2 Search Results for "Bilu, Yonatan"


Document
Perturbation Resilient Clustering for k-Center and Related Problems via LP Relaxations

Authors: Chandra Chekuri and Shalmoli Gupta

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We consider clustering in the perturbation resilience model that has been studied since the work of Bilu and Linial [Yonatan Bilu and Nathan Linial, 2010] and Awasthi, Blum and Sheffet [Awasthi et al., 2012]. A clustering instance I is said to be alpha-perturbation resilient if the optimal solution does not change when the pairwise distances are modified by a factor of alpha and the perturbed distances satisfy the metric property - this is the metric perturbation resilience property introduced in [Angelidakis et al., 2017] and a weaker requirement than prior models. We make two high-level contributions. - We show that the natural LP relaxation of k-center and asymmetric k-center is integral for 2-perturbation resilient instances. We belive that demonstrating the goodness of standard LP relaxations complements existing results [Maria{-}Florina Balcan et al., 2016; Angelidakis et al., 2017] that are based on new algorithms designed for the perturbation model. - We define a simple new model of perturbation resilience for clustering with outliers. Using this model we show that the unified MST and dynamic programming based algorithm proposed in [Angelidakis et al., 2017] exactly solves the clustering with outliers problem for several common center based objectives (like k-center, k-means, k-median) when the instances is 2-perturbation resilient. We further show that a natural LP relxation is integral for 2-perturbation resilient instances of k-center with outliers.

Cite as

Chandra Chekuri and Shalmoli Gupta. Perturbation Resilient Clustering for k-Center and Related Problems via LP Relaxations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 9:1-9:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.APPROX-RANDOM.2018.9,
  author =	{Chekuri, Chandra and Gupta, Shalmoli},
  title =	{{Perturbation Resilient Clustering for k-Center and Related Problems via LP Relaxations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.9},
  URN =		{urn:nbn:de:0030-drops-94136},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.9},
  annote =	{Keywords: Clustering, Perturbation Resilience, LP Integrality, Outliers, Beyond Worst Case Analysis}
}
Document
On the practically interesting instances of MAXCUT

Authors: Yonatan Bilu, Amit Daniely, Nati Linial, and Michael Saks

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
For many optimization problems, the instances of practical interest often occupy just a tiny part of the algorithm's space of instances. Following (Y. Bilu and N. Linial, 2010), we apply this perspective to MAXCUT, viewed as a clustering problem. Using a variety of techniques, we investigate practically interesting instances of this problem. Specifically, we show how to solve in polynomial time distinguished, metric, expanding and dense instances of MAXCUT under mild stability assumptions. In particular, (1 + epsilon)-stability (which is optimal) suffices for metric and dense MAXCUT. We also show how to solve in polynomial time Omega(sqrt(n))-stable instances of MAXCUT, substantially improving the best previously known result.

Cite as

Yonatan Bilu, Amit Daniely, Nati Linial, and Michael Saks. On the practically interesting instances of MAXCUT. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 526-537, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bilu_et_al:LIPIcs.STACS.2013.526,
  author =	{Bilu, Yonatan and Daniely, Amit and Linial, Nati and Saks, Michael},
  title =	{{On the practically interesting instances of MAXCUT}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{526--537},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.526},
  URN =		{urn:nbn:de:0030-drops-39625},
  doi =		{10.4230/LIPIcs.STACS.2013.526},
  annote =	{Keywords: MAXCUT, Clustering, Hardness in practice, Stability, Non worst-case analysis}
}
  • Refine by Author
  • 1 Bilu, Yonatan
  • 1 Chekuri, Chandra
  • 1 Daniely, Amit
  • 1 Gupta, Shalmoli
  • 1 Linial, Nati
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Facility location and clustering

  • Refine by Keyword
  • 2 Clustering
  • 1 Beyond Worst Case Analysis
  • 1 Hardness in practice
  • 1 LP Integrality
  • 1 MAXCUT
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2013
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail