Search Results

Documents authored by Strassle, Carmen


Document
A Strong Direct Sum Theorem for Distributional Query Complexity

Authors: Guy Blanc, Caleb Koch, Carmen Strassle, and Li-Yang Tan

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Consider the expected query complexity of computing the k-fold direct product f^{⊗ k} of a function f to error ε with respect to a distribution μ^k. One strategy is to sequentially compute each of the k copies to error ε/k with respect to μ and apply the union bound. We prove a strong direct sum theorem showing that this naive strategy is essentially optimal. In particular, computing a direct product necessitates a blowup in both query complexity and error. Strong direct sum theorems contrast with results that only show a blowup in query complexity or error but not both. There has been a long line of such results for distributional query complexity, dating back to (Impagliazzo, Raz, Wigderson 1994) and (Nisan, Rudich, Saks 1994), but a strong direct sum theorem that holds for all functions in the standard query model had been elusive. A key idea in our work is the first use of the Hardcore Theorem (Impagliazzo 1995) in the context of query complexity. We prove a new resilience lemma that accompanies it, showing that the hardcore of f^{⊗k} is likely to remain dense under arbitrary partitions of the input space.

Cite as

Guy Blanc, Caleb Koch, Carmen Strassle, and Li-Yang Tan. A Strong Direct Sum Theorem for Distributional Query Complexity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 16:1-16:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blanc_et_al:LIPIcs.CCC.2024.16,
  author =	{Blanc, Guy and Koch, Caleb and Strassle, Carmen and Tan, Li-Yang},
  title =	{{A Strong Direct Sum Theorem for Distributional Query Complexity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{16:1--16:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.16},
  URN =		{urn:nbn:de:0030-drops-204123},
  doi =		{10.4230/LIPIcs.CCC.2024.16},
  annote =	{Keywords: Query complexity, direct product theorem, hardcore theorem}
}
Document
Certification with an NP Oracle

Authors: Guy Blanc, Caleb Koch, Jane Lange, Carmen Strassle, and Li-Yang Tan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In the certification problem, the algorithm is given a function f with certificate complexity k and an input x^⋆, and the goal is to find a certificate of size ≤ poly(k) for f’s value at x^⋆. This problem is in NP^NP, and assuming 𝖯 ≠ NP, is not in 𝖯. Prior works, dating back to Valiant in 1984, have therefore sought to design efficient algorithms by imposing assumptions on f such as monotonicity. Our first result is a BPP^NP algorithm for the general problem. The key ingredient is a new notion of the balanced influence of variables, a natural variant of influence that corrects for the bias of the function. Balanced influences can be accurately estimated via uniform generation, and classic BPP^NP algorithms are known for the latter task. We then consider certification with stricter instance-wise guarantees: for each x^⋆, find a certificate whose size scales with that of the smallest certificate for x^⋆. In sharp contrast with our first result, we show that this problem is NP^NP-hard even to approximate. We obtain an optimal inapproximability ratio, adding to a small handful of problems in the higher levels of the polynomial hierarchy for which optimal inapproximability is known. Our proof involves the novel use of bit-fixing dispersers for gap amplification.

Cite as

Guy Blanc, Caleb Koch, Jane Lange, Carmen Strassle, and Li-Yang Tan. Certification with an NP Oracle. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{blanc_et_al:LIPIcs.ITCS.2023.18,
  author =	{Blanc, Guy and Koch, Caleb and Lange, Jane and Strassle, Carmen and Tan, Li-Yang},
  title =	{{Certification with an NP Oracle}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.18},
  URN =		{urn:nbn:de:0030-drops-175217},
  doi =		{10.4230/LIPIcs.ITCS.2023.18},
  annote =	{Keywords: Certificate complexity, Boolean functions, polynomial hierarchy, hardness of approximation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail