3 Search Results for "Bacciu, Davide"


Document
Learning Precedences for Scheduling Problems with Graph Neural Networks

Authors: Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
The resource constrained project scheduling problem (RCPSP) consists of scheduling a finite set of resource-consuming tasks within a temporal horizon subject to resource capacities and precedence relations between pairs of tasks. It is NP-hard and many techniques have been introduced to improve the efficiency of CP solvers to solve it. The problem is naturally represented as a directed graph, commonly referred to as the precedence graph, by linking pairs of tasks subject to a precedence. In this paper, we propose to leverage the ability of graph neural networks to extract knowledge from precedence graphs. This is carried out by learning new precedences that can be used either to add new constraints or to design a dedicated variable-selection heuristic. Experiments carried out on RCPSP instances from PSPLIB show the potential of learning to predict precedences and how they can help speed up the search for solutions by a CP solver.

Cite as

Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper. Learning Precedences for Scheduling Problems with Graph Neural Networks. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{verhaeghe_et_al:LIPIcs.CP.2024.30,
  author =	{Verhaeghe, H\'{e}l\`{e}ne and Cappart, Quentin and Pesant, Gilles and Quimper, Claude-Guy},
  title =	{{Learning Precedences for Scheduling Problems with Graph Neural Networks}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{30:1--30:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.30},
  URN =		{urn:nbn:de:0030-drops-207150},
  doi =		{10.4230/LIPIcs.CP.2024.30},
  annote =	{Keywords: Scheduling, Precedence graph, Graph neural network}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
LOL: An Investigation into Cybernetic Humor, or: Can Machines Laugh?

Authors: Davide Bacciu, Vincenzo Gervasi, and Giuseppe Prencipe

Published in: LIPIcs, Volume 49, 8th International Conference on Fun with Algorithms (FUN 2016)


Abstract
The mechanisms of humour have been the subject of much study and investigation, starting with and up to our days. Much of this work is based on literary theories, put forward by some of the most eminent philosophers and thinkers of all times, or medical theories, investigating the impact of humor on brain activity or behaviour. Recent functional neuroimaging studies, for instance, have investigated the process of comprehending and appreciating humor by examining functional activity in distinctive regions of brains stimulated by joke corpora. Yet, there is precious little work on the computational side, possibly due to the less hilarious nature of computer scientists as compared to men of letters and sawbones. In this paper, we set to investigate whether literary theories of humour can stand the test of algorithmic laughter. Or, in other words, we ask ourselves the vexed question: Can machines laugh? We attempt to answer that question by testing whether an algorithm - namely, a neural network - can "understand" humour, and in particular whether it is possible to automatically identify abstractions that are predicted to be relevant by established literary theories about the mechanisms of humor. Notice that we do not focus here on distinguishing humorous from serious statements - a feat that is clearly way beyond the capabilities of the average human voter, not to mention the average machine - but rather on identifying the underlying mechanisms and triggers that are postulated to exist by literary theories, by verifying if similar mechanisms can be learned by machines.

Cite as

Davide Bacciu, Vincenzo Gervasi, and Giuseppe Prencipe. LOL: An Investigation into Cybernetic Humor, or: Can Machines Laugh?. In 8th International Conference on Fun with Algorithms (FUN 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 49, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bacciu_et_al:LIPIcs.FUN.2016.3,
  author =	{Bacciu, Davide and Gervasi, Vincenzo and Prencipe, Giuseppe},
  title =	{{LOL: An Investigation into Cybernetic Humor, or: Can Machines Laugh?}},
  booktitle =	{8th International Conference on Fun with Algorithms (FUN 2016)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-005-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{49},
  editor =	{Demaine, Erik D. and Grandoni, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2016.3},
  URN =		{urn:nbn:de:0030-drops-58823},
  doi =		{10.4230/LIPIcs.FUN.2016.3},
  annote =	{Keywords: deep learning, recurrent neural networks, dimensionality reduction algorithms}
}
  • Refine by Author
  • 1 Bacciu, Davide
  • 1 Bonte, Pieter
  • 1 Calbimonte, Jean-Paul
  • 1 Cappart, Quentin
  • 1 Dell'Aglio, Daniele
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Machine learning
  • 1 Computing methodologies → Temporal reasoning
  • 1 Information systems → Data streams
  • Show More...

  • Refine by Keyword
  • 1 Continuous query processing
  • 1 Databases
  • 1 Graph neural network
  • 1 High-performance computing
  • 1 Precedence graph
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail