Document

**Published in:** LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)

We investigate predicative aspects of order theory in constructive univalent foundations. By predicative and constructive, we respectively mean that we do not assume Voevodsky’s propositional resizing axioms or excluded middle. Our work complements existing work on predicative mathematics by exploring what cannot be done predicatively in univalent foundations. Our first main result is that nontrivial (directed or bounded) complete posets are necessarily large. That is, if such a nontrivial poset is small, then weak propositional resizing holds. It is possible to derive full propositional resizing if we strengthen nontriviality to positivity. The distinction between nontriviality and positivity is analogous to the distinction between nonemptiness and inhabitedness. We prove our results for a general class of posets, which includes directed complete posets, bounded complete posets and sup-lattices, using a technical notion of a δ_V-complete poset. We also show that nontrivial locally small δ_V-complete posets necessarily lack decidable equality. Specifically, we derive weak excluded middle from assuming a nontrivial locally small δ_V-complete poset with decidable equality. Moreover, if we assume positivity instead of nontriviality, then we can derive full excluded middle. Secondly, we show that each of Zorn’s lemma, Tarski’s greatest fixed point theorem and Pataraia’s lemma implies propositional resizing. Hence, these principles are inherently impredicative and a predicative development of order theory must therefore do without them. Finally, we clarify, in our predicative setting, the relation between the traditional definition of sup-lattice that requires suprema for all subsets and our definition that asks for suprema of all small families.

Tom de Jong and Martín Hötzel Escardó. Predicative Aspects of Order Theory in Univalent Foundations. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{dejong_et_al:LIPIcs.FSCD.2021.8, author = {de Jong, Tom and Escard\'{o}, Mart{\'\i}n H\"{o}tzel}, title = {{Predicative Aspects of Order Theory in Univalent Foundations}}, booktitle = {6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)}, pages = {8:1--8:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-191-7}, ISSN = {1868-8969}, year = {2021}, volume = {195}, editor = {Kobayashi, Naoki}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.8}, URN = {urn:nbn:de:0030-drops-142461}, doi = {10.4230/LIPIcs.FSCD.2021.8}, annote = {Keywords: order theory, constructivity, predicativity, univalent foundations} }

Document

**Published in:** LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)

We develop domain theory in constructive univalent foundations without Voevodsky’s resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott’s D_∞ model of the untyped λ-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe U₁ and suprema of directed families with indexing type in the first universe U₀. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott’s D_∞ again gives a large, locally small, algebraic dcpo with small directed suprema.

Tom de Jong and Martín Hötzel Escardó. Domain Theory in Constructive and Predicative Univalent Foundations. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{dejong_et_al:LIPIcs.CSL.2021.28, author = {de Jong, Tom and Escard\'{o}, Mart{\'\i}n H\"{o}tzel}, title = {{Domain Theory in Constructive and Predicative Univalent Foundations}}, booktitle = {29th EACSL Annual Conference on Computer Science Logic (CSL 2021)}, pages = {28:1--28:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-175-7}, ISSN = {1868-8969}, year = {2021}, volume = {183}, editor = {Baier, Christel and Goubault-Larrecq, Jean}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.28}, URN = {urn:nbn:de:0030-drops-134625}, doi = {10.4230/LIPIcs.CSL.2021.28}, annote = {Keywords: domain theory, constructivity, predicativity, univalent foundations} }