99 Search Results for "Beyersdorff, Olaf"


Volume

LIPIcs, Volume 289

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)

STACS 2024, March 12-14, 2024, Clermont-Ferrand, France

Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov

Document
The Power of Counting Steps in Quantitative Games

Authors: Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study deterministic games of infinite duration played on graphs and focus on the strategy complexity of quantitative objectives. Such games are known to admit optimal memoryless strategies over finite graphs, but require infinite-memory strategies in general over infinite graphs. We provide new lower and upper bounds for the strategy complexity of mean-payoff and total-payoff objectives over infinite graphs, focusing on whether step-counter strategies (sometimes called Markov strategies) suffice to implement winning strategies. In particular, we show that over finitely branching arenas, three variants of limsup mean-payoff and total-payoff objectives admit winning strategies that are based either on a step counter or on a step counter and an additional bit of memory. Conversely, we show that for certain liminf total-payoff objectives, strategies resorting to a step counter and finite memory are not sufficient. For step-counter strategies, this settles the case of all classical quantitative objectives up to the second level of the Borel hierarchy.

Cite as

Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove. The Power of Counting Steps in Quantitative Games. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.CONCUR.2024.13,
  author =	{Bose, Sougata and Ibsen-Jensen, Rasmus and Purser, David and Totzke, Patrick and Vandenhove, Pierre},
  title =	{{The Power of Counting Steps in Quantitative Games}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.13},
  URN =		{urn:nbn:de:0030-drops-207852},
  doi =		{10.4230/LIPIcs.CONCUR.2024.13},
  annote =	{Keywords: Games on graphs, Markov strategies, quantitative objectives, infinite-state systems}
}
Document
Validity of Contextual Formulas

Authors: Javier Esparza and Rubén Rubio

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Many well-known logical identities are naturally written as equivalences between contextual formulas. A simple example is the Boole-Shannon expansion c[p] ≡ (p ∧ c[true]) ∨ (¬ p ∧ c[false]), where c denotes an arbitrary formula with possibly multiple occurrences of a "hole", called a context, and c[φ] denotes the result of "filling" all holes of c with the formula φ. Another example is the unfolding rule μX.c[X] ≡ c[μX.c[X]] of the modal μ-calculus. We consider the modal μ-calculus as overarching temporal logic and, as usual, reduce the problem whether φ₁ ≡ φ₂ holds for contextual formulas φ₁, φ₂ to the problem whether φ₁ ↔ φ₂ is valid. We show that the problem whether a contextual formula of the μ-calculus is valid for all contexts can be reduced to validity of ordinary formulas. Our first result constructs a canonical context such that a formula is valid for all contexts iff it is valid for this particular one. However, the ordinary formula is exponential in the nesting-depth of the context variables. In a second result we solve this problem, thus proving that validity of contextual formulas is EXP-complete, as for ordinary equivalences. We also prove that both results hold for CTL and LTL as well. We conclude the paper with some experimental results. In particular, we use our implementation to automatically prove the correctness of a set of six contextual equivalences of LTL recently introduced by Esparza et al. for the normalization of LTL formulas. While Esparza et al. need several pages of manual proof, our tool only needs milliseconds to do the job and to compute counterexamples for incorrect variants of the equivalences.

Cite as

Javier Esparza and Rubén Rubio. Validity of Contextual Formulas. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{esparza_et_al:LIPIcs.CONCUR.2024.24,
  author =	{Esparza, Javier and Rubio, Rub\'{e}n},
  title =	{{Validity of Contextual Formulas}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{24:1--24:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.24},
  URN =		{urn:nbn:de:0030-drops-207965},
  doi =		{10.4230/LIPIcs.CONCUR.2024.24},
  annote =	{Keywords: \mu-calculus, temporal logic, contextual rules}
}
Document
Deep Cooperation of Local Search and Unit Propagation Techniques

Authors: Xiamin Chen, Zhendong Lei, and Pinyan Lu

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Local search (LS) is an efficient method for solving combinatorial optimization problems such as MaxSAT and Pseudo Boolean Problems (PBO). However, due to a lack of reasoning power and global information, LS methods get stuck at local optima easily. In contrast to the LS, Systematic Search utilizes unit propagation and clause learning techniques with strong reasoning capabilities to avoid falling into local optima. Nevertheless, the complete search is generally time-consuming to obtain a global optimal solution. This work proposes a deep cooperation framework combining local search and unit propagation to address their inherent disadvantages. First, we design a mechanism to detect when LS gets stuck, and then a well-designed unit propagation procedure is called upon to help escape the local optima. To the best of our knowledge, we are the first to integrate unit propagation technique within LS to overcome local optima. Experiments based on a broad range of benchmarks from MaxSAT Evaluations, PBO competitions, the Mixed Integer Programming Library, and three real-life cases validate that our method significantly improves three state-of-the-art MaxSAT and PBO local search solvers.

Cite as

Xiamin Chen, Zhendong Lei, and Pinyan Lu. Deep Cooperation of Local Search and Unit Propagation Techniques. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CP.2024.6,
  author =	{Chen, Xiamin and Lei, Zhendong and Lu, Pinyan},
  title =	{{Deep Cooperation of Local Search and Unit Propagation Techniques}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.6},
  URN =		{urn:nbn:de:0030-drops-206918},
  doi =		{10.4230/LIPIcs.CP.2024.6},
  annote =	{Keywords: PBO, Partial MaxSAT, LS, CDCL}
}
Document
Structure-Guided Local Improvement for Maximum Satisfiability

Authors: André Schidler and Stefan Szeider

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
The enhanced performance of today’s MaxSAT solvers has elevated their appeal for many large-scale applications, notably in software analysis and computer-aided design. Our research delves into refining anytime MaxSAT solving by repeatedly identifying and solving with an exact solver smaller subinstances that are chosen based on the graphical structure of the instance. We investigate various strategies to pinpoint these subinstances. This structure-guided selection of subinstances provides an exact solver with a high potential for improving the current solution. Our exhaustive experimental analyses contrast our methodology as instantiated in our tool MaxSLIM with previous studies and benchmark it against leading-edge MaxSAT solvers.

Cite as

André Schidler and Stefan Szeider. Structure-Guided Local Improvement for Maximum Satisfiability. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 26:1-26:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schidler_et_al:LIPIcs.CP.2024.26,
  author =	{Schidler, Andr\'{e} and Szeider, Stefan},
  title =	{{Structure-Guided Local Improvement for Maximum Satisfiability}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{26:1--26:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.26},
  URN =		{urn:nbn:de:0030-drops-207112},
  doi =		{10.4230/LIPIcs.CP.2024.26},
  annote =	{Keywords: maximum satisfiability, large neighborhood search (LNS), SAT-based local improvement (SLIM), incomplete MaxSAT, graphical structure, metaheuristic}
}
Document
Short Paper
Minimizing Working-Group Conflicts in Conference Session Scheduling Through Maximum Satisfiability (Short Paper)

Authors: Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux-Devendeville

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
This paper explores the application of Maximum Satisfiability (Max-SAT) to the complex problem of conference session scheduling, with a particular focus on minimizing working-group conflicts within the context of the ROADEF conference, the largest French-speaking event aimed at bringing together researchers from various fields such as combinatorial optimization and operational research. A Max-SAT model is introduced then enhanced with new variables, and solved through state-of-the-art solvers. The results of applying our formulation to data from ROADEF demonstrate its ability to effectively compute session schedules, while enabling to reduce the number of conflicts and the maximum number of parallel sessions compared to the handmade solutions proposed by the organizing committees. These findings underscore the potential of Max-SAT as a valuable tool for optimizing conference scheduling processes, offering a systematic and efficient solution that ensures a smoother and more productive experience for attendees and organizers alike.

Cite as

Sami Cherif, Heythem Sattoutah, Chu-Min Li, Corinne Lucet, and Laure Brisoux-Devendeville. Minimizing Working-Group Conflicts in Conference Session Scheduling Through Maximum Satisfiability (Short Paper). In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cherif_et_al:LIPIcs.CP.2024.34,
  author =	{Cherif, Sami and Sattoutah, Heythem and Li, Chu-Min and Lucet, Corinne and Brisoux-Devendeville, Laure},
  title =	{{Minimizing Working-Group Conflicts in Conference Session Scheduling Through Maximum Satisfiability}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{34:1--34:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.34},
  URN =		{urn:nbn:de:0030-drops-207190},
  doi =		{10.4230/LIPIcs.CP.2024.34},
  annote =	{Keywords: Maximum Satisfiability, Scheduling, Modeling}
}
Document
Polynomial Calculus for Quantified Boolean Logic: Lower Bounds Through Circuits and Degree

Authors: Olaf Beyersdorff, Tim Hoffmann, Kaspar Kasche, and Luc Nicolas Spachmann

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We initiate an in-depth proof-complexity analysis of polynomial calculus (𝒬-PC) for Quantified Boolean Formulas (QBF). In the course of this we establish a tight proof-size characterisation of 𝒬-PC in terms of a suitable circuit model (polynomial decision lists). Using this correspondence we show a size-degree relation for 𝒬-PC, similar in spirit, yet different from the classic size-degree formula for propositional PC by Impagliazzo, Pudlák and Sgall (1999). We use the circuit characterisation together with the size-degree relation to obtain various new lower bounds on proof size in 𝒬-PC. This leads to incomparability results for 𝒬-PC systems over different fields.

Cite as

Olaf Beyersdorff, Tim Hoffmann, Kaspar Kasche, and Luc Nicolas Spachmann. Polynomial Calculus for Quantified Boolean Logic: Lower Bounds Through Circuits and Degree. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 27:1-27:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beyersdorff_et_al:LIPIcs.MFCS.2024.27,
  author =	{Beyersdorff, Olaf and Hoffmann, Tim and Kasche, Kaspar and Spachmann, Luc Nicolas},
  title =	{{Polynomial Calculus for Quantified Boolean Logic: Lower Bounds Through Circuits and Degree}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{27:1--27:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.27},
  URN =		{urn:nbn:de:0030-drops-205834},
  doi =		{10.4230/LIPIcs.MFCS.2024.27},
  annote =	{Keywords: proof complexity, QBF, polynomial calculus, circuits, lower bounds}
}
Document
An Algorithmic Meta Theorem for Homomorphism Indistinguishability

Authors: Tim Seppelt

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Two graphs G and H are homomorphism indistinguishable over a family of graphs ℱ if for all graphs F ∈ ℱ the number of homomorphisms from F to G is equal to the number of homomorphism from F to H. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, cospectrality, and logical equivalences can be characterised as homomorphism indistinguishability relations over various graph classes. The wealth of such results motivates a more fundamental study of homomorphism indistinguishability. From a computational perspective, the central object of interest is the decision problem HomInd(ℱ) which asks to determine whether two input graphs G and H are homomorphism indistinguishable over a fixed graph class ℱ. The problem HomInd(ℱ) is known to be decidable only for few graph classes ℱ. Due to a conjecture by Roberson (2022) and results by Seppelt (MFCS 2023), homomorphism indistinguishability relations over minor-closed graph classes are of special interest. We show that HomInd(ℱ) admits a randomised polynomial-time algorithm for every minor-closed graph class ℱ of bounded treewidth. This result extends to a version of HomInd where the graph class ℱ is specified by a sentence in counting monadic second-order logic and a bound k on the treewidth, which are given as input. For fixed k, this problem is randomised fixed-parameter tractable. If k is part of the input, then it is coNP- and coW[1]-hard. Addressing a problem posed by Berkholz (2012), we show coNP-hardness by establishing that deciding indistinguishability under the k-dimensional Weisfeiler-Leman algorithm is coNP-hard when k is part of the input.

Cite as

Tim Seppelt. An Algorithmic Meta Theorem for Homomorphism Indistinguishability. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 82:1-82:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{seppelt:LIPIcs.MFCS.2024.82,
  author =	{Seppelt, Tim},
  title =	{{An Algorithmic Meta Theorem for Homomorphism Indistinguishability}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{82:1--82:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.82},
  URN =		{urn:nbn:de:0030-drops-206387},
  doi =		{10.4230/LIPIcs.MFCS.2024.82},
  annote =	{Keywords: homomorphism indistinguishability, graph homomorphism, graph minor, recognisability, randomised algorithm, Courcelle’s Theorem}
}
Document
Invited Talk
Models and Counter-Models of Quantified Boolean Formulas (Invited Talk)

Authors: Martina Seidl

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Because of the duality of universal and existential quantification, quantified Boolean formulas (QBF), the extension of propositional logic with quantifiers over the Boolean variables, have not only solutions in terms of models for true formulas like in SAT. Also false QBFs have solutions in terms of counter-models. Both models and counter-models can be represented as certain binary trees or as sets of Boolean functions reflecting the dependencies among the variables of a formula. Such solutions encode the answers to application problems for which QBF solvers are employed like the plan for a planning problem or the error trace of a verification problem. Therefore, models and counter-models are at the core of theory and practice of QBF solving. In this invited talk, we survey approaches that deal with models and counter-models of QBFs and identify some open challenges.

Cite as

Martina Seidl. Models and Counter-Models of Quantified Boolean Formulas (Invited Talk). In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 1:1-1:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{seidl:LIPIcs.SAT.2024.1,
  author =	{Seidl, Martina},
  title =	{{Models and Counter-Models of Quantified Boolean Formulas}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{1:1--1:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.1},
  URN =		{urn:nbn:de:0030-drops-205238},
  doi =		{10.4230/LIPIcs.SAT.2024.1},
  annote =	{Keywords: Quantified Boolean Formula, Solution Extraction, Solution Counting}
}
Document
The Relative Strength of #SAT Proof Systems

Authors: Olaf Beyersdorff, Johannes K. Fichte, Markus Hecher, Tim Hoffmann, and Kaspar Kasche

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
The propositional model counting problem #SAT asks to compute the number of satisfying assignments for a given propositional formula. Recently, three #SAT proof systems kcps (knowledge compilation proof system), MICE (model counting induction by claim extension), and CPOG (certified partitioned-operation graphs) have been introduced with the aim to model #SAT solving and enable proof logging for solvers. Prior to this paper, the relations between these proof systems have been unclear and very few proof complexity results are known. We completely determine the simulation order of the three systems, establishing that CPOG simulates both MICE and kcps, while MICE and kcps are exponentially incomparable. This implies that CPOG is strictly stronger than the other two systems.

Cite as

Olaf Beyersdorff, Johannes K. Fichte, Markus Hecher, Tim Hoffmann, and Kaspar Kasche. The Relative Strength of #SAT Proof Systems. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beyersdorff_et_al:LIPIcs.SAT.2024.5,
  author =	{Beyersdorff, Olaf and Fichte, Johannes K. and Hecher, Markus and Hoffmann, Tim and Kasche, Kaspar},
  title =	{{The Relative Strength of #SAT Proof Systems}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.5},
  URN =		{urn:nbn:de:0030-drops-205276},
  doi =		{10.4230/LIPIcs.SAT.2024.5},
  annote =	{Keywords: Model Counting, #SAT, Proof Complexity, Proof Systems, Lower Bounds, Knowledge Compilation}
}
Document
Parallel Clause Sharing Strategy Based on Graph Structure of SAT Problem

Authors: Yoichiro Iida, Tomohiro Sonobe, and Mary Inaba

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Parallelization of SAT solvers is an important technique for improving solver performance. The selection of the learnt clauses to share among parallel workers is crucial for its efficiency. Literal block distance (LBD) is often used to evaluate the quality of clauses to select. We propose a new method, Parallel Clause sharing based on graph Structure (PaCS), to select good clauses for sharing. First, we conducted three preliminary experiments to assess the performance of LBD in parallel clause sharing: a performance comparison between the LBD and clause size, an analysis of the utilization of shared clauses, and a comparison of the LBD values of shared clauses at originating and receiving workers. These experiments indicate that the LBD may not be optimal for learnt clause sharing. We attribute the results to the LBD’s inherent dependency on decision trees. Each parallel worker has a unique decision tree; thus, a sharing clause that is good for its originating worker may not be good for others. Therefore, we propose PaCS, a search-independent method that uses the graph structure derived from the input CNF of SAT problems. PaCS evaluates clauses using their edges' weight in the variable incidence graph. Using the input CNF’s graph is effective for parallel clause sharing because it is the common input for all parallel workers. Furthermore, using edge weight can select clauses whose variables' Boolean values are more likely to be determined. Performance evaluation experiments demonstrate that our strategy outperforms LBD by 4% in the number of solved instances and by 12% in PAR-2. This study opens avenues for further improvements in parallel-solving strategies using the structure of SAT problems and reinterpretations of the quality of learnt clauses.

Cite as

Yoichiro Iida, Tomohiro Sonobe, and Mary Inaba. Parallel Clause Sharing Strategy Based on Graph Structure of SAT Problem. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 17:1-17:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{iida_et_al:LIPIcs.SAT.2024.17,
  author =	{Iida, Yoichiro and Sonobe, Tomohiro and Inaba, Mary},
  title =	{{Parallel Clause Sharing Strategy Based on Graph Structure of SAT Problem}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{17:1--17:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.17},
  URN =		{urn:nbn:de:0030-drops-205392},
  doi =		{10.4230/LIPIcs.SAT.2024.17},
  annote =	{Keywords: SAT Solver, Structure of SAT, Parallel application, Clause Learning}
}
Document
eSLIM: Circuit Minimization with SAT Based Local Improvement

Authors: Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
eSLIM is a tool for circuit minimization that utilizes Exact Synthesis and the SAT-based local improvement method (SLIM) to locally improve circuits. eSLIM improves upon the earlier prototype CIOPS that uses Quantified Boolean Formulas (QBF) to succinctly encode resynthesis of multi-output subcircuits subject to don't cares. This paper describes two improvements. First, it presents a purely propositional encoding based on a Boolean relation characterizing the input-output behavior of the subcircuit under don't cares. This allows the use of a SAT solver for resynthesis, substantially reducing running times when applied to functions from the IWLS 2023 competition, where eSLIM placed second. Second, it proposes circuit partitioning techniques in which don't cares for a subcircuit are captured only with respect to an enclosing window, rather than the entire circuit. Circuit partitioning trades completeness for efficiency, and successfully enables the application of exact synthesis to some of the largest circuits in the EPFL suite, leading to improvements over the current best implementation for several instances.

Cite as

Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. eSLIM: Circuit Minimization with SAT Based Local Improvement. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{reichl_et_al:LIPIcs.SAT.2024.23,
  author =	{Reichl, Franz-Xaver and Slivovsky, Friedrich and Szeider, Stefan},
  title =	{{eSLIM: Circuit Minimization with SAT Based Local Improvement}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23},
  URN =		{urn:nbn:de:0030-drops-205458},
  doi =		{10.4230/LIPIcs.SAT.2024.23},
  annote =	{Keywords: QBF, Exact Synthesis, Circuit Minimization, SLIM}
}
Document
Strategy Extraction by Interpolation

Authors: Friedrich Slivovsky

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
In applications, QBF solvers are often required to generate strategies. This typically involves a process known as strategy extraction, where a Boolean circuit encoding a strategy is computed from a proof. It has previously been observed that Craig interpolation in propositional logic can be seen as a special case of QBF strategy extraction. In this paper we explore this connection further and show that, conversely, any strategy for a false QBF corresponds to a sequence of interpolants in its complete (Herbrand) expansion. Inspired by this correspondence, we present a new strategy extraction algorithm for the expansion-based proof system Exp+Res. Its asymptotic running time matches the best known bound of O(mn) for a proof with m lines and n universally quantified variables. We report on experiments comparing this algorithm with a strategy extraction algorithm based on combining partial strategies, as well as with round-based strategy extraction.

Cite as

Friedrich Slivovsky. Strategy Extraction by Interpolation. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{slivovsky:LIPIcs.SAT.2024.28,
  author =	{Slivovsky, Friedrich},
  title =	{{Strategy Extraction by Interpolation}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.28},
  URN =		{urn:nbn:de:0030-drops-205509},
  doi =		{10.4230/LIPIcs.SAT.2024.28},
  annote =	{Keywords: QBF, Expansion, Strategy Extraction, Interpolation}
}
Document
Track A: Algorithms, Complexity and Games
Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle

Authors: Aaron Potechin and Aaron Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We show that the minimum total coefficient size of a Nullstellensatz proof of the pigeonhole principle on n+1 pigeons and n holes is 2^{Θ(n)}. We also investigate the ordering principle and construct an explicit Nullstellensatz proof for the ordering principle on n elements with total coefficient size 2ⁿ - n.

Cite as

Aaron Potechin and Aaron Zhang. Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{potechin_et_al:LIPIcs.ICALP.2024.117,
  author =	{Potechin, Aaron and Zhang, Aaron},
  title =	{{Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.117},
  URN =		{urn:nbn:de:0030-drops-202604},
  doi =		{10.4230/LIPIcs.ICALP.2024.117},
  annote =	{Keywords: Proof complexity, Nullstellensatz, pigeonhole principle, coefficient size}
}
Document
Track A: Algorithms, Complexity and Games
From Proof Complexity to Circuit Complexity via Interactive Protocols

Authors: Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Folklore in complexity theory suspects that circuit lower bounds against NC¹ or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [Pich and Santhanam, 2023]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [Krajíček, 2004], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [Lund et al., 1992]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.

Cite as

Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam. From Proof Complexity to Circuit Complexity via Interactive Protocols. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arteche_et_al:LIPIcs.ICALP.2024.12,
  author =	{Arteche, Noel and Khaniki, Erfan and Pich, J\'{a}n and Santhanam, Rahul},
  title =	{{From Proof Complexity to Circuit Complexity via Interactive Protocols}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.12},
  URN =		{urn:nbn:de:0030-drops-201557},
  doi =		{10.4230/LIPIcs.ICALP.2024.12},
  annote =	{Keywords: proof complexity, circuit complexity, interactive protocols}
}
  • Refine by Author
  • 24 Beyersdorff, Olaf
  • 6 Mahajan, Meena
  • 4 Blinkhorn, Joshua
  • 3 Böhm, Benjamin
  • 3 Chew, Leroy
  • Show More...

  • Refine by Classification
  • 16 Theory of computation → Proof complexity
  • 10 Theory of computation → Graph algorithms analysis
  • 7 Mathematics of computing → Graph theory
  • 7 Theory of computation → Automated reasoning
  • 7 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 20 proof complexity
  • 15 QBF
  • 11 resolution
  • 7 lower bounds
  • 4 CDCL
  • Show More...

  • Refine by Type
  • 98 document
  • 1 volume

  • Refine by Publication Year
  • 77 2024
  • 4 2023
  • 3 2018
  • 3 2022
  • 2 2010
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail