Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Ángel Javier Alonso and Michael Kerber. Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 7:1-7:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)
@InProceedings{alonso_et_al:LIPIcs.SoCG.2023.7, author = {Alonso, \'{A}ngel Javier and Kerber, Michael}, title = {{Decomposition of Zero-Dimensional Persistence Modules via Rooted Subsets}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {7:1--7:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.7}, URN = {urn:nbn:de:0030-drops-178570}, doi = {10.4230/LIPIcs.SoCG.2023.7}, annote = {Keywords: Multiparameter persistent homology, Clustering, Decomposition of persistence modules, Elder Rule} }
Feedback for Dagstuhl Publishing