3 Search Results for "Addanki, Raghavendra"


Document
Track A: Algorithms, Complexity and Games
Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

Authors: Holger Dell, John Lapinskas, and Kitty Meeks

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Consider a query model of computation in which an n-vertex k-hypergraph can be accessed only via its independence oracle or via its colourful independence oracle, and each oracle query may incur a cost depending on the size of the query. Several recent results (Dell and Lapinskas, STOC 2018; Dell, Lapinskas, and Meeks, SODA 2020) give efficient algorithms to approximately count the hypergraph’s edges in the colourful setting. These algorithms immediately imply fine-grained reductions from approximate counting to decision, with overhead only log^Θ(k) n over the running time n^α of the original decision algorithm, for many well-studied problems including k-Orthogonal Vectors, k-SUM, subgraph isomorphism problems including k-Clique and colourful-H, graph motifs, and k-variable first-order model checking. We explore the limits of what is achievable in this setting, obtaining unconditional lower bounds on the oracle cost of algorithms to approximately count the hypergraph’s edges in both the colourful and uncoloured settings. In both settings, we also obtain algorithms which essentially match these lower bounds; in the colourful setting, this requires significant changes to the algorithm of Dell, Lapinskas, and Meeks (SODA 2020) and reduces the total overhead to log^{Θ(k-α)}n. Our lower bound for the uncoloured setting shows that there is no fine-grained reduction from approximate counting to the corresponding uncoloured decision problem (except in the case α ≥ k-1): without an algorithm for the colourful decision problem, we cannot hope to avoid the much larger overhead of roughly n^{(k-α)²/4}. The uncoloured setting has previously been studied for the special case k = 2 (Peled, Ramamoorthy, Rashtchian, Sinha, ITCS 2018; Chen, Levi, and Waingarten, SODA 2020), and our work generalises the existing algorithms and lower bounds for this special case to k > 2 and to oracles with cost.

Cite as

Holger Dell, John Lapinskas, and Kitty Meeks. Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 54:1-54:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dell_et_al:LIPIcs.ICALP.2024.54,
  author =	{Dell, Holger and Lapinskas, John and Meeks, Kitty},
  title =	{{Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{54:1--54:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.54},
  URN =		{urn:nbn:de:0030-drops-201977},
  doi =		{10.4230/LIPIcs.ICALP.2024.54},
  annote =	{Keywords: Graph oracles, Fine-grained complexity, Approximate counting, Hypergraphs}
}
Document
Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries

Authors: Raghavendra Addanki, Andrew McGregor, and Cameron Musco

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study the problem of estimating the number of edges in an n-vertex graph, accessed via the Bipartite Independent Set query model introduced by Beame et al. (TALG '20). In this model, each query returns a Boolean, indicating the existence of at least one edge between two specified sets of nodes. We present a non-adaptive algorithm that returns a (1± ε) relative error approximation to the number of edges, with query complexity Õ(ε^{-5}log⁵ n), where Õ(⋅) hides poly(log log n) dependencies. This is the first non-adaptive algorithm in this setting achieving poly(1/ε,log n) query complexity. Prior work requires Ω(log² n) rounds of adaptivity. We avoid this by taking a fundamentally different approach, inspired by work on single-pass streaming algorithms. Moreover, for constant ε, our query complexity significantly improves on the best known adaptive algorithm due to Bhattacharya et al. (STACS '22), which requires O(ε^{-2} log^{11} n) queries. Building on our edge estimation result, we give the first {non-adaptive} algorithm for outputting a nearly uniformly sampled edge with query complexity Õ(ε^{-6} log⁶ n), improving on the works of Dell et al. (SODA '20) and Bhattacharya et al. (STACS '22), which require Ω(log³ n) rounds of adaptivity. Finally, as a consequence of our edge sampling algorithm, we obtain a Õ(n log^8 n) query algorithm for connectivity, using two rounds of adaptivity. This improves on a three-round algorithm of Assadi et al. (ESA '21) and is tight; there is no non-adaptive algorithm for connectivity making o(n²) queries.

Cite as

Raghavendra Addanki, Andrew McGregor, and Cameron Musco. Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{addanki_et_al:LIPIcs.ESA.2022.2,
  author =	{Addanki, Raghavendra and McGregor, Andrew and Musco, Cameron},
  title =	{{Non-Adaptive Edge Counting and Sampling via Bipartite Independent Set Queries}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{2:1--2:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.2},
  URN =		{urn:nbn:de:0030-drops-169400},
  doi =		{10.4230/LIPIcs.ESA.2022.2},
  annote =	{Keywords: sublinear graph algorithms, bipartite independent set queries, edge sampling and counting, graph connectivity, query adaptivity}
}
Document
Improved Approximation and Scalability for Fair Max-Min Diversification

Authors: Raghavendra Addanki, Andrew McGregor, Alexandra Meliou, and Zafeiria Moumoulidou

Published in: LIPIcs, Volume 220, 25th International Conference on Database Theory (ICDT 2022)


Abstract
Given an n-point metric space ({𝒳},d) where each point belongs to one of m = O(1) different categories or groups and a set of integers k₁, …, k_m, the fair Max-Min diversification problem is to select k_i points belonging to category i ∈ [m], such that the minimum pairwise distance between selected points is maximized. The problem was introduced by Moumoulidou et al. [ICDT 2021] and is motivated by the need to down-sample large data sets in various applications so that the derived sample achieves a balance over diversity, i.e., the minimum distance between a pair of selected points, and fairness, i.e., ensuring enough points of each category are included. We prove the following results: 1) We first consider general metric spaces. We present a randomized polynomial time algorithm that returns a factor 2-approximation to the diversity but only satisfies the fairness constraints in expectation. Building upon this result, we present a 6-approximation that is guaranteed to satisfy the fairness constraints up to a factor 1-ε for any constant ε. We also present a linear time algorithm returning an m+1 approximation with exact fairness. The best previous result was a 3m-1 approximation. 2) We then focus on Euclidean metrics. We first show that the problem can be solved exactly in one dimension. {For constant dimensions, categories and any constant ε > 0, we present a 1+ε approximation algorithm that runs in O(nk) + 2^{O(k)} time where k = k₁+…+k_m.} We can improve the running time to O(nk)+poly(k) at the expense of only picking (1-ε) k_i points from category i ∈ [m]. Finally, we present algorithms suitable to processing massive data sets including single-pass data stream algorithms and composable coresets for the distributed processing.

Cite as

Raghavendra Addanki, Andrew McGregor, Alexandra Meliou, and Zafeiria Moumoulidou. Improved Approximation and Scalability for Fair Max-Min Diversification. In 25th International Conference on Database Theory (ICDT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 220, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{addanki_et_al:LIPIcs.ICDT.2022.7,
  author =	{Addanki, Raghavendra and McGregor, Andrew and Meliou, Alexandra and Moumoulidou, Zafeiria},
  title =	{{Improved Approximation and Scalability for Fair Max-Min Diversification}},
  booktitle =	{25th International Conference on Database Theory (ICDT 2022)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-223-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{220},
  editor =	{Olteanu, Dan and Vortmeier, Nils},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2022.7},
  URN =		{urn:nbn:de:0030-drops-158812},
  doi =		{10.4230/LIPIcs.ICDT.2022.7},
  annote =	{Keywords: algorithmic fairness, diversity maximization, data selection, approximation algorithms}
}
  • Refine by Author
  • 2 Addanki, Raghavendra
  • 2 McGregor, Andrew
  • 1 Dell, Holger
  • 1 Lapinskas, John
  • 1 Meeks, Kitty
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Fixed parameter tractability
  • 1 Theory of computation → Oracles and decision trees

  • Refine by Keyword
  • 1 Approximate counting
  • 1 Fine-grained complexity
  • 1 Graph oracles
  • 1 Hypergraphs
  • 1 algorithmic fairness
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2022
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail