Search Results

Documents authored by Tschirbs, Felix


Document
Query Maintenance Under Batch Changes with Small-Depth Circuits

Authors: Samir Datta, Asif Khan, Anish Mukherjee, Felix Tschirbs, Nils Vortmeier, and Thomas Zeume

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Which dynamic queries can be maintained efficiently? For constant-size changes, it is known that constant-depth circuits or, equivalently, first-order updates suffice for maintaining many important queries, among them reachability, tree isomorphism, and the word problem for context-free languages. In other words, these queries are in the dynamic complexity class DynFO. We show that most of the existing results for constant-size changes can be recovered for batch changes of polylogarithmic size if one allows circuits of depth 𝒪(log log n) or, equivalently, first-order updates that are iterated 𝒪(log log n) times.

Cite as

Samir Datta, Asif Khan, Anish Mukherjee, Felix Tschirbs, Nils Vortmeier, and Thomas Zeume. Query Maintenance Under Batch Changes with Small-Depth Circuits. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.MFCS.2024.46,
  author =	{Datta, Samir and Khan, Asif and Mukherjee, Anish and Tschirbs, Felix and Vortmeier, Nils and Zeume, Thomas},
  title =	{{Query Maintenance Under Batch Changes with Small-Depth Circuits}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.46},
  URN =		{urn:nbn:de:0030-drops-206027},
  doi =		{10.4230/LIPIcs.MFCS.2024.46},
  annote =	{Keywords: Dynamic complexity theory, parallel computation, dynamic algorithms}
}
Document
Dynamic Complexity of Regular Languages: Big Changes, Small Work

Authors: Felix Tschirbs, Nils Vortmeier, and Thomas Zeume

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
Whether a changing string is member of a certain regular language can be maintained in the DynFO framework of Patnaik and Immerman: after changing the symbol at one position of the string, a first-order update formula can express - using additionally stored information - whether the resulting string is in the regular language. We extend this and further known results by considering changes of many positions at once. We also investigate to which degree the obtained update formulas imply work-efficient parallel dynamic algorithms.

Cite as

Felix Tschirbs, Nils Vortmeier, and Thomas Zeume. Dynamic Complexity of Regular Languages: Big Changes, Small Work. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{tschirbs_et_al:LIPIcs.CSL.2023.35,
  author =	{Tschirbs, Felix and Vortmeier, Nils and Zeume, Thomas},
  title =	{{Dynamic Complexity of Regular Languages: Big Changes, Small Work}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.35},
  URN =		{urn:nbn:de:0030-drops-174963},
  doi =		{10.4230/LIPIcs.CSL.2023.35},
  annote =	{Keywords: dynamic descriptive complexity, regular languages, batch changes, work}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail