and Golovach, Petr A. and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Zehavi, Meirav}, title = {{Going Far From Degeneracy}}, booktitle = {27th Annual European Symposium on Algorithms (ESA 2019)}, pages = {47:1--47:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-124-5}, ISSN = {1868-8969}, year = {2019}, volume = {144}, editor = {Bender, Michael A. and Svensson, Ola and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.47}, URN = {urn:nbn:de:0030-drops-111688}, doi = {10.4230/LIPIcs.ESA.2019.47}, annote = {Keywords: Longest path, longest cycle, fixed-parameter tractability, above guarantee parameterization} }

Document

**Published in:** LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)

A tournament is a directed graph in which there is a single arc between every pair of distinct vertices. Given a tournament T on n vertices, we explore the classical and parameterized complexity of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint cycles) of size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We refer to these problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint Triangles in Tournaments (ATT), respectively. Although the maximization version of ACT can be seen as the linear programming dual of the well-studied problem of finding a minimum feedback arc set (a set of arcs whose deletion results in an acyclic graph) in tournaments, surprisingly no algorithmic results seem to exist for ACT. We first show that ACT and ATT are both NP-complete. Then, we show that the problem of determining if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete. Next, we prove that ACT and ATT are fixed-parameter tractable, they can be solved in 2^{O(k log k)} n^{O(1)} time and 2^{O(k)} n^{O(1)} time respectively. Moreover, they both admit a kernel with O(k) vertices. We also prove that ACT and ATT cannot be solved in 2^{o(sqrt{k})} n^{O(1)} time under the Exponential-Time Hypothesis.

Stéphane Bessy, Marin Bougeret, R. Krithika, Abhishek Sahu, Saket Saurabh, Jocelyn Thiebaut, and Meirav Zehavi. Packing Arc-Disjoint Cycles in Tournaments. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.MFCS.2019.27, author = {Bessy, St\'{e}phane and Bougeret, Marin and Krithika, R. and Sahu, Abhishek and Saurabh, Saket and Thiebaut, Jocelyn and Zehavi, Meirav}, title = {{Packing Arc-Disjoint Cycles in Tournaments}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {27:1--27:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.27}, URN = {urn:nbn:de:0030-drops-109714}, doi = {10.4230/LIPIcs.MFCS.2019.27}, annote = {Keywords: arc-disjoint cycle packing, tournaments, parameterized algorithms, kernelization} }

Document

**Published in:** LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)

An input to a conflict-free variant of a classical problem Gamma, called Conflict-Free Gamma, consists of an instance I of Gamma coupled with a graph H, called the conflict graph. A solution to Conflict-Free Gamma in (I,H) is a solution to I in Gamma, which is also an independent set in H. In this paper, we study conflict-free variants of Maximum Matching and Shortest Path, which we call Conflict-Free Matching (CF-Matching) and Conflict-Free Shortest Path (CF-SP), respectively. We show that both CF-Matching and CF-SP are W[1]-hard, when parameterized by the solution size. Moreover, W[1]-hardness for CF-Matching holds even when the input graph where we want to find a matching is itself a matching, and W[1]-hardness for CF-SP holds for conflict graph being a unit-interval graph. Next, we study these problems with restriction on the conflict graphs. We give FPT algorithms for CF-Matching when the conflict graph is chordal. Also, we give FPT algorithms for both CF-Matching and CF-SP, when the conflict graph is d-degenerate. Finally, we design FPT algorithms for variants of CF-Matching and CF-SP, where the conflicting conditions are given by a (representable) matroid.

Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, and Saket Saurabh. Parameterized Complexity of Conflict-Free Matchings and Paths. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 35:1-35:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.MFCS.2019.35, author = {Agrawal, Akanksha and Jain, Pallavi and Kanesh, Lawqueen and Saurabh, Saket}, title = {{Parameterized Complexity of Conflict-Free Matchings and Paths}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {35:1--35:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.35}, URN = {urn:nbn:de:0030-drops-109798}, doi = {10.4230/LIPIcs.MFCS.2019.35}, annote = {Keywords: Conflict-free, Matching, Shortest Path, FPT algorithm, W\lbrack1\rbrack-hard, Matroid} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

A graph G is contractible to a graph H if there is a set X subseteq E(G), such that G/X is isomorphic to H. Here, G/X is the graph obtained from G by contracting all the edges in X. For a family of graphs F, the F-Contraction problem takes as input a graph G on n vertices, and the objective is to output the largest integer t, such that G is contractible to a graph H in F, where |V(H)|=t. When F is the family of paths, then the corresponding F-Contraction problem is called Path Contraction. The problem Path Contraction admits a simple algorithm running in time 2^n * n^{O(1)}. In spite of the deceptive simplicity of the problem, beating the 2^n * n^{O(1)} bound for Path Contraction seems quite challenging. In this paper, we design an exact exponential time algorithm for Path Contraction that runs in time 1.99987^n * n^{O(1)}. We also define a problem called 3-Disjoint Connected Subgraphs, and design an algorithm for it that runs in time 1.88^n * n^{O(1)}. The above algorithm is used as a sub-routine in our algorithm for Path Contraction.

Akanksha Agrawal, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Prafullkumar Tale. Path Contraction Faster Than 2^n. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 11:1-11:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.ICALP.2019.11, author = {Agrawal, Akanksha and Fomin, Fedor V. and Lokshtanov, Daniel and Saurabh, Saket and Tale, Prafullkumar}, title = {{Path Contraction Faster Than 2^n}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {11:1--11:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.11}, URN = {urn:nbn:de:0030-drops-105874}, doi = {10.4230/LIPIcs.ICALP.2019.11}, annote = {Keywords: path contraction, exact exponential time algorithms, graph algorithms, enumerating connected sets, 3-disjoint connected subgraphs} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)^km epsilon^{-2})-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 +/- epsilon. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] gave a deterministic exponential-space algorithm with running time (2e)^{k+O(log^3k)}m log n whenever epsilon^{-1}=k^{O(1)}. Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing randomization. Specifically, they gave a randomized O(4^km epsilon^{-2})-time exponential-space algorithm. In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their work, and with a novel twist, obtain the following results.
- We present a deterministic 4^{k+O(sqrt{k}(log^2k+log^2 epsilon^{-1}))}m log n-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices.
- Additionally, we present a randomized 4^{k+O(log k(log k + log epsilon^{-1}))}m log n-time polynomial-space algorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very simple; we only make elementary use of the probabilistic method.
Thus, the algorithm by Brand et al. runs in time 4^{k+o(k)}m whenever epsilon^{-1}=2^{o(k)}, while our deterministic and randomized algorithms run in time 4^{k+o(k)}m log n whenever epsilon^{-1}=2^{o(k^{1/4})} and epsilon^{-1}=2^{o(k/(log k))}, respectively. Prior to our work, no 2^{O(k)}n^{O(1)}-time polynomial-space algorithm was known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence it immediately extends to approximate counting of graphs of bounded treewidth; in comparison, Brand et al. note that their approach is limited to graphs of bounded pathwidth.

Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Approximate Counting of k-Paths: Deterministic and in Polynomial Space. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2019.24, author = {Bj\"{o}rklund, Andreas and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav}, title = {{Approximate Counting of k-Paths: Deterministic and in Polynomial Space}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {24:1--24:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.24}, URN = {urn:nbn:de:0030-drops-106001}, doi = {10.4230/LIPIcs.ICALP.2019.24}, annote = {Keywords: parameterized complexity, approximate counting, \{ k\}-Path} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I +P, where I is the incidence matrix of some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a number of theoretical and applied settings. The main motivation behind our work is an attempt to understand which parameterized algorithms for various problems on graphs could be lifted to perturbed graphic matroids.
We study the parameterized complexity of a natural generalization (for matroids) of the following fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals T subseteq E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset of E \ T of size at most k.
We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when parameterized by r+k+|T| and it is NP-complete for r <= 2 and |T|<= 2.
On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized by r+k.

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Covering Vectors by Spaces in Perturbed Graphic Matroids and Their Duals. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 59:1-59:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2019.59, author = {Fomin, Fedor V. and Golovach, Petr A. and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav}, title = {{Covering Vectors by Spaces in Perturbed Graphic Matroids and Their Duals}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {59:1--59:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.59}, URN = {urn:nbn:de:0030-drops-106351}, doi = {10.4230/LIPIcs.ICALP.2019.59}, annote = {Keywords: Binary matroids, perturbed graphic matroids, spanning set, parameterized complexity} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

Bidimensionality is the most common technique to design subexponential-time parameterized algorithms on special classes of graphs, particularly planar graphs. The core engine behind it is a combinatorial lemma of Robertson, Seymour and Thomas that states that every planar graph either has a sqrt{k} x sqrt{k}-grid as a minor, or its treewidth is O(sqrt{k}). However, bidimensionality theory cannot be extended directly to several well-known classes of geometric graphs like unit disk or map graphs. This is mainly due to the presence of large cliques in these classes of graphs. Nevertheless, a relaxation of this lemma has been proven useful for unit disk graphs. Inspired by this, we prove a new decomposition lemma for map graphs, the intersection graphs of finitely many simply-connected and interior-disjoint regions of the Euclidean plane. Informally, our lemma states the following. For any map graph G, there exists a collection (U_1,...,U_t) of cliques of G with the following property: G either contains a sqrt{k} x sqrt{k}-grid as a minor, or it admits a tree decomposition where every bag is the union of O(sqrt{k}) cliques in the above collection.
The new lemma appears to be a handy tool in the design of subexponential parameterized algorithms on map graphs. We demonstrate its usability by designing algorithms on map graphs with running time 2^{O({sqrt{k}log{k}})} * n^{O(1)} for Connected Planar F-Deletion (that encompasses problems such as Feedback Vertex Set and Vertex Cover). Obtaining subexponential algorithms for Longest Cycle/Path and Cycle Packing is more challenging. We have to construct tree decompositions with more powerful properties and to prove sublinear bounds on the number of ways an optimum solution could "cross" bags in these decompositions.
For Longest Cycle/Path, these are the first subexponential-time parameterized algorithm on map graphs. For Feedback Vertex Set and Cycle Packing, we improve upon known 2^{O({k^{0.75}log{k}})} * n^{O(1)}-time algorithms on map graphs.

Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Decomposition of Map Graphs with Applications. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 60:1-60:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2019.60, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Zehavi, Meirav}, title = {{Decomposition of Map Graphs with Applications}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {60:1--60:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.60}, URN = {urn:nbn:de:0030-drops-106366}, doi = {10.4230/LIPIcs.ICALP.2019.60}, annote = {Keywords: Longest Cycle, Cycle Packing, Feedback Vertex Set, Map Graphs, FPT} }

Document

**Published in:** Dagstuhl Reports, Volume 9, Issue 1 (2019)

This report documents the program and the outcomes of Dagstuhl Seminar 19041 "New Horizons in Parameterized Complexity".
Parameterized Complexity is celebrating its 30th birthday in 2019. In these three decades, there has been tremendous progress in developing the area. The central vision of Parameterized Complexity through all these years has been to provide the algorithmic and complexity-theoretic toolkit for studying multivariate algorithmics in different disciplines and subfields of Computer Science. These tools are universal as they did not only help in the development of the core of Parameterized Complexity, but also led to its success in other subfields of Computer Science such as Approximation Algorithms, Computational Social Choice, Computational Geometry, problems solvable in P (polynomial time), to name a few.
In the last few years, we have witnessed several exciting developments of new parameterized techniques and tools in the following subfields of Computer Science and Optimization: Mathematical Programming, Computational Linear Algebra, Computational Counting, Derandomization, and Approximation Algorithms.
The main objective of the seminar was to initiate the discussion on which of the recent
domain-specific algorithms and complexity advances can become useful in other domains.

Fedor V. Fomin, Dániel Marx, Saket Saurabh, and Meirav Zehavi. New Horizons in Parameterized Complexity (Dagstuhl Seminar 19041). In Dagstuhl Reports, Volume 9, Issue 1, pp. 67-87, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@Article{fomin_et_al:DagRep.9.1.67, author = {Fomin, Fedor V. and Marx, D\'{a}niel and Saurabh, Saket and Zehavi, Meirav}, title = {{New Horizons in Parameterized Complexity (Dagstuhl Seminar 19041)}}, pages = {67--87}, journal = {Dagstuhl Reports}, ISSN = {2192-5283}, year = {2019}, volume = {9}, number = {1}, editor = {Fomin, Fedor V. and Marx, D\'{a}niel and Saurabh, Saket and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.9.1.67}, URN = {urn:nbn:de:0030-drops-105706}, doi = {10.4230/DagRep.9.1.67}, annote = {Keywords: Intractability, Parameterized Complexity} }

Document

**Published in:** LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)

We study a prototype Crossing Minimization problem, defined as follows. Let F be an infinite family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in the Euclidean plane, a collection L subseteq Lines(P)={l: l is a line segment with both endpoints in P}, and a non-negative integer k, decide if there is a subcollection L'subseteq L such that the graph G=(P,L') is isomorphic to a graph in F and L' has at most k crossings. By G=(P,L'), we refer to the graph on vertex set P, where two vertices are adjacent if and only if there is a line segment that connects them in L'. Intuitively, in Crossing Minimization, we have a set of locations of interest, and we want to build/draw/exhibit connections between them (where L indicates where it is feasible to have these connections) so that we obtain a structure in F. Natural choices for F are the collections of perfect matchings, Hamiltonian paths, and graphs that contain an (s,t)-path (a path whose endpoints are labeled). While the objective of seeking a solution with few crossings is of interest from a theoretical point of view, it is also well motivated by a wide range of practical considerations. For example, links/roads (such as highways) may be cheaper to build and faster to traverse, and signals/moving objects would collide/interrupt each other less often. Further, graphs with fewer crossings are preferred for graphic user interfaces.
As a starting point for a systematic study, we consider a special case of Crossing Minimization. Already for this case, we obtain NP-hardness and W[1]-hardness results, and ETH-based lower bounds. Specifically, suppose that the input also contains a collection D of d non-crossing line segments such that each point in P belongs to exactly one line in D, and L does not contain line segments between points on the same line in D. Clearly, Crossing Minimization is the case where d=n - then, P is in general position. The case of d=2 is of interest not only because it is the most restricted non-trivial case, but also since it corresponds to a class of graphs that has been well studied - specifically, it is Crossing Minimization where G=(P,L) is a (bipartite) graph with a so called two-layer drawing. For d=2, we consider three basic choices of F. For perfect matchings, we show (i) NP-hardness with an ETH-based lower bound, (ii) solvability in subexponential parameterized time, and (iii) existence of an O(k^2)-vertex kernel. Second, for Hamiltonian paths, we show (i) solvability in subexponential parameterized time, and (ii) existence of an O(k^2)-vertex kernel. Lastly, for graphs that contain an (s,t)-path, we show (i) NP-hardness and W[1]-hardness, and (ii) membership in XP.

Akanksha Agrawal, Grzegorz Guśpiel, Jayakrishnan Madathil, Saket Saurabh, and Meirav Zehavi. Connecting the Dots (with Minimum Crossings). In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.SoCG.2019.7, author = {Agrawal, Akanksha and Gu\'{s}piel, Grzegorz and Madathil, Jayakrishnan and Saurabh, Saket and Zehavi, Meirav}, title = {{Connecting the Dots (with Minimum Crossings)}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {7:1--7:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.7}, URN = {urn:nbn:de:0030-drops-104117}, doi = {10.4230/LIPIcs.SoCG.2019.7}, annote = {Keywords: crossing minimization, parameterized complexity, FPT algorithm, polynomial kernel, W\lbrack1\rbrack-hardness} }

Document

**Published in:** LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)

Hubs are high-degree nodes within a network. The examination of the emergence and centrality of hubs lies at the heart of many studies of complex networks such as telecommunication networks, biological networks, social networks and semantic networks. Furthermore, identifying and allocating hubs are routine tasks in applications. In this paper, we do not seek a hub that is a single node, but a hub that consists of k nodes. Formally, given a graph G=(V,E), we a seek a set A subseteq V of size k that induces a connected subgraph from which at least p edges emanate. Thus, we identify k nodes which can act as a unit (due to the connectivity constraint) that is a hub (due to the cut constraint). This problem, which we call Multi-Node Hub (MNH), can also be viewed as a variant of the classic Max Cut problem. While it is easy to see that MNH is W[1]-hard with respect to the parameter k, our main contribution is the first parameterized algorithm that shows that MNH is FPT with respect to the parameter p.
Despite recent breakthrough advances for cut-problems like Multicut and Minimum Bisection, MNH is still very challenging. Not only does a connectivity constraint has to be handled on top of the involved machinery developed for these problems, but also the fact that MNH is a maximization problem seems to prevent the applicability of this machinery in the first place. To deal with the latter issue, we give non-trivial reduction rules that show how MNH can be preprocessed into a problem where it is necessary to delete a bounded-in-parameter number of vertices. Then, to handle the connectivity constraint, we use a novel application of the form of tree decomposition introduced by Cygan et al. [STOC 2014] to solve Minimum Bisection, where we demonstrate how connectivity constraints can be replaced by simpler size constraints. Our approach may be relevant to the design of algorithms for other cut-problems of this nature.

Saket Saurabh and Meirav Zehavi. Parameterized Complexity of Multi-Node Hubs. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{saurabh_et_al:LIPIcs.IPEC.2018.8, author = {Saurabh, Saket and Zehavi, Meirav}, title = {{Parameterized Complexity of Multi-Node Hubs}}, booktitle = {13th International Symposium on Parameterized and Exact Computation (IPEC 2018)}, pages = {8:1--8:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-084-2}, ISSN = {1868-8969}, year = {2019}, volume = {115}, editor = {Paul, Christophe and Pilipczuk, Michal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.8}, URN = {urn:nbn:de:0030-drops-102090}, doi = {10.4230/LIPIcs.IPEC.2018.8}, annote = {Keywords: hub, bisection, tree decomposition} }

Document

**Published in:** LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)

A generalization of classical cycle hitting problems, called conflict version of the problem, is defined as follows. An input is undirected graphs G and H on the same vertex set, and a positive integer k, and the objective is to decide whether there exists a vertex subset X subseteq V(G) such that it intersects all desired "cycles" (all cycles or all odd cycles or all even cycles) and X is an independent set in H. In this paper we study the conflict version of classical Feedback Vertex Set, and Odd Cycle Transversal problems, from the view point of kernelization complexity. In particular, we obtain the following results, when the conflict graph H belongs to the family of d-degenerate graphs.
1) CF-FVS admits a O(k^{O(d)}) kernel.
2) CF-OCT does not admit polynomial kernel (even when H is 1-degenerate), unless NP subseteq coNP/poly.
For our kernelization algorithm we exploit ideas developed for designing polynomial kernels for the classical Feedback Vertex Set problem, as well as, devise new reduction rules that exploit degeneracy crucially. Our main conceptual contribution here is the notion of "k-independence preserver". Informally, it is a set of "important" vertices for a given subset X subseteq V(H), that is enough to capture the independent set property in H. We show that for d-degenerate graph independence preserver of size k^{O(d)} exists, and can be used in designing polynomial kernel.

Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, and Saket Saurabh. Exploring the Kernelization Borders for Hitting Cycles. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2018.14, author = {Agrawal, Akanksha and Jain, Pallavi and Kanesh, Lawqueen and Misra, Pranabendu and Saurabh, Saket}, title = {{Exploring the Kernelization Borders for Hitting Cycles}}, booktitle = {13th International Symposium on Parameterized and Exact Computation (IPEC 2018)}, pages = {14:1--14:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-084-2}, ISSN = {1868-8969}, year = {2019}, volume = {115}, editor = {Paul, Christophe and Pilipczuk, Michal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.14}, URN = {urn:nbn:de:0030-drops-102158}, doi = {10.4230/LIPIcs.IPEC.2018.14}, annote = {Keywords: Parameterized Complexity, Kernelization, Conflict-free problems, Feedback Vertex Set, Even Cycle Transversal, Odd Cycle Transversal} }

Document

**Published in:** LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)

In the embedded planar diameter improvement problem (EPDI) we are given a graph G embedded in the plane and a positive integer d. The goal is to determine whether one can add edges to the planar embedding of G in such a way that planarity is preserved and in such a way that the resulting graph has diameter at most d. Using non-constructive techniques derived from Robertson and Seymour's graph minor theory, together with the effectivization by self-reduction technique introduced by Fellows and Langston, one can show that EPDI can be solved in time f(d)* |V(G)|^{O(1)} for some function f(d). The caveat is that this algorithm is not strongly uniform in the sense that the function f(d) is not known to be computable. On the other hand, even the problem of determining whether EPDI can be solved in time f_1(d)* |V(G)|^{f_2(d)} for computable functions f_1 and f_2 has been open for more than two decades [Cohen at. al. Journal of Computer and System Sciences, 2017]. In this work we settle this later problem by showing that EPDI can be solved in time f(d)* |V(G)|^{O(d)} for some computable function f. Our techniques can also be used to show that the embedded k-outerplanar diameter improvement problem (k-EOPDI), a variant of EPDI where the resulting graph is required to be k-outerplanar instead of planar, can be solved in time f(d)* |V(G)|^{O(k)} for some computable function f. This shows that for each fixed k, the problem k-EOPDI is strongly uniformly fixed parameter tractable with respect to the diameter parameter d.

Daniel Lokshtanov, Mateus de Oliveira Oliveira, and Saket Saurabh. A Strongly-Uniform Slicewise Polynomial-Time Algorithm for the Embedded Planar Diameter Improvement Problem. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 25:1-25:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.IPEC.2018.25, author = {Lokshtanov, Daniel and de Oliveira Oliveira, Mateus and Saurabh, Saket}, title = {{A Strongly-Uniform Slicewise Polynomial-Time Algorithm for the Embedded Planar Diameter Improvement Problem}}, booktitle = {13th International Symposium on Parameterized and Exact Computation (IPEC 2018)}, pages = {25:1--25:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-084-2}, ISSN = {1868-8969}, year = {2019}, volume = {115}, editor = {Paul, Christophe and Pilipczuk, Michal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.25}, URN = {urn:nbn:de:0030-drops-102265}, doi = {10.4230/LIPIcs.IPEC.2018.25}, annote = {Keywords: Embedded Planar Diameter Improvement, Constructive Algorithms, Nooses} }

Document

**Published in:** LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)

In this paper, we study the query complexity of parameterized decision and optimization versions of Hitting-Set. We also investigate the query complexity of Packing. In doing so, we use generalizations to hypergraphs of an earlier query model, known as BIS introduced by Beame et al. in ITCS'18. The query models considered are the GPIS and GPISE oracles. The GPIS and GPISE oracles are used for the decision and optimization versions of the problems, respectively. We use color coding and queries to the oracles to generate subsamples from the hypergraph, that retain some structural properties of the original hypergraph. We use the stability of the sunflowers in a non-trivial way to do so.

Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Parameterized Query Complexity of Hitting Set Using Stability of Sunflowers. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 25:1-25:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{bishnu_et_al:LIPIcs.ISAAC.2018.25, author = {Bishnu, Arijit and Ghosh, Arijit and Kolay, Sudeshna and Mishra, Gopinath and Saurabh, Saket}, title = {{Parameterized Query Complexity of Hitting Set Using Stability of Sunflowers}}, booktitle = {29th International Symposium on Algorithms and Computation (ISAAC 2018)}, pages = {25:1--25:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-094-1}, ISSN = {1868-8969}, year = {2018}, volume = {123}, editor = {Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.25}, URN = {urn:nbn:de:0030-drops-99735}, doi = {10.4230/LIPIcs.ISAAC.2018.25}, annote = {Keywords: Query complexity, Hitting set, Parameterized complexity} }

Document

**Published in:** LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)

Fradkin and Seymour [Journal of Combinatorial Graph Theory, Series B, 2015] defined the class of digraphs of bounded independence number as a generalization of the class of tournaments. They argued that the class of digraphs of bounded independence number is structured enough to be exploited algorithmically. In this paper, we further strengthen this belief by showing that several cut problems that admit sub-exponential time parameterized algorithms (a trait uncommon to parameterized algorithms) on tournaments, including Directed Feedback Arc Set, Directed Cutwidth and Optimal Linear Arrangement, also admit such algorithms on digraphs of bounded independence number. Towards this, we rely on the generic approach of Fomin and Pilipczuk [ESA, 2013], where to get the desired algorithms, it is enough to bound the number of k-cuts in digraphs of bounded independence number by a sub-exponential FPT function (Fomin and Pilipczuk bounded the number of k-cuts in transitive tournaments). Specifically, our main technical contribution is that the yes-instances of the problems above have a sub-exponential number of k-cuts. We prove this bound by using a combination of chromatic coding, an inductive argument and structural properties of the digraphs.

Pranabendu Misra, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Sub-Exponential Time Parameterized Algorithms for Graph Layout Problems on Digraphs with Bounded Independence Number. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{misra_et_al:LIPIcs.FSTTCS.2018.35, author = {Misra, Pranabendu and Saurabh, Saket and Sharma, Roohani and Zehavi, Meirav}, title = {{Sub-Exponential Time Parameterized Algorithms for Graph Layout Problems on Digraphs with Bounded Independence Number}}, booktitle = {38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)}, pages = {35:1--35:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-093-4}, ISSN = {1868-8969}, year = {2018}, volume = {122}, editor = {Ganguly, Sumit and Pandya, Paritosh}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.35}, URN = {urn:nbn:de:0030-drops-99341}, doi = {10.4230/LIPIcs.FSTTCS.2018.35}, annote = {Keywords: sub-exponential fixed-parameter tractable algorithms, directed feedback arc set, directed cutwidth, optimal linear arrangement, bounded independence number digraph} }

Document

**Published in:** LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)

In this paper we study recently introduced conflict version of the classical Feedback Vertex Set (FVS) problem. For a family of graphs F, we consider the problem F-CF-Feedback Vertex Set (F-CF-FVS, for short). The F-CF-FVS problem takes as an input a graph G, a graph H in F (where V(G)=V(H)), and an integer k, and the objective is to decide if there is a set S subseteq V(G) of size at most k such that G-S is a forest and S is an independent set in H. Observe that if we instantiate F to be the family of edgeless graphs then we get the classical FVS problem. Jain, Kanesh, and Misra [CSR 2018] showed that in contrast to FVS, F-CF-FVS is W[1]-hard on general graphs and admits an FPT algorithm if F is the family of d-degenerate graphs. In this paper, we relate F-CF-FVS to the Independent Set problem on special classes of graphs, and obtain a complete dichotomy result on the Parameterized Complexity of the problem F-CF-FVS, when F is a hereditary graph family. In particular, we show that F-CF-FVS is FPT parameterized by the solution size if and only if F+Cluster IS is FPT parameterized by the solution size. Here, F+Cluster IS is the Independent Set problem in the (edge) union of a graph G in F and a cluster graph H (G and H are explicitly given). Next, we exploit this characterization to obtain new FPT results as well as intractability results for F-CF-FVS. In particular, we give an FPT algorithm for F+Cluster IS when F is the family of K_{i,j}-free graphs. We show that for the family of bipartite graph B, B-CF-FVS is W[1]-hard, when parameterized by the solution size. Finally, we consider, for each 0< epsilon<1, the family of graphs F_epsilon, which comprise of graphs G such that |E(G)| <= |V(G)|^(2-epsilon), and show that F_epsilon-CF-FVS is W[1]-hard, when parameterized by the solution size, for every 0<epsilon<1.

Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Daniel Lokshtanov, and Saket Saurabh. Conflict Free Feedback Vertex Set: A Parameterized Dichotomy. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 53:1-53:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.MFCS.2018.53, author = {Agrawal, Akanksha and Jain, Pallavi and Kanesh, Lawqueen and Lokshtanov, Daniel and Saurabh, Saket}, title = {{Conflict Free Feedback Vertex Set: A Parameterized Dichotomy}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {53:1--53:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.53}, URN = {urn:nbn:de:0030-drops-96355}, doi = {10.4230/LIPIcs.MFCS.2018.53}, annote = {Keywords: Conflict-free, Feedback Vertex Set, FPT algorithm, W\lbrack1\rbrack-hardness} }

Document

**Published in:** LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)

In the classic Integer Programming (IP) problem, the objective is to decide whether, for a given m x n matrix A and an m-vector b=(b_1,..., b_m), there is a non-negative integer n-vector x such that Ax=b. Solving (IP) is an important step in numerous algorithms and it is important to obtain an understanding of the precise complexity of this problem as a function of natural parameters of the input.
The classic pseudo-polynomial time algorithm of Papadimitriou [J. ACM 1981] for instances of (IP) with a constant number of constraints was only recently improved upon by Eisenbrand and Weismantel [SODA 2018] and Jansen and Rohwedder [ArXiv 2018]. We continue this line of work and show that under the Exponential Time Hypothesis (ETH), the algorithm of Jansen and Rohwedder is nearly optimal. We also show that when the matrix A is assumed to be non-negative, a component of Papadimitriou's original algorithm is already nearly optimal under ETH.
This motivates us to pick up the line of research initiated by Cunningham and Geelen [IPCO 2007] who studied the complexity of solving (IP) with non-negative matrices in which the number of constraints may be unbounded, but the branch-width of the column-matroid corresponding to the constraint matrix is a constant. We prove a lower bound on the complexity of solving (IP) for such instances and obtain optimal results with respect to a closely related parameter, path-width. Specifically, we prove matching upper and lower bounds for (IP) when the path-width of the corresponding column-matroid is a constant.

Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. On the Optimality of Pseudo-polynomial Algorithms for Integer Programming. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 31:1-31:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2018.31, author = {Fomin, Fedor V. and Panolan, Fahad and Ramanujan, M. S. and Saurabh, Saket}, title = {{On the Optimality of Pseudo-polynomial Algorithms for Integer Programming}}, booktitle = {26th Annual European Symposium on Algorithms (ESA 2018)}, pages = {31:1--31:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-081-1}, ISSN = {1868-8969}, year = {2018}, volume = {112}, editor = {Azar, Yossi and Bast, Hannah and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.31}, URN = {urn:nbn:de:0030-drops-94949}, doi = {10.4230/LIPIcs.ESA.2018.31}, annote = {Keywords: Integer Programming, Strong Exponential Time Hypothesis, Branch-width of a matrix, Fine-grained Complexity} }

Document

**Published in:** LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)

Let F be a family of graphs. A canonical vertex deletion problem corresponding to F is defined as follows: given an n-vertex undirected graph G and a weight function w: V(G) - >R^+, find a minimum weight subset S subseteq V(G) such that G-S belongs to F. This is known as Weighted F Vertex Deletion problem. In this paper we devise a recursive scheme to obtain O(log^{O(1)} n)-approximation algorithms for such problems, building upon the classical technique of finding balanced separators in a graph. Roughly speaking, our scheme applies to those problems, where an optimum solution S together with a well-structured set X, form a balanced separator of the input graph. In this paper, we obtain the first O(log^{O(1)} n)-approximation algorithms for the following vertex deletion problems.
- Let {F} be a finite set of graphs containing a planar graph, and F=G(F) be the family of graphs such that every graph H in G(F) excludes all graphs in F as minors. The vertex deletion problem corresponding to F=G(F) is the Weighted Planar F-Minor-Free Deletion (WPF-MFD) problem. We give randomized and deterministic approximation algorithms for WPF-MFD with ratios O(log^{1.5} n) and O(log^2 n), respectively. Previously, only a randomized constant factor approximation algorithm for the unweighted version of the problem was known [FOCS 2012].
- We give an O(log^2 n)-factor approximation algorithm for Weighted Chordal Vertex Deletion (WCVD), the vertex deletion problem to the family of chordal graphs. On the way to this algorithm, we also obtain a constant factor approximation algorithm for Multicut on chordal graphs.
- We give an O(log^3 n)-factor approximation algorithm for Weighted Distance Hereditary Vertex Deletion (WDHVD), also known as Weighted Rankwidth-1 Vertex Deletion (WR-1VD). This is the vertex deletion problem to the family of distance hereditary graphs, or equivalently, the family of graphs of rankwidth one.
We believe that our recursive scheme can be applied to obtain O(log^{O(1)} n)-approximation algorithms for many other problems as well.

Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.APPROX-RANDOM.2018.1, author = {Agrawal, Akanksha and Lokshtanov, Daniel and Misra, Pranabendu and Saurabh, Saket and Zehavi, Meirav}, title = {{Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)}, pages = {1:1--1:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-085-9}, ISSN = {1868-8969}, year = {2018}, volume = {116}, editor = {Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.1}, URN = {urn:nbn:de:0030-drops-94058}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2018.1}, annote = {Keywords: Approximation Algorithms, Planar- F-Deletion, Separator} }

Document

Brief Announcement

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

In the Directed Feedback Vertex Set (DFVS) problem, we are given as input a directed graph D and an integer k, and the objective is to check whether there exists a set S of at most k vertices such that F=D-S is a directed acyclic graph (DAG). Determining whether DFVS admits a polynomial kernel (parameterized by the solution size) is one of the most important open problems in parameterized complexity. In this article, we give a polynomial kernel for DFVS parameterized by the solution size plus the size of any treewidth-eta modulator, for any positive integer eta. We also give a polynomial kernel for the problem, which we call Vertex Deletion to treewidth-eta DAG, where given as input a directed graph D and a positive integer k, the objective is to decide whether there exists a set of at most k vertices, say S, such that D-S is a DAG and the treewidth of D-S is at most eta.

Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Brief Announcement: Treewidth Modulator: Emergency Exit for DFVS. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 110:1-110:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ICALP.2018.110, author = {Lokshtanov, Daniel and Ramanujan, M. S. and Saurabh, Saket and Sharma, Roohani and Zehavi, Meirav}, title = {{Brief Announcement: Treewidth Modulator: Emergency Exit for DFVS}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {110:1--110:4}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.110}, URN = {urn:nbn:de:0030-drops-91146}, doi = {10.4230/LIPIcs.ICALP.2018.110}, annote = {Keywords: Polynomial Kernel, Directed Feedback Vertex Set, Treewidth Modulator} }

Document

**Published in:** LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

Given a Counting Monadic Second Order (CMSO) sentence psi, the CMSO[psi] problem is defined as follows. The input to CMSO[psi] is a graph G, and the objective is to determine whether G |= psi. Our main theorem states that for every CMSO sentence psi, if CMSO[psi] is solvable in polynomial time on "globally highly connected graphs", then CMSO[psi] is solvable in polynomial time (on general graphs). We demonstrate the utility of our theorem in the design of parameterized algorithms. Specifically we show that technical problem-specific ingredients of a powerful method for designing parameterized algorithms, recursive understanding, can be replaced by a black-box invocation of our main theorem. We also show that our theorem can be easily deployed to show fixed parameterized tractability of a wide range of problems, where the input is a graph G and the task is to find a connected induced subgraph of G such that "few" vertices in this subgraph have neighbors outside the subgraph, and additionally the subgraph has a CMSO-definable property.

Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO Model Checking to Highly Connected Graphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 135:1-135:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ICALP.2018.135, author = {Lokshtanov, Daniel and Ramanujan, M. S. and Saurabh, Saket and Zehavi, Meirav}, title = {{Reducing CMSO Model Checking to Highly Connected Graphs}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {135:1--135:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.135}, URN = {urn:nbn:de:0030-drops-91391}, doi = {10.4230/LIPIcs.ICALP.2018.135}, annote = {Keywords: Fixed Parameter Tractability Model Checking Recursive Understanding} }

Document

**Published in:** LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)

We study the problem of finding a minimum-distortion embedding of the shortest path metric of an unweighted graph into a "simpler" metric X. Computing such an embedding (exactly or approximately) is a non-trivial task even when X is the metric induced by a path, or, equivalently, the real line. In this paper we give approximation and fixed-parameter tractable (FPT) algorithms for minimum-distortion embeddings into the metric of a subdivision of some fixed graph H, or, equivalently, into any fixed 1-dimensional simplicial complex. More precisely, we study the following problem: For given graphs G, H and integer c, is it possible to embed G with distortion c into a graph homeomorphic to H? Then embedding into the line is the special case H=K_2, and embedding into the cycle is the case H=K_3, where K_k denotes the complete graph on k vertices. For this problem we give
- an approximation algorithm, which in time f(H)* poly (n), for some function f, either correctly decides that there is no embedding of G with distortion c into any graph homeomorphic to H, or finds an embedding with distortion poly(c);
- an exact algorithm, which in time f'(H, c)* poly (n), for some function f', either correctly decides that there is no embedding of G with distortion c into any graph homeomorphic to H, or finds an embedding with distortion c. Prior to our work, poly(OPT)-approximation or FPT algorithms were known only for embedding into paths and trees of bounded degrees.

Timothy Carpenter, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Anastasios Sidiropoulos. Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{carpenter_et_al:LIPIcs.SoCG.2018.21, author = {Carpenter, Timothy and Fomin, Fedor V. and Lokshtanov, Daniel and Saurabh, Saket and Sidiropoulos, Anastasios}, title = {{Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {21:1--21:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.21}, URN = {urn:nbn:de:0030-drops-87344}, doi = {10.4230/LIPIcs.SoCG.2018.21}, annote = {Keywords: Metric embeddings, minimum-distortion embeddings, 1-dimensional simplicial complex, Fixed-parameter tractable algorithms, Approximation algorithms} }

Document

**Published in:** LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)

For a family of graphs F, the F-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide if there exists S \subseteq E(G) of size at most k such that G/S belongs to F. Here, G/S is the graph obtained from G by contracting all the edges in S. Heggernes et al.[Algorithmica (2014)] were the first to study edge contraction problems in the realm of Parameterized Complexity. They studied \cal F-Contraction when F is a simple family of graphs such as trees and paths. In this paper, we study the F-Contraction problem, where F generalizes the family of trees. In particular, we define this generalization in a "parameterized way". Let T_\ell be the family of graphs such that each graph in T_\ell can be made into a tree by deleting at most \ell edges. Thus, the problem we study is T_\ell-Contraction. We design an FPT algorithm for T_\ell-Contraction running in time O((\ncol)^{O(k + \ell)} * n^{O(1)}). Furthermore, we show that the problem does not admit a polynomial kernel when parameterized by k. Inspired by the negative result for the kernelization, we design a lossy kernel for T_\ell-Contraction of size O([k(k + 2\ell)] ^{(\lceil {\frac{\alpha}{\alpha-1}\rceil + 1)}}).

Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale. On the Parameterized Complexity of Contraction to Generalization of Trees. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 1:1-1:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2017.1, author = {Agrawal, Akanksha and Saurabh, Saket and Tale, Prafullkumar}, title = {{On the Parameterized Complexity of Contraction to Generalization of Trees}}, booktitle = {12th International Symposium on Parameterized and Exact Computation (IPEC 2017)}, pages = {1:1--1:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-051-4}, ISSN = {1868-8969}, year = {2018}, volume = {89}, editor = {Lokshtanov, Daniel and Nishimura, Naomi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.1}, URN = {urn:nbn:de:0030-drops-85446}, doi = {10.4230/LIPIcs.IPEC.2017.1}, annote = {Keywords: Graph Contraction, Fixed Parameter Tractability, Graph Algorithms, Generalization of Trees} }

Document

**Published in:** LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)

The duality between packing and covering problems lies at the heart of fundamental combinatorial proofs, as well as well-known algorithmic methods such as the primal-dual method for approximation and win/win-approach for parameterized analysis. The very essence of this duality is encompassed by a well-known property called the Erdös-Pósa property, which has been extensively studied for over five decades. Informally, we say that a class of graphs F admits the Erdös-Pósa property if there exists f such that for any graph G, either G has vertex-disjoint "copies" of the graphs in F, or there is a set S \subseteq V(G) of f(k) vertices that intersects all copies of the graphs in F. In the context of any graph class G, the most natural question that arises in this regard is as follows - do obstructions to G have the Erdös-Pósa property? Having this view in mind, we focus on the class of interval graphs. Structural properties of interval graphs are intensively studied, also as they lead to the design of polynomial-time algorithms for classic problems that are NP-hard on general graphs. Nevertheless, about one of the most basic properties of such graphs, namely, the Erdös-Pósa property, nothing is known. In this paper, we settle this anomaly: we prove that the family of obstructions to interval graphs - namely, the family of chordless cycles and ATs---admits the Erdös-Pósa property. Our main theorem immediately results in an algorithm to decide whether an input graph G has vertex-disjoint ATs and chordless cycles, or there exists a set of O(k^2 log k) vertices in G that hits all ATs and chordless cycles.

Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Erdös-Pósa Property of Obstructions to Interval Graphs. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.STACS.2018.7, author = {Agrawal, Akanksha and Lokshtanov, Daniel and Misra, Pranabendu and Saurabh, Saket and Zehavi, Meirav}, title = {{Erd\"{o}s-P\'{o}sa Property of Obstructions to Interval Graphs}}, booktitle = {35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)}, pages = {7:1--7:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-062-0}, ISSN = {1868-8969}, year = {2018}, volume = {96}, editor = {Niedermeier, Rolf and Vall\'{e}e, Brigitte}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.7}, URN = {urn:nbn:de:0030-drops-84815}, doi = {10.4230/LIPIcs.STACS.2018.7}, annote = {Keywords: Interval Graphs, Obstructions, Erd\"{o}s-P\'{o}sa Property} }

Document

**Published in:** LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)

The family of judicious partitioning problems, introduced by Bollob\'as and Scott to the field of extremal combinatorics, has been extensively studied from a structural point of view for over two decades. This rich realm of problems aims to counterbalance the objectives of classical partitioning problems such as Min Cut, Min Bisection and Max Cut. While these classical problems focus solely on the minimization/maximization of the number of edges crossing the cut, judicious (bi)partitioning problems ask the natural question of the minimization/maximization of the number of edges lying in the (two) sides of the cut. In particular, Judicious Bipartition (JB) seeks a bipartition that is "judicious" in the sense that neither side is burdened by too many edges, and Balanced JB also requires that the sizes of the sides themselves are "balanced" in the sense that neither of them is too large. Both of these problems were defined in the work by Bollob\'as and Scott, and have received notable scientific attention since then. In this paper, we shed light on the study of judicious partitioning problems from the viewpoint of algorithm design. Specifically, we prove that BJB is FPT (which also proves that JB is FPT).

Daniel Lokshtanov, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Balanced Judicious Bipartition is Fixed-Parameter Tractable. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 40:1-40:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.FSTTCS.2017.40, author = {Lokshtanov, Daniel and Saurabh, Saket and Sharma, Roohani and Zehavi, Meirav}, title = {{Balanced Judicious Bipartition is Fixed-Parameter Tractable}}, booktitle = {37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)}, pages = {40:1--40:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-055-2}, ISSN = {1868-8969}, year = {2018}, volume = {93}, editor = {Lokam, Satya and Ramanujam, R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.40}, URN = {urn:nbn:de:0030-drops-84115}, doi = {10.4230/LIPIcs.FSTTCS.2017.40}, annote = {Keywords: Judicious Partition, Tree Decomposition, Parameterized Complexity, Odd Cycle Transversal, Minimum Bisection} }

Document

**Published in:** LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)

Deterministic polynomial-time computation of a representation of a transversal matroid is a longstanding open problem. We present a deterministic computation of a so-called union representation of a transversal matroid in time quasipolynomial in the rank of the matroid. More precisely, we output a collection of linear matroids such that a set is independent in the transversal matroid if and only if it is independent in at least one of them. Our proof directly implies that if one is interested in preserving independent sets of size at most r, for a given r\in\mathbb{N}, but does not care whether larger independent sets are preserved, then a union representation can be computed deterministically in time quasipolynomial in r. This consequence is of independent interest, and sheds light on the power of union~representation.
Our main result also has applications in Parameterized Complexity. First, it yields a fast computation of representative sets, and due to our relaxation in the context of r, this computation also extends to (standard) truncations. In turn, this computation enables to efficiently solve various problems, such as subcases of subgraph isomorphism, motif search and packing problems, in the presence of color lists. Such problems have been studied to model scenarios where pairs of elements to be matched may not be identical but only similar, and color lists aim to describe the set of compatible elements associated with each element.

Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Quasipolynomial Representation of Transversal Matroids with Applications in Parameterized Complexity. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 32:1-32:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ITCS.2018.32, author = {Lokshtanov, Daniel and Misra, Pranabendu and Panolan, Fahad and Saurabh, Saket and Zehavi, Meirav}, title = {{Quasipolynomial Representation of Transversal Matroids with Applications in Parameterized Complexity}}, booktitle = {9th Innovations in Theoretical Computer Science Conference (ITCS 2018)}, pages = {32:1--32:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-060-6}, ISSN = {1868-8969}, year = {2018}, volume = {94}, editor = {Karlin, Anna R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.32}, URN = {urn:nbn:de:0030-drops-83144}, doi = {10.4230/LIPIcs.ITCS.2018.32}, annote = {Keywords: travserval matroid, matroid representation, union representation, representative set} }

Document

**Published in:** LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)

Given a graph G and a pair (\mathcal{F}_1,\mathcal{F}_2) of graph families, the function {\sf GDISJ}_{G,{\cal F}_1,{\cal F}_2} takes as input, two induced subgraphs G_1 and G_2 of G, such that G_1 \in \mathcal{F}_1 and G_2 \in \mathcal{F}_2 and returns 1 if V(G_1)\cap V(G_2)=\emptyset and 0 otherwise. We study the communication complexity of this problem in the two-party model. In particular, we look at pairs of hereditary graph families. We show that the communication complexity of this function, when the two graph families are hereditary, is sublinear if and only if there are finitely many graphs in the intersection of these two families. Then, using concepts from parameterized complexity, we
obtain nuanced upper bounds on the communication complexity of GDISJ_G,\cal F_1,\cal F_2. A concept related to communication protocols is that of a (\mathcal{F}_1,\mathcal{F}_2)-separating family of a graph G. A collection \mathcal{F} of subsets of V(G) is
called a (\mathcal{F}_1,\mathcal{F}_2)-separating family} for G, if for any two vertex disjoint induced subgraphs G_1\in \mathcal{F}_1,G_2\in \mathcal{F}_2, there is a set F \in \mathcal{F} with V(G_1) \subseteq F and V(G_2) \cap F = \emptyset.
Given a graph G on n vertices, for any pair (\mathcal{F}_1,\mathcal{F}_2) of hereditary graph families with sublinear communication complexity for GDISJ_G,\cal F_1,\cal F_2, we give an enumeration algorithm that finds a subexponential sized (\mathcal{F}_1,\mathcal{F}_2)-separating
family. In fact, we give an enumeration algorithm that finds a 2^{o(k)}n^{\Oh(1)} sized (\mathcal{F}_1,\mathcal{F}_2)-separating family; where k denotes the size of a minimum sized set S of vertices such that V(G)\setminus S has a bipartition (V_1,V_2) with G[V_1] \in {\cal F}_1 and G[V_2]\in {\cal F}_2. We exhibit a wide range of applications for these separating families, to obtain combinatorial bounds, enumeration algorithms as well as exact and FPT algorithms for several problems.

Sudeshna Kolay, Fahad Panolan, and Saket Saurabh. Communication Complexity of Pairs of Graph Families with Applications. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{kolay_et_al:LIPIcs.MFCS.2017.13, author = {Kolay, Sudeshna and Panolan, Fahad and Saurabh, Saket}, title = {{Communication Complexity of Pairs of Graph Families with Applications}}, booktitle = {42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)}, pages = {13:1--13:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-046-0}, ISSN = {1868-8969}, year = {2017}, volume = {83}, editor = {Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.13}, URN = {urn:nbn:de:0030-drops-80849}, doi = {10.4230/LIPIcs.MFCS.2017.13}, annote = {Keywords: Communication Complexity, Separating Family, FPT algorithms} }

Document

**Published in:** LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)

In this paper, we study the NP-complete colorful variant of the classical Matching problem, namely, the Rainbow Matching problem. Given an edge-colored graph G and a positive integer k, this problem asks whether there exists a matching of size at least k such that all the edges in the matching have distinct colors. We first develop a deterministic algorithm that solves Rainbow Matching on paths in time O*(((1+\sqrt{5})/2)^k) and polynomial space. This algorithm is based on a curious combination of the method of bounded search trees and a "divide-and-conquer-like" approach, where the branching process is guided by the maintenance of an auxiliary bipartite graph where one side captures "divided-and-conquered" pieces of the path. Our second result is a randomized algorithm that solves Rainbow Matching on general graphs in time O*(2^k) and polynomial space. Here, we show how a result by Björklund et al. [JCSS, 2017] can be invoked as a black box, wrapped by a probability-based analysis tailored to our problem. We also complement our two main results by designing kernels for Rainbow Matching on general and bounded-degree graphs.

Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Parameterized Algorithms and Kernels for Rainbow Matching. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 71:1-71:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.MFCS.2017.71, author = {Gupta, Sushmita and Roy, Sanjukta and Saurabh, Saket and Zehavi, Meirav}, title = {{Parameterized Algorithms and Kernels for Rainbow Matching}}, booktitle = {42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)}, pages = {71:1--71:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-046-0}, ISSN = {1868-8969}, year = {2017}, volume = {83}, editor = {Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.71}, URN = {urn:nbn:de:0030-drops-81245}, doi = {10.4230/LIPIcs.MFCS.2017.71}, annote = {Keywords: Rainbow Matching, Parameterized Algorithm, Bounded Search Trees, Divide-and-Conquer, 3-Set Packing, 3-Dimensional Matching} }

Document

**Published in:** LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)

The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Chitnis et al. [FOCS 2012, SICOMP 2016] proved that this problem is fixed-parameter tractable (FPT) and Wahlström [SODA 2014] gave an FPT algorithm with an improved parameter dependence. Subsequently, Iwata, Wahlström and Yoshida [SICOMP 2016] proved that the edge version of Unique Label Cover can be solved in linear FPT-time, and they left open the existence of such an algorithm for the node version of the problem. In this paper, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique Label Cover.

Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. A Linear-Time Parameterized Algorithm for Node Unique Label Cover. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ESA.2017.57, author = {Lokshtanov, Daniel and Ramanujan, M. S. and Saurabh, Saket}, title = {{A Linear-Time Parameterized Algorithm for Node Unique Label Cover}}, booktitle = {25th Annual European Symposium on Algorithms (ESA 2017)}, pages = {57:1--57:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-049-1}, ISSN = {1868-8969}, year = {2017}, volume = {87}, editor = {Pruhs, Kirk and Sohler, Christian}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.57}, URN = {urn:nbn:de:0030-drops-78152}, doi = {10.4230/LIPIcs.ESA.2017.57}, annote = {Keywords: Algorithms and data structures, Fixed Parameter Tractability, Unique Label Cover, Linear Time FPT Algorithms.} }

Document

**Published in:** LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)

We consider the problem of covering a set of vectors of a given finite dimensional linear space (vector space) by a subspace generated by a set of vectors of minimum size. Specifically, we study the Space Cover problem, where we are given a matrix M and a subset of its columns T; the task is to find a minimum set F of columns of M disjoint with T such that that the linear span of F contains all vectors of T. This is a fundamental problem arising in different domains, such as coding theory, machine learning, and graph algorithms.
We give a parameterized algorithm with running time 2^{O(k)}||M|| ^{O(1)} solving this problem in the case when M is a totally unimodular matrix over rationals, where k is the size of F. In other words, we show that the problem is fixed-parameter tractable parameterized by the rank of the covering subspace. The algorithm is "asymptotically optimal" for the following reasons.
Choice of matrices: Vector matroids corresponding to totally unimodular matrices over rationals are exactly the regular matroids. It is known that for matrices corresponding to a more general class of matroids, namely, binary matroids, the problem becomes W[1]-hard being parameterized by k.
Choice of the parameter: The problem is NP-hard even if |T|=3 on matrix-representations of a subclass of regular matroids, namely cographic matroids. Thus for a stronger parameterization, like by the size of T, the problem becomes intractable.
Running Time: The exponential dependence in the running time of our algorithm cannot be asymptotically improved unless Exponential Time Hypothesis (ETH) fails.
Our algorithm exploits the classical decomposition theorem of Seymour for regular matroids.

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Covering Vectors by Spaces: Regular Matroids. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 56:1-56:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2017.56, author = {Fomin, Fedor V. and Golovach, Petr A. and Lokshtanov, Daniel and Saurabh, Saket}, title = {{Covering Vectors by Spaces: Regular Matroids}}, booktitle = {44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)}, pages = {56:1--56:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-041-5}, ISSN = {1868-8969}, year = {2017}, volume = {80}, editor = {Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.56}, URN = {urn:nbn:de:0030-drops-73865}, doi = {10.4230/LIPIcs.ICALP.2017.56}, annote = {Keywords: regular matroids, spanning set, parameterized complexity} }

Document

**Published in:** LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)

We give algorithms with running time 2^{O({\sqrt{k}\log{k}})} n^{O(1)} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G contains (i) a path on exactly/at least k vertices, (ii) a cycle on exactly k vertices, (iii) a cycle on at least k vertices, (iv) a feedback vertex set of size at most k, and (v) a set of k pairwise vertex disjoint cycles.
For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2^{O(k^{0.75}\log{k})} n^{O(1)}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to k^{O(1)} and there exists a solution that crosses every separator at most O(\sqrt{k}) times. The running times of our algorithms are optimal up to the log{k} factor in the exponent, assuming the Exponential Time Hypothesis.

Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 65:1-65:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2017.65, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Zehavi, Meirav}, title = {{Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs}}, booktitle = {44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)}, pages = {65:1--65:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-041-5}, ISSN = {1868-8969}, year = {2017}, volume = {80}, editor = {Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.65}, URN = {urn:nbn:de:0030-drops-73937}, doi = {10.4230/LIPIcs.ICALP.2017.65}, annote = {Keywords: Longest Cycle, Cycle Packing, Feedback Vertex Set, Unit Disk Graph, Parameterized Complexity} }

Document

**Published in:** LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)

The Cycle Packing problem asks whether a given undirected graph G=(V,E) contains k vertex-disjoint cycles. Since the publication of the classic Erdos-Posa theorem in 1965, this problem received significant scientific attention in the fields of Graph Theory and Algorithm Design. In particular, this problem is one of the first problems studied in the framework of Parameterized Complexity. The non-uniform fixed-parameter tractability of Cycle Packing follows from the Robertson–Seymour theorem, a fact already observed by Fellows and Langston in the 1980s. In 1994, Bodlaender showed that Cycle Packing can be solved in time 2^{O(k^2)}|V| using exponential space. In case a solution exists, Bodlaender's algorithm also outputs a solution (in the same time). It has later become common knowledge that Cycle Packing admits a 2^{O(k\log^2 k)}|V|-time (deterministic) algorithm using exponential space, which is a consequence of the Erdos-Posa theorem. Nowadays, the design of this algorithm is given as an exercise in textbooks on Parameterized Complexity. Yet, no algorithm that runs in time 2^{o(k\log^2k)}|V|^{O(1)}, beating the bound 2^{O(k\log^2k)}\cdot |V|^{O(1)}, has been found. In light of this, it seems natural to ask whether the 2^{O(k\log^2k)}|V|^{O(1)}$ bound is essentially optimal. In this paper, we answer this question negatively by developing a 2^{O(k\log^2k/log log k})} |V|-time (deterministic) algorithm for Cycle Packing. In case a solution exists, our algorithm also outputs a solution (in the same time). Moreover, apart from beating the known bound, our algorithm runs in time linear in |V|, and its space complexity is polynomial in the input size.

Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi. Packing Cycles Faster Than Erdos-Posa. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 71:1-71:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.ICALP.2017.71, author = {Lokshtanov, Daniel and Mouawad, Amer E. and Saurabh, Saket and Zehavi, Meirav}, title = {{Packing Cycles Faster Than Erdos-Posa}}, booktitle = {44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)}, pages = {71:1--71:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-041-5}, ISSN = {1868-8969}, year = {2017}, volume = {80}, editor = {Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.71}, URN = {urn:nbn:de:0030-drops-73857}, doi = {10.4230/LIPIcs.ICALP.2017.71}, annote = {Keywords: Parameterized Complexity, Graph Algorithms, Cycle Packing, Erd\"{o}s-P\'{o}sa Theorem} }

Document

**Published in:** LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)

Given a 1.5-dimensional terrain T, also known as an x-monotone polygonal chain, the Terrain Guarding problem seeks a set of points of minimum size on T that guards all of the points on T. Here, we say that a point p guards a point q if no point of the line segment pq is strictly below T. The Terrain Guarding problem has been extensively studied for over 20 years. In 2005 it was already established that this problem admits a constant-factor approximation algorithm [SODA 2005]. However, only in 2010 King and Krohn [SODA 2010] finally showed that Terrain Guarding is NP-hard. In spite of the remarkable developments in approximation algorithms for Terrain Guarding, next to nothing is known about its parameterized complexity. In particular, the most intriguing open questions in this direction ask whether it admits a subexponential-time algorithm and whether it is fixed-parameter tractable. In this paper, we answer the first question affirmatively by developing an n^O(sqrt{k})-time algorithm for both Discrete Terrain Guarding and Continuous Terrain Guarding. We also make non-trivial progress with respect to the second question: we show that Discrete Orthogonal Terrain Guarding, a well-studied special case of Terrain Guarding, is fixed-parameter tractable.

Pradeesha Ashok, Fedor V. Fomin, Sudeshna Kolay, Saket Saurabh, and Meirav Zehavi. Exact Algorithms for Terrain Guarding. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{ashok_et_al:LIPIcs.SoCG.2017.11, author = {Ashok, Pradeesha and Fomin, Fedor V. and Kolay, Sudeshna and Saurabh, Saket and Zehavi, Meirav}, title = {{Exact Algorithms for Terrain Guarding}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {11:1--11:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.11}, URN = {urn:nbn:de:0030-drops-71975}, doi = {10.4230/LIPIcs.SoCG.2017.11}, annote = {Keywords: Terrain Guarding, Art Gallery, Exponential-Time Algorithms} }

Document

**Published in:** LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)

The edit operation that contracts edges, which is a fundamental operation in the theory of graph minors, has recently gained substantial scientific attention from the viewpoint of Parameterized Complexity. In this paper, we examine an important family of graphs, namely the family of split graphs, which in the context of edge contractions, is proven to be significantly less obedient than one might expect. Formally, given a graph G and an integer k, the Split Contraction problem asks whether there exists a subset X of edges of G such that G/X is a split graph and X has at most k elements. Here, G/X is the graph obtained from G by contracting edges in X. It was previously claimed that the Split Contraction problem is fixed-parameter tractable. However, we show that, despite its deceptive simplicity, it is W[1]-hard. Our main result establishes the following conditional lower bound: under the Exponential Time Hypothesis, the Split Contraction problem cannot be solved in time 2^(o(l^2)) * poly(n) where l is the vertex cover number of the input graph. We also verify that this lower bound is essentially tight. To the best of our knowledge, this is the first tight lower bound of the form 2^(o(l^2)) * poly(n) for problems parameterized by the vertex cover number of the input graph. In particular, our approach to obtain this lower bound borrows the notion of harmonious coloring from Graph Theory, and might be of independent interest.

Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split Contraction: The Untold Story. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.STACS.2017.5, author = {Agrawal, Akanksha and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav}, title = {{Split Contraction: The Untold Story}}, booktitle = {34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)}, pages = {5:1--5:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-028-6}, ISSN = {1868-8969}, year = {2017}, volume = {66}, editor = {Vollmer, Heribert and Vall\'{e}e, Brigitte}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.5}, URN = {urn:nbn:de:0030-drops-70297}, doi = {10.4230/LIPIcs.STACS.2017.5}, annote = {Keywords: Split Graph, Parameterized Complexity, Edge Contraction} }

Document

**Published in:** LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)

The rigidity of a matrix A for a target rank r over a field F is the minimum Hamming distance between A and a matrix of rank at most r. Rigidity is a classical concept in Computational Complexity Theory: constructions of rigid matrices are known to imply lower bounds of significant importance relating to arithmetic circuits. Yet, from the viewpoint of Parameterized Complexity, the study of central properties of matrices in general, and of the rigidity of a matrix in particular, has been neglected. In this paper, we conduct a comprehensive study of different aspects of the computation of the rigidity of general matrices in the framework of Parameterized Complexity. Naturally, given parameters r and k, the Matrix Rigidity problem asks whether the rigidity of A for the target rank r is at most k. We show that in case F equals the reals or F is any finite field, this problem is fixed-parameter tractable with respect to k+r. To this end, we present a dimension reduction procedure, which may be a valuable primitive in future studies of problems of this nature. We also employ central tools in Real Algebraic Geometry, which are not well known in Parameterized Complexity, as a black box. In particular, we view the output of our dimension reduction procedure as an algebraic variety. Our main results are complemented by a W[1]-hardness result and a subexponential-time parameterized algorithm for a special case of Matrix Rigidity, highlighting the different flavors of this problem.

Fedor V. Fomin, Daniel Lokshtanov, S. M. Meesum, Saket Saurabh, and Meirav Zehavi. Matrix Rigidity from the Viewpoint of Parameterized Complexity. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 32:1-32:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.STACS.2017.32, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Meesum, S. M. and Saurabh, Saket and Zehavi, Meirav}, title = {{Matrix Rigidity from the Viewpoint of Parameterized Complexity}}, booktitle = {34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)}, pages = {32:1--32:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-028-6}, ISSN = {1868-8969}, year = {2017}, volume = {66}, editor = {Vollmer, Heribert and Vall\'{e}e, Brigitte}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.32}, URN = {urn:nbn:de:0030-drops-70019}, doi = {10.4230/LIPIcs.STACS.2017.32}, annote = {Keywords: Matrix Rigidity, Parameterized Complexity, Linear Algebra} }

Document

**Published in:** LIPIcs, Volume 63, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)

In this paper we study the "independent" version of the classic Feedback Vertex Set problem in the realm of parameterized algorithms and moderately exponential time algorithms. More precisely, we study the Independent Feedback Vertex Set problem, where we are given an undirected graph G on n vertices and a positive integer k, and the objective is to check if there is an independent feedback vertex set of size at most k. A set S subseteq V(G) is called an independent feedback vertex set (ifvs) if S is an independent set and G\S is a forest. In this paper we design two deterministic exact algorithms for Independent Feedback Vertex Set with running times O*(4.1481^k) and O*(1.5981^n). In fact, the algorithm with O*(1.5981^n) running time finds the smallest sized ifvs, if an ifvs exists. Both the algorithms are based on interesting measures and improve the best known algorithms for the problem in their respective domains. In particular, the algorithm with running time O*(4.1481^k) is an improvement over the previous algorithm that ran in time O*(5^k). On the other hand, the algorithm with running time O*(1.5981^n) is the first moderately exponential time algorithm that improves over the naive algorithm that enumerates all the subsets of V(G). Additionally, we show that the number of minimal ifvses in any graph on n vertices is upper bounded by 1.7485^n.

Akanksha Agrawal, Sushmita Gupta, Saket Saurabh, and Roohani Sharma. Improved Algorithms and Combinatorial Bounds for Independent Feedback Vertex Set. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.IPEC.2016.2, author = {Agrawal, Akanksha and Gupta, Sushmita and Saurabh, Saket and Sharma, Roohani}, title = {{Improved Algorithms and Combinatorial Bounds for Independent Feedback Vertex Set}}, booktitle = {11th International Symposium on Parameterized and Exact Computation (IPEC 2016)}, pages = {2:1--2:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-023-1}, ISSN = {1868-8969}, year = {2017}, volume = {63}, editor = {Guo, Jiong and Hermelin, Danny}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.2}, URN = {urn:nbn:de:0030-drops-69400}, doi = {10.4230/LIPIcs.IPEC.2016.2}, annote = {Keywords: independent feedback vertex set, fixed parameter tractable, exact algorithm, enumeration} }

Document

Complete Volume

**Published in:** LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)

LIPICs, Volume 65, FSTTCS'16, Complete Volume

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@Proceedings{lal_et_al:LIPIcs.FSTTCS.2016, title = {{LIPICs, Volume 65, FSTTCS'16, Complete Volume}}, booktitle = {36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-027-9}, ISSN = {1868-8969}, year = {2016}, volume = {65}, editor = {Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016}, URN = {urn:nbn:de:0030-drops-69074}, doi = {10.4230/LIPIcs.FSTTCS.2016}, annote = {Keywords: Software/Program Verification, Models of Computation, Modes of Computation, Complexity Measures and Classes, Nonnumerical Algorithms and Problems Specifying and Verifying and Reasoning about Programs, Mathematical Logic, Formal Languages} }

Document

Front Matter

**Published in:** LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)

Front Matter, Table of Contents, Preface, Conference Organization, External Reviewers

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 0:i-0:xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{lal_et_al:LIPIcs.FSTTCS.2016.0, author = {Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep}, title = {{Front Matter, Table of Contents, Preface, Conference Organization, External Reviewers}}, booktitle = {36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)}, pages = {0:i--0:xiv}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-027-9}, ISSN = {1868-8969}, year = {2016}, volume = {65}, editor = {Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.0}, URN = {urn:nbn:de:0030-drops-68412}, doi = {10.4230/LIPIcs.FSTTCS.2016.0}, annote = {Keywords: Front Matter, Table of Contents, Preface, Conference Organization, External Reviewers} }

Document

**Published in:** LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)

In a recent article Agrawal et al. (STACS 2016) studied a simultaneous variant of the classic Feedback Vertex Set problem, called Simultaneous Feedback Vertex Set (Sim-FVS). In this problem the input is an n-vertex graph G, an integer k and a coloring function col : E(G) -> 2^[alpha] , and the objective is to check whether there exists a vertex subset S of cardinality at most k in G such that for all i in [alpha], G_i - S is acyclic. Here, G_i = (V (G), {e in E(G) | i in col(e)}) and [alpha] = {1,...,alpha}. In this paper we consider the edge variant of the problem, namely, Simultaneous Feedback Edge Set (Sim-FES). In this problem, the input is same as the input of Sim-FVS and the objective is to check whether there is an edge subset S of cardinality at most k in G such that for all i in [alpha], G_i - S is acyclic. Unlike the vertex variant of the problem, when alpha = 1, the problem is equivalent to finding a maximal spanning forest and hence it is polynomial time solvable. We show that for alpha = 3 Sim-FES is NP-hard by giving a reduction from Vertex Cover on cubic-graphs. The same reduction shows that the problem does not admit an algorithm of running time O(2^o(k) n^O(1)) unless ETH fails. This hardness result is complimented by an FPT algorithm for Sim-FES running in time O(2^((omega k alpha) + (alpha log k)) n^O(1)), where omega is the exponent in the running time of matrix multiplication. The same algorithm gives a polynomial time algorithm for the case when alpha = 2. We also give a kernel for Sim-FES with (k alpha)^O(alpha) vertices. Finally, we consider the problem Maximum Simultaneous Acyclic Subgraph. Here, the input is a graph G, an integer q and, a coloring function col : E(G) -> 2^[alpha] . The question is whether there is a edge subset F of cardinality at least q in G such that for all i in [alpha], G[F_i] is acyclic. Here, F_i = {e in F | i in col(e)}. We give an FPT algorithm for Maximum Simultaneous Acyclic Subgraph running in time O(2^(omega q alpha) n^O(1) ). All our algorithms are based on parameterized version of the Matroid Parity problem.

Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultaneous Feedback Edge Set: A Parameterized Perspective. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.ISAAC.2016.5, author = {Agrawal, Akanksha and Panolan, Fahad and Saurabh, Saket and Zehavi, Meirav}, title = {{Simultaneous Feedback Edge Set: A Parameterized Perspective}}, booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)}, pages = {5:1--5:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-026-2}, ISSN = {1868-8969}, year = {2016}, volume = {64}, editor = {Hong, Seok-Hee}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.5}, URN = {urn:nbn:de:0030-drops-67767}, doi = {10.4230/LIPIcs.ISAAC.2016.5}, annote = {Keywords: parameterized complexity, feedback edge set, alpha-matroid parity} }

Document

**Published in:** LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)

In the Directed Feedback Vertex Set (DFVS) problem, we are given a digraph D on n vertices and a positive integer k and the objective is to check whether there exists a set of vertices S of size at most k such that F = D - S is a directed acyclic digraph. In a recent paper, Mnich and van Leeuwen [STACS 2016] considered the kernelization complexity of DFVS with an additional restriction on F, namely that F must be an out-forest (Out-Forest Vertex Deletion Set), an out-tree (Out-Tree Vertex Deletion Set), or a (directed) pumpkin (Pumpkin Vertex Deletion Set). Their objective was to shed some light on the kernelization complexity of the DFVS problem, a well known open problem in the area of Parameterized Complexity. In this article, we improve the kernel sizes of Out-Forest Vertex Deletion Set from O(k^3) to O(k^2) and of Pumpkin Vertex Deletion Set from O(k^18) to O(k^3). We also prove that the former kernel size is tight under certain complexity theoretic assumptions.

Akanksha Agrawal, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Kernels for Deletion to Classes of Acyclic Digraphs. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.ISAAC.2016.6, author = {Agrawal, Akanksha and Saurabh, Saket and Sharma, Roohani and Zehavi, Meirav}, title = {{Kernels for Deletion to Classes of Acyclic Digraphs}}, booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)}, pages = {6:1--6:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-026-2}, ISSN = {1868-8969}, year = {2016}, volume = {64}, editor = {Hong, Seok-Hee}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.6}, URN = {urn:nbn:de:0030-drops-67777}, doi = {10.4230/LIPIcs.ISAAC.2016.6}, annote = {Keywords: out-forest, pumpkin, parameterized complexity, kernelization} }

Document

**Published in:** LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)

A key result in the field of kernelization, a subfield of parameterized complexity, states that the classic Disjoint Cycle Packing problem, i.e. finding k vertex disjoint cycles in a given graph G, admits no polynomial kernel unless NP subseteq coNP/poly. However, very little is known about this problem beyond the aforementioned kernelization lower bound (within the parameterized complexity framework). In the hope of clarifying the picture and better understanding the types of "constraints" that separate "kernelizable" from "non-kernelizable" variants of Disjoint Cycle Packing, we investigate two relaxations of the problem. The first variant, which we call Almost Disjoint Cycle Packing, introduces a "global" relaxation parameter t. That is, given a graph G and integers k and t, the goal is to find at least k distinct cycles such that every vertex of G appears in at most t of the cycles. The second variant, Pairwise Disjoint Cycle Packing, introduces a "local" relaxation parameter and we seek at least k distinct cycles such that every two cycles intersect in at most t vertices. While the Pairwise Disjoint Cycle Packing problem admits a polynomial kernel for all t >= 1, the kernelization complexity of Almost Disjoint Cycle Packing reveals an interesting spectrum of upper and lower bounds. In particular, for t = k/c, where c could be a function of k, we obtain a kernel of size O(2^{c^{2}}*k^{7+c}*log^3(k)) whenever c in o(sqrt(k))). Thus the kernel size varies from being sub-exponential when c in o(sqrt(k)), to quasipolynomial when c in o(log^l(k)), l in R_+, and polynomial when c in O(1). We complement these results for Almost Disjoint Cycle Packing by showing that the problem does not admit a polynomial kernel whenever t in O(k^{epsilon}), for any 0 <= epsilon < 1.

Akanksha Agrawal, Daniel Lokshtanov, Diptapriyo Majumdar, Amer E. Mouawad, and Saket Saurabh. Kernelization of Cycle Packing with Relaxed Disjointness Constraints. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 26:1-26:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.ICALP.2016.26, author = {Agrawal, Akanksha and Lokshtanov, Daniel and Majumdar, Diptapriyo and Mouawad, Amer E. and Saurabh, Saket}, title = {{Kernelization of Cycle Packing with Relaxed Disjointness Constraints}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {26:1--26:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.26}, URN = {urn:nbn:de:0030-drops-63053}, doi = {10.4230/LIPIcs.ICALP.2016.26}, annote = {Keywords: parameterized complexity, cycle packing, kernelization, relaxation} }

Document

**Published in:** LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)

For fixed integers r,l >= 0, a graph G is called an (r,l)-graph if the vertex set V(G) can be partitioned into r independent sets and l cliques. Such a graph is also said to have cochromatic number r+l. The class of (r,l) graphs generalizes r-colourable graphs (when l=0) and hence not surprisingly, determining whether a given graph is an (r,l)-graph is NP-hard even when r >= 3 or l >= 3 in general graphs.
When r and ell are part of the input, then the recognition problem is NP-hard even if the input graph is a perfect graph (where the Chromatic Number problem is solvable in polynomial time). It is also known to be fixed-parameter tractable (FPT) on perfect graphs when parameterized by r and l. I.e. there is an f(r+l) n^O(1) algorithm on perfect graphs on n vertices where f is a function of r and l. Observe that such an algorithm is unlikely on general graphs as the problem is NP-hard even for constant r and l.
In this paper, we consider the parameterized complexity of the following problem, which we call Vertex Partization. Given a perfect graph G and positive integers r,l,k decide whether there exists a set S subset or equal to V(G) of size at most k such that the deletion of S from G results in an (r,l)-graph. This problem generalizes well studied problems such as Vertex Cover (when r=1 and l=0), Odd Cycle Transversal (when r=2, l=0) and Split Vertex Deletion (when r=1=l).
1. Vertex Partization on perfect graphs is FPT when parameterized by k+r+l.
2. The problem, when parameterized by k+r+l, does not admit any polynomial sized kernel, under standard complexity theoretic assumptions. In other words, in polynomial time, the input graph cannot be compressed to an equivalent instance of size polynomial in k+r+l. In fact, our result holds even when k=0.
3. When r,ell are universal constants, then Vertex Partization on perfect graphs, parameterized by k, has a polynomial sized kernel.

Sudeshna Kolay, Fahad Panolan, Venkatesh Raman, and Saket Saurabh. Parameterized Algorithms on Perfect Graphs for Deletion to (r,l)-Graphs. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 75:1-75:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{kolay_et_al:LIPIcs.MFCS.2016.75, author = {Kolay, Sudeshna and Panolan, Fahad and Raman, Venkatesh and Saurabh, Saket}, title = {{Parameterized Algorithms on Perfect Graphs for Deletion to (r,l)-Graphs}}, booktitle = {41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)}, pages = {75:1--75:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-016-3}, ISSN = {1868-8969}, year = {2016}, volume = {58}, editor = {Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.75}, URN = {urn:nbn:de:0030-drops-64846}, doi = {10.4230/LIPIcs.MFCS.2016.75}, annote = {Keywords: graph deletion, FPT algorithms, polynomial kernels} }

Document

**Published in:** LIPIcs, Volume 53, 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)

In the Closest String problem one is given a family S of equal-length strings over some fixed alphabet, and the task is to find a string y that minimizes the maximum Hamming distance between y and a string from S. While polynomial-time approximation schemes (PTASes) for this problem are known for a long time [Li et al.; J. ACM'02], no efficient polynomial-time approximation scheme (EPTAS) has been proposed so far. In this paper, we prove that the existence of an EPTAS for Closest String is in fact unlikely, as it would imply that FPT=W[1], a highly unexpected collapse in the hierarchy of parameterized complexity classes. Our proof also shows that the existence of a PTAS for Closest String with running time f(eps) n^o(1/eps), for any computable function f, would contradict the Exponential Time Hypothesis.

Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Lower Bounds for Approximation Schemes for Closest String. In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 53, pp. 12:1-12:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{cygan_et_al:LIPIcs.SWAT.2016.12, author = {Cygan, Marek and Lokshtanov, Daniel and Pilipczuk, Marcin and Pilipczuk, Michal and Saurabh, Saket}, title = {{Lower Bounds for Approximation Schemes for Closest String}}, booktitle = {15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)}, pages = {12:1--12:10}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-011-8}, ISSN = {1868-8969}, year = {2016}, volume = {53}, editor = {Pagh, Rasmus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2016.12}, URN = {urn:nbn:de:0030-drops-60232}, doi = {10.4230/LIPIcs.SWAT.2016.12}, annote = {Keywords: closest string, PTAS, efficient PTAS} }

Document

**Published in:** LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)

A rectilinear Steiner tree for a set T of points in the plane is a tree which connects T using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, input is a set T of n points in the Euclidean plane (R^2) and the goal is to find an rectilinear Steiner tree for T of smallest possible total length. A rectilinear Steiner arborecence for a set T of points and root r in T is a rectilinear Steiner tree S for T such that the path in S from r to any point t in T is a shortest path. In the Rectilinear Steiner Arborescense problem the input is a set T of n points in R^2, and a root r in T, the task is to find an rectilinear Steiner arborescence for T, rooted at r of smallest possible total length. In this paper, we give the first subexponential time algorithms for both problems. Our algorithms are deterministic and run in 2^{O(sqrt{n}log n)} time.

Fedor Fomin, Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 39:1-39:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.SoCG.2016.39, author = {Fomin, Fedor and Kolay, Sudeshna and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket}, title = {{Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {39:1--39:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.39}, URN = {urn:nbn:de:0030-drops-59310}, doi = {10.4230/LIPIcs.SoCG.2016.39}, annote = {Keywords: Rectilinear graphs, Steiner arborescence, parameterized algorithms} }

Document

**Published in:** LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)

For a family of graphs F, a graph G, and a positive integer k, the F-DELETION problem asks whether we can delete at most k vertices from G to obtain a graph in F. F-DELETION generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. A graph G = (V, cup_{i=1}^{alpha} E_{i}), where the edge set of G is partitioned into alpha color classes, is called an alpha-edge-colored graph. A natural extension of the F-DELETION problem to edge-colored graphs is the alpha-SIMULTANEOUS F-DELETION problem. In the latter problem, we are given an alpha-edge-colored graph G and the goal is to find a set S of at most k vertices such that each graph G_i\S, where G_i = (V, E_i) and 1 <= i <= alpha, is in F. In this work, we study alpha-SIMULTANEOUS F-DELETION for F being the family of forests. In other words, we focus on the alpha-SIMULTANEOUS FEEDBACK VERTEX SET (alpha-SIMFVS) problem. Algorithmically, we show that, like its classical counterpart, alpha-SIMFVS parameterized by k is fixed-parameter tractable (FPT) and admits a polynomial kernel, for any fixed constant alpha. In particular, we give an algorithm running in 2^{O(alpha * k)} * n^{O(1)} time and a kernel with O(alpha * k^{3(alpha + 1)}) vertices. The running time of our algorithm implies that alpha-SIMFVS is FPT even when alpha in o(log(n)). We complement this positive result by showing that for alpha in O(log(n)), where n is the number of vertices in the input graph, alpha-SIMFVS becomes W[1]-hard. Our positive results answer one of the open problems posed by Cai and Ye (MFCS 2014).

Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket Saurabh. Simultaneous Feedback Vertex Set: A Parameterized Perspective. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.STACS.2016.7, author = {Agrawal, Akanksha and Lokshtanov, Daniel and Mouawad, Amer E. and Saurabh, Saket}, title = {{Simultaneous Feedback Vertex Set: A Parameterized Perspective}}, booktitle = {33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)}, pages = {7:1--7:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-001-9}, ISSN = {1868-8969}, year = {2016}, volume = {47}, editor = {Ollinger, Nicolas and Vollmer, Heribert}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.7}, URN = {urn:nbn:de:0030-drops-57084}, doi = {10.4230/LIPIcs.STACS.2016.7}, annote = {Keywords: parameterized complexity ,feedback vertex set, kernel, edge-colored graphs} }

Document

**Published in:** LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)

We prove that for every positive integer r and for every graph class G of bounded expansion, the r-DOMINATING SET problem admits a linear kernel on graphs from G. Moreover, in the more general case when G is only assumed to be nowhere dense, we give an almost linear kernel on G for the classic DOMINATING SET problem, i.e., for the case r=1. These results generalize a line of previous research on finding linear kernels for DOMINATING SET and r-DOMINATING SET (Alber et al., JACM 2004, Bodlaender et al., FOCS 2009, Fomin et al., SODA 2010, Fomin et al., SODA 2012, Fomin et al., STACS 2013). However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches.
We complement our findings by showing that for the closely related CONNECTED DOMINATING SET problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on H-topological-minor-free graphs (Fomin et al., STACS 2013). Also, we prove that for any somewhere dense class G, there is some r for which r-DOMINATING SET is W[2]-hard on G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of r-DOMINATING SET on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.

Pål Grønås Drange, Markus Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and Sparseness: the Case of Dominating Set. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{drange_et_al:LIPIcs.STACS.2016.31, author = {Drange, P\r{a}l Gr{\o}n\r{a}s and Dregi, Markus and Fomin, Fedor V. and Kreutzer, Stephan and Lokshtanov, Daniel and Pilipczuk, Marcin and Pilipczuk, Michal and Reidl, Felix and S\'{a}nchez Villaamil, Fernando and Saurabh, Saket and Siebertz, Sebastian and Sikdar, Somnath}, title = {{Kernelization and Sparseness: the Case of Dominating Set}}, booktitle = {33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)}, pages = {31:1--31:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-001-9}, ISSN = {1868-8969}, year = {2016}, volume = {47}, editor = {Ollinger, Nicolas and Vollmer, Heribert}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.31}, URN = {urn:nbn:de:0030-drops-57327}, doi = {10.4230/LIPIcs.STACS.2016.31}, annote = {Keywords: kernelization, dominating set, bounded expansion, nowhere dense} }

Document

**Published in:** LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)

In the EDGE EDITING TO CONNECTED f-DEGREE GRAPH problem we are given a graph G, an integer k and a function f assigning integers to vertices of G. The task is to decide whether there is a connected graph F on the same vertex set as G, such that for every vertex v, its degree in F is f(v) and the number of edges inthe symmetric difference of E(G) and E(F), is at most k. We show that EDGE EDITING TO CONNECTED f-DEGREE GRAPH is fixed-parameter tractable (FPT) by providing an algorithm solving the problem on an n-vertex graph in time 2^{O(k)}n^{O(1)}. Our FPT algorithm is based on a non-trivial combination of color-coding and fast computations of representative families over direct sum matroid of l-elongation of co-graphic matroid associated with G and uniform matroid over the set of non-edges of G. We believe that this combination could be useful in designing parameterized algorithms for other edge editing problems.

Fedor V. Fomin, Petr Golovach, Fahad Panolan, and Saket Saurabh. Editing to Connected f-Degree Graph. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.STACS.2016.36, author = {Fomin, Fedor V. and Golovach, Petr and Panolan, Fahad and Saurabh, Saket}, title = {{Editing to Connected f-Degree Graph}}, booktitle = {33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)}, pages = {36:1--36:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-001-9}, ISSN = {1868-8969}, year = {2016}, volume = {47}, editor = {Ollinger, Nicolas and Vollmer, Heribert}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.36}, URN = {urn:nbn:de:0030-drops-57370}, doi = {10.4230/LIPIcs.STACS.2016.36}, annote = {Keywords: Connected f-factor, FPT, Representative Family, Color Coding} }

Document

**Published in:** LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)

Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on n vertices and a positive integer parameter k, find if there exist k edges(arcs) whose deletion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the
vertices have even degrees--where the resulting graph is Eulerian,the problem is called Undirected Eulerian Edge Deletion. The corresponding
problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its
out-degree is called Directed Eulerian Edge Deletion. Cygan et al.[Algorithmica, 2014] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time
2^O(k log k)n^O(1). They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time
2^O(k)n^O(1). It was also posed as an open problem at the School on Parameterized Algorithms and Complexity 2014, Bedlewo, Poland.
In this paper we answer their question in the affirmative: using the technique of computing representative families of co-graphic matroids we design algorithms which solve these problems in time 2^O(k)n^O(1). The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity.

Prachi Goyal, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh. Finding Even Subgraphs Even Faster. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 434-447, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{goyal_et_al:LIPIcs.FSTTCS.2015.434, author = {Goyal, Prachi and Misra, Pranabendu and Panolan, Fahad and Philip, Geevarghese and Saurabh, Saket}, title = {{Finding Even Subgraphs Even Faster}}, booktitle = {35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)}, pages = {434--447}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-97-2}, ISSN = {1868-8969}, year = {2015}, volume = {45}, editor = {Harsha, Prahladh and Ramalingam, G.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.434}, URN = {urn:nbn:de:0030-drops-56336}, doi = {10.4230/LIPIcs.FSTTCS.2015.434}, annote = {Keywords: Eulerian Edge Deletion, FPT, Representative Family.} }

Document

**Published in:** LIPIcs, Volume 43, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)

Let F be a family of graphs. Given an input graph G and a positive integer k, testing whether G has a k-sized subset of vertices S, such that G\S belongs to F, is a prototype vertex deletion problem. These type of problems have attracted a lot of attention in recent times in the domain of parameterized complexity. In this paper, we study two such problems; when F is either a family of cactus graphs or a family of odd-cactus graphs. A graph H is called a cactus graph if every pair of cycles in H intersect on at most one vertex. Furthermore, a cactus graph H is called an odd cactus, if every cycle of H is of odd length. Let us denote by C and C_{odd}, families of cactus and odd cactus, respectively. The vertex deletion problems corresponding to C and C_{odd} are called Diamond Hitting Set and Even Cycle Transversal, respectively. In this paper we design randomized algorithms with running time 12^{k}*n^{O(1)} for both these problems. Our algorithms considerably improve the running time for Diamond Hitting Set and Even Cycle Transversal, compared to what is known about them.

Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Quick but Odd Growth of Cacti. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 258-269, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{kolay_et_al:LIPIcs.IPEC.2015.258, author = {Kolay, Sudeshna and Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket}, title = {{Quick but Odd Growth of Cacti}}, booktitle = {10th International Symposium on Parameterized and Exact Computation (IPEC 2015)}, pages = {258--269}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-92-7}, ISSN = {1868-8969}, year = {2015}, volume = {43}, editor = {Husfeldt, Thore and Kanj, Iyad}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.258}, URN = {urn:nbn:de:0030-drops-55883}, doi = {10.4230/LIPIcs.IPEC.2015.258}, annote = {Keywords: Even Cycle Transversal, Diamond Hitting Set, Randomized Algorithms} }

Document

**Published in:** LIPIcs, Volume 43, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)

Vertex Cover is one of the most well studied problems in the realm of parameterized algorithms and admits a kernel with O(l^2) edges and 2*l vertices. Here, l denotes the size of a vertex cover we are seeking for. A natural question is whether Vertex Cover admits a polynomial kernel (or a parameterized algorithm) with respect to a parameter k, that is, provably smaller than the size of the vertex cover. Jansen and Bodlaender [STACS 2011, TOCS 2013] raised this question and gave a kernel for Vertex Cover of size O(f^3), where f is the size of a feedback vertex set of the input graph. We continue this line of work and study Vertex Cover with respect to a parameter that is always smaller than the solution size and incomparable to the size of the feedback vertex set of the input graph. Our parameter is the number of vertices whose removal results in a graph of maximum degree two. While vertex cover with this parameterization can easily be shown to be fixed-parameter tractable (FPT), we show that it has a polynomial sized kernel.
The input to our problem consists of an undirected graph G, S \subseteq V(G) such that |S| = k and G[V(G)\S] has maximum degree at most 2 and a positive integer l. Given (G,S,l), in polynomial time we output an instance (G',S',l') such that |V(G')|<= O(k^5), |E(G')|<= O(k^6) and G has a vertex cover of size at most l if and only if G' has a vertex cover of size at most l'.
When G[V(G)\S] has maximum degree at most 1, we improve the known kernel bound from O(k^3) vertices to O(k^2) vertices (and O(k^3) edges). In general, if G[V(G)\S] is simply a collection of cliques of size at most d, then we transform the graph in polynomial time to an equivalent hypergraph with O(k^d) vertices and show that, for d >= 3, a kernel with O(k^{d-epsilon}) vertices is unlikely to exist for any epsilon >0 unless NP is a subset of coNO/poly.

Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Kernels for Structural Parameterizations of Vertex Cover - Case of Small Degree Modulators. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 331-342, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{majumdar_et_al:LIPIcs.IPEC.2015.331, author = {Majumdar, Diptapriyo and Raman, Venkatesh and Saurabh, Saket}, title = {{Kernels for Structural Parameterizations of Vertex Cover - Case of Small Degree Modulators}}, booktitle = {10th International Symposium on Parameterized and Exact Computation (IPEC 2015)}, pages = {331--342}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-92-7}, ISSN = {1868-8969}, year = {2015}, volume = {43}, editor = {Husfeldt, Thore and Kanj, Iyad}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.331}, URN = {urn:nbn:de:0030-drops-55943}, doi = {10.4230/LIPIcs.IPEC.2015.331}, annote = {Keywords: Parameterized Complexity, Kernelization, expansion lemma, vertex cover, structural parameterization} }

Document

**Published in:** LIPIcs, Volume 43, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)

The b-chromatic number of a graph G, chi_b(G), is the largest integer k such that G has a k-vertex coloring with the property that each color class has a vertex which is adjacent to at least one vertex in each of the other color classes. In the B-Chromatic Number problem, the objective is to decide whether chi_b(G) >= k. Testing whether chi_b(G)=Delta(G)+1, where Delta(G) is the maximum degree of a graph, itself is NP-complete even for connected bipartite graphs (Kratochvil, Tuza and Voigt, WG 2002). In this paper we study B-Chromatic Number in the realm of parameterized complexity and exact exponential time algorithms. We show that B-Chromatic Number is W[1]-hard when parameterized by k, resolving the open question posed by Havet and Sampaio (Algorithmica 2013). When k=Delta(G)+1, we design an algorithm for B-Chromatic Number running in time 2^{O(k^2 * log(k))}*n^{O(1)}. Finally, we show that B-Chromatic Number for an n-vertex graph can be solved in time O(3^n * n^{4} * log(n)).

Fahad Panolan, Geevarghese Philip, and Saket Saurabh. B-Chromatic Number: Beyond NP-Hardness. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 389-401, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{panolan_et_al:LIPIcs.IPEC.2015.389, author = {Panolan, Fahad and Philip, Geevarghese and Saurabh, Saket}, title = {{B-Chromatic Number: Beyond NP-Hardness}}, booktitle = {10th International Symposium on Parameterized and Exact Computation (IPEC 2015)}, pages = {389--401}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-92-7}, ISSN = {1868-8969}, year = {2015}, volume = {43}, editor = {Husfeldt, Thore and Kanj, Iyad}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.389}, URN = {urn:nbn:de:0030-drops-55997}, doi = {10.4230/LIPIcs.IPEC.2015.389}, annote = {Keywords: b-chromatic number, exact algorithm, parameterized complexity} }

Document

**Published in:** LIPIcs, Volume 29, 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)

We study the paramereteized complexity of the following connectivity problem. For a vertex subset U of a graph G, trees T_1,...,T_s of G are completely independent spanning trees of U if each of them contains U, and for every two distinct vertices u,v in U, the paths from u to v in T_1,...,T_s are pairwise vertex disjoint except for end-vertices u and v. Then for a given s >= 2 and a parameter k, the task is to decide if a given n-vertex graph G contains a set U of size at least k such that there are s completely independent spanning trees of U. The problem is known to be NP-complete already for s=2. We prove the following results: (*) For s=2 the problem is solvable in time 2^{O(k)}*n^{O(1)}. (*) For s=2 the problem does not admit a polynomial kernel unless NP subseteq coNP/poly. (*) For arbitrary s, we show that the problem is solvable in time f(s,k)n^{O(1)} for some function f of s and k only.

Manu Basavaraju, Fedor V. Fomin, Petr A. Golovach, and Saket Saurabh. Connecting Vertices by Independent Trees. In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 29, pp. 73-84, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)

Copy BibTex To Clipboard

@InProceedings{basavaraju_et_al:LIPIcs.FSTTCS.2014.73, author = {Basavaraju, Manu and Fomin, Fedor V. and Golovach, Petr A. and Saurabh, Saket}, title = {{Connecting Vertices by Independent Trees}}, booktitle = {34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)}, pages = {73--84}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-77-4}, ISSN = {1868-8969}, year = {2014}, volume = {29}, editor = {Raman, Venkatesh and Suresh, S. P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2014.73}, URN = {urn:nbn:de:0030-drops-48340}, doi = {10.4230/LIPIcs.FSTTCS.2014.73}, annote = {Keywords: Parameterized complexity, FPT-algorithms, completely independent spanning trees} }

Document

**Published in:** LIPIcs, Volume 29, 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)

In the Tree Deletion Set problem the input is a graph G together with an integer k. The objective is to determine whether there exists a set S of at most k vertices such that G \ S is a tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPT^c for any constant c. In this paper we give an O(k^5) size kernel for the Tree Deletion Set problem. An appealing feature of our kernelization algorithm is a new reduction rule, based on system of linear equations, that we use to handle the instances on which Tree Deletion Set is hard to approximate.

Archontia C. Giannopoulou, Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchy. Tree Deletion Set Has a Polynomial Kernel (but no OPT^O(1) Approximation). In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 29, pp. 85-96, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)

Copy BibTex To Clipboard

@InProceedings{giannopoulou_et_al:LIPIcs.FSTTCS.2014.85, author = {Giannopoulou, Archontia C. and Lokshtanov, Daniel and Saurabh, Saket and Suchy, Ondrej}, title = {{Tree Deletion Set Has a Polynomial Kernel (but no OPT^O(1) Approximation)}}, booktitle = {34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)}, pages = {85--96}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-77-4}, ISSN = {1868-8969}, year = {2014}, volume = {29}, editor = {Raman, Venkatesh and Suresh, S. P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2014.85}, URN = {urn:nbn:de:0030-drops-48261}, doi = {10.4230/LIPIcs.FSTTCS.2014.85}, annote = {Keywords: Tree Deletion Set, Feedback Vertex Set, Kernelization, Linear Equations} }

Document

**Published in:** LIPIcs, Volume 24, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013)

Poljak and Turzik (Discrete Mathematics 1986) introduced the notion of
lambda-extendible properties of graphs as a generalization of the property of being bipartite. They showed that for any 0<lambda<1 and
lambda-extendible property Pi, any connected graph G on n vertices and m edges contains a spanning subgraph H in Pi with at least lambda*m+(1-lambda)(n-1)/2 edges. The property of being bipartite is
lambda-extendible for lambda =1/2, and so the Poljak-Turzik bound
generalizes the well-known Edwards-Erdos bound for Max Cut. Other examples of lambda-extendible properties include: being an acyclic oriented graph, a balanced signed graph, or a q-colorable graph for some q in N.
Mnich et al. (FSTTCS 2012) defined the closely related notion of strong lambda-extendibility. They showed that the problem of finding a subgraph satisfying a given strongly lambda-extendible property Pi is fixed-parameter tractable (FPT) when parameterized above the Poljak-Turzik bound---does there exist a spanning subgraph H of a connected graph G such that H in Pi and H has at least lambda*m+(1-lambda)(n-1)/2+k edges?---subject to the condition that the problem is FPT on a certain simple class of graphs called almost-forests of cliques. This generalized an earlier result of Crowston et al. (ICALP 2012) for Max Cut, to all strongly lambda-extendible properties which satisfy the additional criterion.
In this paper we settle the kernelization complexity of nearly all problems parameterized above Poljak-Turzik bounds, in the affirmative. We show that these problems admit quadratic kernels (cubic when lambda=1/2), without using the assumption that the problem is FPT on almost-forests of cliques. Thus our results not only remove the technical condition of being FPT on almost-forests of cliques from previous results, but also unify and extend previously known kernelization results in this direction. Our results add to the select list of generic kernelization results known in the literature.

Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai, and Saket Saurabh. Polynomial Kernels for lambda-extendible Properties Parameterized Above the Poljak-Turzik Bound. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 24, pp. 43-54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)

Copy BibTex To Clipboard

@InProceedings{crowston_et_al:LIPIcs.FSTTCS.2013.43, author = {Crowston, Robert and Jones, Mark and Muciaccia, Gabriele and Philip, Geevarghese and Rai, Ashutosh and Saurabh, Saket}, title = {{Polynomial Kernels for lambda-extendible Properties Parameterized Above the Poljak-Turzik Bound}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013)}, pages = {43--54}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-64-4}, ISSN = {1868-8969}, year = {2013}, volume = {24}, editor = {Seth, Anil and Vishnoi, Nisheeth K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2013.43}, URN = {urn:nbn:de:0030-drops-43599}, doi = {10.4230/LIPIcs.FSTTCS.2013.43}, annote = {Keywords: Kernelization, Lambda Extension, Above-Guarantee Parameterization, MaxCut} }

Document

**Published in:** LIPIcs, Volume 24, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013)

In a typical covering problem we are given a universe U of size n, a family S (S could be given implicitly) of size m and an integer k and the objective is to check whether there exists a subfamily S' \subseteq S of size at most k satisfying some desired properties. If S' is required to contain all the elements of U then it corresponds to the classical Set Cover problem. On the other hand if we require S' to satisfy the property that for every pair of elements x,y \in U there exists a set S \in S' such that |S \cap {x,y}|=1 then it corresponds to the Test Cover problem. In this paper we consider a natural parameterization of Set Cover and Test Cover. More precisely, we study the (n-k)-Set Cover and (n-k)-Test Cover problems, where the objective is to find a subfamily S' of size at most n-k satisfying the respective properties, from the kernelization perspective. It is known in the literature that both (n-k)-Set Cover and (n-k)-Test Cover do not admit polynomial kernels (under some well known complexity theoretic assumptions). However, in this paper we show that they do admit "partially polynomial kernels". More precisely, we give polynomial time algorithms that take as input an instance (U,S,k) of (n-k)-Set Cover (n-k)-Test Cover) and return an equivalent instance (~U,~S,~k) of (n-k)-Set Cover (respectively (n-k)-Test Cover) with ~k <= k and |~U|= O(k^2) (|~U|=O(k^7)). These results allow us to generalize, improve and unify several results known in the literature. For example, these immediately imply traditional kernels when input instances satisfy certain "sparsity properties". Using a part of our kernelization algorithm for (n-k)-Set Cover, we also get an improved FPT algorithm for this problem which runs in time O(4^k*k^{\O(1)}*(m+n)) improving over the previous best of O(8^{k+o(k)}*(m+n)^{O(1)}). On the other hand the partially polynomial kernel for (n-k)-Test Cover implies the first single exponential FPT algorithm, an algorithm with running time O(2^{O(k^2)}*(m+n)^{O(1)}). We believe such an approach will also be useful for other covering problems as well.

Manu Basavaraju, Mathew C. Francis, M. S. Ramanujan, and Saket Saurabh. Partially Polynomial Kernels for Set Cover and Test Cover. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 24, pp. 67-78, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)

Copy BibTex To Clipboard

@InProceedings{basavaraju_et_al:LIPIcs.FSTTCS.2013.67, author = {Basavaraju, Manu and Francis, Mathew C. and Ramanujan, M. S. and Saurabh, Saket}, title = {{Partially Polynomial Kernels for Set Cover and Test Cover}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013)}, pages = {67--78}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-64-4}, ISSN = {1868-8969}, year = {2013}, volume = {24}, editor = {Seth, Anil and Vishnoi, Nisheeth K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2013.67}, URN = {urn:nbn:de:0030-drops-43621}, doi = {10.4230/LIPIcs.FSTTCS.2013.67}, annote = {Keywords: Set Cover, Test Cover, Kernelization, Parameterized Algorithms} }

Document

**Published in:** LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)

The class q-Horn, introduced by Boros, Crama and Hammer in 1990, is one of the largest known classes of propositional CNF formulas for which satisfiability can be decided in polynomial time. This class properly contains the fundamental classes of Horn and Krom formulas as well as the class of renamable (or disguised) Horn formulas.
In this paper we extend this class so that its favorable algorithmic properties can be made accessible to formulas that are outside but "close"' to this class. We show that deciding satisfiability is fixed-parameter tractable parameterized by the distance of the given formula from q-Horn. The distance is measured by the smallest number of variables that we need to delete from the formula in order to get a q-Horn formula, i.e., the size of a smallest deletion backdoor set into the class q-Horn.
This result generalizes known fixed-parameter tractability results for satisfiability decision with respect to the parameters distance from Horn, Krom, and renamable Horn.

Serge Gaspers, Sebastian Ordyniak, M. S. Ramanujan, Saket Saurabh, and Stefan Szeider. Backdoors to q-Horn. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 67-79, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)

Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.STACS.2013.67, author = {Gaspers, Serge and Ordyniak, Sebastian and Ramanujan, M. S. and Saurabh, Saket and Szeider, Stefan}, title = {{Backdoors to q-Horn}}, booktitle = {30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)}, pages = {67--79}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-50-7}, ISSN = {1868-8969}, year = {2013}, volume = {20}, editor = {Portier, Natacha and Wilke, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.67}, URN = {urn:nbn:de:0030-drops-39236}, doi = {10.4230/LIPIcs.STACS.2013.67}, annote = {Keywords: Algorithms and data structures, Backdoor sets, Satisfiability, Fixed Parameter Tractability} }

Document

**Published in:** LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)

We give the first linear kernels for Dominating Set and Connected Dominating Set problems on graphs excluding a fixed graph H as a topological minor.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 92-103, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.STACS.2013.92, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Saurabh, Saket and Thilikos, Dimitrios M.}, title = {{Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs}}, booktitle = {30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)}, pages = {92--103}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-50-7}, ISSN = {1868-8969}, year = {2013}, volume = {20}, editor = {Portier, Natacha and Wilke, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.92}, URN = {urn:nbn:de:0030-drops-39255}, doi = {10.4230/LIPIcs.STACS.2013.92}, annote = {Keywords: Parameterized complexity, kernelization, algorithmic graph minors, dominating set, connected dominating set} }

Document

**Published in:** LIPIcs, Volume 18, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)

Poljak and Turzík (Discrete Math. 1986) introduced the notion of lambda-extendible properties of graphs as a generalization of the property of being bipartite. They showed that for any 0 < lambda < 1 and lambda-extendible property Pi, any connected graph G on n vertices and m edges contains a spanning subgraph H in Pi with at least lambda m+ (1-lambda)/2 (n-1) edges. The property of being bipartite is lambda-extendible for lambda=1/2, and thus the Poljak-Turzík bound generalizes the well-known Edwards-Erdos bound for MAXCUT.
We define a variant, namely strong lambda-extendibility, to which the Poljak-Turzík bound applies. For a strong lambda-extendible graph property \Pi, we define the parameterized Above Poljak-Turzík problem as follows: Given a connected graph G on n vertices and m edges and an integer parameter k, does there exist a spanning subgraph H of G such that H in Pi and H has at least lambda m+ (1-lambda)/2 (n-1)+k edges? The parameter is k, the surplus over the number of edges guaranteed by the Poljak-Turzík bound.
We consider properties Pi for which the Above Poljak-Turzík problem is fixed-parameter tractable (FPT) on graphs which are O(k) vertices away from being a graph in which each block is a clique. We show that for all such properties, Above Poljak-Turzík is FPT for all 0< lambda <1. Our results hold for properties of oriented graphs and graphs with edge labels.
Our results generalize the recent result of Crowston et al. (ICALP 2012) on MAXCUT parameterized above the Edwards-Erdos, and yield FPT algorithms for several graph problems parameterized above lower bounds. For instance, we get that the above-guarantee Max q-Colorable Subgraph problem is FPT. Our results also imply that the parameterized above-guarantee Oriented Max Acyclic Digraph problem thus solving an open question of Raman and Saurabh (Theor. Comput. Sci. 2006).

Matthias Mnich, Geevarghese Philip, Saket Saurabh, and Ondrej Suchy. Beyond Max-Cut: lambda-Extendible Properties Parameterized Above the Poljak-Turzik Bound. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 18, pp. 412-423, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)

Copy BibTex To Clipboard

@InProceedings{mnich_et_al:LIPIcs.FSTTCS.2012.412, author = {Mnich, Matthias and Philip, Geevarghese and Saurabh, Saket and Suchy, Ondrej}, title = {{Beyond Max-Cut: lambda-Extendible Properties Parameterized Above the Poljak-Turzik Bound}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)}, pages = {412--423}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-47-7}, ISSN = {1868-8969}, year = {2012}, volume = {18}, editor = {D'Souza, Deepak and Radhakrishnan, Jaikumar and Telikepalli, Kavitha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2012.412}, URN = {urn:nbn:de:0030-drops-38776}, doi = {10.4230/LIPIcs.FSTTCS.2012.412}, annote = {Keywords: Algorithms and data structures; fixed-parameter algorithms; bipartite graphs; above-guarantee parameterization} }

Document

**Published in:** LIPIcs, Volume 18, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)

In the Odd Cycle Transversal (OCT) problem we are given a graph G on n vertices and an integer k, the objective is to determine whether there exists a vertex set O in G of size at most k such that G - O is bipartite. Reed, Smith and Vetta [Oper. Res. Lett., 2004] gave an algorithm for OCT with running time 3^kn^{O(1)}. Assuming the exponential time hypothesis of Impagliazzo, Paturi and Zane, the running time can not be improved to 2^{o(k)}n^{O(1)}. We show that OCT admits a randomized algorithm running in O(n^{O(1)} + 2^{O(sqrt{k} log k)}n) time when the input graph is planar. As a byproduct we also obtain a linear time algorithm for OCT on planar graphs with running time O(n^O(1) + 2O( sqrt(k) log k) n) time. This improves over an algorithm of Fiorini et al. [Disc. Appl. Math., 2008].

Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential Parameterized Odd Cycle Transversal on Planar Graphs. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 18, pp. 424-434, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)

Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.FSTTCS.2012.424, author = {Lokshtanov, Daniel and Saurabh, Saket and Wahlstr\"{o}m, Magnus}, title = {{Subexponential Parameterized Odd Cycle Transversal on Planar Graphs}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)}, pages = {424--434}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-47-7}, ISSN = {1868-8969}, year = {2012}, volume = {18}, editor = {D'Souza, Deepak and Radhakrishnan, Jaikumar and Telikepalli, Kavitha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2012.424}, URN = {urn:nbn:de:0030-drops-38783}, doi = {10.4230/LIPIcs.FSTTCS.2012.424}, annote = {Keywords: Graph Theory, Parameterized Algorithms, Odd Cycle Transversal} }

Document

**Published in:** Dagstuhl Reports, Volume 2, Issue 6 (2012)

This report documents the program and the outcomes of Dagstuhl Seminar 12241 ``Data Reduction and Problem Kernels''. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available.

Michael R. Fellows, Jiong Guo, Dániel Marx, and Saket Saurabh. Data Reduction and Problem Kernels (Dagstuhl Seminar 12241). In Dagstuhl Reports, Volume 2, Issue 6, pp. 26-50, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)

Copy BibTex To Clipboard

@Article{fellows_et_al:DagRep.2.6.26, author = {Fellows, Michael R. and Guo, Jiong and Marx, D\'{a}niel and Saurabh, Saket}, title = {{Data Reduction and Problem Kernels (Dagstuhl Seminar 12241)}}, pages = {26--50}, journal = {Dagstuhl Reports}, ISSN = {2192-5283}, year = {2012}, volume = {2}, number = {6}, editor = {Fellows, Michael R. and Guo, Jiong and Marx, D\'{a}niel and Saurabh, Saket}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.2.6.26}, URN = {urn:nbn:de:0030-drops-37297}, doi = {10.4230/DagRep.2.6.26}, annote = {Keywords: Preprocessing, Fixed-parameter tractability, Parameterized algorithmics} }

Document

**Published in:** LIPIcs, Volume 14, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)

We investigate the parameterized complexity of Vertex Cover parameterized above the optimum value of the linear programming (LP) relaxation of the integer linear programming formulation of the problem. By carefully analyzing the change in the LP value in the branching steps, we argue that even the most straightforward branching algorithm (after some preprocessing) results in an O^*(2.6181^r) algorithm for the problem where r is the excess of the
vertex cover size over the LP optimum. We write O^*(f(k)) for a time complexity of the form O(f(k)n^{O(1)}), where f(k) grows exponentially with k.
Then, using known and new reductions, we give O^*(2.6181^k) algorithms for the parameterized versions of Above Guarantee Vertex Cover, Odd Cycle Transversal, Split Vertex Deletion and Almost 2-SAT, and an O^*(1.6181^k) algorithm for Konig Vertex Deletion, Vertex Cover Param by OCT and Vertex Cover Param by KVD. These algorithms significantly improve the best known bounds for these problems. The notable improvement is the bound for Odd Cycle Transversal for which this is the first major improvement after the first algorithm that showed it fixed-parameter tractable in 2003. We also observe that using our algorithm, one can obtain a simple kernel for the classical vertex cover problem with at most 2k-O(log k) vertices.

N.S. Narayanaswamy, Venkatesh Raman, M.S. Ramanujan, and Saket Saurabh. LP can be a cure for Parameterized Problems. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 338-349, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)

Copy BibTex To Clipboard

@InProceedings{narayanaswamy_et_al:LIPIcs.STACS.2012.338, author = {Narayanaswamy, N.S. and Raman, Venkatesh and Ramanujan, M.S. and Saurabh, Saket}, title = {{LP can be a cure for Parameterized Problems}}, booktitle = {29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)}, pages = {338--349}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-35-4}, ISSN = {1868-8969}, year = {2012}, volume = {14}, editor = {D\"{u}rr, Christoph and Wilke, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.338}, URN = {urn:nbn:de:0030-drops-34291}, doi = {10.4230/LIPIcs.STACS.2012.338}, annote = {Keywords: Algorithms and data structures. Graph Algorithms, Parameterized Algorithms.} }

Document

**Published in:** LIPIcs, Volume 9, 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)

We study a general class of problems called F-Deletion problems. In an F-Deletion problem, we are asked whether a subset of at most k
vertices can be deleted from a graph G such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-Deletion problem when F contains a planar graph. We give
- a linear vertex kernel on graphs excluding t-claw K_(1,t), the star with t leaves, as an induced subgraph, where t is a fixed integer.
- an approximation algorithm achieving an approximation ratio of O(log^(3/2) OPT), where $OPT$ is the size of an optimal solution on general undirected graphs.
Finally, we obtain polynomial kernels for the case when F only contains graph theta_c as a minor for a fixed integer c. The graph theta_c consists of two vertices connected by $c$ parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes.

Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. Hitting forbidden minors: Approximation and Kernelization. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 189-200, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.STACS.2011.189, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Misra, Neeldhara and Philip, Geevarghese and Saurabh, Saket}, title = {{Hitting forbidden minors: Approximation and Kernelization}}, booktitle = {28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)}, pages = {189--200}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-25-5}, ISSN = {1868-8969}, year = {2011}, volume = {9}, editor = {Schwentick, Thomas and D\"{u}rr, Christoph}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2011.189}, URN = {urn:nbn:de:0030-drops-30103}, doi = {10.4230/LIPIcs.STACS.2011.189}, annote = {Keywords: kernelization} }

Document

**Published in:** LIPIcs, Volume 8, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)

In the Connected Dominating Set problem we are given as input a graph $G$ and a positive integer $k$, and are asked if there is a set $S$ of at most $k$ vertices of $G$ such that $S$ is a dominating set of $G$ and the subgraph induced by $S$ is connected. This is a basic connectivity problem that is known to be NP-complete, and it has been extensively studied using several algorithmic approaches. In this paper we study the effect of excluding short cycles, as a subgraph, on the kernelization complexity of Connected Dominating Set.
Kernelization algorithms are polynomial-time algorithms that take an input and a positive integer $k$ (the parameter) and output an equivalent instance where the size of the new instance and the new parameter are both bounded by some function $g(k)$. The new instance is called a $g(k)$ kernel for the problem. If $g(k)$ is a polynomial in $k$ then we say that the problem admits polynomial kernels. The girth of a graph $G$ is the length of a shortest cycle in $G$. It turns out that Connected Dominating Set is ``hard'' on graphs with small cycles, and becomes progressively easier as the girth increases. More specifically, we obtain the following interesting trichotomy: Connected Dominating Set (a) does not have a kernel of any size on graphs of girth $3$ or $4$ (since the problem is W[2]-hard); (b) admits a $g(k)$ kernel, where $g(k)$ is $k^{O(k)}$, on graphs of girth $5$ or $6$ but has no polynomial kernel (unless the Polynomial Hierarchy (PH) collapses to the third level) on these graphs; (c) has a cubic ($O(k^3)$) kernel on graphs of girth at least $7$.
While there is a large and growing collection of parameterized complexity results available for problems on graph classes characterized by excluded minors, our results add to the very few known in the field for graph classes characterized by excluded subgraphs.

Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. The effect of girth on the kernelization complexity of Connected Dominating Set. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), Volume 8, pp. 96-107, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)

Copy BibTex To Clipboard

@InProceedings{misra_et_al:LIPIcs.FSTTCS.2010.96, author = {Misra, Neeldhara and Philip, Geevarghese and Raman, Venkatesh and Saurabh, Saket}, title = {{The effect of girth on the kernelization complexity of Connected Dominating Set}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)}, pages = {96--107}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-23-1}, ISSN = {1868-8969}, year = {2010}, volume = {8}, editor = {Lodaya, Kamal and Mahajan, Meena}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2010.96}, URN = {urn:nbn:de:0030-drops-28567}, doi = {10.4230/LIPIcs.FSTTCS.2010.96}, annote = {Keywords: Connected Dominating Set, parameterized complexity, kernelization, girth} }

Document

**Published in:** LIPIcs, Volume 8, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)

Computing the Dodgson Score of a candidate in an election is a hard computational problem, which has been analyzed using classical and parameterized analysis. In this paper we resolve two open problems regarding the parameterized complexity of DODGSON SCORE. We show that DODGSON SCORE parameterized by the target score value $k$ does not have a polynomial kernel unless the polynomial hierarchy collapses to the third level; this complements a result of Fellows, Rosamond and Slinko who obtain a non-trivial kernel of exponential size for a generalization of this problem. We also prove that DODGSON SCORE parameterized by the number $n$ of votes is hard for $W[1]$.

Michael Fellows, Bart M. P. Jansen, Daniel Lokshtanov, Frances A. Rosamond, and Saket Saurabh. Determining the Winner of a Dodgson Election is Hard. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), Volume 8, pp. 459-468, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)

Copy BibTex To Clipboard

@InProceedings{fellows_et_al:LIPIcs.FSTTCS.2010.459, author = {Fellows, Michael and Jansen, Bart M. P. and Lokshtanov, Daniel and Rosamond, Frances A. and Saurabh, Saket}, title = {{Determining the Winner of a Dodgson Election is Hard}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)}, pages = {459--468}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-23-1}, ISSN = {1868-8969}, year = {2010}, volume = {8}, editor = {Lodaya, Kamal and Mahajan, Meena}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2010.459}, URN = {urn:nbn:de:0030-drops-28866}, doi = {10.4230/LIPIcs.FSTTCS.2010.459}, annote = {Keywords: Dodgson Score, Parameterized Complexity, Kernelization Lower Bounds} }

Document

**Published in:** LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)

In this paper we make the first step beyond bidimensionality by obtaining subexponential time algorithms for problems on directed graphs.
We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs.
We exemplify our approaches with two well studied problems. For the first problem, $k$-Leaf Out-Branching, which is to find an oriented spanning tree with at least $k$ leaves, we obtain an algorithm solving the problem in time $2^{\cO(\sqrt{k} \log k)} n+ n^{\cO(1)}$ on directed graphs whose underlying undirected graph excludes some fixed graph $H$ as a minor. For the special case when the input directed graph is planar, the running time can be improved to $2^{\cO(\sqrt{k} )}n + n^{\cO(1)}$.
The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely $k$-Internal Out-Branching, which is to find an oriented spanning tree with at least $k$ internal vertices. We obtain an algorithm solving the problem in time $2^{\cO(\sqrt{k} \log k)} + n^{\cO(1)}$ on directed graphs whose underlying undirected graph excludes some fixed apex graph $H$ as a minor.
Finally, we observe that for any $\ve>0$, the $k$-Directed Path problem is solvable in time $\cO((1+\ve)^k n^{f(\ve)})$, where $f$ is some function of $\ve$.
Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs.

Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 251-262, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)

Copy BibTex To Clipboard

@InProceedings{dorn_et_al:LIPIcs.STACS.2010.2459, author = {Dorn, Frederic and Fomin, Fedor V. and Lokshtanov, Daniel and Raman, Venkatesh and Saurabh, Saket}, title = {{Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs}}, booktitle = {27th International Symposium on Theoretical Aspects of Computer Science}, pages = {251--262}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-16-3}, ISSN = {1868-8969}, year = {2010}, volume = {5}, editor = {Marion, Jean-Yves and Schwentick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2459}, URN = {urn:nbn:de:0030-drops-24599}, doi = {10.4230/LIPIcs.STACS.2010.2459}, annote = {Keywords: Parameterized Subexponential Algorithms, Directed Graphs, Out-Branching, Internal Out-Branching} }

Document

**Published in:** LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)

A tournament $T = (V,A)$ is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on $n$ vertices and an integer parameter $k$, the {\sc Feedback Arc Set} problem asks whether thegiven digraph has a set of $k$ arcs whose removal results in an acyclicdigraph. The {\sc Feedback Arc Set} problem restricted to tournaments is knownas the {\sc $k$-Feedback Arc Set in Tournaments ($k$-FAST)} problem. In thispaper we obtain a linear vertex kernel for \FAST{}. That is, we give apolynomial time algorithm which given an input instance $T$ to \FAST{} obtains an equivalent instance $T'$ on $O(k)$ vertices. In fact, given any fixed $\epsilon > 0$, the kernelized instance has at most $(2 + \epsilon)k$ vertices.Our result improves the previous known bound of $O(k^2)$ on the kernel size for\FAST{}. Our kernelization algorithm solves the problem on a subclass of
tournaments in polynomial time and uses a known polynomial time approximation
scheme for \FAST.

Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for Feedback Arc Set In Tournaments. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 37-47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)

Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.FSTTCS.2009.2305, author = {Bessy, St\'{e}phane and Fomin, Fedor V. and Gaspers, Serge and Paul, Christophe and Perez, Anthony and Saurabh, Saket and Thomass\'{e}, St\'{e}phan}, title = {{Kernels for Feedback Arc Set In Tournaments}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science}, pages = {37--47}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-13-2}, ISSN = {1868-8969}, year = {2009}, volume = {4}, editor = {Kannan, Ravi and Narayan Kumar, K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2305}, URN = {urn:nbn:de:0030-drops-23055}, doi = {10.4230/LIPIcs.FSTTCS.2009.2305}, annote = {Keywords: Parameterized complexity, kernels, tournaments} }

Document

**Published in:** LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)

Partial Cover problems are optimization versions
of fundamental and well studied problems like {\sc Vertex Cover} and {\sc Dominating Set}.
Here one is interested in covering (or dominating) the maximum number of edges (or vertices) using a given number ($k$) of vertices, rather than covering all edges (or vertices). In general graphs, these problems are hard for parameterized complexity classes when parameterized by $k$.
It was recently shown by Amini et. al. [{\em FSTTCS 08}\,] that {\sc Partial Vertex Cover} and {\sc Partial Dominating Set} are fixed parameter tractable on large classes of sparse graphs, namely $H$-minor free graphs,
which include planar graphs and graphs of bounded genus. In particular, it was shown that on planar graphs both problems can be solved in time $2^{\cO(k)}n^{\cO(1)}$.

Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subexponential Algorithms for Partial Cover Problems. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 193-201, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.FSTTCS.2009.2318, author = {Fomin, Fedor V. and Lokshtanov, Daniel and Raman, Venkatesh and Saurabh, Saket}, title = {{Subexponential Algorithms for Partial Cover Problems}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science}, pages = {193--201}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-13-2}, ISSN = {1868-8969}, year = {2009}, volume = {4}, editor = {Kannan, Ravi and Narayan Kumar, K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2318}, URN = {urn:nbn:de:0030-drops-23186}, doi = {10.4230/LIPIcs.FSTTCS.2009.2318}, annote = {Keywords: Partial cover problems, parameterized complexity, subexponential time algorithms, irrelevant vertex technique} }

Document

**Published in:** LIPIcs, Volume 3, 26th International Symposium on Theoretical Aspects of Computer Science (2009)

The {\sc $k$-Leaf Out-Branching} problem is to find an out-branching, that is a rooted oriented spanning tree, with at least $k$ leaves in a given digraph. The problem has recently received much attention from the viewpoint of parameterized algorithms. Here, we take a kernelization based approach to the {\sc $k$-Leaf-Out-Branching} problem. We give the first polynomial kernel for {\sc Rooted $k$-Leaf-Out-Branching}, a variant of {\sc $k$-Leaf-Out-Branching} where the root of the tree searched for is also a part of the input. Our kernel has cubic size and is obtained using extremal combinatorics.
For the {\sc $k$-Leaf-Out-Branching} problem, we show that no polynomial kernel is possible unless the polynomial hierarchy collapses to third level by applying a recent breakthrough result by Bodlaender et al. (ICALP 2008) in a non-trivial fashion. However, our positive results for {\sc Rooted $k$-Leaf-Out-Branching} immediately imply that the seemingly intractable {\sc $k$-Leaf-Out-Branching} problem admits a data reduction to $n$ independent $O(k^3)$ kernels. These two results, tractability and intractability side by side, are the first ones separating {\it many-to-one kernelization} from {\it Turing kernelization}. This answers affirmatively an open problem regarding ``cheat kernelization'' raised by Mike Fellows and Jiong Guo independently.

Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible, Saket Saurabh, and Yngve Villanger. Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 421-432, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)

Copy BibTex To Clipboard

@InProceedings{fernau_et_al:LIPIcs.STACS.2009.1843, author = {Fernau, Henning and Fomin, Fedor V. and Lokshtanov, Daniel and Raible, Daniel and Saurabh, Saket and Villanger, Yngve}, title = {{Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves}}, booktitle = {26th International Symposium on Theoretical Aspects of Computer Science}, pages = {421--432}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-09-5}, ISSN = {1868-8969}, year = {2009}, volume = {3}, editor = {Albers, Susanne and Marion, Jean-Yves}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2009.1843}, URN = {urn:nbn:de:0030-drops-18437}, doi = {10.4230/LIPIcs.STACS.2009.1843}, annote = {Keywords: Parameterized algorithms, Kernelization, Out-branching, Max-leaf, Lower bounds} }

Document

Extended Abstract

**Published in:** LIPIcs, Volume 2, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2008)

Covering problems are fundamental
classical problems in optimization, computer science and complexity
theory. Typically an input to these problems is a family of sets over
a finite universe and the goal is to cover the elements of the
universe with as few sets of the family as possible.
The variations of covering problems
include well known problems like Set Cover, Vertex Cover,
Dominating Set and Facility Location to name a few. Recently
there has been a lot of study on partial covering problems, a
natural generalization of covering problems. Here, the goal is not to
cover all the elements but to cover the specified number of
elements with the minimum number of sets.

Omid Amini, Fedor Fomin, and Saket Saurabh. Implicit Branching and Parameterized Partial Cover Problems (Extended Abstract). In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 2, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)

Copy BibTex To Clipboard

@InProceedings{amini_et_al:LIPIcs.FSTTCS.2008.1736, author = {Amini, Omid and Fomin, Fedor and Saurabh, Saket}, title = {{Implicit Branching and Parameterized Partial Cover Problems}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science}, pages = {1--12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-08-8}, ISSN = {1868-8969}, year = {2008}, volume = {2}, editor = {Hariharan, Ramesh and Mukund, Madhavan and Vinay, V}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2008.1736}, URN = {urn:nbn:de:0030-drops-17363}, doi = {10.4230/LIPIcs.FSTTCS.2008.1736}, annote = {Keywords: Implicit Branching, Parameterized Algorithms, Partial Dominating Set, Partial Vertex Cover, Local Treewidth} }