Search Results

Documents authored by Tang, Chaoliang


Document
APPROX
A Polynomial-Time Approximation Algorithm for Complete Interval Minors

Authors: Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
As shown by Robertson and Seymour, deciding whether the complete graph K_t is a minor of an input graph G is a fixed parameter tractable problem when parameterized by t. From the approximation viewpoint, a substantial gap remains: there is no PTAS for finding the largest complete minor unless P = NP, whereas the best known result is a polytime O(√ n)-approximation algorithm by Alon, Lingas and Wahlén. We investigate the complexity of finding K_t as interval minor in ordered graphs (i.e. graphs with a linear order on the vertices, in which intervals are contracted to form minors). Our main result is a polytime f(t)-approximation algorithm, where f is triply exponential in t but independent of n. The algorithm is based on delayed decompositions and shows that ordered graphs without a K_t interval minor can be constructed via a bounded number of three operations: closure under substitutions, edge union, and concatenation of a stable set. As a byproduct, graphs avoiding K_t as an interval minor have bounded chromatic number.

Cite as

Romain Bourneuf, Julien Cocquet, Chaoliang Tang, and Stéphan Thomassé. A Polynomial-Time Approximation Algorithm for Complete Interval Minors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bourneuf_et_al:LIPIcs.APPROX/RANDOM.2025.15,
  author =	{Bourneuf, Romain and Cocquet, Julien and Tang, Chaoliang and Thomass\'{e}, St\'{e}phan},
  title =	{{A Polynomial-Time Approximation Algorithm for Complete Interval Minors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  URN =		{urn:nbn:de:0030-drops-243814},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.15},
  annote =	{Keywords: Approximation algorithm, Ordered graphs, Interval minors, Delayed decompositions}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail