9 Search Results for "Carmosino, Marco"


Document
Track A: Algorithms, Complexity and Games
Lifting for Constant-Depth Circuits and Applications to MCSP

Authors: Marco Carmosino, Kenneth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Lifting arguments show that the complexity of a function in one model is essentially that of a related function (often the composition of the original function with a small function called a gadget) in a more powerful model. Lifting has been used to prove strong lower bounds in communication complexity, proof complexity, circuit complexity and many other areas. We present a lifting construction for constant depth unbounded fan-in circuits. Given a function f, we construct a function g, so that the depth d+1 circuit complexity of g, with a certain restriction on bottom fan-in, is controlled by the depth d circuit complexity of f, with the same restriction. The function g is defined as f composed with a parity function. With some quantitative losses, average-case and general depth-d circuit complexity can be reduced to circuit complexity with this bottom fan-in restriction. As a consequence, an algorithm to approximate the depth d (for any d > 3) circuit complexity of given (truth tables of) Boolean functions yields an algorithm for approximating the depth 3 circuit complexity of functions, i.e., there are quasi-polynomial time mapping reductions between various gap-versions of AC⁰-MCSP. Our lifting results rely on a blockwise switching lemma that may be of independent interest. We also show some barriers on improving the efficiency of our reductions: such improvements would yield either surprisingly efficient algorithms for MCSP or stronger than known AC⁰ circuit lower bounds.

Cite as

Marco Carmosino, Kenneth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Lifting for Constant-Depth Circuits and Applications to MCSP. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 44:1-44:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{carmosino_et_al:LIPIcs.ICALP.2021.44,
  author =	{Carmosino, Marco and Hoover, Kenneth and Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina},
  title =	{{Lifting for Constant-Depth Circuits and Applications to MCSP}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{44:1--44:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.44},
  URN =		{urn:nbn:de:0030-drops-141135},
  doi =		{10.4230/LIPIcs.ICALP.2021.44},
  annote =	{Keywords: circuit complexity, constant-depth circuits, lifting theorems, Minimum Circuit Size Problem, reductions, Switching Lemma}
}
Document
NP-Hardness of Circuit Minimization for Multi-Output Functions

Authors: Rahul Ilango, Bruno Loff, and Igor C. Oliveira

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n → {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless 𝖯 = 𝖭𝖯, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions.

Cite as

Rahul Ilango, Bruno Loff, and Igor C. Oliveira. NP-Hardness of Circuit Minimization for Multi-Output Functions. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 22:1-22:36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ilango_et_al:LIPIcs.CCC.2020.22,
  author =	{Ilango, Rahul and Loff, Bruno and Oliveira, Igor C.},
  title =	{{NP-Hardness of Circuit Minimization for Multi-Output Functions}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{22:1--22:36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.22},
  URN =		{urn:nbn:de:0030-drops-125744},
  doi =		{10.4230/LIPIcs.CCC.2020.22},
  annote =	{Keywords: MCSP, circuit minimization, communication complexity, Boolean circuit}
}
Document
Pseudorandomness and the Minimum Circuit Size Problem

Authors: Rahul Santhanam

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We explore the possibility of basing one-way functions on the average-case hardness of the fundamental Minimum Circuit Size Problem (MCSP[s]), which asks whether a Boolean function on n bits specified by its truth table has circuits of size s(n). 1) (Pseudorandomness from Zero-Error Average-Case Hardness) We show that for a given size function s, the following are equivalent: Pseudorandom distributions supported on strings describable by s(O(n))-size circuits exist; Hitting sets supported on strings describable by s(O(n))-size circuits exist; MCSP[s(O(n))] is zero-error average-case hard. Using similar techniques, we show that Feige’s hypothesis for random k-CNFs implies that there is a pseudorandom distribution (with constant error) supported entirely on satisfiable formulas. Underlying our results is a general notion of semantic sampling, which might be of independent interest. 2) (A New Conjecture) In analogy to a known universal construction of succinct hitting sets against arbitrary polynomial-size adversaries, we propose the Universality Conjecture: there is a universal construction of succinct pseudorandom distributions against arbitrary polynomial-size adversaries. We show that under the Universality Conjecture, the following are equivalent: One-way functions exist; Natural proofs useful against sub-exponential size circuits do not exist; Learning polynomial-size circuits with membership queries over the uniform distribution is hard; MCSP[2^(ε n)] is zero-error hard on average for some ε > 0; Cryptographic succinct hitting set generators exist. 3) (Non-Black-Box Results) We show that for weak circuit classes ℭ against which there are natural proofs [Alexander A. Razborov and Steven Rudich, 1997], pseudorandom functions secure against poly-size circuits in ℭ imply superpolynomial lower bounds in P against poly-size circuits in ℭ. We also show that for a certain natural variant of MCSP, there is a polynomial-time reduction from approximating the problem well in the worst case to solving it on average. These results are shown using non-black-box techniques, and in the first case we show that there is no black-box proof of the result under standard crypto assumptions.

Cite as

Rahul Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 68:1-68:26, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{santhanam:LIPIcs.ITCS.2020.68,
  author =	{Santhanam, Rahul},
  title =	{{Pseudorandomness and the Minimum Circuit Size Problem}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{68:1--68:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.68},
  URN =		{urn:nbn:de:0030-drops-117532},
  doi =		{10.4230/LIPIcs.ITCS.2020.68},
  annote =	{Keywords: Minimum Circuit Size Problem, Pseudorandomness, Average-case Complexity, Natural Proofs, Universality Conjecture}
}
Document
On the Fine-Grained Complexity of Least Weight Subsequence in Multitrees and Bounded Treewidth DAGs

Authors: Jiawei Gao

Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)


Abstract
This paper introduces a new technique that generalizes previously known fine-grained reductions from linear structures to graphs. Least Weight Subsequence (LWS) [Hirschberg and Larmore, 1987] is a class of highly sequential optimization problems with form F(j) = min_{i < j} [F(i) + c_{i,j}] . They can be solved in quadratic time using dynamic programming, but it is not known whether these problems can be solved faster than n^{2-o(1)} time. Surprisingly, each such problem is subquadratic time reducible to a highly parallel, non-dynamic programming problem [Marvin Künnemann et al., 2017]. In other words, if a "static" problem is faster than quadratic time, so is an LWS problem. For many instances of LWS, the sequential versions are equivalent to their static versions by subquadratic time reductions. The previous result applies to LWS on linear structures, and this paper extends this result to LWS on paths in sparse graphs, the Least Weight Subpath (LWSP) problems. When the graph is a multitree (i.e. a DAG where any pair of vertices can have at most one path) or when the graph is a DAG whose underlying undirected graph has constant treewidth, we show that LWSP on this graph is still subquadratically reducible to their corresponding static problems. For many instances, the graph versions are still equivalent to their static versions. Moreover, this paper shows that if we can decide a property of form Exists x Exists y P(x,y) in subquadratic time, where P is a quickly checkable property on a pair of elements, then on these classes of graphs, we can also in subquadratic time decide whether there exists a pair x,y in the transitive closure of the graph that also satisfy P(x,y).

Cite as

Jiawei Gao. On the Fine-Grained Complexity of Least Weight Subsequence in Multitrees and Bounded Treewidth DAGs. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 16:1-16:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gao:LIPIcs.IPEC.2019.16,
  author =	{Gao, Jiawei},
  title =	{{On the Fine-Grained Complexity of Least Weight Subsequence in Multitrees and Bounded Treewidth DAGs}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{16:1--16:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Jansen, Bart M. P. and Telle, Jan Arne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.16},
  URN =		{urn:nbn:de:0030-drops-114778},
  doi =		{10.4230/LIPIcs.IPEC.2019.16},
  annote =	{Keywords: fine-grained complexity, dynamic programming, graph reachability}
}
Document
Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity

Authors: Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We show that popular hardness conjectures about problems from the field of fine-grained complexity theory imply structural results for resource-based complexity classes. Namely, we show that if either k-Orthogonal Vectors or k-CLIQUE requires n^{epsilon k} time, for some constant epsilon>1/2, to count (note that these conjectures are significantly weaker than the usual ones made on these problems) on randomized machines for all but finitely many input lengths, then we have the following derandomizations: - BPP can be decided in polynomial time using only n^alpha random bits on average over any efficient input distribution, for any constant alpha>0 - BPP can be decided in polynomial time with no randomness on average over the uniform distribution This answers an open question of Ball et al. (STOC '17) in the positive of whether derandomization can be achieved from conjectures from fine-grained complexity theory. More strongly, these derandomizations improve over all previous ones achieved from worst-case uniform assumptions by succeeding on all but finitely many input lengths. Previously, derandomizations from worst-case uniform assumptions were only know to succeed on infinitely many input lengths. It is specifically the structure and moderate hardness of the k-Orthogonal Vectors and k-CLIQUE problems that makes removing this restriction possible. Via this uniform derandomization, we connect the problem-centric and resource-centric views of complexity theory by showing that exact hardness assumptions about specific problems like k-CLIQUE imply quantitative and qualitative relationships between randomized and deterministic time. This can be either viewed as a barrier to proving some of the main conjectures of fine-grained complexity theory lest we achieve a major breakthrough in unconditional derandomization or, optimistically, as route to attain such derandomizations by working on very concrete and weak conjectures about specific problems.

Cite as

Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 27:1-27:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{carmosino_et_al:LIPIcs.ICALP.2018.27,
  author =	{Carmosino, Marco L. and Impagliazzo, Russell and Sabin, Manuel},
  title =	{{Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.27},
  URN =		{urn:nbn:de:0030-drops-90316},
  doi =		{10.4230/LIPIcs.ICALP.2018.27},
  annote =	{Keywords: Derandomization, Hardness vs Randomness, Fine-Grained Complexity, Average-Case Complexity, k-Orthogonal Vectors, k-CLIQUE}
}
Document
Hardness Amplification for Non-Commutative Arithmetic Circuits

Authors: Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin

Published in: LIPIcs, Volume 102, 33rd Computational Complexity Conference (CCC 2018)


Abstract
We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show the strongest lower bounds we could desire. This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on general devices. One can view our work as positive news (it suffices to prove weak lower bounds to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove strong ones). We leave it to the reader to determine their own level of optimism.

Cite as

Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness Amplification for Non-Commutative Arithmetic Circuits. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 12:1-12:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{carmosino_et_al:LIPIcs.CCC.2018.12,
  author =	{Carmosino, Marco L. and Impagliazzo, Russell and Lovett, Shachar and Mihajlin, Ivan},
  title =	{{Hardness Amplification for Non-Commutative Arithmetic Circuits}},
  booktitle =	{33rd Computational Complexity Conference (CCC 2018)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-069-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{102},
  editor =	{Servedio, Rocco A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.12},
  URN =		{urn:nbn:de:0030-drops-88772},
  doi =		{10.4230/LIPIcs.CCC.2018.12},
  annote =	{Keywords: arithmetic circuits, hardness amplification, circuit lower bounds, non-commutative computation}
}
Document
Agnostic Learning from Tolerant Natural Proofs

Authors: Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
We generalize the "learning algorithms from natural properties" framework of [CIKK16] to get agnostic learning algorithms from natural properties with extra features. We show that if a natural property (in the sense of Razborov and Rudich [RR97]) is useful also against functions that are close to the class of "easy" functions, rather than just against "easy" functions, then it can be used to get an agnostic learning algorithm over the uniform distribution with membership queries. * For AC0[q], any prime q (constant-depth circuits of polynomial size, with AND, OR, NOT, and MODq gates of unbounded fanin), which happens to have a natural property with the requisite extra feature by [Raz87, Smo87, RR97], we obtain the first agnostic learning algorithm for AC0[q], for every prime q. Our algorithm runs in randomized quasi-polynomial time, uses membership queries, and outputs a circuit for a given Boolean function f that agrees with f on all but at most polylog(n)*opt fraction of inputs, where opt is the relative distance between f and the closest function h in the class AC0[q]. * For the ideal case, a natural proof of strongly exponential correlation circuit lower bounds against a circuit class C containing AC0[2] (i.e., circuits of size exp(Omega(n)) cannot compute some n-variate function even with exp(-Omega(n)) advantage over random guessing) would yield a polynomial-time query agnostic learning algorithm for C with the approximation error O(opt).

Cite as

Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Agnostic Learning from Tolerant Natural Proofs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 35:1-35:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{carmosino_et_al:LIPIcs.APPROX-RANDOM.2017.35,
  author =	{Carmosino, Marco L. and Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina},
  title =	{{Agnostic Learning from Tolerant Natural Proofs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.35},
  URN =		{urn:nbn:de:0030-drops-75842},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.35},
  annote =	{Keywords: agnostic learning, natural proofs, circuit lower bounds, meta-algorithms, AC0\lbrackq\rbrack, Nisan-Wigderson generator}
}
Document
Learning Algorithms from Natural Proofs

Authors: Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
Based on Hastad's (1986) circuit lower bounds, Linial, Mansour, and Nisan (1993) gave a quasipolytime learning algorithm for AC^0 (constant-depth circuits with AND, OR, and NOT gates), in the PAC model over the uniform distribution. It was an open question to get a learning algorithm (of any kind) for the class of AC^0[p] circuits (constant-depth, with AND, OR, NOT, and MOD_p gates for a prime p). Our main result is a quasipolytime learning algorithm for AC^0[p] in the PAC model over the uniform distribution with membership queries. This algorithm is an application of a general connection we show to hold between natural proofs (in the sense of Razborov and Rudich (1997)) and learning algorithms. We argue that a natural proof of a circuit lower bound against any (sufficiently powerful) circuit class yields a learning algorithm for the same circuit class. As the lower bounds against AC^0[p] by Razborov (1987) and Smolensky (1987) are natural, we obtain our learning algorithm for AC^0[p].

Cite as

Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning Algorithms from Natural Proofs. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 10:1-10:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{carmosino_et_al:LIPIcs.CCC.2016.10,
  author =	{Carmosino, Marco L. and Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina},
  title =	{{Learning Algorithms from Natural Proofs}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.10},
  URN =		{urn:nbn:de:0030-drops-58557},
  doi =		{10.4230/LIPIcs.CCC.2016.10},
  annote =	{Keywords: natural proofs, circuit complexity, lower bounds, learning, compression}
}
Document
Tighter Connections between Derandomization and Circuit Lower Bounds

Authors: Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
We tighten the connections between circuit lower bounds and derandomization for each of the following three types of derandomization: - general derandomization of promiseBPP (connected to Boolean circuits), - derandomization of Polynomial Identity Testing (PIT) over fixed finite fields (connected to arithmetic circuit lower bounds over the same field), and - derandomization of PIT over the integers (connected to arithmetic circuit lower bounds over the integers). We show how to make these connections uniform equivalences, although at the expense of using somewhat less common versions of complexity classes and for a less studied notion of inclusion. Our main results are as follows: 1. We give the first proof that a non-trivial (nondeterministic subexponential-time) algorithm for PIT over a fixed finite field yields arithmetic circuit lower bounds. 2. We get a similar result for the case of PIT over the integers, strengthening a result of Jansen and Santhanam [JS12] (by removing the need for advice). 3. We derive a Boolean circuit lower bound for NEXP intersect coNEXP from the assumption of sufficiently strong non-deterministic derandomization of promiseBPP (without advice), as well as from the assumed existence of an NP-computable non-empty property of Boolean functions useful for proving superpolynomial circuit lower bounds (in the sense of natural proofs of [RR97]); this strengthens the related results of [IKW02]. 4. Finally, we turn all of these implications into equivalences for appropriately defined promise classes and for a notion of robust inclusion/separation (inspired by [FS11]) that lies between the classical "almost everywhere" and "infinitely often" notions.

Cite as

Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Tighter Connections between Derandomization and Circuit Lower Bounds. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 645-658, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{carmosino_et_al:LIPIcs.APPROX-RANDOM.2015.645,
  author =	{Carmosino, Marco L. and Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina},
  title =	{{Tighter Connections between Derandomization and Circuit Lower Bounds}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{645--658},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.645},
  URN =		{urn:nbn:de:0030-drops-53285},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.645},
  annote =	{Keywords: derandomization, circuit lower bounds, polynomial identity testing, promise BPP, hardness vs. randomness}
}
  • Refine by Author
  • 6 Impagliazzo, Russell
  • 5 Carmosino, Marco L.
  • 4 Kabanets, Valentine
  • 4 Kolokolova, Antonina
  • 1 Carmosino, Marco
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Computational complexity and cryptography
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Complexity classes

  • Refine by Keyword
  • 3 circuit lower bounds
  • 2 Minimum Circuit Size Problem
  • 2 circuit complexity
  • 2 natural proofs
  • 1 AC0[q]
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 2 2018
  • 2 2020
  • 1 2015
  • 1 2016
  • 1 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail