25 Search Results for "Anari, Nima"


Document
APPROX
The Average-Value Allocation Problem

Authors: Kshipra Bhawalkar, Zhe Feng, Anupam Gupta, Aranyak Mehta, David Wajc, and Di Wang

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We initiate the study of centralized algorithms for welfare-maximizing allocation of goods to buyers subject to average-value constraints. We show that this problem is NP-hard to approximate beyond a factor of e/(e-1), and provide a 4e/(e-1)-approximate offline algorithm. For the online setting, we show that no non-trivial approximations are achievable under adversarial arrivals. Under i.i.d. arrivals, we present a polytime online algorithm that provides a constant approximation of the optimal (computationally-unbounded) online algorithm. In contrast, we show that no constant approximation of the ex-post optimum is achievable by an online algorithm.

Cite as

Kshipra Bhawalkar, Zhe Feng, Anupam Gupta, Aranyak Mehta, David Wajc, and Di Wang. The Average-Value Allocation Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 13:1-13:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhawalkar_et_al:LIPIcs.APPROX/RANDOM.2024.13,
  author =	{Bhawalkar, Kshipra and Feng, Zhe and Gupta, Anupam and Mehta, Aranyak and Wajc, David and Wang, Di},
  title =	{{The Average-Value Allocation Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{13:1--13:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.13},
  URN =		{urn:nbn:de:0030-drops-210062},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.13},
  annote =	{Keywords: Resource allocation, return-on-spend constraint, approximation algorithm, online algorithm}
}
Document
RANDOM
Near-Linear Time Samplers for Matroid Independent Sets with Applications

Authors: Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We give a Õ(n) time almost uniform sampler for independent sets of a matroid, whose ground set has n elements and is given by an independence oracle. As a consequence, one can sample connected spanning subgraphs of a given graph G = (V,E) in Õ(|E|) time, whereas the previous best algorithm takes O(|E||V|) time. This improvement, in turn, leads to a faster running time on estimating all-terminal network reliability. Furthermore, we generalise this near-linear time sampler to the random cluster model with q ≤ 1.

Cite as

Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Near-Linear Time Samplers for Matroid Independent Sets with Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 32:1-32:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2024.32,
  author =	{Chen, Xiaoyu and Guo, Heng and Zhang, Xinyuan and Zou, Zongrui},
  title =	{{Near-Linear Time Samplers for Matroid Independent Sets with Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{32:1--32:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.32},
  URN =		{urn:nbn:de:0030-drops-210254},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.32},
  annote =	{Keywords: Network reliability, Random cluster modek, Matroid, Bases-exchange walk}
}
Document
RANDOM
Parallelising Glauber Dynamics

Authors: Holden Lee

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
For distributions over discrete product spaces ∏_{i=1}^n Ω_i', Glauber dynamics is a Markov chain that at each step, resamples a random coordinate conditioned on the other coordinates. We show that k-Glauber dynamics, which resamples a random subset of k coordinates, mixes k times faster in χ²-divergence, and assuming approximate tensorization of entropy, mixes k times faster in KL-divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model μ_{J,h}(x) ∝ exp(1/2 ⟨x,Jx⟩ + ⟨h,x⟩) with ‖J‖ < 1-c (the regime where fast mixing is known), we show that we can implement each step of Θ(n/‖J‖_F)-Glauber dynamics efficiently with a parallel algorithm, resulting in a parallel algorithm with running time Õ(‖J‖_F) = Õ(√n). (2) For the mixed p-spin model at high enough temperature, we show that with high probability we can implement each step of Θ(√n)-Glauber dynamics efficiently and obtain running time Õ(√n).

Cite as

Holden Lee. Parallelising Glauber Dynamics. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 49:1-49:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.APPROX/RANDOM.2024.49,
  author =	{Lee, Holden},
  title =	{{Parallelising Glauber Dynamics}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{49:1--49:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.49},
  URN =		{urn:nbn:de:0030-drops-210424},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.49},
  annote =	{Keywords: sampling, Ising model, parallel algorithm, Markov chain, Glauber dynamics}
}
Document
RANDOM
Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs

Authors: Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the worst-case mixing time of the global Kawasaki dynamics for the fixed-magnetization Ising model on the class of graphs of maximum degree Δ. Proving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that below the tree uniqueness threshold, the Kawasaki dynamics mix rapidly for all magnetizations. Disproving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that the regime of fast mixing does not extend throughout the regime of tractability for this model: there is a range of parameters for which there exist efficient sampling algorithms for the fixed-magnetization Ising model on max-degree Δ graphs, but the Kawasaki dynamics can take exponential time to mix. Our techniques involve showing spectral independence in the fixed-magnetization Ising model and proving a sharp threshold for the existence of multiple metastable states in the Ising model with external field on random regular graphs.

Cite as

Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap. Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 56:1-56:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kuchukova_et_al:LIPIcs.APPROX/RANDOM.2024.56,
  author =	{Kuchukova, Aiya and Pappik, Marcus and Perkins, Will and Yap, Corrine},
  title =	{{Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{56:1--56:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.56},
  URN =		{urn:nbn:de:0030-drops-210493},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.56},
  annote =	{Keywords: ferromagnetic Ising model, fixed-magnetization Ising model, Kawasaki dynamics, Glauber dynamics, mixing time}
}
Document
RANDOM
Expanderizing Higher Order Random Walks

Authors: Vedat Levi Alev and Shravas Rao

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study a variant of the down-up (also known as the Glauber dynamics) and up-down walks over an n-partite simplicial complex, which we call expanderized higher order random walks - where the sequence of updated coordinates correspond to the sequence of vertices visited by a random walk over an auxiliary expander graph H. When H is the clique with self loops on [n], this random walk reduces to the usual down-up walk and when H is the directed cycle on [n], this random walk reduces to the well-known systematic scan Glauber dynamics. We show that whenever the usual higher order random walks satisfy a log-Sobolev inequality or a Poincaré inequality, the expanderized walks satisfy the same inequalities with a loss of quality related to the two-sided expansion of the auxillary graph H. Our construction can be thought as a higher order random walk generalization of the derandomized squaring algorithm of Rozenman and Vadhan (RANDOM 2005). We study the mixing times of our expanderized walks in two example cases: We show that when initiated with an expander graph our expanderized random walks have mixing time (i) O(n log n) for sampling a uniformly random list colorings of a graph G of maximum degree Δ = O(1) where each vertex has at least (11/6 - ε) Δ and at most O(Δ) colors, (ii) O_h((n log n)/(1 - ‖J‖_op)²) for sampling the Ising model with a PSD interaction matrix J ∈ ℝ^{n×n} satisfying ‖J‖_op ≤ 1 and the external field h ∈ ℝⁿ- here the O(•) notation hides a constant that depends linearly on the largest entry of h. As expander graphs can be very sparse, this decreases the amount of randomness required to simulate the down-up walks by a logarithmic factor. We also prove some simple results which enable us to argue about log-Sobolev constants of higher order random walks and provide a simple and self-contained analysis of local-to-global Φ-entropy contraction in simplicial complexes - giving simpler proofs for many pre-existing results.

Cite as

Vedat Levi Alev and Shravas Rao. Expanderizing Higher Order Random Walks. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 58:1-58:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alev_et_al:LIPIcs.APPROX/RANDOM.2024.58,
  author =	{Alev, Vedat Levi and Rao, Shravas},
  title =	{{Expanderizing Higher Order Random Walks}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{58:1--58:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.58},
  URN =		{urn:nbn:de:0030-drops-210510},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.58},
  annote =	{Keywords: Higher Order Random Walks, Expander Graphs, Glauber Dynamics, Derandomized Squaring, High Dimensional Expansion, Spectral Independence, Entropic Independence}
}
Document
RANDOM
Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Authors: Yotam Dikstein and Irit Dinur

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We give new bounds on the cosystolic expansion constants of several families of high dimensional expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric lattices, including the spherical building of SL_n(𝔽_q). The improvement applies to the high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and Oppenheim. Our new expansion constants do not depend on the degree of the complex nor on its dimension, nor on the group of coefficients. This implies improved bounds on Gromov’s topological overlap constant, and on Dinur and Meshulam’s cover stability, which may have applications for agreement testing. In comparison, existing bounds decay exponentially with the ambient dimension (for spherical buildings) and in addition decay linearly with the degree (for all known bounded-degree high dimensional expanders). Our results are based on several new techniques: - We develop a new "color-restriction" technique which enables proving dimension-free expansion by restricting a multi-partite complex to small random subsets of its color classes. - We give a new "spectral" proof for Evra and Kaufman’s local-to-global theorem, deriving better bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic expansion of a complex using coboundary expansion and spectral expansion of the links. - We derive absolute bounds on the coboundary expansion of the spherical building (and any order complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.

Cite as

Yotam Dikstein and Irit Dinur. Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 62:1-62:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dikstein_et_al:LIPIcs.APPROX/RANDOM.2024.62,
  author =	{Dikstein, Yotam and Dinur, Irit},
  title =	{{Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{62:1--62:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  URN =		{urn:nbn:de:0030-drops-210556},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  annote =	{Keywords: High Dimensional Expanders, HDX, Spectral Expansion, Coboundary Expansion, Cocycle Expansion, Cosystolic Expansion}
}
Document
RANDOM
Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

Authors: Vishesh Jain and Clayton Mizgerd

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Let G = (V,E) be a graph on n vertices and let m^*(G) denote the size of a maximum matching in G. We show that for any δ > 0 and for any 1 ≤ k ≤ (1-δ)m^*(G), the down-up walk on matchings of size k in G mixes in time polynomial in n. Previously, polynomial mixing was not known even for graphs with maximum degree Δ, and our result makes progress on a conjecture of Jain, Perkins, Sah, and Sawhney [STOC, 2022] that the down-up walk mixes in optimal time O_{Δ,δ}(nlog{n}). In contrast with recent works analyzing mixing of down-up walks in various settings using the spectral independence framework, we bound the spectral gap by constructing and analyzing a suitable multi-commodity flow. In fact, we present constructions demonstrating the limitations of the spectral independence approach in our setting.

Cite as

Vishesh Jain and Clayton Mizgerd. Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 63:1-63:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.APPROX/RANDOM.2024.63,
  author =	{Jain, Vishesh and Mizgerd, Clayton},
  title =	{{Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{63:1--63:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.63},
  URN =		{urn:nbn:de:0030-drops-210563},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.63},
  annote =	{Keywords: Down-up walk, Matchings, MCMC}
}
Document
RANDOM
On Sampling from Ising Models with Spectral Constraints

Authors: Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider the problem of sampling from the Ising model when the underlying interaction matrix has eigenvalues lying within an interval of length γ. Recent work in this setting has shown various algorithmic results that apply roughly when γ < 1, notably with nearly-linear running times based on the classical Glauber dynamics. However, the optimality of the range of γ was not clear since previous inapproximability results developed for the antiferromagnetic case (where the matrix has entries ≤ 0) apply only for γ > 2. To this end, Kunisky (SODA'24) recently provided evidence that the problem becomes hard already when γ > 1 based on the low-degree hardness for an inference problem on random matrices. Based on this, he conjectured that sampling from the Ising model in the same range of γ is NP-hard. Here we confirm this conjecture, complementing in particular the known algorithmic results by showing NP-hardness results for approximately counting and sampling when γ > 1, with strong inapproximability guarantees; we also obtain a more refined hardness result for matrices where only a constant number of entries per row are allowed to be non-zero. The main observation in our reductions is that, for γ > 1, Glauber dynamics mixes slowly when the interactions are all positive (ferromagnetic) for the complete and random regular graphs, due to a bimodality in the underlying distribution. While ferromagnetic interactions typically preclude NP-hardness results, here we work around this by introducing in an appropriate way mild antiferromagnetism, keeping the spectrum roughly within the same range. This allows us to exploit the bimodality of the aforementioned graphs and show the target NP-hardness by adapting suitably previous inapproximability techniques developed for antiferromagnetic systems.

Cite as

Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros. On Sampling from Ising Models with Spectral Constraints. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 70:1-70:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.APPROX/RANDOM.2024.70,
  author =	{Galanis, Andreas and Kalavasis, Alkis and Kandiros, Anthimos Vardis},
  title =	{{On Sampling from Ising Models with Spectral Constraints}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{70:1--70:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.70},
  URN =		{urn:nbn:de:0030-drops-210638},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.70},
  annote =	{Keywords: Ising model, spectral constraints, Glauber dynamics, mean-field Ising, random regular graphs}
}
Document
The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

Authors: Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Finding a simple path of even length between two designated vertices in a directed graph is a fundamental NP-complete problem [Andrea S. LaPaugh and Christos H. Papadimitriou, 1984] known as the EP problem. Nedev [Zhivko Prodanov Nedev, 1999] proved in 1999, that for directed planar graphs, the problem can be solved in polynomial time. More than two decades since then, we make the first progress in extending the tractable classes of graphs for this problem. We give a polynomial time algorithm to solve the EP problem for classes of H-minor-free directed graphs, where H is a single-crossing graph. We make two new technical contributions along the way, that might be of independent interest. The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking networks. These are graphs that mimic parities of all possible paths between a designated set of terminals of the original graph. Finding vertex disjoint paths between given source-destination pairs of vertices is another fundamental problem, known to be NP-complete in directed graphs [Steven Fortune et al., 1980], though known to be tractable in planar directed graphs [Alexander Schrijver, 1994]. We encounter a natural variant of this problem, that of finding disjoint paths between given pairs of vertices, but with constraints on parity of the total length of paths. The other significant contribution of our paper is to give a polynomial time algorithm for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions (and also in directed graphs of bounded treewidth).

Cite as

Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma. The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chauhan_et_al:LIPIcs.MFCS.2024.43,
  author =	{Chauhan, Archit and Datta, Samir and Gupta, Chetan and Sharma, Vimal Raj},
  title =	{{The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.43},
  URN =		{urn:nbn:de:0030-drops-205992},
  doi =		{10.4230/LIPIcs.MFCS.2024.43},
  annote =	{Keywords: Graph Algorithms, EvenPath, Polynomial-time Algorithms, Reachability}
}
Document
Multicoloured Hardcore Model: Fast Mixing and Its Applications as a Scheduling Algorithm

Authors: Sam Olesker-Taylor

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
In the hardcore model, certain vertices in a graph are active: the active vertices must form an independent set. We extend this to a multicoloured version: instead of simply being active or not, the active vertices are assigned a colour; active vertices of the same colour must not be adjacent. This models a scenario in which two neighbouring resources may interfere when active - eg, short-range radio communication. However, there are multiple channels (colours) available; they only interfere if both use the same channel. Other applications include routing in fibreoptic networks. We analyse Glauber dynamics. Vertices update their status at random times, at which a uniform colour is proposed: the vertex is assigned that colour if it is available; otherwise, it is set inactive. We find conditions for fast mixing of these dynamics. We also use them to model a queueing system: vertices only serve customers in their queue whilst active. The mixing estimates are applied to establish positive recurrence of the queue lengths, and bound their expectation in equilibrium.

Cite as

Sam Olesker-Taylor. Multicoloured Hardcore Model: Fast Mixing and Its Applications as a Scheduling Algorithm. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oleskertaylor:LIPIcs.AofA.2024.20,
  author =	{Olesker-Taylor, Sam},
  title =	{{Multicoloured Hardcore Model: Fast Mixing and Its Applications as a Scheduling Algorithm}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{20:1--20:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.20},
  URN =		{urn:nbn:de:0030-drops-204558},
  doi =		{10.4230/LIPIcs.AofA.2024.20},
  annote =	{Keywords: mixing time, queueing theory, hardcore model, proper colourings, independent set, data transmission, randomised algorithms, routing, scheduling, multihop wireless networks}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Counting for Spin Systems in Sub-Quadratic Time

Authors: Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present two randomised approximate counting algorithms with Õ(n^{2-c}/ε²) running time for some constant c > 0 and accuracy ε: 1) for the hard-core model with fugacity λ on graphs with maximum degree Δ when λ = O(Δ^{-1.5-c₁}) where c₁ = c/(2-2c); 2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as ℤ². For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when λ = o(Δ^{-2}). Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as ℤ^d, but with a running time of the form Õ(n²ε^{-2}/2^{c(log n)^{1/d}}) where d is the exponent of the polynomial growth and c > 0 is some constant.

Cite as

Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate Counting for Spin Systems in Sub-Quadratic Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.11,
  author =	{Anand, Konrad and Feng, Weiming and Freifeld, Graham and Guo, Heng and Wang, Jiaheng},
  title =	{{Approximate Counting for Spin Systems in Sub-Quadratic Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.11},
  URN =		{urn:nbn:de:0030-drops-201543},
  doi =		{10.4230/LIPIcs.ICALP.2024.11},
  annote =	{Keywords: Randomised algorithm, Approximate counting, Spin system, Sub-quadratic algorithm}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs

Authors: Weiming Feng and Heng Guo

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal reliability in directed acyclic graphs (DAGs). In contrast, we also show the complementing problem of approximating two terminal unreliability in DAGs is #BIS-hard.

Cite as

Weiming Feng and Heng Guo. An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 62:1-62:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.ICALP.2024.62,
  author =	{Feng, Weiming and Guo, Heng},
  title =	{{An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{62:1--62:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.62},
  URN =		{urn:nbn:de:0030-drops-202057},
  doi =		{10.4230/LIPIcs.ICALP.2024.62},
  annote =	{Keywords: Approximate counting, Network reliability, Sampling algorithm}
}
Document
Track A: Algorithms, Complexity and Games
A Note on Approximating Weighted Nash Social Welfare with Additive Valuations

Authors: Yuda Feng and Shi Li

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give the first O(1)-approximation for the weighted Nash Social Welfare problem with additive valuations. The approximation ratio we obtain is e^{1/e} + ε ≈ 1.445 + ε, which matches the best known approximation ratio for the unweighted case [Barman et al., 2018]. Both our algorithm and analysis are simple. We solve a natural configuration LP for the problem, and obtain the allocation of items to agents using a randomized version of the Shmoys-Tardos rounding algorithm developed for unrelated machine scheduling problems [Shmoys and Tardos, 1993]. In the analysis, we show that the approximation ratio of the algorithm is at most the worst gap between the Nash social welfare of the optimum allocation and that of an EF1 allocation, for an unweighted Nash Social Welfare instance with identical additive valuations. This was shown to be at most e^{1/e} ≈ 1.445 by Barman et al. [Barman et al., 2018], leading to our approximation ratio.

Cite as

Yuda Feng and Shi Li. A Note on Approximating Weighted Nash Social Welfare with Additive Valuations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 63:1-63:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.ICALP.2024.63,
  author =	{Feng, Yuda and Li, Shi},
  title =	{{A Note on Approximating Weighted Nash Social Welfare with Additive Valuations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{63:1--63:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.63},
  URN =		{urn:nbn:de:0030-drops-202068},
  doi =		{10.4230/LIPIcs.ICALP.2024.63},
  annote =	{Keywords: Nash Social Welfare, Configuration LP, Approximation Algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Symmetric Convex Functions over Hybrid of Continuous and Discrete Convex Sets

Authors: Yasushi Kawase, Koichi Nishimura, and Hanna Sumita

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the problem of minimizing a given symmetric strictly convex function over the Minkowski sum of an integral base-polyhedron and an M-convex set. This problem has a hybrid of continuous and discrete structures. This emerges from the problem of allocating mixed goods, consisting of both divisible and indivisible goods, to agents with binary valuations so that the fairness measure, such as the Nash welfare, is maximized. It is known that both an integral base-polyhedron and an M-convex set have similar and nice properties, and the non-hybrid case can be solved in polynomial time. While the hybrid case lacks some of these properties, we show the structure of an optimal solution. Moreover, we exploit a proximity inherent in the problem. Through our findings, we demonstrate that our problem is NP-hard even in the fair allocation setting where all indivisible goods are identical. Moreover, we provide a polynomial-time algorithm for the fair allocation problem when all divisible goods are identical.

Cite as

Yasushi Kawase, Koichi Nishimura, and Hanna Sumita. Minimizing Symmetric Convex Functions over Hybrid of Continuous and Discrete Convex Sets. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 96:1-96:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kawase_et_al:LIPIcs.ICALP.2024.96,
  author =	{Kawase, Yasushi and Nishimura, Koichi and Sumita, Hanna},
  title =	{{Minimizing Symmetric Convex Functions over Hybrid of Continuous and Discrete Convex Sets}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{96:1--96:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.96},
  URN =		{urn:nbn:de:0030-drops-202393},
  doi =		{10.4230/LIPIcs.ICALP.2024.96},
  annote =	{Keywords: Integral base-polyhedron, Fair allocation, Matroid}
}
  • Refine by Author
  • 6 Anari, Nima
  • 3 Guo, Heng
  • 2 Alev, Vedat Levi
  • 2 Datta, Samir
  • 2 Feng, Weiming
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Random walks and Markov chains
  • 4 Theory of computation → Generating random combinatorial structures
  • 3 Theory of computation → Approximation algorithms analysis
  • 3 Theory of computation → Parallel algorithms
  • 3 Theory of computation → Randomness, geometry and discrete structures
  • Show More...

  • Refine by Keyword
  • 3 Approximate counting
  • 3 Glauber dynamics
  • 2 Entropic Independence
  • 2 Ising model
  • 2 Matroid
  • Show More...

  • Refine by Type
  • 25 document

  • Refine by Publication Year
  • 16 2024
  • 3 2021
  • 2 2018
  • 2 2020
  • 1 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail