2 Search Results for "Black, Hadley"


Document
Track A: Algorithms, Complexity and Games
Isoperimetric Inequalities for Real-Valued Functions with Applications to Monotonicity Testing

Authors: Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions f:{0,1}^d → ℝ. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function f over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of f to monotonicity and the structure of violations of f to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity Õ(min(r √d,d)), where r is the size of the image of the input function. (The best previously known tester makes O(d) queries, as shown by Chakrabarty and Seshadhri (STOC 2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are α-far from monotone can be approximated nonadaptively within a factor of O(√{d log d}) with query complexity polynomial in 1/α and the dimension d. This query complexity is known to be nearly optimal for nonadaptive algorithms even for the special case of Boolean functions. (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves O(d log r)-approximation.)

Cite as

Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova. Isoperimetric Inequalities for Real-Valued Functions with Applications to Monotonicity Testing. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 25:1-25:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{black_et_al:LIPIcs.ICALP.2023.25,
  author =	{Black, Hadley and Kalemaj, Iden and Raskhodnikova, Sofya},
  title =	{{Isoperimetric Inequalities for Real-Valued Functions with Applications to Monotonicity Testing}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{25:1--25:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.25},
  URN =		{urn:nbn:de:0030-drops-180774},
  doi =		{10.4230/LIPIcs.ICALP.2023.25},
  annote =	{Keywords: Isoperimetric inequalities, property testing, monotonicity testing}
}
Document
Improved Monotonicity Testers via Hypercube Embeddings

Authors: Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We show improved monotonicity testers for the Boolean hypercube under the p-biased measure, as well as over the hypergrid [m]ⁿ. Our results are: 1) For any p ∈ (0,1), for the p-biased hypercube we show a non-adaptive tester that makes Õ(√n/ε²) queries, accepts monotone functions with probability 1 and rejects functions that are ε-far from monotone with probability at least 2/3. 2) For all m ∈ ℕ, we show an Õ(√nm³/ε²) query monotonicity tester over [m]ⁿ. We also establish corresponding directed isoperimetric inequalities in these domains, analogous to the isoperimetric inequality in [Subhash Khot et al., 2018]. Previously, the best known tester due to Black, Chakrabarty and Seshadhri [Hadley Black et al., 2018] had Ω(n^{5/6}) query complexity. Our results are optimal up to poly-logarithmic factors and the dependency on m. Our proof uses a notion of monotone embeddings of measures into the Boolean hypercube that can be used to reduce the problem of monotonicity testing over an arbitrary product domains to the Boolean cube. The embedding maps a function over a product domain of dimension n into a function over a Boolean cube of a larger dimension n', while preserving its distance from being monotone; an embedding is considered efficient if n' is not much larger than n, and we show how to construct efficient embeddings in the above mentioned settings.

Cite as

Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. Improved Monotonicity Testers via Hypercube Embeddings. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 25:1-25:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.ITCS.2023.25,
  author =	{Braverman, Mark and Khot, Subhash and Kindler, Guy and Minzer, Dor},
  title =	{{Improved Monotonicity Testers via Hypercube Embeddings}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{25:1--25:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.25},
  URN =		{urn:nbn:de:0030-drops-175285},
  doi =		{10.4230/LIPIcs.ITCS.2023.25},
  annote =	{Keywords: Property Testing, Monotonicity Testing, Isoperimetric Inequalities}
}
  • Refine by Author
  • 1 Black, Hadley
  • 1 Braverman, Mark
  • 1 Kalemaj, Iden
  • 1 Khot, Subhash
  • 1 Kindler, Guy
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Probabilistic algorithms

  • Refine by Keyword
  • 1 Isoperimetric Inequalities
  • 1 Isoperimetric inequalities
  • 1 Monotonicity Testing
  • 1 Property Testing
  • 1 monotonicity testing
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail