15 Search Results for "Behnezhad, Soheil"


Document
APPROX
Weighted Matching in the Random-Order Streaming and Robust Communication Models

Authors: Diba Hashemi and Weronika Wrzos-Kaminska

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in the robust communication model. Unlike many other sublinear models, in these two frameworks, there is a large gap between the guarantees of the best known algorithms for the unweighted and weighted versions of the problem. In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream in a random order. The goal is to compute an approximate maximum weight matching with a single pass over the stream using O(npolylog n) space. Our main result is a (2/3-ε)-approximation algorithm for maximum weight matching in random-order streams, using space O(n log n log R), where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly matches the best known unweighted (2/3+ε₀)-approximation (where ε₀ ∼ 10^{-14} is a small constant) achieved by Assadi and Behnezhad [Assadi and Behnezhad, 2021], and significantly improves upon previous weighted results. Our techniques also extend to the related robust communication model, in which the edges of a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size O(npolylog n) to Bob, who must compute an approximate maximum weight matching. We achieve a (5/6-ε)-approximation using O(n log n log R) words of communication, matching the results of Azarmehr and Behnezhad [Azarmehr and Behnezhad, 2023] for unweighted graphs.

Cite as

Diba Hashemi and Weronika Wrzos-Kaminska. Weighted Matching in the Random-Order Streaming and Robust Communication Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 16:1-16:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashemi_et_al:LIPIcs.APPROX/RANDOM.2024.16,
  author =	{Hashemi, Diba and Wrzos-Kaminska, Weronika},
  title =	{{Weighted Matching in the Random-Order Streaming and Robust Communication Models}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{16:1--16:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  URN =		{urn:nbn:de:0030-drops-210097},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  annote =	{Keywords: Maximum Weight Matching, Streaming, Random-Order Streaming, Robust Communication Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Subquadratic Palette Size

Authors: Shiri Chechik, Doron Mukhtar, and Tianyi Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we study the problem of computing an edge-coloring in the (one-pass) W-streaming model. In this setting, the edges of an n-node graph arrive in an arbitrary order to a machine with a relatively small space, and the goal is to design an algorithm that outputs, as a stream, a proper coloring of the edges using the fewest possible number of colors. Behnezhad et al. [Behnezhad et al., 2019] devised the first non-trivial algorithm for this problem, which computes in Õ(n) space a proper O(Δ²)-coloring w.h.p. (here Δ is the maximum degree of the graph). Subsequent papers improved upon this result, where latest of them [Ansari et al., 2022] showed that it is possible to deterministically compute an O(Δ²/s)-coloring in O(ns) space. However, none of the improvements succeeded in reducing the number of colors to O(Δ^{2-ε}) while keeping the same space bound of Õ(n). In particular, no progress was made on the question of whether computing an O(Δ)-coloring is possible with roughly O(n) space, which was stated in [Behnezhad et al., 2019] to be an interesting open problem. In this paper we bypass the quadratic bound by presenting a new randomized Õ(n)-space algorithm that uses Õ(Δ^{1.5}) colors.

Cite as

Shiri Chechik, Doron Mukhtar, and Tianyi Zhang. Streaming Edge Coloring with Subquadratic Palette Size. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 40:1-40:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chechik_et_al:LIPIcs.ICALP.2024.40,
  author =	{Chechik, Shiri and Mukhtar, Doron and Zhang, Tianyi},
  title =	{{Streaming Edge Coloring with Subquadratic Palette Size}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{40:1--40:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.40},
  URN =		{urn:nbn:de:0030-drops-201831},
  doi =		{10.4230/LIPIcs.ICALP.2024.40},
  annote =	{Keywords: graph algorithms, streaming algorithms, edge coloring}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
It’s Hard to HAC Average Linkage!

Authors: MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small.

Cite as

MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki. It’s Hard to HAC Average Linkage!. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bateni_et_al:LIPIcs.ICALP.2024.18,
  author =	{Bateni, MohammadHossein and Dhulipala, Laxman and Gowda, Kishen N. and Hershkowitz, D. Ellis and Jayaram, Rajesh and {\L}\k{a}cki, Jakub},
  title =	{{It’s Hard to HAC Average Linkage!}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.18},
  URN =		{urn:nbn:de:0030-drops-201613},
  doi =		{10.4230/LIPIcs.ICALP.2024.18},
  annote =	{Keywords: Clustering, Hierarchical Graph Clustering, HAC, Fine-Grained Complexity, Parallel Algorithms, CC}
}
Document
Track A: Algorithms, Complexity and Games
Sublinear Algorithms for TSP via Path Covers

Authors: Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study sublinear time algorithms for the traveling salesman problem (TSP). First, we focus on the closely related maximum path cover problem, which asks for a collection of vertex disjoint paths that include the maximum number of edges. We show that for any fixed ε > 0, there is an algorithm that (1/2 - ε)-approximates the maximum path cover size of an n-vertex graph in Õ(n) time. This improves upon a (3/8-ε)-approximate Õ(n √n)-time algorithm of Chen, Kannan, and Khanna [ICALP'20]. Equipped with our path cover algorithm, we give an Õ(n) time algorithm that estimates the cost of (1,2)-TSP within a factor of (1.5+ε) which is an improvement over a folklore (1.75 + ε)-approximate Õ(n)-time algorithm, as well as a (1.625+ε)-approximate Õ(n√n)-time algorithm of [CHK ICALP'20]. For graphic TSP, we present an Õ(n) algorithm that estimates the cost of graphic TSP within a factor of 1.83 which is an improvement over a 1.92-approximate Õ(n) time algorithm due to [CHK ICALP'20, Behnezhad FOCS'21]. We show that the approximation can be further improved to 1.66 using n^{2-Ω(1)} time. All of our Õ(n) time algorithms are information-theoretically time-optimal up to polylog n factors. Additionally, we show that our approximation guarantees for path cover and (1,2)-TSP hit a natural barrier: We show better approximations require better sublinear time algorithms for the well-studied maximum matching problem.

Cite as

Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Sublinear Algorithms for TSP via Path Covers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{behnezhad_et_al:LIPIcs.ICALP.2024.19,
  author =	{Behnezhad, Soheil and Roghani, Mohammad and Rubinstein, Aviad and Saberi, Amin},
  title =	{{Sublinear Algorithms for TSP via Path Covers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.19},
  URN =		{urn:nbn:de:0030-drops-201623},
  doi =		{10.4230/LIPIcs.ICALP.2024.19},
  annote =	{Keywords: Sublinear Algorithms, Traveling Salesman Problem, Approximation Algorithm, (1, 2)-TSP, Graphic TSP}
}
Document
Track A: Algorithms, Complexity and Games
Decremental Matching in General Weighted Graphs

Authors: Aditi Dudeja

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we consider the problem of maintaining a (1-ε)-approximate maximum weight matching in a dynamic graph G, while the adversary makes changes to the edges of the graph. In the fully dynamic setting, where both edge insertions and deletions are allowed, Gupta and Peng [Manoj Gupta and Richard Peng, 2013] gave an algorithm for this problem with an update time of Õ_ε(√m). We study a natural relaxation of this problem, namely the decremental model, where the adversary is only allowed to delete edges. For the unweighted version of this problem in general (possibly, non-bipartite) graphs, [Sepehr Assadi et al., 2022] gave a decremental algorithm with update time O_ε(poly(log n)). However, beating Õ_ε(√m) update time remained an open problem for the weighted version in general graphs. In this paper, we bridge the gap between unweighted and weighted general graphs for the decremental setting. We give a O_ε(poly(log n)) update time algorithm that maintains a (1-ε) approximate maximum weight matching under adversarial deletions. Like the decremental algorithm of [Sepehr Assadi et al., 2022], our algorithm is randomized, but works against an adaptive adversary. It also matches the time bound for the unweighted version upto dependencies on ε and a log R factor, where R is the ratio between the maximum and minimum edge weight in G.

Cite as

Aditi Dudeja. Decremental Matching in General Weighted Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 59:1-59:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudeja:LIPIcs.ICALP.2024.59,
  author =	{Dudeja, Aditi},
  title =	{{Decremental Matching in General Weighted Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{59:1--59:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.59},
  URN =		{urn:nbn:de:0030-drops-202020},
  doi =		{10.4230/LIPIcs.ICALP.2024.59},
  annote =	{Keywords: Weighted Matching, Dynamic Algorithms, Adaptive Adversary}
}
Document
Track A: Algorithms, Complexity and Games
Low-Memory Algorithms for Online Edge Coloring

Authors: Prantar Ghosh and Manuel Stoeckl

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to be sublinear in the input size but allows an edge’s color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge coloring. Our online algorithms significantly improve upon the memory used by prior ones while achieving an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree Δ, our online O(Δ)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation hides polylog(n) factors). Under edge arrivals, we obtain an online O(Δ)-coloring in Õ(n√Δ) space. We also achieve a smooth color-space tradeoff: for any t = O(Δ), we get an O(Δt(log²Δ))-coloring in Õ(n√{Δ/t}) space, improving upon the state of the art that used Õ(nΔ/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs.

Cite as

Prantar Ghosh and Manuel Stoeckl. Low-Memory Algorithms for Online Edge Coloring. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ICALP.2024.71,
  author =	{Ghosh, Prantar and Stoeckl, Manuel},
  title =	{{Low-Memory Algorithms for Online Edge Coloring}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.71},
  URN =		{urn:nbn:de:0030-drops-202146},
  doi =		{10.4230/LIPIcs.ICALP.2024.71},
  annote =	{Keywords: Edge coloring, streaming model, online algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Asymptotically Optimal Colors

Authors: Mohammad Saneian and Soheil Behnezhad

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a graph G, an edge-coloring is an assignment of colors to edges of G such that any two edges sharing an endpoint receive different colors. By Vizing’s celebrated theorem, any graph of maximum degree Δ needs at least Δ and at most (Δ + 1) colors to be properly edge colored. In this paper, we study edge colorings in the streaming setting. The edges arrive one by one in an arbitrary order. The algorithm takes a single pass over the input and must output a solution using a much smaller space than the input size. Since the output of edge coloring is as large as its input, the assigned colors should also be reported in a streaming fashion. The streaming edge coloring problem has been studied in a series of works over the past few years. The main challenge is that the algorithm cannot "remember" all the color assignments that it returns. To ensure the validity of the solution, existing algorithms use many more colors than Vizing’s bound. Namely, in n-vertex graphs, the state-of-the-art algorithm with Õ(n s) space requires O(Δ²/s + Δ) colors. Note, in particular, that for an asymptotically optimal O(Δ) coloring, this algorithm requires Ω(nΔ) space which is as large as the input. Whether such a coloring can be achieved with sublinear space has been left open. In this paper, we answer this question in the affirmative. We present a randomized algorithm that returns an asymptotically optimal O(Δ) edge coloring using Õ(n √{Δ}) space. More generally, our algorithm returns a proper O(Δ^{1.5}/s + Δ) edge coloring with Õ(n s) space, improving prior algorithms for the whole range of s.

Cite as

Mohammad Saneian and Soheil Behnezhad. Streaming Edge Coloring with Asymptotically Optimal Colors. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 121:1-121:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saneian_et_al:LIPIcs.ICALP.2024.121,
  author =	{Saneian, Mohammad and Behnezhad, Soheil},
  title =	{{Streaming Edge Coloring with Asymptotically Optimal Colors}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{121:1--121:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.121},
  URN =		{urn:nbn:de:0030-drops-202640},
  doi =		{10.4230/LIPIcs.ICALP.2024.121},
  annote =	{Keywords: Streaming, Edge coloring, Adversarial order}
}
Document
Track A: Algorithms, Complexity and Games
Robust Communication Complexity of Matching: EDCS Achieves 5/6 Approximation

Authors: Amir Azarmehr and Soheil Behnezhad

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the robust communication complexity of maximum matching. Edges of an arbitrary n-vertex graph G are randomly partitioned between Alice and Bob independently and uniformly. Alice has to send a single message to Bob such that Bob can find an (approximate) maximum matching of the whole graph G. We specifically study the best approximation ratio achievable via protocols where Alice communicates only Õ(n) bits to Bob. There has been a growing interest on the robust communication model due to its connections to the random-order streaming model. An algorithm of Assadi and Behnezhad [ICALP'21] implies a (2/3+ε₀ ∼ .667)-approximation for a small constant 0 < ε₀ < 10^{-18}, which remains the best-known approximation for general graphs. For bipartite graphs, Assadi and Behnezhad [Random'21] improved the approximation to .716 albeit with a computationally inefficient (i.e., exponential time) protocol. In this paper, we study a natural and efficient protocol implied by a random-order streaming algorithm of Bernstein [ICALP'20] which is based on edge-degree constrained subgraphs (EDCS) [Bernstein and Stein; ICALP'15]. The result of Bernstein immediately implies that this protocol achieves an (almost) (2/3 ∼ .666)-approximation in the robust communication model. We present a new analysis, proving that it achieves a much better (almost) (5/6 ∼ .833)-approximation. This significantly improves previous approximations both for general and bipartite graphs. We also prove that our analysis of Bernstein’s protocol is tight.

Cite as

Amir Azarmehr and Soheil Behnezhad. Robust Communication Complexity of Matching: EDCS Achieves 5/6 Approximation. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 14:1-14:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{azarmehr_et_al:LIPIcs.ICALP.2023.14,
  author =	{Azarmehr, Amir and Behnezhad, Soheil},
  title =	{{Robust Communication Complexity of Matching: EDCS Achieves 5/6 Approximation}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{14:1--14:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.14},
  URN =		{urn:nbn:de:0030-drops-180666},
  doi =		{10.4230/LIPIcs.ICALP.2023.14},
  annote =	{Keywords: Maximum Matching, Robust Communication Complexity, Edge Degree Constrained Subgraph}
}
Document
Track A: Algorithms, Complexity and Games
Privately Estimating Graph Parameters in Sublinear Time

Authors: Jeremiah Blocki, Elena Grigorescu, and Tamalika Mukherjee

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We initiate a systematic study of algorithms that are both differentially-private and run in sublinear time for several problems in which the goal is to estimate natural graph parameters. Our main result is a differentially-private (1+ρ)-approximation algorithm for the problem of computing the average degree of a graph, for every ρ > 0. The running time of the algorithm is roughly the same (for sparse graphs) as its non-private version proposed by Goldreich and Ron (Sublinear Algorithms, 2005). We also obtain the first differentially-private sublinear-time approximation algorithms for the maximum matching size and the minimum vertex cover size of a graph. An overarching technique we employ is the notion of coupled global sensitivity of randomized algorithms. Related variants of this notion of sensitivity have been used in the literature in ad-hoc ways. Here we formalize the notion and develop it as a unifying framework for privacy analysis of randomized approximation algorithms.

Cite as

Jeremiah Blocki, Elena Grigorescu, and Tamalika Mukherjee. Privately Estimating Graph Parameters in Sublinear Time. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blocki_et_al:LIPIcs.ICALP.2022.26,
  author =	{Blocki, Jeremiah and Grigorescu, Elena and Mukherjee, Tamalika},
  title =	{{Privately Estimating Graph Parameters in Sublinear Time}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.26},
  URN =		{urn:nbn:de:0030-drops-163674},
  doi =		{10.4230/LIPIcs.ICALP.2022.26},
  annote =	{Keywords: differential privacy, sublinear time, graph algorithms}
}
Document
RANDOM
On the Robust Communication Complexity of Bipartite Matching

Authors: Sepehr Assadi and Soheil Behnezhad

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We study the robust - à la Chakrabarti, Cormode, and McGregor [STOC'08] - communication complexity of the maximum bipartite matching problem. The edges of an adversarially chosen n-vertex bipartite graph G are partitioned randomly between Alice and Bob. Alice has to send a single message to Bob, using which Bob has to output an approximate maximum matching of G. We are particularly interested in understanding the best approximation ratio possible by protocols that use a near-optimal message size of n ⋅ polylog(n). The communication complexity of bipartite matching in this setting under an adversarial partitioning is well-understood. In their beautiful paper, Goel, Kapralov, and Khanna [SODA'12] gave a rac{2} {3}-approximate protocol with O(n) communication and showed that this approximation is tight unless we allow more than a near-linear communication. The complexity of the robust version, i.e., with a random partitioning of the edges, however remains wide open. The best known protocol, implied by a very recent random-order streaming algorithm of the authors [ICALP'21], uses O(n log n) communication to obtain a (rac{2} {3} + ε₀)-approximation for a constant ε₀ ∼ 10^{-14}. The best known lower bound, on the other hand, leaves open the possibility of all the way up to even a (1-ε)-approximation using near-linear communication for constant ε > 0. In this work, we give a new protocol with a significantly better approximation. Particularly, our protocol achieves a 0.716 expected approximation using O(n) communication. This protocol is based on a new notion of distribution-dependent sparsifiers which give a natural way of sparsifying graphs sampled from a known distribution. We then show how to lift the assumption on knowing the graph’s distribution via minimax theorems. We believe this is a particularly powerful method of designing communication protocols and might find further applications.

Cite as

Sepehr Assadi and Soheil Behnezhad. On the Robust Communication Complexity of Bipartite Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 48:1-48:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.APPROX/RANDOM.2021.48,
  author =	{Assadi, Sepehr and Behnezhad, Soheil},
  title =	{{On the Robust Communication Complexity of Bipartite Matching}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{48:1--48:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.48},
  URN =		{urn:nbn:de:0030-drops-147411},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.48},
  annote =	{Keywords: Maximum Matching, Communication Complexity, Random-Order Streaming}
}
Document
Track A: Algorithms, Complexity and Games
Beating Two-Thirds For Random-Order Streaming Matching

Authors: Sepehr Assadi and Soheil Behnezhad

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We study the maximum matching problem in the random-order semi-streaming setting. In this problem, the edges of an arbitrary n-vertex graph G = (V, E) arrive in a stream one by one and in a random order. The goal is to have a single pass over the stream, use O(n ⋅ polylog) space, and output a large matching of G. We prove that for an absolute constant ε₀ > 0, one can find a (2/3 + ε₀)-approximate maximum matching of G using O(n log n) space with high probability. This breaks the natural boundary of 2/3 for this problem prevalent in the prior work and resolves an open problem of Bernstein [ICALP'20] on whether a (2/3 + Ω(1))-approximation is achievable.

Cite as

Sepehr Assadi and Soheil Behnezhad. Beating Two-Thirds For Random-Order Streaming Matching. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 19:1-19:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.ICALP.2021.19,
  author =	{Assadi, Sepehr and Behnezhad, Soheil},
  title =	{{Beating Two-Thirds For Random-Order Streaming Matching}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{19:1--19:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.19},
  URN =		{urn:nbn:de:0030-drops-140887},
  doi =		{10.4230/LIPIcs.ICALP.2021.19},
  annote =	{Keywords: Maximum Matching, Streaming, Random-Order Streaming}
}
Document
Brief Announcement
Brief Announcement: Streaming and Massively Parallel Algorithms for Edge Coloring

Authors: Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and Hamed Saleh

Published in: LIPIcs, Volume 146, 33rd International Symposium on Distributed Computing (DISC 2019)


Abstract
A valid edge-coloring of a graph is an assignment of "colors" to its edges such that no two incident edges receive the same color. The goal is to find a proper coloring that uses few colors. In this paper, we revisit this problem in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC) model and the Graph Streaming model: Massively Parallel Computation. We give a randomized MPC algorithm that w.h.p., returns a (1+o(1))Delta edge coloring in O(1) rounds using O~(n) space per machine and O(m) total space. The space per machine can also be further improved to n^{1-Omega(1)} if Delta = n^{Omega(1)}. This is, to our knowledge, the first constant round algorithm for a natural graph problem in the strongly sublinear regime of MPC. Our algorithm improves a previous result of Harvey et al. [SPAA 2018] which required n^{1+Omega(1)} space to achieve the same result. Graph Streaming. Since the output of edge-coloring is as large as its input, we consider a standard variant of the streaming model where the output is also reported in a streaming fashion. The main challenge is that the algorithm cannot "remember" all the reported edge colors, yet has to output a proper edge coloring using few colors. We give a one-pass O~(n)-space streaming algorithm that always returns a valid coloring and uses 5.44 Delta colors w.h.p., if the edges arrive in a random order. For adversarial order streams, we give another one-pass O~(n)-space algorithm that requires O(Delta^2) colors.

Cite as

Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and Hamed Saleh. Brief Announcement: Streaming and Massively Parallel Algorithms for Edge Coloring. In 33rd International Symposium on Distributed Computing (DISC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 146, pp. 36:1-36:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{behnezhad_et_al:LIPIcs.DISC.2019.36,
  author =	{Behnezhad, Soheil and Derakhshan, Mahsa and Hajiaghayi, MohammadTaghi and Knittel, Marina and Saleh, Hamed},
  title =	{{Brief Announcement: Streaming and Massively Parallel Algorithms for Edge Coloring}},
  booktitle =	{33rd International Symposium on Distributed Computing (DISC 2019)},
  pages =	{36:1--36:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-126-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{146},
  editor =	{Suomela, Jukka},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.36},
  URN =		{urn:nbn:de:0030-drops-113438},
  doi =		{10.4230/LIPIcs.DISC.2019.36},
  annote =	{Keywords: Massively Parallel Computation, Streaming, Edge Coloring}
}
Document
Streaming and Massively Parallel Algorithms for Edge Coloring

Authors: Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and Hamed Saleh

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
A valid edge-coloring of a graph is an assignment of "colors" to its edges such that no two incident edges receive the same color. The goal is to find a proper coloring that uses few colors. (Note that the maximum degree, Delta, is a trivial lower bound.) In this paper, we revisit this fundamental problem in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC) model and the Graph Streaming model: - Massively Parallel Computation: We give a randomized MPC algorithm that with high probability returns a Delta+O~(Delta^(3/4)) edge coloring in O(1) rounds using O(n) space per machine and O(m) total space. The space per machine can also be further improved to n^(1-Omega(1)) if Delta = n^Omega(1). Our algorithm improves upon a previous result of Harvey et al. [SPAA 2018]. - Graph Streaming: Since the output of edge-coloring is as large as its input, we consider a standard variant of the streaming model where the output is also reported in a streaming fashion. The main challenge is that the algorithm cannot "remember" all the reported edge colors, yet has to output a proper edge coloring using few colors. We give a one-pass O~(n)-space streaming algorithm that always returns a valid coloring and uses 5.44 Delta colors with high probability if the edges arrive in a random order. For adversarial order streams, we give another one-pass O~(n)-space algorithm that requires O(Delta^2) colors.

Cite as

Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and Hamed Saleh. Streaming and Massively Parallel Algorithms for Edge Coloring. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{behnezhad_et_al:LIPIcs.ESA.2019.15,
  author =	{Behnezhad, Soheil and Derakhshan, Mahsa and Hajiaghayi, MohammadTaghi and Knittel, Marina and Saleh, Hamed},
  title =	{{Streaming and Massively Parallel Algorithms for Edge Coloring}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.15},
  URN =		{urn:nbn:de:0030-drops-111361},
  doi =		{10.4230/LIPIcs.ESA.2019.15},
  annote =	{Keywords: Massively Parallel Computation, Streaming, Edge Coloring}
}
Document
Brief Announcement
Brief Announcement: MapReduce Algorithms for Massive Trees

Authors: MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, and Vahab Mirrokni

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
Solving large-scale graph problems is a fundamental task in many real-world applications, and it is an increasingly important problem in data analysis. Despite the large effort in designing scalable graph algorithms, many classic graph problems lack algorithms that require only a sublinear number of machines and space in the input size. Specifically when the input graph is large and sparse, which is indeed the case for many real-world graphs, it becomes impossible to store and access all the vertices in one machine - something that is often taken for granted in designing algorithms for massive graphs. The theoretical model that we consider is the Massively Parallel Communications (MPC) model which is a popular theoretical model of MapReduce-like systems. In this paper, we give an algorithmic framework to adapt a large family of dynamic programs on MPC. We start by introducing two classes of dynamic programming problems, namely "(poly log)-expressible" and "linear-expressible" problems. We show that both classes can be solved efficiently using a sublinear number of machines and a sublinear memory per machine. To achieve this result, we introduce a series of techniques that can be plugged together. To illustrate the generality of our framework, we implement in O(log n) rounds of MPC, the dynamic programming solution of fundamental problems such as minimum bisection, k-spanning tree, maximum independent set, longest path, etc., when the input graph is a tree.

Cite as

MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, and Vahab Mirrokni. Brief Announcement: MapReduce Algorithms for Massive Trees. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 162:1-162:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bateni_et_al:LIPIcs.ICALP.2018.162,
  author =	{Bateni, MohammadHossein and Behnezhad, Soheil and Derakhshan, Mahsa and Hajiaghayi, MohammadTaghi and Mirrokni, Vahab},
  title =	{{Brief Announcement: MapReduce Algorithms for Massive Trees}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{162:1--162:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.162},
  URN =		{urn:nbn:de:0030-drops-91666},
  doi =		{10.4230/LIPIcs.ICALP.2018.162},
  annote =	{Keywords: MapReduce, Trees}
}
  • Refine by Author
  • 8 Behnezhad, Soheil
  • 3 Derakhshan, Mahsa
  • 3 Hajiaghayi, MohammadTaghi
  • 2 Assadi, Sepehr
  • 2 Bateni, MohammadHossein
  • Show More...

  • Refine by Classification
  • 10 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 6 Theory of computation → Graph algorithms analysis
  • 4 Theory of computation → Massively parallel algorithms
  • 2 Mathematics of computing → Graph coloring
  • 1 Security and privacy → Privacy-preserving protocols
  • Show More...

  • Refine by Keyword
  • 5 Streaming
  • 3 Maximum Matching
  • 3 Random-Order Streaming
  • 2 Edge Coloring
  • 2 Edge coloring
  • Show More...

  • Refine by Type
  • 15 document

  • Refine by Publication Year
  • 8 2024
  • 2 2019
  • 2 2021
  • 1 2018
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail