31 Search Results for "Allender, Eric"


Document
Query Maintenance Under Batch Changes with Small-Depth Circuits

Authors: Samir Datta, Asif Khan, Anish Mukherjee, Felix Tschirbs, Nils Vortmeier, and Thomas Zeume

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Which dynamic queries can be maintained efficiently? For constant-size changes, it is known that constant-depth circuits or, equivalently, first-order updates suffice for maintaining many important queries, among them reachability, tree isomorphism, and the word problem for context-free languages. In other words, these queries are in the dynamic complexity class DynFO. We show that most of the existing results for constant-size changes can be recovered for batch changes of polylogarithmic size if one allows circuits of depth 𝒪(log log n) or, equivalently, first-order updates that are iterated 𝒪(log log n) times.

Cite as

Samir Datta, Asif Khan, Anish Mukherjee, Felix Tschirbs, Nils Vortmeier, and Thomas Zeume. Query Maintenance Under Batch Changes with Small-Depth Circuits. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.MFCS.2024.46,
  author =	{Datta, Samir and Khan, Asif and Mukherjee, Anish and Tschirbs, Felix and Vortmeier, Nils and Zeume, Thomas},
  title =	{{Query Maintenance Under Batch Changes with Small-Depth Circuits}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.46},
  URN =		{urn:nbn:de:0030-drops-206027},
  doi =		{10.4230/LIPIcs.MFCS.2024.46},
  annote =	{Keywords: Dynamic complexity theory, parallel computation, dynamic algorithms}
}
Document
A Technique for Hardness Amplification Against AC⁰

Authors: William M. Hoza

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study hardness amplification in the context of two well-known "moderate" average-case hardness results for AC⁰ circuits. First, we investigate the extent to which AC⁰ circuits of depth d can approximate AC⁰ circuits of some larger depth d + k. The case k = 1 is resolved by Håstad, Rossman, Servedio, and Tan’s celebrated average-case depth hierarchy theorem (JACM 2017). Our contribution is a significantly stronger correlation bound when k ≥ 3. Specifically, we show that there exists a linear-size AC⁰_{d + k} circuit h : {0, 1}ⁿ → {0, 1} such that for every AC⁰_d circuit g, either g has size exp(n^{Ω(1/d)}), or else g agrees with h on at most a (1/2 + ε)-fraction of inputs where ε = exp(-(1/d) ⋅ Ω(log n)^{k-1}). For comparison, Håstad, Rossman, Servedio, and Tan’s result has ε = n^{-Θ(1/d)}. Second, we consider the majority function. It is well known that the majority function is moderately hard for AC⁰ circuits (and stronger classes). Our contribution is a stronger correlation bound for the XOR of t copies of the n-bit majority function, denoted MAJ_n^{⊕ t}. We show that if g is an AC⁰_d circuit of size S, then g agrees with MAJ_n^{⊕ t} on at most a (1/2 + ε)-fraction of inputs, where ε = (O(log S)^{d - 1} / √n)^t. To prove these results, we develop a hardness amplification technique that is tailored to a specific type of circuit lower bound proof. In particular, one way to show that a function h is moderately hard for AC⁰ circuits is to (a) design some distribution over random restrictions or random projections, (b) show that AC⁰ circuits simplify to shallow decision trees under these restrictions/projections, and finally (c) show that after applying the restriction/projection, h is moderately hard for shallow decision trees with respect to an appropriate distribution. We show that (roughly speaking) if h can be proven to be moderately hard by a proof with that structure, then XORing multiple copies of h amplifies its hardness. Our analysis involves a new kind of XOR lemma for decision trees, which might be of independent interest.

Cite as

William M. Hoza. A Technique for Hardness Amplification Against AC⁰. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hoza:LIPIcs.CCC.2024.1,
  author =	{Hoza, William M.},
  title =	{{A Technique for Hardness Amplification Against AC⁰}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.1},
  URN =		{urn:nbn:de:0030-drops-203977},
  doi =		{10.4230/LIPIcs.CCC.2024.1},
  annote =	{Keywords: Bounded-depth circuits, average-case lower bounds, hardness amplification, XOR lemmas}
}
Document
Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Authors: Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
A search-to-decision reduction is a procedure that allows one to find a solution to a problem from the mere ability to decide when a solution exists. The existence of a search-to-decision reduction for time-bounded Kolmogorov complexity, i.e., the problem of checking if a string x can be generated by a t-time bounded program of description length s, is a long-standing open problem that dates back to the 1960s. In this work, we obtain new average-case and worst-case search-to-decision reductions for the complexity measure 𝖪^t and its randomized analogue rK^t: 1) (Conditional Errorless and Error-Prone Reductions for 𝖪^t) Under the assumption that 𝖤 requires exponential size circuits, we design polynomial-time average-case search-to-decision reductions for 𝖪^t in both errorless and error-prone settings. In fact, under the easiness of deciding 𝖪^t under the uniform distribution, we obtain a search algorithm for any given polynomial-time samplable distribution. In the error-prone reduction, the search algorithm works in the more general setting of conditional 𝖪^t complexity, i.e., it finds a minimum length t-time bound program for generating x given a string y. 2) (Unconditional Errorless Reduction for rK^t) We obtain an unconditional polynomial-time average-case search-to-decision reduction for rK^t in the errorless setting. Similarly to the results described above, we obtain a search algorithm for each polynomial-time samplable distribution, assuming the existence of a decision algorithm under the uniform distribution. To our knowledge, this is the first unconditional sub-exponential time search-to-decision reduction among the measures 𝖪^t and rK^t that works with respect to any given polynomial-time samplable distribution. 3) (Worst-Case to Average-Case Reductions) Under the errorless average-case easiness of deciding rK^t, we design a worst-case search algorithm running in time 2^O(n/log n) that produces a minimum length randomized t-time program for every input string x ∈ {0,1}ⁿ, with the caveat that it only succeeds on some explicitly computed sub-exponential time bound t ≤ 2^{n^ε} that depends on x. A similar result holds for 𝖪^t, under the assumption that 𝖤 requires exponential size circuits. In these results, the corresponding search problem is solved exactly, i.e., a successful run of the search algorithm outputs a t-time bounded program for x of minimum length, as opposed to an approximately optimal program of slightly larger description length or running time.

Cite as

Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 29:1-29:56, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hirahara_et_al:LIPIcs.CCC.2024.29,
  author =	{Hirahara, Shuichi and Kabanets, Valentine and Lu, Zhenjian and Oliveira, Igor C.},
  title =	{{Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{29:1--29:56},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.29},
  URN =		{urn:nbn:de:0030-drops-204256},
  doi =		{10.4230/LIPIcs.CCC.2024.29},
  annote =	{Keywords: average-case complexity, Kolmogorov complexity, search-to-decision reductions}
}
Document
Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard meta-complexity problems, such as the Minimum Circuit Size Problem (MCSP) and the Minimum Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e., witness-preserving many-to-one) reductions. In more detail: - Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-way functions, an appropriate Gap version of MCSP is not NP-complete under randomized Levin-reductions. - Assuming the existence of subexponentially-secure indistinguishability obfuscation, subexponentially-secure one-way functions and injective PRGs, an appropriate Gap version of MKTP is not NP-complete under randomized Levin-reductions.

Cite as

Noam Mazor and Rafael Pass. Gap MCSP Is Not (Levin) NP-Complete in Obfustopia. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.CCC.2024.36,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{Gap MCSP Is Not (Levin) NP-Complete in Obfustopia}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{36:1--36:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.36},
  URN =		{urn:nbn:de:0030-drops-204322},
  doi =		{10.4230/LIPIcs.CCC.2024.36},
  annote =	{Keywords: Kolmogorov complexity, MCSP, Levin Reduction}
}
Document
Track A: Algorithms, Complexity and Games
NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials

Authors: Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equivalence Testing problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f ∈ 𝔽[𝐱] and s ∈ ℕ, ETsparse asks to check if there exist A ∈ GL(|𝐱|, 𝔽) and 𝐛 ∈ 𝔽^|𝐱| such that f(A𝐱 + 𝐛) is s-sparse. We show that ETsparse is NP-hard over any field 𝔽, if f is given in the sparse representation, i.e., as a list of nonzero coefficients and exponent vectors. This answers a question posed by Gupta, Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS 2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show that approximating the smallest s₀ such that a given s-sparse polynomial f is in the orbit of some s₀-sparse polynomial to within a factor of s^{1/3 - ε} is NP-hard for any ε > 0; observe that s-factor approximation is trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6, checking if a polynomial (given in sparse representation) is in the orbit of some support-σ polynomial is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial of f. These results are obtained via direct reductions from the 3-SAT problem.

Cite as

Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha. NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.ICALP.2024.16,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan and Sinha, Pulkit},
  title =	{{NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.16},
  URN =		{urn:nbn:de:0030-drops-201598},
  doi =		{10.4230/LIPIcs.ICALP.2024.16},
  annote =	{Keywords: Equivalence testing, MCSP, sparse polynomials, 3SAT}
}
Document
Track A: Algorithms, Complexity and Games
Exponential Lower Bounds via Exponential Sums

Authors: Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Valiant’s famous VP vs. VNP conjecture states that the symbolic permanent polynomial does not have polynomial-size algebraic circuits. However, the best upper bound on the size of the circuits computing the permanent is exponential. Informally, VNP is an exponential sum of VP-circuits. In this paper we study whether, in general, exponential sums (of algebraic circuits) require exponential-size algebraic circuits. We show that the famous Shub-Smale τ-conjecture indeed implies such an exponential lower bound for an exponential sum. Our main tools come from parameterized complexity. Along the way, we also prove an exponential fpt (fixed-parameter tractable) lower bound for the parameterized algebraic complexity class VW⁰_{nb}[𝖯], assuming the same conjecture. VW⁰_{nb}[𝖯] can be thought of as the weighted sums of (unbounded-degree) circuits, where only ± 1 constants are cost-free. To the best of our knowledge, this is the first time the Shub-Smale τ-conjecture has been applied to prove explicit exponential lower bounds. Furthermore, we prove that when this class is fpt, then a variant of the counting hierarchy, namely the linear counting hierarchy collapses. Moreover, if a certain type of parameterized exponential sums is fpt, then integers, as well as polynomials with coefficients being definable in the linear counting hierarchy have subpolynomial τ-complexity. Finally, we characterize a related class VW[𝖥], in terms of permanents, where we consider an exponential sum of algebraic formulas instead of circuits. We show that when we sum over cycle covers that have one long cycle and all other cycles have constant length, then the resulting family of polynomials is complete for VW[𝖥] on certain types of graphs.

Cite as

Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee. Exponential Lower Bounds via Exponential Sums. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharjee_et_al:LIPIcs.ICALP.2024.24,
  author =	{Bhattacharjee, Somnath and Bl\"{a}ser, Markus and Dutta, Pranjal and Mukherjee, Saswata},
  title =	{{Exponential Lower Bounds via Exponential Sums}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.24},
  URN =		{urn:nbn:de:0030-drops-201677},
  doi =		{10.4230/LIPIcs.ICALP.2024.24},
  annote =	{Keywords: Algebraic complexity, parameterized complexity, exponential sums, counting hierarchy, tau conjecture}
}
Document
Track A: Algorithms, Complexity and Games
BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

Authors: Sevag Gharibian and Jonas Kamminga

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
What is the power of polynomial-time quantum computation with access to an NP oracle? In this work, we focus on two fundamental tasks from the study of Boolean satisfiability (SAT) problems: search-to-decision reductions, and approximate counting. We first show that, in strong contrast to the classical setting where a poly-time Turing machine requires Θ(n) queries to an NP oracle to compute a witness to a given SAT formula, quantumly Θ(log n) queries suffice. We then show this is tight in the black-box model - any quantum algorithm with "NP-like" query access to a formula requires Ω(log n) queries to extract a solution with constant probability. Moving to approximate counting of SAT solutions, by exploiting a quantum link between search-to-decision reductions and approximate counting, we show that existing classical approximate counting algorithms are likely optimal. First, we give a lower bound in the "NP-like" black-box query setting: Approximate counting requires Ω(log n) queries, even on a quantum computer. We then give a "white-box" lower bound (i.e. where the input formula is not hidden in the oracle) - if there exists a randomized poly-time classical or quantum algorithm for approximate counting making o(log n) NP queries, then BPP^NP[o(n)] contains a 𝖯^NP-complete problem if the algorithm is classical and FBQP^NP[o(n)] contains an FP^NP-complete problem if the algorithm is quantum.

Cite as

Sevag Gharibian and Jonas Kamminga. BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 70:1-70:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gharibian_et_al:LIPIcs.ICALP.2024.70,
  author =	{Gharibian, Sevag and Kamminga, Jonas},
  title =	{{BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{70:1--70:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.70},
  URN =		{urn:nbn:de:0030-drops-202134},
  doi =		{10.4230/LIPIcs.ICALP.2024.70},
  annote =	{Keywords: Approximate Counting, Search to Decision Reduction, BQP, NP, Oracle Complexity Class}
}
Document
Track A: Algorithms, Complexity and Games
Impagliazzo’s Worlds Through the Lens of Conditional Kolmogorov Complexity

Authors: Zhenjian Lu and Rahul Santhanam

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We develop new characterizations of Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland by the intractability of conditional Kolmogorov complexity 𝖪 and conditional probabilistic time-bounded Kolmogorov complexity pK^t. In our first set of results, we show that NP ⊆ BPP iff pK^t(x ∣ y) can be computed efficiently in the worst case when t is sublinear in |x| + |y|; DistNP ⊆ HeurBPP iff pK^t(x ∣ y) can be computed efficiently over all polynomial-time samplable distributions when t is sublinear in |x| + |y|; and infinitely-often one-way functions fail to exist iff pK^t(x ∣ y) can be computed efficiently over all polynomial-time samplable distributions for t a sufficiently large polynomial in |x| + |y|. These results characterize Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland purely in terms of the tractability of conditional pK^t. Notably, the results imply that Pessiland fails to exist iff the average-case intractability of conditional pK^t is insensitive to the difference between sublinear and polynomially bounded t. As a corollary, while we prove conditional pK^t to be NP-hard for sublinear t, showing NP-hardness for large enough polynomially bounded t would eliminate Pessiland as a possible world of average-case complexity. In our second set of results, we characterize Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland by the distributional tractability of a natural problem, i.e., approximating the conditional Kolmogorov complexity, that is provably intractable in the worst case. We show that NP ⊆ BPP iff conditional Kolmogorov complexity can be approximated in the semi-worst case; and DistNP ⊆ HeurBPP iff conditional Kolmogorov complexity can be approximated on average over all independent polynomial-time samplable distributions. It follows from a result by Ilango, Ren, and Santhanam (STOC 2022) that infinitely-often one-way functions fail to exist iff conditional Kolmogorov complexity can be approximated on average over all polynomial-time samplable distributions. Together, these results yield the claimed characterizations. Our techniques, combined with previous work, also yield a characterization of auxiliary-input one-way functions and equivalences between different average-case tractability assumptions for conditional Kolmogorov complexity and its variants. Our results suggest that novel average-case tractability assumptions such as tractability in the semi-worst case and over independent polynomial-time samplable distributions might be worthy of further study.

Cite as

Zhenjian Lu and Rahul Santhanam. Impagliazzo’s Worlds Through the Lens of Conditional Kolmogorov Complexity. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 110:1-110:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lu_et_al:LIPIcs.ICALP.2024.110,
  author =	{Lu, Zhenjian and Santhanam, Rahul},
  title =	{{Impagliazzo’s Worlds Through the Lens of Conditional Kolmogorov Complexity}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{110:1--110:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.110},
  URN =		{urn:nbn:de:0030-drops-202538},
  doi =		{10.4230/LIPIcs.ICALP.2024.110},
  annote =	{Keywords: meta-complexity, Kolmogorov complexity, one-way functions, average-case complexity}
}
Document
RANDOM
Robustness for Space-Bounded Statistical Zero Knowledge

Authors: Eric Allender, Jacob Gray, Saachi Mutreja, Harsha Tirumala, and Pengxiang Wang

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We show that the space-bounded Statistical Zero Knowledge classes SZK_L and NISZK_L are surprisingly robust, in that the power of the verifier and simulator can be strengthened or weakened without affecting the resulting class. Coupled with other recent characterizations of these classes [Eric Allender et al., 2023], this can be viewed as lending support to the conjecture that these classes may coincide with the non-space-bounded classes SZK and NISZK, respectively.

Cite as

Eric Allender, Jacob Gray, Saachi Mutreja, Harsha Tirumala, and Pengxiang Wang. Robustness for Space-Bounded Statistical Zero Knowledge. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 56:1-56:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.APPROX/RANDOM.2023.56,
  author =	{Allender, Eric and Gray, Jacob and Mutreja, Saachi and Tirumala, Harsha and Wang, Pengxiang},
  title =	{{Robustness for Space-Bounded Statistical Zero Knowledge}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{56:1--56:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.56},
  URN =		{urn:nbn:de:0030-drops-188815},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.56},
  annote =	{Keywords: Interactive Proofs}
}
Document
Constant-Depth Circuits vs. Monotone Circuits

Authors: Bruno P. Cavalar and Igor C. Oliveira

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We establish new separations between the power of monotone and general (non-monotone) Boolean circuits: - For every k ≥ 1, there is a monotone function in AC⁰ (constant-depth poly-size circuits) that requires monotone circuits of depth Ω(log^k n). This significantly extends a classical result of Okol'nishnikova [Okol'nishnikova, 1982] and Ajtai and Gurevich [Ajtai and Gurevich, 1987]. In addition, our separation holds for a monotone graph property, which was unknown even in the context of AC⁰ versus mAC⁰. - For every k ≥ 1, there is a monotone function in AC⁰[⊕] (constant-depth poly-size circuits extended with parity gates) that requires monotone circuits of size exp(Ω(log^k n)). This makes progress towards a question posed by Grigni and Sipser [Grigni and Sipser, 1992]. These results show that constant-depth circuits can be more efficient than monotone formulas and monotone circuits when computing monotone functions. In the opposite direction, we observe that non-trivial simulations are possible in the absence of parity gates: every monotone function computed by an AC⁰ circuit of size s and depth d can be computed by a monotone circuit of size 2^{n - n/O(log s)^{d-1}}. We show that the existence of significantly faster monotone simulations would lead to breakthrough circuit lower bounds. In particular, if every monotone function in AC⁰ admits a polynomial size monotone circuit, then NC² is not contained in NC¹. Finally, we revisit our separation result against monotone circuit size and investigate the limits of our approach, which is based on a monotone lower bound for constraint satisfaction problems (CSPs) established by Göös, Kamath, Robere and Sokolov [Göös et al., 2019] via lifting techniques. Adapting results of Schaefer [Thomas J. Schaefer, 1978] and Allender, Bauland, Immerman, Schnoor and Vollmer [Eric Allender et al., 2009], we obtain an unconditional classification of the monotone circuit complexity of Boolean-valued CSPs via their polymorphisms. This result and the consequences we derive from it might be of independent interest.

Cite as

Bruno P. Cavalar and Igor C. Oliveira. Constant-Depth Circuits vs. Monotone Circuits. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 29:1-29:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cavalar_et_al:LIPIcs.CCC.2023.29,
  author =	{Cavalar, Bruno P. and Oliveira, Igor C.},
  title =	{{Constant-Depth Circuits vs. Monotone Circuits}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{29:1--29:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.29},
  URN =		{urn:nbn:de:0030-drops-182998},
  doi =		{10.4230/LIPIcs.CCC.2023.29},
  annote =	{Keywords: circuit complexity, monotone circuit complexity, bounded-depth circuis, constraint-satisfaction problems}
}
Document
An Algorithmic Approach to Uniform Lower Bounds

Authors: Rahul Santhanam

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We propose a new family of circuit-based sampling tasks, such that non-trivial algorithmic solutions to certain tasks from this family imply frontier uniform lower bounds such as "NP is not in uniform ACC⁰" and "NP does not have uniform polynomial-size depth-two threshold circuits". Indeed, the most general versions of our sampling tasks have implications for central open problems such as NP vs P and PSPACE vs P. We argue the soundness of our approach by showing that the non-trivial algorithmic solutions we require do follow from standard cryptographic assumptions. In addition, we give evidence that a version of our approach for uniform circuits is necessary in order to separate NP from P or PSPACE from P. We give an algorithmic characterization for the PSPACE vs P question: PSPACE ≠ P iff either E has sub-exponential time non-uniform algorithms infinitely often or there are non-trivial space-efficient solutions to our sampling tasks for uniform Boolean circuits. We show how to use our framework to capture uniform versions of known non-uniform lower bounds, as well as classical uniform lower bounds such as the space hierarchy theorem and Allender’s uniform lower bound for the Permanent. We also apply our framework to prove new lower bounds: NP does not have polynomial-size uniform AC⁰ circuits with a bottom layer of MOD 6 gates, nor does it have polynomial-size uniform AC⁰ circuits with a bottom layer of threshold gates. Our proofs exploit recently defined probabilistic time-bounded variants of Kolmogorov complexity [Zhenjian Lu et al., 2022; Halley Goldberg et al., 2022; Halley Goldberg et al., 2022].

Cite as

Rahul Santhanam. An Algorithmic Approach to Uniform Lower Bounds. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 35:1-35:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{santhanam:LIPIcs.CCC.2023.35,
  author =	{Santhanam, Rahul},
  title =	{{An Algorithmic Approach to Uniform Lower Bounds}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{35:1--35:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.35},
  URN =		{urn:nbn:de:0030-drops-183053},
  doi =		{10.4230/LIPIcs.CCC.2023.35},
  annote =	{Keywords: Probabilistic Kolmogorov complexity, sampling algorithms, uniform lower bounds}
}
Document
Kolmogorov Complexity Characterizes Statistical Zero Knowledge

Authors: Eric Allender, Shuichi Hirahara, and Harsha Tirumala

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof system if and only if it is randomly reducible via an honest polynomial-time reduction to a promise problem for Kolmogorov-random strings, with a superlogarithmic additive approximation term. This extends recent work by Saks and Santhanam (CCC 2022). We build on this to give new characterizations of Statistical Zero Knowledge SZK, as well as the related classes NISZK_L and SZK_L.

Cite as

Eric Allender, Shuichi Hirahara, and Harsha Tirumala. Kolmogorov Complexity Characterizes Statistical Zero Knowledge. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.ITCS.2023.3,
  author =	{Allender, Eric and Hirahara, Shuichi and Tirumala, Harsha},
  title =	{{Kolmogorov Complexity Characterizes Statistical Zero Knowledge}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.3},
  URN =		{urn:nbn:de:0030-drops-175063},
  doi =		{10.4230/LIPIcs.ITCS.2023.3},
  annote =	{Keywords: Kolmogorov Complexity, Interactive Proofs}
}
Document
On Polynomially Many Queries to NP or QMA Oracles

Authors: Sevag Gharibian and Dorian Rudolph

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We study the complexity of problems solvable in deterministic polynomial time with access to an NP or Quantum Merlin-Arthur (QMA)-oracle, such as P^NP and P^QMA, respectively. The former allows one to classify problems more finely than the Polynomial-Time Hierarchy (PH), whereas the latter characterizes physically motivated problems such as Approximate Simulation (APX-SIM) [Ambainis, CCC 2014]. In this area, a central role has been played by the classes P^NP[log] and P^QMA[log], defined identically to P^NP and P^QMA, except that only logarithmically many oracle queries are allowed. Here, [Gottlob, FOCS 1993] showed that if the adaptive queries made by a P^NP machine have a "query graph" which is a tree, then this computation can be simulated in P^NP[log]. In this work, we first show that for any verification class C ∈ {NP, MA, QCMA, QMA, QMA(2), NEXP, QMA_exp}, any P^C machine with a query graph of "separator number" s can be simulated using deterministic time exp(slog n) and slog n queries to a C-oracle. When s ∈ O(1) (which includes the case of O(1)-treewidth, and thus also of trees), this gives an upper bound of P^C[log], and when s ∈ O(log^k(n)), this yields bound QP^{C[log^{k+1}]} (QP meaning quasi-polynomial time). We next show how to combine Gottlob’s "admissible-weighting function" framework with the "flag-qubit" framework of [Watson, Bausch, Gharibian, 2020], obtaining a unified approach for embedding P^C computations directly into APX-SIM instances in a black-box fashion. Finally, we formalize a simple no-go statement about polynomials (c.f. [Krentel, STOC 1986]): Given a multi-linear polynomial p specified via an arithmetic circuit, if one can "weakly compress" p so that its optimal value requires m bits to represent, then P^NP can be decided with only m queries to an NP-oracle.

Cite as

Sevag Gharibian and Dorian Rudolph. On Polynomially Many Queries to NP or QMA Oracles. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 75:1-75:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gharibian_et_al:LIPIcs.ITCS.2022.75,
  author =	{Gharibian, Sevag and Rudolph, Dorian},
  title =	{{On Polynomially Many Queries to NP or QMA Oracles}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{75:1--75:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.75},
  URN =		{urn:nbn:de:0030-drops-156717},
  doi =		{10.4230/LIPIcs.ITCS.2022.75},
  annote =	{Keywords: admissible weighting function, oracle complexity class, quantum complexity theory, Quantum Merlin Arthur (QMA), simulation of local measurement}
}
Document
Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity

Authors: Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete. Recently, some hardness results for MKTP were proved that are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤^{NC^0}_m reductions. In this paper, we improve this, to show that the complement of MKTP is hard for the (apparently larger) class NISZK_L under not only ≤^{NC^0}_m reductions but even under projections. Also, the complement of MKTP is hard for NISZK under ≤^{P/poly}_m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs, and NISZK_L is the non-interactive version of the class SZK_L that was studied by Dvir et al. As an application, we provide several improved worst-case to average-case reductions to problems in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP).

Cite as

Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 54:1-54:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.ISAAC.2021.54,
  author =	{Allender, Eric and Gouwar, John and Hirahara, Shuichi and Robelle, Caleb},
  title =	{{Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{54:1--54:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.54},
  URN =		{urn:nbn:de:0030-drops-154875},
  doi =		{10.4230/LIPIcs.ISAAC.2021.54},
  annote =	{Keywords: Kolmogorov Complexity, Interactive Proofs, Minimum Circuit Size Problem, Worst-case to Average-case Reductions}
}
Document
One-Way Functions and a Conditional Variant of MKTP

Authors: Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence for the average-case hardness of some natural NP-complete problem. In this paper, we make progress on this question by studying a conditional variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows. 1) First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances, then there exist OWFs. 2) Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions. 3) Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of McKTP. Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete problem. In fact, building on recently-announced results of Ren and Santhanam [Rahul Ilango et al., 2021], we show that McKTP is hard-on-average if and only if there are logspace-computable OWFs.

Cite as

Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich. One-Way Functions and a Conditional Variant of MKTP. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.FSTTCS.2021.7,
  author =	{Allender, Eric and Cheraghchi, Mahdi and Myrisiotis, Dimitrios and Tirumala, Harsha and Volkovich, Ilya},
  title =	{{One-Way Functions and a Conditional Variant of MKTP}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.7},
  URN =		{urn:nbn:de:0030-drops-155181},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.7},
  annote =	{Keywords: Kolmogorov complexity, KT Complexity, Minimum KT-complexity Problem, MKTP, Conditional KT Complexity, Minimum Conditional KT-complexity Problem, McKTP, one-way functions, OWFs, average-case hardness, pseudorandom generators, PRGs, pseudorandom functions, PRFs, distinguishers, learning algorithms, NP-completeness, reductions}
}
  • Refine by Author
  • 12 Allender, Eric
  • 5 Hirahara, Shuichi
  • 4 Ilango, Rahul
  • 3 Datta, Samir
  • 3 Kabanets, Valentine
  • Show More...

  • Refine by Classification
  • 9 Theory of computation → Circuit complexity
  • 7 Theory of computation → Complexity classes
  • 6 Theory of computation → Problems, reductions and completeness
  • 4 Theory of computation → Computational complexity and cryptography
  • 2 Theory of computation
  • Show More...

  • Refine by Keyword
  • 7 Kolmogorov complexity
  • 3 Interactive Proofs
  • 3 MCSP
  • 3 Minimum Circuit Size Problem
  • 3 circuit lower bounds
  • Show More...

  • Refine by Type
  • 31 document

  • Refine by Publication Year
  • 8 2024
  • 5 2020
  • 4 2021
  • 4 2023
  • 3 2019
  • Show More...