Search Results

Documents authored by Tan, Cheng


Document
APPROX
Scheduling Splittable Jobs on Configurable Machines

Authors: Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Motivated by modern architectures allowing for the partitioning of a GPU into hardware separated instances, we initiate the study of scheduling splittable jobs on configurable machines. We consider machines that can be configured into smaller instances, which we call blocks, in multiple ways, each of which is referred to as a configuration. We introduce the Configurable Machine Scheduling (cms) problem, where we are given n jobs and a set C of configurations. A schedule consists of a set of machines, each assigned some configuration in C with each block in the configuration assigned to process one job. The amount of a job’s demand that is satisfied by a block is given by an arbitrary function of the job and block. The objective is to construct a schedule using as few machines as possible. We provide a tight logarithmic factor approximation algorithm for this problem in the general setting, a factor (3 + ε) approximation algorithm for arbitrary ε > 0 when there are O(1) input configurations, and a polynomial time approximation scheme when both the number and size of configurations are O(1). Finally, we utilize a technique for finding conic integer combinations in fixed dimension to develop an optimal polynomial time algorithm in the case with O(1) jobs, O(1) blocks, and every configuration up to a given size.

Cite as

Matthew Casey, Rajmohan Rajaraman, David Stalfa, and Cheng Tan. Scheduling Splittable Jobs on Configurable Machines. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{casey_et_al:LIPIcs.APPROX/RANDOM.2024.22,
  author =	{Casey, Matthew and Rajaraman, Rajmohan and Stalfa, David and Tan, Cheng},
  title =	{{Scheduling Splittable Jobs on Configurable Machines}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.22},
  URN =		{urn:nbn:de:0030-drops-210157},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.22},
  annote =	{Keywords: Scheduling algorithms, Approximation algorithms, Configurable machines, Splittable jobs, Linear programming}
}
Document
Invited Talk
SO(DA)^2: End-to-end Generation of Specialized Reconfigurable Architectures (Invited Talk)

Authors: Antonino Tumeo, Nicolas Bohm Agostini, Serena Curzel, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana, Ang Li, and Joseph Manzano

Published in: OASIcs, Volume 100, 13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022)


Abstract
Modern data analysis applications are complex workflows composed of algorithms with diverse behaviors. They may include digital signal processing, data filtering, reduction, compression, graph algorithms, and machine learning. Their performance is highly dependent on the volume, the velocity, and the structure of the data. They are used in many different domains (from small, embedded devices, to large-scale, high-performance computing systems) but in all cases they need to provide answers with very low latency to enable real-time decision making and autonomy. Coarse-grained reconfigurable arrays (CGRAs), i.e., architectures composed of functional units able to perform complex operations interconnected through a network-on-chip and configure the datapath to map complex kernels, are a promising platform to accelerate these applications thanks to their adaptability. They provide higher flexibility than application-specific integrated circuits (ASICs) while offering increased energy efficiency and faster reconfiguration speed with respect to field-programmable gate arrays (FPGAs). However, designing and specializing CGRAs requires significant efforts. The inherent flexibility of these devices makes the application mapping process equally important to the hardware design generation. To obtain efficient systems, approaches that simultaneously considers software and hardware optimizations are necessary. In this paper, we discuss the Software Defined Architectures for Data Analytics (SO(DA)²) toolchain, an end-to-end hardware/software codesign framework to generate custom reconfigurable architectures for data analytics applications. (SO(DA)²) is composed of a high-level compiler (SODA-OPT) and a hardware generator (OpenCGRA) and can automatically explore and generate optimal CGRA designs starting from high-level programming frameworks. SO(DA)² considers partial dynamic reconfiguration as key element of the system design. We discuss the various elements of the framework and demonstrate the flow on the case study of a partial dynamic reconfigurable CGRA design for data streaming applications.

Cite as

Antonino Tumeo, Nicolas Bohm Agostini, Serena Curzel, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana, Ang Li, and Joseph Manzano. SO(DA)^2: End-to-end Generation of Specialized Reconfigurable Architectures (Invited Talk). In 13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022). Open Access Series in Informatics (OASIcs), Volume 100, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{tumeo_et_al:OASIcs.PARMA-DITAM.2022.1,
  author =	{Tumeo, Antonino and Agostini, Nicolas Bohm and Curzel, Serena and Limaye, Ankur and Tan, Cheng and Amatya, Vinay and Minutoli, Marco and Castellana, Vito Giovanni and Li, Ang and Manzano, Joseph},
  title =	{{SO(DA)^2: End-to-end Generation of Specialized Reconfigurable Architectures}},
  booktitle =	{13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022)},
  pages =	{1:1--1:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-231-0},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{100},
  editor =	{Palumbo, Francesca and Bispo, Jo\~{a}o and Cherubin, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2022.1},
  URN =		{urn:nbn:de:0030-drops-161175},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2022.1},
  annote =	{Keywords: Reconfigurable architectures, data analytics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail