Search Results

Documents authored by Sethuraman, Jay


Document
Track A: Algorithms, Complexity and Games
Scarf’s Algorithm on Arborescence Hypergraphs

Authors: Karthekeyan Chandrasekaran, Yuri Faenza, Chengyue He, and Jay Sethuraman

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Scarf’s algorithm - a pivoting procedure that finds a dominating extreme point in a down-monotone polytope - can be used to show the existence of a fractional stable matching in hypergraphs. The problem of finding a fractional stable matching in hypergraphs, however, is PPAD-complete. In this work, we study the behavior of Scarf’s algorithm on arborescence hypergraphs, the family of hypergraphs in which hyperedges correspond to the paths of an arborescence. For arborescence hypergraphs, we prove that Scarf’s algorithm can be implemented to find an integral stable matching in polynomial time. En route to our result, we uncover novel structural properties of bases and pivots for the more general family of network hypergraphs. Our work provides the first proof of polynomial-time convergence of Scarf’s algorithm on hypergraphic stable matching problems, giving hope to the possibility of polynomial-time convergence of Scarf’s algorithm for other families of polytopes.

Cite as

Karthekeyan Chandrasekaran, Yuri Faenza, Chengyue He, and Jay Sethuraman. Scarf’s Algorithm on Arborescence Hypergraphs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 45:1-45:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chandrasekaran_et_al:LIPIcs.ICALP.2025.45,
  author =	{Chandrasekaran, Karthekeyan and Faenza, Yuri and He, Chengyue and Sethuraman, Jay},
  title =	{{Scarf’s Algorithm on Arborescence Hypergraphs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{45:1--45:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.45},
  URN =		{urn:nbn:de:0030-drops-234220},
  doi =		{10.4230/LIPIcs.ICALP.2025.45},
  annote =	{Keywords: Scarf’s algorithm, Arborescence Hypergraphs, Stable Matchings}
}
Document
Bounded Size Graph Clustering with Applications to Stream Processing

Authors: Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Jay Sethuraman, and Joel Wolf

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
We introduce a graph clustering problem motivated by a stream processing application. Input to our problem is an undirected graph with vertex and edge weights. A cluster is a subset of the vertices. The {\em size} of a cluster is defined as the total vertex weight in the subset plus the total edge weight at the boundary of the cluster. The bounded size graph clustering problem ($\GC$) is to partition the vertices into clusters of size at most a given budget and minimize the total edge-weight across the clusters. In the {\em multiway cut} version of the problem, we are also given a subset of vertices called {\em terminals}. No cluster is allowed to contain more than one terminal. Our problem differs from most of the previously studied clustering problems in that the number of clusters is not specified. We first show that the feasibility version of the multiway cut $\GC$ problem, i.e., determining if there exists a clustering with bounded-size clusters satisfying the multiway cut constraint, can be solved in polynomial time. Our algorithm is based on the min-cut subroutine and an uncrossing argument. This result is in contrast with the NP-hardness of the min-max multiway cut problem, considered by Svitkina and Tardos (2004), in which the number of clusters must equal the number of terminals. Our results for the feasibility version also generalize to any symmetric submodular function. We next show that the optimization version of $\GC$ is NP-hard by showing an approximation-preserving reduction from the $\frac 13$-balanced cut problem. Our main result is an $O(\log^2 n)$-approximation to the optimization version of the multiway cut $\GC$ problem violating the budget by an $O(\log n)$ factor, where $n$ denotes the number of vertices. Our algorithm is based on a set-cover-like greedy approach which iteratively computes bounded-size clusters to maximize the number of new vertices covered.

Cite as

Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Jay Sethuraman, and Joel Wolf. Bounded Size Graph Clustering with Applications to Stream Processing. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 275-286, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{khandekar_et_al:LIPIcs.FSTTCS.2009.2325,
  author =	{Khandekar, Rohit and Hildrum, Kirsten and Parekh, Sujay and Rajan, Deepak and Sethuraman, Jay and Wolf, Joel},
  title =	{{Bounded Size Graph Clustering with Applications to Stream Processing}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{275--286},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2325},
  URN =		{urn:nbn:de:0030-drops-23250},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2325},
  annote =	{Keywords: Graph partitioning, uncrossing, Gomory-Hu trees, symmetric submodular functions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail