Document

**Published in:** LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)

This paper gives a nearly tight characterization of the quantum communication complexity of the permutation-invariant Boolean functions. With such a characterization, we show that the quantum and randomized communication complexity of the permutation-invariant Boolean functions are quadratically equivalent (up to a logarithmic factor). Our results extend a recent line of research regarding query complexity [Scott Aaronson and Andris Ambainis, 2014; André Chailloux, 2019; Shalev Ben-David et al., 2020] to communication complexity, showing symmetry prevents exponential quantum speedups.
Furthermore, we show the Log-rank Conjecture holds for any non-trivial total permutation-invariant Boolean function. Moreover, we establish a relationship between the quantum/classical communication complexity and the approximate rank of permutation-invariant Boolean functions. This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant Boolean functions in both randomized and quantum settings (up to a logarithmic factor).

Ziyi Guan, Yunqi Huang, Penghui Yao, and Zekun Ye. Quantum and Classical Communication Complexity of Permutation-Invariant Functions. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 39:1-39:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{guan_et_al:LIPIcs.STACS.2024.39, author = {Guan, Ziyi and Huang, Yunqi and Yao, Penghui and Ye, Zekun}, title = {{Quantum and Classical Communication Complexity of Permutation-Invariant Functions}}, booktitle = {41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)}, pages = {39:1--39:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-311-9}, ISSN = {1868-8969}, year = {2024}, volume = {289}, editor = {Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.39}, URN = {urn:nbn:de:0030-drops-197498}, doi = {10.4230/LIPIcs.STACS.2024.39}, annote = {Keywords: Communication complexity, Permutation-invariant functions, Log-rank Conjecture, Quantum advantages} }

Document

**Published in:** LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

Watrous conjectured that the randomized and quantum query complexities of symmetric functions are polynomially equivalent, which was resolved by Ambainis and Aaronson [Scott Aaronson and Andris Ambainis, 2014], and was later improved in [André Chailloux, 2019; Shalev Ben-David et al., 2020]. This paper explores a fine-grained version of the Watrous conjecture, including the randomized and quantum algorithms with success probabilities arbitrarily close to 1/2. Our contributions include the following:
1) An analysis of the optimal success probability of quantum and randomized query algorithms of two fundamental partial symmetric Boolean functions given a fixed number of queries. We prove that for any quantum algorithm computing these two functions using T queries, there exist randomized algorithms using poly(T) queries that achieve the same success probability as the quantum algorithm, even if the success probability is arbitrarily close to 1/2. These two classes of functions are instrumental in analyzing general symmetric functions.
2) We establish that for any total symmetric Boolean function f, if a quantum algorithm uses T queries to compute f with success probability 1/2+β, then there exists a randomized algorithm using O(T²) queries to compute f with success probability 1/2 + Ω(δβ²) on a 1-δ fraction of inputs, where β,δ can be arbitrarily small positive values. As a corollary, we prove a randomized version of Aaronson-Ambainis Conjecture [Scott Aaronson and Andris Ambainis, 2014] for total symmetric Boolean functions in the regime where the success probability of algorithms can be arbitrarily close to 1/2.
3) We present polynomial equivalences for several fundamental complexity measures of partial symmetric Boolean functions. Specifically, we first prove that for certain partial symmetric Boolean functions, quantum query complexity is at most quadratic in approximate degree for any error arbitrarily close to 1/2. Next, we show exact quantum query complexity is at most quadratic in degree. Additionally, we give the tight bounds of several complexity measures, indicating their polynomial equivalence. Conversely, we exhibit an exponential separation between randomized and exact quantum query complexity for certain partial symmetric Boolean functions.

Supartha Podder, Penghui Yao, and Zekun Ye. On the Fine-Grained Query Complexity of Symmetric Functions. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 55:1-55:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{podder_et_al:LIPIcs.ISAAC.2023.55, author = {Podder, Supartha and Yao, Penghui and Ye, Zekun}, title = {{On the Fine-Grained Query Complexity of Symmetric Functions}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {55:1--55:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.55}, URN = {urn:nbn:de:0030-drops-193570}, doi = {10.4230/LIPIcs.ISAAC.2023.55}, annote = {Keywords: Query complexity, Symmetric functions, Quantum advantages} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail